The effect of contaminant on skid resistance of pavement surface
NASA Astrophysics Data System (ADS)
Lubis, A. S.; Muis, Z. A.; Gultom, E. M.
2018-03-01
Skid resistance of the pavement surface is the force generated by the movement of the wheels of the vehicle on the surface of the pavement. Contaminants are materials that cover the surface of the pavement affecting the skid resistance of the pavement surface. The contaminant acts as a coating interface or direct contact of the pavement surface with the wheels of the vehicle which can cause adverse effects, such as the decreasing value of skid resistance of the pavement surface. This study aims to analyze the effect of some types of contaminants on skid resistance of pavement surfaces. The contaminants that used in this study were water, sand, salt, and lubricating oil. The study was conducted by direct testing on two types of pavement: flexible pavement and rigid pavement. The measurements of the skid resistance were made using the British Pendulum Tester with British Pendulum Number for two conditions: before and after the pavement surface was covered with contaminants. The results showed that there was a contaminant effect on skid resistance of pavement surface. Skid resistance of pavement surfaces decreased after the contaminants were covered in water, sand, salt, and lubricant by 20.1%, 22.8%, 37.1% and 50.5% respectively.
Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei
2018-05-29
Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.
In situ study on surface roughening in radiation-resistant Ag nanowires
NASA Astrophysics Data System (ADS)
Shang, Z.; Li, Jin; Fan, C.; Chen, Y.; Li, Q.; Wang, H.; Shen, T. D.; Zhang, X.
2018-05-01
Metallic materials subjected to heavy ion irradiation experience significant radiation damage. Free surface is a type of effective defect sinks to improve the radiation resistance in metallic materials. However, the radiation resistance of metallic nanowires (NWs) is largely unknown. Here we show, via in situ Kr ion irradiations in a transmission electron microscope, Ag NWs exhibited much better radiation resistance than coarse-grained Ag. Irradiation-induced prominent surface roughening in Ag NWs provides direct evidence for interaction between defect clusters and free surface. Diameter dependent variation of the surface roughness in irradiated Ag NWs has also been observed. This study provides insight on mechanisms of enhanced radiation resistance via free surfaces in metallic NWs.
In situ study on surface roughening in radiation-resistant Ag nanowires.
Shang, Z; Li, Jin; Fan, C; Chen, Y; Li, Q; Wang, H; Shen, T D; Zhang, X
2018-05-25
Metallic materials subjected to heavy ion irradiation experience significant radiation damage. Free surface is a type of effective defect sinks to improve the radiation resistance in metallic materials. However, the radiation resistance of metallic nanowires (NWs) is largely unknown. Here we show, via in situ Kr ion irradiations in a transmission electron microscope, Ag NWs exhibited much better radiation resistance than coarse-grained Ag. Irradiation-induced prominent surface roughening in Ag NWs provides direct evidence for interaction between defect clusters and free surface. Diameter dependent variation of the surface roughness in irradiated Ag NWs has also been observed. This study provides insight on mechanisms of enhanced radiation resistance via free surfaces in metallic NWs.
NASA Astrophysics Data System (ADS)
Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun
2017-04-01
Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors.
Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun
2017-01-01
Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors. PMID:28393879
Martins, Liliana Raquel Leite; Pina, Susana Maria Rocha; Simões, Romeo Luís Rocha; de Matos, Augusto José Ferreira; Rodrigues, Pedro; da Costa, Paulo Martins Rodrigues
2013-01-01
The objective of the study described in this article was to characterize the antimicrobial resistance profiles among E. coli strains isolated from cohabitant pets and humans, evaluating the concurrent colonization of pets, owners, and home surfaces by bacteria carrying the same antimicrobial-resistant genes. The authors also intended to assess whether household surfaces and objects could contribute to the within-household antimicrobial-resistant gene diffusion between human and animal cohabitants. A total of 124 E. coli strains were isolated displaying 24 different phenotypic patterns with a remarkable percentage of multiresistant ones. The same resistance patterns were isolated from the dog's urine, mouth, the laundry floor, the refrigerator door, and the dog's food bowl. Some other multiresistant phenotypes, as long as resistant genes, were found repeatedly in different inhabitants and surfaces of the house. Direct, close contact between all the cohabitants and the touch of contaminated household surfaces and objects could be an explanation for these observations.
Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing
NASA Astrophysics Data System (ADS)
Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.
2017-09-01
The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.
Larsen, Bryan; Essmann, Michael K; Geletta, Simon; Duff, Barbara
2012-01-01
The object of this study was to quantify vancomycin-resistant enterococci in surface water from Central Iowa obtained from April 2007 to August 2007. Water from established sampling sites in four watersheds was plated on bile-esculin agar. Presumptively identified enterococci were categorized as "above the level of concern" if the sample contained ≥ 107 CFU per 100 ml. Confirmation of isolates as enterococci was based on growth at elevated temperature in high salt and on Enterococcus agar. Isolates that grew on 6 μg/ml vancomycin agar were deemed resistant. PCR analysis of resistant strains characterized vancomycin resistance genes. 77.2% of surface water samples from Central Iowa contained enterococci. Among enterococcal isolates, 10.4% grew on media containing 6 μg/ml vancomycin. PCR analysis of resistance genes showed a preponderance of VanC2/C3 in the area studied and VanB was not detected. Vancomycin-resistant Enterococcus is present in Central Iowa surface waters but resistance rarely involved VanA genotypes. Nevertheless, the potential for community-acquired infections remains a risk.
Teeple, Andrew; McDonald, Alyson K.; Payne, Jason; Kress, Wade H.
2009-01-01
The U.S. Geological Survey, in cooperation with Texas A&M University AgriLife, did a surface geophysical investigation at the Pecos River Ecosystem Project study site near Mentone in West Texas intended to determine shallow (to about 14 meters below the water [river] surface) subsurface composition (lithology) in and near treated (eradicated of all saltcedar) and control (untreated) riparian zone sites during June-August 2006. Land-based direct-current resistivity profiling was applied in a 240-meter section of the riverbank at the control site, and waterborne direct-current continuous resistivity profiling (CRP) was applied along a 2.279-kilometer reach of the river adjacent to both sites to collect shallow subsurface resistivity data. Inverse modeling was used to obtain a nonunique estimate of the true subsurface resistivity from apparent resistivity calculated from the field measurements. The land-based survey showed that the sub-surface at the control site generally is of relatively low resis-tivity down to about 4 meters below the water surface. Most of the section from about 4 to 10 meters below the water surface is of relatively high resistivity. The waterborne CRP surveys convey essentially the same electrical representation of the lithology at the control site to 10 meters below the water surface; but the CRP surveys show considerably lower resistivity than the land-based survey in the subsection from about 4 to 10 meters below the water surface. The CRP surveys along the 2.279-kilometer reach of the river adjacent to both the treated and control sites show the same relatively low resistivity zone from the riverbed to about 4 meters below the water surface evident at the control site. A slightly higher resistivity zone is observed from about 4 to 14 meters below the water surface along the upstream approximately one-half of the profile than along the downstream one-half. The variations in resistivity could not be matched to variations in lithology because sufficient rock samples were not available.
NASA Astrophysics Data System (ADS)
Krylova, S. E.; Oplesnin, S. P.; Goltyapin, M. I.
2018-03-01
The results of the developed industrial technology for surface restoration of corrosion-resistant steels by laser surfacing are presented in the article. A comparative analysis of the microstructure of the welded wear-resistant layer, the fusion zone with the base material and the diffusion zone for different technological surfacing regimes are given. Dyrometric studies and nondestructive testing of the deposited layer for defects were performed
Effect of modification of oxide layer on NiTi stent corrosion resistance.
Trépanier, C; Tabrizian, M; Yahia, L H; Bilodeau, L; Piron, D L
1998-01-01
Because of its good radiopacity, superelasticity, and shape memory properties, nickel-titanium (NiTi) is a potential material for fabrication of stents because these properties can facilitate their implantation and precise positioning. However, in vitro studies of NiTi alloys report the dependence of alloy biocompatibility and corrosion behavior on surface conditions. Surface oxidation seems to be very promising for improving the corrosion resistance and biocompatibility of NiTi. In this work, we studied the effect on corrosion resistance and surface characteristics of electropolishing, heat treatment, and nitric acid passivation of NiTi stents. Characterization techniques such as potentiodynamic polarization tests, scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy were used to relate corrosion behavior to surface characteristics and surface treatments. Results show that all of these surface treatments improve the corrosion resistance of the alloy. This improvement is attributed to the plastically deformed native oxide layer removal and replacement by a newly grown, more uniform one. The uniformity of the oxide layer, rather than its thickness and composition, seems to be the predominant factor to explain the corrosion resistance improvement.
Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466
Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
Taučer-Kapteijn, Maja; Hoogenboezem, Wim; Heiliegers, Laura; de Bolster, Danny; Medema, Gertjan
2016-07-01
The emergence of clinical enterococcal isolates that are resistant to both ampicillin and vancomycin is a cause of great concern, as therapeutic alternatives for the treatment of infections caused by such organisms are becoming limited. Aquatic environments could play a role in the dissemination of antibiotic resistant enterococci. This study investigated the presence of ampicillin and vancomycin resistant enterococci in the treated effluent of six wastewater treatment plants (WWTPs) and in surface water used as a source for drinking water production in the Netherlands. Membrane filtration in combination with selective media with ampicillin or vancomycin was applied to determine the presence of ampicillin resistant Enterococcus (ARE) and vancomycin resistant Enterococcus (VRE) species. Ampicillin resistant Enterococcus faecium (minimal inhibitory concentration (MIC) >16μg/mL; n=1033) was observed in all studied WWTP effluents. In surface water used for drinking water production (intake locations), no ARE or VRE were observed. At both types of location, intrinsic vancomycin resistant Pediococcus spp., Leuconostoc spp. and Lactobacillus spp. were isolated with the vancomycin medium. The ampicillin resistant E. faecium (AREfm) isolates (n=113) did not contain the vanA or vanB gene, but MIC testing for vancomycin showed intermediate vancomycin resistance (2-8μgmL(-1)) to occur in these AREfm strains. This study documents the discharge of ampicillin resistant E. faecium strains with intermediate vancomycin resistance by the WWTPs into the surface water, but no presence of these strains downstream at intake locations for drinking water production. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.
2015-12-01
The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.
Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.
A mobile precursor determines protein resistance on nanostructured surfaces.
Wang, Kang; Chen, Ye; Gong, Xiangjun; Xia, Jianlong; Zhao, Junpeng; Shen, Lei
2018-05-09
Biomaterials are often engineered with nanostructured surfaces to control interactions with proteins and thus regulate their biofunctions. However, the mechanism of how nanostructured surfaces resist or attract proteins together with the underlying design rules remains poorly understood at a molecular level, greatly limiting attempts to develop high-performance biomaterials and devices through the rational design of nanostructures. Here, we study the dynamics of nonspecific protein adsorption on block copolymer nanostructures of varying adhesive domain areas in a resistant matrix. Using surface plasmon resonance and single molecule tracking techniques, we show that weakly adsorbed proteins with two-dimensional diffusivity are critical precursors to protein resistance on nanostructured surfaces. The adhesive domain areas must be more than tens or hundreds of times those of the protein footprints to slow down the 2D-mobility of the precursor proteins for their irreversible adsorption. This precursor model can be used to quantitatively analyze the kinetics of nonspecific protein adsorption on nanostructured surfaces. Our method is applicable to precisely manipulate protein adsorption and resistance on various nanostructured surfaces, e.g., amphiphilic, low-surface-energy, and charged nanostructures, for the design of protein-compatible materials.
Comparative abrasive wear resistance and surface analysis of dental resin-based materials
Nayyer, Maleeha; Zahid, Shahreen; Hassan, Syed Hammad; Mian, Salman Aziz; Mehmood, Sana; Khan, Haroon Ahmed; Kaleem, Muhammad; Zafar, Muhammad Sohail; Khan, Abdul Samad
2018-01-01
Objective: The objective of this study was to assess the surface properties (microhardness and wear resistance) of various composites and compomer materials. In addition, the methodologies used for assessing wear resistance were compared. Materials and Methods: This study was conducted using restorative material (Filtek Z250, Filtek Z350, QuiXfil, SureFil SDR, and Dyract XP) to assess wear resistance. A custom-made toothbrush simulator was employed for wear testing. Before and after wear resistance, structural, surface, and physical properties were assessed using various techniques. Results: Structural changes and mass loss were observed after treatment, whereas no significant difference in terms of microhardness was observed. The correlation between atomic force microscopy (AFM) and profilometer and between wear resistance and filler volume was highly significant. The correlation between wear resistance and microhardness were insignificant. Conclusions: The AFM presented higher precision compared to optical profilometers at a nanoscale level, but both methods can be used in tandem for a more detailed and precise roughness analysis. PMID:29657526
Hamilton, Elizabeth; Kaneene, John B; May, Katherine J; Kruger, John M; Schall, William; Beal, Matthew W; Hauptman, Joe G; DeCamp, Charles E
2012-06-15
To determine the prevalence and antimicrobial resistance of enterococci and staphylococci collected from environmental surfaces at a veterinary teaching hospital (VTH). Longitudinal study. Samples collected from surfaces in 5 areas (emergency and critical care, soft tissue and internal medicine, and orthopedic wards; surgery preparation and recovery rooms; and surgery office and operating rooms) of a VTH. Selected surfaces were swabbed every 3 months during the 3-year study period (2007 to 2009). Isolates of enterococci and staphylococci were identified via biochemical tests, and antimicrobial susceptibility was evaluated with a microbroth dilution technique. A subset of isolates was analyzed to assess clonality by use of pulsed-field gel electrophoresis. 430 samples were collected, and isolates of enterococci (n = 75) and staphylococci (110) were identified. Surfaces significantly associated with isolation of Enterococcus spp and Staphylococcus spp included cages and a weight scale. Fourteen Enterococcus spp isolates and 17 Staphylococcus spp isolates were resistant to ≥ 5 antimicrobials. Samples collected from the scale throughout the study suggested an overall increase in antimicrobial resistance of Enterococcus faecium over time. Clonality was detected for E faecium isolates collected from 2 different surfaces on the same day. Although not surprising, the apparent increase in antimicrobial resistance of E faecium was of concern because of the organism's ability to transmit antimicrobial resistance genes to other pathogens. Results reported here may aid in identification of critical control points to help prevent the spread of pathogens in VTHs.
Effect of interstitial impurities on the field dependent microwave surface resistance of niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, M.; Grassellino, A.; Checchin, M.
Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobiummore » resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. Lastly, these results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less
Effect of interstitial impurities on the field dependent microwave surface resistance of niobium
Martinello, M.; Grassellino, A.; Checchin, M.; ...
2016-08-09
Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobiummore » resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. Lastly, these results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less
Design of bituminous surface mixes with high skid resistance.
DOT National Transportation Integrated Search
1974-01-01
The Virginia Highway Research Council has proposed a study of the skid resistance of bituminous surfaces incorporating relatively hard and expensive aggregates. The hardness of the aggregates to be used aluminum oxide (Exolon) and calcined kaolin -- ...
