Bergslien, Elisa; Fountain, John
2006-12-15
By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-11-01
The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.
Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas
Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.
2009-01-01
BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626
Evidence of iridescence in TiO2 nanostructures. A probably photonic effect
NASA Astrophysics Data System (ADS)
Rey-Gonzalez, Rafael; Quiroz, Heiddy P.; Barrera-Patiño, Claudia; Dussan, Anderson; Grupo de Optica e Informacion Cuantica Collaboration; Grupo de Materiales Nanoestructutrados y sus Aplicaciones Collaboration
In this work, we present a study of optical properties of titanium dioxide nanotubes (TiO2). Nanotubes were obtained by electrochemical anodization method, using ethylene glycol solutions containing different amounts of water and fluoride. A complex structure is observed between nanotubes and Ti foils on surface when nanotubes are released from the sheet. These forms can be associated with replicas or marks in surface of the Ti foil. The optical response of replicas is studied by Uv-Vis spectrophotometry using white light and varying the angle of the incident light. Absorbance measurements reveal that these replicas exhibit a shift towards lower values of lambda when the angle of the incident light increases of 200 to 600. These changes may be associated with iridescent effects in this material. The concavity of the replicas in association with air could be generating photonic-like effects. Using a 2D model of replicas - air system, the photonic band structures are found through a plane wave approach. Correlations between photonic properties and iridescent effects are explored. Grupo de Optica e Informacion Cuantica.
New approach to accuracy verification of 3D surface models: An analysis of point cloud coordinates.
Lee, Wan-Sun; Park, Jong-Kyoung; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul; Yu, Chin-Ho
2016-04-01
The precision of two types of surface digitization devices, i.e., a contact probe scanner and an optical scanner, and the trueness of two types of stone replicas, i.e., one without an imaging powder (SR/NP) and one with an imaging powder (SR/P), were evaluated using a computer-aided analysis. A master die was fabricated from stainless steel. Ten impressions were taken, and ten stone replicas were prepared from Type IV stone (Fujirock EP, GC, Leuven, Belgium). The precision of two types of scanners was analyzed using the root mean square (RMS), measurement error (ME), and limits of agreement (LoA) at each coordinate. The trueness of the stone replicas was evaluated using the total deviation. A Student's t-test was applied to compare the discrepancies between the CAD-reference-models of the master die (m-CRM) and point clouds for the two types of stone replicas (α=.05). The RMS values for the precision were 1.58, 1.28, and 0.98μm along the x-, y-, and z-axes in the contact probe scanner and 1.97, 1.32, and 1.33μm along the x-, y-, and z-axes in the optical scanner, respectively. A comparison with m-CRM revealed a trueness of 7.10μm for SR/NP and 8.65μm for SR/P. The precision at each coordinate (x-, y-, and z-axes) was revealed to be higher than the one assessed in the previous method (overall offset differences). A comparison between the m-CRM and 3D surface models of the stone replicas revealed a greater dimensional change in SR/P than in SR/NP. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.
2014-01-01
Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…
Validation of the replica trick for simple models
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2018-04-01
We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiang; Peer, Akshit; Cho, In Ho
Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less
Li, Qiang; Peer, Akshit; Cho, In Ho; ...
2018-03-02
Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less
SRF Cavity Surface Topography Characterization Using Replica Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Xu, M.J. Kelley, C.E. Reece
2012-07-01
To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less
Fractographic ceramic failure analysis using the replica technique
Scherrer, Susanne S.; Quinn, Janet B.; Quinn, George D.; Anselm Wiskott, H. W.
2007-01-01
Objectives To demonstrate the effectiveness of in vivo replicas of fractured ceramic surfaces for descriptive fractography as applied to the analysis of clinical failures. Methods The fracture surface topography of partially failed veneering ceramic of a Procera Alumina molar and an In Ceram Zirconia premolar were examined utilizing gold-coated epoxy poured replicas viewed using scanning electron microscopy. The replicas were inspected for fractographic features such as hackle, wake hackle, twist hackle, compression curl and arrest lines for determination of the direction of crack propagation and location of the origin. Results For both veneering ceramics, replicas provided an excellent reproduction of the fractured surfaces. Fine details including all characteristic fracture features produced by the interaction of the advancing crack with the material's microstructure could be recognized. The observed features are indicators of the local direction of crack propagation and were used to trace the crack's progression back to its initial starting zone (the origin). Drawbacks of replicas such as artifacts (air bubbles) or imperfections resulting from inadequate epoxy pouring were noted but not critical for the overall analysis of the fractured surfaces. Significance The replica technique proved to be easy to use and allowed an excellent reproduction of failed ceramic surfaces. It should be applied before attempting to remove any failed part remaining in situ as the fracture surface may be damaged during this procedure. These two case studies are intended as an introduction for the clinical researcher in using qualitative (descriptive) fractography as a tool for understanding fracture processes in brittle restorative materials and, secondarily, to draw conclusions as to possible design inadequacies in failed restorations. PMID:17270267
Shah, Sinal; Sundaram, Geeta; Bartlett, David; Sherriff, Martyn
2004-11-01
Several studies have made comparisons in the dimensional accuracy of different elastomeric impression materials. Most have used two-dimensional measuring devices, which neglect to account for the dimensional changes that exist along a three-dimensional surface. The aim of this study was to compare the dimensional accuracy of an impression technique using a polyether material (Impregum) and a vinyl poly siloxane material (President) using a laser scanner with three-dimensional superimpositional software. Twenty impressions, 10 with a polyether and 10 with addition silicone, of a stone master model that resembled a dental arch containing three acrylic posterior teeth were cast in orthodontic stone. One plastic tooth was prepared for a metal crown. The master model and the casts were digitised with the non-contacting laser scanner to produce a 3D image. 3D surface viewer software superimposed the master model to the stone replica and the difference between the images analysed. The mean difference between the model and the stone replica made from Impregum was 0.072mm (SD 0.006) and that for the silicone 0.097mm (SD 0.005) and this difference was statistically significantly, p=0.001. Both impression materials provided an accurate replica of the prepared teeth supporting the view that these materials are highly accurate.
Kinetics from Replica Exchange Molecular Dynamics Simulations.
Stelzl, Lukas S; Hummer, Gerhard
2017-08-08
Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.
Self-assembly of block copolymers on topographically patterned polymeric substrates
Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting
2016-05-10
Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.
Evaluation of a Small-Crack Monitoring System
NASA Technical Reports Server (NTRS)
Newman, John A.; Johnston, William M.
2010-01-01
A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.
Method for producing highly reflective metal surfaces
Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.
1983-01-01
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Method for producing highly reflective metal surfaces
Arnold, J.B.; Steger, P.J.; Wright, R.R.
1982-03-04
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Entanglement, replicas, and Thetas
NASA Astrophysics Data System (ADS)
Mukhi, Sunil; Murthy, Sameer; Wu, Jie-Qiang
2018-01-01
We compute the single-interval Rényi entropy (replica partition function) for free fermions in 1+1d at finite temperature and finite spatial size by two methods: (i) using the higher-genus partition function on the replica Riemann surface, and (ii) using twist operators on the torus. We compare the two answers for a restricted set of spin structures, leading to a non-trivial proposed equivalence between higher-genus Siegel Θ-functions and Jacobi θ-functions. We exhibit this proposal and provide substantial evidence for it. The resulting expressions can be elegantly written in terms of Jacobi forms. Thereafter we argue that the correct Rényi entropy for modular-invariant free-fermion theories, such as the Ising model and the Dirac CFT, is given by the higher-genus computation summed over all spin structures. The result satisfies the physical checks of modular covariance, the thermal entropy relation, and Bose-Fermi equivalence.
Materials Chemistry and Performance of Silicone-Based Replicating Compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael
Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could removemore » some residue.« less
Speck, Thomas; Bohn, Holger F.
2018-01-01
The surfaces of plant leaves are rarely smooth and often possess a species-specific micro- and/or nano-structuring. These structures usually influence the surface functionality of the leaves such as wettability, optical properties, friction and adhesion in insect–plant interactions. This work presents a simple, convenient, inexpensive and precise two-step micro-replication technique to transfer surface microstructures of plant leaves onto highly transparent soft polymer material. Leaves of three different plants with variable size (0.5–100 µm), shape and complexity (hierarchical levels) of their surface microstructures were selected as model bio-templates. A thermoset epoxy resin was used at ambient conditions to produce negative moulds directly from fresh plant leaves. An alkaline chemical treatment was established to remove the entirety of the leaf material from the cured negative epoxy mould when necessary, i.e. for highly complex hierarchical structures. Obtained moulds were filled up afterwards with low viscosity silicone elastomer (PDMS) to obtain positive surface replicas. Comparative scanning electron microscopy investigations (original plant leaves and replicated polymeric surfaces) reveal the high precision and versatility of this replication technique. This technique has promising future application for the development of bioinspired functional surfaces. Additionally, the fabricated polymer replicas provide a model to systematically investigate the structural key points of surface functionalities. PMID:29765666
Replica-based Crack Inspection
NASA Technical Reports Server (NTRS)
Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.
2007-01-01
A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.
Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong
2018-04-10
Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.
Secrets of the Chinese magic mirror replica
NASA Astrophysics Data System (ADS)
Mak, Se-yuen; Yip, Din-yan
2001-03-01
We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.
Mori, Takaharu; Jung, Jaewoon; Sugita, Yuji
2013-12-10
Conformational sampling is fundamentally important for simulating complex biomolecular systems. The generalized-ensemble algorithm, especially the temperature replica-exchange molecular dynamics method (T-REMD), is one of the most powerful methods to explore structures of biomolecules such as proteins, nucleic acids, carbohydrates, and also of lipid membranes. T-REMD simulations have focused on soluble proteins rather than membrane proteins or lipid bilayers, because explicit membranes do not keep their structural integrity at high temperature. Here, we propose a new generalized-ensemble algorithm for membrane systems, which we call the surface-tension REMD method. Each replica is simulated in the NPγT ensemble, and surface tensions in a pair of replicas are exchanged at certain intervals to enhance conformational sampling of the target membrane system. We test the method on two biological membrane systems: a fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer and a WALP23-POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane system. During these simulations, a random walk in surface tension space is realized. Large-scale lateral deformation (shrinking and stretching) of the membranes takes place in all of the replicas without collapse of the lipid bilayer structure. There is accelerated lateral diffusion of DPPC lipid molecules compared with conventional MD simulation, and a much wider range of tilt angle of the WALP23 peptide is sampled due to large deformation of the POPC lipid bilayer and through peptide-lipid interactions. Our method could be applicable to a wide variety of biological membrane systems.
D Modelling and Rapid Prototyping for Cardiovascular Surgical Planning - Two Case Studies
NASA Astrophysics Data System (ADS)
Nocerino, E.; Remondino, F.; Uccheddu, F.; Gallo, M.; Gerosa, G.
2016-06-01
In the last years, cardiovascular diagnosis, surgical planning and intervention have taken advantages from 3D modelling and rapid prototyping techniques. The starting data for the whole process is represented by medical imagery, in particular, but not exclusively, computed tomography (CT) or multi-slice CT (MCT) and magnetic resonance imaging (MRI). On the medical imagery, regions of interest, i.e. heart chambers, valves, aorta, coronary vessels, etc., are segmented and converted into 3D models, which can be finally converted in physical replicas through 3D printing procedure. In this work, an overview on modern approaches for automatic and semiautomatic segmentation of medical imagery for 3D surface model generation is provided. The issue of accuracy check of surface models is also addressed, together with the critical aspects of converting digital models into physical replicas through 3D printing techniques. A patient-specific 3D modelling and printing procedure (Figure 1), for surgical planning in case of complex heart diseases was developed. The procedure was applied to two case studies, for which MCT scans of the chest are available. In the article, a detailed description on the implemented patient-specific modelling procedure is provided, along with a general discussion on the potentiality and future developments of personalized 3D modelling and printing for surgical planning and surgeons practice.
Finite Size Corrections to the Parisi Overlap Function in the GREM
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Mottishaw, Peter
2018-01-01
We investigate the effects of finite size corrections on the overlap probabilities in the Generalized Random Energy Model in two situations where replica symmetry is broken in the thermodynamic limit. Our calculations do not use replicas, but shed some light on what the replica method should give for finite size corrections. In the gradual freezing situation, which is known to exhibit full replica symmetry breaking, we show that the finite size corrections lead to a modification of the simple relations between the sample averages of the overlaps Y_k between k configurations predicted by replica theory. This can be interpreted as fluctuations in the replica block size with a negative variance. The mechanism is similar to the one we found recently in the random energy model in Derrida and Mottishaw (J Stat Mech 2015(1): P01021, 2015). We also consider a simultaneous freezing situation, which is known to exhibit one step replica symmetry breaking. We show that finite size corrections lead to full replica symmetry breaking and give a more complete derivation of the results presented in Derrida and Mottishaw (Europhys Lett 115(4): 40005, 2016) for the directed polymer on a tree.
Hu, Xuan; Fan, Mingwan; Rong, Wensheng; Lo, Edward C M; Bronkhorst, Ewald; Frencken, Jo E
2014-08-01
The aim of this study was to test the hypothesis that the colour photograph method has a higher level of validity for assessing sealant retention than the visual clinical examination and replica methods. Sealed molars were assessed by two evaluators. The scores for the three methods were compared against consensus scores derived through assessing retention from scanning electron microscopy images (reference standard). The presence/absence (survival) of retained sealants on occlusal surfaces was determined according to the traditional and modified categorizations of retention. Sensitivity, specificity, and Youden-index scores were calculated. Sealant retention assessment scores for visual clinical examinations and for colour photographs were compared with those of the reference standard on 95 surfaces, and sealant retention assessment scores for replicas were compared with those of the reference standard on 33 surfaces. The highest mean Youden-index score for the presence/absence of sealant material was observed for the colour photograph method, followed by that for the replica method; the visual clinical examination method scored lowest. The mean Youden-index score for the survival of retained sealants was highest for the colour photograph method for both the traditional (0.882) and the modified (0.768) categories of sealant retention, whilst the visual clinical examination method had the lowest Youden-index score for these categories (0.745 and 0.063, respectively). The colour photograph method had a higher validity than the replica and the visual examination methods for assessing sealant retention. © 2014 Eur J Oral Sci.
Inexpensive Eddy-Current Standard
NASA Technical Reports Server (NTRS)
Berry, Robert F., Jr.
1985-01-01
Radial crack replicas serve as evaluation standards. Technique entails intimately joining two pieces of appropriate aluminum alloy stock and centering drilled hole through and along interface. Bore surface of hole presents two vertical stock interface lines 180 degrees apart. These lines serve as radial crack defect replicas during eddy-current technique setup and verification.
Cadenaro, Milena; Breschi, Lorenzo; Nucci, Cesare; Antoniolli, Francesca; Visintini, Erika; Prati, Carlo; Matis, Bruce A; Di Lenarda, Roberto
2008-01-01
This study evaluated the morphological effects produced in vivo by two in-office bleaching agents on enamel surface roughness using a noncontact profilometric analysis of epoxy replicas. The null hypothesis tested was that there would be no difference in the micromorphology of the enamel surface during or after bleaching with two different bleaching agents. Eighteen subjects were selected and randomly assigned to two treatment groups (n=9). The tooth whitening materials tested were 38% hydrogen peroxide (HP) (Opalescence Xtra Boost) and 35% carbamide peroxide (CP) (Rembrandt Quik Start). The bleaching agents were applied in accordance with manufacturer protocols. The treatments were repeated four times at one-week intervals. High precision impressions of the upper right incisor were taken at baseline as the control (CTRL) and after each bleaching treatment (T0: first application, T1: second application at one week, T2: third application at two weeks and T3: fourth application at three weeks). Epoxy resin replicas were poured from impressions, and the surface roughness was analyzed by means of a non-contact profilometer (Talysurf CLI 1000). Epoxy replicas were then observed using SEM. All data were statistically analyzed using ANOVA and differences were determined with a t-test. No significant differences in surface roughness were found on enamel replicas using either 38% hydrogen peroxide or 35% carbamide peroxide in vivo. This in vivo study supports the null hypothesis that two in-office bleaching agents, with either a high concentration of hydrogen or carbamide peroxide, do not alter enamel surface roughness, even after multiple applications.
Disordered λ φ4+ρ φ6 Landau-Ginzburg model
NASA Astrophysics Data System (ADS)
Diaz, R. Acosta; Svaiter, N. F.; Krein, G.; Zarro, C. A. D.
2018-03-01
We discuss a disordered λ φ4+ρ φ6 Landau-Ginzburg model defined in a d -dimensional space. First we adopt the standard procedure of averaging the disorder-dependent free energy of the model. The dominant contribution to this quantity is represented by a series of the replica partition functions of the system. Next, using the replica-symmetry ansatz in the saddle-point equations, we prove that the average free energy represents a system with multiple ground states with different order parameters. For low temperatures we show the presence of metastable equilibrium states for some replica fields for a range of values of the physical parameters. Finally, going beyond the mean-field approximation, the one-loop renormalization of this model is performed, in the leading-order replica partition function.
NASA Astrophysics Data System (ADS)
Kum, Oyeon; Dickson, Brad M.; Stuart, Steven J.; Uberuaga, Blas P.; Voter, Arthur F.
2004-11-01
Parallel replica dynamics simulation methods appropriate for the simulation of chemical reactions in molecular systems with many conformational degrees of freedom have been developed and applied to study the microsecond-scale pyrolysis of n-hexadecane in the temperature range of 2100-2500 K. The algorithm uses a transition detection scheme that is based on molecular topology, rather than energetic basins. This algorithm allows efficient parallelization of small systems even when using more processors than particles (in contrast to more traditional parallelization algorithms), and even when there are frequent conformational transitions (in contrast to previous implementations of the parallel replica algorithm). The parallel efficiency for pyrolysis initiation reactions was over 90% on 61 processors for this 50-atom system. The parallel replica dynamics technique results in reaction probabilities that are statistically indistinguishable from those obtained from direct molecular dynamics, under conditions where both are feasible, but allows simulations at temperatures as much as 1000 K lower than direct molecular dynamics simulations. The rate of initiation displayed Arrhenius behavior over the entire temperature range, with an activation energy and frequency factor of Ea=79.7 kcal/mol and log A/s-1=14.8, respectively, in reasonable agreement with experiment and empirical kinetic models. Several interesting unimolecular reaction mechanisms were observed in simulations of the chain propagation reactions above 2000 K, which are not included in most coarse-grained kinetic models. More studies are needed in order to determine whether these mechanisms are experimentally relevant, or specific to the potential energy surface used.
Geodetic estimates of fault slip rates in the San Francisco Bay area
Savage, J.C.; Svarc, J.L.; Prescott, W.H.
1999-01-01
Bourne et al. [1998] have suggested that the interseismic velocity profile at the surface across a transform plate boundary is a replica of the secular velocity profile at depth in the plastosphere. On the other hand, in the viscoelastic coupling model the shape of the interseismic surface velocity profile is a consequence of plastosphere relaxation following the previous rupture of the faults that make up the plate boundary and is not directly related to the secular flow in the plastosphere. The two models appear to be incompatible. If the plate boundary is composed of several subparallel faults and the interseismic surface velocity profile across the boundary known, each model predicts the secular slip rates on the faults which make up the boundary. As suggested by Bourne et al., the models can then be tested by comparing the predicted secular slip rates to those estimated from long-term offsets inferred from geology. Here we apply that test to the secular slip rates predicted for the principal faults (San Andreas, San Gregorio, Hayward, Calaveras, Rodgers Creek, Green Valley and Greenville faults) in the San Andreas fault system in the San Francisco Bay area. The estimates from the two models generally agree with one another and to a lesser extent with the geologic estimate. Because the viscoelastic coupling model has been equally successful in estimating secular slip rates on the various fault strands at a diffuse plate boundary, the success of the model of Bourne et al. [1998] in doing the same thing should not be taken as proof that the interseismic velocity profile across the plate boundary at the surface is a replica of the velocity profile at depth in the plastosphere.
Listgarten, M A; Buser, D; Steinemann, S G; Donath, K; Lang, N P; Weber, H P
1992-02-01
This experiment was aimed at studying the intact tissue/implant interface of non-submerged dental implants with a titanium surface. Epoxy-resin replicas were fabricated from 3.05 x 8 mm cylindrical titanium implants with a plasma-sprayed apical portion and a smooth coronal collar. The replicas were coated with a 90-120-nm-thick layer of pure titanium and autoclaved. The coated replicas were inserted as non-submerged endosseous implants in the edentulous premolar region of dog mandibles and allowed to heal for three months. Jaw sections containing the implants were processed for light and electron microscopic study of the intact tissue/implant interface with and without prior demineralization. Gingival connective tissue fibers were closely adapted to the titanium layer, in an orientation more or less parallel to the implant surface. There was no evidence of any fiber insertions into the surface irregularities of the smooth or rough titanium surface. Undemineralized bone was intimately adapted to the titanium surface without any intervening space. In demineralized sections, the collagen fibers of the bone matrix tended to be somewhat thinner and occasionally less densely packed in the vicinity of the implant surface. However, they extended all the way to the titanium surface, without any intervening fibril-free layer.
Marro, Francisca; De Lat, Liesa; Martens, Luc; Jacquet, Wolfgang; Bottenberg, Peter
2018-04-13
To determine if the Basic erosive tooth wear index (BEWE index) is able to assess and monitor ETW changes in two consecutive cast models, and detect methodological differences when using the corresponding 3D image replicas. A total of 480 pre-treatment and 2-year post-treatment orthodontic models (n = 240 cast models and n = 240 3D image replicas) from 120 adolescents treated between 2002 and 2013 at the Gent Dental Clinic, Belgium, were scored using the BEWE index. For data analysis only posterior sextants were considered, and inter-method differences were evaluated using Wilcoxon Signed Rank test, Kappa values and Mc Nemar tests (p < 0.05). Correlations between methods were determined using Kendall tau correlation test. Significant changes of ETW were detected between two consecutive models when BEWE index was used to score cast models or their 3D image replicas (p < 0.001). A strong significant correlation (τb: 0.74; p < 0.001) was shown between both methods However, 3D image-BEWE index combination showed a higher probability for detecting initial surface changes, and scored significantly higher than casts (p < 0.001). Incidence and progression of ETW using 3D images was 13.3% (n = 16) and 60.9% (n = 56) respectively, with two subjects developing BEWE = 3 in at least one tooth surface. BEWE index is a suitable tool for the scoring of ETW lesions in 3D images and cast. The combination of both digital 3D records and index, can be used for the monitoring of ETW in a longitudinal approach. The higher sensibility of BEWE index when scoring 3D images might improve the early diagnosis of ETW lesions. The BEWE index combined with digital 3D records of oral conditions might improve the practitioner performance with respect to early diagnosis, monitoring and managing ETW. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke
2016-12-01
Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.
Faster protein folding using enhanced conformational sampling of molecular dynamics simulation.
Kamberaj, Hiqmet
2018-05-01
In this study, we applied swarm particle-like molecular dynamics (SPMD) approach to enhance conformational sampling of replica exchange simulations. In particular, the approach showed significant improvement in sampling efficiency of conformational phase space when combined with replica exchange method (REM) in computer simulation of peptide/protein folding. First we introduce the augmented dynamical system of equations, and demonstrate the stability of the algorithm. Then, we illustrate the approach by using different fully atomistic and coarse-grained model systems, comparing them with the standard replica exchange method. In addition, we applied SPMD simulation to calculate the time correlation functions of the transitions in a two dimensional surface to demonstrate the enhancement of transition path sampling. Our results showed that folded structure can be obtained in a shorter simulation time using the new method when compared with non-augmented dynamical system. Typically, in less than 0.5 ns using replica exchange runs assuming that native folded structure is known and within simulation time scale of 40 ns in the case of blind structure prediction. Furthermore, the root mean square deviations from the reference structures were less than 2Å. To demonstrate the performance of new method, we also implemented three simulation protocols using CHARMM software. Comparisons are also performed with standard targeted molecular dynamics simulation method. Copyright © 2018 Elsevier Inc. All rights reserved.
Adamczak, Beata; Kogut, Mateusz; Czub, Jacek
2018-04-25
Although osmolytes are known to modulate the folding equilibrium, the molecular mechanism of their effect on thermal denaturation of proteins is still poorly understood. Here, we simulated the thermal denaturation of a small model protein (Trp-cage) in the presence of denaturing (urea) and stabilizing (betaine) osmolytes, using the all-atom replica exchange molecular dynamics simulations. We found that urea destabilizes Trp-cage by enthalpically-driven association with the protein, acting synergistically with temperature to induce unfolding. In contrast, betaine is sterically excluded from the protein surface thereby exerting entropic depletion forces that contribute to the stabilization of the native state. In fact, we find that while at low temperatures betaine slightly increases the folding free energy of Trp-cage by promoting another near-native conformation, it protects the protein against temperature-induced denaturation. This, in turn, can be attributed to enhanced exclusion of betaine at higher temperatures that arises from less attractive interactions with the protein surface.
1969-08-05
S69-40941 (July 1969) --- This picture is of the gold replica of an olive branch, the traditional symbol of peace, which was left on the moon's surface by Apollo 11 crewmembers. Astronaut Neil A. Armstrong, commander, was in charge of placing the small replica (less than half a foot in length) on the moon. The gesture represents a fresh wish for peace for all mankind.
NASA Astrophysics Data System (ADS)
Abgrall, N.; Aduszkiewicz, A.; Ajaz, M.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Ćirković, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A. E.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Johnson, S. R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A. I.; Manić, D.; Marcinek, A.; Marino, A. D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messerly, B.; Mills, G. B.; Morozov, S.; Mrówczyński, S.; Nagai, Y.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A. D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B. A.; Posiadała-Zezula, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Wąs, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B. T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Yarritu, K.; Zambelli, L.; Zimmerman, E. D.; Friend, M.; Galymov, V.; Hartz, M.; Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.; Tzanov, M.; Yu, M.
2016-11-01
Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of π ^± -mesons from the surface of the T2K replica target for incoming 31 GeV/ c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.
2008-10-30
rigorous Poisson-based methods generally apply a Lee-Richards mo- lecular surface.9 This surface is considered the de facto description for continuum...definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the
Li, Hongzhi; Yang, Wei
2007-03-21
An approach is developed in the replica exchange framework to enhance conformational sampling for the quantum mechanical (QM) potential based molecular dynamics simulations. Importantly, with our enhanced sampling treatment, a decent convergence for electronic structure self-consistent-field calculation is robustly guaranteed, which is made possible in our replica exchange design by avoiding direct structure exchanges between the QM-related replicas and the activated (scaled by low scaling parameters or treated with high "effective temperatures") molecular mechanical (MM) replicas. Although the present approach represents one of the early efforts in the enhanced sampling developments specifically for quantum mechanical potentials, the QM-based simulations treated with the present technique can possess the similar sampling efficiency to the MM based simulations treated with the Hamiltonian replica exchange method (HREM). In the present paper, by combining this sampling method with one of our recent developments (the dual-topology alchemical HREM approach), we also introduce a method for the sampling enhanced QM-based free energy calculations.
Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO3
Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; Xie, Yanwu; He, Ruihua; Tang, Shujie; He, Junfeng; Li, Wei; Jia, Tao; Rebec, Slavko N.; Ma, Eric Yue; Yan, Hao; Hashimoto, Makoto; Lu, Donghui; Mo, Sung-Kwan; Hikita, Yasuyuki; Moore, Robert G.; Hwang, Harold Y.; Lee, Dunghai; Shen, Zhixun
2017-01-01
The observation of replica bands in single-unit-cell FeSe on SrTiO3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of Tc over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces, and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism. PMID:28186084
Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO 3
Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; ...
2017-02-10
The observation of replica bands in single-unit-cell FeSe on SrTiO 3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of T c over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces,more » and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Lastly, our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism.« less
Microlens fabrication by replica molding of frozen laser-printed droplets
NASA Astrophysics Data System (ADS)
Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí
2017-10-01
In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.
Nishihara, Yuichi; Isobe, Yoh; Kitagawa, Yuko
2017-12-01
A realistic simulator for transabdominal preperitoneal (TAPP) inguinal hernia repair would enhance surgeons' training experience before they enter the operating theater. The purpose of this study was to create a novel physical simulator for TAPP inguinal hernia repair and obtain surgeons' opinions regarding its efficacy. Our novel TAPP inguinal hernia repair simulator consists of a physical laparoscopy simulator and a handmade organ replica model. The physical laparoscopy simulator was created by three-dimensional (3D) printing technology, and it represents the trunk of the human body and the bendability of the abdominal wall under pneumoperitoneal pressure. The organ replica model was manually created by assembling materials. The TAPP inguinal hernia repair simulator allows for the performance of all procedures required in TAPP inguinal hernia repair. Fifteen general surgeons performed TAPP inguinal hernia repair using our simulator. Their opinions were scored on a 5-point Likert scale. All participants strongly agreed that the 3D-printed physical simulator and organ replica model were highly useful for TAPP inguinal hernia repair training (median, 5 points) and TAPP inguinal hernia repair education (median, 5 points). They felt that the simulator would be effective for TAPP inguinal hernia repair training before entering the operating theater. All surgeons considered that this simulator should be introduced in the residency curriculum. We successfully created a physical simulator for TAPP inguinal hernia repair training using 3D printing technology and a handmade organ replica model created with inexpensive, readily accessible materials. Preoperative TAPP inguinal hernia repair training using this simulator and organ replica model may be of benefit in the training of all surgeons. All general surgeons involved in the present study felt that this simulator and organ replica model should be used in their residency curriculum.
Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
Rodinger, Tomas; Howell, P Lynne; Pomès, Régis
2008-10-21
Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.
Calculation of absolute protein-ligand binding free energy using distributed replica sampling
NASA Astrophysics Data System (ADS)
Rodinger, Tomas; Howell, P. Lynne; Pomès, Régis
2008-10-01
Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.
Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank
2014-06-03
We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.
Influence of collision on the flow through in-vitro rigid models of the vocal folds
NASA Astrophysics Data System (ADS)
Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.
2003-12-01
Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.
Pirisinu, Marco; Mazzarello, Vittorio
2016-05-01
The skin's surface is characterized by a network of furrows and wrinkles showing different height and depth. Different studies showed that processes such as aging, photo aging and cancer may alter dermal ultrastructure surface. The quantitative analysis of skin topography is a key point for understanding health condition of the skin. Here, for the first time, the skin fine structure was studied via a new approach where replica method was combined with Mex Alicona software and scanning electron microscopy (SEM). The skin texture of cheek and forearm were studied in 120 healthy sardinian volunteers. Patients were divided into three different aged groups. The skin areas of interest were reproduced by the silicone replica method, each replica was explored by SEM and digital images were taken. By using Mex Alicona software were created 3D imagine and a list of 24 surface texture parameters were obtained, of these the most representative were chosen in order to assess eventual changes between groups. The skin's texture of forearm and cheek showed a gradually loss of its typical polyhedric mesh with increasing age group. In particular, the photoexposition increased loss of dermal texture. At today, Alicona mex technology was exclusively used on palaeontology studies, our results showed that a deep analyze of skin texture was performed and support Mex alicona software as a new promising tool on dermatological research. This new analytical approach provided an easy and fast process to appreciate skin texture and its changes, by using high quality 3D dimension images. SCANNING 38:213-220, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing.
Gallicchio, Emilio; Xia, Junchao; Flynn, William F; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M
2015-11-01
Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.
NASA Astrophysics Data System (ADS)
Xia, Younan; Whitesides, George M.
1998-08-01
Soft lithography represents a non-photolithographic strategy based on selfassembly and replica molding for carrying out micro- and nanofabrication. It provides a convenient, effective, and low-cost method for the formation and manufacturing of micro- and nanostructures. In soft lithography, an elastomeric stamp with patterned relief structures on its surface is used to generate patterns and structures with feature sizes ranging from 30 nm to 100 mum. Five techniques have been demonstrated: microcontact printing (muCP), replica molding (REM), microtransfer molding (muTM), micromolding in capillaries (MIMIC), and solvent-assisted micromolding (SAMIM). In this chapter we discuss the procedures for these techniques and their applications in micro- and nanofabrication, surface chemistry, materials science, optics, MEMS, and microelectronics.
Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark
2014-01-01
The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739
NASA Astrophysics Data System (ADS)
Arefi, Hadi H.; Yamamoto, Takeshi
2017-12-01
Conventional molecular-dynamics (cMD) simulation has a well-known limitation in accessible time and length scales, and thus various enhanced sampling techniques have been proposed to alleviate the problem. In this paper, we explore the utility of replica exchange with solute tempering (REST) (i.e., a variant of Hamiltonian replica exchange methods) to simulate the self-assembly of a supramolecular polymer in explicit solvent and compare the performance with temperature-based replica exchange MD (T-REMD) as well as cMD. As a test system, we consider a relatively simple all-atom model of supramolecular polymerization (namely, benzene-1,3,5-tricarboxamides in methylcyclohexane solvent). Our results show that both REST and T-REMD are able to predict highly ordered polymer structures with helical H-bonding patterns, in contrast to cMD which completely fails to obtain such a structure for the present model. At the same time, we have also experienced some technical challenge (i.e., aggregation-dispersion transition and the resulting bottleneck for replica traversal), which is illustrated numerically. Since the computational cost of REST scales more moderately than T-REMD, we expect that REST will be useful for studying the self-assembly of larger systems in solution with enhanced rearrangement of monomers.
Multiple Replica Repulsion Technique for Efficient Conformational Sampling of Biological Systems
Malevanets, Anatoly; Wodak, Shoshana J.
2011-01-01
Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed “multiple replica repulsion” (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. PMID:21843487
2017-02-23
This is a close-up of an exact replica of the Apollo-era Lunar Roving Vehicle Wheel, of which twelve originals still rest on the surface of the Moon. The tire was designed to flex under load, without air, and was formed from a mesh of plated piano wire. Metal straps were hand riveted onto the mesh to reduce sinking into loose lunar soils. These replica wheels were tested in NASA Glenn's SLOPE Lab to establish a baseline for future improvements.
Zarzycki, Piotr; Rosso, Kevin M
2009-06-16
Replica kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface nonuniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton-binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation does not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic nonuniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed, and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.
The decoupling of the glass transitions in the two-component p-spin spherical model
NASA Astrophysics Data System (ADS)
Ikeda, Harukuni; Ikeda, Atsushi
2016-07-01
Binary mixtures of large and small particles with a disparate size ratio exhibit a rich phenomenology at their glass transition points. In order to gain insights on such systems, we introduce and study a two-component version of the p-spin spherical spin glass model. We employ the replica method to calculate the free energy and the phase diagram. We show that when the strengths of the interactions of each component are not widely separated, the model has only one glass phase characterized by the conventional one-step replica symmetry breaking. However when the strengths of the interactions are well separated, the model has three glass phases depending on the temperature and component ratio. One is the ‘single’ glass phase in which only the spins of one component are frozen while the spins of the other component remain mobile. This phase is characterized by the one-step replica symmetry breaking. The second is the ‘double’ glass phase obtained by cooling the single glass phase further, in which the spins of the remaining mobile component are also frozen. This phase is characterized by the two-step replica symmetry breaking. The third is also the ‘double’ glass phase, which, however, is formed by the simultaneous freezing of the spins of both components at the same temperatures and is characterized by the one-step replica symmetry breaking. We discuss the implications of these results for the glass transitions of binary mixtures.
Classical mutual information in mean-field spin glass models
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Inglis, Stephen; Pollet, Lode
2016-03-01
We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.
Garrahan, Juan P
2014-03-01
A key open question in the glass transition field is whether a finite temperature thermodynamic transition to the glass state exists or not. Recent simulations of coupled replicas in atomistic models have found signatures of a static transition as a function of replica coupling. This can be viewed as evidence of an associated thermodynamic glass transition in the uncoupled system. We demonstrate here that a different interpretation is possible. We consider the triangular plaquette model, an interacting spin system which displays (East model-like) glassy dynamics in the absence of any static transition. We show that when two replicas are coupled, there is a curve of equilibrium phase transitions, between phases of small and large overlap, in the temperature-coupling plane (located on the self-dual line of an exact temperature-coupling duality of the system) which ends at a critical point. Crucially, in the limit of vanishing coupling the finite temperature transition disappears, and the uncoupled system is in the disordered phase at all temperatures. We discuss an interpretation of atomistic simulations in light of this result.
NASA Astrophysics Data System (ADS)
Wu, H.-H.; Chen, C.-C.; Chen, C.-M.
2012-03-01
We propose a united-residue model of membrane proteins to investigate the structures of helix bundle membrane proteins (HBMPs) using coarse-grained (CG) replica exchange Monte-Carlo (REMC) simulations. To demonstrate the method, it is used to identify the ground state of HBMPs in a CG model, including bacteriorhodopsin (BR), halorhodopsin (HR), and their subdomains. The rotational parameters of transmembrane helices (TMHs) are extracted directly from the simulations, which can be compared with their experimental measurements from site-directed dichroism. In particular, the effects of amphiphilic interaction among the surfaces of TMHs on the rotational angles of helices are discussed. The proposed CG model gives a reasonably good structure prediction of HBMPs, as well as a clear physical picture for the packing, tilting, orientation, and rotation of TMHs. The root mean square deviation (RMSD) in coordinates of Cα atoms of the ground state CG structure from the X-ray structure is 5.03 Å for BR and 6.70 Å for HR. The final structure of HBMPs is obtained from the all-atom molecular dynamics simulations by refining the predicted CG structure, whose RMSD is 4.38 Å for BR and 5.70 Å for HR.