NASA Astrophysics Data System (ADS)
Robati, Masoud
This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS amount in micro-surfacing mixtures; 6) new colored micro-surfacing formulations with improved durability and performance: The significant improvement of around 45% in rutting resistance of colored and conventional micro-surfacing mixtures is achieved through employing low penetration grade bitumen polymer modified asphalt emulsion stabilized using nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, Martina
Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatmentmore » capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator causing temperature rising. The physics behind the magnetic flux expulsion is also analyzed, showing that during a fast cooldown the magnetic field structures, called vortices, tend to move in the same direction of the thermal gradient, from the Meissner state region to the mixed state region, minimizing the Gibbs free energy. On the other hand, during a slow cool down, not only the vortices movement is limited by the absence of thermal gradients, but, also, at the end of the superconducting transition, the magnetic field concentrates along randomly distributed normal-conducting region from which it cannot be expelled anymore. The systematic study of the surface resistance components performed for the different surface treatments, reveals that the BCS surface resistance and the trapped flux surface resistance have opposite trends as a function of the surface impurity content, defined by the mean free path. At medium field value, the BCS surface resistance is minimized for nitrogen-doped cavities and significantly larger for standard niobium cavities. On the other hand, Nitrogen-doped cavities show larger dissipation due to trapped flux. This is consequence of the bell-shaped trend of the trapped flux sensitivity as a function of the mean free path. Such experimental findings allow also a better understanding of the RF dissipation due to trapped flux. The best compromise between all the surface resistance components, taking into account the possibility of trapping some external magnetic field, is given by light nitrogen-doping treatments. However, the beneficial effects of the nitrogen-doping is completely lost when large amount of magnetic field is trapped during the cooldown, underlying the importance of both cooldown and magnetic field shielding optimization in high quality factors cryomodules.« less
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
NASA Astrophysics Data System (ADS)
Mundari, Noor Danish Ahrar; Khan, Arifur Rahman; Chiga, Masaru; Okumura, Teppei; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shichun; Kubo, Takayuki; Geng, R. L.
Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less
Huang, Shichun; Kubo, Takayuki; Geng, R. L.
2016-08-26
Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less
Long-term efficacy of a self-disinfecting coating in an intensive care unit.
Tamimi, Akrum H; Carlino, Sheri; Gerba, Charles P
2014-11-01
Cleaning and disinfecting fomites can effectively remove/kill pathogens on surfaces, but studies have shown that more than one-half the time, surfaces are not adequately cleaned or are recontaminated within minutes. This study evaluated a product designed to create a long-lasting surface coating that provides continuous disinfecting action. This study was performed in an intensive care unit (ICU) in a major hospital. Various sites within the ICU were cultured before treatment and then at 1, 2, 4, 8, and 15 weeks after application of an antimicrobial coating. Samples were cultured for total bacteria, as well as Clostridium difficile, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and carbapenemase-resistant Enterobacteriaceae. The average bacterial count on all treated surfaces was reduced by >99% (2 logs) for at least 8 weeks after treatment. Overall, average levels of bacteria never returned to those observed before treatment even after 15 weeks. Antibiotic-resistant bacteria were found on 25% of the sites tested before treatment, but were isolated at only 1 site during the 15 weeks after treatment. The product assessed in this study was found to have persisted over 15 weeks in reducing the total number of bacteria and antibiotic resistant bacteria on surfaces within an ICU. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Study on ceramic coating on the enamel surface using a carbon dioxide laser.
Nihei, Tomotaro; Kurata, Shigeaki; Ohashi, Katsura; Umemoto, Kozo; Teranaka, Toshio
2011-01-01
The aims of this study were to evaluate a new restorative method using a carbon dioxide laser (CO(2)-laser) and to evaluate the acid resistance of teeth. Experimental calcium phosphate glass (CPG) powder and two low melting point ceramics (Finesse and zirconium silicate) were fused to enamel surfaces using a CO(2)-laser at an irradiation intensity of 1.0 watt for 30 seconds with a beam size of 0.49 mm at the focal point. The treated teeth were observed with a scanning electron microscope, and the acid resistance of the treated enamel surfaces was evaluated. The CPG fused successfully to the enamel surface, and the treated enamel surface showed high acid resistance compared with the low melting point ceramics and the non-irradiated surfaces. This system may lead to the development of new restorative methods that do not require the use of bonding agents.
Slip resistance of casual footwear: implications for falls in older adults.
Menz, H B; Lord, S T; McIntosh, A S
2001-01-01
A large proportion of falls in older people are caused by slipping. Previous occupational safety research suggests that inadequate footwear may contribute to slipping accidents; however, no studies have assessed the slip resistance of casual footwear. To evaluate the slip resistance of different types of casual footwear over a range of common household surfaces. The slip resistance of men's Oxford shoes and women's fashion shoes with different heel configurations was determined by measuring the dynamic coefficient of friction (DCoF) at heel contact (in both dry and wet conditions) on a bathroom tile, concrete, vinyl flooring and a terra cotta tile using a specially-designed piezoelectric force plate apparatus. Analysis of variance revealed significant shoe, surface, and shoe-surface interaction effects. Men's Oxford shoes exhibited higher average DCoF values than the women's fashion shoes, however, none of the shoes could be considered safe on wet surfaces. Application of a textured sole material did not improve slip resistance of any of the shoes on wet surfaces. Heel geometry influences the slip resistance of casual footwear on common household surfaces. The suboptimal performance of all of the test shoes on wet surfaces suggests that a safety standard for casual footwear is required to assist in the development of safe footwear for older people. Copyright 2001 S. Karger AG, Basel
Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian
2017-05-30
We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.
Peng, Shan; Bhushan, Bharat
2016-01-01
Superoleophobic aluminum surfaces are of interest for self-cleaning, anti-smudge (fingerprint resistance), anti-fouling, and corrosion resistance applications. In the published literature on superoleophobic aluminum surfaces, mechanical durability, self-cleaning, and anti-smudge properties data are lacking. Microstep structure has often been used to prepare superhydrophobic aluminum surfaces which produce the microstructure. The nanoreticula structure has also been used, and is reported to be able to trap air-pockets, which are desirable for a high contact angle. In this work, the microstep and nanoreticula structures were produced on aluminum surfaces to form a hierarchical micro/nanostructure by a simple two-step chemical etching process. The hierarchical structure, when modified with fluorosilane, made the surface superoleophobic. The effect of nanostructure, microstructure, and hierarchical structure on wettability and durability were studied and compared. The superoleophobic aluminum surfaces were found to be wear resistant, self-cleaning, and have anti-smudge and corrosion resistance properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Teeple, Andrew; Vrabel, Joseph; Kress, Wade H.; Cannia, James C.
2009-01-01
In 2005, the State of Nebraska adopted new legislation that in part requires local Natural Resources Districts to include the effect of groundwater use on surface-water systems in their groundwater management plan. In response the U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, did a study during 2006-07 to investigate the surface-water and groundwater interaction within a 79,800-square-kilometer area in north-central Nebraska. To determine how streambed materials affect surface-water and groundwater interaction, surface geophysical and lithologic data were integrated at four sites to characterize the hydrogeologic conditions within the study area. Frequency-domain electromagnetic and waterborne direct- current resistivity profiles were collected to map the near-surface hydrogeologic conditions along sections of Ainsworth Canal near Ainsworth, Nebraska; Mirdan and Geranium Canals near Ord, Nebraska; North Loup River near Ord, Nebraska; and Middle Loup River near Thedford, Nebraska. Lithologic data were collected from test holes at each site to aid interpretation of the geophysical data. Geostatistical analysis incorporating the spatial variability of resistivity was used to account for the effect of lithologic heterogeneity on effective hydraulic permeability. The geostatistical analysis and lithologic data descriptions were used to make an interpretation of the hydrogeologic system and derive estimates of surface-water/groundwater interaction potential within the canals and streambeds. The estimated interaction potential at the Ainsworth Canal site and the Mirdan and Geranium Canal site is generally low to moderately low. The sediment textures at nearby test holes typically were silt and clay and fine-to-medium sand. The apparent resistivity values for these sites ranged from 2 to 120 ohm-meters. The vertical and horizontal variability of the apparent resistivity data were consistently low. Low resistive variability indicates little lithologic heterogeneity for either canal site. The surface-water/groundwater interaction-potential estimates are in agreement with the narrow frequency distribution of resistivity, low apparent resistivities, low spatial heterogeneity, and test-hole grain-size ranges. The estimated surface-water/groundwater interaction potential at the North Loup and Middle Loup River sites is moderate to moderately high. The sediment textures at nearby test holes were predominantly fine, medium, and coarse sand with some silt and silty to sandy clay. The apparent resistivity values for these sites ranged from 34 to 1,338 ohm-meters. The vertical variability of the resistivity data was moderately high. The horizontal variability at these sites is low to moderately low. The higher resistive variability at these sites indicates generally greater lithologic heterogeneity than at either the Ainsworth Canal site or the Mirdan and Geranium Canal site. The surface-water/groundwater interaction-potential estimates are in agreement with the generally moderate to high apparent resistivity, the greater spatial heterogeneity, and the variable lithologic texture. A higher interaction potential as compared to the canal sites is expected because of the higher subsurface resistivity and greater lithologic heterogeneity.
Effect of interstitial impurities on the field dependent microwave surface resistance of niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, M., E-mail: mmartine@fnal.gov; Checchin, M.; Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. This effect is attributed to the lowering of the Mattis-Bardeen surface resistance with increasing accelerating field; however, the microscopic origin of this phenomenon is poorly understood. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper, we conduct a systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surfacemore » treatments for niobium resonators. Adding these results together, we are able to show which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide insights on the physics behind the change in the field dependence of the Mattis-Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less
Chemical effect on ozone deposition over seawater
Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...
Sayah, Raida S.; Kaneene, John B.; Johnson, Yvette; Miller, RoseAnn
2005-01-01
A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria. PMID:15746342
Proximity charge sensing for semiconductor detectors
Luke, Paul N; Tindall, Craig S; Amman, Mark
2013-10-08
A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.
Interface Engineering of Garnet Solid Electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Lei
Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low interfacial resistances. This opens new opportunities for garnet solid electrolyte in practical applications.
NASA Astrophysics Data System (ADS)
Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin
2017-12-01
In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.
Jindal, Shivali; Anand, Sanjeev; Huang, Kang; Goddard, Julie; Metzger, Lloyd; Amamcharla, Jayendra
2016-12-01
The development of bacterial biofilms on stainless steel (SS) surfaces poses a great threat to the quality of milk and other dairy products as the biofilm-embedded bacteria can survive thermal processing. Established biofilms offer cleaning challenges because they are resistant to most of the regular cleaning protocols. Sporeforming thermoduric organisms entrapped within biofilm matrix can also form heat-resistant spores, and may result in a long-term persistent contamination. The main objective of this study was to evaluate the efficacy of different nonfouling coatings [AMC 18 (Advanced Materials Components Express, Lemont, PA), Dursan (SilcoTek Corporation, Bellefonte, PA), Ni-P-polytetrafluoroethylene (PTFE, Avtec Finishing Systems, New Hope, MN), and Lectrofluor 641 (General Magnaplate Corporation, Linden, NJ)] on SS plate heat exchanger surfaces, to resist the formation of bacterial biofilms. It was hypothesized that modified SS surfaces would promote a lesser amount of deposit buildup and bacterial adhesion as compared with the native SS surface. Vegetative cells of aerobic sporeformers, Geobacillus stearothermophilus (ATCC 15952), Bacillus licheniformis (ATCC 6634), and Bacillus sporothermodurans (DSM 10599), were used to study biofilm development on the modified and native SS surfaces. The adherence of these organisms, though influenced by surface energy and hydrophobicity, exhibited no apparent relation with surface roughness. The Ni-P-PTFE coating exhibited the least bacterial attachment and milk solid deposition, and hence, was the most resistant to biofilm formation. Scanning electron microscopy, which was used to visualize the extent of biofilm formation on modified and native SS surfaces, also revealed lower bacterial attachment on the Ni-P-PTFE as compared with the native SS surface. This study thus provides evidence of reduced biofilm formation on the modified SS surfaces. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Antibiotic resistance genes and residual antimicrobials in cattle feedlot surface soil
USDA-ARS?s Scientific Manuscript database
Antibiotic residues and resistant bacteria in cattle feedlot manure may impact antibiotic resistance in the environment. This study investigated common antimicrobials (tetracyclines and monensin) and associated resistance genes in cattle feedlot soils over time. Animal diets and other feedlot soil...
2017-01-01
The aim of this study was to investigate the effect of 50% hydrofluoric acid (HF) surface treatment on the cyclic fatigue resistance (CFR) of K3 NiTi instruments. Twenty as-received and twenty HF-treated K3 NiTi instruments were compared in CFR. The surface texture and fracture surface of two instrument groups were examined with a scanning electron microscope (SEM). Additionally, any change of Ni and Ti composition from both instrument groups was investigated using energy dispersive spectrometry. The results were analyzed with t-test. The HF-treated K3 group showed statistically higher cyclic fatigue resistance than as-received K3 group (P < 0.05). HF-treated K3 instruments showed smoother and rounded surface compared to as-received K3 under SEM observation. The fracture surfaces of both groups showed typical patterns of cyclic fatigue fracture. There was no difference in surface Ni and Ti composition between two groups. HF treatment of K3 instruments smoothed the file surface and increased the cyclic fatigue resistance, while it had no effect on surface ion composition and the file fracture pattern. PMID:28539854
NASA Astrophysics Data System (ADS)
Que, Like
Wear is one of the major causes of artificial total knee arthroplasty (TKA) failure. Wear debris can cause adverse reactions to the surrounding tissue which can ultimately lead to loosening of the prosthesis. The wear behavior of UHMWPE tibial components have been studied extensively, but relatively little attention has been paid to the CoCrMo femoral component. The goal of the present study was to investigate the wear mechanisms of CoCrMo femoral components, to study the effect of CoCrMo alloy surface roughness on the wear of UHMWPE, and to determine the effect of heat treatments on the wear resistance of the CoCrMo implant alloys. The surface roughness of twenty-seven retrieved CoCrMo femoral components was analyzed. A multiple station wear testing machine and a wear fixture attached to an MTS 858 bionix system were built and used for in vitro wear studies of the CoCrMo/UHMWPE bearing couple. Solution and aging treatments were applied to the CoCrMo alloys. A white light interference surface profilometer (WLISP) and a scanning electron microscope (SEM) were used to measure the surface roughness and to study wear mechanisms of CoCrMo alloy. An optical microscope was used for alloy microstructure study. X-ray diffraction tests were performed to identify alloy phase transformation after aging. The micro-structure, hardness, and wear resistance of the alloys were studied. Surface roughness was used to quantify alloy wear, and the minimum number of surface roughness measurements required to obtain a reliable and repeatable characterization of surface roughness for a worn alloy surface was determined. The surfaces of the retrieved CoCrMo femoral components appeared to be damaged by metal particles embedded in the UHMWPE tibial component and metal-on-metal wear due to UHMWPE tibial component through-wear. Surface roughness of the femoral components was not correlated with patient age, weight, sex, or length of implantation. In vitro wear tests showed that when the CoCrMo alloy surface roughness was higher than 0.022 mum Ra (surface roughness average), UHMWPE wear increased with increasing CoCrMo alloy surface roughness. Bone and poly(methyl methacrylate) (PMMA) bone cement abrasive particles created scratches on the alloy via a ploughing mechanism, and resulted in significantly rougher surfaces than controls without particles (P < 0.01). Solution treatments at 1230sp°C and 1245sp°C reduced the hardness and wear resistance of the as-cast F75 CoCrMo alloy. Aging at 700sp°C caused recrystallization of the forged F799 alloy and improved wear resistance. Thermo-mechanical treatments have the potential to increase the lifetime of artificial joints by increasing the wear resistance of CoCrMo components.
Tissue resistivity estimation in the presence of positional and geometrical uncertainties.
Baysal, U; Eyüboğlu, B M
2000-08-01
Geometrical uncertainties (organ boundary variation and electrode position uncertainties) are the biggest sources of error in estimating electrical resistivity of tissues from body surface measurements. In this study, in order to decrease estimation errors, the statistically constrained minimum mean squared error estimation algorithm (MiMSEE) is constrained with a priori knowledge of the geometrical uncertainties in addition to the constraints based on geometry, resistivity range, linearization and instrumentation errors. The MiMSEE calculates an optimum inverse matrix, which maps the surface measurements to the unknown resistivity distribution. The required data are obtained from four-electrode impedance measurements, similar to injected-current electrical impedance tomography (EIT). In this study, the surface measurements are simulated by using a numerical thorax model. The data are perturbed with additive instrumentation noise. Simulated surface measurements are then used to estimate the tissue resistivities by using the proposed algorithm. The results are compared with the results of conventional least squares error estimator (LSEE). Depending on the region, the MiMSEE yields an estimation error between 0.42% and 31.3% compared with 7.12% to 2010% for the LSEE. It is shown that the MiMSEE is quite robust even in the case of geometrical uncertainties.
Electron mean free path dependence of the vortex surface impedance
Checchin, M.; Martinello, M.; Grassellino, A.; ...
2017-01-17
In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less
Electron mean free path dependence of the vortex surface impedance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, M.; Martinello, M.; Grassellino, A.
In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less
Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.
Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan
2018-03-29
Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.
Microwave surface resistance of MgB2
NASA Astrophysics Data System (ADS)
Zhukov, A. A.; Purnell, A.; Miyoshi, Y.; Bugoslavsky, Y.; Lockman, Z.; Berenov, A.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.; Hao, Ling; Gallop, J.; MacManus-Driscoll, J. L.; Cohen, L. F.
2002-04-01
The microwave power and frequency dependence of the surface resistance of MgB2 films and powder samples were studied. Sample quality is relatively easy to identify by the breakdown in the ω2 law for poor-quality samples at all temperatures. The performance of MgB2 at 10 GHz and 21 K was compared directly with that of high-quality YBCO films. The surface resistance of MgB2 was found to be approximately three times higher at low microwave power and showed an onset of nonlinearity at microwave surface fields ten times lower than the YBCO film. It is clear that MgB2 films are not yet optimized for microwave applications.
Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Long; Jiang, Bailing; Ge, Yanfeng
2013-05-21
Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on themore » surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.« less
Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices
NASA Astrophysics Data System (ADS)
Rokicki, Ryszard; Hryniewicz, Tadeusz; Pulletikurthi, Chandan; Rokosz, Krzysztof; Munroe, Norman
2015-04-01
Haemocompatibility of Nitinol implantable devices and their corrosion resistance as well as resistance to fracture are very important features of advanced medical implants. The authors of the paper present some novel methods capable to improve Nitinol implantable devices to some marked degree beyond currently used electropolishing (EP) processes. Instead, a magnetoelectropolishing process should be advised. The polarization study shows that magnetoelectropolished Nitinol surface is more corrosion resistant than that obtained after a standard EP and has a unique ability to repassivate the surface. Currently used sterilization processes of Nitinol implantable devices can dramatically change physicochemical properties of medical device and by this influence its biocompatibility. The Authors' experimental results clearly show the way to improve biocompatibility of NiTi alloy surface. The final sodium hypochlorite treatment should replace currently used Nitinol implantable devices sterilization methods which rationale was also given in our previous study.
Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles
NASA Astrophysics Data System (ADS)
Liu, Aiguo; Guo, Mianhuan; Hu, Hailong
2010-08-01
Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.
Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu
2015-01-28
Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces.
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate information on the condition of the subsurface is very important for site evaluation for engineering purposes. In this study two dimensional (2D) geoelectrical resistivity survey and cone penetration tests were conducted to study the hazardous effect of excess near surface water on the foundation of building in a reclaimed land located at Victoria Island area of Lagos State. The results of the inverted 2D geoelectrical resistivity data revealed three distinct geoelectrical layers characterized by low to moderate electrical resistivity of 2.23 and 129Ωm and 9.46 to 636Ωm respectively. The topsoil is characterized by wet sandy soil, which is underlain by sandy clay and banded at the below by a geologic formation of low resistivity which is suspected to be clay. The clay material may be responsible for the excess water retention observed in the area. The CPT method on the other hand revealed a geological formation of low resistance to penetration between 2-3 kg/cm2 from the topsoil to a depth of 7 m, which may be the effect of excess water in the near surface. This study revealed that the foundation of building may not be founded directly on the soil in any reclaimed land as this may result in collapse as a result of upward migration of water to the near surface.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
Zhong, Ruidan; He, Xugang; Schneeloch, J. A.; ...
2015-05-29
Three-dimensional topological insulators and topological crystalline insulators represent new quantum states of matter, which are predicted to have insulating bulk states and spin-momentum-locked gapless surface states. Experimentally, it has proven difficult to achieve the high bulk resistivity that would allow surface states to dominate the transport properties over a substantial temperature range. Here we report a series of indium-doped Pb 1-xSn xTe compounds that manifest huge bulk resistivities together with evidence consistent with the topological character of the surface states for x ≳ 0.35, based on thickness-dependent transport studies and magnetoresistance measurements. For these bulk-insulating materials, the surface states determinemore » the resistivity for temperatures beyond 20 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Vijay K.; Jackson, John; Teysseyre, Sebastien
The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping ofmore » surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms« less
Core muscle activity in a series of balance exercises with different stability conditions.
Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C
2015-07-01
Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces). Copyright © 2015 Elsevier B.V. All rights reserved.
Latent heat exchange in the boreal and arctic biomes.
Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank
2014-11-01
In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling. © 2014 John Wiley & Sons Ltd.
A new, bright and hard aluminum surface produced by anodization
NASA Astrophysics Data System (ADS)
Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei
2017-07-01
Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.
Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar
2008-02-01
This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.
NASA Astrophysics Data System (ADS)
Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip
2015-06-01
Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.
Giebułtowicz, Joanna; Tyski, Stefan; Wolinowska, Renata; Grzybowska, Wanda; Zaręba, Tomasz; Drobniewska, Agata; Wroczyński, Piotr; Nałęcz-Jawecki, Grzegorz
2018-02-01
Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrug-resistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5'-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-05-01
Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-01-01
Abstract Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear–surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738
Ranjbar, Reza; Sami, Mehrdad
2017-01-01
Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli ( E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. The aim of this study was to investigate the prevalence of bla TEM , bla CTX , bla SHV , bla OXA and bla VEB associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including bla TEM , bla CTX , bla SHV , bla OXA and bla VEB in ESBL producing isolates were studied by PCR. One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for bla TEM , bla CTX , bla SHV , and bla OXA , respectively. The bla VEB wasn't found in any isolates. The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes.
[Effect of surface modification using laser on wear resistance of titanium].
Sato, Yohei
2005-02-01
Severe wear of cast commercial pure (CP) titanium teeth was observed in a clinical survey. This study evaluated the wear resistance of cast CP titanium and titanium alloy teeth after the surface was modified using laser technology. Teeth patterns were duplicated from artificial first molars (Livdent FB30, GC, Japan). All teeth specimens were cast with CP Ti grade 3 (T-Alloy H, GC) and Ti-6Al-7Nb (T-Alloy Tough, GC). After the occlusal surface was blasted with Al(2)O(3), the occlusal contact points were modified using a laser (Neo laser L, Girrbach, Germany) at the following irradiation conditions (voltage: 260 V; pulse: 7 ms; focus: 1.5 mm). These parameters were determined by preliminary study. As a control, Type IV gold alloy (PGA-3, Ishifuku, Japan) was also cast conventionally. Both maxillary and mandibular teeth were worn using an in vitro two-body wear testing apparatus that simulated chewing function (60 strokes/min; grinding distance: 2 mm under flowing water). Wear resistance was assessed as volume loss (mm(3)) at 5 kgf (grinding force) after 50,000 strokes. The results (n=5) were analyzed by ANOVA/Scheffé's test (alpha=0.05). The gold alloy showed the best wear resistance of all the metals tested. Of all the titanium specimens tested, the modified surface indicated significantly greater wear resistance than did conventional titanium teeth without surface modification (p<0.05). Wear resistance was increased by modification of the surface using a laser. If severe wear of titanium teeth was observed clinically, little wear occurred when the occlusal facets were irradiated using a laser.
Hole-to-surface resistivity measurements.
Daniels, J.J.
1983-01-01
Hole-to-surface resistivity measurements over a layered volcanic tuff sequence illustrate procedures for gathering, reducing, and interpreting hole-to-surface resistivity data. The magnitude and direction of the total surface electric field resulting from a buried current source is calculated from orthogonal potential difference measurements for a grid of closely spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Resistivity anomalies can be enhanced by calculating the difference between apparent resistivities calculated from the total surface electric field and apparent resistivities for a layered earth model.-from Author
Improvement of corrosion resistance of NiTi sputtered thin films by anodization
NASA Astrophysics Data System (ADS)
Bayat, N.; Sanjabi, S.; Barber, Z. H.
2011-08-01
Anodization of sputtered NiTi thin films has been studied in 1 M acetic acid at 23 °C for different voltages from 2 to 10 V. The morphology and cross-sectional structures of the untreated and anodized surfaces were investigated by field emission scanning electron microscopy (FE-SEM). The results show that increasing anodization voltage leads to film surface roughening and unevenness. It can be seen that the thickness of the anodized layer formed on the NiTi surface is in the nanometer range. The corrosion resistance of anodized thin films was studied by potentiodynamic scan (PDS) and impedance spectroscopy (EIS) techniques in Hank's solution at 310 K (37 °C). It was shown that the corrosion resistance of the anodized film surface improved with increasing voltage to 6 V. Anodization of austenitic sputtered NiTi thin films has also been studied, in the same anodizing conditions, at 4 V. Comparison of anodized sputtered NiTi thin films with anodized austenitic shape memory films illustrate that the former are more corrosion resistant than the latter after 1 h immersion in Hank's solution, which is attributed to the higher grain boundary density to quickly form a stable and protective passive film.
Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance
NASA Astrophysics Data System (ADS)
Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker
2018-04-01
In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.
Magnetic tearing of plasma discharges due to nonuniform resistivity
NASA Technical Reports Server (NTRS)
Hassam, A. B.
1988-01-01
The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.
A diverse intrinsic antibiotic resistome from a cave bacterium.
Pawlowski, Andrew C; Wang, Wenliang; Koteva, Kalinka; Barton, Hazel A; McArthur, Andrew G; Wright, Gerard D
2016-12-08
Antibiotic resistance is ancient and widespread in environmental bacteria. These are therefore reservoirs of resistance elements and reflective of the natural history of antibiotics and resistance. In a previous study, we discovered that multi-drug resistance is common in bacteria isolated from Lechuguilla Cave, an underground ecosystem that has been isolated from the surface for over 4 Myr. Here we use whole-genome sequencing, functional genomics and biochemical assays to reveal the intrinsic resistome of Paenibacillus sp. LC231, a cave bacterial isolate that is resistant to most clinically used antibiotics. We systematically link resistance phenotype to genotype and in doing so, identify 18 chromosomal resistance elements, including five determinants without characterized homologues and three mechanisms not previously shown to be involved in antibiotic resistance. A resistome comparison across related surface Paenibacillus affirms the conservation of resistance over millions of years and establishes the longevity of these genes in this genus.
Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon
2016-01-01
Summary Background/Objectives: This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Material and Methods: Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200g nickel–titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P <0.05. Results: The mean values of Sa and Sq were significantly higher in the laser-treated group compared with the machined group (P <0.05). There were no significant differences in fracture resistance and BIC between the two groups. Limitation: animal study Conclusions/Implications: Laser treatment increased surface roughness without compromising fracture resistance. Despite increasing surface roughness, laser treatment did not improve BIC. Overall, it appears that medical grade SS has the potential to be substituted for titanium alloy MSIs. PMID:25908868
Effect of surface nanostructuring on corrosion behavior of Ti–6Al–4V alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjeev, E-mail: sanjeevphy85@gmail.com; Ch
Surface nanostructure was induced in Ti–6Al–4V alloy by ultrasonic shot peening (USSP) for different durations, from 15 s to 30 min, and the modified surface was characterized by optical, scanning, atomic force and transmission electron microscopy. Nano size grains were observed to form on surface of the USSPed samples and surface roughness was increased with duration of USSP. Polarization study was carried out in Ringer's solution to examine the effect of surface nanostructuring on corrosion resistance of this alloy. Electrochemical corrosion was carried out for all the USSPed specimens as well as the non-USSPed sample in Ringer's solution. Surface morphologymore » of the corroded samples was examined by SEM. In general, corrosion resistance was improved by USSP up to the duration of 15 min and there was maximum improvement in the specimen USSPed for 1 min. However, corrosion resistance was drastically reduced due to USSP for long duration of 30 min. - Highlights: •Nanostructure was induced by USSP on alloy Ti–6Al–4V of about 28 nm. •Grain refinement was confirmed by XRD and TEM. •USSP is an effective technique for the improvement in corrosion resistance. •Nanostructured surface promotes formation of protective surface layer of TiO{sub 2}.« less
2013-01-01
Background The purpose of this study was to assess the surface characterization and frictional resistance between stainless steel brackets and two types of orthodontic wires made of stainless steel and nickel-titanium alloys after immersion in a chlorhexidine-containing prophylactic agent. Methods Stainless steel orthodontic brackets with either stainless steel (SS) or heat-activated nickel-titanium (Ni-Ti) wires were immersed in a 0.2% chlorhexidine and an artificial saliva environment for 1.5 h. The frictional force was measured on a universal testing machine with a crosshead speed of 10 mm/min over a 5-mm of archwire. The surface morphology of bracket slots and surface roughness of archwires after immersion in chlorhexidine were also characterized using a scanning electron microscope (SEM) and an atomic force microscope (AFM), respectively. Results There was no significant difference in the frictional resistance values between SS and Ni-Ti wires immersed in either chlorhexidine or artificial saliva. The frictional resistance values for the SS and Ni-Ti wires immersed in 0.2% chlorhexidine solution were not significantly different from that inartificial saliva. No significant difference in the average surface roughness for both wires before (as-received) and after immersion in either chlorhexidine or artificial saliva was observed. Conclusions One-and-half-hour immersion in 0.2% chlorhexidine mouthrinse did not have significant influence on the archwires surface roughness or the frictional resistance between stainless steel orthodontic brackets and archwires made of SS and Ni-Ti. Based on these results, chlorhexidine-containing mouthrinses may be prescribed as non-destructive prophylactic agents on materials evaluated in the present study for orthodontic patients. PMID:24325758
The Effect of Coatings on the Wear Behavior of Ti6Al4V Alloy Used in Biomedical Applications
NASA Astrophysics Data System (ADS)
Danışman, Ş.; Odabas, D.; Teber, M.
2018-01-01
The properties expected from implant materials are biocompatibility, long service life and wear resistance. The wear resistance of the implant materials varies according to the type of implant, usage area and the movement. The ability of implant material to be more compatible with biological tissues and to increase the useful life depends on the surface properties. Today many different kind of surface modification techniques are applying on medical and dental implant surfaces to improve surface specifications and wear resistance. In this study TiN, TiAlN, TiCN coatings were applied on Ti6Al4V alloy used as implant material by reactive magnetron sputtering method. The wear resistances of uncoated Ti6Al4V alloy and TiN, TiAlN, TiCN coatings were investigated at room temperature under dry conditions. The wear resistance at different load and different sliding rates were compared using an wear tester. The wear losses, wear track widths and friction coefficients of coated and uncoated Ti6Al4V alloys are taken into account for comparison. The results show that a significant improvement in wear resistance of the alloy with the coating is achieved and TiN-coated Ti6Al4V alloy has the highest wear resistance.
Development and testing of advanced fire-resistant photovoltaic modules
NASA Technical Reports Server (NTRS)
Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.
1985-01-01
The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.
Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation
NASA Astrophysics Data System (ADS)
Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.
2012-12-01
Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.
Nanometer-scale surface potential and resistance mapping of wide-bandgap Cu(In,Ga)Se2 thin films
NASA Astrophysics Data System (ADS)
Jiang, C.-S.; Contreras, M. A.; Mansfield, L. M.; Moutinho, H. R.; Egaas, B.; Ramanathan, K.; Al-Jassim, M. M.