Charting the Replica Symmetric Phase
NASA Astrophysics Data System (ADS)
Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias
2018-02-01
Diluted mean-field models are spin systems whose geometry of interactions is induced by a sparse random graph or hypergraph. Such models play an eminent role in the statistical mechanics of disordered systems as well as in combinatorics and computer science. In a path-breaking paper based on the non-rigorous `cavity method', physicists predicted not only the existence of a replica symmetry breaking phase transition in such models but also sketched a detailed picture of the evolution of the Gibbs measure within the replica symmetric phase and its impact on important problems in combinatorics, computer science and physics (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In this paper we rigorise this picture completely for a broad class of models, encompassing the Potts antiferromagnet on the random graph, the k-XORSAT model and the diluted k-spin model for even k. We also prove a conjecture about the detection problem in the stochastic block model that has received considerable attention (Decelle et al. in Phys Rev E 84:066106, 2011).
An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-08-01
Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.
Ostermeir, Katja; Zacharias, Martin
2014-12-01
Coarse-grained elastic network models (ENM) of proteins offer a low-resolution representation of protein dynamics and directions of global mobility. A Hamiltonian-replica exchange molecular dynamics (H-REMD) approach has been developed that combines information extracted from an ENM analysis with atomistic explicit solvent MD simulations. Based on a set of centers representing rigid segments (centroids) of a protein, a distance-dependent biasing potential is constructed by means of an ENM analysis to promote and guide centroid/domain rearrangements. The biasing potentials are added with different magnitude to the force field description of the MD simulation along the replicas with one reference replica under the control of the original force field. The magnitude and the form of the biasing potentials are adapted during the simulation based on the average sampled conformation to reach a near constant biasing in each replica after equilibration. This allows for canonical sampling of conformational states in each replica. The application of the methodology to a two-domain segment of the glycoprotein 130 and to the protein cyanovirin-N indicates significantly enhanced global domain motions and improved conformational sampling compared with conventional MD simulations. © 2014 Wiley Periodicals, Inc.
Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model
NASA Astrophysics Data System (ADS)
Guerra, Francesco
By using a simple interpolation argument, in previous work we have proven the existence of the thermodynamic limit, for mean field disordered models, including the Sherrington-Kirkpatrick model, and the Derrida p-spin model. Here we extend this argument in order to compare the limiting free energy with the expression given by the Parisi Ansatz, and including full spontaneous replica symmetry breaking. Our main result is that the quenched average of the free energy is bounded from below by the value given in the Parisi Ansatz, uniformly in the size of the system. Moreover, the difference between the two expressions is given in the form of a sum rule, extending our previous work on the comparison between the true free energy and its replica symmetric Sherrington-Kirkpatrick approximation. We give also a variational bound for the infinite volume limit of the ground state energy per site.
Classification of Streptomyces Spore Surfaces into Five Groups
Dietz, Alma; Mathews, John
1971-01-01
Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607
Knox, K; Kerber, Charles W; Singel, S A; Bailey, M J; Imbesi, S G
2005-05-01
Our goal was to develop and prove the accuracy of a system that would allow us to re-create live patient arterial pathology. Anatomically accurate replicas of blood vessels could allow physicians to teach and practice dangerous interventional techniques and might also be used to gather basic physiologic information. The preparation of replicas has, until now, depended on acquisition of fresh cadaver material. Using rapid prototyping, it should be able to replicate vascular pathology in a live patient. We obtained CT angiographic scan data from two patients with known arterial abnormalities. We took such data and, using proprietary software, created a 3D replica using a commercially available rapid prototyping machine. From the prototypes, using a lost wax technique, we created vessel replicas, placed those replicas in the CT scanner, then compared those images with the original scans. Comparison of the images made directly from the patient and from the replica showed that with each step, the relationships were maintained, remaining within 3% of the original, but some smoothing occurred in the final computer manipulation. From routinely obtainable CT angiographic data, it is possible to create accurate replicas of human vascular pathology with the aid of commercially available stereolithography equipment. Visual analysis of the images appeared to be as important as the measurements. With 64 and 128 slice detector scanners becoming available, acquisition times fall enough that we should be able to model rapidly moving structures such as the aortic root. (c) 2005 Wiley-Liss, Inc.
Karczyńska, Agnieszka S; Czaplewski, Cezary; Krupa, Paweł; Mozolewska, Magdalena A; Joo, Keehyoung; Lee, Jooyoung; Liwo, Adam
2017-12-05
Molecular simulations restrained to single or multiple templates are commonly used in protein-structure modeling. However, the restraints introduce additional barriers, thus impairing the ergodicity of simulations, which can affect the quality of the resulting models. In this work, the effect of restraint types and simulation schemes on ergodicity and model quality was investigated by performing template-restrained canonical molecular dynamics (MD), multiplexed replica-exchange molecular dynamics, and Hamiltonian replica exchange molecular dynamics (HREMD) simulations with the coarse-grained UNRES force field on nine selected proteins, with pseudo-harmonic log-Gaussian (unbounded) or Lorentzian (bounded) restraint functions. The best ergodicity was exhibited by HREMD. It has been found that non-ergodicity does not affect model quality if good templates are used to generate restraints. However, when poor-quality restraints not covering the entire protein are used, the improved ergodicity of HREMD can lead to significantly improved protein models. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Belief Propagation Algorithm for Portfolio Optimization Problems
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Scalable free energy calculation of proteins via multiscale essential sampling
NASA Astrophysics Data System (ADS)
Moritsugu, Kei; Terada, Tohru; Kidera, Akinori
2010-12-01
A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.
Free-Energy Fluctuations and Chaos in the Sherrington-Kirkpatrick Model
NASA Astrophysics Data System (ADS)
Aspelmeier, T.
2008-03-01
The sample-to-sample fluctuations ΔFN of the free-energy in the Sherrington-Kirkpatrick model are shown rigorously to be related to bond chaos. Via this connection, the fluctuations become analytically accessible by replica methods. The replica calculation for bond chaos shows that the exponent μ governing the growth of the fluctuations with system size N, ΔFN˜Nμ, is bounded by μ≤(1)/(4).
Creating technical heritage object replicas in a virtual environment
NASA Astrophysics Data System (ADS)
Egorova, Olga; Shcherbinin, Dmitry
2016-03-01
The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.
Zhou, Ruhong
2004-05-01
A highly parallel replica exchange method (REM) that couples with a newly developed molecular dynamics algorithm particle-particle particle-mesh Ewald (P3ME)/RESPA has been proposed for efficient sampling of protein folding free energy landscape. The algorithm is then applied to two separate protein systems, beta-hairpin and a designed protein Trp-cage. The all-atom OPLSAA force field with an explicit solvent model is used for both protein folding simulations. Up to 64 replicas of solvated protein systems are simulated in parallel over a wide range of temperatures. The combined trajectories in temperature and configurational space allow a replica to overcome free energy barriers present at low temperatures. These large scale simulations reveal detailed results on folding mechanisms, intermediate state structures, thermodynamic properties and the temperature dependences for both protein systems.
(Bio)Chemical Tailoring of Biogenic 3-D Nanopatterned Templates with Energy-Relevant Functionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhage, Kenneth H; Kroger, Nils
2014-09-08
The overall aim of this research has been to obtain fundamental understanding of (bio)chemical methodologies that will enable utilization of the unique 3-D nanopatterned architectures naturally produced by diatoms for the syntheses of advanced functional materials attractive for applications in energy harvesting/conversion and storage. This research has been conducted in three thrusts: Thrust 1 (In vivo immobilization of proteins in diatom biosilica) is directed towards elucidating the fundamental mechanism(s) underlying the cellular processes of in vivo immobilization of proteins in diatom silica. Thrust 2 (Shape-preserving reactive conversion of diatom biosilica into porous, high-surface area inorganic replicas) is aimed at understandingmore » the fundamental mechanisms of shape preservation and nanostructural evolution associated with the reactive conversion and/or coating-based conversion of diatom biosilica templates into porous inorganic replicas. Thrust 3 (Immobilization of energy-relevant enzymes in diatom biosilica and onto diatom biosilica-derived inorganic replicas) involves use of the results from both Thrust 1 and 2 to develop strategies for in vivo and in vitro immobilization of enzymes in/on diatom biosilica and diatom biosilica-derived inorganic replicas, respectively. This Final Report describes progress achieved in all 3 of these thrusts.« less
NASA Astrophysics Data System (ADS)
Li, Fengmiao; Sawatzky, George A.
2018-06-01
The recent observation of replica bands in single-layer FeSe /SrTiO3 by angle-resolved photoemission spectroscopy (ARPES) has triggered intense discussions concerning the potential influence of the FeSe electrons coupling with substrate phonons on the superconducting transition temperature. Here we provide strong evidence that the replica bands observed in the single-layer FeSe /SrTiO3 system and several other cases are largely due to the energy loss processes of the escaping photoelectron, resulted from the well-known strong coupling of external propagating electrons to Fuchs-Kliewer surface phonons in ionic materials in general. The photoelectron energy loss in ARPES on single-layer FeSe /SrTiO3 is calculated using the demonstrated successful semiclassical dielectric theory in describing low energy electron energy loss spectroscopy of ionic insulators. Our result shows that the observed replica bands are mostly a result of extrinsic photoelectron energy loss and not a result of the electron phonon interaction of the Fe d electrons with the substrate phonons. The strong enhancement of the superconducting transition temperature in these monolayers remains an open question.
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho
We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, inmore » which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.« less
CFRP composite mirrors for space telescopes and their micro-dimensional stability
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2010-07-01
Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated to demonstrate their feasibility for light wavelength applications. The CTE (coefficient of thermal expansion) of the all- CFRP sandwich panels was tailored to be smaller than 1×10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 1.8 um RMS as fabricated and the surface smoothness was improved to 20 nm RMS by using a replica technique. Moisture expansion was considered the largest in un-predictable surface preciseness errors. The moisture expansion affected not only homologous shape change but also out-of-plane distortion especially in unsymmetrical compositions. Dimensional stability due to the moisture expansion was compared with a structural mathematical model.
Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model
NASA Astrophysics Data System (ADS)
Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin
2016-08-01
This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.
Evaluation of generalized degrees of freedom for sparse estimation by replica method
NASA Astrophysics Data System (ADS)
Sakata, A.
2016-12-01
We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.
Flow Liner Slot Edge Replication Feasibility Study
NASA Technical Reports Server (NTRS)
Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.
2006-01-01
Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.
Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm
2013-09-01
The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.
Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes.
Romano, Donato; Benelli, Giovanni; Donati, Elisa; Remorini, Damiano; Canale, Angelo; Stefanini, Cesare
2017-07-05
The use of robotics to establish social interactions between animals and robots, represents an elegant and innovative method to investigate animal behaviour. However, robots are still underused to investigate high complex and flexible behaviours, such as aggression. Here, Betta splendens was tested as model system to shed light on the effect of a robotic fish eliciting aggression. We evaluated how multiple signal systems, including a light stimulus, affect aggressive responses in B. splendens. Furthermore, we conducted experiments to estimate if aggressive responses were triggered by the biomimetic shape of fish replica, or whether any intruder object was effective as well. Male fishes showed longer and higher aggressive displays as puzzled stimuli from the fish replica increased. When the fish replica emitted its full sequence of cues, the intensity of aggression exceeded even that produced by real fish opponents. Fish replica shape was necessary for conspecific opponent perception, evoking significant aggressive responses. Overall, this study highlights that the efficacy of an artificial opponent eliciting aggressive behaviour in fish can be boosted by exposure to multiple signals. Optimizing the cue combination delivered by the robotic fish replica may be helpful to predict escalating levels of aggression.
Development and validation of a canine radius replica for mechanical testing of orthopedic implants.
Little, Jeffrey P; Horn, Timothy J; Marcellin-Little, Denis J; Harrysson, Ola L A; West, Harvey A
2012-01-01
To design and fabricate fiberglass-reinforced composite (FRC) replicas of a canine radius and compare their mechanical properties with those of radii from dog cadavers. Replicas based on 3 FRC formulations with 33%, 50%, or 60% short-length discontinuous fiberglass by weight (7 replicas/group) and 5 radii from large (> 30-kg) dog cadavers. Bones and FRC replicas underwent nondestructive mechanical testing including 4-point bending, axial loading, and torsion and destructive testing to failure during 4-point bending. Axial, internal and external torsional, and bending stiffnesses were calculated. Axial pullout loads for bone screws placed in the replicas and cadaveric radii were also assessed. Axial, internal and external torsional, and 4-point bending stiffnesses of FRC replicas increased significantly with increasing fiberglass content. The 4-point bending stiffness of 33% and 50% FRC replicas and axial and internal torsional stiffnesses of 33% FRC replicas were equivalent to the cadaveric bone stiffnesses. Ultimate 4-point bending loads did not differ significantly between FRC replicas and bones. Ultimate screw pullout loads did not differ significantly between 33% or 50% FRC replicas and bones. Mechanical property variability (coefficient of variation) of cadaveric radii was approximately 2 to 19 times that of FRC replicas, depending on loading protocols. Within the range of properties tested, FRC replicas had mechanical properties equivalent to and mechanical property variability less than those of radii from dog cadavers. Results indicated that FRC replicas may be a useful alternative to cadaveric bones for biomechanical testing of canine bone constructs.
Replica Approach for Minimal Investment Risk with Cost
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2018-06-01
In the present work, the optimal portfolio minimizing the investment risk with cost is discussed analytically, where an objective function is constructed in terms of two negative aspects of investment, the risk and cost. We note the mathematical similarity between the Hamiltonian in the mean-variance model and the Hamiltonians in the Hopfield model and the Sherrington-Kirkpatrick model, show that we can analyze this portfolio optimization problem by using replica analysis, and derive the minimal investment risk with cost and the investment concentration of the optimal portfolio. Furthermore, we validate our proposed method through numerical simulations.
Solute transport along preferential flow paths in unsaturated fractures
Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.
2001-01-01
Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.
Characterization of fracture aperture for groundwater flow and transport
NASA Astrophysics Data System (ADS)
Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.
2007-12-01
This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.
A dynamic replication management strategy in distributed GIS
NASA Astrophysics Data System (ADS)
Pan, Shaoming; Xiong, Lian; Xu, Zhengquan; Chong, Yanwen; Meng, Qingxiang
2018-03-01
Replication strategy is one of effective solutions to meet the requirement of service response time by preparing data in advance to avoid the delay of reading data from disks. This paper presents a brand-new method to create copies considering the selection of replicas set, the number of copies for each replica and the placement strategy of all copies. First, the popularities of all data are computed considering both the historical access records and the timeliness of the records. Then, replica set can be selected based on their recent popularities. Also, an enhanced Q-value scheme is proposed to assign the number of copies for each replica. Finally, a reasonable copies placement strategy is designed to meet the requirement of load balance. In addition, we present several experiments that compare the proposed method with techniques that use other replication management strategies. The results show that the proposed model has better performance than other algorithms in all respects. Moreover, the experiments based on different parameters also demonstrated the effectiveness and adaptability of the proposed algorithm.
Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi
2011-01-01
Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.
The fabrication of subwavelength anti-reflective nanostructures using a bio-template
NASA Astrophysics Data System (ADS)
Xie, Guoyong; Zhang, Guoming; Lin, Feng; Zhang, Jin; Liu, Zhongfan; Mu, Shichen
2008-03-01
This paper describes a paradigm, a simple, low-cost and conventional approach to the fabrication of large-area subwavelength anti-reflective nanostructures on films directly with a bio-template. Specifically, the nano-nipple arrays on the surface of cicada wings have been precisely replicated to a PMMA (polymethyl methacrylate) film with high reproducibility by a technique of replica molding, which mainly involves two processes: one is that a negative Au mold is prepared directly from the bio-template of the cicada wing by thermal deposition; the other is that the Au mold is used to obtain the replica of the nanostructures on the original cicada wing by casting polymer. The reflectance spectra measurement shows that the replicated PMMA film can considerably reduce reflectivity at its surface over a large wavelength range from 250 to 800 nm, indicating that the anti-reflective property has also been inherited by the PMMA film.
Replica exchange with solute tempering: A method for sampling biological systems in explicit water
NASA Astrophysics Data System (ADS)
Liu, Pu; Kim, Byungchan; Friesner, Richard A.; Berne, B. J.
2005-09-01
An innovative replica exchange (parallel tempering) method called replica exchange with solute tempering (REST) for the efficient sampling of aqueous protein solutions is presented here. The method bypasses the poor scaling with system size of standard replica exchange and thus reduces the number of replicas (parallel processes) that must be used. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST is compared with standard replica exchange for an alanine dipeptide molecule in water. The comparisons confirm that REST greatly reduces the number of CPUs required by regular replica exchange and increases the sampling efficiency. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water. Author contributions: B.J.B. designed research; P.L. and B.K. performed research; P.L. and B.K. analyzed data; and P.L., B.K., R.A.F., and B.J.B. wrote the paper.Abbreviations: REST, replica exchange with solute tempering; REM, replica exchange method; MD, molecular dynamics.*P.L. and B.K. contributed equally to this work.
Sampling of Protein Folding Transitions: Multicanonical Versus Replica Exchange Molecular Dynamics.
Jiang, Ping; Yaşar, Fatih; Hansmann, Ulrich H E
2013-08-13
We compare the efficiency of multicanonical and replica exchange molecular dynamics for the sampling of folding/unfolding events in simulations of proteins with end-to-end β -sheet. In Go-model simulations of the 75-residue MNK6, we observe improvement factors of 30 in the number of folding/unfolding events of multicanonical molecular dynamics over replica exchange molecular dynamics. As an application, we use this enhanced sampling to study the folding landscape of the 36-residue DS119 with an all-atom physical force field and implicit solvent. Here, we find that the rate-limiting step is the formation of the central helix that then provides a scaffold for the parallel β -sheet formed by the two chain ends.
Jiang, Wei; Roux, Benoît
2010-07-01
Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.
Cadenaro, Milena; Navarra, Chiara Ottavia; Mazzoni, Annalisa; Nucci, Cesare; Matis, Bruce A; Di Lenarda, Roberto; Breschi, Lorenzo
2010-04-01
In an in vivo study, the authors tested the hypothesis that no difference in enamel surface roughness is detectable either during or after bleaching with a high-concentration in-office whitening agent. The authors performed profilometric and scanning electron microscopic (SEM) analyses of epoxy resin replicas of the upper right incisors of 20 participants at baseline (control) and after each bleaching treatment with a 38 percent hydrogen peroxide whitening agent, applied four times, at one-week intervals. The authors used analysis of variance for repeated measures to analyze the data statistically. The profilometric analysis of the enamel surface replicas after the in vivo bleaching protocol showed no significant difference in surface roughness parameters (P > .05) compared with those at baseline, irrespective of the time interval. Results of the correlated SEM analysis showed no relevant alteration on the enamel surface. Results of this in vivo study support the tested hypothesis that the application of a 38 percent hydrogen peroxide in-office whitening agent does not alter enamel surface roughness, even after multiple applications. The use of a 38 percent hydrogen peroxide in-office whitening agent induced no roughness alterations of the enamel surface, even after prolonged and repeated applications.
NASA Astrophysics Data System (ADS)
Lech, Marek; Mruk, Irena; Stupnicki, Jacek
1985-01-01
The paper describes an improved immersion method of holographic interferometry /IMHI/ adjusted for studies of roughness of engineering surfaces. Special optical arrangement, with two types of immersion cells and adequate technique of preparing transparent replicas reproducting with high fidelity details of differently machined surfaces was elaborated. It permits to obtain the contour maps of the surface asperities with intervals between the planes of succesive contour lines within a range of 1 μm. The results obtained for some engineering surfaces are given.
Storing files in a parallel computing system using list-based index to identify replica files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faibish, Sorin; Bent, John M.; Tzelnic, Percy
Improved techniques are provided for storing files in a parallel computing system using a list-based index to identify file replicas. A file and at least one replica of the file are stored in one or more storage nodes of the parallel computing system. An index for the file comprises at least one list comprising a pointer to a storage location of the file and a storage location of the at least one replica of the file. The file comprises one or more of a complete file and one or more sub-files. The index may also comprise a checksum value formore » one or more of the file and the replica(s) of the file. The checksum value can be evaluated to validate the file and/or the file replica(s). A query can be processed using the list.« less
Photographic replica of the plaque Apollo 13 astronauts will leave on moon
1970-04-13
S70-34685 (April 1970) --- A photographic replica of the plaque which the Apollo 13 astronauts will leave behind on the moon during their lunar landing mission. Astronauts James A. Lovell Jr., commander; and Fred W. Haise Jr., lunar module pilot, will descend to the lunar surface in the Lunar Module (LM) "Aquarius". Astronaut John L. Swigert Jr., command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. The plaque will be attached to the ladder of the landing gear strut on the LM?s descent stage. Commemorative plaques were also left on the moon by the Apollo 11 and Apollo 12 astronauts.
Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald
2007-04-01
This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.
Rooftop Energy Potential of Low Income Communities in America REPLICA
Mooney, Meghan (ORCID:0000000309406958); Sigrin, Ben
1970-01-01
The Rooftop Energy Potential of Low Income Communities in America REPLICA data set provides estimates of residential rooftop solar technical potential at the tract-level with emphasis on estimates for Low and Moderate Income LMI populations. In addition to technical potential REPLICA is comprised of 10 additional datasets at the tract-level to provide socio-demographic and market context. The model year vintage of REPLICA is 2015. The LMI solar potential estimates are made at the tract level grouped by Area Median Income AMI income tenure and building type. These estimates are based off of LiDAR data of 128 metropolitan areas statistical modeling and ACS 2011-2015 demographic data. The remaining datasets are supplemental datasets that can be used in conjunction with the technical potential data for general LMI solar analysis planning and policy making. The core dataset is a wide-format CSV file seeds_ii_replica.csv that can be tagged to a tract geometry using the GEOID or GISJOIN fields. In addition users can download geographic shapefiles for the main or supplemental datasets. This dataset was generated as part of the larger NREL-led SEEDSII Solar Energy Evolution and Diffusion Studies project and specifically for the NREL technical report titled Rooftop Solar Technical Potential for Low-to-Moderate Income Households in the United States by Sigrin and Mooney 2018. This dataset is intended to give researchers planners advocates and policy-makers access to credible data to analyze low-income solar issues and potentially perform cost-benefit analysis for program design. To explore the data in an interactive web mapping environment use the NREL SolarForAll app.
NASA Astrophysics Data System (ADS)
Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.
2018-07-01
The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.
Thin sectioning and surface replication of ice at low temperature.
Daley, M.A.; Kirby, S.H.
1984-01-01
We have developed a new technique for making thin sections and surface replicas of ice at temperatures well below 273d K. The ability to make thin sections without melting sample material is important in textural and microstructural studies of ice deformed at low temperatures because of annealing effects we have observed during conventional section making.-from Author
Replica Analysis for Portfolio Optimization with Single-Factor Model
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2017-06-01
In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.
Cone, Jamie A; Martin, Thomas M; Marcellin-Little, Denis J; Harrysson, Ola L A; Griffith, Emily H
2017-08-01
OBJECTIVE To assess the repeatability and accuracy of polymer replicas of small, medium, and large long bones of small animals fabricated by use of 2 low-end and 2 high-end 3-D printers. SAMPLE Polymer replicas of a cat femur, dog radius, and dog tibia were fabricated in triplicate by use of each of four 3-D printing methods. PROCEDURES 3-D renderings of the 3 bones reconstructed from CT images were prepared, and length, width of the proximal aspect, and width of the distal aspect of each CT image were measured in triplicate. Polymer replicas were fabricated by use of a high-end system that relied on jetting of curable liquid photopolymer, a high-end system that relied on polymer extrusion, a triple-nozzle polymer extrusion low-end system, and a dual-nozzle polymer extrusion low-end system. Polymer replicas were scanned by use of a laser-based coordinate measurement machine. Length, width of the proximal aspect, and width of the distal aspect of the scans of replicas were measured and compared with measurements for the 3-D renderings. RESULTS 129 measurements were collected for 34 replicas (fabrication of 1 large long-bone replica was unsuccessful on each of the 2 low-end printers). Replicas were highly repeatable for all 3-D printers. The 3-D printers overestimated dimensions of large replicas by approximately 1%. CONCLUSIONS AND CLINICAL RELEVANCE Low-end and high-end 3-D printers fabricated CT-derived replicas of bones of small animals with high repeatability. Replicas were slightly larger than the original bones.
Zhu, Shenmin; Zhang, Di; Chen, Zhixin; Gu, Jiajun; Li, Wenfei; Jiang, Haibo; Zhou, Gang
2009-08-05
A general sonochemical process is reported for the replication of photonic structures from Morpho butterfly wings in several hours. By selecting appropriate precursors, we can achieve exact replications of photonic structures in a variety of transparent metal oxides, such as titania, tin oxide and silica. The exact replications at the micro- and nanoscales were characterized by a combination of FE-SEM, TEM, EDX and Raman measurements. The optical properties of the replicas were investigated by using reflectance spectroscopy, and it was found that the interesting chromaticity of the reflected light could be adjusted simply by tuning the replica materials. An ultrasensitive SnO(2)-based chemical sensor was prepared from the SnO(2) replica. The sensor has a sensitivity of 35.3-50 ppm ethanol at 300 degrees C, accompanied by a rapid response and recovery (around 8-15 s), owing to its large surface area and photonic structure. Thus, this process could be developed to produce photonic structural ceramics which could be used in many passive and active infrared devices, especially high performance optical components and sensors.
NASA Astrophysics Data System (ADS)
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-01
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-14
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock
Zhang, Zhe; Lange, Oliver F.
2013-01-01
Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied. PMID:24009670
A Validation Study of the Impression Replica Technique.
Segerström, Sofia; Wiking-Lima de Faria, Johanna; Braian, Michael; Ameri, Arman; Ahlgren, Camilla
2018-04-17
To validate the well-known and often-used impression replica technique for measuring fit between a preparation and a crown in vitro. The validation consisted of three steps. First, a measuring instrument was validated to elucidate its accuracy. Second, a specimen consisting of male and female counterparts was created and validated by the measuring instrument. Calculations were made for the exact values of three gaps between the male and female. Finally, impression replicas were produced of the specimen gaps and sectioned into four pieces. The replicas were then measured with the use of a light microscope. The values received from measuring the specimen were then compared with the values received from the impression replicas, and the technique was thereby validated. The impression replica technique overvalued all measured gaps. Depending on location of the three measuring sites, the difference between the specimen and the impression replicas varied from 47 to 130 μm. The impression replica technique overestimates gaps within the range of 2% to 11%. The validation of the replica technique enables the method to be used as a reference when testing other methods for evaluating fit in dentistry. © 2018 by the American College of Prosthodontists.
Equilibrium Molecular Thermodynamics from Kirkwood Sampling
2015-01-01
We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys.2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide. PMID:25915525
NASA Technical Reports Server (NTRS)
Squires, P. K.
1982-01-01
Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.
Fog collecting biomimetic surfaces: Influence of microstructure and wettability.
Azad, M A K; Ellerbrok, D; Barthlott, W; Koch, K
2015-01-19
We analyzed the fog collection efficiency of three different sets of samples: replica (with and without microstructures), copper wire (smooth and microgrooved) and polyolefin mesh (hydrophilic, superhydrophilic and hydrophobic). The collection efficiency of the samples was compared in each set separately to investigate the influence of microstructures and/or the wettability of the surfaces on fog collection. Based on the controlled experimental conditions chosen here large differences in the efficiency were found. We found that microstructured plant replica samples collected 2-3 times higher amounts of water than that of unstructured (smooth) samples. Copper wire samples showed similar results. Moreover, microgrooved wires had a faster dripping of water droplets than that of smooth wires. The superhydrophilic mesh tested here was proved more efficient than any other mesh samples with different wettability. The amount of collected fog by superhydrophilic mesh was about 5 times higher than that of hydrophilic (untreated) mesh and was about 2 times higher than that of hydrophobic mesh.
Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva
2018-05-23
Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).
NASA Technical Reports Server (NTRS)
Thornton, D. E.
1976-01-01
Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.
Alternative Fuels Data Center: Semi Service Outfits Replica Batmobile to
Run on Natural Gas Semi Service Outfits Replica Batmobile to Run on Natural Gas to someone by E -mail Share Alternative Fuels Data Center: Semi Service Outfits Replica Batmobile to Run on Natural Gas on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Semi Service Outfits Replica
Kikuchi-Numagami, K; Suetake, T; Yanai, M; Takahashi, M; Tanaka, M; Tagami, H
2000-06-01
The skin of golfers' hands provides a suitable model to study the effect of chronic sun exposure, because one of their hands is exposed to the outer environment, especially sunlight, while the other one is always protected by a glove during play. Our purpose was to find out the influence of photodamage on the properties of the skin surface of middle-aged Japanese by using non-invasive methods. We measured hydration state, and water barrier function of the stratum corneum (SC) and the color of the skin of the dorsum of the hands. In a separate study, we evaluated the skin surface contour by using replicas taken from the skin in a slightly stretched or relaxed position. We found a significant decrease in hydration of the skin surface of the exposed skin as compared to that of the protected skin, whereas no such difference was found with transepidermal water loss, a parameter for water barrier function of the SC. Luminance of skin color was also reduced in the sun-exposed skin. Replica analysis revealed that large wrinkles developing in a relaxed position were more prominent on the exposed than on the protected skin, while fine furrows noted in a slightly stretched position were shallower on the former than the latter. The data obtained indicate that the chronically exposed skin of golfers' hands shows morphological and functional changes resulting from long time exposure to the outer environment especially sunlight. Furthermore, bioengineering non-invasive methods are found to be useful to detect early photodamage of the skin in a more quantitative fashion which is rather difficult to demonstrate clinically.
More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.
Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T
2015-01-01
Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.
10 CFR 1.53 - Use of NRC seal or replicas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following: (1...
10 CFR 1.53 - Use of NRC seal or replicas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following: (1...
Strategic planning toolset for reproduction of machinebuilding engines and equipment
NASA Astrophysics Data System (ADS)
Boyko, A. A.; Kukartsev, V. V.; Lobkov, K. Y.; Stupina, A. A.
2018-05-01
This article illustrates a replica of a dynamic model of machine-building equipment. The model was designed on the basis of a ‘system dynamics method’ including the Powersim Studio toolset. The given model provides the basis and delineates the reproduction process of equipment in its natural as well as appraisal forms. The presented model was employed as a tool to explore reproduction of a wide range of engines and equipment in machine-building industry. As a result of these experiments, a variety of reproducible options were revealed which include productive capacity and distribution of equipment among technology groups. The authors’ research concludes that the replica of the dynamic model designed by us has proved to be universal. This also opens the way for further research exploring a wide range of industrial equipment reproduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J.H.; Gold, R.; Preston, C.C.
Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2m, 0/sup 0/ and 2m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. At the 2m,more » 90/sup 0/ location the NRE neutron spectrum extends from 0.37 up to 8.2 MeV, whereas the NRE neutron spectrum at the 2m, 0/sup 0/ location is much softer and extends only up to 2.7 MeV. NRE neutron spectrometry results at these two locations are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. 7 refs., 3 figs.« less
Hortolà, Policarp
2015-12-01
Some archaeological or ethnographic specimens are unavailable for direct examination using a scanning electron microscope (SEM) due to methodological obstacles or legal issues. In order to assess the feasibility of using SEM synthetic replicas for the identification of bloodstains (BSs) via morphology of red blood cells (RBCs), three fragments of different natural raw material (inorganic, stone; plant, wood; animal, shell) were smeared with peripheral human blood. Afterwards, molds and casts of the bloodstained areas were made using vinyl polysiloxane (VPS) silicone impression and polyurethane (PU) resin casting material, respectively. Then, the original samples and the resulting casts were coated with gold and examined in secondary-electron mode using a high-vacuum SEM. Results suggest that PU resin casts obtained from VPS silicone molds can preserve RBC morphology in BSs, and consequently that synthetic replicas are feasible for SEM identification of BSs on cultural heritage specimens made of natural raw materials. Although the focus of this study was on BSs, the method reported in this paper may be applicable to organic residues other than blood, as well as to the surface of other specimens when, for any reason, the original is unavailable for an SEM.
Simulation studies of the fidelity of biomolecular structure ensemble recreation
NASA Astrophysics Data System (ADS)
Lätzer, Joachim; Eastwood, Michael P.; Wolynes, Peter G.
2006-12-01
We examine the ability of Bayesian methods to recreate structural ensembles for partially folded molecules from averaged data. Specifically we test the ability of various algorithms to recreate different transition state ensembles for folding proteins using a multiple replica simulation algorithm using input from "gold standard" reference ensembles that were first generated with a Gō-like Hamiltonian having nonpairwise additive terms. A set of low resolution data, which function as the "experimental" ϕ values, were first constructed from this reference ensemble. The resulting ϕ values were then treated as one would treat laboratory experimental data and were used as input in the replica reconstruction algorithm. The resulting ensembles of structures obtained by the replica algorithm were compared to the gold standard reference ensemble, from which those "data" were, in fact, obtained. It is found that for a unimodal transition state ensemble with a low barrier, the multiple replica algorithm does recreate the reference ensemble fairly successfully when no experimental error is assumed. The Kolmogorov-Smirnov test as well as principal component analysis show that the overlap of the recovered and reference ensembles is significantly enhanced when multiple replicas are used. Reduction of the multiple replica ensembles by clustering successfully yields subensembles with close similarity to the reference ensembles. On the other hand, for a high barrier transition state with two distinct transition state ensembles, the single replica algorithm only samples a few structures of one of the reference ensemble basins. This is due to the fact that the ϕ values are intrinsically ensemble averaged quantities. The replica algorithm with multiple copies does sample both reference ensemble basins. In contrast to the single replica case, the multiple replicas are constrained to reproduce the average ϕ values, but allow fluctuations in ϕ for each individual copy. These fluctuations facilitate a more faithful sampling of the reference ensemble basins. Finally, we test how robustly the reconstruction algorithm can function by introducing errors in ϕ comparable in magnitude to those suggested by some authors. In this circumstance we observe that the chances of ensemble recovery with the replica algorithm are poor using a single replica, but are improved when multiple copies are used. A multimodal transition state ensemble, however, turns out to be more sensitive to large errors in ϕ (if appropriately gauged) and attempts at successful recreation of the reference ensemble with simple replica algorithms can fall short.
Leaf Histology--Two Modern Methods.
ERIC Educational Resources Information Center
Freeman, H. E.
1984-01-01
Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)
NASA Astrophysics Data System (ADS)
Cavigli, Lucia; Gabrieli, Riccardo; Gurioli, Massimo; Bogani, Franco; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas; Vinattieri, Anna
2010-09-01
A detailed experimental investigation of the phonon-assisted emission in a high-quality c -plane GaN epilayer is presented up to 200 K. By performing photoluminescence and reflectivity measurements, we find important etaloning effects in the phonon-replica spectra, which have to be corrected before addressing the lineshape analysis. Direct experimental evidence for free exciton thermalization is found for the whole temperature range investigated. A close comparison with existing models for phonon replicas originating from a thermalized free exciton distribution shows that the simplified and commonly adopted description of the exciton-phonon interaction with a single excitonic band leads to a large discrepancy with experimental data. Only the consideration of the complex nature of the excitonic band in GaN, including A and B exciton contributions, allows accounting for the temperature dependence of the peak energy, intensity, and lineshape of the phonon replicas.
NASA Astrophysics Data System (ADS)
Richardson, J. A.; Rementer, C. W.; Bruder, Jan M.; Hoffman-Kim, D.
2011-08-01
Biomimetic replicas of cellular topography have been utilized to direct neurite outgrowth. Here, we cultured postnatal rat dorsal root ganglion (DRG) explants in the presence of Schwann cell (SC) topography to determine the influence of SC topography on neurite outgrowth. Four distinct poly(dimethyl siloxane) conduits were fabricated within which DRG explants were cultured. To determine the contribution of SC topographical features to neurite guidance, the extent of neurite outgrowth into unpatterned conduits, conduits with randomly oriented SC replicas, and conduits with SC replicas parallel or perpendicular to the conduit long axis was measured. Neurite directionality and outgrowth from DRG were also quantified on two-dimensional SC replicas with orientations corresponding to the four conduit conditions. Additionally, live SC migration and neurite extension from DRG on SC replicas were examined as a first step toward quantification of the interactions between live SC and navigating neurites on SC replicas. DRG neurite outgrowth and morphology within conduits and on two-dimensional SC replicas were directed by the underlying SC topographical features. Maximal neurite outgrowth and alignment to the underlying features were observed into parallel conduits and on parallel two-dimensional substrates, whereas the least extent of outgrowth was observed into perpendicular conduits and on perpendicular two-dimensional replica conditions. Additionally, neurites on perpendicular conditions turned to extend along the direction of underlying SC topography. Neurite outgrowth exceeded SC migration in the direction of the underlying anisotropic SC replica after two days in culture. This finding confirms the critical role that SC have in guiding neurite outgrowth and suggests that the mechanism of neurite alignment to SC replicas depends on direct contact with cellular topography. These results suggest that SC topographical replicas may be used to direct and optimize neurite alignment, and emphasize the importance of SC features in neurite guidance.
Non-cavitating propeller noise modeling and inversion
NASA Astrophysics Data System (ADS)
Kim, Dongho; Lee, Keunhwa; Seong, Woojae
2014-12-01
Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.
Kwiatkowska, Dorota; Routier-Kierzkowska, Anne-Lise
2009-01-01
Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf-like bracts and flower primordia during the reproductive phase. Although the shapes of all the three types of primordia are very similar during their early developmental stages, areal growth rates and anisotropy of apex surface growth accompanying formation of leaf or bract primordia are profoundly different from those during formation of flower primordia. This provides an example of different modes of de novo formation of a given shape. Moreover, growth accompanying the formation of the boundary between the SAM and flower primordium is entirely different from growth at the adaxial leaf or bract primordium boundary. In the latter, areal growth rates at the future boundary are the lowest of all the apex surface, while in the former they are relatively very high. The direction of maximal growth rate is latitudinal (along the future boundary) in the case of leaf or bract primordium but meridional (across the boundary) in the case of flower. The replica method does not enable direct analysis of growth in the direction perpendicular to the apex surface (anticlinal direction). Nevertheless, the reconstructed surfaces of consecutive replicas taken from an individual apex allow general directions of SAM surface bulging accompanying primordium formation to be recognized. Precise alignment of consecutive reconstructions shows that the direction of initial bulging during the leaf or bract formation is nearly parallel to the shoot axis (upward bulging), while in the case of flower it is perpendicular to the axis (lateral bulging). In future, such 3D reconstructions can be used to assess displacement velocity fields so that growth in the anticlinal direction can be assessed. In terms of self-perpetuation, the inflorescence SAM of Anagallis differs from the SAM in the vegetative phase in that the centrally located region of slow growth is less distinct in the inflorescence SAM. Moreover, the position of this slowly growing zone with respect to cells is not stable in the course of the meristem ontogeny.
Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).
Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo
2015-01-27
A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.
Creating Physical 3D Stereolithograph Models of Brain and Skull
Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.
2007-01-01
The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879
Malolepsza, Edyta; Secor, Maxim; Keyes, Tom
2015-09-23
A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.
Flow Measurements over a Biomimetic Surface Roughness Microgeometry
NASA Astrophysics Data System (ADS)
Lang, Amy; Hidalgo, Pablo; Westcott, Matthew
2007-11-01
Certain species of sharks (e.g. shortfin mako) have a skin structure that results in a bristling of their denticles (scales) during increased swimming speeds. This unique surface geometry results in the formation of a 3D array of cavities* (d-type roughness geometry) within the shark skin, thus causing it to potentially act as a means of boundary layer control. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies over a shark skin model. The hypothesized formation of cavity vortices within the shark skin replica has been measured using DPIV. We have also shown that with the sufficient growth of a boundary layer upstream of the model (local Re = 200,000), transition is not tripped by the surface and the flow skips over the cavities. Support for this research by a NSF SGER grant (CTS-0630489), Lindbergh Foundation Grant and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.
Population control of self-replicating systems
NASA Technical Reports Server (NTRS)
Mccord, R. L.
1982-01-01
The literature concerning fibonacci sequence and the mathematics of self replication are reviewed. One option allows each primary to generate n-replicas, one in each sequential time frame after its own generation with no restrictions on the number of ancestors per replica. The state vector of the replicas in an efficient manner is determined. Option-B has a fixed number of replicas per primary and no restrictions on the number of ancestors for a replica. Any element fij represents the number of elements of type-j in time frame k+1 generated from type-i in time frame k. Option-D is a diagonal matrix whose eigenvalues are precisely those of f.
Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A.
2011-01-01
A new empirical sampling method termed “temperature intervals with global exchange of replicas and reduced radii” (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages – heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly(butyl methacrylate), and DTB-succinate copolymer. Calculated glass transition temperature (Tg) and structural parameter profile (S(q)) for each resulting polymer model were found to be in close agreement with experimental Tg values and structural measurements obtained by x-ray diffraction, thus validating that the developed methods provide realistic models of amorphous polymer structure. PMID:21769156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamberaj, Hiqmet, E-mail: hkamberaj@ibu.edu.mk
In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, andmore » 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.« less
NASA Astrophysics Data System (ADS)
Kamberaj, Hiqmet
2015-09-01
In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.
Stability of the quantum Sherrington-Kirkpatrick spin glass model
NASA Astrophysics Data System (ADS)
Young, A. P.
2017-09-01
I study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e., the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodynamic limit. I find that the replica symmetric solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at T =0 . If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e., magnetic field).
Generalization of fewest-switches surface hopping for coherences
NASA Astrophysics Data System (ADS)
Tempelaar, Roel; Reichman, David R.
2018-03-01
Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.
Jeon, Young-Chan; Jeong, Chang-Mo
2017-01-01
PURPOSE The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique. MATERIALS AND METHODS Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points. The measurement was carried out by using a measuring microscope and I-Soultion. Data from the silicone replica were analyzed and all tests were performed with α-level of 0.05. RESULTS 1. The average gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. 2. In marginal and internal axial gap of cast gold crowns, no statistical differences were found between the two impression techniques. 3. The internal occlusal gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. CONCLUSION Both prostheses presented clinically acceptable results with comparing the fit. The prostheses fabricated from the digital impression technique showed more gaps, in respect of occlusal surface. PMID:28243386
Two-dimensional replica exchange approach for peptide-peptide interactions
NASA Astrophysics Data System (ADS)
Gee, Jason; Shell, M. Scott
2011-02-01
The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.
Topological terms, AdS2 n gravity, and renormalized entanglement entropy of holographic CFTs
NASA Astrophysics Data System (ADS)
Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo
2018-05-01
We extend our topological renormalization scheme for entanglement entropy to holographic CFTs of arbitrary odd dimensions in the context of the AdS /CFT correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. The renormalized entanglement entropy thus obtained can be rewritten in terms of the Euler characteristic and the AdS curvature of the minimal surface. This prescription considers the use of the replica trick to express the renormalized entanglement entropy in terms of the renormalized gravitational action evaluated on the conically singular replica manifold extended to the bulk. This renormalized action is obtained in turn by adding the Chern form as the counterterm at the boundary of the 2 n -dimensional asymptotically AdS bulk manifold. We explicitly show that, up to next-to-leading order in the holographic radial coordinate, the addition of this boundary term cancels the divergent part of the entanglement entropy. We discuss possible applications of the method for studying CFT parameters like central charges.
Measurements of drag and flow over biofilm
NASA Astrophysics Data System (ADS)
Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.
2017-11-01
Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.
Dual-Templated Cobalt Oxide for Photochemical Water Oxidation.
Deng, Xiaohui; Bongard, Hans-Josef; Chan, Candace K; Tüysüz, Harun
2016-02-19
Mesoporous Co3 O4 was prepared using a dual templating approach whereby mesopores inside SiO2 nanospheres, as well as the void spaces between the nanospheres, were used as templates. The effect of calcination temperature on the crystallinity, morphology, and textural parameters of the Co3 O4 replica was investigated. The catalytic activity of Co3 O4 for photochemical water oxidation in a [Ru(bpy)3 ](2+) [S2 O8 ](2-) system was evaluated. The Co3 O4 replica calcined at the lowest temperature (150 °C) exhibited the best performance as a result of the unique nanostructure and high surface area arising from the dual templating. The performance of Co3 O4 with highest surface area was further examined in electrochemical water oxidation. Superior activity over high temperature counterpart and decent stability was observed. Furthermore, CoO with identical morphology was prepared from Co3 O4 using an ethanol reduction method and a higher turnover-frequency number for photochemical water oxidation was obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Internal structure analysis of particle-double network gels used in a gel organ replica
NASA Astrophysics Data System (ADS)
Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.
Wille, Marie-Luise; Langton, Christian M
2016-02-01
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of CFRP mirrors for space telescopes
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2013-09-01
CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.
More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies
Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T.
2015-01-01
Background Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic “face” surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. Aim To compare mask to “face” seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Methods Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the “face.” Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. Results The soft “face” significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft “face” was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard “face.” Conclusions The material and pliability of the model “face” surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies. PMID:26090661
Surface roughness evaluation on mandrels and mirror shells for future X-ray telescopes
NASA Astrophysics Data System (ADS)
Sironi, Giorgia; Spiga, D.
2008-07-01
More X-ray missions that will be operating in near future, like particular SIMBOL-X, e-Rosita, Con-X/HXT, SVOM/XIAO and Polar-X, will be based on focusing optics manufactured by means of the Ni electroforming replication technique. This production method has already been successfully exploited for SAX, XMM and Swift-XRT. Optical surfaces for X-ray reflection have to be as smooth as possible also at high spatial frequencies. Hence it will be crucial to take under control microroughness in order to reduce the scattering effects. A high rms microroughness would cause the degradation of the angular resolution and loss of effective area. Stringent requirements have therefore to be fixed for mirror shells surface roughness depending on the specific energy range investigated, and roughness evolution has to be carefully monitored during the subsequent steps of the mirror-shells realization. This means to study the roughness evolution in the chain mandrel, mirror shells, multilayer deposition and also the degradation of mandrel roughness following iterated replicas. Such a study allows inferring which phases of production are the major responsible of the roughness growth and could help to find solutions optimizing the involved processes. The exposed study is carried out in the context of the technological consolidation related to SIMBOL-X, along with a systematic metrological study of mandrels and mirror shells. To monitor the roughness increase following each replica, a multiinstrumental approach was adopted: microprofiles were analysed by means of their Power Spectral Density (PSD) in the spatial frequency range 1000-0.01 μm. This enables the direct comparison of roughness data taken with instruments characterized by different operative ranges of frequencies, and in particular optical interferometers and Atomic Force Microscopes. The performed analysis allowed us to set realistic specifications on the mandrel roughness to be achieved, and to suggest a limit for the maximum number of a replica a mandrel can undergo before being refurbished.
Nita, D; Mignot, J; Chuard, M; Sofa, M
1998-08-01
Measurement of cutaneous surface topography can be made by three-dimensional (3-D) profilometry. Different equipment is used for this measurement. The magnitude of the vertical scale required, which can vary from several tens of micrometers (microrelief) to several millimeters (skin pathologies), depends also on the precision required and the duration of acquisition time. Over the last few years, different apparatuses have been produced, with a vertical range that is most frequently used for classical industrial applications, i.e., 0-1000 μm. The system developed here has a wide range of about 7 mm and is accurate enough to analyse each of the different skin surfaces that fall in this range without changing magnification. An optical principle, operating without any contact with a skin replica, allows a precise measurement with a high scanning speed. The profilometer has a vertical sensitivity of 4 μm within a vertical range of 7 mm. This sensitivity is lower than that of a mechanical or focusing profilometer, but the vertical range is wider. The system has several advantages: because of its verticale range, it can measure large surfaces with great roughness variations; the initial position of the replica beneath the profilometer must be within the 7 mm vertical range; and skin topography can be quantified, without contact, in a short time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus
We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.
Norman, James J.; Choi, Seong-O; Tong, Nhien T.; Aiyar, Avishek R.; Patel, Samirkumar R.; Prausnitz, Mark R.; Allen, Mark G.
2012-01-01
Limitations with standard intradermal injections have created a clinical need for an alternative, low-cost injection device. In this study, we designed a hollow metal microneedle for reliable intradermal injection and developed a high-throughput micromolding process to produce metal microneedles with complex geometries. To fabricate the microneedles, we laser-ablated a 70 μm × 70 μm square cavity near the tip of poly(lactic acid-co-glyoclic acid) (PLGA) microneedles. The master structure was a template for multiple micromolded PLGA replicas. Each replica was sputtered with a gold seed layer with minimal gold deposited in the cavity due to masking effects. In this way, nickel was electrodeposited selectively outside of the cavity, after which the polymer replica was dissolved to produce a hollow metal microneedle. Force-displacement tests showed the microneedles, with 12 μm thick electrodeposition, could penetrate skin with an insertion force 9 times less than their axial failure force. We injected fluid with the microneedles into pig skin in vitro and hairless guinea pig skin in vivo. The injections targeted 90% of the material within the skin with minimal leakage onto the skin surface. We conclude that hollow microneedles made by this simple microfabrication method can achieve targeted intradermal injection. PMID:23053452
NASA Technical Reports Server (NTRS)
Spangler, R. H.
1974-01-01
Tests were conducted in wind tunnels during April and May 1973, on a 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated. Tabulated pressure data were obtained for upper and lower wing surfaces and left and right vertical tail surfaces.
Predicting folding-unfolding transitions in proteins without a priori knowledge of the folded state
NASA Astrophysics Data System (ADS)
Okan, Osman; Turgut, Deniz; Garcia, Angel; Ozisik, Rahmi
2013-03-01
The common computational method of studying folding transitions in proteins is to compare simulated conformations against the folded structure, but this method obviously requires the folded structure to be known beforehand. In the current study, we show that the use of bond orientational order parameter (BOOP) Ql [Steinhardt PJ, Nelson DR, Ronchetti M, Phys. Rev. B 1983, 28, 784] is a viable alternative to the commonly adopted root mean squared distance (RMSD) measure in probing conformational transitions. Replica exchange molecular dynamics simulations of the trp-cage protein (with 20 residues) in TIP-3P water were used to compare BOOP against RMSD. The results indicate that the correspondence between BOOP and RMSD time series become stronger with increasing l. We finally show that robust linear models that incorporate different Ql can be parameterized from a given replica run and can be used to study other replica trajectories. This work is partially supported by NSF DUE-1003574.
Replica amplification of nucleic acid arrays
Church, George M.; Mitra, Robi D.
2010-08-31
Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Design of replica bit line control circuit to optimize power for SRAM
NASA Astrophysics Data System (ADS)
Pengjun, Wang; Keji, Zhou; Huihong, Zhang; Daohui, Gong
2016-12-01
A design of a replica bit line control circuit to optimize power for SRAM is proposed. The proposed design overcomes the limitations of the traditional replica bit line control circuit, which cannot shut off the word line in time. In the novel design, the delay of word line enable and disable paths are balanced. Thus, the word line can be opened and shut off in time. Moreover, the chip select signal is decomposed, which prevents feedback oscillations caused by the replica bit line and the replica word line. As a result, the switch power caused by unnecessary discharging of the bit line is reduced. A 2-kb SRAM is fully custom designed in an SMIC 65-nm CMOS process. The traditional replica bit line control circuit and the new replica bit line control circuit are used in the designed SRAM, and their performances are compared with each other. The experimental results show that at a supply voltage of 1.2 V, the switch power consumption of the memory array can be reduced by 53.7%. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the National Natural Science Foundation of China (Nos. 61274132, 61234002, 61474068), and the K. C. Wong Magna Fund in Ningbo University.
Bayesian ensemble refinement by replica simulations and reweighting
NASA Astrophysics Data System (ADS)
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Henriksen, Niel M.; Roe, Daniel R.; Cheatham, Thomas E.
2013-01-01
Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 microseconds of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations. PMID:23477537
Henriksen, Niel M; Roe, Daniel R; Cheatham, Thomas E
2013-04-18
Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example, by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 μs of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations.
Ferromagnetic transition in a simple variant of the Ising model on multiplex networks
NASA Astrophysics Data System (ADS)
Krawiecki, A.
2018-02-01
Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.
Unkovskiy, Alexey; Spintzyk, Sebastian; Axmann, Detlef; Engel, Eva-Maria; Weber, Heiner; Huettig, Fabian
2017-11-10
The use of computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing in maxillofacial prosthetics has been widely acknowledged. Rapid prototyping can be considered for manufacturing of auricular prostheses. Therefore, so-called prostheses replicas can be fabricated by digital means. The objective of this study was to identify a superior additive manufacturing method to fabricate auricular prosthesis replicas (APRs) within a digital workflow. Auricles of 23 healthy subjects (mean age of 37.8 years) were measured in vivo with respect to an anthropometrical protocol. Landmarks were volumized with fiducial balls for 3D scanning using a handheld structured light scanner. The 3D CAD dataset was postprocessed, and the same anthropometrical measurements were made in the CAD software with the digital lineal. Each CAD dataset was materialized using fused deposition modeling (FDM), selective laser sintering (SLS), and stereolithography (SL), constituting 53 APR samples. All distances between the landmarks were measured on the APRs. After the determination of the measurement error within the five data groups (in vivo, CAD, FDM, SLS, and SL), the mean values were compared using matched pairs method. To this, the in vivo and CAD dataset were set as references. Finally, the surface structure of the APRs was qualitatively evaluated with stereomicroscopy and profilometry to ascertain the level of skin detail reproduction. The anthropometrical approach showed drawbacks in measuring the protrusion of the ear's helix. The measurement error within all groups of measurements was calculated between 0.20 and 0.28 mm, implying a high reproducibility. The lowest mean differences of 53 produced APRs were found in FDM (0.43%) followed by SLS (0.54%) and SL (0.59%)--compared to in vivo, and again in FDM (0.20%) followed by SL (0.36%) and SLS (0.39%)--compared to CAD. None of these values exceed the threshold of clinical relevance (1.5%); however, the qualitative evaluation revealed slight shortcomings in skin reproduction for all methods: reproduction of skin details exceeding 0.192 mm in depth was feasible. FDM showed the superior dimensional accuracy and best skin surface reproduction. Moreover, digital acquisition and CAD postprocessing seem to play a more important role in the outcome than the additive manufacturing method used. © 2017 by the American College of Prosthodontists.
Grid Enabled Geospatial Catalogue Web Service
NASA Technical Reports Server (NTRS)
Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush
2004-01-01
Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.
Pediatric in vitro and in silico models of deposition via oral and nasal inhalation.
Carrigy, Nicholas B; Ruzycki, Conor A; Golshahi, Laleh; Finlay, Warren H
2014-06-01
Respiratory tract deposition models provide a useful method for optimizing the design and administration of inhaled pharmaceutical aerosols, and can be useful for estimating exposure risks to inhaled particulate matter. As aerosol must first pass through the extrathoracic region prior to reaching the lungs, deposition in this region plays an important role in both cases. Compared to adults, much less extrathoracic deposition data are available with pediatric subjects. Recently, progress in magnetic resonance imaging and computed tomography scans to develop pediatric extrathoracic airway replicas has facilitated addressing this issue. Indeed, the use of realistic replicas for benchtop inhaler testing is now relatively common during the development and in vitro evaluation of pediatric respiratory drug delivery devices. Recently, in vitro empirical modeling studies using a moderate number of these realistic replicas have related airway geometry, particle size, fluid properties, and flow rate to extrathoracic deposition. Idealized geometries provide a standardized platform for inhaler testing and exposure risk assessment and have been designed to mimic average in vitro deposition in infants and children by replicating representative average geometrical dimensions. In silico mathematical models have used morphometric data and aerosol physics to illustrate the relative importance of different deposition mechanisms on respiratory tract deposition. Computational fluid dynamics simulations allow for the quantification of local deposition patterns and an in-depth examination of aerosol behavior in the respiratory tract. Recent studies have used both in vitro and in silico deposition measurements in realistic pediatric airway geometries to some success. This article reviews the current understanding of pediatric in vitro and in silico deposition modeling via oral and nasal inhalation.
Fan, Hao; Periole, Xavier; Mark, Alan E
2012-07-01
The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH-REMD approach sampled structures in which the root-mean-square deviation (RMSD) of secondary structure elements (SSE-RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near-native conformations was also examined. Little correlation between the SSE-RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE-RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced-sampling techniques such as CH-REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near-native structures are still needed. Copyright © 2012 Wiley Periodicals, Inc.
Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.
Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon
2016-03-01
We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.
Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; Duarte, Marco Antonio Húngaro; Cavenago, Bruno Cavalini; Jaramillo, David; Versiani, Marco Aurélio
2014-01-01
To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas.
Vogel, Thomas; Perez, Danny
2015-08-28
We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. Furthermore, themore » method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.« less
Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser
NASA Astrophysics Data System (ADS)
Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.
2008-06-01
A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.
Renormalization of entanglement entropy from topological terms
NASA Astrophysics Data System (ADS)
Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo
2018-05-01
We propose a renormalization scheme for entanglement entropy of three-dimensional CFTs with a four-dimensional asymptotically AdS gravity dual in the context of the gauge/gravity correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. We provide an explicit prescription for the renormalized entanglement entropy, which is derived via the replica trick. This is achieved by considering a Euclidean gravitational action renormalized by the addition of the Chern form at the spacetime boundary, evaluated in the conically-singular replica manifold. We show that the addition of this boundary term cancels the divergent part of the entanglement entropy, recovering the results obtained by Taylor and Woodhead. We comment on how this prescription for renormalizing the entanglement entropy is in line with the general program of topological renormalization in asymptotically AdS gravity.
Adaptively biased molecular dynamics for free energy calculations
NASA Astrophysics Data System (ADS)
Babin, Volodymyr; Roland, Christopher; Sagui, Celeste
2008-04-01
We present an adaptively biased molecular dynamics (ABMD) method for the computation of the free energy surface of a reaction coordinate using nonequilibrium dynamics. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential and is inspired by the metadynamics method. The ABMD method has several useful features, including a small number of control parameters and an O(t ) numerical cost with molecular dynamics time t. The ABMD method naturally allows for extensions based on multiple walkers and replica exchange, where different replicas can have different temperatures and/or collective variables. This is beneficial not only in terms of the speed and accuracy of a calculation, but also in terms of the amount of useful information that may be obtained from a given simulation. The workings of the ABMD method are illustrated via a study of the folding of the Ace-GGPGGG-Nme peptide in a gaseous and solvated environment.
NASA Astrophysics Data System (ADS)
Cadilhe, Antonio
2018-04-01
We performed extensive simulations, using the Replica Exchange-Wang-Landau method, of the clock model for orders 3 and 4 on a square lattice, where critical behaviors are expected to belong to the Ising universality class. Though order 2 represents the Ising model, thus, being exactly solvable in two-dimensions, we still provide such results for comparison to the other two orders. Results for various energy related quantities such as the mean energy per spin, specific heat, as well as logarithm scaling of the peak of the specific heat are presented and shown to follow Ising behavior. Additionally, we also present results related to magnetic quantities, such as the magnetization, magnetic susceptibility, and corresponding scaling behavior of the peak of the magnetic susceptibility. Again, our results show scaling in conformity to Ising critical behavior.
Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics
Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej
2013-01-01
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems. PMID:23665897
Simulations of Coulomb systems confined by polarizable surfaces using periodic Green functions.
Dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan
2017-11-14
We present an efficient approach for simulating Coulomb systems confined by planar polarizable surfaces. The method is based on the solution of the Poisson equation using periodic Green functions. It is shown that the electrostatic energy arising from the surface polarization can be decoupled from the energy due to the direct Coulomb interaction between the ions. This allows us to combine an efficient Ewald summation method, or any other fast method for summing over the replicas, with the polarization contribution calculated using Green function techniques. We apply the method to calculate density profiles of ions confined between the charged dielectric and metal surfaces.
Efficiency of exchange schemes in replica exchange
NASA Astrophysics Data System (ADS)
Lingenheil, Martin; Denschlag, Robert; Mathias, Gerald; Tavan, Paul
2009-08-01
In replica exchange simulations a fast diffusion of the replicas through the temperature space maximizes the efficiency of the statistical sampling. Here, we compare the diffusion speed as measured by the round trip rates for four exchange algorithms. We find different efficiency profiles with optimal average acceptance probabilities ranging from 8% to 41%. The best performance is determined by benchmark simulations for the most widely used algorithm, which alternately tries to exchange all even and all odd replica pairs. By analytical mathematics we show that the excellent performance of this exchange scheme is due to the high diffusivity of the underlying random walk.
Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L
2016-08-22
Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saakyan, D.B.
The variant of the Kirkpatrick-Sherrington model generalized by Derrida for the case of arbitrary spin is considered. When the number of simultaneously interacting neighbors tends to infinity, a solution to the model is obtained not only by reduction to the random-energy model but also by means of the replica method with the Parisi ansatz.
Computation of free energy profiles with parallel adaptive dynamics
NASA Astrophysics Data System (ADS)
Lelièvre, Tony; Rousset, Mathias; Stoltz, Gabriel
2007-04-01
We propose a formulation of an adaptive computation of free energy differences, in the adaptive biasing force or nonequilibrium metadynamics spirit, using conditional distributions of samples of configurations which evolve in time. This allows us to present a truly unifying framework for these methods, and to prove convergence results for certain classes of algorithms. From a numerical viewpoint, a parallel implementation of these methods is very natural, the replicas interacting through the reconstructed free energy. We demonstrate how to improve this parallel implementation by resorting to some selection mechanism on the replicas. This is illustrated by computations on a model system of conformational changes.
A pilot study on the use of geometrically accurate face models to replicate ex vivo N95 mask fit.
Golshahi, Laleh; Telidetzki, Karla; King, Ben; Shaw, Diana; Finlay, Warren H
2013-01-01
To test the feasibility of replicating a face mask seal in vitro, we created 5 geometrically accurate reconstructions of the head and neck of an adult human subject using different materials. Three breathing patterns were simulated with each replica and an attached N95 mask. Quantitative fit testing on the subject and the replicas showed that none of the 5 isotropic materials used allowed duplication of the ex vivo mask seal for the specific mask-face combination studied. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Silicon diatom frustules as nanostructured photoelectrodes.
Chandrasekaran, Soundarrajan; Sweetman, Martin J; Kant, Krishna; Skinner, William; Losic, Dusan; Nann, Thomas; Voelcker, Nicolas H
2014-09-18
In the quest for solutions to meeting future energy demands, solar fuels play an important role. A particularly promising example is photocatalysis since even incremental improvements in performance in this process are bound to translate into significant cost benefits. Here, we report that semiconducting and high surface area 3D silicon replicas prepared from abundantly available diatom fossils sustain photocurrents and enable solar energy conversion.
Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants.
Mobilio, Nicola; Stefanoni, Filippo; Contiero, Paolo; Mollica, Francesco; Catapano, Santo
2013-01-01
To compare the stress in bone around zirconia and titanium implants under loading. A one-piece zirconia implant and a replica of the same implant made of commercially pure titanium were embedded in two self-curing acrylic resin blocks. To measure strain, a strain gauge was applied on the surface of the two samples. Loads of 50, 100, and 150 N, with orientations of 30, 45, and 60 degrees with respect to the implant axis were applied on the implant. Strain under all loading conditions on both samples was measured. Three-dimensional virtual replicas of both the implants were reproduced using the finite element method and inserted into a virtual acrylic resin block. All the materials were considered isotropic, linear, and elastic. The same geometry and loading conditions of the experimental setup were used to realize two new models, with the implants embedded within a virtual bone block. Very close values of strain in the two implants embedded in acrylic resin were obtained both experimentally and numerically. The stress states generated by the implants embedded in virtual bone were also very similar, even if the two implants moved differently. Moreover, the stress levels were higher on cortical bone than on trabecular bone. The stress levels in bone, generated by the two implants, appeared to be very similar. From a mechanical point of view, zirconia is a feasible substitute for titanium.
NASA Astrophysics Data System (ADS)
Fuad, Nurul Mohd; Zhu, Feng; Kaslin, Jan; Wlodkowic, Donald
2016-12-01
Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing living zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.
Metainference: A Bayesian inference method for heterogeneous systems.
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.
Nuclear research emulsion neutron spectrometry at the Little-Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, R.; Roberts, J.H.; Preston, C.C.
Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2 m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2 m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2-m, 0/sup 0/ and 2-m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. Neutronmore » spectra obtained from these NRE proton-recoil spectra are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. NRE and liquid scintillator neutron spectra generally agree within experimental uncertainties at the 2-m, 90/sup 0/ location. However, at the 2-m, 0/sup 0/ location, the neutron spectra derived from these two independent experimental methods differ significantly. NRE spectra and Monte Carlo calculations exhibit general agreement with regard to both intensity as well as energy dependence. Better agreement is attained between theory and experiment at the 2-m, 90/sup 0/ location, where the neutron intensity is considerably higher. 14 refs., 18 figs., 11 tabs.« less
ORDINOLA-ZAPATA, Ronald; BRAMANTE, Clovis Monteiro; DUARTE, Marco Antonio Húngaro; CAVENAGO, Bruno Cavalini; JARAMILLO, David; VERSIANI, Marco Aurélio
2014-01-01
Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas. PMID:24918662
Silva, André D R; Rigoli, Willian R; Osiro, Denise; Mello, Daphne C R; Vasconcellos, Luana M R; Lobo, Anderson O; Pallone, Eliria M J A
2018-01-12
The modification of biomaterials approved by the Food and Drug Administration could be an alternative to reduce the period of use in humans. Porous bioceramics are widely used as support structures for bone formation and repair. This composite has essential characteristics for an implant, including good mechanical properties, high chemical stability, biocompatibility and adequate aesthetic appearance. Here, three-dimensional porous scaffolds of Al 2 O 3 containing 5% by volume of ZrO 2 were produced by the replica method. These scaffolds had their surfaces chemically treated with phosphoric acid and were coated with calcium phosphate using the biomimetic method simulated body fluid (SBF, 5×) for 14 days. The scaffolds, before and after biomimetic coating, were characterized mechanically, morphologically and structurally by axial compression tests, scanning electron microscopy, microtomography, apparent porosity, X-ray diffractometry, near-infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and reactivity. The in vitro cell viability and formation of mineralization nodules were used to identify the potential for bone regeneration. The produced scaffols after immersion in SBF were able to induce the nodules formation. These characteristics are advantaged by the formation of different phases of calcium phosphates on the material surface in a reduced incubation period. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yamauchi, Masataka; Okumura, Hisashi
2017-11-01
We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.
Enhanced Conformational Sampling of N-Glycans in Solution with Replica State Exchange Metadynamics.
Galvelis, Raimondas; Re, Suyong; Sugita, Yuji
2017-05-09
Molecular dynamics (MD) simulation of a N-glycan in solution is challenging because of high-energy barriers of the glycosidic linkages, functional group rotational barriers, and numerous intra- and intermolecular hydrogen bonds. In this study, we apply different enhanced conformational sampling approaches, namely, metadynamics (MTD), the replica-exchange MD (REMD), and the recently proposed replica state exchange MTD (RSE-MTD), to a N-glycan in solution and compare the conformational sampling efficiencies of the approaches. MTD helps to cross the high-energy barrier along the ω angle by utilizing a bias potential, but it cannot enhance sampling of the other degrees of freedom. REMD ensures moderate-energy barrier crossings by exchanging temperatures between replicas, while it hardly crosses the barriers along ω. In contrast, RSE-MTD succeeds to cross the high-energy barrier along ω as well as to enhance sampling of the other degrees of freedom. We tested two RSE-MTD schemes: in one scheme, 64 replicas were simulated with the bias potential along ω at different temperatures, while simulations of four replicas were performed with the bias potentials for different CVs at 300 K. In both schemes, one unbiased replica at 300 K was included to compute conformational properties of the glycan. The conformational sampling of the former is better than the other enhanced sampling methods, while the latter shows reasonable performance without spending large computational resources. The latter scheme is likely to be useful when a N-glycan-attached protein is simulated.
Discovery of riblets in a bird beak (Rynchops) for low fluid drag
2016-01-01
Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354734
Grid computing enhances standards-compatible geospatial catalogue service
NASA Astrophysics Data System (ADS)
Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang
2010-04-01
A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.
Shape-preserving transformations of organic matter and compositions thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaehr, Bryan J.; Meyer, Kristin; Townson, Jason L.
The present invention relates to methods of transforming organic matter into organic-inorganic composites, inorganic replicas, or conductive replicas. Organic matter, such as biological cells and tissue and organs, can be converted into such composites and replicas using the methods described herein. In particular, such methods transform organic matter (into inorganic, organic-inorganic, or conductive constructs), while simultaneously preserving microscopic and/or macroscopic structural detail.
Earthquake rupture process recreated from a natural fault surface
Parsons, Thomas E.; Minasian, Diane L.
2015-01-01
What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.
An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses.
Kuszak, J R; Novak, L A; Brown, H G
1995-11-01
The purpose of this study was to conduct a comprehensive ultrastructural analysis of the epithelial-fiber interface (EFI) in normal adult primate (Macaque nemestrina and fascicularis; 6-9 years old, n = 10) lenses. Scanning electron microscopy (SEM) was used to initially characterize the gross size, shape and three-dimensional organization of central zone (cz) epithelial cells and the anterior ends of elongating fibers beneath these cells. This fiducial information was essential to properly orient lens pieces in freeze fracture specimen carriers for the production of replicas with unambiguously identifiable EFI. Transmission electron microscopy (TEM) of replicas and thin-sectioned material were used to ultrastructurally analyse the cz EFI. TEM thin-sectioned material was also used to ultrastructurally analyse the pregerminative (pgz), germinative (gz) and transitional zone (tz) EFI. Correlative SEM and TEM of cz EFI components revealed that the apical membrane of both epithelial and elongating fiber cells were irregularly polygonal in shape, and aligned in parallel as smooth, concave-convex surfaces. However, whereas epithelial cell apical surfaces had minimal size variation, elongating fibers were larger and considerably variable in size. Quantitative analysis of > 10000 micron2 cz elongating fiber apical surfaces failed to detect any gap junctions defined in freeze fracture replicas as complementary aggregates of transmembrane proteins (connexons) conjoined across a narrowed extracellular space. However, a comparable frequency of vesicular events was noted in this region as quantified previously in adult and embryonic chick lens. Correlative TEM analysis > 1500 linear micrometers of thin-sectioned EFI from this region confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, and an extreme paucity of epithelial-elongating fiber gap junctions. In contrast, TEM analysis of > 1000 linear micrometers of thin-sectioned pgz, gz and tz EFI, confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, numerous epithelial-elongating fiber adherens junctions and a few epithelial-elongating fiber gap junctions. Thus, the results of this and previous quantitative morphological and physiological studies (electronic and dye coupling) demonstrate that there is limited coupling between cz epithelial cells and underlying elongating fibers. Furthermore, the absence of gap junctional plaques in cz EFI freeze-fracture replicas and either pentalaminar or septalaminar profiles in correlative thin-sections, suggests that this limited coupling could be mediated via isolated gap junction channels. However, the results of this and previous quantitative studies further show that a greater degree of coupling exists across the pgz, gz and tz regions of the EFI and that this coupling is likely to be mediated by gap junction plaques. Finally, this and other studies continue to demonstrate that transcytotic processes play a role in lens physiology at the EFI.
NASA Astrophysics Data System (ADS)
Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael
2016-02-01
We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.
NASA Astrophysics Data System (ADS)
Denschlag, Robert; Lingenheil, Martin; Tavan, Paul
2008-06-01
Replica exchange (RE) molecular dynamics (MD) simulations are frequently applied to sample the folding-unfolding equilibria of β-hairpin peptides in solution, because efficiency gains are expected from this technique. Using a three-state Markov model featuring key aspects of β-hairpin folding we show that RE simulations can be less efficient than conventional techniques. Furthermore we demonstrate that one is easily seduced to erroneously assign convergence to the RE sampling, because RE ensembles can rapidly reach long-lived stationary states. We conclude that typical REMD simulations covering a few tens of nanoseconds are by far too short for sufficient sampling of β-hairpin folding-unfolding equilibria.
NASA Astrophysics Data System (ADS)
Sakata, Ayaka; Xu, Yingying
2018-03-01
We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida-Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric (RS) solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of \
van der Laak, Jeroen A W M; Dijkman, Henry B P M; Pahlplatz, Martin M M
2006-03-01
The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000 x to 200,000 x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy.
NASA Astrophysics Data System (ADS)
Ajamian, John
2016-09-01
The A2 collaboration of the Institute for Nuclear Physics of Johannes Gutenberg University performs research on (multiple) meson photoproduction and nucleon structure and dynamics using a high energy polarized photon beam at specific targets. Particles scattered from the target are detected in the Crystal Ball, or CB. The CB is composed of 672 NaI crystals that surround the target and can analyze particle type and energy of ejected particles. Our project was to create a replica of the CB that could display what was happening in real time on a 3 Dimensional scale replica. Our replica was constructed to help explain the physics to the general public, be used as a tool when calibrating each of the 672 NaI crystals, and to better analyze the electron showering of particles coming from the target. This poster will focus on the hardware steps necessary to construct the replica and wire the 672 programmable LEDS in such a way that they can be mapped to correspond to the Crystal Ball elements. George Washington NSF Grant.
Application of Replica Technique and SEM in Accuracy Measurement of Ceramic Crowns
NASA Astrophysics Data System (ADS)
Trifkovic, B.; Budak, I.; Todorovic, A.; Hodolic, J.; Puskar, T.; Jevremovic, D.; Vukelic, D.
2012-01-01
The paper presents a comparative study of the measuring values of the marginal gap related to the ceramic crowns made by dental CAD/CAM system using the replica technique and SEM. The study was conducted using three experimental groups, which consisted of ceramic crowns manufactured by the Cerec CAD/CAM system. The scanning procedure was carried out using three specialized dental 3D digitization systems from the Cerec family - two types of extraoral optical scanning systems and an intraoral optical scanner. Measurements of the marginal gap were carried out using the replica technique and SEM. The comparison of aggregate values of the marginal gap using the replica technique showed a statistically significant difference between the systems. The measured values of marginal gaps of ceramic crowns using the replica technique were significantly lower compared to those measured by SEM. The results indicate that the choice of technique for measuring the accuracy of ceramic crowns influences the final results of investigation.
Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.
Kubitzki, Marcus B; de Groot, Bert L
2007-06-15
Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of degrees of freedom involved. Aiming at increased sampling efficiency, we present a novel simulation method combining the ideas of essential dynamics and REX. Unlike standard REX, in each replica only a selection of essential collective modes of a subsystem of interest (essential subspace) is coupled to a higher temperature, with the remainder of the system staying at a reference temperature, T(0). This selective excitation along with the replica framework permits efficient approximate ensemble-preserving conformational sampling and allows much larger temperature differences between replicas, thereby considerably enhancing sampling efficiency. Ensemble properties and sampling performance of the method are discussed using dialanine and guanylin test systems, with multi-microsecond molecular dynamics simulations of these test systems serving as references.
Cross correlation anomaly detection system
NASA Technical Reports Server (NTRS)
Micka, E. Z. (Inventor)
1975-01-01
This invention provides a method for automatically inspecting the surface of an object, such as an integrated circuit chip, whereby the data obtained by the light reflected from the surface, caused by a scanning light beam, is automatically compared with data representing acceptable values for each unique surface. A signal output provided indicated of acceptance or rejection of the chip. Acceptance is based on predetermined statistical confidence intervals calculated from known good regions of the object being tested, or their representative values. The method can utilize a known good chip, a photographic mask from which the I.C. was fabricated, or a computer stored replica of each pattern being tested.
NASA Astrophysics Data System (ADS)
Baumketner, Andriy; Shea, Joan-Emma
2006-03-01
We report a replica-exchange molecular dynamics study of the 10-35 fragment of Alzheimer's disease amyloid β peptide, Aβ10-35, in aqueous solution. This fragment was previously seen [J. Str. Biol. 130 (2000) 130] to possess all the most important amyloidogenic properties characteristic of full-length Aβ peptides. Our simulations attempted to fold Aβ10-35 from first principles. The peptide was modeled using all-atom OPLS/AA force field in conjunction with the TIP3P explicit solvent model. A total of 72 replicas were considered and simulated over 40 ns of total time, including 5 ns of initial equilibration. We find that Aβ10-35 does not possess any unique folded state, a 3D structure of predominant population, under normal temperature and pressure. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is seen to be dominated by random coil and bend structures with insignificant presence of α-helical or β-sheet structure. We find that, overall, the 3D structure of Aβ10-35 is shaped by salt bridges formed between oppositely charged residues.Of all possible salt bridges, K28-D23 was seen to have the highest formation probability, totaling more than 60% of the time.
Unifying model for random matrix theory in arbitrary space dimensions
NASA Astrophysics Data System (ADS)
Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio
2018-03-01
A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.
On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome
Olson, Mark A.
2017-01-01
Intrinsically disordered proteins that populate the so-called “Dark Proteome” offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsically disordered peptide derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported a protein-peptide interface where the VP35 peptide underwent a folding transition from a disordered form to a helix-β-turn-helix topological fold upon molecular association with the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with temperature-based replica exchange dynamics to calculate the disorder propensity of the peptide and its probability density of states in a continuum solvent. A further comparison is presented of applying an explicit/implicit solvent hybrid replica exchange simulation of the peptide to determine the effect of modeling water interactions at the all-atom resolution. PMID:28197405
On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome.
Olson, Mark A
2017-01-01
Intrinsically disordered proteins that populate the so-called "Dark Proteome" offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsically disordered peptide derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported a protein-peptide interface where the VP35 peptide underwent a folding transition from a disordered form to a helix-β-turn-helix topological fold upon molecular association with the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with temperature-based replica exchange dynamics to calculate the disorder propensity of the peptide and its probability density of states in a continuum solvent. A further comparison is presented of applying an explicit/implicit solvent hybrid replica exchange simulation of the peptide to determine the effect of modeling water interactions at the all-atom resolution.
LHCb experience with LFC replication
NASA Astrophysics Data System (ADS)
Bonifazi, F.; Carbone, A.; Perez, E. D.; D'Apice, A.; dell'Agnello, L.; Duellmann, D.; Girone, M.; Re, G. L.; Martelli, B.; Peco, G.; Ricci, P. P.; Sapunenko, V.; Vagnoni, V.; Vitlacil, D.
2008-07-01
Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.
Teixeira, E R; Sato, Y; Akagawa, Y; Shindoi, N
1998-04-01
Further validity of finite element analysis (FEA) in implant biomechanics requires an increase of modelled range and mesh refinement, and a consequent increase in element number and calculation time. To develop a new method that allows a decrease of the modelled range and element number (along with less calculation time and less computer memory), 10 FEA models of the mandible with different mesio-distal lengths and elements were constructed based on three-dimensional graphic data of the bone structure around an osseointegrated implant. Analysis of stress distribution followed by 100 N loading with the fixation of the most external planes of the models indicated that a minimal bone length of 4.2 mm of the mesial and distal sides was acceptable for FEA representation. Moreover, unification of elements located far away from the implant surface did not affect stress distribution. These results suggest that it may be possible to develop a replica FEA implant model of the mandible with less range and fewer elements without altering stress distribution.
Wu, Sangwook
2009-03-01
We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.
Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.
2013-01-01
This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.
NASA Technical Reports Server (NTRS)
Spangler, R. H.; Thornton, D. E.; Polek, T. E.
1974-01-01
Tests were conducted, from November 15 to December 4, 1973, to obtain surface pressure data on an 0.015-scale replica of the Space Shuttle Vehicle 4. Data were obtained at Mach numbers of 5.3, 7.4, and 10.3, to support the venting analysis for both launch and entry conditions. These tests were the final tests in a series covering a Mach number range from 0.6 to 10.3. The model was instrumented with pressure orifices in the vicinity of the cargo bay door hinge and parting lines, and on the side of the fuselage at the crew compartment, and below the orbital maneuvering system pods at the aft compartment. The model was tested at angles of attack and sideslip consistent with expected divergencies from the nominal trajectory.
Zerze, Gül H; Miller, Cayla M; Granata, Daniele; Mittal, Jeetain
2015-06-09
Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data.
Metainference: A Bayesian inference method for heterogeneous systems
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul
2018-04-01
We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.
Extreme Soft Limit Observation of Quantum Hall Effect in a 3-d Semiconductor
NASA Astrophysics Data System (ADS)
Bleiweiss, Michael; Yin, Ming; Amirzadeh, Jafar; Preston, Harry; Datta, Timir
2004-03-01
We report on the evidence for quantum hall effect at 38K and in magnetic fields (B) as low as 1k-Orsted. Our specimens were semiconducting, carbon replica opal (CRO) structures. CRO are three dimensional bulk systems where the carbon is grown by CVD into the porous regions in artificial silica opals. The carbon forms layers on top of the silica spheres as eggshells. The shells are of uneven thickness and are perforated at the contacts points of the opal spheres and form a closed packed, three dimensional crystal structure. Plateaus in inverse R_xy that are conjugated with well-defined Subnikov-deHass modulations in R_xx were observed. The quantum steps that are particularly prominent were the states with fill factors v = p/q (p,q are integers) were the well know fractions, 1/3, 1/2, 3/5, 1 and 5/2. QHE steps indicate that the carriers are localized in two-dimensional regions, which may be due to the extremely large surface to volume ratio associated with replica opal structure. From the B-1 vs v straight line, the effective surface carrier density, ns = 2.2 x 10^14 m-2. To the best of our knowledge, the current work is the first to report fractional quantum hall plateaus in a bulk system.
Short fatigue crack behavior in notched 2024-T3 aluminum specimens
NASA Technical Reports Server (NTRS)
Lee, J. J.; Sharpe, W. N., Jr.
1986-01-01
Single-edge, semi-circular notched specimens of Al 2024-T3, 2.3 mm thick, were cyclicly loaded at R-ratios of 0.5, 0.0, -1.0, and -2.0. The notch roots were periodically inspected using a replica technique which duplicates the bore surface. The replicas were examined under an optical microscope to determine the initiation of very short cracks and to monitor the growth of short cracks ranging in length from a few tens of microns to the specimen thickness. In addition to short crack growth measurements, the crack opening displacement (COD) was measured for surface cracks as short as 0.035 mm and for through-thickness cracks using the Interferometric Strain/Displacement Gage (ISDG), a laser-based optical technique. The growth rates of short cracks were faster than the long crack growth rates for R-ratios of -1.0 and -2.0. No significant difference between short and long crack growth rates was observed for R = 0.0. Short cracks had slower growth rates than long cracks for R = 0.5. The crack opening stresses measured for short cracks were smaller than those predicted for large cracks, with little difference appearing for positive R-ratios and large differences noted for negative R-ratios.
NASA Astrophysics Data System (ADS)
Verlinden, Christopher M.
Controlled acoustic sources have typically been used for imaging the ocean. These sources can either be used to locate objects or characterize the ocean environment. The processing involves signal extraction in the presence of ambient noise, with shipping being a major component of the latter. With the advent of the Automatic Identification System (AIS) which provides accurate locations of all large commercial vessels, these major noise sources can be converted from nuisance to beacons or sources of opportunity for the purpose of studying the ocean. The source localization method presented here is similar to traditional matched field processing, but differs in that libraries of data-derived measured replicas are used in place of modeled replicas. In order to account for differing source spectra between library and target vessels, cross-correlation functions are compared instead of comparing acoustic signals directly. The library of measured cross-correlation function replicas is extrapolated using waveguide invariant theory to fill gaps between ship tracks, fully populating the search grid with estimated replicas allowing for continuous tracking. In addition to source localization, two ocean sensing techniques are discussed in this dissertation. The feasibility of estimating ocean sound speed and temperature structure, using ship noise across a drifting volumetric array of hydrophones suspended beneath buoys, in a shallow water marine environment is investigated. Using the attenuation of acoustic energy along eigenray paths to invert for ocean properties such as temperature, salinity, and pH is also explored. In each of these cases, the theory is developed, tested using numerical simulations, and validated with data from acoustic field experiments.
Bahrami, Babak; Shahrbaf, Shirin; Mirzakouchaki, Behnam; Ghalichi, Farzan; Ashtiani, Mohammed; Martin, Nicolas
2014-04-01
To investigate, by means of FE analysis, the effect of surface roughness treatments on the distribution of stresses at the bone-implant interface in immediately loaded mandibular implants. An accurate, high resolution, digital replica model of bone structure (cortical and trabecular components) supporting an implant was created using CT scan data and image processing software (Mimics 13.1; Materialize, Leuven, Belgium). An anatomically accurate 3D model of a mandibular-implant complex was created using a professional 3D-CAD modeller (SolidWorks, DassaultSystèmes Solid Works Corp; 2011). Finite element models were created with one of the four roughness treatments on the implant fixture surface. Of these, three were surface treated to create a uniform coating determined by the coefficient of friction (μ); these were either (1) plasma sprayed or porous-beaded (μ=1.0), (2) sandblasted (μ=0.68) or (3) polished (μ=0.4). The fourth implant had a novel two-part surface roughness consisting of a coronal polished component (μ=0.4) interfacing with the cortical bone, and a body plasma treated surface component (μ=1) interfacing with the trabecular bone. Finite element stress analysis was carried out under vertical and lateral forces. This investigation showed that the type of surface treatment on the implant fixture affects the stress at the bone-implant interface of an immediately loaded implant complex. Von Mises stress data showed that the two-part surface treatment created the better stress distribution at the implant-bone interface. The results from this FE computational analysis suggest that the proposed two-part surface treatment for IL implants creates lower stresses than single uniform treatments at the bone-implant interface, which might decrease peri-implant bone loss. Future investigations should focus on mechanical and clinical validation of these FE results. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
2015-01-01
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation. PMID:25328493
Rauscher, Sarah; Neale, Chris; Pomès, Régis
2009-10-13
Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.
Dailey, Bruno; Jordan, Laurence; Blind, Olivier; Tavernier, Bruno
2009-01-01
The passive fit of a superstructure on implant abutments is essential to success. One source of error when using a tapered cone-screw internal connection may be the difference between the tightening torque level applied to the abutments by the laboratory technician compared to that applied by the treating clinician. The purpose of this study was to measure the axial displacement of tapered cone-screw abutments into implants and their replicas as a function of the tightening torque level. Twenty tapered cone-screw abutments were selected. Two groups were created: 10 abutments were secured into 10 implants, and 10 abutments were secured into 10 corresponding implant replicas. Each abutment was tightened in increasing increments of 5 Ncm, from 0 Ncm to 45 Ncm, with a torque controller. The length of each sample was measured repeatedly with an Electronic Digital Micrometer. The mean axial displacement for the implant group and the replica group was calculated. The data were analyzed by the Mann-Whitney and Spearman tests. For both groups, there was always an axial displacement of the abutment upon each incremental application of torque. The mean axial displacement values varied between 7 and 12 microm for the implant group and between 6 and 21 microm for the replica group at each 5-Ncm increment. From 0 to 45 Ncm, the total mean axial displacement values were 89 microm for the implant group and 122 microm for the replica group. There was a continuous axial displacement of the abutments into implants and implant replicas when the applied torque was raised from 0 to 45 Ncm. Torque applied above the level recommended by the manufacturer increased the difference in displacement between the two groups.
Huang, Kun; García, Angel E
2014-10-14
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.
Nagy, Gabor; Oostenbrink, Chris; Hritz, Jozef
2017-01-01
The 14-3-3 protein family performs regulatory functions in eukaryotic organisms by binding to a large number of phosphorylated protein partners. Whilst the binding mode of the phosphopeptides within the primary 14-3-3 binding site is well established based on the crystal structures of their complexes, little is known about the binding process itself. We present a computational study of the process by which phosphopeptides bind to the 14-3-3ζ protein. Applying a novel scheme combining Hamiltonian replica exchange molecular dynamics and distancefield restraints allowed us to map and compare the most likely phosphopeptide-binding pathways to the 14-3-3ζ protein. The most important structural changes to the protein and peptides involved in the binding process were identified. In order to bind phosphopeptides to the primary interaction site, the 14-3-3ζ adopted a newly found wide-opened conformation. Based on our findings we additionally propose a secondary interaction site on the inner surface of the 14-3-3ζ dimer, and a direct interference on the binding process by the flexible C-terminal tail. A minimalistic model was designed to allow for the efficient calculation of absolute binding affinities. Binding affinities calculated from the potential of mean force along the binding pathway are in line with the available experimental estimates for two of the studied systems. PMID:28727767
Hossler, Fred E.; Douglas, John E.
2001-05-01
Vascular corrosion casting has been used for about 40 years to produce replicas of normal and abnormal vasculature and microvasculature of various tissues and organs that could be viewed at the ultrastructural level. In combination with scanning electron microscopy (SEM), the primary application of corrosion casting has been to describe the morphology and anatomical distribution of blood vessels in these tissues. However, such replicas should also contain quantitative information about that vasculature. This report summarizes some simple quantitative applications of vascular corrosion casting. Casts were prepared by infusing Mercox resin or diluted Mercox resin into the vasculature. Surrounding tissues were removed with KOH, hot water, and formic acid, and the resulting dried casts were observed with routine SEM. The orientation, size, and frequency of vascular endothelial cells were determined from endothelial nuclear imprints on various cast surfaces. Vascular volumes of heart, lung, and avian salt gland were calculated using tissue and resin densities, and weights. Changes in vascular volume and functional capillary density in an experimentally induced emphysema model were estimated from confocal images of casts. Clearly, corrosion casts lend themselves to quantitative analysis. However, because blood vessels differ in their compliances, in their responses to the toxicity of casting resins, and in their response to varying conditions of corrosion casting procedures, it is prudent to use care in interpreting this quantitative data. Some of the applications and limitations of quantitative methodology with corrosion casts are reviewed here.
Yeo, L P; Yan, Y H; Lam, Y C; Chan-Park, Mary B
2006-11-21
As-fabricated deep reactive ion etched (DRIE) silicon mold with very high aspect ratio (>10) feature patterns is unsuitable for poly(dimethylsiloxane) (PDMS) replication because of the strong interaction between the Si surface and the replica and the corrugated mold sidewalls. The silicon mold can be conveniently passivated via plasma polymerization of octafluorocyclobutane (C4F8), which is also employed in the DRIE process itself, to enable the mold to be used repeatedly. To optimize the passivation conditions, we have undertaken a Box-Behnken experimental design on the basis of three passivation process parameters (plasma power, C4F8 flow rate, and deposition time). The measured responses were fluorinated film thickness, demolding status/success, demolding force, and fluorine/carbon ratio on the fifth replica surface. The optimal passivation process conditions were predicted to be an input power of 195 W, a C4F8 flow rate of 57 sccm, and a deposition time of 364 s; these were verified experimentally to have high accuracy. Demolding success requires medium-deposited film thickness (66-91 nm), and the thickness of the deposited films correlated strongly with deposition time. At moderate to high ranges, increased plasma power or gas flow rate promoted polymerization over reactive etching of the film. It was also found that small quantities of the fluorinated surface were transferred from the Si mold to the PDMS at each replication, entailing progressive wear of the fluorinated layer.
Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.
Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav
2014-01-01
Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.
Phamduy, P; Polverino, G; Fuller, R C; Porfiri, M
2014-09-01
The experimental integration of bioinspired robots in groups of social animals has become a valuable tool to understand the basis of social behavior and uncover the fundamental determinants of animal communication. In this study, we measured the preference of fertile female bluefin killifish (Lucania goodei) for robotic replicas whose aspect ratio, body size, motion pattern, and color morph were inspired by adult male killifish. The motion of the fish replica was controlled via a robotic platform, which simulated the typical courtship behavior observed in killifish males. The positional preferences of females were measured for three different color morphs (red, yellow, and blue). While variation in preference was high among females, females tend to spend more time in the vicinity of the yellow painted robot replicas. This preference may have emerged because the yellow robot replicas were very bright, particularly in the longer wavelengths (550–700 nm) compared to the red and blue replicas. These findings are in agreement with previous observations in mosquitofish and zebrafish on fish preference for artificially enhanced yellow pigmentation.
Coupling of phonons with excitons bound to different donors and acceptors in hexagonal GaN
NASA Astrophysics Data System (ADS)
Korona, K. P.; Wysmoek, A.; Kuhl, J.; Kamiska, M.; Baranowski, J. M.; Look, D. C.; Park, S. S.
2006-06-01
Time-resolved measurements of GaN with different donors (oxygen or silicon) and acceptors (zinc or magnesium) showed pronounced bound exciton lines and their phonon replicas. The analysis included three phonon modes characteristic for the wurtzite (hexagonal) phase: A1(LO), E1(TO) and E2H. It was shown that relative amplitudes of replicas depended upon the chemical nature of the defects that the bind excitons. The replicas were stronger for acceptor- than for donor-related features. Huang-Rhys factors S = 0.06 +/- 0.02 and S = 0.025 +/- 0.01, were found for the A0X and the D0X LO replicas, respectively. A significant difference in phonon coupling to silicon and oxygen donor bound excitons has been observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Thomas; Perez, Danny
We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. Furthermore, themore » method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.« less
Engineered biomimicry: polymeric replication of surface features found on insects
NASA Astrophysics Data System (ADS)
Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.
2011-04-01
By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.
Unlearning of Mixed States in the Hopfield Model —Extensive Loading Case—
NASA Astrophysics Data System (ADS)
Hayashi, Kao; Hashimoto, Chinami; Kimoto, Tomoyuki; Uezu, Tatsuya
2018-05-01
We study the unlearning of mixed states in the Hopfield model for the extensive loading case. Firstly, we focus on case I, where several embedded patterns are correlated with each other, whereas the rest are uncorrelated. Secondly, we study case II, where patterns are divided into clusters in such a way that patterns in any cluster are correlated but those in two different clusters are not correlated. By using the replica method, we derive the saddle point equations for order parameters under the ansatz of replica symmetry. The same equations are also derived by self-consistent signal-to-noise analysis in case I. In both cases I and II, we find that when the correlation between patterns is large, the network loses its ability to retrieve the embedded patterns and, depending on the parameters, a confused memory, which is a mixed state and/or spin glass state, emerges. By unlearning the mixed state, the network acquires the ability to retrieve the embedded patterns again in some parameter regions. We find that to delete the mixed state and to retrieve the embedded patterns, the coefficient of unlearning should be chosen appropriately. We perform Markov chain Monte Carlo simulations and find that the simulation and theoretical results agree reasonably well, except for the spin glass solution in a parameter region due to the replica symmetry breaking. Furthermore, we find that the existence of many correlated clusters reduces the stabilities of both embedded patterns and mixed states.
Biomineralized 3-D Nanoparticle Assemblies with Micro-to-Nanoscale Features and Tailored Chemistries
2008-01-07
protuberances on the pollen surface were well preserved after conversion. This hybrid approach may be applied to a variety of bio-organic templates, which are...replicas were found to be rapid, low voltage, minimally-invasive sensors of NO(g) and to exhibit photoluminescence . The kinetics of magnesiothermic...silica- organic hybrid structures via biomimetic silicification has been demonstrated. The effects of two key parameters, the polyamine content and
Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M
2017-04-25
Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.
Discovery of riblets in a bird beak (Rynchops) for low fluid drag.
Martin, Samuel; Bhushan, Bharat
2016-08-06
Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).
Olson, Mark A; Lee, Michael S; Yeh, In-Chul
2017-06-15
This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sublattice parallel replica dynamics.
Martínez, Enrique; Uberuaga, Blas P; Voter, Arthur F
2014-06-01
Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full advantage of the new computing paradigm. Atomistic simulation methods that offer full fidelity to the underlying potential, i.e., molecular dynamics (MD) and parallel replica dynamics, fail to use the whole machine speedup, leaving a region in time and sample size space that is unattainable with current algorithms. In this paper, we present an extension of the parallel replica dynamics algorithm [A. F. Voter, Phys. Rev. B 57, R13985 (1998)] by combining it with the synchronous sublattice approach of Shim and Amar [ and , Phys. Rev. B 71, 125432 (2005)], thereby exploiting event locality to improve the algorithm scalability. This algorithm is based on a domain decomposition in which events happen independently in different regions in the sample. We develop an analytical expression for the speedup given by this sublattice parallel replica dynamics algorithm and compare it with parallel MD and traditional parallel replica dynamics. We demonstrate how this algorithm, which introduces a slight additional approximation of event locality, enables the study of physical systems unreachable with traditional methodologies and promises to better utilize the resources of current high performance and future exascale computers.
Ding, Chao; Yang, Lijun; Wu, Meng
2017-01-01
Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies. PMID:28098846
Ding, Chao; Yang, Lijun; Wu, Meng
2017-01-15
Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies.
Marginal and Internal Adaptation of Zirconia Crowns: A Comparative Study of Assessment Methods.
Cunali, Rafael Schlögel; Saab, Rafaella Caramori; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Ornaghi, Bárbara Pick; Ritter, André V; Gonzaga, Carla Castiglia
2017-01-01
Marginal and internal adaptation is critical for the success of indirect restorations. New imaging systems make it possible to evaluate these parameters with precision and non-destructively. This study evaluated the marginal and internal adaptation of zirconia copings fabricated with two different systems using both silicone replica and microcomputed tomography (micro-CT) assessment methods. A metal master model, representing a preparation for an all-ceramic full crown, was digitally scanned and polycrystalline zirconia copings were fabricated with either Ceramill Zi (Amann-Girrbach) or inCoris Zi (Dentslpy-Sirona), n=10. For each coping, marginal and internal gaps were evaluated by silicone replica and micro-CT assessment methods. Four assessment points of each replica cross-section and micro-CT image were evaluated using imaging software: marginal gap (MG), axial wall (AW), axio-occlusal angle (AO) and mid-occlusal wall (MO). Data were statistically analyzed by factorial ANOVA and Tukey test (a=0.05). There was no statistically significant difference between the methods for MG and AW. For AO, there were significant differences between methods for Amann copings, while for Dentsply-Sirona copings similar values were observed. For MO, both methods presented statistically significant differences. A positive correlation was observed determined by the two assessment methods for MG values. In conclusion, the assessment method influenced the evaluation of marginal and internal adaptation of zirconia copings. Micro-CT showed lower marginal and internal gap values when compared to the silicone replica technique, although the difference was not always statistically significant. Marginal gap and axial wall assessment points showed the lower gap values, regardless of ceramic system and assessment method used.
Koulgi, Shruti; Sonavane, Uddhavesh; Joshi, Rajendra
2010-11-01
Protein folding studies were carried out by performing microsecond time scale simulations on the ultrafast/fast folding protein Engrailed Homeodomain (EnHD) from Drosophila melanogaster. It is a three-helix bundle protein consisting of 54 residues (PDB ID: 1ENH). The positions of the helices are 8-20 (Helix I), 26-36 (Helix II) and 40-53 (Helix III). The second and third helices together form a Helix-Turn-Helix (HTH) motif which belongs to the family of DNA binding proteins. The molecular dynamics (MD) simulations were performed using replica exchange molecular dynamics (REMD). REMD is a method that involves simulating a protein at different temperatures and performing exchanges at regular time intervals. These exchanges were accepted or rejected based on the Metropolis criterion. REMD was performed using the AMBER FF03 force field with the generalised Born solvation model for the temperature range 286-373 K involving 30 replicas. The extended conformation of the protein was used as the starting structure. A simulation of 600 ns per replica was performed resulting in an overall simulation time of 18 μs. The protein was seen to fold close to the native state with backbone root mean square deviation (RMSD) of 3.16 Å. In this low RMSD structure, the Helix I was partially formed with a backbone RMSD of 3.37 Å while HTH motif had an RMSD of 1.81 Å. Analysis suggests that EnHD folds to its native structure via an intermediate in which the HTH motif is formed. The secondary structure development occurs first followed by tertiary packing. The results were in good agreement with the experimental findings. Copyright © 2010 Elsevier Inc. All rights reserved.
Multifractality and freezing phenomena in random energy landscapes: An introduction
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.
2010-10-01
We start our lectures with introducing and discussing the general notion of multifractality spectrum for random measures on lattices, and how it can be probed using moments of that measure. Then we show that the Boltzmann-Gibbs probability distributions generated by logarithmically correlated random potentials provide a simple yet non-trivial example of disorder-induced multifractal measures. The typical values of the multifractality exponents can be extracted from calculating the free energy of the associated Statistical Mechanics problem. To succeed in such a calculation we introduce and discuss in some detail two analytically tractable models for logarithmically correlated potentials. The first model uses a special definition of distances between points in space and is based on the idea of multiplicative cascades which originated in theory of turbulent motion. It is essentially equivalent to statistical mechanics of directed polymers on disordered trees studied long ago by Derrida and Spohn (1988) in Ref. [12]. In this way we introduce the notion of the freezing transition which is identified with an abrupt change in the multifractality spectrum. Second model which allows for explicit analytical evaluation of the free energy is the infinite-dimensional version of the problem which can be solved by employing the replica trick. In particular, the latter version allows one to identify the freezing phenomenon with a mechanism of the replica symmetry breaking (RSB) and to elucidate its physical meaning. The corresponding one-step RSB solution turns out to be marginally stable everywhere in the low-temperature phase. We finish with a short discussion of recent developments and extensions of models with logarithmic correlations, in particular in the context of extreme value statistics. The first appendix summarizes the standard elementary information about Gaussian integrals and related subjects, and introduces the notion of the Gaussian free field characterized by logarithmic correlations. Three other appendices provide the detailed exposition of a few technical details underlying the replica analysis of the model discussed in the lectures.
Shinzato, Takashi
2016-12-01
The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2016-12-01
The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.
Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok
2016-07-01
If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
A practical guide to replica-exchange Wang—Landau simulations
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Li, Ying Wai; Landau, David P.
2018-04-01
This paper is based on a series of tutorial lectures about the replica-exchange Wang-Landau (REWL) method given at the IX Brazilian Meeting on Simulational Physics (BMSP 2017). It provides a practical guide for the implementation of the method. A complete example code for a model system is available online. In this paper, we discuss the main parallel features of this code after a brief introduction to the REWL algorithm. The tutorial section is mainly directed at users who have written a single-walker Wang–Landau program already but might have just taken their first steps in parallel programming using the Message Passing Interface (MPI). In the last section, we answer “frequently asked questions” from users about the implementation of REWL for different scientific problems.
Physical mapping of complex genomes
Evans, G.A.
1993-06-15
A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.
Replica Resummation of the Baker-Campbell-Hausdorff Series
NASA Astrophysics Data System (ADS)
Vajna, Szabolcs; Klobas, Katja; Prosen, Tomaž; Polkovnikov, Anatoli
2018-05-01
We developed a novel perturbative expansion based on the replica trick for the Floquet Hamiltonian governing the dynamics of periodically kicked systems where the kick strength is the small parameter. The expansion is formally equivalent to an infinite resummation of the Baker-Campbell-Hausdorff series in the undriven (nonperturbed) Hamiltonian, while considering terms up to a finite order in the kick strength. As an application of the replica expansion, we analyze an Ising spin 1 /2 chain periodically kicked with a magnetic field with a strength h , which has both longitudinal and transverse components. We demonstrate that even away from the regime of high frequency driving, if there is heating, its rate is nonperturbative in the kick strength, bounded from above by a stretched exponential: e-const h-1 /2 . This guarantees the existence of a very long prethermal regime, where the dynamics is governed by the Floquet Hamiltonian obtained from the replica expansion.
Toward mass producible ordered bulk heterojunction organic photovoltaic devices.
Kim, Taeyong; Yoon, Hyunsik; Song, Hyung-Jun; Haberkorn, Niko; Cho, Younghyun; Sung, Seung Hyun; Lee, Chang Hee; Char, Kookheon; Theato, Patrick
2012-12-13
A strategy to fabricate nanostructured poly(3-hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low-pressure and low- temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS-coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well-ordered anodic aluminum oxide (AAO) as a template. Also, we provide a method to fabricate reversed nanostructures by exploiting the self-replication of replica molds. The concept of the transfer method in low temperature with a flexible and reusable replica mold obtained from an AAO template will be a firm foundation for a low-cost fabrication process of ordered OPVs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices
NASA Astrophysics Data System (ADS)
de Dominicis, C.; Carlucci, D. M.; Temesvári, T.
1997-01-01
The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.
Replica Exchange with Solute Tempering: Efficiency in Large Scale Systems
Huang, Xuhui; Hagen, Morten; Kim, Byungchan; Friesner, Richard A.; Zhou, Ruhong; Berne, B. J.
2009-01-01
We apply the recently developed replica exchange with solute tempering (REST) to three large solvated peptide systems: an α-helix, a β-hairpin, and a TrpCage, with these peptides defined as the “central group”. We find that our original implementation of REST is not always more efficient than the replica exchange method (REM). Specifically, we find that exchanges between folded (F) and unfolded (U) conformations with vastly different structural energies are greatly reduced by the nonappearance of the water self-interaction energy in the replica exchange acceptance probabilities. REST, however, is expected to remain useful for a large class of systems for which the energy gap between the two states is not large, such as weakly bound protein–ligand complexes. Alternatively, a shell of water molecules can be incorporated into the central group, as discussed in the original paper. PMID:17439169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn
2015-03-28
The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much lessmore » computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.« less
The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra
Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca
2015-01-01
The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194
Thermodynamics of coupled protein adsorption and stability using hybrid Monte Carlo simulations.
Zhong, Ellen D; Shirts, Michael R
2014-05-06
A better understanding of changes in protein stability upon adsorption can improve the design of protein separation processes. In this study, we examine the coupling of the folding and the adsorption of a model protein, the B1 domain of streptococcal protein G, as a function of surface attraction using a hybrid Monte Carlo (HMC) approach with temperature replica exchange and umbrella sampling. In our HMC implementation, we are able to use a molecular dynamics (MD) time step that is an order of magnitude larger than in a traditional MD simulation protocol and observe a factor of 2 enhancement in the folding and unfolding rate. To demonstrate the convergence of our systems, we measure the travel of our order parameter the fraction of native contacts between folded and unfolded states throughout the length of our simulations. Thermodynamic quantities are extracted with minimum statistical variance using multistate reweighting between simulations at different temperatures and harmonic distance restraints from the surface. The resultant free energies, enthalpies, and entropies of the coupled unfolding and absorption processes are in qualitative agreement with previous experimental and computational observations, including entropic stabilization of the adsorbed, folded state relative to the bulk on surfaces with low attraction.
Itoh, Satoru G; Okumura, Hisashi
2013-03-30
We propose a new type of the Hamiltonian replica-exchange method (REM) for molecular dynamics (MD) and Monte Carlo simulations, which we refer to as the Coulomb REM (CREM). In this method, electrostatic charge parameters in the Coulomb interactions are exchanged among replicas while temperatures are exchanged in the usual REM. By varying the atom charges, the CREM overcomes free-energy barriers and realizes more efficient sampling in the conformational space than the REM. Furthermore, this method requires only a smaller number of replicas because only the atom charges of solute molecules are used as exchanged parameters. We performed Coulomb replica-exchange MD simulations of an alanine dipeptide in explicit water solvent and compared the results with those of the conventional canonical, replica exchange, and van der Waals REMs. Two force fields of AMBER parm99 and AMBER parm99SB were used. As a result, the CREM sampled all local-minimum free-energy states more frequently than the other methods for both force fields. Moreover, the Coulomb, van der Waals, and usual REMs were applied to a fragment of an amyloid-β peptide (Aβ) in explicit water solvent to compare the sampling efficiency of these methods for a larger system. The CREM sampled structures of the Aβ fragment more efficiently than the other methods. We obtained β-helix, α-helix, 3(10)-helix, β-hairpin, and β-sheet structures as stable structures and deduced pathways of conformational transitions among these structures from a free-energy landscape. Copyright © 2012 Wiley Periodicals, Inc.
Skin microrelief as a diagnostic tool (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tchvialeva, Lioudmila; Phillips, Jamie; Zeng, Haishan; McLean, David; Lui, Harvey; Lee, Tim K.
2017-02-01
Skin surface roughness is an important property for differentiating skin diseases. Recently, roughness has also been identified as a potential diagnostic indicator in the early detection of skin cancer. Objective quantification is usually carried out by creating silicone replicas of the skin and then measuring the replicas. We have developed an alternative in-vivo technique to measure skin roughness based on laser speckle. Laser speckle is the interference pattern produced when coherent light is used to illuminate a rough surface and the backscattered light is imaged. Acquiring speckle contrast measurements from skin phantoms with controllable roughness, we created a calibration curve by linearly interpolating between measured points. This calibration curve accounts for internal scattering and is designed to evaluate skin microrelief whose root-mean-square roughness is in the range of 10-60 micrometers. To validate the effectiveness of our technique, we conducted a study to measure 243 skin lesions including actinic keratosis (8), basal cell carcinoma (24), malignant melanoma (31), nevus (73), squamous cell carcinoma (19), and seborrheic keratosis (79). The average roughness values ranged from 26 to 57 micrometers. Malignant melanoma was ranked as the smoothest and squamous cell carcinoma as the roughest lesion. An ANOVA test confirmed that malignant melanoma has significantly smaller roughness than other lesion types. Our results suggest that skin microrelief can be used to detect malignant melanoma from other skin conditions.
Sepulveda, Danna; Varela, Andres; Del Portillo, Patricia
2017-01-01
Bioelectrochemical sensing of Mycobacterium tuberculosis through electro-immunosensors is a promising technique to detect relevant analytes. In general, immunosensors require the formation of organic assemblies by the adsorption of molecular constituents. Moreover, they depend on the correct immobilization of the bio-recognition element in the biosensor. These procedures cannot be easily monitored without the use of invasive methods. In this work, an impedance analysis technique was used, as a non-invasive method, to measure and differentiate the manufacturing stages of the sensors. Biomicrosystems were fabricated through physical vapor deposition (PVD) of 80 nm Au nanolayers on 35 µm copper surfaces. Later, the surface was modified through thiolation methods generating a self-assembled-monolayer (SAM) with 20 mM 4-aminothiophenol (4-ATP) on which a polyclonal antibody (pAb) was covalently attached. Using impedance analysis, every step of the electro-immunosensor fabrication protocol was characterized using 40 independent replicas. Results showed that, compared to the negative controls, distilled water, and 0.5 µg/mL HSA, a maximum variation of 171% between each replica was achieved when compared to samples containing 0.5 µg/mL of ESAT-6 M. tuberculosis immunodominant protein. Therefore, this development validates a non-invasive method to electrically monitor the assembly process of electro-immunosensors and a tool for its further measure for detection of relevant antigens. PMID:28937645
Batesian mimicry promotes pre- and postmating isolation in a snake mimicry complex.
Pfennig, David W; Akcali, Christopher K; Kikuchi, David W
2015-04-01
We evaluated whether Batesian mimicry promotes early-stage reproductive isolation. Many Batesian mimics occur not only in sympatry with their model (as expected), but also in allopatry. As a consequence of local adaptation within both sympatry (where mimetic traits are favored) and allopatry (where nonmimetic traits are favored), divergent, predator-mediated natural selection should disfavor immigrants between these selective environments as well as any between-environment hybrids. This selection might form the basis for both pre- and postmating isolation, respectively. We tested for such selection in a snake mimicry complex by placing clay replicas of sympatric, allopatric, or hybrid phenotypes in both sympatry and allopatry and measuring predation attempts. As predicted, replicas with immigrant phenotypes were disfavored in both selective environments. Replicas with hybrid phenotypes were also disfavored, but only in a region of sympatry where previous studies have detected strong selection favoring precise mimicry. By fostering immigrant inviability and ecologically dependent selection against hybrids (at least in some habitats), Batesian mimicry might therefore promote reproductive isolation. Thus, although Batesian mimicry has long been viewed as a mechanism for convergent evolution, it might play an underappreciated role in fueling divergent evolution and possibly even the evolution of reproductive isolation and speciation. © 2015 The Author(s).