2015-01-01
We report microscopic characterization studies of wide-bandgap Cu(In,Ga)Se2 photovoltaic thin films using the nano-electrical probes of scanning Kelvin probe force microscopy and scanning spreading resistance microscopy. With increasing bandgap, the potential imaging shows significant increases in both the large potential features due to extended defects or defect aggregations and the potential fluctuation due to unresolvable point defects with single or a few charges. The resistance imaging shows increases in both overall resistance and resistance nonuniformity due to defects in the subsurface region. These defects are expected to affect open-circuit voltage after the surfaces are turned to junction upon device completion.
Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria
2015-01-01
Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15). Conclusion In conclusion, our data show that MDR E. coli are omnipresent in Dutch surface water, and indicate that municipal wastewater significantly contributes to this occurrence. PMID:26030904
Stanton, Gregory P.; Kress, Wade H.; Teeple, Andrew; Greenslate, Michael L.; Clark, Allan K.
2007-01-01
Since 1992, numerous sinkholes have developed northwest of the Amistad Reservoir dam on the Rio Grande. Increases in the discharge of springs south of the dam, on the western side of the Rio Grande, in Coahuila, Mexico, have been documented. In 1995 the Mexico Section of the International Boundary and Water Commission (IBWC) completed a study of the western embankment (Coahuila, Mexico) of the dam that included surface geophysics, borehole geophysics, and installation of piezometers to learn more about subsurface conditions. As part of a 5-year safety inspection in 2005, technical advisors recommended that one line of similarly constructed piezometers be installed on the eastern embankment (Val Verde County, Texas) of the dam for comparison of water levels (potentiometric head) on both the western and eastern embankments of Amistad Reservoir dam. To provide technical assistance for the horizontal and vertical placement of piezometers on the eastern embankment of Amistad Reservoir dam, the U.S. Geological Survey, in cooperation with the U.S. Section of the IBWC, conducted a study along both the western and eastern embankments of Amistad Reservoir dam. The study involved an integrated approach using surface and borehole geophysical methods. In the western embankment investigation, geological and geophysical characteristics that indicate relatively large water-yielding properties of the Salmon Peak Formation were identified. The direct-current (DC) resistivity method was selected as the surface geophysical reconnaissance technique to correlate relatively large water-yielding properties of the Salmon Peak Formation, identified from analysis of borehole geophysical logs, with variations in subsurface resistivity. The dipole-dipole array and the reciprocal Schlumberger array were selected as the most applicable DC resistivity arrays. Two resistivity units were identified in both the dipole-dipole array data and the reciprocal Schlumberger array data along DC resistivity profiles on both embankments. Resistivity unit 1 generally is of relatively low resistivity, ranging from 45 to 150 ohm-meters compared with resistivity unit 2, which ranges from 120 to 345 ohm-meters (depending on the DC array type). The presence of mapped sinkholes in the reservoir north of the western embankment study area and the zone of increased water content (as indicated by zones of low neutron log count rates in nearby piezometers) leads to the conclusion that resistivity unit 1 is a preferential flow path where surface water from Amistad Reservoir is forced into the ground-water system (because of increased head from the reservoir). In the eastern embankment investigation, trends in the spatial distribution of sinkholes and the occurrence of weathered zones were identified from geologic descriptions of cores. The correlation of surface geophysical DC resistivity, historical lithologic data, and general trend of documented sinkholes along the eastern end of the eastern embankment profile were used to justify further exploration (drilling of piezometers) in the eastern expression of resistivity unit 1. The spatial location of the piezometers and the screened intervals were selected to best match the locations of the screened intervals of the western embankment piezometers. Six piezometers were installed on the eastern embankment and logged using borehole geophysical techniques. Surface DC resistivity sections superimposed on the resistivity logs for two piezometers indicate three discernible resistivity units that correlate with resistivity units 2, 1, and 2, respectively, identified in the western embankment study area. Resistivity units 1 and 2 in the DC resistivity profiles generally correspond with low and high resistivity zones, respectively, on the normal and lateral resistivity logs collected in the nearby piezometers at the time of installation.
Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys
NASA Astrophysics Data System (ADS)
Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan
2017-12-01
Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.
NASA Astrophysics Data System (ADS)
Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.
2018-03-01
In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.
Corrosion-resistant metal surfaces
Sugama, Toshifumi [Wading River, NY
2009-03-24
The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.
NASA Astrophysics Data System (ADS)
Mankari, Kamal; Acharyya, Swati Ghosh
2017-12-01
We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.
Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C; Chen, Kenneth H; Lee, Robert C; Fried, William A; Cho, Jinny; Darling, Cynthia L; Fried, Daniel
2017-12-01
Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 μm (CO 2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO 2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO 2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Kamonwanon, Pranithida; Yodmongkol, Sirasa; Chantarachindawong, Rojcharin; Thaweeboon, Sroisiri; Thaweeboon, Boonyanit; Srikhirin, Toemsak
2015-08-01
Wear resistance is a limitation of artificial denture teeth. Improving the wear resistance of conventional artificial denture teeth is of value to prosthodontic patients. The purpose of this in vitro study was to evaluate the wear resistance and hardness of modified polymethyl methacrylate artificial denture teeth compared to 5 commercially available artificial tooth materials. This study evaluated 180 artificial denture teeth (6 groups) that included 3 groups of conventional artificial teeth (MajorDent, Cosmo HXL, and Gnathostar), 2 groups of composite resin artificial teeth (Endura and SR Orthosit PE), and 1 group of modified surface artificial teeth. The flattened buccal surface of each tooth (n=15) was prepared for investigation with the Vickers hardness test and the elucidate wear test (n=15) by using a brushing machine. Each group was loaded for 18,000 cycles, at 2 N, and 150 rpm. The wear value was identified with a profilometer. The data were statistically analyzed by using 1-way ANOVA and post hoc Turkey honestly significant difference tests (α=.001). The tribologies were observed under a scanning electron microscope, and the cytotoxicities were evaluated by MTT assay. The Vickers hardnesses ranged from 28.48 to 39.36. The wear depths and worn surface area values ranged from 1.12 to 10.79 μm and from 6.74 to 161.95 μm(2). The data revealed that the modified artificial denture teeth were significantly harder and exhibited significantly higher wear resistance than did the conventional artificial teeth (P<.001). The scanning electron microscopic images revealed cross sections of the conventional artificial denture teeth with intensively worn surface areas after brushing. The cytotoxicity test revealed 97.85% cell viability, which indicates the nontoxicity of the modified surface of this material. Within the limitations of this study, the polymethyl methacrylate modified surface artificial denture teeth was not significantly different from that of the composite resin artificial denture teeth, with the exceptions that the surface was harder and more wear resistant. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Boinovich, Ludmila B; Modin, Evgeny B; Sayfutdinova, Adeliya R; Emelyanenko, Kirill A; Vasiliev, Alexander L; Emelyanenko, Alexandre M
2017-10-24
Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, etc. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance.
NASA Astrophysics Data System (ADS)
Agilan, P.; Rajendran, N.
2018-05-01
Titania nanotube arrays (TNTA) have attracted increasing attention due to their outstanding properties and potential applications in biomedical field. Fabrication of titania nanotubes on titanium surface enhances the biocompatibility. Polyaniline (PANI) is one of the best conducting polymers with remarkable corrosion resistance and reasonable biocompatibility. In this work, the corrosion resistance and biocompatibility of polyaniline encapsulated TiO2 nanotubes for orthopaedic applications were investigated. The vertically oriented, highly ordered TiO2 nanotubes were fabricated on titanium by electrochemical anodization process using fluoride containing electrolytes. The anodization parameters viz., voltage, pH, time and electrolyte concentration were optimized to get orderly arranged TNTA. Further, the conducting polymer PANI was encapsulated on TNTA by electropolymerization process to enhance the corrosion resistance. The nanostructure of the fabricated TNTA and polyaniline encapsulated titania nanotube arrays (PANI-TNTA) were investigated by HR SEM analysis. The formed phases and functional groups were find using XRD, ATR-FTIR. The hydrophilic surface of TNTA and PANI-TNTA was identified by water contact angle studies. The corrosion behavior of specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. In-vitro immersion studies were carried out in simulated body fluid solution (Hanks' solution) to evaluate the bioactivity of the TNTA and PANI-TNTA. The surface morphological studies revealed the formation of PANI on the TNTA surface. Formation of hydroxyapatite (HAp) on the surfaces of TNTA and PANI-TNTA enhanced the bioactivity and corrosion resistance.
Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A
2015-06-01
Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness.
Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A
2015-01-01
Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness. PMID:26171383
Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)
NASA Astrophysics Data System (ADS)
Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki
2007-03-01
Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.
Ebert, Daniel; Bhushan, Bharat
2016-11-01
Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM). Copyright © 2016 Elsevier Inc. All rights reserved.
2016-01-01
The pandemic of hospital-acquired infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has declined, but the evolution of strains with enhanced virulence and toxins and the increase of community-associated infections are still a threat. In previous studies, 107 MRSA bacteria applied as simulated droplet contamination were killed on copper and brass surfaces within 90 min. However, contamination of surfaces is often via finger tips and dries rapidly, and it may be overlooked by cleaning regimes (unlike visible droplets). In this new study, a 5-log reduction of a hardy epidemic strain of MRSA (epidemic methicillin-resistant S. aureus 16 [EMRSA-16]) was observed following 10 min of contact with copper, and a 4-log reduction was observed on copper nickel and cartridge brass alloys in 15 min. A methicillin-sensitive S. aureus (MSSA) strain from an osteomyelitis patient was killed on copper surfaces in 15 min, and 4-log and 3-log reductions occurred within 20 min of contact with copper nickel and cartridge brass, respectively. Bacterial respiration was compromised on copper surfaces, and superoxide was generated as part of the killing mechanism. In addition, destruction of genomic DNA occurs on copper and brass surfaces, allaying concerns about horizontal gene transfer and copper resistance. Incorporation of copper alloy biocidal surfaces may help to reduce the spread of this dangerous pathogen. PMID:26826226
Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang
2012-06-01
In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.
Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos
2014-01-01
Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582
Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos
2014-03-28
Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO₃ solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface.
Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel
NASA Astrophysics Data System (ADS)
Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.
2018-03-01
Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.
Apparatus and method for measuring and imaging surface resistance
Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.
1993-08-24
Apparatus and method for determining and imaging superconductor surface resistance. The apparatus comprises modified Gaussian confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor.
Investigation of passive films formed on the surface of alloy 690 in borate buffer solution
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Wenli, Guo
2015-10-01
The passive film formed on the surface of the alloy 690 in borate buffer solution was studied by potentiodynamic curves and electrochemical impedance spectroscopy. With the increasing of the passivation potential, the corrosion resistance of the alloy 690 reduced. Moreover, the corrosion resistance of the passive film was the lowest in the vicinity of 0.6 VSCE. These results were supported by XPS and Mott-Schottky analyses. The corrosion resistance of the alloy 690 increased with the increasing of passivated potential in borate buffer solution with chloride ion. The chloride ion decreased corrosion resistance of the alloy 690 according to point defect model.
NASA Astrophysics Data System (ADS)
Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.
2018-01-01
The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.
Wear resistance of hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Martinez, MA; Abenojar, J.; Pantoja, M.; López de Armentia, S.
2017-05-01
Nature has been an inspiration source to develop artificial hydrophobic surfaces. During the latest years the development of hydrophobic surfaces has been widely researched due to their numerous ranges of industrial applications. Industrially the use of hydrophobic surfaces is being highly demanded. This is why many companies develop hydrophobic products to repel water, in order to be used as coatings. Moreover, these coating should have the appropriated mechanical properties and wear resistance. In this work wear study of a hydrophobic coating on glass is carried out. Hydrophobic product used was Sika Crystal Dry by Sika S.A.U. (Alcobendas, Spain). This product is currently used on car windshield. To calculate wear resistance, pin-on-disk tests were carried out in dry and water conditions. The test parameters were rate, load and sliding distance, which were fixed to 60 rpm, 5 N and 1000 m respectively. A chamois was used as pin. It allows to simulate a real use. The friction coefficient and loss weight were compared to determinate coating resistance
Leclercq, S; Saulnier, H
2001-01-01
Slips contribute to 12% of occupational accidents. A slip resistant floor is a mean to prevent slipping accidents occurring in workshops. Floor slip resistance is often evaluated by measuring a friction index, proportional to the force opposing slipping of a reference elastomer on the floor surface under test. When implementing a portable appliance, slip resistance measurements carried out on lubricated floors were not stabilized. The authors advanced the hypothesis of oil impregnating the elastomer. A new elastomer suited to in-situ measurement has been developed to achieve stable measuring conditions. This study highlights the fact that the nature and characteristics of a reference elastomer must be specified when slip resistance measurements are carried out.
NASA Astrophysics Data System (ADS)
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2017-05-01
In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.
Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance
NASA Astrophysics Data System (ADS)
Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.
2012-06-01
The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.
NASA Astrophysics Data System (ADS)
Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.
2016-07-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.
The slip resistance of common footwear materials measured with two slipmeters.
Chang, W R; Matz, S
2001-12-01
The slip resistance of 16 commonly used footwear materials was measured with the Brungraber Mark II and the English XL on 3 floor surfaces under surface conditions of dry, wet, oily and oily wet. Three samples were used for each material combination and surface condition. The results of a one way ANOVA analysis indicated that the differences among different samples were statistically significant for a large number of material combinations and surface conditions. The results indicated that the ranking of materials based on their slip resistance values depends highly on the slipmeters, floor surfaces and surface conditions. For contaminated surfaces including wet, oily and oily wet surfaces, the slip resistance obtained with the English XL was usually higher than that measured with the Brungraber Mark II. The correlation coefficients between the slip resistance obtained with these two slipmeters calculated for different surface conditions indicated a strong correlation with statistical significance.
Kinney, J H; Haupt, D L; Balooch, M; White, J M; Bell, W L; Marshall, S J; Marshall, G W
1996-06-01
Laser irradiation alters the structure of dentin and produces surface layers that give the appearance of being more enamel-like. The laser-modified surface may be more resistant to demineralization; hence, many investigators are proposing continued development of the laser as a possible preventive treatment for caries. The purpose of this study was to explore the morphological changes that occur in dentin when treated at threshold illuminance with two clinically interesting laser wavelengths, and to evaluate the effectiveness of the laser-treated surface at resisting demineralization in an acid-gel solution. The Nd: YAG laser (wavelength 1060 nm) produced significant recrystallization and grain growth of the apatite, without the formation of second phases such as beta-tricalcium phosphate. This recrystallized surface layer showed resistance to demineralization; however, the layer did not provide protection of the underlying dentin from demineralization because of cracks and macroscopic voids that allowed for penetration of the demineralizing gel. The Ho: YAG laser-treated surface (wavelength 2100 nm) did not show significant evidence of recrystallization and grain growth, and only a trace amount of an acid-resistant layer was observed with demineralization. It is speculated that the Ho:YAG laser is coupling with absorbed water, and that the heat transfer from the water to the mineral phase is inefficient. For the purposes of creating a demineralization-resistant layer, threshold illuminance with both Nd: YAG and Ho: YAG was ineffective.
Some Properties of Composite Panels Made from Wood Flour and Recycled Polyethylene
Ozdemir, Turgay; Mengeloglu, Fatih
2008-01-01
This study investigated the effect of board type (unmodified vs. MAPE modified) on the surface quality and thickness swelling-water absorption properties of recycled high density polyethylene (HDPE) based wood plastic composites. Additionally, two commercially available coatings (cellulosic coating and polyurethane lacquer coating) were also applied to composite surfaces and their adhesion strength, abrasion and scratch resistance, and gloss values were determined. This study showed that modification of the composites with MAPE coupling agent increased the surface smoothness and reduced the water absorption and thickness swelling of the panels. Abrasion resistance of the composites was also improved through MAPE modification. Regardless of board type, higher scratch resistance and gloss values were observed for polyurethane lacquer coated samples compared to those of cellulosic varnish coated ones. Improvement of adhesion strength was also seen on SEM micrographs. PMID:19330092
NASA Astrophysics Data System (ADS)
Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir
2018-04-01
Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.