Gamma-ray dosimetry measurements of the Little Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plassmann, E.A.; Pederson, R.A.
1984-01-01
We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.
High efficiency replicated x-ray optics and fabrication method
Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.
2001-01-01
Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.
Cretaceous Footprints Found on Goddard Campus
2017-12-08
Michael Godfrey (left) and Perry Carsley (center) are coating the dinosaur footprints with a silicone rubber molding compound. A mold was made of the prints so that in addition to preserving the original rocky surface, cast replicas of the surface could also be made. Photo taken January 5, 2013. Image courtesy Stephen Godfrey NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Wei, Dongshan; Wang, Feng
2010-08-28
The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.
NASA Astrophysics Data System (ADS)
Wei, Dongshan; Wang, Feng
2010-08-01
The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.
2015-01-01
We present a new computational approach for constant pH simulations in explicit solvent based on the combination of the enveloping distribution sampling (EDS) and Hamiltonian replica exchange (HREX) methods. Unlike constant pH methods based on variable and continuous charge models, our method is based on discrete protonation states. EDS generates a hybrid Hamiltonian of different protonation states. A smoothness parameter s is used to control the heights of energy barriers of the hybrid-state energy landscape. A small s value facilitates state transitions by lowering energy barriers. Replica exchange between EDS potentials with different s values allows us to readily obtain a thermodynamically accurate ensemble of multiple protonation states with frequent state transitions. The analysis is performed with an ensemble obtained from an EDS Hamiltonian without smoothing, s = ∞, which strictly follows the minimum energy surface of the end states. The accuracy and efficiency of this method is tested on aspartic acid, lysine, and glutamic acid, which have two protonation states, a histidine with three states, a four-residue peptide with four states, and snake cardiotoxin with eight states. The pKa values estimated with the EDS-HREX method agree well with the experimental pKa values. The mean absolute errors of small benchmark systems range from 0.03 to 0.17 pKa units, and those of three titratable groups of snake cardiotoxin range from 0.2 to 1.6 pKa units. This study demonstrates that EDS-HREX is a potent theoretical framework, which gives the correct description of multiple protonation states and good calculated pKa values. PMID:25061443
Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B
2014-04-01
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Replica analysis of overfitting in regression models for time-to-event data
NASA Astrophysics Data System (ADS)
Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.
2017-09-01
Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.
Morpho peleides butterfly wing imprints as structural colour stamp.
Zobl, Sigrid; Salvenmoser, Willi; Schwerte, Thorsten; Gebeshuber, Ille C; Schreiner, Manfred
2016-02-02
This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain a large positive replica using negative imprints via Polyvinylsiloxane. The developed method is low-tech and high-yield and is thus substantially easier and less expensive than previous methods. The microstructures were investigated with light microscopy, the nanostructures with both scanning and transmission electron microscopy, and the reflections with UV visible spectrometry. The influence of the release agent and the quality of the master stamp were determined by comparing measurements of the cover-scale sizes and their chromaticity values obtained by their images and with their positive imprints. The master stamp provided multiple positive replicas up to 3 cm(2) in just 1 h with structural coloration effects visible to the naked eye. Thus, the developed method proves the accuracy of the replicated nanostructure and its potential industrial application as a color-producing nanostamp.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2012-01-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2011-12-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
Rash, John E; Kamasawa, Naomi; Davidson, Kimberly G V; Yasumura, Thomas; Pereda, Alberto E; Nagy, James I
2012-06-01
Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.
Method to improve passive fit of frameworks on implant-supported prostheses: An in vitro study.
Manzella, Carlo; Bignardi, Cristina; Burello, Valerio; Carossa, Stefano; Schierano, Gianmario
2016-07-01
The passivity of the superstructure to the abutments of implant-supported prostheses is necessary for implant-prosthesis success. Improvements are needed in the methods of verifying passivity. The purpose of this in vitro study was to evaluate an inexpensive, easy to make, and user-friendly device to verify the position of the implant abutment replicas of the definitive cast and to avoid framework misfit before fabrication. Eighty stone devices were constructed on a metal base for the in vitro tests. The horizontal, vertical, and angled positions of the implant replicas were created to simulate misfits. The devices were fitted on the abutment replicas, and their ability to identify misfits was evaluated. A statistical analysis was not indicated, because the probability of fracture of the stone devices was 0 or 1. Two mathematical models were built using computer-aided design software (SolidWorks Premium; Dassault Systèmes SolidWorks Corp), and the finite element method was used (Ansys; ANSYS Inc) to simulate the structural behavior of 2 implant configurations (4 and 6 implants). Horizontal misfits of 150 μm, vertical misfits of 50 μm, and angled misfits of 1 degree were detected during the in vitro tests. Different loads and bone quality in the mathematical models did not change stress in the prosthesis configurations on 4 or 6 implants in a relevant way. The fabricated device was easily able to detect the misfits in accordance with the defined parameters. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Liao, Chenyi; Zhou, Jian
2014-06-05
The adsorption of basic fibroblast growth factor (bFGF) on the hydroxyapatite (001) surface was investigated by a combination of replica-exchange molecular dynamics (REMD) and conventional molecular dynamics (CMD) methods. In CMD, the protein cannot readily cross the surface water layer, whereas in REMD, the protein can cross the adsorption barrier from the surface water layer and go through weak, medium, then strong adsorption states with three energetically preferred configurations: heparin-binding-up (HP-up), heparin-binding-middle (HP-middle), and heparin-binding-down (HP-down). The HP-middle orientation, with the strongest adsorption energy (-1149 ± 40 kJ·mol(-1)), has the largest adsorption population (52.1-52.6%) and exhibits the largest conformational charge (RMSD of 0.26 ± 0.01 nm) among the three orientations. The HP-down and HP-up orientations, with smaller adsorption energies of -1022 ± 55 and -894 ± 70 kJ·mol(-1), respectively, have smaller adsorption populations of 27.4-27.7% and 19.7-20.5% and present smaller RMSD values of 0.21 ± 0.01 and 0.19 ± 0.01 nm, respectively. The convergent distribution indicates that nearly half of the population (in the HP-middle orientation) will support both FGF/FGFR and DGR-integrin signaling and another half (in the HP-up and HP-down orientations) will support DGR-integrin signaling. The major population (~80%) has the protein dipole directed outward. In the strong adsorption state, there are usually 2 to 3 basic residues that form the anchoring interactions of 210-332 kJ·mol(-1) per residue or that are accompanied by an acidic residue with an adsorption energy of ~207 kJ·mol(-1). Together, the major bound residues form a triangle or a quadrilateral on the surface and stabilize the adsorption geometrically, which indicates topologic matching between the protein and HAP surfaces.
Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina
2017-06-13
Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.
Challenging the Context: Perception, Polity, and Power.
ERIC Educational Resources Information Center
Hartfield, Ronne
1994-01-01
"Contextual areas" employ models, replicas, artwork, art materials, tools, interpretive panels, and interactive computer installations to help visitors explore the historical and cultural context of 6 of 12 works of art at the "Art Inside Out" exhibition in the Kraft General Foods Education Center of the Art Institute of Chicago. (MDH)
NASA Technical Reports Server (NTRS)
Spangler, R. H.
1973-01-01
Tests were conducted in unitary plan wind tunnels on an 0.030-scale replica of the space shuttle vehicle configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and tests on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from minus 8 deg to plus 8 deg. The isolated orbiter was tested at angles of attack from minus 15 deg to plus 40 deg and angles of sideslip from minus 10 deg to plus 10 deg are dictated by trajectory considerations. The effects of orbiter/external tank incidence and deflected control surfaces on aerodynamic loads were also investigated.
NASA Technical Reports Server (NTRS)
Spangler, R. H.
1973-01-01
Tests were conducted in wind tunnels during April and May 1973, on an 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 deg. The isolated orbiter was tested at angles of attack from -15 deg to +40 deg and angles of sideslip from -10 deg to +10 deg as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated.
Takeda, Takako; Kumar, Rashmi; Raman, E. Prabhu; Klimov, Dmitri K.
2010-01-01
Using implicit solvent model and replica exchange molecular dynamics we examine the propensity of non-steroidal anti-inflammatory drug, naproxen, to interfere with Aβ fibril growth. We also compare the anti-aggregation propensity of naproxen with that of ibuprofen. Naproxen anti-aggregation effect is influenced by two factors. Similar to ibuprofen, naproxen destabilizes binding of incoming Aβ peptides to the fibril due to direct competition between the ligands and the peptides for the same binding location on the fibril surface (the edge). However, in contrast to ibuprofen naproxen binding also alters the conformational ensemble of Aβ monomers by promoting β-structure. The second factor weakens naproxen anti-aggregation effect. These findings appear to explain the experimental observations, according to which naproxen binds to Aβ fibril with higher affinity than ibuprofen, yet produces weaker anti-aggregation action. PMID:20979356
Czechoslovak Replica X-Ray Mirrors for Astronomical Applications
NASA Astrophysics Data System (ADS)
Hudec, R.; Valnicek, B.
Imaging X-ray mirrors has been developed in Czechoslovakia since 1970 by a way of two different replica technologies based on galvanoplastics and reactoplastics as a natural part of Czechoslovak X-ray astronomy program. Until now about 30 mirros with diameters between 1.7 and 24 cm were manufactured. Seven mirrors were flown in space experiments. The new technology used since 1981 allows to produce light-weight X-ray mirrors at relatively very low cost. The technology offers interesting possibilities in construction of (1) large arrays of identical optical systems, (2) very small (microscopic) mirros and (3) lobster-eye type optics. Advantages and drawbacks of replica techology are discussed.
Optimal temperature ladders in replica exchange simulations
NASA Astrophysics Data System (ADS)
Denschlag, Robert; Lingenheil, Martin; Tavan, Paul
2009-04-01
In replica exchange simulations, a temperature ladder with N rungs spans a given temperature interval. Considering systems with heat capacities independent of the temperature, here we address the question of how large N should be chosen for an optimally fast diffusion of the replicas through the temperature space. Using a simple example we show that choosing average acceptance probabilities of about 45% and computing N accordingly maximizes the round trip rates r across the given temperature range. This result differs from previous analyses which suggested smaller average acceptance probabilities of about 23%. We show that the latter choice maximizes the ratio r/N instead of r.
Passive acoustic source localization using sources of opportunity.
Verlinden, Christopher M A; Sarkar, J; Hodgkiss, W S; Kuperman, W A; Sabra, K G
2015-07-01
The feasibility of using data derived replicas from ships of opportunity for implementing matched field processing is demonstrated. The Automatic Identification System (AIS) is used to provide the library coordinates for the replica library and a correlation based processing procedure is used to overcome the impediment that the replica library is constructed from sources with different spectra and will further be used to locate another source with its own unique spectral structure. The method is illustrated with simulation and then verified using acoustic data from a 2009 experiment for which AIS information was retrieved from the United States Coast Guard Navigation Center Nationwide AIS database.
Belvedere, Claudio; Siegler, Sorin; Ensini, Andrea; Toy, Jason; Caravaggi, Paolo; Namani, Ramya; Giannini, Giulia; Durante, Stefano; Leardini, Alberto
2017-02-28
The mechanical characteristics of the ankle such as its kinematics and load transfer properties are influenced by the geometry of the articulating surfaces. A recent, image-based study found that these surfaces can be approximated by a saddle-shaped, skewed, truncated cone with its apex oriented laterally. The goal of this study was to establish a reliable experimental technique to study the relationship between the geometry of the articular surfaces of the ankle and its mobility and stability characteristics and to use this technique to determine if morphological approximations of the ankle surfaces based on recent discoveries, produce close to normal behavior. The study was performed on ten cadavers. For each specimen, a process based on medical imaging, modeling and 3D printing was used to produce two subject specific artificial implantable sets of the ankle surfaces. One set was a replica of the natural surfaces. The second approximated the ankle surfaces as an original saddle-shaped truncated cone with apex oriented laterally. Testing under cyclic loading conditions was then performed on each specimen following a previously established technique to determine its mobility and stability characteristics under three different conditions: natural surfaces; artificial surfaces replicating the natural surface morphology; and artificial approximation based on the saddle-shaped truncated cone concept. A repeated measure analysis of variance was then used to compare between the three conditions. The results show that (1): the artificial surfaces replicating natural morphology produce close to natural mobility and stability behavior thus establishing the reliability of the technique; and (2): the approximated surfaces based on saddle-shaped truncated cone concept produce mobility and stability behavior close to the ankle with natural surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systematic expansion in the order parameter for replica theory of the dynamical glass transition.
Jacquin, Hugo; Zamponi, Francesco
2013-03-28
It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.
Freville, Laurence; Moulut, Jean-Claude; Grzebyk, Michel; Kauffer, Edmond
2010-08-01
This article describes two atmosphere generation systems used for the production of replicas. The first, the Sputnic system, is based on the Sputnic air sampler developed by the National Institute of Occupational Health in Oslo (Norway). It is used to generate asbestos fibres or silica particles and allows the simultaneous production, by means of sampling on filters, of up to 114 replicas. The second is a multipurpose system that allows dust sampling on foams used with the CIP 10-R device. Twenty samples can be taken simultaneously. In total, 120 series of samples allowed characterization of the variability of the two generation systems used for the production of replicas loaded with asbestos fibres or silica dust. The coefficients of variation characterizing the dispersion of the filter loading in the Sputnic system are <10% for high densities asbestos fibre or silica dust samples. The coefficient of dispersion is on average higher when the asbestos fibre density is lower. The differences observed between the measurements taken on the different crowns of the Sputnic system are low and <2%. The results obtained with the multipurpose system show that replica dispersion is on average equal to 4%, which will allow proposal in the near future of a proficiency test dedicated to the quantitative analysis of crystalline silica on foams sampled with the CIP 10-R device.
Multiscale implementation of infinite-swap replica exchange molecular dynamics.
Yu, Tang-Qing; Lu, Jianfeng; Abrams, Cameron F; Vanden-Eijnden, Eric
2016-10-18
Replica exchange molecular dynamics (REMD) is a popular method to accelerate conformational sampling of complex molecular systems. The idea is to run several replicas of the system in parallel at different temperatures that are swapped periodically. These swaps are typically attempted every few MD steps and accepted or rejected according to a Metropolis-Hastings criterion. This guarantees that the joint distribution of the composite system of replicas is the normalized sum of the symmetrized product of the canonical distributions of these replicas at the different temperatures. Here we propose a different implementation of REMD in which (i) the swaps obey a continuous-time Markov jump process implemented via Gillespie's stochastic simulation algorithm (SSA), which also samples exactly the aforementioned joint distribution and has the advantage of being rejection free, and (ii) this REMD-SSA is combined with the heterogeneous multiscale method to accelerate the rate of the swaps and reach the so-called infinite-swap limit that is known to optimize sampling efficiency. The method is easy to implement and can be trivially parallelized. Here we illustrate its accuracy and efficiency on the examples of alanine dipeptide in vacuum and C-terminal β-hairpin of protein G in explicit solvent. In this latter example, our results indicate that the landscape of the protein is a triple funnel with two folded structures and one misfolded structure that are stabilized by H-bonds.
Dethlefs, Christopher R.; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W. M.
2017-01-01
Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings. PMID:28518066
Czaplewski, Cezary; Karczynska, Agnieszka; Sieradzan, Adam K; Liwo, Adam
2018-04-30
A server implementation of the UNRES package (http://www.unres.pl) for coarse-grained simulations of protein structures with the physics-based UNRES model, coined a name UNRES server, is presented. In contrast to most of the protein coarse-grained models, owing to its physics-based origin, the UNRES force field can be used in simulations, including those aimed at protein-structure prediction, without ancillary information from structural databases; however, the implementation includes the possibility of using restraints. Local energy minimization, canonical molecular dynamics simulations, replica exchange and multiplexed replica exchange molecular dynamics simulations can be run with the current UNRES server; the latter are suitable for protein-structure prediction. The user-supplied input includes protein sequence and, optionally, restraints from secondary-structure prediction or small x-ray scattering data, and simulation type and parameters which are selected or typed in. Oligomeric proteins, as well as those containing D-amino-acid residues and disulfide links can be treated. The output is displayed graphically (minimized structures, trajectories, final models, analysis of trajectory/ensembles); however, all output files can be downloaded by the user. The UNRES server can be freely accessed at http://unres-server.chem.ug.edu.pl.
77 FR 12240 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... Institute, 5353 Parkside Dr MC 19-RE, Jupiter, FL 33458. Instrument: Freeze Fracture/Freeze Etch device... localization of membrane proteins using freeze fracture replica immuno- gold labeling, including all kinds of receptors and channels. Because freeze-fracture replica immuno-gold labeling has a high sensitivity for the...
Replica of the Presidential Medal of Freedom Award
1970-04-18
S70-35562 (April 1970) --- A photographic replica of the Presidential Medal of Freedom Award which President Richard M. Nixon presented to the Apollo 13 Missions Operations Team (MOT). The presentation was made by the Chief Executive during a visit to the Manned Spacecraft Center (MSC) in April 1970.
Impact of Data Placement on Resilience in Large-Scale Object Storage Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carns, Philip; Harms, Kevin; Jenkins, John
Distributed object storage architectures have become the de facto standard for high-performance storage in big data, cloud, and HPC computing. Object storage deployments using commodity hardware to reduce costs often employ object replication as a method to achieve data resilience. Repairing object replicas after failure is a daunting task for systems with thousands of servers and billions of objects, however, and it is increasingly difficult to evaluate such scenarios at scale on realworld systems. Resilience and availability are both compromised if objects are not repaired in a timely manner. In this work we leverage a high-fidelity discrete-event simulation model tomore » investigate replica reconstruction on large-scale object storage systems with thousands of servers, billions of objects, and petabytes of data. We evaluate the behavior of CRUSH, a well-known object placement algorithm, and identify configuration scenarios in which aggregate rebuild performance is constrained by object placement policies. After determining the root cause of this bottleneck, we then propose enhancements to CRUSH and the usage policies atop it to enable scalable replica reconstruction. We use these methods to demonstrate a simulated aggregate rebuild rate of 410 GiB/s (within 5% of projected ideal linear scaling) on a 1,024-node commodity storage system. We also uncover an unexpected phenomenon in rebuild performance based on the characteristics of the data stored on the system.« less
NASA Astrophysics Data System (ADS)
Garcia, G. J. M.; Mitchell, G.; Bailie, N.; Thornhill, D.; Watterson, J.; Kimbell, J. S.
2007-10-01
The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.
Precision of Fit of Titanium and Cast Implant Frameworks Using a New Matching Formula
Sierraalta, Marianella; Vivas, Jose L.; Razzoog, Michael E.; Wang, Rui-Feng
2012-01-01
Statement of the Problem. Fit of prosthodontic frameworks is linked to the lifetime survival of dental implants and maintenance of surrounding bone. Purpose. The purpose of this study was to evaluate and compare the precision of fit of milled one-piece Titanium fixed complete denture frameworks to that of conventional cast frameworks. Material and Methods. Fifteen casts fabricated from a single edentulous CAD/CAM surgical guide were separated in two groups and resin patterns simulating the framework for a fixed complete denture developed. Five casts were sent to dental laboratories to invest, cast in a Palladium-Gold alloy and fit the framework. Ten casts had the resin pattern scanned for fabrication of milled bars in Titanium. Using measuring software, positions of implant replicas in the definitive model were recorded. The three dimensional spatial orientation of each implant replica was matched to the implant replica. Results. Results demonstrated the mean vertical gap of the Cast framework was 0.021 (+0.004) mm and 0.012 (0.002) mm determined by fixed and unfixed best-fit matching coordinate system. For Titanium frameworks they were 0.0037 (+0.0028) mm and 0.0024 (+0.0005) mm, respectively. Conclusions. Milled one-piece Titanium fixed complete denture frameworks provided a more accurate precision of fit then traditional cast frameworks. PMID:22550486
NASA Astrophysics Data System (ADS)
Jolivet, S.; Mezghani, S.; El Mansori, M.
2016-09-01
The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.
Kroh, M; Hendriks, H; Kirby, E G; Sassen, M M
1976-08-01
Development of haploid meiospores of Allomyces arbuscula into germling cells with rhizoids and hyphae was followed during incubation in complete growth medium. The surface structure of encysted meiospores, rhizoids and hyphae before and after extraction of amorphous materials with ethanolic KOH was studied by means of carbon-platinum replicas. After 2--3 min incubation in complete medium 10% of the meiospores were surrounded by a cell wall containing microfibrils embedded in a matrix. Structure of cell walls of encysted meiospores, rhizoids, and hyphae differ from one another by the location of amorphous materials and by the arrangement of chitin microfibrils.
NASA Astrophysics Data System (ADS)
Kluber, Alexander; Hayre, Robert; Cox, Daniel
2012-02-01
Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.
Replica analysis for the duality of the portfolio optimization problem
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Gagatsos, Christos N.; Karanikas, Alexandros I.; Kordas, Georgios; Cerf, Nicolas J.
2016-02-01
In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.
Replica analysis for the duality of the portfolio optimization problem.
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
Development of a gastrointestinal tract microscale cell culture analog to predict drug transport
USDA-ARS?s Scientific Manuscript database
Microscale cell culture analogs (uCCAs) are used to study the metabolism and toxicity of a chemical or drug. These in vitro devices are physical replicas of physiologically based pharmacokinetic models that combine microfabrication and cell culture. The goal of this project is to add an independent ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creutz, Michael
Using the Sigma model to explore the lowest order pseudo-scalar spectrum with SU(3) breaking, this talk considers an additional exact "taste" symmetry to mimic species doubling. Rooting replicas of a valid approach such as Wilson fermions reproduces the desired physical spectrum. In contrast, extra symmetries of the rooted staggered approach leave spurious states and a flavor dependent taste multiplicity.
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.
Olson, Mark A; Lee, Michael S
2014-01-01
A central problem of computational structural biology is the refinement of modeled protein structures taken from either comparative modeling or knowledge-based methods. Simulations are commonly used to achieve higher resolution of the structures at the all-atom level, yet methodologies that consistently yield accurate results remain elusive. In this work, we provide an assessment of an adaptive temperature-based replica exchange simulation method where the temperature clients dynamically walk in temperature space to enrich their population and exchanges near steep energetic barriers. This approach is compared to earlier work of applying the conventional method of static temperature clients to refine a dataset of conformational decoys. Our results show that, while an adaptive method has many theoretical advantages over a static distribution of client temperatures, only limited improvement was gained from this strategy in excursions of the downhill refinement regime leading to an increase in the fraction of native contacts. To illustrate the sampling differences between the two simulation methods, energy landscapes are presented along with their temperature client profiles.
NASA Technical Reports Server (NTRS)
Harrell, Shelley; Zaretsky, Erwin V.
1961-01-01
The crystals of Pyroceram are randomly oriented and highly reflective so that standard microscopy techniques are not satisfactory for studying this material. Standard replicating procedures proved difficult to use. New microscopy techniques and procedures have therefore been developed. A method for locating, orienting, and identifying specific areas to be viewed with an electron microscope is described. This method not require any special equipment. Plastic replicas were found to be unsatisfactory because of their tendency to adhere to Pryoceram. This caused them to tear when released or resulted in artifacts. Preshadowed silicon monoxide replicas were satisfactory but required a releasing agent. A method of depositing the releasing agent is described. To polish specimens without evidence of fire-polishing, it was found necessary to use a vibratory polishing technique. Chrome oxide was used as the abrasive and either water or kerosene as the lubricant. Vibratory polishing is extremely slow, but surfaces so polished show no evidence of fire polishing, even when examined by electron microscopy. The most satisfactory etching process used for Pyroceram 9608 consisted of a primary etch of 5 milliliters of hydrochloric acid (concentrated), 5 milliliters of hydrogen fluoride (45 percent), and 45 milliliters of water, and a secondary etch with methyl alcohol replacing the water. Best results were obtained with total etching times from 25 to 30 seconds. Staining of the Pyroceram surface with a Sanford's marker was found to be an expedient way to reduce the glare of reflected light.
Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lunan
2016-01-01
This dissertation consists of three parts. First, we study magnetic domains in Nd 2Fe 14B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√more » 3 6√ 3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe 2 by ARPES and experimentally con rmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identi ed Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.« less
NASA Astrophysics Data System (ADS)
Masi, G.; Chiavari, C.; Avila, J.; Esvan, J.; Raffo, S.; Bignozzi, M. C.; Asensio, M. C.; Robbiola, L.; Martini, C.
2016-03-01
Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au-Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of chemical imaging using HR-SRPES to study artworks have been investigated on representative replicas.
Bio-recognition and functional lipidomics by glycosphingolipid transfer technology
TAKI, Takao
2013-01-01
Through glycosphingolipid biochemical research, we developed two types of transcription technologies. One is a biochemical transfer of glycosphingolipids to peptides. The other is a physicochemical transfer of glycosphingolipids in silica gel to the surface of a plastic membrane. Using the first technology, we could prepare peptides which mimic the shapes of glycosphingolipid molecules by biopanning with a phage-displayed peptide library and anti-glycosphingolipid antibodies as templates. The peptides thus obtained showed biological properties and functions similar to those of the original glycosphingolipids, such as lectin binding, glycosidase modulation, inhibition of tumor metastasis and immune response against the original antigen glycosphingolipid, and we named them glyco-replica peptides. The results showed that the newly prepared peptides could be used effectively as a bio-recognition system and suggest that the glyco-replica peptides can be widely applied to therapeutic fields. Using the second technology, we could establish a functional lipidomics with a thin-layer chromatography-blot/matrix-assisted laser desorption ionization-time of flight mass spectrometry (TLC-Blot/MALDI-TOF MS) system. By transferring glycosphingolipids on a plastic membrane surface from a TLC plate, innovative biochemical approaches such as simple purification of individual glycosphingolipids, binding studies, and enzyme reactions could be developed. The combinations of these biochemical approaches and MALDI-TOF MS on the plastic membrane could provide new strategies for glycosphingolipid science and the field of lipidomics. In this review, typical applications of these two transfer technologies are introduced. PMID:23883610
Maschio, Federico; Pandya, Mirali; Olszewski, Raphael
2016-03-22
The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.
Maschio, Federico; Pandya, Mirali; Olszewski, Raphael
2016-01-01
Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456
Replication Strategy for Spatiotemporal Data Based on Distributed Caching System
Xiong, Lian; Tao, Yang; Xu, Juan; Zhao, Lun
2018-01-01
The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay. PMID:29342897
Multi-resonant plasmonic nanodome arrays for label-free biosensing applications
NASA Astrophysics Data System (ADS)
Choi, Charles J.; Semancik, Steve
2013-08-01
The characteristics and utility of plasmonic nanodome arrays capable of supporting multiple resonance modes are described. A low-cost, large-area replica molding process is used to produce, on flexible plastic substrates, two-dimensional periodic arrays of cylinders that are subsequently coated with SiO2 and Ag thin films to form dome-shaped structures, with 14 nm spacing between the features, in a precise and reproducible fashion. Three distinct optical resonance modes, a grating diffraction mode and two localized surface plasmon resonance (LSPR) modes, are observed experimentally and confirmed by finite-difference-time-domain (FDTD) modeling which is used to calculate the electromagnetic field distribution of each resonance around the nanodome array structure. Each optical mode is characterized by measuring sensitivity to bulk refractive index changes and to surface effects, which are examined using stacked polyelectrolyte layers. The utility of the plasmonic nanodome array as a functional interface for biosensing applications is demonstrated by performing a bioassay to measure the binding affinity constant between protein A and human immunoglobulin G (IgG) as a model system. The nanoreplica molding process presented in this work allows for simple, inexpensive, high-throughput fabrication of nanoscale plasmonic structures over a large surface area (120 × 120 mm2) without the requirement for high resolution lithography or additional processes such as etching or liftoff. The availability of multiple resonant modes, each with different optical properties, allows the nanodome array surface to address a wide range of biosensing problems with various target analytes of different sizes and configurations.
Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad
2015-01-01
Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001). Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761
Vojdani, Mahroo; Torabi, Kianoosh; Atashkar, Berivan; Heidari, Hossein; Torabi Ardakani, Mahshid
2016-12-01
Marginal fitness is the most important criteria for evaluation of the clinical acceptability of a cast restoration. Marginal gap which is due to cement solubility and plaque retention is potentially detrimental to both tooth and periodontal tissues. This in vitro study aimed to evaluate the marginal and internal fit of cobalt- chromium (Co-Cr) copings fabricated by two different CAD/CAM systems: (CAD/ milling and CAD/ Ceramill Sintron). We prepared one machined standard stainless steel master model with following dimensions: 7 mm height, 5mm diameter, 90˚ shoulder marginal finish line with 1 mm width, 10˚ convergence angle and anti-rotational surface on the buccal aspect of the die. There were 10 copings produced from hard presintered Co-Cr blocks according to CAD/ Milling technique and ten copings from soft non- presintered Co-Cr blocks according to CAD/ Ceramill Sintron technique. Marginal and internal accuracies of copings were documented by the replica technique. Replicas were examined at ten reference points under a digital microscope (230X). The Student's t-test was used for statistical analysis. p < 0.001 was considered significant. Statistically significant differences existed between the groups ( p < 0.001). The CAD/milling group (hard copings) had a mean marginal discrepancy (MD) of 104 µm, axial discrepancy (AD) of 23 µm and occlusal discrepancy of 130 µm. For CAD/ Ceramill Sintron group, these values were 195 µm (MD), 46 µm (AD), and 232 µm (OD). Internal total discrepancy (ITD) for the CAD/milling group was 77 µm, whereas for the CAD/Ceramill Sintron group was 143 µm. Hard presintered Co-Cr copings had significantly higher marginal and internal accuracies compared to the soft non-presintered copings.
NASA STS-132 Air and Space Museum
2010-07-26
A replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis is seen, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. STS-132 astronaut Piers Sellers returned the replica during a ceremony at the museum. Photo Credit: (NASA/Paul E. Alers)
Skin microrelief profiles as a cutaneous aging index.
Kim, Dai Hyun; Rhyu, Yeon Seung; Ahn, Hyo Hyun; Hwang, Eenjun; Uhm, Chang Sub
2016-10-01
An objective measurement of cutaneous topographical information is important for quantifying the degree of skin aging. Our aim was to improve methods for measuring microrelief patterns using a three-dimensional analysis based on silicone replicas and scanning electron microscope (SEM). Another objective was to compare the results with those obtained using a two-dimensional analysis method based on dermoscopy. Silicone replicas were obtained from forearms, dorsum of the hands and fingers of 51 volunteers. Cutaneous profiles obtained by SEM with silicone replicas showed more consistent correlations with age than data obtained by dermoscopy. This indicates the advantage of three-dimensional topography analysis using silicone replicas and SEM over the widely used dermoscopic assessment. The cutaneous age was calculated using stepwise linear regression, and the result was 57.40-9.47 × (number of furrows on dorsum of the hand) × (width of furrows on dorsum of the hand). © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
How hot? Systematic convergence of the replica exchange method using multiple reservoirs.
Ruscio, Jory Z; Fawzi, Nicolas L; Head-Gordon, Teresa
2010-02-01
We have devised a systematic approach to converge a replica exchange molecular dynamics simulation by dividing the full temperature range into a series of higher temperature reservoirs and a finite number of lower temperature subreplicas. A defined highest temperature reservoir of equilibrium conformations is used to help converge a lower but still hot temperature subreplica, which in turn serves as the high-temperature reservoir for the next set of lower temperature subreplicas. The process is continued until an optimal temperature reservoir is reached to converge the simulation at the target temperature. This gradual convergence of subreplicas allows for better and faster convergence at the temperature of interest and all intermediate temperatures for thermodynamic analysis, as well as optimizing the use of multiple processors. We illustrate the overall effectiveness of our multiple reservoir replica exchange strategy by comparing sampling and computational efficiency with respect to replica exchange, as well as comparing methods when converging the structural ensemble of the disordered Abeta(21-30) peptide simulated with explicit water by comparing calculated Rotating Overhauser Effect Spectroscopy intensities to experimentally measured values. Copyright 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nagai, Tetsuro
2017-01-01
Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen,
Multidimensional generalized-ensemble algorithms for complex systems.
Mitsutake, Ayori; Okamoto, Yuko
2009-06-07
We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.
Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Edwards, P. R.
1988-01-01
An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzycki, Piotr P.; Rosso, Kevin M.
Replica Kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface non-uniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation do not necessarily need to bemore » invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic non-uniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.« less
Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong
2011-10-01
In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.
NASA Astrophysics Data System (ADS)
Schiavon, Nick; de Palmas, Anna; Bulla, Claudio; Piga, Giampaolo; Brunetti, Antonio
2016-09-01
A spectrometric protocol combining Energy Dispersive X-Ray Fluorescence Spectrometry with Monte Carlo simulations of experimental spectra using the XRMC code package has been applied for the first time to characterize the elemental composition of a series of famous Iron Age small scale archaeological bronze replicas of ships (known as the ;Navicelle;) from the Nuragic civilization in Sardinia, Italy. The proposed protocol is a useful, nondestructive and fast analytical tool for Cultural Heritage sample. In Monte Carlo simulations, each sample was modeled as a multilayered object composed by two or three layers depending on the sample: when all present, the three layers are the original bronze substrate, the surface corrosion patina and an outermost protective layer (Paraloid) applied during past restorations. Monte Carlo simulations were able to account for the presence of the patina/corrosion layer as well as the presence of the Paraloid protective layer. It also accounted for the roughness effect commonly found at the surface of corroded metal archaeological artifacts. In this respect, the Monte Carlo simulation approach adopted here was, to the best of our knowledge, unique and enabled to determine the bronze alloy composition together with the thickness of the surface layers without the need for previously removing the surface patinas, a process potentially threatening preservation of precious archaeological/artistic artifacts for future generations.
Roe, Daniel R; Bergonzo, Christina; Cheatham, Thomas E
2014-04-03
Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency.
Thermodynamic limitations on the resolution obtainable with metal replicas.
Woodward, J T; Zasadzinski, J A
1996-12-01
The major factor limiting resolution of metal-shadowed surfaces for electron and scanning tunnelling microscopy is the granularity of the metal film. This granularity had been believed to result from a recrystallization of the evaporated film, and hence could be limited by use of higher melting point materials for replication, or inhibited by adding carbon or other impurities to the film. However, evaporated and sputtered films of amorphous metal alloys that do not crystallize also show a granularity that decreases with increasing alloy melting point. A simple thermodynamic analysis shows that the granularity results from a dewetting of the typically low surface energy sample by the high surface energy metal film, similar to the beading up of drops of spilled mercury. The metal granularity and the resulting resolution of the metal-coated surface is proportional to the mobility of the metal on the surface after evaporation, which is related to the difference in temperature between the melting point of the metal and the sample surface temperature.
The influence of different nanostructured scaffolds on fibroblast growth
Chung, I-Cheng; Li, Ching-Wen; Wang, Gou-Jen
2013-01-01
Skin serves as a protective barrier, modulating body temperature and waste discharge. It is therefore desirable to be able to repair any damage that occurs to the skin as soon as possible. In this study, we demonstrate a relatively easy and cost-effective method for the fabrication of nanostructured scaffolds, to shorten the time taken for a wound to heal. Various scaffolds consisting of nanohemisphere arrays of poly(lactic-co-glycolic acid) (PLGA), polylactide and chitosan were fabricated by casting using a nickel (Ni) replica mold. The Ni replica mold is electroformed using the highly ordered nanohemisphere array of the barrier-layer surface of an anodic aluminum oxide membrane as the template. Mouse fibroblast cells (L929s) were cultured on the nanostructured polymer scaffolds to investigate the effect of these different nanohemisphere arrays on cell proliferation. The concentration of collagen type I on each scaffold was then measured through enzyme-linked immunosorbent assay to find the most effective scaffold for shortening the wound-healing process. The experimental data indicate that the proliferation of L929 is superior when a nanostructured PLGA scaffold with a feature size of 118 nm is utilized. PMID:27877586
Physical mapping of complex genomes
Evans, Glen A.
1993-01-01
Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.
NASA Technical Reports Server (NTRS)
1999-01-01
A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, and NASA Administrator Dan Goldin during the dedication ceremony.
1999-07-17
A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, and NASA Administrator Dan Goldin during the dedication ceremony.
Variability in Room Temperature Fatigue Life of Alpha+Beta Processed Ti-6Al-4V (Preprint)
2008-10-01
approaches proposed by Magnusen et al. [ 4 ], Chan et al. [5], Tryon et al. [ 6 ], Laz et al. [7], and Jha et al. [8-9]. Based on extensive...stresses at several depths into the surface of the gauge section of the specimens. Layer removal was accomplished by electropolishing a 2c a 6 ...replicas taken including 6 at 675 MPa and 1 at 635 MPa. The number of crack measurements per test ranged from 1 to 9, but 4 was the most common. The
Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using DIC
Bakhshaee, Hani; Young, Jonathan; Yang, Justin C. W.; Mongeau, Luc; Miri, Amir K.
2013-01-01
Summary Objective/Hypothesis The objective of the present study was to quantify the mechanical strain and stress in excised porcine larynges during self-oscillation using digital image correlation (DIC) method. The use of DIC in the excised larynx setup may yield accurate measurements of the vocal fold displacement field. Study Design Ex vivo animal larynx. Methods Measurements were performed using excised porcine larynges on a humidified flow bench, equipped with two high-speed cameras and a commercially available DIC software. Surface deformations were calculated from digital images recorded at 3000 frames per second during continuous self-oscillation for four excised porcine larynges. Larynx preparation consisted of removing the supraglottal wall and the false folds. DIC yielded the deformation field on the superior visible surface of the vocal folds. Measurement data for adducted and freely suspended vocal folds were also used to estimate the distribution of the initial prephonatory strain field. An isotropic constitutive law, the polymer eight-chain model, was used to estimate the surface distributions of planar stresses from the strain data. Results The Lagrangian normal strain values were between ~16% and ~29% along the anterior-posterior direction. The motion of material points on the vocal fold surface described an elliptical trajectory during oscillation. A phase difference was observed between the anterior-posterior and the medial-lateral component of the displacement. The strain data and eight-chain model yielded a maximum stress of ~4 kPa along the medial-lateral direction on the superior surface. Conclusion DIC allowed the strain field over the superior surface of an excised porcine larynx to be quantified during self-oscillation. The approach allowed the determination of the trajectory of specific points on the vocal fold surface. The results for the excised larynx were found to be significantly different than previous results obtained using synthetic replicas. The present study provides suggestions for future studies in human subjects. PMID:24070590
Percolation characteristics of solvent invasion in rough fractures under miscible conditions
NASA Astrophysics Data System (ADS)
Korfanta, M.; Babadagli, T.; Develi, K.
2017-10-01
Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.
ERIC Educational Resources Information Center
Saorin, José Luis; Carbonell-Carrera, Carlos; Cantero, Jorge de la Torre; Meier, Cecile; Aleman, Drago Diaz
2017-01-01
Spatial interpretation features as a skill to acquire in the educational curricula. The visualization and interpretation of three-dimensional objects in tactile devices and the possibility of digital manufacturing with 3D printers, offers an opportunity to include replicas of sculptures in teaching and, thus, facilitate the 3D interpretation of…
Sparks and Shocks: Replicas of Historical Instruments in Museum Education
ERIC Educational Resources Information Center
Rhees, David J.
2015-01-01
This paper discusses the variety of ways in which The Bakken Museum has made use of replicas or simulations of historical instruments and experiments and demonstrations in education programs and exhibits for school children, families with children, and other museum audiences. Early efforts were stimulated in the mid-1980s by a collaboration with…
A Recovery-Oriented Approach to Dependable Services: Repairing Past Errors with System-Wide Undo
2003-12-01
54 4.5.3 Handling propagating paradoxes: the squash interface . . . . . . . . . . . . . . . . . . . 54 4.6 Discussion...84 6.3.3 Compensating for paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.4 Squashing propagating...the service and comparing the behavior of the replicas to detect and squash misbehaving replicas. While on paper Byzantine fault tolerance may seem to
Pressure induced increase of the exciton phonon interaction in ZnO/(ZnMg)O quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarosz, D.; Suchocki, A.; Kozanecki, A.
2016-03-15
It is a well-established experimental fact that exciton-phonon coupling is very efficient in ZnO. The intensities of the phonon-replicas in ZnO/(ZnMg)O quantum structures strongly depend on the internal electric field. We performed high-pressure measurements on the single ZnO/(ZnMg)O quantum well. We observed a strong increase of the intensity of the phonon-replicas relative to the zero phonon line. In our opinion this effect is related to pressure induced increase of the strain in quantum structure. As a consequence, an increase of the piezoelectric component of the electric field is observed which leads to an increase of the intensity of the phonon-replicas.
Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering.
Gil-Ley, Alejandro; Bussi, Giovanni
2015-03-10
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide.
Replica Exchange Molecular Dynamics in the Age of Heterogeneous Architectures
NASA Astrophysics Data System (ADS)
Roitberg, Adrian
2014-03-01
The rise of GPU-based codes has allowed MD to reach timescales only dreamed of only 5 years ago. Even within this new paradigm there is still need for advanced sampling techniques. Modern supercomputers (e.g. Blue Waters, Titan, Keeneland) have made available to users a significant number of GPUS and CPUS, which in turn translate into amazing opportunities for dream calculations. Replica-exchange based methods can optimally use tis combination of codes and architectures to explore conformational variabilities in large systems. I will show our recent work in porting the program Amber to GPUS, and the support for replica exchange methods, where the replicated dimension could be Temperature, pH, Hamiltonian, Umbrella windows and combinations of those schemes.
Microscopic investigation of cavitation erosion damage in metals
NASA Technical Reports Server (NTRS)
Hackworh, J. V.; Adler, W. F.
1974-01-01
The results of research to identify the cavitation erosion damage mechanisms at the microscopic level for three metals (aluminum, stainless steel, and titanium) representing a range of properties and microstructure are presented. The metals were exposed to cavitation generated in distilled water by a 20-kHz ultrasonic facility operating at a vibration amplitude of 2 mils. Representative properties of the metals and experimental details are summarized. Replicas of the eroded surfaces of the specimens obtained periodically during exposure were examined with a transmission electron microscope to follow progression of the erosion damage and identify dominant erosion mechanisms as a function of exposure time. Eroded surfaces of selected specimens were also examined with a scanning electron microscope to assist in the interpretation.
The effects of tether placement on antibody stability on surfaces
NASA Astrophysics Data System (ADS)
Grawe, Rebecca W.; Knotts, Thomas A.
2017-06-01
Despite their potential benefits, antibody microarrays have fallen short of performing reliably and have not found widespread use outside of the research setting. Experimental techniques have been unable to determine what is occurring on the surface of an atomic level, so molecular simulation has emerged as the primary method of investigating protein/surface interactions. Simulations of small proteins have indicated that the stability of the protein is a function of the residue on the protein where a tether is placed. The purpose of this research is to see whether these findings also apply to antibodies, with their greater size and complexity. To determine this, 24 tethering locations were selected on the antibody Protein Data Bank (PDB) ID: 1IGT. Replica exchange simulations were run on two different surfaces, one hydrophobic and one hydrophilic, to determine the degree to which these tethering sites stabilize or destabilize the antibody. Results showed that antibodies tethered to hydrophobic surfaces were in general less stable than antibodies tethered to hydrophilic surfaces. Moreover, the stability of the antibody was a function of the tether location on hydrophobic surfaces but not hydrophilic surfaces.
Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu
2014-06-25
A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.
Callegari, D.; Ranaghan, K. E.; Woods, C. J.; Minari, R.; Tiseo, M.; Mor, M.; Mulholland, A. J.
2018-01-01
Osimertinib is a third-generation inhibitor approved for the treatment of non-small cell lung cancer. It overcomes resistance to first-generation inhibitors by incorporating an acrylamide group which alkylates Cys797 of EGFR T790M. The mutation of a residue in the P-loop (L718Q) was shown to cause resistance to osimertinib, but the molecular mechanism of this process is unknown. Here, we investigated the inhibitory process for EGFR T790M (susceptible to osimertinib) and EGFR T790M/L718Q (resistant to osimertinib), by modelling the chemical step (i.e., alkylation of Cys797) using QM/MM simulations and the recognition step by MD simulations coupled with free-energy calculations. The calculations indicate that L718Q has a negligible impact on both the activation energy for Cys797 alkylation and the free-energy of binding for the formation of the non-covalent complex. The results show that Gln718 affects the conformational space of the EGFR–osimertinib complex, stabilizing a conformation of acrylamide which prevents reaction with Cys797. PMID:29732058
Viscoelastic-coupling model for the earthquake cycle driven from below
Savage, J.C.
2000-01-01
In a linear system the earthquake cycle can be represented as the sum of a solution which reproduces the earthquake cycle itself (viscoelastic-coupling model) and a solution that provides the driving force. We consider two cases, one in which the earthquake cycle is driven by stresses transmitted along the schizosphere and a second in which the cycle is driven from below by stresses transmitted along the upper mantle (i.e., the schizosphere and upper mantle, respectively, act as stress guides in the lithosphere). In both cases the driving stress is attributed to steady motion of the stress guide, and the upper crust is assumed to be elastic. The surface deformation that accumulates during the interseismic interval depends solely upon the earthquake-cycle solution (viscoelastic-coupling model) not upon the driving source solution. Thus geodetic observations of interseismic deformation are insensitive to the source of the driving forces in a linear system. In particular, the suggestion of Bourne et al. [1998] that the deformation that accumulates across a transform fault system in the interseismic interval is a replica of the deformation that accumulates in the upper mantle during the same interval does not appear to be correct for linear systems.
2015-01-01
Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency. PMID:24625009
Multi-Scale Porous Ultra High Temperature Ceramics
2015-01-08
different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble...the porosity, pore size, shape and morphology . X-Ray Tomography was used to study their 3D microstructure. The 3D microstructures captured with...four different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble
Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A
2009-03-10
The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster.
Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A.
2009-01-01
The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster. PMID:20161452
El Merhie, Amira; Navarro, Laurent; Delavenne, Xavier; Leclerc, Lara; Pourchez, Jérémie
2016-05-01
Enhancement of intranasal sinus deposition involves nebulization of a drug superimposed by an acoustic airflow. We investigated the impact of fixed frequency versus frequency sweep acoustic airflow on the improvement of aerosolized drug penetration into maxillary sinuses. Fixed frequency and frequency sweep acoustic airflow were generated using a nebulizing system of variable frequency. The effect of sweep cycle and intensity variation was studied on the intranasal sinus deposition. We used a nasal replica created from CT scans using 3D printing. Sodium fluoride and gentamicin were chosen as markers. Studies performed using fixed frequency acoustic airflow showed that each of maxillary sinuses of the nasal replica required specific frequency for the optimal aerosol deposition. Intranasal sinus drug deposition experiments under the effect of the frequency sweep acoustic airflow showed an optimal aerosol deposition into both maxillary sinus of the nasal replica. Studies on the effect of the duration of the sweep cycle showed that the shorter the cycle the better the deposition. We demonstrate the benefit of frequency sweep acoustic airflow on drug deposition into maxillary sinuses. However further in vivo studies have to be conducted since delivery rates cannot be obviously determined from a nasal replica.
Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures
Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A. John
2012-01-01
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1, 2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. PMID:22806089
Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John
2012-07-02
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization (3).
Neutron and gamma-ray dose-rates from the Little Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plassmann, E.A.; Pederson, R.A.
1984-01-01
We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distancemore » from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.« less
Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering
2015-01-01
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide. PMID:25838811
Proactive replica checking to assure reliability of data in cloud storage with minimum replication
NASA Astrophysics Data System (ADS)
Murarka, Damini; Maheswari, G. Uma
2017-11-01
The two major issues for cloud storage systems are data reliability and storage costs. For data reliability protection, multi-replica replication strategy which is used mostly in current clouds acquires huge storage consumption, leading to a large storage cost for applications within the loud specifically. This paper presents a cost-efficient data reliability mechanism named PRCR to cut back the cloud storage consumption. PRCR ensures data reliability of large cloud information with the replication that might conjointly function as a price effective benchmark for replication. The duplication shows that when resembled to the standard three-replica approach, PRCR will scale back to consume only a simple fraction of the cloud storage from one-third of the storage, thence considerably minimizing the cloud storage price.
Directed deposition of inorganic oxide networks on patterned polymer templates
NASA Astrophysics Data System (ADS)
Ford, Thomas James Robert
Inspired by nature, we have successfully directed the deposition of inorganic oxide materials on polymer templates via a combination of top-down and bottom-up fabrication methods. We have functionally mimicked the hierarchical silica exoskeletons of diatoms, where specialized proteins chaperone the condensation of silicic acid into nanoscale silica networks confined by microscopic vesicle walls. We replaced the proteins with functionally analogous polyamines and vesicles with lithographically defined polymer templates. We grafted the polyamines either to the surface or throughout the template by changing the template chemistry and altering our grafting strategy. Exposure to an inorganic oxide precursor solution led to electrostatic aggregation at the polyamine chains, catalyzing hydrolysis and condensation to form long-range inorganic oxide nanoparticle networks. Grafted to epoxy surfaces, swelling effects and the hyperbranched brush morphology lead to the formation of nanofruit features that generated thin, conformal inorganic coatings. When the polyamines were grafted throughout hydrogel templates, we obtained composite networks that yielded faithful inorganic replicas of the original patterns. By varying the polyamine chain length and combustion parameters, we controlled the nanoparticle size, morphology, and crystalline phase. The polyamine morphology affected the resulting inorganic network in both fabrication schemes and we could control the depostion over multiple length scales. Because our methods were compatible with a variety of lithographic methods, we were able to generate inorganic replicas of 1D, 2D, and 3D polymer structures. These may be used for a wide range of applications, including sensing, catalysis, photonic, phononic, photovoltaic, and others that require well-defined inorganic structures.
Development of replicated optics for AXAF-1 XDA testing
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Wilson, Michele; Martin, Greg
1995-01-01
Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in terms of fine finish and surface figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicated optic is not better than the master or mandrel from which it is made. This task identifies methods and materials for forming these extremely low roughness optical components. The objectives of this contract were to (1) prepare replication samples of electroless nickel coated aluminum, and determine process requirements for plating XDA test optic; (2) prepare and assemble plating equipment required to process a demonstration optic; (3) characterize mandrels, replicas and test samples for residual stress, surface contamination and surface roughness and figure using equipment at MSFC and; (4) provide technical expertise in establishing the processes, procedures, supplies and equipment needed to process the XDA test optics.
ERIC Educational Resources Information Center
Golter, Paul B.
2011-01-01
In order to address some of the challenges facing engineering education, namely the demand that students be better prepared to practice professional as well as technical skills, we have developed an intervention consisting of equipment, assessments and a novel pedagogy. The equipment consists of desktop-scale replicas of common industrial…
Quantitative Predictions of Binding Free Energy Changes in Drug-Resistant Influenza Neuraminidase
2012-08-30
drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and...conformations that are virtually identical to WT [10]. Molecular simulations that rigorously model the microscopic structure and thermodynamics PLOS...influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with
Hamzei-Sichani, Farid; Kamasawa, Naomi; Janssen, William G. M.; Yasumura, Thomas; Davidson, Kimberly G. V.; Hof, Patrick R.; Wearne, Susan L.; Stewart, Mark G.; Young, Steven R.; Whittington, Miles A.; Rash, John E.; Traub, Roger D.
2007-01-01
Gap junctions have been postulated to exist between the axons of excitatory cortical neurons based on electrophysiological, modeling, and dye-coupling data. Here, we provide ultrastructural evidence for axoaxonic gap junctions in dentate granule cells. Using combined confocal laser scanning microscopy, thin-section transmission electron microscopy, and grid-mapped freeze–fracture replica immunogold labeling, 10 close appositions revealing axoaxonic gap junctions (≈30–70 nm in diameter) were found between pairs of mossy fiber axons (≈100–200 nm in diameter) in the stratum lucidum of the CA3b field of the rat ventral hippocampus, and one axonal gap junction (≈100 connexons) was found on a mossy fiber axon in the CA3c field of the rat dorsal hippocampus. Immunogold labeling with two sizes of gold beads revealed that connexin36 was present in that axonal gap junction. These ultrastructural data support computer modeling and in vitro electrophysiological data suggesting that axoaxonic gap junctions play an important role in the generation of very fast (>70 Hz) network oscillations and in the hypersynchronous electrical activity of epilepsy. PMID:17640909
Vascular corrosion casting technique steps.
Verli, Flaviana Dornela; Rossi-Schneider, Tissiana Raquel; Schneider, Felipe Luís; Yurgel, Liliane Soares; de Souza, Maria Antonieta Lopes
2007-01-01
The vascular corrosion casting technique produces a replica of vascular beds of normal or pathological tissues. Once associated with scanning electron microscopy (SEM), this technique provides details of the three-dimensional anatomic arrangement of the vascular replica, which is the main advantage of this method. The present study is intended to describe the steps of the vascular corrosion casting technique and the different ways to perform them. them.
Replica and extreme-value analysis of the Jarzynski free-energy estimator
NASA Astrophysics Data System (ADS)
Palassini, Matteo; Ritort, Felix
2008-03-01
We analyze the Jarzynski estimator of free-energy differences from nonequilibrium work measurements. By a simple mapping onto Derrida's Random Energy Model, we obtain a scaling limit for the expectation of the bias of the estimator. We then derive analytical approximations in three different regimes of the scaling parameter x = log(N)/W, where N is the number of measurements and W the mean dissipated work. Our approach is valid for a generic distribution of the dissipated work, and is based on a replica symmetry breaking scheme for x >> 1, the asymptotic theory of extreme value statistics for x << 1, and a direct approach for x near one. The combination of the three analytic approximations describes well Monte Carlo data for the expectation value of the estimator, for a wide range of values of N, from N=1 to large N, and for different work distributions. Based on these results, we introduce improved free-energy estimators and discuss the application to the analysis of experimental data.
Behavioural responses of dogs to asymmetrical tail wagging of a robotic dog replica.
Artelle, K A; Dumoulin, L K; Reimchen, T E
2011-03-01
Recent evidence suggests that bilateral asymmetry in the amplitude of tail wagging of domestic dogs (Canis familiaris) is associated with approach (right wag) versus withdrawal (left wag) motivation and may be the by-product of hemispheric dominance. We consider whether such asymmetry in motion of the tail, a crucial appendage in intra-specific communication in all canids, provides visual information to a conspecific leading to differential behaviour. To evaluate this, we experimentally investigated the approach behaviour of free-ranging dogs to the asymmetric tail wagging of a life-size robotic dog replica. Our data, involving 452 separate interactions, showed a significantly greater proportion of dogs approaching the model continuously without stopping when the tail wagged to the left, compared with a right wag, which was more likely to yield stops. While the results indicate that laterality of a wagging tail provides behavioural information to conspecifics, the responses are not readily integrated into the predicted behaviour based on hemispheric dominance.
NASA Astrophysics Data System (ADS)
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Phase diagram of matrix compressed sensing
NASA Astrophysics Data System (ADS)
Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka
2016-12-01
In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.
Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.
Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan
2009-08-01
In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.
Antireflective surface with a step in the taper: Numerical optimization and large-area fabrication
NASA Astrophysics Data System (ADS)
Shinotsuka, Kei; Hongo, Koki; Dai, Kotaro; Hirama, Satoru; Hatta, Yoshihisa
2017-02-01
In this study, we developed a practical method to improve the optical performance of subwavelength antireflective two-dimensional (2D) gratings. A numerical simulation of both convex and concave paraboloids suggested that surface reflectivity drastically decreases when a step is introduced in the taper. The optimum height and depth of a step provided average reflectances of 0.098% for convex protrusions and 0.040% for concave protrusions in the visible range. Furthermore, a stepped paraboloid was experimentally fabricated by dry etching of a Si substrate with SiO2 particle monolayer mask. A cyclo-olefin polymer (COP) reverse replica (concave) imprinted by the Si mold exhibited a measured reflectance of 0.077% on average in the visible range. It was also demonstrated that the antireflective structure was fabricated on the whole surface of a 6 in. Si wafer, which is a sufficient size for industrial utilization.
Molecular Simulation Uncovers the Conformational Space of the λ Cro Dimer in Solution
Ahlstrom, Logan S.; Miyashita, Osamu
2011-01-01
The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution. PMID:22098751
Fault Injection Campaign for a Fault Tolerant Duplex Framework
NASA Technical Reports Server (NTRS)
Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.
2007-01-01
Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.
Self-calibrating threshold detector
NASA Technical Reports Server (NTRS)
Barnes, J. R.; Huang, M. Y. (Inventor)
1980-01-01
A self calibrating threshold detector comprises a single demodulating channel which includes a mixer having one input receiving the incoming signal and another input receiving a local replica code. During a short time interval, an incorrect local code is applied to the mixer to incorrectly demodulate the incoming signal and to provide a reference level that calibrates the noise propagating through the channel. A sample and hold circuit is coupled to the channel for storing a sample of the reference level. During a relatively long time interval, the correct replica code provides an output level which ranges between the reference level and a maximum level that represents incoming signal presence and synchronism with the replica code. A summer substracts the stored sample reference from the output level to provide a resultant difference signal indicative of the acquisition of the expected signal.
Kim, Hyong Nyun; Liu, Xiao Ning; Noh, Kyu Cheol
2015-06-10
Open reduction and plate fixation is the standard operative treatment for displaced midshaft clavicle fracture. However, sometimes it is difficult to achieve anatomic reduction by open reduction technique in cases with comminution. We describe a novel technique using a real-size three dimensionally (3D)-printed clavicle model as a preoperative and intraoperative tool for minimally invasive plating of displaced comminuted midshaft clavicle fractures. A computed tomography (CT) scan is taken of both clavicles in patients with a unilateral displaced comminuted midshaft clavicle fracture. Both clavicles are 3D printed into a real-size clavicle model. Using the mirror imaging technique, the uninjured side clavicle is 3D printed into the opposite side model to produce a suitable replica of the fractured side clavicle pre-injury. The 3D-printed fractured clavicle model allows the surgeon to observe and manipulate accurate anatomical replicas of the fractured bone to assist in fracture reduction prior to surgery. The 3D-printed uninjured clavicle model can be utilized as a template to select the anatomically precontoured locking plate which best fits the model. The plate can be inserted through a small incision and fixed with locking screws without exposing the fracture site. Seven comminuted clavicle fractures treated with this technique achieved good bone union. This technique can be used for a unilateral displaced comminuted midshaft clavicle fracture when it is difficult to achieve anatomic reduction by open reduction technique. Level of evidence V.
Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph
NASA Astrophysics Data System (ADS)
Contucci, Pierluigi; Dommers, Sander; Giardinà, Cristian; Starr, Shannon
2013-10-01
We study the antiferromagnetic Potts model on the Poissonian Erdős-Rényi random graph. By identifying a suitable interpolation structure and an extended variational principle, together with a positive temperature second-moment analysis we prove the existence of a phase transition at a positive critical temperature. Upper and lower bounds on the temperature critical value are obtained from the stability analysis of the replica symmetric solution (recovered in the framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.
Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands
Andle, Jeffrey C.; Lec, Ryszard M.
2000-01-01
A piezoelectric sensor and assembly for measuring chemical, biochemical and physical measurands is disclosed. The piezoelectric sensor comprises a piezoelectric material, preferably a crystal, a common metal layer attached to the top surface of the piezoelectric crystal, and a pair of independent resonators placed in close proximity on the piezoelectric crystal such that an efficacious portion of acoustic energy couples between the resonators. The first independent resonator serves as an input port through which an input signal is converted into mechanical energy within the sensor and the second independent resonator serves an output port through which a filtered replica of the input signal is detected as an electrical signal. Both a time delay and an attenuation at a given frequency between the input signal and the filtered replica may be measured as a sensor output. The sensor may be integrated into an assembly with a series feedback oscillator and a radio frequency amplifier to process the desired sensor output. In the preferred embodiment of the invention, a selective film is disposed upon the grounded metal layer of the sensor and the resonators are encapsulated to isolate them from the measuring environment. In an alternative embodiment of the invention, more than two resonators are used in order to increase the resolution of the sensor.
Plaque which Apollo 11 astronauts will leave on the moon
1969-07-14
S69-39334 (July 1969) --- This is a replica of the plaque which the Apollo 11 astronauts will leave behind on the moon in commemoration of the historic event. The plaque is made of stainless steel, measuring nine by seven and five-eighths inches, and one-sixteenth inch thick. The plaque will be attached to the ladder on the landing gear strut on the descent stage of the Apollo 11 Lunar Module (LM). Covering the plaque during the flight will be a thin sheet of stainless steel which will be removed on the lunar surface.
2011-12-01
REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J
Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele
2012-03-07
Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society
DIRAC File Replica and Metadata Catalog
NASA Astrophysics Data System (ADS)
Tsaregorodtsev, A.; Poss, S.
2012-12-01
File replica and metadata catalogs are essential parts of any distributed data management system, which are largely determining its functionality and performance. A new File Catalog (DFC) was developed in the framework of the DIRAC Project that combines both replica and metadata catalog functionality. The DFC design is based on the practical experience with the data management system of the LHCb Collaboration. It is optimized for the most common patterns of the catalog usage in order to achieve maximum performance from the user perspective. The DFC supports bulk operations for replica queries and allows quick analysis of the storage usage globally and for each Storage Element separately. It supports flexible ACL rules with plug-ins for various policies that can be adopted by a particular community. The DFC catalog allows to store various types of metadata associated with files and directories and to perform efficient queries for the data based on complex metadata combinations. Definition of file ancestor-descendent relation chains is also possible. The DFC catalog is implemented in the general DIRAC distributed computing framework following the standard grid security architecture. In this paper we describe the design of the DFC and its implementation details. The performance measurements are compared with other grid file catalog implementations. The experience of the DFC Catalog usage in the CLIC detector project are discussed.
Zebrafish response to a robotic replica in three dimensions
Ruberto, Tommaso; Mwaffo, Violet; Singh, Sukhgewanpreet; Neri, Daniele
2016-01-01
As zebrafish emerge as a species of choice for the investigation of biological processes, a number of experimental protocols are being developed to study their social behaviour. While live stimuli may elicit varying response in focal subjects owing to idiosyncrasies, tiredness and circadian rhythms, video stimuli suffer from the absence of physical input and rely only on two-dimensional projections. Robotics has been recently proposed as an alternative approach to generate physical, customizable, effective and consistent stimuli for behavioural phenotyping. Here, we contribute to this field of investigation through a novel four-degree-of-freedom robotics-based platform to manoeuvre a biologically inspired three-dimensionally printed replica. The platform enables three-dimensional motions as well as body oscillations to mimic zebrafish locomotion. In a series of experiments, we demonstrate the differential role of the visual stimuli associated with the biologically inspired replica and its three-dimensional motion. Three-dimensional tracking and information-theoretic tools are complemented to quantify the interaction between zebrafish and the robotic stimulus. Live subjects displayed a robust attraction towards the moving replica, and such attraction was lost when controlling for its visual appearance or motion. This effort is expected to aid zebrafish behavioural phenotyping, by offering a novel approach to generate physical stimuli moving in three dimensions. PMID:27853566
Random forest regression for magnetic resonance image synthesis.
Jog, Amod; Carass, Aaron; Roy, Snehashis; Pham, Dzung L; Prince, Jerry L
2017-01-01
By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T 2 -weighted brain images that include the skull and FLuid Attenuated Inversion Recovery (FLAIR) images has been reported. The method described herein, called REPLICA, addresses these limitations. REPLICA is a supervised random forest image synthesis approach that learns a nonlinear regression to predict intensities of alternate tissue contrasts given specific input tissue contrasts. Experimental results include direct image comparisons between synthetic and real images, results from image analysis tasks on both synthetic and real images, and comparison against other state-of-the-art image synthesis methods. REPLICA is computationally fast, and is shown to be comparable to other methods on tasks they are able to perform. Additionally REPLICA has the capability to synthesize both T 2 -weighted images of the full head and FLAIR images, and perform intensity standardization between different imaging datasets. Copyright © 2016 Elsevier B.V. All rights reserved.
Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki
2011-03-01
A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface
NASA Astrophysics Data System (ADS)
Ge, Chun; Lu, Meng; Zhang, Wei; Cunningham, Brian T.
2010-04-01
A dielectric nanorod structure is used to enhance the label-free detection sensitivity of a vertically-emitting distributed feedback laser biosensor (DFBLB). The device is comprised of a replica molded plastic grating that is subsequently coated with a dye-doped polymer layer and a TiO2 nanorod layer produced by the glancing angle deposition technique. The DFBLB emission wavelength is modulated by the adsorption of biomolecules, whose greater dielectric permittivity with respect to the surrounding liquid media will increase the laser wavelength in proportion to the density of surface-adsorbed biomaterial. The nanorod layer provides greater surface area than a solid dielectric thin film, resulting in the ability to incorporate a greater number of molecules. The detection of a monolayer of protein polymer poly (Lys, Phe) is used to demonstrate that a 90 nm TiO2 nanorod structure improves the detection sensitivity by a factor of 6.6 compared to an identical sensor with a nonporous TiO2 surface.
Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma
2016-04-19
Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.
Ramos, A; Duarte, R J; Relvas, C; Completo, A; Simões, J A
2013-07-01
The press-fit hip acetabular prosthesis implantation can cause crack formation in the thin regions surrounding the acetabular. As a consequence the presence of cracks in this region can lead to poor fixation and fibrous tissue formation. Numerical and experimental models of commercial press-fit hip replacements were developed to compare the behavior between the intact and implanted joints. Numerical models with an artificial crack and without crack were considered. The iliac and the femur were created through 3D geometry acquisition based on composite human replicas and 3D-Finite Element models were generated. The mechanical behavior was assessed numerically and experimentally considering the principal strains. The comparison between Finite Element model predictions and experimental measurements revealed a maximum difference of 9%. Similar distribution of the principal strains around the acetabular cavity was obtained for the intact and implanted models. When comparing the Von Mises stresses, it is possible to observe that the intact model is the one that presents the highest stress values in the entire acetabular cavity surface. The crack in the posterior side changes significantly the principal strain distribution, suggesting bone loss after hip replacement. Relatively to micromotions, these were higher on the superior side of the acetabular cavity and can change the implant stability and bone ingrowth. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aseptic laboratory techniques: plating methods.
Sanders, Erin R
2012-05-11
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: Perform plating procedures without contaminating media. Isolate single bacterial colonies by the streak-plating method. Use pour-plating and spread-plating methods to determine the concentration of bacteria. Perform soft agar overlays when working with phage. Transfer bacterial cells from one plate to another using the replica-plating procedure. Given an experimental task, select the appropriate plating method.
Titanium Damage Tolerant Design Data for Propulsion Systems
1977-08-01
for the threshold and 30 Hz tests were measured using cellulose acetate tape replicas with an accuracy of 0.001 in. (0.0025 mm) for changes in crack...monitored with the traveling telescope and verified with cellulose acetate tape replicas. Testing was performed in load control on servo-hydraulic...34 Contract F33615-75-C-5064, First Semiannual Report, AFML, December 1975. 2. Erdogan F. and M. Ratwani, "Fatigue and Fracture of Cylindrical Shells
Multicast Parametric Synchronous Sampling
2011-09-01
enhancement in a parametric mixer device. Fig. 4 shows the principle of generating uniform, high quality replicas extending over previously un-attainable...critical part of the MPASS architecture and is responsible for the direct and continuous acquisition of data across all of the multicast signal copies...ii) ability to copy THz signals with impunity to tens of replicas ; (iii) all-optical delays > 1.9 us; (iv) 10’s of THz-fast all-optical sampling of
Neutron and gamma dose and spectra measurements on the Little Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoots, S.; Wadsworth, D.
1984-06-01
The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in themore » atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.« less
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.
Svitkina, Tatyana M
2017-05-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.
Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally
SVITKINA, Tatyana M.
2017-01-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208
Histopathology of human superficial herpes simplex keratitis.
Maudgal, P. C.; Missotten, L.
1978-01-01
In vivo corneal replicas were made in 20 cases of patients with superficial dendritic ulcers of the cornea. Histopathological study of the replicas and superficial epithelial cells showed that the dendrites are composed of rounded epithelial cells and variable sized syncytia containing bizarre shaped nuclei. Pseudopodia-like processes containing DNA and some RNA extend from the syncytia into the surrounding epithelial cells, which on coming into contact with these processes become rounded and liquefied to give rise to another syncytium. The epithelial cells adjacent to the dendrite and elongated and usually orientated parallel to the long axis of the lesion. Surrounding the terminal bulbs, they are disposed in an arcuate fashion. These cells show C-mitotic lesions, intranuclear and cytoplasmic inclusion bodies, and polykaryocyte formation. Microscopic examination of the corneal replicas shows the intranuclear lesions and rounding of cells up to about 2 mm away from the dendritic ulcers. These areas appear normal on clinical examination. Images PMID:629910
NASA Astrophysics Data System (ADS)
Liritzis, I.
In the Easter of 1900, just off the tiny island of Antikythera in the Aegean Sea, sponge-fishers from Simi found by chance a very important ancient shipwreck dated to 2nd to the early 1st century B.C. The plethora of objects included bronze fragments of furniture, marble and bronze statues and statuettes, pottery, luxury glass and silver vases, wooden parts of the ship and other. Of the most important find was a corroded bronze mechanism embedded to calcareous cemented matter caused by the seawater. The mechanism was associated to the School of Poseidonius of Rhodes and dated c.87 B.C. The mechanism is a four piece fragmentary, fragile and partly missing calculating device with geared wheels, display scales and Greek inscriptions, displayed at the National Archaeological Museum in Athens. Early research (1902-1934) was made by Svoronos, Stais, Rados, Rediadis, Theophanides and even attempted a reconstruction. Later research (1953-1974) was applied by mechanical engineer in collaboration with Karakalos (1973) who applied industrial X-ray radiography and recovered revolutionary structural data and 30 geared wheels. Dr Derek de Solla Price made a second model (two replicas) (Price, 1974). Since then, several other models were made by Roumeliotis, Freeth (2002 a, b), Casselman and Lysozyme. The third research phase (1990 till today) was studied by computer scientists (Bromley and Gardner) as well as mechanical engineer Michael Wright, Greenwich Museum, London. The film images were taken by the laborious X-ray linear tomography. A replica was made by Michael Wright upgrading earlier model by Price producing eventually modifications till this year. The last research effort (2005 till today) the mechanism was studied by the Antikythera Mechanism Research Project researchers from a consortium of public and private establishments led by Mike Edmunds University of Cardiff and included Universities of Athens and Thessaloniki, The National Archaeological Museum Athens, the Center for History and Palaeography, Cultural Foundation of the National Bank of Greece, X-Tek Systems, and Hewlett-Packard. They applied a powerful microfocus X-ray computer assisted tomography (CAT) using reflectance imaging to enhance surface details. The first results were announced in this week issue of the international scientific journal of Nature and at the same time during the 2-day international conference (30th Nov to 1st Dec.,in Athens) where the present information is retrieved from (Deconding the Antikythera Mechnism, Abstract Book). The results are indeed exciting and enabled new detailed 3D reconstruction of the internal structure of the Antikythera Mechanism using a total of one terabyte of CAT data and the surface polynomial mapping images.
3D Printed Models of Cleft Palate Pathology for Surgical Education.
Lioufas, Peter A; Quayle, Michelle R; Leong, James C; McMenamin, Paul G
2016-09-01
To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training.
Kamande, J W; Wang, Y; Taylor, A M
2015-05-01
In recent years, there has been a dramatic increase in the use of poly(dimethylsiloxane) (PDMS) devices for cell-based studies. Commonly, the negative tone photoresist, SU8, is used to pattern features onto silicon wafers to create masters (SU8-Si) for PDMS replica molding. However, the complexity in the fabrication process, low feature reproducibility (master-to-master variability), silane toxicity, and short life span of these masters have been deterrents for using SU8-Si masters for the production of cell culture based PDMS microfluidic devices. While other techniques have demonstrated the ability to generate multiple devices from a single master, they often do not match the high feature resolution (∼0.1 μm) and low surface roughness that soft lithography masters offer. In this work, we developed a method to fabricate epoxy-based masters that allows for the replication of features with high fidelity directly from SU8-Si masters via their PDMS replicas. By this method, we show that we could obtain many epoxy based masters with equivalent features to a single SU8-Si master with a low feature variance of 1.54%. Favorable feature transfer resolutions were also obtained by using an appropriate Tg epoxy based system to ensure minimal shrinkage of features ranging in size from ∼100 μm to <10 μm in height. We further show that surface coating epoxy masters with Cr/Au lead to effective demolding and yield PDMS chambers that are suitable for long-term culturing of sensitive primary hippocampal neurons. Finally, we incorporated pillars within the Au-epoxy masters to eliminate the process of punching media reservoirs and thereby reducing substantial artefacts and wastage.
Kamande, J. W.; Wang, Y.; Taylor, A. M.
2015-01-01
In recent years, there has been a dramatic increase in the use of poly(dimethylsiloxane) (PDMS) devices for cell-based studies. Commonly, the negative tone photoresist, SU8, is used to pattern features onto silicon wafers to create masters (SU8-Si) for PDMS replica molding. However, the complexity in the fabrication process, low feature reproducibility (master-to-master variability), silane toxicity, and short life span of these masters have been deterrents for using SU8-Si masters for the production of cell culture based PDMS microfluidic devices. While other techniques have demonstrated the ability to generate multiple devices from a single master, they often do not match the high feature resolution (∼0.1 μm) and low surface roughness that soft lithography masters offer. In this work, we developed a method to fabricate epoxy-based masters that allows for the replication of features with high fidelity directly from SU8-Si masters via their PDMS replicas. By this method, we show that we could obtain many epoxy based masters with equivalent features to a single SU8-Si master with a low feature variance of 1.54%. Favorable feature transfer resolutions were also obtained by using an appropriate Tg epoxy based system to ensure minimal shrinkage of features ranging in size from ∼100 μm to <10 μm in height. We further show that surface coating epoxy masters with Cr/Au lead to effective demolding and yield PDMS chambers that are suitable for long-term culturing of sensitive primary hippocampal neurons. Finally, we incorporated pillars within the Au-epoxy masters to eliminate the process of punching media reservoirs and thereby reducing substantial artefacts and wastage. PMID:26180572
Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum
NASA Astrophysics Data System (ADS)
Engel, Eberhard
2018-04-01
Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.