Electrical resistance behavior of oxyfluorinated graphene under oxidizing and reducing gas exposure.
Im, Ji Sun; Bae, Tae-Sung; Shin, Eunjeong; Lee, Young-Seak
2014-03-01
The electrical resistance behavior of graphene was studied under oxidizing and reducing gas exposure. The graphene surface was modified via oxyfluorination to obtain a specific surface area and oxygen functional groups. Fluorine radicals provided improved pore structure and introduction of an oxygen functional group. A high-performance gas sensor was obtained based on enlarged target gas adsorption sites and an enhanced electron charge transfer between the target gas and carbon surface via improved pore structure and the introduction of oxygen functional groups, respectively.
Nguyen, Tinh; Petersen, Elijah J.; Pellegrin, Bastien; Gorham, Justin M.; Lam, Thomas; Zhao, Minhua; Sung, Lipiin
2017-01-01
Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will degrade and the nanofillers may be released from the products potentially impacting ecological or human health. In this study, we investigated the degradation of a 0.72 % (by mass) MWCNT/amine-cured epoxy nanocomposite irradiated with high intensity ultraviolet (UV) light at various doses, the effects of UV exposure on the surface accumulation and potential release of MWCNTs, and possible mechanisms for the release resistance of the MWCNT surface layer formed on nanocomposites by UV irradiation. Irradiated samples were characterized for chemical degradation, mass loss, surface morphological changes, and MWCNT release using a variety of analytical techniques. Under 295 nm to 400 nm UV radiation up to a dose of 4865 MJ/m2, the nanocomposite matrix underwent photodegradation, resulting in formation of a dense, entangled MWCNT network structure on the surface. However, no MWCNT release was detected, even at very high UV doses, suggesting that the MWCNT surface layer formed from UV irradiation of polymer nanocomposites resist release. Four possible release resistance mechanisms of the UV-induced MWCNT surface layer are presented and discussed. PMID:28603293
NASA Astrophysics Data System (ADS)
Przondziono, J.; Walke, W.; Młynarski, R.; Szatka, W.
2012-05-01
The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.
NASA Astrophysics Data System (ADS)
Kiflu, H.; Kruse, S.; Loke, M. H.; Wilkinson, P. B.; Harro, D.
2016-12-01
Electrical resistivity tomography (ERT) surveys are widely used in geological, environmental and engineering studies. However, the effectiveness of surface ERT surveys is limited by decreasing resolution with depth and near the ends of the survey line. Increasing the array length will increase depth of investigation, but may not be possible at urban sites where access is limited. One novel method of addressing these limitations while maintaining lateral coverage is to install an array of deep electrodes. Referred to here as the Multi-Electrode Resistivity Implant Technique (MERIT), self-driving pointed electrodes are implanted at depth below each surface electrode in an array, using direct-push technology. Optimal sequences of readings have been identified with the "Compare R" method of Wilkinson. Numerical, laboratory, and field case studies are applied to examine the effectiveness of the MERIT method, particularly for use in covered karst terrain. In the field case studies, resistivity images are compared against subsurface structure defined from borings, GPR surveys, and knowledge of prior land use. In karst terrain where limestone has a clay overburden, traditional surface resistivity methods suffer from lack of current penetration through the shallow clay layer. In these settings, the MERIT method is found to improve resolution of features between the surface and buried array, as well as increasing depth of penetration and enhancing imaging capabilities at the array ends. The method functions similar to a cross-borehole array between horizontal boreholes, and suffers from limitations common to borehole arrays. Inversion artifacts are common at depths close to the buried array, and because some readings involve high geometric factors, inversions are more susceptible to noise than traditional surface arrays. Results are improved by using errors from reciprocal measurements to weight the data during the inversion.
Improve oxidation resistance at high temperature by nanocrystalline surface layer
NASA Astrophysics Data System (ADS)
Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.
2015-08-01
An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: mortezahabibi@aut.ac.ir; Sharifi, R.; Amrollahi, R.
2013-12-15
The variation of the X-ray intensity has been investigated with the Pyrex and quartz insulators surface contamination in a 4-kJ plasma focus device with argon gas at 11.5-kV charging voltage. Elemental analysis (EDAX) showed that the Cu evaporated from the electrode material and was deposited on the sleeve surface improves the breakdown conditions. A small level of sleeve contamination by copper is found to be essential for good focusing action and high HXR intensity. The SEM imaging showed the grain-type structure of Cu formed on the surface and it changed the surface property. Resistance measurements of original and coated Pyrexmore » surface proved that the copper deposition on the sleeve surface will reduce its resistance as compared to the almost infinitely large resistance of the uncontaminated sleeve. As the contamination is surpassed to some critical level, the HXR intensity from the device is deteriorated.« less
Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.
2001-01-01
We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615
Effects of atmospheric moisture on rock resistivity.
NASA Technical Reports Server (NTRS)
Alvarez, R.
1973-01-01
This study examines the changes in resistivity of rock samples as induced by atmospheric moisture. Experiments were performed on samples of hematitic sandstone, pyrite, and galena. The sandstone underwent a change in resistivity of four orders of magnitude when it was measured in a vacuum of 500 ntorr and in air of 37% relative humidity. Pyrite and galena showed no variations in resistivity when they were measured under the same conditions. These results, plus others obtained elsewhere, indicate that rocks of the resistive type are affected in their electrical properties by atmospheric moisture, whereas rocks of the conductive type are not. The experimental evidence obtained is difficult to reconcile with a model of aqueous electrolytic conduction on the sample surface. It is instead suggested that adsorbed water molecules alter the surface resistivity in a manner similar to that observed in semiconductors and insulators.
Ling, Chengpeng; Zhang, Qiang
2017-04-01
As a primary disposal mean of municipal solid waste in China, the landfill has been recognized as one of the major threats to the surrounding surface water and groundwater environment due to the emission of leachate. The aim of this study was to determine the impact of leachate on the surface water and groundwater environment of the region of the Chang'an landfill, which is located in Sichuan province, China. The surface water and groundwater were sampled for hydrochemical analysis. Three electrical resistivity tomography profiles were conducted to evaluate the impact of leachate on the groundwater environment, and several laboratory tests were carried out to build the relationship between the soil bulk resistivity and the void fluid resistivity. The results showed that a seasonal creek named Longfeng creek, which crosses the landfill site, was contaminated by the leachate. The concentrations of COD, BOD5, and chlorides (Cl) of surface water samples increased by 12.3-105.7 times. The groundwater quality in the surface loose sediments along the valley deteriorated obviously from the landfill to 500 m downstream area. The laboratory tests of soil samples indicated that the resistivity value of 13 Ωm is a critical value whether the groundwater in the loose sediments is polluted. The groundwater at the site adjacent to the spillway in the landfill was partially contaminated by the emission of leachate. The groundwater contamination zones at 580 m downstream of the landfill were recognized at the shallow zones from 60 m left bank to 30 m right bank of Longfeng creek. The improved understanding of groundwater contamination around the landfill is beneficial for the landfill operation and groundwater environment remediation.
Experimental studies of surface modified oscillating heat pipes
NASA Astrophysics Data System (ADS)
Leu, Tzong-Shyng; Wu, Cheng-Han
2017-11-01
Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c < 10°) and hybrid (superhydrophilic within evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.
NASA Astrophysics Data System (ADS)
Psakhie, S. G.; Lotkov, A. I.; Meisner, L. L.; Meisner, S. N.; Matveeva, V. A.
2013-02-01
The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed.)
NASA Astrophysics Data System (ADS)
Obeidi, Muhannad A.; McCarthy, Eanna; Brabazon, Dermot
2018-05-01
This study is investigating the effect of the laser surface melting of 316L stainless steel cylindrical samples on the surface residual stresses and the corrosion resistance. A high speed CO2 laser beam with power range of 300-500 W was used in pulse mode to initiate the surface melting in an argon and argon-nitrogen atmosphere. The produced samples were cross sectioned and the elastic modulus and nano-hardness test were carried out showing no alteration between the modified and the bulk material. A noticeable degradation in the corrosion resistance was found due to the formation of the chromium carbide and chromium nitride which act as electrolytic cells in addition to the disruption of the free chromium content at the melted zone.
NASA Astrophysics Data System (ADS)
Yenilmez, A.; Karakan, M.; Çelik, İ.
2017-01-01
Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.
Claro, Tânia; Galvin, Sandra; Cahill, Orla; Fitzgerald-Hughes, Deirdre; Daniels, Stephen; Humphreys, Hilary
2014-07-01
Environmental sampling in hospitals, when required, needs to be reliable. We evaluated different methods of sampling methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing Escherichia coli on 5 materials of the hospital setting. Petrifilms and contact plates were superior to swabs for all of the surfaces studied.
Thickness and resistivity variations over the upper surface of the human skull.
Law, S K
1993-01-01
A study of skull thickness and resistivity variations over the upper surface was made for an adult human skull. Physical measurements of thickness and qualitative analysis of photographs and CT scans of the skull were performed to determine internal and external features of the skull. Resistivity measurements were made using the four-electrode method and ranged from 1360 to 21400 Ohm-cm with an overall mean of 7560 +/- 4130 Ohm-cm. The presence of sutures was found to decrease resistivity substantially. The absence of cancellous bone was found to increase resistivity, particularly for samples from the temporal bone. An inverse relationship between skull thickness and resistivity was determined for trilayer bone (n = 12, p < 0.001). The results suggest that the skull cannot be considered a uniform layer and that local resistivity variations should be incorporated into realistic geometric and resistive head models to improve resolution in EEG. Influences of these variations on head models, methods for determining these variations, and incorporation into realistic head models, are discussed.
NASA Astrophysics Data System (ADS)
Zhong, Yuxing; Hu, Jin; Zhang, Yufen; Tang, Shawei
2018-01-01
A calcium myristic superhydrophobicity coating with a hierarchical micro-nanostructure was fabricated on AZ31 magnesium alloy by one-step electroposition. The effects of deposition time on the coating structure, such as morphology, thickness, wettability and phase composition of the coating were studied. The corrosion behavior of the coated samples in 3.5% NaCl solution was also investigated and the corrosion mechanism was discussed. It was found that the deposition time has a visible effect on the morphology, thickness and wettability, which distinctly affects the corrosion resistance of coatings. The corrosion resistance of the coating gradually decreases with the increase in the immersion time due to the disappearance of the air layer which exists on the coating surface. The superhydrophobic surfaces present the temporal limitations to the corrosion resistance of AZ31 magnesium alloy.
NASA Astrophysics Data System (ADS)
Bartkowska, Aneta; Przestacki, Damian; Chwalczuk, Tadeusz
2016-12-01
The paper presents the studies' results of microstructure, microhardness, cohesion, phase composition and the corrosion resistance analysis of C45 steel after laser alloying with nickel oxide (Ni2O3). The aim of the laser alloying was to obtain the surface layer with new properties through covering C45 steel by precoat containing modifying compound, and then remelting this precoat using laser beam. As a result of this process the surface layer consisting of remelted zone and heat affected zone was obtained. In the remelted zone an increased amount of modifying elements was observed. It was also found that the surface layer formed during the laser alloying with Ni2O3 was characterized by good corrosion resistance. This property has changed depending on the thickness of the applied precoat. It was observed that the thickness increase of nickel oxides precoat improves corrosion resistance of produced coatings.
Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance
NASA Astrophysics Data System (ADS)
Wang, Guicheng; Chen, Jing; Pang, Tao
2018-02-01
Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.
Surface acoustic wave devices for harsh environment wireless sensing
Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...
2013-05-24
In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less
On the theory of gaseous transport to plant canopies
NASA Astrophysics Data System (ADS)
Bache, D. H.
Solutions of the convection-diffusion equations are developed to show the relationship between bulk transport parameters affecting gaseous transfer to plant canopies and local rates of transfer within the canopy. Foliage density is considered to be uniform and the drag coefficient of elements is specified by cd = γu- n with u as the local wind-speed and γ and n constants. Under conditions of high surface resistance, the bulk deposition velocity at the top of the canopy vg( h) approaches a limit defined by v g(h) = v̂gL p(1-ψ v̂gL p/u ∗) , where v̂g is the local deposition rate, Lp the effective foliage area, u ∗ the friction velocity and ψ a structure coefficient. From this, a criterion is proposed for defining the conditions in which the local resistances may be added in parallel. Comparisons with the external model for the bulk transport resistance rp = ra + rb + rc (where r p = 1/v g(h) and ra is a diffusive resistance between the apparent momentum sink and height h) shows that the bulk surface resistance r c = r̂s/L p( r̂s being a local surface resistance due to internal properties of the surface) and r b = overliner̂p-r a, appearing as an excess aerodynamic component; overliner̂p refers to the depth-averaged value of r̂p—the resistance to transfer through the laminar sublayer enveloping individual canopy elements. In conditions of zero surface resistance the bulk transport rate rp, o can be specified by r p,o/r a = E( r̂p/r̂∗) hq with E and q as constants, the term r̂p/r̂∗ referring to the resistances to mass and momentum transfer to canopy elements. A general expression is formulated for the sublayer Stanton number B -1 r bu ∗ at the extremes of high and zero surface resistance. In conditions of low surface resistance, it is shown that the terms rb + rc cannot be conveniently separated into equivalent aerodynamic and surface components as at the limit of high surface resistance. This conclusion is a departure from previous analyses and emphasizes the hidden dangers of adding resistances 'in parallel' in conditions of low surface resistance.
NASA Astrophysics Data System (ADS)
Song, Yi; Wang, Jiemin; Yang, Kun; Ma, Mingguo; Li, Xin; Zhang, Zhihui; Wang, Xufeng
2012-07-01
Estimating evapotranspiration (ET) is required for many environmental studies. Remote sensing provides the ability to spatially map latent heat flux. Many studies have developed approaches to derive spatially distributed surface energy fluxes from various satellite sensors with the help of field observations. In this study, remote-sensing-based λE mapping was conducted using a Landsat Thematic Mapper (TM) image and an Enhanced Thematic Mapper Plus (ETM+) image. The remotely sensed data and field observations employed in this study were obtained from Watershed Allied Telemetry Experimental Research (WATER). A biophysics-based surface resistance model was revised to account for water stress and temperature constraints. The precision of the results was validated using 'ground truth' data obtained by eddy covariance (EC) system. Scale effects play an important role, especially for parameter optimisation and validation of the latent heat flux (λE). After considering the footprint of EC, the λE derived from the remote sensing data was comparable to the EC measured value during the satellite's passage. The results showed that the revised surface resistance parameterisation scheme was useful for estimating the latent heat flux over cropland in arid regions.
Microwave surface resistance of bulk YBa2Cu3O6+x material
NASA Astrophysics Data System (ADS)
Fathy, A.; Kalokitis, D.; Belohoubek, E.; Sundar, H. G. K.; Safari, A.
1988-10-01
Superconducting Y-Ba-Cu-O samples were prepared by conventional solid-state reaction. The microwave surface resistance of 1:2:3 compound superconductor material was measured in a special disk resonator structure at 10 GHz. At liquid-nitrogen temperatures the microwave surface resistance is comparable to that of Au. At lower temperature (~10 K) the surface resistance is an order of magnitude lower than that of Au at the same temperature.
NASA Astrophysics Data System (ADS)
Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke
2016-11-01
The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.
NASA Astrophysics Data System (ADS)
Eo, Y. S.; Sun, K.; Kurdak, ć.; Kim, D.-J.; Fisk, Z.