NASA Astrophysics Data System (ADS)
Chichibu, Shigefusa F.; Ishikawa, Youichi; Kominami, Hiroko; Hara, Kazuhiko
2018-02-01
The radiative performance of hexagonal boron nitride (h-BN) was assessed by the spatio-time-resolved luminescence measurements on its microcrystals (MCs) annealed in an O2 gas ambient. The MCs exhibited distinct deep ultraviolet luminescence peaks higher than 5.7 eV, although h-BN is an indirect bandgap semiconductor. The result indicates a strong interaction between the indirect excitons (iXs) and LO/TO (and LA/TA) phonons at T points of the Brillouin zone. Such phonon replicas of free iXs and a luminescence band at 4.0 eV showed negligible thermal quenching, most probably assisted by the strong excitonic effect, enhanced phonon scattering, and formation of a surface BxOy layer that prevents excitons from surface recombination by the thermal excitation. Conversely, the luminescence band between 5.1 and 5.7 eV, which seems to consist of LO/TO phonon replicas of iXs localized at a certain structural singularity that are further scattered by multiple TO phonons at K points and another two emission peaks that originate from the singularity, showed the thermal quenching. In analogy with GaN and AlGaN, cation vacancy complexes most likely act as native nonradiative recombination centers (NRCs). In the present case, vacancy complexes that contain a boron vacancy (VB), such as divacancies with a nitrogen vacancy (VN), VBVN, are certain to act as NRCs. In this instance, iXs delocalized from the singularity are likely either captured by NRCs or the origin of the 4.0 eV-band; the latter is assigned to originate from a carbon on the N site or a complex between VB and an oxygen on the N site.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Seidensticker, K. J.; Fischer, H. H.
2015-12-01
The Permittivity Probe (SESAME-PP) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 m of the nucleus of comet 67P/Churyumov-Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide a unique insight into the composition of the comet, and in particular, into its water content. PP-SESAME acquired data on November 13, 2015, both during Philae descent to the comet and at the surface of the nucleus. The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a transmitting dipole, and the induced electrical voltage on a receiving dipole is measured. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate both the dielectric constant and electrical conductivity of the ground. For that purpose, we have developed a method called the "capacity-influence matrix method". A replica of the instrument was recently built in LATMOS (France) in order to validate this method. In this paper, we will present the tests conducted with the replica in a controlled environment and their comparison to numerical simulations. We will also show simulations relevant to the PP-SESAME experiment on the nucleus of comet 67P/Churyumov-Gerasimenko. These simulations were run for realistic scenarios of the Philae's attitude and environment at its final landing site. We discuss their implications in terms of surface electrical and compositional properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.« less
Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.; ...
2016-09-01
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.« less
Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team
2018-02-01
Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.
2010-01-01
formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage...ad hoc force term in the SGLD model. Introduction Molecular dynamics (MD) simulations of small proteins provide insight into the mechanisms and... molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All
NASA Astrophysics Data System (ADS)
Huang, Haiping
2017-05-01
Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation are analyzed. A statistical analysis by replica theory describes the thermodynamic properties of the model. Our analysis confirms an entropy crisis preceding the non-convergence of the message passing equation, suggesting a discontinuous phase transition as a key characteristic of the restricted Boltzmann machine. Continuous phase transition is also confirmed depending on the embedded feature strength in the data. The mean-field result under the replica symmetric assumption agrees with that obtained by running message passing algorithms on single instances of finite sizes. Interestingly, in an approximate Hopfield model, the entropy crisis is absent, and a continuous phase transition is observed instead. We also develop an iterative equation to infer the hyper-parameter (temperature) hidden in the data, which in physics corresponds to iteratively imposing Nishimori condition. Our study provides insights towards understanding the thermodynamic properties of the restricted Boltzmann machine learning, and moreover important theoretical basis to build simplified deep networks.
The Ionic Atmosphere around A-RNA: Poisson-Boltzmann and Molecular Dynamics Simulations
Kirmizialtin, Serdal; Silalahi, Alexander R.J.; Elber, Ron; Fenley, Marcia O.
2012-01-01
The distributions of different cations around A-RNA are computed by Poisson-Boltzmann (PB) equation and replica exchange molecular dynamics (MD). Both the nonlinear PB and size-modified PB theories are considered. The number of ions bound to A-RNA, which can be measured experimentally, is well reproduced in all methods. On the other hand, the radial ion distribution profiles show differences between MD and PB. We showed that PB results are sensitive to ion size and functional form of the solvent dielectric region but not the solvent dielectric boundary definition. Size-modified PB agrees with replica exchange molecular dynamics much better than nonlinear PB when the ion sizes are chosen from atomistic simulations. The distribution of ions 14 Å away from the RNA central axis are reasonably well reproduced by size-modified PB for all ion types with a uniform solvent dielectric model and a sharp dielectric boundary between solvent and RNA. However, this model does not agree with MD for shorter distances from the A-RNA. A distance-dependent solvent dielectric function proposed by another research group improves the agreement for sodium and strontium ions, even for shorter distances from the A-RNA. However, Mg2+ distributions are still at significant variances for shorter distances. PMID:22385854
Template-mediated, Hierarchical Engineering of Ordered Mesoporous Films and Powders
NASA Astrophysics Data System (ADS)
Tian, Zheng
Hierarchical control over pore size, pore topology, and meso/mictrostructure as well as material morphology (e.g., powders, monoliths, thin films) is crucial for meeting diverse materials needs among applications spanning next generation catalysts, sensors, batteries, sorbents, etc. The overarching goal of this thesis is to establish fundamental mechanistic insight enabling new strategies for realizing such hierarchical textural control for carbon materials that is not currently achievable with sacrificial pore formation by 'one-pot' surfactant-based 'soft'-templating or multi-step inorganic 'hard-templating. While 'hard'-templating is often tacitly discounted based upon its perceived complexity, it offers potential for overcoming key 'soft'-templating challenges, including bolstering pore stability, accommodating a more versatile palette of replica precursors, realizing ordered/spanning porosity in the case of porous thin films, simplifying formation of bi-continuous pore topologies, and inducing microstructure control within porous replica materials. In this thesis, we establish strategies for hard-templating of hierarchically porous and structured carbon powders and tunable thin films by both multi-step hard-templating and a new 'one-pot' template-replica precursor co-assembly process. We first develop a nominal hard-templating technique to successfully prepare three-dimensionally ordered mesoporous (3DOm) and 3DOm-supported microporous carbon thin films by exploiting our ability to synthesize and assemble size-tunable silica nanoparticles into scalable, colloidal crystalline thin film templates of tunable mono- to multi-layer thickness. This robust thin film template accommodates liquid and/or vapor-phase infiltration, polymerization, and pyrolysis of various carbon sources without pore contraction and/or collapse upon template sacrifice. The result is robust, flexible 3DOm or 3DOm-supported ultra-thin microporous films that can be transferred by stamp techniques to various substrates for low-cost counter-electrodes in dye-sensitized solar cells, as we demonstrate, or as potential high-flux membranes for molecular separations. Inspired by 'one-pot' 'soft'-templating approaches, wherein the pore forming agent and replica precursor are co-assembled, we establish how 'hard'-templating can be carried out in an analogous fashion. Namely, we show how pre-formed silica nanoparticles can be co-assembled from aqueous solutions with a carbon source (glucose), leading to elucidation of a pseudo-phase behavior in which we identify an operating window for synthesis of hierarchically bi-continuous carbon films. Systematic study of the association of carbon precursors with the silica particles in combination with transient coating experiments reveals mechanistic insight into how silica-adsorbed carbon precursor modulates particle assembly and ultimately controls template particle d-spacing. We uncover a critical d-spacing defining the boundary between ordered and disordered mesoporosity within the resulting films. We ultimately extend this thin-film mechanistic insight to realize 'one'-pot, bi-continuous 3DOm carbon powders. Through a combination of X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HR-TEM), we elucidate novel synthesis-structure relations for template-mediated microstructuring of the 3DOm replica carbons. Attractive properties of the resulting bi-continuous porous carbons for applications, for example, as novel electrodes, include high surface areas, large mesopore volumes, and tunable graphitic content (i.e. >50%) and character. We specifically demonstrate their performance, in thin film form, as counter-electrodes in dye-sensitized solar cells. We also demonstrate how they can be exploited in powder form as high-performance supercapacitor electrodes exhibiting attractive retention and absolute capacitance. We conclude the thesis by demonstrating the versatility of both the thin-film and powder templating processes developed herein, for realizing ordered binary colloidal crystal templates and their bi-modal porous carbon replica films, expanding compositional diversity of the 'one-pot' thin film process beyond carbons to include an example of 3DOm ZrO2 films, and employing the hard-templating process as a strategy for realizing 3DOm carbon-supported nanocarbides.
Survey of Cyber Moving Target Techniques
2013-09-25
Description: Details: The authors propose a very simple form of multivariant execution with two replicas where one replica runs with the stack growing ...upwards and the other runs with the stack growing down. Normally any single architecture only supports the stack growing in one direction, but the...April 2012. 8. “The NX Bit and ASLR,” Tom’s Hardware, 25 March 2009. 9. “Pwn2Own day 2: iPhone, BlackBerry beaten; Chrome, Firefox no-shows,” Ars
2003-07-22
KENNEDY SPACE CENTER, FLA. - The Rocket Garden at the KSC Visitor Complex features eight authentic rockets from the past, including a Mercury-Atlas rocket. The garden also features a climb-in Mercury, Gemino and Apollo capsule replicas, seating pods and informative graphic elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtazaev, A. K.; Ramazanov, M. K., E-mail: sheikh77@mail.ru; Kassan-Ogly, F. A.
2015-01-15
Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice are studied on the basis of the replica algorithm by the Monte Carlo method and histogram analysis taking into account the interaction of next-to-nearest neighbors. The phase diagram of the dependence of the critical temperature on the intensity of interaction of the next-to-nearest neighbors is constructed. It is found that a second-order phase transition is realized in this model in the investigated interval of the intensities of interaction of next-to-nearest neighbors.
3D printed replicas for endodontic education.
Reymus, M; Fotiadou, C; Kessler, A; Heck, K; Hickel, R; Diegritz, C
2018-06-14
To assess the feasibility of producing artificial teeth for endodontic training using 3D printing technology, to analyse the accuracy of the printing process, and to evaluate the teeth by students when used during training. Sound extracted human teeth were selected, digitalized by cone beam computed tomography (CBCT) and appropriate software and finally reproduced by a stereolithographic printer. The printed teeth were scanned and compared with the original ones (trueness) and to one another (precision). Undergraduate dental students in the third and fourth years performed root canal treatment on printed molars and were subsequently asked to evaluate their experience with these compared to real teeth. The workflow was feasible for manufacturing 3D printed tooth replicas. The absolute deviation after printing (trueness) ranged from 50.9μm to 104.3μm. The values for precision ranged from 43.5μm to 68.2μm. Students reported great benefits in the use of the replicated teeth for training purposes. The presented workflow is feasible for any dental educational institution who has access to a CBCT unit and a stereolithographic printer. The accuracy of the printing process is suitable for the production of tooth replicas for endodontic training. Undergraduate students favoured the availability of these replicas and the fairness they ensured in training due to standardization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Cai, Zong Wei; Uchiyama, Katsumi
2005-05-01
A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.
Mai, Hang-Nga; Lee, Kyeong Eun; Lee, Kyu-Bok; Jeong, Seung-Mi; Lee, Seok-Jae; Lee, Cheong-Hee; An, Seo-Young; Lee, Du-Hyeong
2017-10-01
The purpose of this study was to evaluate the reliability of computer-aided replica technique (CART) by calculating its agreement with the replica technique (RT), using statistical agreement analysis. A prepared metal die and a metal crown were fabricated. The gap between the restoration and abutment was replicated using silicone indicator paste (n = 25). Gap measurements differed in the control (RT) and experimental (CART) groups. In the RT group, the silicone replica was manually sectioned, and the marginal and occlusal gaps were measured using a microscope. In the CART group, the gap was digitized using optical scanning and image superimposition, and the gaps were measured using a software program. The agreement between the measurement techniques was evaluated by using the 95% Bland-Altman limits of agreement and concordance correlation coefficients (CCC). The least acceptable CCC was 0.90. The RT and CART groups showed linear association, with a strong positive correlation in gap measurements, but without significant differences. The 95% limits of agreement between the paired gap measurements were 3.84% and 7.08% of the mean. The lower 95% confidence limits of CCC were 0.9676 and 0.9188 for the marginal and occlusal gap measurements, respectively, and the values were greater than the allowed limit. The CART is a reliable digital approach for evaluating the fit accuracy of fixed dental prostheses.
Lu, Qing; Kim, Jaegil; Straub, John E
2013-03-14
The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.
Kapakin, S
2011-02-01
Rapid prototyping (RP), or stereolithography, is a new clinical application area, which is used to obtain accurate three-dimensional physical replicas of complex anatomical structures. The aim of this study was to create tangible hard copies of the ethmoidal labyrinth air cells (ELACs) with stereolithographic biomodelling. The visible human dataset (VHD) was used as the input imaging data. The Surfdriver software package was applied to these images to reconstruct the ELACs as three-dimensional DXF (data exchange file) models. These models were post-processed in 3D-Doctor software for virtual reality modelling language (VRML) and STL (Standard Triangulation Language) formats. Stereolithographic replicas were manufactured in a rapid prototyping machine by using the STL format. The total number of ELACs was 21. The dimensions of the ELACs on the right and left sides were 52.91 x 13.00 x 28.68 mm and 53.79 x 12.42 x 28.55 mm, respectively. The total volume of the ELACs was 4771.1003 mm(3). The mean ELAC distance was 27.29 mm from the nasion and 71.09 mm from the calotte topologically. In conclusion, the combination of Surfdriver and 3D-Doctor could be effectively used for manufacturing 3D solid models from serial sections of anatomical structures. Stereolithographic anatomical models provide an innovative and complementary tool for students, researchers, and surgeons to apprehend these anatomical structures tangibly. The outcomes of these attempts can provide benefits in terms of the visualization, perception, and interpretation of the structures in anatomy teaching and prior to surgical interventions.
The influence of spray properties on intranasal deposition.
Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D
2007-01-01
While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including particle size, have relatively minor influences on deposition within the nasal cavity.
Vojdani, Mahroo; Torabi, Kianoosh; Atashkar, Berivan; Heidari, Hossein; Torabi Ardakani, Mahshid
2016-01-01
Statement of the Problem: Marginal fitness is the most important criteria for evaluation of the clinical acceptability of a cast restoration. Marginal gap which is due to cement solubility and plaque retention is potentially detrimental to both tooth and periodontal tissues. Purpose: This in vitro study aimed to evaluate the marginal and internal fit of cobalt- chromium (Co-Cr) copings fabricated by two different CAD/CAM systems: (CAD/ milling and CAD/ Ceramill Sintron). Materials and Method: We prepared one machined standard stainless steel master model with following dimensions: 7 mm height, 5mm diameter, 90˚ shoulder marginal finish line with 1 mm width, 10˚ convergence angle and anti-rotational surface on the buccal aspect of the die. There were 10 copings produced from hard presintered Co-Cr blocks according to CAD/ Milling technique and ten copings from soft non- presintered Co-Cr blocks according to CAD/ Ceramill Sintron technique. Marginal and internal accuracies of copings were documented by the replica technique. Replicas were examined at ten reference points under a digital microscope (230X). The Student's t-test was used for statistical analysis. p< 0.001 was considered significant. Results: Statistically significant differences existed between the groups (p< 0.001). The CAD/milling group (hard copings) had a mean marginal discrepancy (MD) of 104 µm, axial discrepancy (AD) of 23 µm and occlusal discrepancy of 130 µm. For CAD/ Ceramill Sintron group, these values were 195 µm (MD), 46 µm (AD), and 232 µm (OD). Internal total discrepancy (ITD) for the CAD/milling group was 77 µm, whereas for the CAD/Ceramill Sintron group was 143 µm. Conclusion: Hard presintered Co-Cr copings had significantly higher marginal and internal accuracies compared to the soft non-presintered copings. PMID:27942545
Schilardi, Patricia L; Dip, Patricio; dos Santos Claro, Paula C; Benítez, Guillermo A; Fonticelli, Mariano H; Azzaroni, Omar; Salvarezza, Roberto C
2005-12-16
Pattern transfer with high resolution is a frontier topic in the emerging field of nanotechnologies. Electrochemical molding is a possible route for nanopatterning metal, alloys and oxide surfaces with high resolution in a simple and inexpensive way. This method involves electrodeposition onto a conducting master covered by a self-assembled alkanethiolate monolayer (SAMs). This molecular film enables direct surface-relief pattern transfer from the conducting master to the inner face of the electrodeposit, and also allows an easy release of the electrodeposited film due their excellent anti-adherent properties. Replicas of the original conductive master can be also obtained by a simple two-step procedure. SAM quality and stability under electrodeposition conditions combined with the formation of smooth electrodeposits are crucial to obtain high-quality pattern transfer with sub-50 nm resolution.
Nanoimprinting on optical fiber end faces for chemical sensing
NASA Astrophysics Data System (ADS)
Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.
2008-04-01
Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.
2015-06-01
exposure settings…………………...26 Table 4. Kodak 9500 Cone Beam 3D System exposure settings…………..….27 Table 5. Average and statistical analysis results...42 Figure 6 Image of Mounted PVC Skull Model on the Kodak 9500……….…......43 Figure 7 Screen image of Reconstructed CBCT Digital...replica was taken with the Kodak 9500 Cone Beam 3D System. To create the digital dental models fifteen type IV maxillary dental casts were made on the
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.; Bouchaud, Jean-Philippe
2008-08-01
We construct an N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N → ∞ the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's generalized random energy model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step replica symmetry breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N >= 1. We discuss the implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalizations and open problems, such as the dynamics in such a landscape and the construction of a generalized multifractal random walk.
A LAMMPS implementation of volume-temperature replica exchange molecular dynamics
NASA Astrophysics Data System (ADS)
Liu, Liang-Chun; Kuo, Jer-Lai
2015-04-01
A driver module for executing volume-temperature replica exchange molecular dynamics (VTREMD) was developed for the LAMMPS package. As a patch code, the VTREMD module performs classical molecular dynamics (MD) with Monte Carlo (MC) decisions between MD runs. The goal of inserting the MC step was to increase the breadth of sampled configurational space. In this method, states receive better sampling by making temperature or density swaps with their neighboring states. As an accelerated sampling method, VTREMD is particularly useful to explore states at low temperatures, where systems are easily trapped in local potential wells. As functional examples, TIP4P/Ew and TIP4P/2005 water models were analyzed using VTREMD. The phase diagram in this study covered the deeply supercooled regime, and this test served as a suitable demonstration of the usefulness of VTREMD in overcoming the slow dynamics problem. To facilitate using the current code, attention was also paid on how to optimize the exchange efficiency by using grid allocation. VTREMD was useful for studying systems with rough energy landscapes, such as those with numerous local minima or multiple characteristic time scales.
Fractal dimension of interfaces in Edwards-Anderson spin glasses for up to six space dimensions.
Wang, Wenlong; Moore, M A; Katzgraber, Helmut G
2018-03-01
The fractal dimension of domain walls produced by changing the boundary conditions from periodic to antiperiodic in one spatial direction is studied using both the strong-disorder renormalization group algorithm and the greedy algorithm for the Edwards-Anderson Ising spin-glass model for up to six space dimensions. We find that for five or fewer space dimensions, the fractal dimension is lower than the space dimension. This means that interfaces are not space filling, thus implying that replica symmetry breaking is absent in space dimensions fewer than six. However, the fractal dimension approaches the space dimension in six dimensions, indicating that replica symmetry breaking occurs above six dimensions. In two space dimensions, the strong-disorder renormalization group results for the fractal dimension are in good agreement with essentially exact numerical results, but the small difference is significant. We discuss the origin of this close agreement. For the greedy algorithm there is analytical expectation that the fractal dimension is equal to the space dimension in six dimensions and our numerical results are consistent with this expectation.
Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics.
Campbell, Zachary T; Baldwin, Thomas O; Miyashita, Osamu
2010-12-15
Bacterial luciferase contains an extended 29-residue mobile loop. Movements of this loop are governed by binding of either flavin mononucleotide (FMNH2) or polyvalent anions. To understand this process, loop dynamics were investigated using replica-exchange molecular dynamics that yielded conformational ensembles in either the presence or absence of FMNH2. The resulting data were analyzed using clustering and network analysis. We observed the closed conformations that are visited only in the simulations with the ligand. Yet the mobile loop is intrinsically flexible, and FMNH2 binding modifies the relative populations of conformations. This model provides unique information regarding the function of a crystallographically disordered segment of the loop near the binding site. Structures at or near the fringe of this network were compatible with flavin binding or release. Finally, we demonstrate that the crystallographically observed conformation of the mobile loop bound to oxidized flavin was influenced by crystal packing. Thus, our study has revealed what we believe are novel conformations of the mobile loop and additional context for experimentally determined structures. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Paschek, Dietmar; Nymeyer, Hugh; García, Angel E
2007-03-01
We simulate the folding/unfolding equilibrium of the 20-residue miniprotein Trp-cage. We use replica exchange molecular dynamics simulations of the AMBER94 atomic detail model of the protein explicitly solvated by water, starting from a completely unfolded configuration. We employ a total of 40 replicas, covering the temperature range between 280 and 538 K. Individual simulation lengths of 100 ns sum up to a total simulation time of about 4 micros. Without any bias, we observe the folding of the protein into the native state with an unfolding-transition temperature of about 440 K. The native state is characterized by a distribution of root mean square distances (RMSD) from the NMR data that peaks at 1.8A, and is as low as 0.4A. We show that equilibration times of about 40 ns are required to yield convergence. A folded configuration in the entire extended ensemble is found to have a lifetime of about 31 ns. In a clamp-like motion, the Trp-cage opens up during thermal denaturation. In line with fluorescence quenching experiments, the Trp-residue sidechain gets hydrated when the protein opens up, roughly doubling the number of water molecules in the first solvation shell. We find the helical propensity of the helical domain of Trp-cage rather well preserved even at very high temperatures. In the folded state, we can identify states with one and two buried internal water molecules interconnecting parts of the Trp-cage molecule by hydrogen bonds. The loss of hydrogen bonds of these buried water molecules in the folded state with increasing temperature is likely to destabilize the folded state at elevated temperatures.
Accuracy of implant impressions without impression copings: a three-dimensional analysis.
Kwon, Joo-Hyun; Son, Yong-Ha; Han, Chong-Hyun; Kim, Sunjai
2011-06-01
Implant impressions without impression copings can be used for cement-retained implant restorations. A comparison of the accuracy of implant impressions with and without impression copings is needed. The purpose of this study was to evaluate and compare the dimensional accuracy of implant definitive casts that are fabricated by implant impressions with and without impression copings. An acrylic resin maxillary model was fabricated, and 3 implant replicas were secured in the right second premolar, first, and second molars. Two impression techniques were used to fabricate definitive casts (n=10). For the coping group (Group C), open tray impression copings were used for the final impressions. For the no-coping group (Group NC), cementable abutments were connected to the implant replicas, and final impressions were made assuming the abutments were prepared teeth. Computerized calculation of the centroids and long axes of the implant or stone abutment replicas was performed. The Mann-Whitney U test analyzed the amount of linear and rotational distortion between groups (α =.05). At the first molar site, Group NC showed significantly greater linear distortion along the Y-axis, with a small difference between the groups (Group C, 7.8 ± 7.4 μm; Group NC, 19.5 ± 12.2). At the second molar site, increased distortion was noted in Group NC for every linear and rotational variable, except for linear distortion along the Z-axis. Implant impression with open tray impression copings produced more accurate definitive casts than those fabricated without impression copings, especially those with greater inter-abutment distance. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1999-01-01
A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, NASA Administrator Dan Goldin, and director of the U. S. Space and Rocket Center Mike Wing during the dedication ceremony.
1999-07-17
A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, NASA Administrator Dan Goldin, and director of the U. S. Space and Rocket Center Mike Wing during the dedication ceremony.
EUSO@TurLab: An experimental replica of ISS orbits
NASA Astrophysics Data System (ADS)
Bertaina, M.; Bowaire, A.; Cambursano, S.; Caruso, R.; Contino, G.; Cotto, G.; Crivello, F.; Forza, R.; Guardone, N.; Manfrin, M.; Mignone, M.; Mulas, R.; Suino, G.; Tibaldi, P. S.
2015-03-01
The EUSO@TurLab project is an on-going activity aimed to reproduce atmospheric and luminous conditions that JEM-EUSO will encounter on its orbits around the Earth. The use of the TurLab facility, part of the Department of Physics of the University of Torino, allows the simulation of different surface conditions in a very dark and rotating environment in order to test the response of JEM-EUSO's sensors and sensitivity. The experimental setup currently in operation has been used to check the potential of the TurLab facility for the above purposes, and the acquired data will be used to test the concept of JEM-EUSO's trigger system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita
We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit,more » approaching the LISA performance.« less
Replicas of Snoopy and Charlie Brown decorate top of console in MCC
NASA Technical Reports Server (NTRS)
1969-01-01
Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip 'Peanuts', decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules. The code words for the Command Module will be Charlie Brown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Go
We consider the situation where s replicas of a qubit with an unknown state and its orthogonal k replicas are given as an input, and we try to make c clones of the qubit with the unknown state. As a function of s, k, and c, we obtain the optimal fidelity between the qubit with an unknown state and the clone by explicitly giving a completely positive trace-preserving (CPTP) map that represents a cloning machine. We discuss dependency of the fidelity on the values of the parameters s, k, and c.
2010-11-23
Disaster Relief? Consider Creation of Campaign Medal National Security Threat? Advocate for Activation of National Defense Service Medal Consider...2) Arrowhead Device: The arrowhead device is a bronze replica of an Indian arrowhead 1/4 inch high. It is a Department of the Army device that...device is a bronze replica of an Indian arrowhead 1/4 inch high. It is a Department of the Army device that is authorized for wear on the AFEM. (3
Neutron dosimetry of the Little Boy device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pederson, R.A.; Plassmann, E.A.
1984-01-01
Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.
Influence of surface structure and chemistry on water droplet splashing.
Koch, Kerstin; Grichnik, Roland
2016-08-06
Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Bubnis, Gregory J.
Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.
Zeller, Fabian; Zacharias, Martin
2014-02-11
The accurate calculation of potentials of mean force for ligand-receptor binding is one of the most important applications of molecular simulation techniques. Typically, the separation distance between ligand and receptor is chosen as a reaction coordinate along which a PMF can be calculated with the aid of umbrella sampling (US) techniques. In addition, restraints can be applied on the relative position and orientation of the partner molecules to reduce accessible phase space. An approach combining such phase space reduction with flattening of the free energy landscape and configurational exchanges has been developed, which significantly improves the convergence of PMF calculations in comparison with standard umbrella sampling. The free energy surface along the reaction coordinate is smoothened by iteratively adapting biasing potentials corresponding to previously calculated PMFs. Configurations are allowed to exchange between the umbrella simulation windows via the Hamiltonian replica exchange method. The application to a DNA molecule in complex with a minor groove binding ligand indicates significantly improved convergence and complete reversibility of the sampling along the pathway. The calculated binding free energy is in excellent agreement with experimental results. In contrast, the application of standard US resulted in large differences between PMFs calculated for association and dissociation pathways. The approach could be a useful alternative to standard US for computational studies on biomolecular recognition processes.
A pilot study of the marginal adaptation and surface morphology of glass-cermet cements.
Chu, C H; King, N M; Lee, A M; Yiu, C K; Wei, S H
1996-07-01
This study investigated changes in the marginal adaptation and surface morphology of Ketac-Silver and Chelon-Silver glass-current cements over time. Dispersalloy amalgam was used as a control. Contralateral pairs of carious primary molars were restored with the test materials and amalgam. Clinical evaluations were scheduled at 12, 18, and 24 months after placement. Gold-plated replicas of the restorations were observed with scanning electron microscopy. Fractures and cracks in the surface of the Dispersalloy and Chelon-Silver increased the surface roughness; however, the damage was superficial and self-limiting in the Dispersalloy restorations, while in Chelon-Silver the fractures caused the material to break down in layers. A substantial quantity of pores, usually smaller than 50 microns in diameter, were observed throughout the surface of the Chelon-Silver restorations. The pores in the surface of Ketac-Silver were fewer and smaller. The incidence of cavomarginal breakdown increased with time. Chelon-Silver restorations had a higher rate of cavomarginal breakdown than did Ketac-Silver and Dispersalloy restorations up to 18 months. However, there was no statistically significant difference in the marginal adaptation of the three groups at 24 months.
2008-07-01
Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom
NASA Astrophysics Data System (ADS)
Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon
2013-07-01
The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.
Lazim, Raudah; Mei, Ye; Zhang, Dawei
2012-03-01
Replica exchange molecular dynamics (REMD) simulation provides an efficient conformational sampling tool for the study of protein folding. In this study, we explore the mechanism directing the structure variation from α/4β-fold protein to 3α-fold protein after mutation by conducting REMD simulation on 42 replicas with temperatures ranging from 270 K to 710 K. The simulation began from a protein possessing the primary structure of GA88 but the tertiary structure of GB88, two G proteins with "high sequence identity." Albeit the large Cα-root mean square deviation (RMSD) of the folded protein (4.34 Å at 270 K and 4.75 Å at 304 K), a variation in tertiary structure was observed. Together with the analysis of secondary structure assignment, cluster analysis and principal component, it provides insights to the folding and unfolding pathway of 3α-fold protein and α/4β-fold protein respectively paving the way toward the understanding of the ongoings during conformational variation.
Controlled replication of butterfly wings for achieving tunable photonic properties.
Huang, Jingyun; Wang, Xudong; Wang, Zhong Lin
2006-10-01
The fine structure of the wing scale of a Morpho Peleides butterfly was examined carefully, and the entire configuration was completely replicated by a uniform Al(2)O(3) coating through a low-temperature ALD process. An inverted structure was achieved by removing the butterfly wing template at high temperature, forming a polycrystalline Al(2)O(3) shell structure with precisely controlled thickness. Other than the copy of the morphology of the structure, the optical property, such as the existence of PBG, was also inherited by the alumina replica. Reflection peaks at the violet/blue range were detected on both original wings and their replica, while a simple alumina coating shifted the reflection peak to longer wavelength because of the change of periodicity and refraction index. The alumina replicas also exhibited similar functional structures as waveguide and beam splitter, which may be used as the building blocks for photonic ICs with high reproducibility and lower fabrication cost compared to traditional lithography techniques.
Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; ...
2014-12-08
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further highmore » temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.« less
Speculation and replication in temperature accelerated dynamics
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
2018-02-12
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
NASA Astrophysics Data System (ADS)
Chrzanowska, Agnieszka
2017-06-01
A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement—of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.
Chrzanowska, Agnieszka
2017-06-01
A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement-of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.
NASA Astrophysics Data System (ADS)
Lee, Kyungjun; Lyu, Sungnam; Lee, Sangmin; Kim, Youn Sang; Hwang, Woonbong
2010-09-01
Transparent super-hydrophobic films were fabricated using the PDMS method and silane process, based on anodization in phosphoric acid. Contact angle tests were performed to determine the contact angle of each film according to the anodizing time. Transmittance tests also were performed to obtain the transparency of each TPT (trimethylolpropane propoxylate triacrylate) replica film according to the anodizing time. The contact angle was determined by studying the drop shape, and the transmittance was measured using a UV-spectrometer. The contact angle increases with increasing anodizing time, because increasing pillar length can trap more air between the TPT replica film and a drop of water. The transmittance falls with increasing anodizing time because the increasing pillar length causes a scattering effect. This study shows that the pillar length and transparency are inversely proportional. The TPT replica film having nanofibers array structures was better than other films in aspect of self-cleaning by doing quantitative experimentation.
Speculation and replication in temperature accelerated dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium
Beveridge, T. J.; Murray, R. G. E.
1974-01-01
Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219
2013-01-01
Background CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line. Results We used methylation data of 35 cell lines from the Encyclopedia of DNA Elements (ENCODE) consortium to identify CpG islands that were differentially methylated between replicas of the same cell line and denoted them Inter Replicas Differentially Methylated CpG islands (IRDM-CGIs). We identified a group of IRDM-CGIs that was consistently shared by different cell lines, and denoted it common IRDM-CGIs. X chromosome CGIs were overrepresented among common IRDM-CGIs. Autosomal IRDM-CGIs were preferentially located in gene bodies and intergenic regions had a lower G + C content, a smaller mean length, and a reduced CpG percentage. Functional analysis of the genes associated with autosomal IRDM-CGIs showed that many of them are involved in DNA binding and development. Conclusions Our results show that several specific functional and structural features characterize common IRDM-CGIs. They may represent a specific subset of CGIs that are more prone to being differentially methylated for their intrinsic characteristics. PMID:24106769
3D Printed Models of Cleft Palate Pathology for Surgical Education
Lioufas, Peter A.; Quayle, Michelle R.; Leong, James C.
2016-01-01
Objective: To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. Background: The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Methods: Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Results: Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Conclusion: Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training. PMID:27757345
Levine, Zachary A.; Rapp, Michael V.; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H.; Mittal, Jeetain; Waite, J. Herbert; Israelachvili, Jacob N.; Shea, Joan-Emma
2016-01-01
Translating sticky biological molecules—such as mussel foot proteins (MFPs)—into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue’s molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces. PMID:27036002
Femtosecond laser fabricated spike structures for selective control of cellular behavior.
Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N
2010-09-01
In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.
Best, Robert B; Mittal, Jeetain
2011-04-01
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two-state folder, the GB1 hairpin. We use extensive replica-exchange molecular dynamics simulations to characterize the free-energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data.
Williams, Mobolaji
2018-01-01
The field of disordered systems in statistical physics provides many simple models in which the competing influences of thermal and nonthermal disorder lead to new phases and nontrivial thermal behavior of order parameters. In this paper, we add a model to the subject by considering a disordered system where the state space consists of various orderings of a list. As in spin glasses, the disorder of such "permutation glasses" arises from a parameter in the Hamiltonian being drawn from a distribution of possible values, thus allowing nominally "incorrect orderings" to have lower energies than "correct orderings" in the space of permutations. We analyze a Gaussian, uniform, and symmetric Bernoulli distribution of energy costs, and, by employing Jensen's inequality, derive a simple condition requiring the permutation glass to always transition to the correctly ordered state at a temperature lower than that of the nondisordered system, provided that this correctly ordered state is accessible. We in turn find that in order for the correctly ordered state to be accessible, the probability that an incorrectly ordered component is energetically favored must be less than the inverse of the number of components in the system. We show that all of these results are consistent with a replica symmetric ansatz of the system. We conclude by arguing that there is no distinct permutation glass phase for the simplest model considered here and by discussing how to extend the analysis to more complex Hamiltonians capable of novel phase behavior and replica symmetry breaking. Finally, we outline an apparent correspondence between the presented system and a discrete-energy-level fermion gas. In all, the investigation introduces a class of exactly soluble models into statistical mechanics and provides a fertile ground to investigate statistical models of disorder.
Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah
2013-01-01
This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.
Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes.
Schutten, J; Dainty, J; Davy, A J
2004-03-01
Hydraulic pulling forces arising from wave action are likely to limit the presence of freshwater macrophytes in shallow lakes, particularly those with soft sediments. The aim of this study was to develop and test experimentally simple models, based on linear wave theory for deep water, to predict such forces on individual shoots. Models were derived theoretically from the action of the vertical component of the orbital velocity of the waves on shoot size. Alternative shoot-size descriptors (plan-form area or dry mass) and alternative distributions of the shoot material along its length (cylinder or inverted cone) were examined. Models were tested experimentally in a flume that generated sinusoidal waves which lasted 1 s and were up to 0.2 m high. Hydraulic pulling forces were measured on plastic replicas of Elodea sp. and on six species of real plants with varying morphology (Ceratophyllum demersum, Chara intermedia, Elodea canadensis, Myriophyllum spicatum, Potamogeton natans and Potamogeton obtusifolius). Measurements on the plastic replicas confirmed predicted relationships between force and wave phase, wave height and plant submergence depth. Predicted and measured forces were linearly related over all combinations of wave height and submergence depth. Measured forces on real plants were linearly related to theoretically derived predictors of the hydraulic forces (integrals of the products of the vertical orbital velocity raised to the power 1.5 and shoot size). The general applicability of the simplified wave equations used was confirmed. Overall, dry mass and plan-form area performed similarly well as shoot-size descriptors, as did the conical or cylindrical models of shoot distribution. The utility of the modelling approach in predicting hydraulic pulling forces from relatively simple plant and environmental measurements was validated over a wide range of forces, plant sizes and species.