2018-04-01
We introduce a resistance measurement method that is useful in characterizing materials with both surface and bulk conduction, such as three-dimensional topological insulators. The transport geometry for this resistance measurement configuration consists of one current lead as a closed loop that fully encloses the other current lead on the surface, and two voltage leads that are both placed outside the loop. We show that, in the limit where the transport is dominated by the surface conductivity of the material, the four-terminal resistance measured from such a transport geometry is proportional to σb/σs2, where σb and σs are the bulk and surface conductivities of the material, respectively. We call this type of measurement inverted resistance measurement, as the resistance scales inversely with the bulk resistivity. We discuss possible implementations of this method by performing numerical calculations on different geometries and introduce strategies to extract the bulk and surface conductivities. We also demonstrate inverted resistance measurements on SmB6 , a topological Kondo insulator, using both single-sided and coaxially aligned double-sided Corbino disk transport geometries. Using this method, we are able to measure the bulk conductivity, even at low temperatures, where the bulk conduction is much smaller than the surface conduction in this material.
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee
1995-01-01
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.
Wang, Yongjiang; Niu, Wenjuan; Ai, Ping
2016-12-01
Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.; Myers, K. F.; Dugan, H.; Doran, P. T.; Virginia, R. A.
2016-12-01
Closed depressions in the Lower Taylor Valley (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by about an order of magnitude than the resistivity of nearby slopes and ridges (100s of ohm-m vs. 1000s). We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and/or deliquescent vapor fronts. High concentration of salts in the top decimeters to meters beneath the surface may prolong the existence and abundance of liquid water in this otherwise very cold and dry high polar desert. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Transient EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation. In areas where we measured low resistivity, the integrated liquid water fraction in the top 5m may be a few to several percent by volume, equivalent to a few or several dozens of cm of water layer thickness. This estimate assumes that the interstitial waters have very low resistivity, comparable to seawater or hypersaline brines at freezing (0.2-0.35 ohm-m). If soil water was considerably fresher than this, liquid water content would have to reach dozens of percent throughout the top 5m for bulk resistivities to drop to 100s of ohm-m. We consider the latter case to be unlikely as the thermally defined active layer in this region with mean annual temperature close to -20C and short summer season is as thin as dozens of cm. The areas with high near-surface resistivities have either a comparable fraction of water but with much higher resistivity or have briny interstitial water at much lower volume concentrations (<1% in top 5m). We favor the former explanation. Closed depressions in the Lake Fryxell basin (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by almost an order of magnitude than nearby slopes and ridges. We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and deliquescent vapor fronts. Highly hygroscopic salts may prolong the existence and abundance of liquid water in the near surface in this otherwise very cold and dry high polar desert. In areas with low measured resistivity, the liquid water fraction in the top 5m may be a few percent by volume. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Time Domain EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, M.; Aderhold, S.; Chandrasekaran, S. K.
The radio-frequency surface resistance of niobium resonators is incredibly reduced when nitrogen impurities are dissolved as interstitial in the material, conferring ultra-high Q-factors at medium values of accelerating field. This effect has been observed in both high and low temperature nitrogen treatments. As a matter of fact, the peculiar anti Q-slope observed in nitrogen doped cavities, i.e. the decreasing of the Q-factor with the increasing of the radio-frequency field, come from the decreasing of the BCS surface resistance component as a function of the field. Such peculiar behavior has been considered consequence of the interstitial nitrogen present in the niobiummore » lattice after the doping treatment. The study here presented show the field dependence of the BCS surface resistance of cavities with different resonant frequencies, such as: 650 MHz, 1.3 GHz, 2.6 GHz and 3.9 GHz, and processed with different state-of-the-art surface treatments. These findings show for the first time that the anti Q-slope might be seen at high frequency even for clean Niobium cavities, revealing useful suggestion on the physics underneath the anti Q-slope effect.« less
NASA Astrophysics Data System (ADS)
Moon, Kyoung-Sik; Liong, Silvia; Li, Haiying; Wong, C. P.
2004-11-01
The contact resistance stability of isotropically conductive adhesives (ICAs) on non-noble metal surfaces under the 85°C/85% relative humidity (RH) aging test was investigated. Previously, we demonstrated that galvanic corrosion has been shown as the main mechanism of the unstable contact resistance of ICAs on non-noble metal surfaces. A sacrificial anode was introduced into the ICA joint for cathodic protection. Zinc, chromium, and magnesium were employed in the ICA formulations as sacrificial anode materials that have much lower electrode-potential values than the metal pad surface, such as tin or tin-based alloys. The effect of particle sizes and loading levels of sacrificial anode materials were studied. Chromium was not as effective in suppressing corrosion as magnesium or zinc because of its strong tendency to self-passivate. The corrosion potential of ICAs was reduced by half with the addition of zinc and magnesium into the ICA formulation. The addition of zinc and magnesium was very effective in controlling galvanic corrosion that takes place in the ICA joints, resulting in stabilized contact resistance of ICAs on Sn, SnPb, and SnAgCu surfaces during the 85°C/85% RH aging test.
Pan, Changjiang; Hu, Youdong; Hou, Yu; Liu, Tao; Lin, Yuebin; Ye, Wei; Hou, Yanhua; Gong, Tao
2017-01-01
In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that the above molecules were successfully immobilized on the magnesium alloy surface. An excellent hydrophilic surface was obtained after the alkali heating treatment while the hydrophilicity decreased to some degree after the self-assembly of APTMS, the surface hydrophilicity was gradually improved again after the immobilization of PEG, fibronectin or fibronectin/heparin complex. The corrosion resistance of the control magnesium alloy was significantly improved by the alkali heating treatment. The self-assembly of APTMS and the following immobilization of PEG further enhanced the corrosion resistance of the substrates, however, the grafting of fibronectin or fibronectin/heparin complex slightly lowered the corrosion resistance. As compared to the pristine magnesium alloy, the samples modified by the immobilization of PEG and fibronectin/heparin complex presented better blood compatibility according to the results of hemolysis assay and platelet adhesion as well as the activated partial thromboplastin time (APTT). In addition, the modified substrates had better cytocompatibility to endothelial cells due to the improved anticorrosion and the introduction of fibronectin. The substrates modified by fibronectin or fibronectin/heparin complex can significantly promote endothelial cell adhesion and proliferation. Taking all these results into consideration, the method of the present study can be used for the surface modification of the magnesium alloy to simultaneously impart it better corrosion resistance, favorable blood compatibility and good cytocompatibility to endothelial cells. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peker, Mevlut Fatih
Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate the surface topography changes during long-run micro-stamping of BPPs, and establish relationships between surface roughness--corrosion resistance and surface roughness-contact resistance characteristics of BPPs. Formability levels of formed BPPs and repeatability characteristics of the process were investigated. In addition, blank thickness changes, von-Mises stress, plastic strain levels and distributions of micro-stamping process were determined via finite element analysis (FEA). Test results revealed that the surface roughness change for the stamping dies and BPPs was unsteady (no trend) due to the continuous change of surface topography (i.e. asperity deformation). Sub-micron range local plastic deformations on stamping dies led to surface topography changes on BPP in long-run manufacturing case. As surface defects trigger corrosion, the correlation between surface roughness and corrosion resistance of BPPs was found to be direct. Increasing number of surface irregularities (asperities) lowered contact surface area that resulted in increased contact resistance. ZrN coated BPPs, on the other hand, did not change surface roughness, however; it improved the protection of BPPs against corrosion significantly. In addition, ZrN coating increased the conductivity of BPPs and reduced the contact resistance between BPP and gas diffusion layer (GDL), at certain extent. As dimensional stability and repeatability was confirmed in forming of both uncoated and coated BPPs during the long run manufacturing, different formability levels were achieved for coated and uncoated samples. Lower channel height values were obtained for coated plates because of the different surface hardness of uncoated and coated plates. In tribological size effect part of study, micro stamping experiments using three different dies with distinct channel height values at different stamping force levels were performed. It was concluded that decrease in forming die dimensions led to increase in coefficient of friction as previously reported by other researchers as one of the consequences of tribological size effect. On the other hand, coefficient of friction values were not affected by the force levels used in the experiments and simulations, whereas plastic strain, equivalent stress, and formability levels were increased with increasing stamping force, as expected. In essence, this study proposed a methodology to investigate the long-run manufacturing effects on dimensional stability and surface characteristics of micro-stamped sheets. It also correlates these parameters to fuel cell performance measures such as interfacial contact and corrosion resistance.
Furtula, Vesna; Jackson, Charlene R.; Farrell, Erin Gwenn; Barrett, John B.; Hiott, Lari M.; Chambers, Patricia A.
2013-01-01
Enterococcus spp. from two poultry farms and proximate surface and ground water sites in an area of intensive poultry production were tested for resistance to 16 clinical antibiotics. Resistance patterns were compared to assess trends and possible correlations for specific antimicrobials and levels of resistance. Enterococci were detected at all 12 surface water sites and three of 28 ground water sites. Resistance to lincomycin, tetracycline, penicillin and ciprofloxacin in poultry litter isolates was high (80.3%, 65.3%, 61.1% and 49.6%, respectively). Resistance in the surface water to the same antibiotics was 87.1%, 24.1%, 7.6% and 12.9%, respectively. Overall, 86% of litter isolates, 58% of surface water isolates and 100% of ground water isolates were resistant to more than one antibiotic. Fifty-four different resistance patterns were recognised in isolates obtained from litter and environmental samples and several E. faecium and E. faecalis isolates from litter and environment samples shared the same resistance pattern. Multiple antibiotic resistant (MAR) indices calculated to assess health risks due to the presence of resistant enterococci suggested an increased presence of antibiotics in surface water, likely from poultry sources as no other wastewater contributions in the area were documented. PMID:23481592
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, E.H.; Mansur, L.K.; Heatherly, L. Jr.
1995-04-18
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance. 8 figs.
Field evaluation of skid resistant surfaces : final report : part I.
DOT National Transportation Integrated Search
1970-06-01
This project was undertaken to establish a thin bituminous surface course that would possess good skid resistant qualities as well as, being both economical and durable. : This is the final report on the evaluation of skid resistant surfaces which wa...
PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION
Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...
Effect Of Resistance Modification On EML Capacitor Bank Performance
2009-06-01
EFFECT OF RESISTANCE MODIFICATION ON EML CAPACITOR BANK PERFORMANCE* B. M. Huhman, J. M. Neri, T. L. Lockner1 Plasma Physics Division, Naval...development of an electromagnetic launcher ( EML ) for surface-fire support and other missions [1]. The Naval Research Laboratory has initiated a...develop and test materials for the study of barrel lifetime in electromagnetic launchers ( EML ) for surface-fire support and other missions [3]. The
Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M
2018-06-04
A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.
NASA Astrophysics Data System (ADS)
Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li
2017-10-01
A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.
NASA Astrophysics Data System (ADS)
Yue, Dewu; Yoo, Won Jong
Despite that the novel quantum mechanical properties of two-dimension (2D) materials are well explored theoretically, their electronic performance is limited by the contact resistance of the metallic interface and therefore their inherent novel properties are rarely realized experimentally. In this study, we demonstrate that we can largely reduce the contact resistance induced between metal and 2D materials, by controlling the surface condition of 2D materials, eg. surface flatness and van der Waals bonding. To induce the number of more effective carrier conducting modes, we engineer the surface roughness and dangling bonds of the 2D interface in contact with metal. As a result, electrical contact resistance of the metal interface is significantly reduced and carrier mobility in the device level is enhanced correspondingly. This work was supported by the Global Research Laboratory and Global Frontier R&D Programs at the Center for Hybrid Interface Materials, both funded by the Ministry of Science, ICT & Future Planning via the National Research Foundation of Korea (NRF).
Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces
NASA Technical Reports Server (NTRS)
Pyle, B. H.; McFeters, G. A.
1990-01-01
Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.
Sagripanti, J L; Bonifacino, A
2000-01-01
A comparison was made of the effectiveness of popular disinfectants (Cavicide, Cidexplus, Clorox, Exspor, Lysol, Renalin, and Wavicide) under conditions prescribed for disinfection in the respective product labels on Pseudomonas aeruginosa either in suspension or deposited onto surfaces of metallic or polymeric plastic devices. The testing also included 7 nonformulated germicidal agents (glutaraldehyde, formaldehyde, peracetic acid, hydrogen peroxide, sodium hypochlorite, phenol, and cupric ascorbate) commonly used in disinfection and decontamination. Results showed that P. aeruginosa is on average 300-fold more resistant when present on contaminated surfaces than in suspension. This increase in resistance agrees with results reported in studies of biofilms, but unexpectedly, it precedes biofilm formation. The surface to which bacteria are attached can influence the effectiveness of disinfectants. Viable bacteria attached to devices may require dislodging through more than a one-step method for detection. The data, obtained with a sensitive and quantitative test, suggest that disinfectants are less effective on contaminated surfaces than generally acknowledged.
Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad
2016-06-15
Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
NASA Astrophysics Data System (ADS)
Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola
2018-02-01
In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.
Schmitter, M; Lotze, G; Bömicke, W; Rues, S
2015-12-01
The purpose of this study was to assess the effect of surface treatment on the fracture resistance of zirconia-based all-ceramic anterior crowns. Sixty-four zirconia-based all-ceramic anterior crowns, veneered by use of a press-on technique, were produced. For 48 crowns intraoral adjustment was simulated (A-group), 16 crowns remained unadjusted (WA-group). The adjusted area was then treated in three ways: 1. no further surface treatment; 2. polishing, with irrigation, using polishers interspersed with diamond grit for ceramics; and 3. polishing and glaze firing. Half of the specimens were loaded until fracture in an universal testing device without artificial ageing; the other crowns underwent thermocycling and chewing simulation before ultimate-load testing. Explorative statistical analysis was performed by use of non-parametric and parametric tests. In addition, fracture-strength tests according to ISO 6872 were performed for veneer ceramic subjected to the different surface treatments. Finite element analysis was also conducted for the crowns, and surface roughness was measured. Crowns in the A-group were more sensitive to aging than crowns in the WA-group (p=0.038). Although both polishing and glaze firing slightly improved the fracture resistance of the specimens, the fracture resistance in the WA-group (initial fracture resistance (IFR): 652.0 ± 107.7N, remaining fracture resistance after aging (RFR): 560.6 ± 233.3N) was higher than the fracture resistance in the A-group (polished: IFR: 477.9 ± 108.8N, RFR: 386.0 ± 218.5N; glaze firing: IFR: 535.5 ± 128.0N, RFR: 388.6 ± 202.2N). Surface roughness without adjustment was Ra=0.1 μm; for adjustment but without further treatment it was Ra=1.4 μm; for adjustment and polishing it was Ra=0.3 μm; and for adjustment, polishing, and glazing it was Ra=0.6 μm. Stress distributions obtained by finite element analysis in combination with fracture strength tests showed that fractures most probably originated from the occlusal surface. To improve fracture resistance and reduce the incidence of failure, extensive occlusal adjustment of veneered anterior zirconia restorations should be avoided. Neither polishing nor glazing could restore the fracture resistance to the level maintained with unadjusted crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Thickened boundary layer theory for air film drag reduction on a van body surface
NASA Astrophysics Data System (ADS)
Xie, Xiaopeng; Cao, Lifeng; Huang, Heng
2018-05-01
To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.
Naderizadeh, Sara; Athanassiou, Athanassia; Bayer, Ilker S
2018-06-01
Nanoparticle films are one of the most suitable platforms for obtaining sub-micrometer and nanometer dual-scale surface texture required for liquid repellency. The assembly of superhydrophobic nanoparticles into conformal and strongly adherent films having abrasion-induced wear resistance still poses a significant challenge. Various techniques have been developed over the years to render nanoparticle films with good liquid repellent properties and transparency. However, forming abrasion resistant superhydrophobic nanoparticle films on hard surfaces is challenging. One possibility is to partially embed or weld nanoparticles in thin thermoplastic primers applied over metals. Hexamethyldisilazane-functionalized fumed silica nanoparticle films spray deposited on aluminum surfaces were rendered abrasion resistant by thermally welding them into thermoplastic polyurethane (TPU) primer applied a priori over aluminum. Different solvents, nanoparticle concentrations and annealing temperatures were studied to optimize nanoparticle film morphology and hydrophobicity. Thermal annealing at 150 °C enhanced stability and wear resistance of nanoparticle films. A thin thermal interface layer of graphene nanoplatelets (GnPs) between the primer and the nanoparticle film significantly improved superhydrophobic wear resistance after annealing. As such, superhydrophobic nanocomposite films with the GnPs thermal interface layer displayed superior abrasion-induced wear resistance under 20 kPa compared to films having no GnPs-based thermal interface. Copyright © 2018 Elsevier Inc. All rights reserved.