Bárcenas, M; Reyes, Y; Romero-Martínez, A; Odriozola, G; Orea, P
2015-02-21
Coexistence and interfacial properties of a triangle-well (TW) fluid are obtained with the aim of mimicking the Lennard-Jones (LJ) potential and approach the properties of noble gases. For this purpose, the scope of the TW is varied to match vapor-liquid densities and surface tension. Surface tension and coexistence curves of TW systems with different ranges were calculated with replica exchange Monte Carlo and compared to those data previously reported in the literature for truncated and shifted (STS), truncated (ST), and full Lennard-Jones (full-LJ) potentials. We observed that the scope of the TW potential must be increased to approach the STS, ST, and full-LJ properties. In spite of the simplicity of TW expression, a remarkable agreement is found. Furthermore, the variable scope of the TW allows for a good match of the experimental data of argon and xenon.
Study of the injection molding of a polarizing beam splitter.
Jose de Carvalho, Edson; Braga, Edmundo da Silva; Cescato, Lucila H
2006-01-01
We describe the replication of a relief grating that behaves like a polarizing beam splitter by injection molding. Measurements of the grating master, nickel shim, and replica, performed by atomic force microscopy, allow establishing a limit for the injection molding technique (currently used in CD fabrication) to aspect ratios of approximately 0.15. Although this limit strongly reduces the diffraction efficiency of the elements as well as their polarizing properties, extinction ratios of approximately 10:1 were measured for the replicas in a large range of wavelengths.
NASA Technical Reports Server (NTRS)
Cho, Y. I.; Back, L. H.; Back, M. R.
1985-01-01
An in-vitro, steady flow investigation was conducted in a hollow, transparent vascular replica of the profunda femoris branch of man for a range of physiological flow conditions. The replica casting tested was obtained from a human cadaver and indicated some plague formation along the main lumen and branch. The flow visualization observations and measured pressure distributions indicated the highly three-dimensional flow characteristics with arterial curvature and branching, and the important role of centrifugal effects in fluid transport mechanisms.
Replicas of Snoopy and Charlie Brown decorate top of console in MCC
1969-05-18
S69-34314 (18 May 1969) --- Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip, "Peanuts," decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, Building 30, on the first day of the Apollo 10 lunar orbit mission. During lunar orbit operations, the Lunar Module will be called ?Snoopy? when it is separated from the Command and Service Modules. The code words for the Command Module will be ?Charlie Brown?.
NASA STS-132 Air and Space Museum
2010-07-26
STS-132 astronaut Piers Sellers, left, and Dr. John Mather are seen with a replica of Mather's Nobel Prize, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned the replica that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe. Photo Credit: (NASA/Paul E. Alers)
Wavefront reversal technique for self-referencing collimation testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hii, King Ung; Kwek, Kuan Hiang
2010-02-01
We present a wavefront reversal technique to produce a dual-field fringe pattern for self-referencing collimation testing in wedge-plate lateral-shear interferometry. The method requires only a suitably placed cubic beam splitter to produce two replicas of the fringe field formed by the wedge-plate lateral-shear interferometer. One of the replicas has a fringe pattern that is the reverse of the other. With these two fringe fields, the collimation testing has a built-in reference, and the detection sensitivity is twice that of a single-wedge-plate technique.
2PI effective action for the SYK model and tensor field theories
NASA Astrophysics Data System (ADS)
Benedetti, Dario; Gurau, Razvan
2018-05-01
We discuss the two-particle irreducible (2PI) effective action for the SYK model and for tensor field theories. For the SYK model the 2PI effective action reproduces the bilocal reformulation of the model without using replicas. In general tensor field theories the 2PI formalism is the only way to obtain a bilocal reformulation of the theory, and as such is a precious instrument for the identification of soft modes and for possible holographic interpretations. We compute the 2PI action for several models, and push it up to fourth order in the 1 /N expansion for the model proposed by Witten in [1], uncovering a one-loop structure in terms of an auxiliary bilocal action.
Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B
2017-05-01
Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tam, Matthew D B S; Laycock, Stephen D; Brown, James R I; Jakeways, Matthew
2013-12-01
To describe rapid prototyping or 3-dimensional (3D) printing of aneurysms with complex neck anatomy to facilitate endovascular aneurysm repair (EVAR). A 75-year-old man had a 6.6-cm infrarenal aortic aneurysm that appeared on computed tomographic angiography to have a sharp neck angulation of ~90°. However, although the computed tomography (CT) data were analyzed using centerline of flow, the true neck length and relations of the ostial origins were difficult to determine. No multidisciplinary consensus could be reached as to which stent-graft to use owing to these borderline features of the neck anatomy. Based on past experience with rapid prototyping technology, a decision was taken to print a model of the aneurysm to aid in visualization of the neck anatomy. The CT data were segmented, processed, and converted into a stereolithographic format representing the lumen as a 3D volume, from which a full-sized replica was printed within 24 hours. The model demonstrated that the neck was adequate for stent-graft repair using the Aorfix device. Rapid prototyping of aortic aneurysms is feasible and can aid decision making and device delivery. Further work is required to test the value of 3D replicas in planning procedures and their impact on procedure time, radiation dose, and procedure cost.
Morrow, Brian H.; Koenig, Peter H.; Shen, Jana K.
2014-01-01
Recent interest in the development of surfactant-based nano delivery systems targeting tumor sites has sparked our curiosity to understand the detailed mechanism of the self-assembly and phase transitions of pH-sensitive surfactants. Towards this goal we applied a state-of-the-art simulation technique, continuous constant pH molecular dynamics (CpHMD) with the hybrid-solvent scheme and pH-based replica-exchange protocol, to study de novo self-assembly of 30 and 40 lauric acids, a simple model titratable surfactant. We observed the formation of a gel-state bilayer at low and intermediate pH and a spherical micelle at high pH, with the phase transition starting at 20–30% ionization and completing at 50%. The degree of cooperativity for the transition increases from the 30-mer to the 40-mer. The calculated apparent or bulk pKa value is 7.0 for the 30-mer and 7.5 for the 40-mer. Congruent with experiment, these data demonstrate that CpHMD is capable of accurately modeling large conformational transitions of surfactant systems while allowing simultaneous proton titration of constituent molecules. We suggest that CpHMD simulations may become a useful tool to aid in the design and development of pH-sensitive nanocarriers for a variety of biomedical and technological applications. PMID:24215478
Litwin, Patrick D; Reis Dib, Anna Luisa; Chen, John; Noga, Michelle; Finlay, Warren H; Martin, Andrew R
2017-06-14
Argon has the potential to be a novel inhaled therapeutic agent, owing to the neuroprotective and organoprotective properties demonstrated in preclinical studies. Before human trials are performed, an understanding of varying gas properties on airway resistance during inhalation is essential. This study predicts the effect of an 80% argon/20% oxygen gas mixture on the pressure drop through conducting airways, and by extension the airway resistance, and then verifies these predictions experimentally using 3-D printed adult tracheobronchial airway replicas. The predicted pressure drop was calculated using established analytical models of airway resistance, incorporating the change in viscosity and density of the 80% argon/20% oxygen mixture versus that of air. Predicted pressure drop for the argon mixture increased by approximately 29% compared to that for air. The experimental results were consistent with this prediction for inspiratory flows ranging from 15 to 90slpm. These results indicate that established analytical models may be used to predict increases in conducting airway resistance for argon/oxygen mixtures, compared with air. Such predictions are valuable in predicting average patient response to breathing argon/oxygen mixtures, and in selecting or designing delivery systems for use in administration of argon/oxygen mixtures to critically ill or injured patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten
Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...
2016-11-15
Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less
Aseptic Laboratory Techniques: Plating Methods
Sanders, Erin R.
2012-01-01
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method. PMID:22617405
Patel, Sunita; Vierling, Elizabeth; Tama, Florence
2014-06-17
The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either "open" or "closed" based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone efficiency. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Progress in mask replication using jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Selinidis, Kosta S.; Brooks, Cynthia B.; Doyle, Gary F.; Brown, Laura; Jones, Chris; Imhof, Joseph; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.
2011-04-01
The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105imprints. This suggests that tens of thousands of templates/masks will be required to satisfy the needs of a manufacturing environment. Electron-beam patterning is too slow to feasibly deliver these volumes, but instead can provide a high quality "master" mask which can be replicated many times with an imprint lithography tool. This strategy has the capability to produce the required supply of "working" templates/masks. In this paper, we review the development of the mask form factor, imprint replication tools and processes specifically for semiconductor applications. The requirements needed for semiconductors dictate the need for a well defined form factor for both master and replica masks which is also compatible with the existing mask infrastructure established for the 6025 semi standard, 6" x 6" x 0.25" photomasks. Complying with this standard provides the necessary tooling needed for mask fabrication processes, cleaning, metrology, and inspection. The replica form factor has additional features specific to imprinting such as a pre-patterned mesa. A PerfectaTM MR5000 mask replication tool has been developed specifically to pattern replica masks from an e-beam written master. The system specifications include a throughput of four replicas per hour with an added image placement component of 5nm, 3sigma and a critical dimension uniformity error of less than 1nm, 3sigma. A new process has been developed to fabricate replicas with high contrast alignment marks so that designs for imprint can fit within current device layouts and maximize the usable printed area on the wafer. Initial performance results of this marks are comparable to the baseline fused silica align marks.
Zhang, Tong; Mu, Yuguang
2012-01-01
Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795
Deconvolution of interferometric data using interior point iterative algorithms
NASA Astrophysics Data System (ADS)
Theys, C.; Lantéri, H.; Aime, C.
2016-09-01
We address the problem of deconvolution of astronomical images that could be obtained with future large interferometers in space. The presentation is made in two complementary parts. The first part gives an introduction to the image deconvolution with linear and nonlinear algorithms. The emphasis is made on nonlinear iterative algorithms that verify the constraints of non-negativity and constant flux. The Richardson-Lucy algorithm appears there as a special case for photon counting conditions. More generally, the algorithm published recently by Lanteri et al. (2015) is based on scale invariant divergences without assumption on the statistic model of the data. The two proposed algorithms are interior-point algorithms, the latter being more efficient in terms of speed of calculation. These algorithms are applied to the deconvolution of simulated images corresponding to an interferometric system of 16 diluted telescopes in space. Two non-redundant configurations, one disposed around a circle and the other on an hexagonal lattice, are compared for their effectiveness on a simple astronomical object. The comparison is made in the direct and Fourier spaces. Raw "dirty" images have many artifacts due to replicas of the original object. Linear methods cannot remove these replicas while iterative methods clearly show their efficacy in these examples.
Fourier-Transform Infrared Microspectroscopy, a Novel and Rapid Tool for Identification of Yeasts
Wenning, Mareike; Seiler, Herbert; Scherer, Siegfried
2002-01-01
Fourier-transform infrared (FT-IR) microspectroscopy was used in this study to identify yeasts. Cells were grown to microcolonies of 70 to 250 μm in diameter and transferred from the agar plate by replica stamping to an IR-transparent ZnSe carrier. IR spectra of the replicas on the carrier were recorded using an IR microscope coupled to an IR spectrometer, and identification was performed by comparison to reference spectra. The method was tested by using small model libraries comprising reference spectra of 45 strains from 9 genera and 13 species, recorded with both FT-IR microspectroscopy and FT-IR macrospectroscopy. The results show that identification by FT-IR microspectroscopy is equivalent to that achieved by FT-IR macrospectroscopy but the time-consuming isolation of the organisms prior to identification is not necessary. Therefore, this method also provides a rapid tool to analyze mixed populations. Furthermore, identification of 21 Debaryomyces hansenii and 9 Saccharomyces cerevisiae strains resulted in 92% correct identification at the strain level for S. cerevisiae and 91% for D. hansenii, which demonstrates that the resolution power of FT-IR microspectroscopy may also be used for yeast typing at the strain level. PMID:12324312
Exploiting molecular dynamics in Nested Sampling simulations of small peptides
NASA Astrophysics Data System (ADS)
Burkoff, Nikolas S.; Baldock, Robert J. N.; Várnai, Csilla; Wild, David L.; Csányi, Gábor
2016-04-01
Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.
Statistical mechanics of the vertex-cover problem
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2003-10-01
We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c < e, where the VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c > e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.
Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V
2016-05-14
In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules.
Pathways through equilibrated states with coexisting phases for gas hydrate formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malolepsza, Edyta; Keyes, Tom
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Pathways through equilibrated states with coexisting phases for gas hydrate formation
Malolepsza, Edyta; Keyes, Tom
2015-12-01
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Materials Suitable for preparing Inorganic Nanocasts of butterflies and other insects
NASA Astrophysics Data System (ADS)
Silver, J.; Fern, G. R.; Ireland, T. G.
2015-06-01
Replication of 3D-structures, in particular those that have a periodic modulation of a dielectric material at optical wavelengths and below have proven very difficult to fabricate. The majority of such replication techniques are complex or use moisture sensitive precursors requiring the use of for example a glove box. Here we demonstrate how an air stable supersaturated europium-doped yttrium nitrate phosphor precursor solution has the ability to easily impregnate a structure or produce a cast yielding faithful replicas composed of Y2O:Eu3+ after a final short annealing step. New replicas of Lepidoptera (moth) wing scales using field emission scanning electron microscopy, structures down to 10 nm have been imaged. Moreover as these replicas are made of phosphors, their luminescence in some cases may be modulated by the internal periodic modulation built into their structures. In this work we will discuss more recent results on the use of the phosphors for making nanocasts of moth wing scales and show a range of beautiful pictures to show what the method can achieve.
NASA Astrophysics Data System (ADS)
Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela
2016-03-01
The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the TORT-3.2 3D SN code. PCA-Replica reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and UGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-B7 (ENDF/B-VII.0) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.
Supramolecular engineering of carbon nanostructures
NASA Astrophysics Data System (ADS)
Jian, Kengqing
This thesis identifies a new and flexible route to control graphene layer structure in carbons, which is the key to carbon properties and applications, and focuses on the synthesis, structure-property relationships, and potential applications of new "supramolecular" carbon nanomaterials. This new approach begins with the studies of surface anchoring and assembly mechanisms among planar discotic liquid crystals. The results show that disk-like polyaromatics exhibit weak noncovalent interactions with most surfaces and prefer edge-on anchoring at these surfaces; only on a few surfaces such as graphite and platinum, they prefer face-on anchoring. A theory of pi-pi bond preservation has been proposed to explain the wetting, anchoring, and assembly phenomena. Based on the assembly study, a supramolecular approach was developed, which uses surfaces, flows, and confinement to create well-defined order in discotic liquid crystals, which can then be covalently captured by cross-linking and converted into a carbon material whose structure is an accurate replica of the molecular order in the precursor. This technique has been successfully applied to create innovative nanocarbons with controllable nanostructures. The new nanomaterials synthesized by supramolecular route include organic and carbon films with precise crystal structure control using surface anchoring and flow. Lithographic techniques were employed to make micro-patterned surfaces with preprogrammed molecular orientations. Fully dense and ordered carbon thin films were prepared from lytropic liquid crystals. These films exhibit surfaces rich in edge-sites and are either anisotropic unidirectional or multi-domain. In addition, four different types of high-aspect-ratio nanocarbons were synthesized and analyzed: (1) "orthogonal" carbon nanofibers with perpendicular graphene layers, (2) "concentric" C/C-composite nanofibers with graphene layers parallel to the fiber axis, (3) "inverted" nanotubes exhibiting graphene edge planes at both inner and outer surfaces, and (4) nanoribbons. Finally, a set of mesoporous carbons were synthesized with both porous structure and interfacial structure systematically controlled by liquid crystal templating. A quantitative model was developed for carbon surface area prediction. In addition to synthesis, this thesis includes extensive structural analysis and some surface characterization of these nanomaterials, and offers ideas to exploit their unique properties for applications in composites, displays, nanomedicine, and the environment.
2011-12-01
organized and equipped along the same lines as the French gendarmerie mobile, while its counter terrorism component is a replica of the French Groupe...first responders involved in disaster relief and homeland defense operations by providing geospatial intelligence data, products, and analyses.125 4...the impact of manmade and natural disasters .126 5. Service Intelligence Units The service intelligence units of the Army, Navy, Air Force, and
An Economic Case for End System Multicast
NASA Astrophysics Data System (ADS)
Analoui, Morteza; Rezvani, Mohammad Hossein
This paper presents a non-strategic model for the end-system multicast networks based on the concept of replica exchange economy. We believe that microeconomics is a good candidate to investigate the problem of selfishness of the end-users (peers) in order to maximize the aggregate throughput. In this solution concept, the decisions that a peer might make, does not affect the actions of the other peers at all. The proposed mechanism tunes the price of the service in such a way that general equilibrium holds.
Suppression of superconductivity in disordered interacting wires.
Pesin, D A; Andreev, A V
2006-09-15
We study superconductivity suppression due to thermal fluctuations in disordered wires using the replica nonlinear sigma-model (NLsigmaM). We show that in addition to the thermal phase slips there is another type of fluctuations that result in a finite resistivity. These fluctuations are described by saddle points in NLsigmaM and cannot be treated within the Ginzburg-Landau approach. The contribution of such fluctuations to the wire resistivity is evaluated with exponential accuracy. The magnetoresistance associated with this contribution is negative.
Foundations and latest advances in replica exchange transition interface sampling.
Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M; Bolhuis, Peter G; van Erp, Titus S
2017-10-21
Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.
Foundations and latest advances in replica exchange transition interface sampling
NASA Astrophysics Data System (ADS)
Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M.; Bolhuis, Peter G.; van Erp, Titus S.
2017-10-01
Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.
Statistical mechanics of complex neural systems and high dimensional data
NASA Astrophysics Data System (ADS)
Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya
2013-03-01
Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.
Olson, Mark A
2018-01-22
Intrinsically disordered proteins are characterized by their large manifold of thermally accessible conformations and their related statistical weights, making them an interesting target of simulation studies. To assess the development of a computational framework for modeling this distinct class of proteins, this work examines temperature-based replica-exchange simulations to generate a conformational ensemble of a 28-residue peptide from the Ebola virus protein VP35. Starting from a prefolded helix-β-turn-helix topology observed in a crystallographic assembly, the simulation strategy tested is the recently refined CHARMM36m force field combined with a generalized Born solvent model. A comparison of two replica-exchange methods is provided, where one is a traditional approach with a fixed set of temperatures and the other is an adaptive scheme in which the thermal windows are allowed to move in temperature space. The assessment is further extended to include a comparison with equivalent CHARMM22 simulation data sets. The analysis finds CHARMM36m to shift the minimum in the potential of mean force (PMF) to a lower fractional helicity compared with CHARMM22, while the latter showed greater conformational plasticity along the helix-forming reaction coordinate. Among the simulation models, only the adaptive tempering method with CHARMM36m found an ensemble of conformational heterogeneity consisting of transitions between α-helix-β-hairpin folds and unstructured states that produced a PMF of fractional fold propensity in qualitative agreement with circular dichroism experiments reporting a disordered peptide.
Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese
2011-09-28
Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severelymore » compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.« less
Rotating stall investigation of 0.72 hub-tip ratio single-stage compressor
NASA Technical Reports Server (NTRS)
Graham, Robert W; Prian, Vasily D
1954-01-01
The rotating stall characteristics of a 0.72 hub-tip ratio, single-stage compressor were investigated. The stage was a 14-inch-diameter replica of the fourth stage of an experimental multistage compressor. No similarity existed between the frequency and propagation rate of the stall patterns observed in the single-stage replica and those observed in the multistage compressor after the fourth stage. A fatigue failure of the rotor blades occurred during the testing which was attributed to a resonance between the stall frequency and the natural bending frequency of the blades.
NASA Astrophysics Data System (ADS)
Koch Dandolo, Corinna L.; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd
2016-11-01
The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to provide insights as to the limits and potentials of the technique in detecting different kinds of underdrawings and paint layers. Constituent layers, construction techniques, and anomalies were identified and localized by interpreting the extracted THz dielectric stratigraphy.
Polyurethane Foam-Filled Skull Replica of Craniosynostosis for Surgical Training.
Jeong, Yeon Jin; Lee, Jun Yong
2016-05-01
Craniosynostosis has a relatively low incidence in the general population and its treatment requires cautious approaches. For these reasons, patients are usually referred to several specialists or a medical center. Therefore, most trainees and young surgeons do not have any chances to experience patients of craniosynostosis, but learn about it only from textbooks. And for a surgeon who tries to operate on a craniosynostosis patient, it is hard to make a proper preoperative plan.The authors suggest a polyurethane foam-filled skull replica of craniosynostosis for trainees that can also be used in planning a craniosynostosis operation.
Influence of various environmental parameters on sweat gland activity.
McMullen, Roger L; Gillece, Tim; Lu, Guojin; Laura, Donna; Chen, Susan
2013-01-01
The choice of environmental conditions when conducting antiperspirant studies greatly affects the quantity of sweat output. Our initial goal in this work was to develop an in-house procedure to test the efficacy of antiperspirant products using replica techniques in combination with image analysis. To ameliorate the skin replica method, we conducted rheological studies using dynamic mechanical analysis of the replica formulation. In terms of sweat output quantification, our preliminary results revealed a considerable amount of variation using the replica technique, leading us to conduct more fundamental studies of the factors that influence sweating behavior and how to best design the experimental strategy. In accordance with the FDA's protocol for antiperspirant testing, we carried out gravimetric analyses of axillae sweating under a variety of environmental conditions including temperature and humidity control. Subjects were first acclimatized in an environmentally controlled room for 30 min, and then placed in a sauna for an additional 30 or 45 min, depending on which test we administered. In Test 1 (30 min total in the sauna), the first 10 min in the sauna was another equilibration period, followed by a 20 min sweat production stage. We monitored axillae sweating during the last 20 min in the sauna by gravimetric analysis. At time (t) = 30 min in the sauna, skin replicas were taken and later analyzed using imaging and image analysis techniques. Test 1 was carried out on over 25 subjects, both male and female, from various racial backgrounds. In Test 2, subjects spent 45 min in the sauna after the initial 30-min period in the environmental room. During the 45 min, we obtained gravimetric readings of absorbent pads placed in the axillae. We conducted studies at various temperature and relative humidity settings. We also studied the influence of several external parameters on sudoriferous activity. Test 2 was a range-finding experiment on two subjects to determine the optimized environmental conditions for the hot room procedure. In addition to the replica and gravimetric techniques, we also measured flux density to determine the onset of firing of sweat glands to ensure that our environmental preconditioning step (30 min in the environmental room) brought subjects to the point that their sweat glands were activated. Although flux density measurements are usually carried out to determine transepidermal water loss (TEWL), we found that they can be equally useful for monitoring the onset of sweat production. Thermal infrared imaging experiments were also carried out allowing us to generate full-body images of subjects containing anatomical thermal distribution data with high accuracy. Overall, we conclude that our in-house hot room procedure offers much potential as an effective and cost-efficient screening tool for narrowing copious antiperspirant formulations to a select few for expensive clinical evaluation.
NASA Astrophysics Data System (ADS)
Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar
2017-07-01
Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.
Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets
NASA Astrophysics Data System (ADS)
Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke
2018-02-01
Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.
NASA Astrophysics Data System (ADS)
Chen, Hsien-Yeh
Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended storage time prior to bonding, and (iii) well-defined surface functionalities for subsequent surface modifications. Finally, we have also prepared surface microstructures and surface patterns using reactive coatings via photopatterning, projection lithography, supramolecular nanostamping (SuNS), and vapor-assisted micropatterning in replica structures (VAMPIR). These patterning techniques can be complimentarily used and provide access to precisely confined microenvironments on flat and curved geometries. Reactive coatings provide a technology platform that creates active, long-term control and may lead to improved mimicry of biological systems for effective bio-functional modifications.
Gratings Fabricated on Flat Surfaces and Reproduced on Non-Flat Substrates
NASA Technical Reports Server (NTRS)
Content, David; Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christopher M.
2009-01-01
A method has been developed for fabricating gratings on flat substrates, and then reproducing the groove pattern on a curved (concave or convex) substrate and a corresponding grating device. First, surface relief diffraction grating grooves are formed on flat substrates. For example, they may be fabricated using photolithography and reactive ion etching, maskless lithography, holography, or mechanical ruling. Then, an imprint of the grating is made on a deformable substrate, such as plastic, polymer, or other materials using thermoforming, hot or cold embossing, or other methods. Interim stamps using electroforming, or other methods, may be produced for the imprinting process or if the same polarity of the grating image is required. The imprinted, deformable substrate is then attached to a curved, rigid substrate using epoxy or other suitable adhesives. The imprinted surface is facing away from the curved rigid substrate. As an alternative fabrication method, after grating is imprinted on the deformable substrate as described above, the grating may be coated with thin conformal conductive layer (for example, using vacuum deposition of gold). Then the membrane may be mounted over an opening in a pressured vessel in a manner of a membrane on a drum, grating side out. The pressure inside of the vessel may be changed with respect to the ambient pressure to produce concave or convex membrane surface. The shape of the opening may control the type of the surface curvature (for example, a circular opening would create spherical surface, oval opening would create toroidal surface, etc.). After that, well-known electroforming methods may be used to create a replica of the grating on the concave or convex membrane. For example, the pressure vessel assembly may be submerged into an electro-forming solution and negative electric potential applied to the metal coated membrane using an insulated wire. Positive electric potential may be then applied to a nickel or other metal plate submerged into the same solution. Metal ions would transfer from the plate through the solution into the membrane, producing high fidelity metal replica of the grating on the membrane. In one variation, an adhesive may be deposited on the deformable substrate, and then cured without touching the rigid, curved substrate. Edges of the deformable substrate may be attached to the rigid substrate to ensure uniform deformation of the deformable substrate. The assembly may be performed in vacuum, and then taken out to atmospheric pressure conditions to ensure that no air is trapped between the deformable and rigid substrates. Alternatively, a rigid surface with complementary curvature to the rigid substrate may be used to ensure uniform adhesion of the deformable substrate to the rigid substrate. Liquid may be applied to the surface of the deformable substrate to uniformly distribute pressure across its surface during the curing or hardening of the adhesive, or the film may be pressed into the surface using a deformable object or surface. After the attachment is complete, the grooves may be coated with reflective or dielectric layers to improve diffraction efficiency.
New force replica exchange method and protein folding pathways probed by force-clamp technique.
Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan
2008-01-28
We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as have been observed in recent experiments.
Auroy, Pascal; Nicolas, Emanuel; Bedouin, Yvan
2017-01-01
No data are available on the ability of an impression coping to resist the manual placement of an abutment replica (implant analog) during prosthodontic laboratory procedures after a direct (pick-up) impression. The purpose of this in vitro study was to evaluate the torque resistance of impression copings after a direct impression, that is, the amount of rotational torque sufficient to induce irreversible displacement of impression copings in the impression material bulk once the impression has been made. A reference model with 5 abutment replicas was constructed. Five impression copings were screwed onto the abutment replicas, and standardized impressions were made. A controlled twisting force was applied to each impression coping. A torque tester recorded the torque variation. Three elastomeric impression materials were tested. ANOVA and the Tukey test (α=.05) were performed using an average of 30 measurements per impression material, with and without adhesive. ANOVA and the Tukey test results showed that the adhesive, cohesive, and mechanical bonds between the impression coping and the impression material depended greatly on the type of material and that the average rupture threshold of these bonds was statistically significantly different in pairwise comparisons (P<.05). The curve analysis showed that when the impression materials are used with adhesives, the deformation of the interface is irreversible beyond 5 Ncm of torque. The polyether impression material is the direct impression material that showed the highest breakdown threshold for adhesive bonding when used without an adhesive. The use of an adhesive on impression copings leads to irreversible deformation of the interface at torque stresses well below the adhesive bond threshold of the same materials used without an adhesive. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Aging and visual 3-D shape recognition from motion.
Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Shain, Lindsey M; Pedersen, Lauren E; Kinnard, Jonathan D; Higginbotham, Alexia J; Gilliam, Ashley N
2017-11-01
Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).
Leclerc, Lara; Pourchez, Jérémie; Aubert, Gérald; Leguellec, Sandrine; Vecellio, Laurent; Cottier, Michèle; Durand, Marc
2014-09-01
Improvement of clinical outcome in patients with sinuses disorders involves targeting delivery of nebulized drug into the maxillary sinuses. We investigated the impact of nebulization conditions (with and without 100 Hz acoustic airflow), particle size (9.9 μm, 2.8 μm, 550 nm and 230 nm) and breathing pattern (nasal vs. no nasal breathing) on enhancement of aerosol delivery into the sinuses using a realistic nasal replica developed by our team. After segmentation of the airways by means of high-resolution computed tomography scans, a well-characterized nasal replica was created using a rapid prototyping technology. A total of 168 intrasinus aerosol depositions were performed with changes of aerosol particle size and breathing patterns under different nebulization conditions using gentamicin as a marker. The results demonstrate that the fraction of aerosol deposited in the maxillary sinuses is enhanced by use of submicrometric aerosols, e.g. 8.155 ± 1.476 mg/L of gentamicin in the left maxillary sinus for the 2.8 μm particles vs. 2.056 ± 0.0474 for the 550 nm particles. Utilization of 100-Hz acoustic airflow nebulization also produced a 2- to 3-fold increase in drug deposition in the maxillary sinuses (e.g. 8.155 ± 1.476 vs. 3.990 ± 1.690 for the 2.8 μm particles). Our study clearly shows that optimum deposition was achieved using submicrometric particles and 100-Hz acoustic airflow nebulization with no nasal breathing. It is hoped that our new respiratory nasal replica will greatly facilitate the development of more effective delivery systems in the future.
Yang, Mingjun; Huang, Jing; MacKerell, Alexander D
2015-06-09
Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost due to the multidimensionality of exchanges becomes challenging for use on complex systems under explicit solvent conditions. In this study, we develop a one-dimensional (1D) REX algorithm to concurrently combine the advantages of overall enhanced sampling from Hamiltonian solute scaling and the specific enhancement of collective variables using Hamiltonian biasing potentials. In the present Hamiltonian replica exchange method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom. The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6 to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a wide range of macromolecular systems.
Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces
Hong, Sung Woo; Huh, June; Gu, Xiaodan; Lee, Dong Hyun; Jo, Won Ho; Park, Soojin; Xu, Ting; Russell, Thomas P.
2012-01-01
A simple, versatile approach to the directed self-assembly of block copolymers into a macroscopic array of unidirectionally aligned cylindrical microdomains on reconstructed faceted single crystal surfaces or on flexible, inexpensive polymeric replicas was discovered. High fidelity transfer of the line pattern generated from the microdomains to a master mold is also shown. A single-grained line patterns over arbitrarily large surface areas without the use of top-down techniques is demonstrated, which has an order parameter typically in excess of 0.97 and a slope error of 1.1 deg. This degree of perfection, produced in a short time period, has yet to be achieved by any other methods. The exceptional alignment arises from entropic penalties of chain packing in the facets coupled with the bending modulus of the cylindrical microdomains. This is shown, theoretically, to be the lowest energy state. The atomic crystalline ordering of the substrate is transferred, over multiple length scales, to the block copolymer microdomains, opening avenues to large-scale roll-to-roll type and nanoimprint processing of perfectly patterned surfaces and as templates and scaffolds for magnetic storage media, polarizing devices, and nanowire arrays. PMID:22307591
Can a continuum solvent model reproduce the free energy landscape of a -hairpin folding in water?
NASA Astrophysics Data System (ADS)
Zhou, Ruhong; Berne, Bruce J.
2002-10-01
The folding free energy landscape of the C-terminal -hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the -hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native -strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this -hairpin. Furthermore, the -hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.
Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?
Zhou, Ruhong; Berne, Bruce J.
2002-01-01
The folding free energy landscape of the C-terminal β-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the β-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native β-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this β-hairpin. Furthermore, the β-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and ≈80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields. PMID:12242327
Zhou, Ruhong; Berne, Bruce J
2002-10-01
The folding free energy landscape of the C-terminal beta-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the beta-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native beta-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this beta-hairpin. Furthermore, the beta-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and approximately equal 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.
Rudolph, Heike; Ostertag, Silke; Ostertag, Michael; Walter, Michael H; Luthardt, Ralph Gunnar; Kuhn, Katharina
2018-02-01
The aim of this in vitro study was to assess the reliability of two measurement systems for evaluating the marginal and internal fit of dental copings. Sixteen CAD/CAM titanium copings were produced for a prepared maxillary canine. To modify the CAD surface model using different parameters (data density; enlargement in different directions), varying fit was created. Five light-body silicone replicas representing the gap between the canine and the coping were made for each coping and for each measurement method: (1) light microscopy measurements (LMMs); and (2) computer-assisted measurements (CASMs) using an optical digitizing system. Two investigators independently measured the marginal and internal fit using both methods. The inter-rater reliability [intraclass correlation coefficient (ICC)] and agreement [Bland-Altman (bias) analyses]: mean of the differences (bias) between two measurements [the closer to zero the mean (bias) is, the higher the agreement between the two measurements] were calculated for several measurement points (marginal-distal, marginal-buccal, axial-buccal, incisal). For the LMM technique, one investigator repeated the measurements to determine repeatability (intra-rater reliability and agreement). For inter-rater reliability, the ICC was 0.848-0.998 for LMMs and 0.945-0.999 for CASMs, depending on the measurement point. Bland-Altman bias was -15.7 to 3.5 μm for LMMs and -3.0 to 1.9 μm for CASMs. For LMMs, the marginal-distal and marginal-buccal measurement points showed the lowest ICC (0.848/0.978) and the highest bias (-15.7 μm/-7.6 μm). With the intra-rater reliability and agreement (repeatability) for LMMs, the ICC was 0.970-0.998 and bias was -1.3 to 2.3 μm. LMMs showed lower interrater reliability and agreement at the marginal measurement points than CASMs, which indicates a more subjective influence with LMMs at these measurement points. The values, however, were still clinically acceptable. LMMs showed very high intra-rater reliability and agreement for all measurement points, indicating high repeatability.
Rudolph, Heike; Ostertag, Silke; Ostertag, Michael; Walter, Michael H.; LUTHARDT, Ralph Gunnar; Kuhn, Katharina
2018-01-01
Abstract The aim of this in vitro study was to assess the reliability of two measurement systems for evaluating the marginal and internal fit of dental copings. Material and Methods Sixteen CAD/CAM titanium copings were produced for a prepared maxillary canine. To modify the CAD surface model using different parameters (data density; enlargement in different directions), varying fit was created. Five light-body silicone replicas representing the gap between the canine and the coping were made for each coping and for each measurement method: (1) light microscopy measurements (LMMs); and (2) computer-assisted measurements (CASMs) using an optical digitizing system. Two investigators independently measured the marginal and internal fit using both methods. The inter-rater reliability [intraclass correlation coefficient (ICC)] and agreement [Bland-Altman (bias) analyses]: mean of the differences (bias) between two measurements [the closer to zero the mean (bias) is, the higher the agreement between the two measurements] were calculated for several measurement points (marginal-distal, marginal-buccal, axial-buccal, incisal). For the LMM technique, one investigator repeated the measurements to determine repeatability (intra-rater reliability and agreement). Results For inter-rater reliability, the ICC was 0.848-0.998 for LMMs and 0.945-0.999 for CASMs, depending on the measurement point. Bland-Altman bias was −15.7 to 3.5 μm for LMMs and −3.0 to 1.9 μm for CASMs. For LMMs, the marginal-distal and marginal-buccal measurement points showed the lowest ICC (0.848/0.978) and the highest bias (-15.7 μm/-7.6 μm). With the intra-rater reliability and agreement (repeatability) for LMMs, the ICC was 0.970-0.998 and bias was −1.3 to 2.3 μm. Conclusion LMMs showed lower interrater reliability and agreement at the marginal measurement points than CASMs, which indicates a more subjective influence with LMMs at these measurement points. The values, however, were still clinically acceptable. LMMs showed very high intra-rater reliability and agreement for all measurement points, indicating high repeatability. PMID:29412364
Zhang, Weihong; Chen, Jianhan
2013-06-11
Temperature-based replica exchange (RE) is now considered a principal technique for enhanced sampling of protein conformations. It is also recognized that existence of sharp cooperative transitions (such as protein folding/unfolding) can lead to temperature exchange bottlenecks and significantly reduce the sampling efficiency. Here, we revisit two adaptive temperature-based RE protocols, namely, exchange equalization (EE) and current maximization (CM), that were previously examined using atomistic simulations (Lee and Olson, J. Chem. Physics2011, 134, 24111). Both protocols aim to overcome exchange bottlenecks by adaptively adjusting the simulation temperatures, either to achieve uniform exchange rates (in EE) or to maximize temperature diffusion (CM). By designing a realistic yet computationally tractable coarse-grained protein model, one can sample many reversible folding/unfolding transitions using conventional constant temperature molecular dynamics (MD), standard REMD, EE-REMD, and CM-REMD. This allows rigorous evaluation of the sampling efficiency, by directly comparing the rates of folding/unfolding transitions and convergence of various thermodynamic properties of interest. The results demonstrate that both EE and CM can indeed enhance temperature diffusion compared to standard RE, by ∼3- and over 10-fold, respectively. Surprisingly, the rates of reversible folding/unfolding transitions are similar in all three RE protocols. The convergence rates of several key thermodynamic properties, including the folding stability and various 1D and 2D free energy surfaces, are also similar. Therefore, the efficiency of RE protocols does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational rearrangements. This is particularly true considering that virtually all RE simulations of proteins in practice involve exchange attempt frequencies (∼ps(-1)) that are several orders of magnitude faster than the slowest protein motions (∼μs(-1)). Our results also suggest that the efficiency of RE will not likely be improved by other protocols that aim to accelerate exchange or temperature diffusion. Instead, protocols with some types of guided tempering will likely be necessary to drive faster large-scale conformational transitions.