The acid-base resistant zone in three dentin bonding systems.
Inoue, Go; Nikaido, Toru; Foxton, Richard M; Tagami, Junji
2009-11-01
An acid-base resistant zone has been found to exist after acid-base challenge adjacent to the hybrid layer using SEM. The aim of this study was to examine the acid-base resistant zone using three different bonding systems. Dentin disks were applied with three different bonding systems, and then a resin composite was light-cured to make dentin disk sandwiches. After acid-base challenge, the polished surfaces were observed using SEM. For both one- and two-step self-etching primer systems, an acid-base resistant zone was clearly observed adjacent to the hybrid layer - but with differing appearances. For the wet bonding system, the presence of an acid-base resistant zone was unclear. This was because the self-etching primer systems etched the dentin surface mildly, such that the remaining mineral phase of dentin and the bonding agent yielded clear acid-base resistant zones. In conclusion, the acid-base resistant zone was clearly observed when self-etching primer systems were used, but not so for the wet bonding system.
Musilova, Michaela; Wright, Gary; Ward, John M; Dartnell, Lewis R
2015-12-01
Extreme radiation-resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at -79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Extremophiles-Halomonas sp.-Antarctica-Mars-Ionizing radiation-Cosmic rays.
Zhang, Xuelian; Li, Yanxia; Liu, Bei; Wang, Jing; Feng, Chenghong; Gao, Min; Wang, Lina
2014-01-01
This study investigated the occurrence of 12 veterinary antibiotics (VAs) and the susceptibility of Escherichia coli (E. coli) in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L(-1). The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment.
Zhang, Xuelian; Li, Yanxia; Liu, Bei; Wang, Jing; Feng, Chenghong; Gao, Min; Wang, Lina
2014-01-01
This study investigated the occurrence of 12 veterinary antibiotics (VAs) and the susceptibility of Escherichia coli (E. coli) in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L−1. The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment. PMID:25372873
Effect of deformation on the thermal conductivity of granular porous media with rough grain surface
NASA Astrophysics Data System (ADS)
Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad
2017-08-01
Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.
Role of thermal resistance on the performance of superconducting radio frequency cavities
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
2017-03-07
Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less
Role of thermal resistance on the performance of superconducting radio frequency cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less
The Use of Resistivity Methods in Terrestrial Forensic Searches
NASA Astrophysics Data System (ADS)
Wolf, R. C.; Raisuddin, I.; Bank, C.
2013-12-01
The increasing use of near-surface geophysical methods in forensic searches has demonstrated the need for further studies to identify the ideal physical, environmental and temporal settings for each geophysical method. Previous studies using resistivity methods have shown promising results, but additional work is required to more accurately interpret and analyze survey findings. The Ontario Provincial Police's UCRT (Urban Search and Rescue; Chemical, Biolgical, Radiological, Nuclear and Explosives; Response Team) is collaborating with the University of Toronto and two additional universities in a multi-year study investigating the applications of near-surface geophysical methods to terrestrial forensic searches. In the summer of 2012, on a test site near Bolton, Ontario, the OPP buried weapons, drums and pigs (naked, tarped, and clothed) to simulate clandestine graves and caches. Our study aims to conduct repeat surveys using an IRIS Syscal Junior with 48 electrode switching system resistivity-meter. These surveys will monitor changes in resistivity reflecting decomposition of the object since burial, and identify the strengths and weaknesses of resistivity when used in a rural, clandestine burial setting. Our initial findings indicate the usefulness of this method, as prominent resistivity changes have been observed. We anticipate our results will help to assist law enforcement agencies in determining the type of resistivity results to expect based on time since burial, depth of burial and state of dress of the body.
Getachew, Hailu; Derbie, Awoke; Mekonnen, Daniel
2018-01-01
The hospital environment is a source of medically important pathogens that are mostly multidrug resistant (MDR) and posing a major therapeutic challenge. The aim of this study was to assess the surface and air bacteriology of selected wards at Felege Hiwot Referral Hospital (FHRH), Northwest Ethiopia. A cross-sectional study was carried out from 15th February to 30th April 2017. A total of 356 surface and air samples were collected from selected wards using 5% sheep blood agar (Oxoid, UK) and processed at FHRH microbiology laboratory following the standard bacteriological procedures. Pure isolates were tested against the recommended antibiotics using Kirby-Bauer disc diffusion methods, and the susceptibility profile was determined based on Clinical Laboratory Standards Institute (CLSI). Data were entered and analyzed using SPSS version 23 for Windows. Of the total 356 samples processed, 274 were from surfaces and 82 were from air. Among these, 141 (39.6%) showed bacterial growth, yielding a total of 190 isolates. Gram-positive isolates were predominant at 81.6% ( n =155), while the gram negatives were at 18.4% ( n =35). The main isolates were coagulase negative staphylococci ( CoNs ), 44%, followed by S. aureus , 37.4%, and Klebsiella species at 11.6%. The bacterial load on surfaces and air was found beyond the standard limits. Besides, the antimicrobial susceptibility profile of the isolates showed that about 75% of the identified isolates were found resistant for two and more antimicrobial agents tested. This study showed high degree of bacterial load that is beyond the standard limits on both surfaces and air samples of the hospital. Furthermore, some 75% of the isolates were found multidrug resistant. Therefore, it is important to evaluate and strengthen the infection prevention practice of the hospital. Moreover, stakeholders should also reinforce actions to decrease the pressure of antimicrobial resistance in the studied area.
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Geng, J.; Tan, W. S.; Ren, X. D.; Lu, J. Z.; Huang, Shu
2018-07-01
The Ti6Al4V micro-dimple surfaces fabricated by a masked laser surface texturing (MLST) technique within water were subjected to soft contact laser shock peening (SCLSP) and hard contact laser shock peening (HCLSP). The effects of these two LSP methods on topography, micro-hardness and residual stress distribution were studied. The friction and wear performance under dry friction and oil lubrication were also studied. The enclosure of micro cracks in the micro-dimple bottom was observed when treated by SCLSP and HCLSP. The dry friction and wear test showed that the MLST+HCLSP surfaces had the best wear resistance performance. In the oil lubricated friction test, the occurrence of the hydrodynamic lubrication effect occurred on the micro-dimple surfaces. The MLST+HCLSP exhibited the best friction and wear resistance performance. These were due to the micro-hardness increase, the producing of compressive residual stress and the surface roughness reduction of as treated surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe
A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less
Lee, Jung-Su; Bae, Young-Min; Lee, Sook-Young; Lee, Sun-Young
2015-10-01
This study investigated the effect of material types (polystyrene, polypropylene, glass, and stainless steel) and glucose addition on Staphylococcus aureus biofilm formation, and the relationship between biofilm formation measured by crystal violet (CV) staining and the number of biofilm cells determined by cell counts was studied. We also evaluated the efficacy of chlorine sanitizer on inhibiting various different types of S. aureus biofilms on the surface of stainless steel. Levels of biofilm formation of S. aureus were higher on hydrophilic surfaces (glass and stainless steel) than on hydrophobic surfaces (polypropylene and polystyrene). With the exception of biofilm formed on glass, the addition of glucose in broth significantly increased the biofilm formation of S. aureus on all surfaces and for all tested strains (P ≤ 0.05). The number of biofilm cells was not correlated with the biomass of the biofilms determined using the CV staining method. The efficacy of chlorine sanitizer against biofilm of S. aureus was not significantly different depending on types of biofilm (P > 0.05). Therefore, further studies are needed in order to determine an accurate method quantifying levels of bacterial biofilm and to evaluate the resistance of bacterial biofilm on the material surface. Biofilm formation of Staphylococcus aureus on the surface was different depending on the surface characteristics and S. aureus strains. There was low correlation between crystal violet staining method and viable counts technique for measuring levels of biofilm formation of S. aureus on the surfaces. These results could provide helpful information for finding and understanding the quantification method and resistance of bacterial biofilm on the surface. © 2015 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Sánchez, F. J.; Mateo-Martí, E.; Raggio, J.; Meeßen, J.; Martínez-Frías, J.; Sancho, L. G.a..; Ott, S.; de la Torre, R.
2012-11-01
The "Planetary Atmospheres and Surfaces Chamber" (PASC, at Centro de Astrobiología, INTA, Madrid) is able to simulate the atmosphere and surface temperature of most of the solar system planets. PASC is especially appropriate to study irradiation induced changes of geological, chemical, and biological samples under a wide range of controlled atmospheric and temperature conditions. Therefore, PASC is a valid method to test the resistance potential of extremophile organisms under diverse harsh conditions and thus assess the habitability of extraterrestrial environments. In the present study, we have investigated the resistance of a symbiotic organism under simulated Mars conditions, exemplified with the lichen Circinaria gyrosa - an extremophilic eukaryote. After 120 hours of exposure to simulated but representative Mars atmosphere, temperature, pressure and UV conditions; an unaltered photosynthetic performance demonstrated high resistance of the lichen photobiont.
Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin
2017-11-01
The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schwan, Adrian L.; Singh, Suneel P.; Davy, Jason A.; Waring, Alan J.; Gordon, Larry M.; Walther, Frans J.; Wang, Zhengdong; Notter, Robert H.
2012-01-01
This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A2 (PLA2) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA2 in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf®) was significantly degraded by PLA2. The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response. PMID:22530092
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria
1994-09-01
Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.
Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.
Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M
2011-11-01
The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of resistance form on attachment strength of resin-retained castings.
Wilkes, P W; Shillingburg, H T; Johnson, D L
2000-01-01
This study evaluated the effects of tooth preparation design on resistance to dislodgment of a resin-bonded fixed partial denture (RBFPD). The variations of tooth preparation tested included axial coverage, retentive grooves, and an occlusal rest. Patterns of the tooth preparation designs were prepared and cast in a base metal alloy. Retainer patterns were waxed to refractory casts of metal dies, cast, finished and then bonded to the dies. The complete assemblies were loaded to failure on an Instron mechanical testing machine, and analysis indicated that retainers with occlusal rests were the most resistant. Grooves provided no statistically significant increase in resistance to failure of the cement. Increased axial coverage did not increase resistance to dislodgment. Successful fixed partial dentures (FPDs) depend on cast retainers to resist displacement of the restoration during function. Introduction of resin-bonded restorations opened the possibility of FPDs with minimal reduction of abutments. Specific questions concerning long term success and tooth preparation designs were prominent concerns. The influence of resistance form on overall stability of a restoration was also of particular interest. Buonocore established the foundation for retention of composite resins to acid-pitted enamel. Rochette used this technology to bond perforated cast metal splints to periodontally compromised teeth. A mechanical interlock was created as composite resin engaged these perforations and sustained the cast splint to acid-etched enamel. Howe adapted this design for replacement of anterior teeth by adding porcelain to a metal ceramic framework and then bonding the framework to abutments without tooth preparations. The advantages of these procedures were their conservative nature, esthetics, and ease of rebonding after dislodgment. Livaditis and Thompson adapted the procedure proposed by Tanaka of corrosion-pitting the bonding surface of a base metal alloy. They increased the surface area to be bonded, eliminated the perforations to improve rigidity of the framework, and described tooth preparation modifications of the abutments. They suggested an occlusal rest, establishment of guide planes through axial reduction, and a proximal extension to the facial surface to resist lingual displacement. Simonson, et al., based their anterior tooth preparation design on the configuration suggested by Livaditis which included a slight chamfer finish line plus reduction of the lingual surface to provide a thicker metal framework. Barrack introduced an inlay type tooth preparation for the occlusal rest plus shallow vertical proximal grooves, and Meiers used grooves as an esthetic alternative to proximal extensions. Clinical studies and surveys have identified specific variables involved with success and failure, while in vitro studies have evaluated framework designs, bonding agents, and methods for pitting the metal surface. This study evaluated resistance of RBFPDs to dislodgment of different tooth preparation designs.
The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance.
Sokołowski, Grzegorz; Rylska, Dorota; Sokołowski, Jerzy
2016-01-01
Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.
Improving the contact resistance at low force using gold coated carbon nanotube surfaces
NASA Astrophysics Data System (ADS)
McBride, J. W.; Yunus, E. M.; Spearing, S. M.
2010-04-01
Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.
Zambetti, G; Filiaci, F; Romeo, R; Soldo, P; Filiaci, F
2005-04-01
Each nasal area, as defined by Cottle, has a different influence on the nasal airflow. The longitudinal distribution of resistances in nasal cavities was calculated by the anterior rhinomanometry and acoustic rhinometry data. Dynamic study of Cottle's areas in normal subjects was carried out by rhinomanometry and acoustic rhinometry. Study by the Department of Otolaryngology of the University of Rome-La Sapienza. Twenty-seven Caucasian adults in local and general healthy conditions took part and completed this study, with a total of 54 nasal cavities included because of negativity at ENT-examination and clinical history, with normal respiratory parameters at the rhinomanometry and acoustic rhinometry. We determined nasal and acoustic resistances, nasal volumes and cross-sectional surface areas, as defined by Cottle, using nasal endoscopy. The longitudinal distribution of nasal resistances was obtained by integrating experimental surface areas using a novel mathematical model. The estimation of the longitudinal nasal resistance variations as a result of a theoretical reduction of the surface areas. The reduction of the 2-3-1 areas (in this order of importance) showed the greatest influence on the nasal resistances with coefficients of determinations greater than 0.98, this being quite different from that of the areas 4 and 5 for quite smaller area reduction percentages. The areas 2-3-1 control the overall nasal resistance so the surgical procedures on these areas greatly influence the dynamics of nasal airflow. The mathematical model developed here gives useful information to nasal functional surgery and may be applied to other schemes of nasal cavity.
Bulk water freezing dynamics on superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.
2017-01-01
In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.
Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung
2014-06-01
Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling moieties. Copyright © 2014 Elsevier B.V. All rights reserved.
Enhancing wear resistance of working bodies of grinder through lining crushed material
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Annenko, D. M.; Romanovich, M. A.; Apukhtina, I. V.
2018-03-01
The article presents the analysis of directions of increasing wear resistance of working surfaces of rolls. A technical solution developed at the level of the invention is proposed, which is simple to implement in production conditions and which makes it possible to protect the roll surface from heavy wear due to surfacing of wear-resistant mesh material, cells of which are filling with grinding material in the process of work. Retaining them enables one to protect the roll surface from wear. The paper dwells on conditions of pressing materials in cells of eccentric rolls on the working surface with a grid of rectangular shape. The paper presents an equation for calculation of the cell dimension that provides the lining of the working surface by a mill material with respect to its properties. The article presents results of comparative studies on the grinding process of a press roller grinder (PRG) between rolls with and without a fusion-bonded mesh. It is clarified that the lining of rolls working surface slightly reduces the quality of the grinding, since the material thickness in the cell is small and has a finely divided and compacted structure with high strength.
Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A
2017-08-08
A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle < 10 °) surfaces. The spray coated surfaces were found to exhibit much improved water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.
Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding
NASA Astrophysics Data System (ADS)
Kim, Jun Seok; Park, Young IL; Lee, Hae Woo
2015-03-01
The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.
In Situ Measurement of Ground-Surface Flow Resistivity
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1984-01-01
New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.
ToF-SIMS analysis of poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers.
Pidhatika, Bidhari; Chen, Yin; Coullerez, Geraldine; Al-Bataineh, Sameer; Textor, Marcus
2014-02-01
Understanding of the interfacial chemistry of ultrathin polymeric adlayers is fundamentally important in the context of establishing quantitative design rules for the fabrication of nonfouling surfaces in various applications such as biomaterials and medical devices. In this study, seven poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-PMOXA) copolymers with grafting density (number of PMOXA chains per lysine residue) 0.09, 0.14, 0.19, 0.33, 0.43, 0.56, and 0.77, respectively, were synthesized and characterized by means of nuclear magnetic resonance spectroscopy (NMR). The copolymers were then adsorbed on Nb2O5 surfaces. Optical waveguide lightmode spectroscopy method was used to monitor the surface adsorption in situ of these copolymers and provide information on adlayer masses that were then converted into PLL and PMOXA surface densities. To investigate the relationship between copolymer bulk architecture (as shown by NMR data) and surface coverage as well as surface architecture, time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Furthermore, ToF-SIMS method combined with principal component analysis (PCA) was used to verify the protein resistant properties of PLL-PMOXA adlayers, by thorough characterization before and after adlayer exposure to human serum. ToF-SIMS analysis revealed that the chemical composition as well as the architecture of the different PLL-PMOXA adlayers indeed reflects the copolymer bulk composition. ToF-SIMS results also indicated a heterogeneous surface coverage of PLL-PMOXA adlayers with high grafting densities higher than 0.33. In the case of protein resistant surface, PCA results showed clear differences between protein resistant and nonprotein-resistant surfaces. Therefore, ToF-SIMS results combined with PCA confirmed that the PLL-PMOXA adlayer with brush architecture resists protein adsorption. However, low increases of some amino acid signals in ToF-SIMS spectra were detected after the adlayer has been exposed to human serum.
NASA Astrophysics Data System (ADS)
Krim, Jacqueline; Acharya, Biplav; Chestnut, Melanie; Marek, Antonin; Shendarova, Olga; Smirnov, Alex
The addition of nanoparticles to conventional automotive lubricants is known in many cases to result in increased energy efficiency, but the atomic scale mechanisms leading to the increased efficiency are yet to be established. To explore this issue, we studied surface uptake and nanotribological properties of nanoparticle suspensions of diamond, Al2O3 and SiO2 dispersed in water and/or oil (PAO6) in real time by means of an in situ Quartz Crystal Microbalance (QCM) technique, with a focus on the impact of the suspension on the surface roughness and texture of the QCM electrode and how the results compared to macroscopic reductions in friction and increased energy efficiency for the same materials' combinations. The frequency and dissipative properties (mechanical resistance) of QCM's with both gold and nickel surface electrodes were first studied for immersed samples upon addition of the nanoparticles. Nanodiamonds resulted in an increased mechanical resistance while the addition of Al2O3 and SiO2 nanoparticles resulted in a decreased resistance, indicating a reduced resistance of the fluid to the motion of the QCM. Atomic Force Microscope (AFM) measurements were then performed on the QCM electrodes after exposure to the suspensions, to explore potential polishing and/or roughening effects. The results are closely linked to the macroscopic friction and wear attributes. Work supported by NSF.
Lv, Qichao; Li, Zhaomin; Li, Binfei; Husein, Maen; Shi, Dashan; Zhang, Chao; Zhou, Tongke
2017-07-11
In this work, wall slipping behavior of foam with nanoparticle-armored bubbles was first studied in a capillary tube and the novel multiphase foam was characterized by a slipping law. A crack model with a cuboid geometry was then used to compare with the foam slipping results from the capillary tube and also to evaluate the flow resistance factor of the foam. The results showed that the slipping friction force F FR in the capillary tube significantly increased by addition of modified SiO 2 nanoparticles, and an appropriate power law exponents by fitting F FR vs. Capillary number, Ca, was 1/2. The modified nanoparticles at the surface were bridged together and formed a dense particle "armor" surrounding the bubble, and the interconnected structures of the "armor" with strong steric integrity made the surface solid-like, which was in agreement with the slip regime associated with rigid surface. Moreover, as confirmed by 3D microscopy, the roughness of the bubble surface increased with nanoparticle concentration, which in turn increased the slipping friction force. Compared with pure SDBS foam, SDBS/SiO 2 foam shows excellent stability and high flow resistance in visual crack. The resistance factor of SiO 2 /SDBS foam increased as the wall surface roughness increased in core cracks.
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
On the Resistance to Transpiration of the Sites of Evaporation within the Leaf 1
Farquhar, Graham D.; Raschke, Klaus
1978-01-01
The rates of transpiration from the upper and lower surfaces of leaves of Gossypium hirsutum, Xanthium strumarium, and Zea mays were compared with the rates at which helium diffused across those leaves. There was no evidence for effects of CO2 concentration or rate of evaporation on the resistance to water loss from the evaporating surface (“resistance of the mesophyll wall to transpiration”) and no evidence for any significant wall resistance in turgid tissues. The possible existence of a wall resistance was also tested in leaves of Commelina communis and Tulipa gesneriana whose epidermis could be easily peeled. Only when an epidermis was removed from a leaf, evaporation from the mesophyll tissue declined. We conclude that under conditions relevant to studies of stomatal behavior, the water vapor pressure at the sites of evaporation is equal to the saturation vapor pressure. PMID:16660404
NASA Astrophysics Data System (ADS)
Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan
2017-11-01
This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.
Single Layer Surface-Grafted PMMA as a Negative-Tone e-Beam Resist.
Yamada, Hirotaka; Aydinoglu, Ferhat; Liu, Yaoze; Dey, Ripon K; Cui, Bo
2017-12-05
One of the important challenges in electron beam lithography is nanofabrication on nonflat or irregular surfaces. Although spin coating is the most popular technique for resist coating, it is not suitable for nonflat, irregular substrates because a uniform film cannot be achieved on those surfaces. Here, it is demonstrated that single layer surface-grafted PMMA can be used as a negative-tone e-beam resist, and it can be applied to nonflat, irregular surfaces as well as flat, conventional surfaces. Although it is well known that heavily exposed PMMA undergoes cross-linking and works as a negative-tone e-beam resist when developed by solvent, solvent does not work as a developer for negative-tone single-layer surface-grafted PMMA. Instead, thermal treatment at 360 °C for 1 min is used to develop PMMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbaniak, C.; Sielaff, A. Checinska; Frey, K. G.
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Discmore » diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. Lastly, this information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.« less
Urbaniak, C.; Sielaff, A. Checinska; Frey, K. G.; ...
2018-01-16
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Discmore » diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. Lastly, this information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.« less
Urbaniak, C; Sielaff, A Checinska; Frey, K G; Allen, J E; Singh, N; Jaing, C; Wheeler, K; Venkateswaran, K
2018-01-16
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS "resistome' was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq ™ and metagenomics. Disc diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq ™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. This information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.
Wright, Gary; Ward, John M.; Dartnell, Lewis R.
2015-01-01
Abstract Extreme radiation–resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at −79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Key Words: Extremophiles—Halomonas sp.—Antarctica—Mars—Ionizing radiation—Cosmic rays. Astrobiology 15, 1076–1090. PMID:26684506
Methods for monitoring erosion using optical coherence tomography
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Chan, Andrew C.; Darling, Cynthia L.; Fried, Daniel
Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.
NASA Astrophysics Data System (ADS)
Urkude, Rajashri; Rawat, Rajeev; Palikundwar, Umesh
2018-04-01
In 3D topological insulators, achieving a genuine bulk-insulating state is an important topic of research. The material system (Bi,Sb)2(Te,Se)3 has been proposed as a topological insulator with high resistivity and low carrier concentration. Topological insulators are predicted to present interesting surface transport phenomena but their experimental studies have been hindered by metallic bulk conduction that overwhelms the surface transport. Here we present a study of the bulk-insulating properties of (Bi0.3Sb0.7)2Te3. We show that a high resistivity exceeding 1 Ωm as a result of variable-range hopping behavior of state and Shubnikov-de Haas oscillations as coming from the topological surface state. We have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport properties in this material. Our results demonstrate that (Bi0.3Sb0.7)2Te3 is a good material for studying the surface quantum transport in a topological insulator.
Hobza, Christopher M.; Burton, Bethany L.; Lucius, Jeffrey E.; Tompkins, Ryan E.
2014-01-01
Understanding the spatial characteristics of leakage from canals is critical to effectively managing and utilizing water resources for irrigation and hydroelectric purposes. Canal leakage in some parts of Nebraska is the primary source of water for groundwater recharge and helps maintain the base flow of streams. Because surface-water supplies depend on the streamflow of the Platte River and the available water stored in upstream reservoirs, water managers seek to minimize conveyance losses, which can include canal leakage. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District and Nebraska Public Power District, used capacitively coupled (CC) and direct-current (DC) resistivity techniques for continuous resistivity profiling to map near-surface lithologies near and underlying the Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals. Approximately 84 kilometers (km) of CC-resistivity data were collected along the five canals. The CC-resistivity data were compared with results from continuous sediment cores and electrical conductivity logs. Generally, the highest resistivities were recorded at the upstream reaches of the Cozad, Thirty-Mile, and Orchard-Alfalfa canals where flood-plain deposits of silt and clay mantle coarser channel deposits of sand and gravel. The finer grained deposits gradually thicken with increasing distance away from the Platte River. Consequently, for many surveyed reaches the thickness of fine-grained deposits exceeded the 8-meter depth of investigation. A detailed geophysical investigation along a 5-km reach of the Outlet Canal southwest of North Platte, Nebraska, used CC and DC resistivity to examine the condition of a compacted-core bank structure and characterized other potential controls on areas of focused seepage. CC-resistivity data, collected along the 5-km study reach, were compared with continuous sediment cores and DC-resistivity data collected near a selected seep near Outlet Canal mile post 15.55 along 5 separate profiles. DC-resistivity results were compared to a schematic cross section of the Outlet Canal north embankment that include the original surfaces and modifications to the compacted-core bank structure. Along the canal road south line, there is a transition from high resistivity at land surface to much lower resistivity near the estimated depth of the northern slope of the original compacted-core bank; however, the surveyed elevation of the water surface in the canal also is at this elevation. Along the canal road north line, there is a transition from high resistivity near land surface to lower resistivity at depth. Although the transition is rapid near the estimated depth of the first-modified bank slope, it also is coincident with the groundwater level measured in piezometer PZ-4. Currently (2013), it is unknown if the indicated changes in resistivity at these elevations was the effect of saturation of the underlying sediments or caused by the compacted-core bank.
NASA Astrophysics Data System (ADS)
Ijiri, Masataka; Yoshimura, Toshihiko
2018-02-01
Low-alloy steels are based on carbon steel in combination with several percent or less (in many cases, 1 mass%) alloying elements, and they offer improved resistance to corrosion at a cost slightly higher than that of carbon steel. However, these materials do not exhibit the same corrosion resistance as stainless steel. The authors have previously developed a novel multifunction cavitation (MFC) technique, which combines ultrasonic cavitation with water jet cavitation. In this study, MFC was used to modify the surface of Cr-Mo steel (SCM435) and Ni-Cr-Mo steel (SNCM630). MFC was found to improve the residual stress value of the material as the result of surface modification while also imparting high strength and superior corrosion resistance.
NASA Astrophysics Data System (ADS)
Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.
2013-12-01
Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with 28-electrode arrays with electrodes 2-5 meters apart, and the deep arrays buried at 4-8 meters depth. Ground penetrating radar surveys, SPT borings and coring data provide selected 'ground truthing'. The case studies show that inclusion of the deep electrode array permits karst features such as undulations at the top of limestone and raveling zones within surficial sediments to be imaged. These features are not accessible from surface arrays with equivalent surface footprints. The method also has better resolution at depth at the ends of the lines, where surface arrays are typically plotted with a trapezoidal truncation due to poor resolution at the lower corners of the profile.
Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Yildiz, Esra; Uslan, Ibrahim; Acikel, Cengizhan
2010-02-01
The microhardness, surface roughness and wear resistance of different types of resin composites, polymerized by a Quartz Tungsten Halogen (QTH) or Light Emitting Diode (LED) light curing units (LCU) were evaluated in this in vitro study. Cylindrical blocks were prepared from composites (8 mm in diameter, and 2 mm in thickness) and polymerized by a LED or a QTH LCU. Vickers hardness was measured on the top and bottom surfaces of the specimens. Surface roughness was measured with a surface profilometer on the top of the specimens. For the wear test, specimens were tested in a conventional pin-on-disc tribology machine under 15 N loads. The statistical analyses were performed by one-way analysis of variance (ANOVA) and t-tests, including the Bonferroni correction. Nanocomposite material Clearfil Majesty Posterior showed the highest hardness values in all polymerization types at the top and bottom surfaces (p < 0.05). Microhybrid Clearfil APX and hybrid Quixfil composites demonstrated the greatest surface roughness. Wear resistance of Clearfil Majesty Posterior was found to be the highest among the other tested resin composites. The results indicated that Clearfil Majesty Posterior demonstrated higher microhardness, less surface roughness, and higher wear resistance when compared with the other tested materials for both polymerization types.
NASA Astrophysics Data System (ADS)
Wang, W. J.; Yung, K. C.; Choy, H. S.; Xiao, T. Y.; Cai, Z. X.
2018-06-01
Laser polishing of 3D printed metal components has drawn great interest in view of its potential applications in the dental implant industries. In this study, corrosion resistance, surface composition and crystalline structure of CoCr alloys were investigated. The corrosion resistance, micromorphology, composition, phase transformations and crystalline structures of samples were characterized using an electrochemical analyzer, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and transmission electron microscope (TEM), respectively. The results indicate that high laser powers and low object distances within a certain range can facilitate the formation of complex oxide films, which exhibits high corrosion resistance. Further, object distances have a significant influence on cooling rates during the solidification of the melt pool in laser polishing, and fast cooling generates vast amounts of vacancies and defects, which result in the crystalline phase transformation from γ to ε. Consequently, the formed oxides play an important role in corrosion resistance on the outer layer, and inner layer with γ phase also helps keep the CoCr alloys in a stable structure with high resistant to corrosion. The two process parameters in laser polishing, laser power and object distances, are demonstrated as being important for controlling the surface microstructures and corrosion resistance of the additive manufactured CoCr alloy components.
Katayama, Ryohei; Fang, Siyang; Tsutsui, Saki; Akatsuka, Akinobu; Shan, Mingde; Choi, Hyeong-Wook; Fujita, Naoya; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo
2018-01-01
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression. PMID:29416720
NASA Astrophysics Data System (ADS)
Jiao, Peng; Yang, Er; Ni, Yong Xin
2018-06-01
The overland flow resistance on grassland slope of 20° was studied by using simulated rainfall experiments. Model of overland flow resistance coefficient was established based on BP neural network. The input variations of model were rainfall intensity, flow velocity, water depth, and roughness of slope surface, and the output variations was overland flow resistance coefficient. Model was optimized by Genetic Algorithm. The results show that the model can be used to calculate overland flow resistance coefficient, and has high simulation accuracy. The average prediction error of the optimized model of test set is 8.02%, and the maximum prediction error was 18.34%.
Peng, Yang; Ou, Qianting; Lin, Dongxin; Xu, Ping; Li, Ying; Ye, Xiaohua; Zhou, Junli; Yao, Zhenjiang
2015-10-29
Staphylococci are common causes of healthcare-associated and community-associated infections. However, limited data are available on the prevalence, phenotypes and molecular characteristics of Staphylococci in metro system around the world. 320 surface samples were collected from the Guangzhou metro system to isolate and characterize Staphylococci strains. Of the samples, 75.6% (242/320) were contaminated with Staphylococci. The Staphylococci isolates, especially the methicillin resistant isolates, were resistance to most of the antibiotics, with 79.8% (193/242) classified as multidrug resistant (MDR) strains. 8 strains of methicillin-resistant Staphylococcus aureus (MRSA) carried a range of staphylococcal cassette chromosome mec (SCCmec) types [I (1), II (3), III (2) and NT (2)]. Staphylococcus aureus isolates were classified into several ST types and showed possible cross transmissions of strains from various sources. All MRSA strains were positive for the qac gene, and only one methicillin-susceptible Staphylococci aureus (MSSA) strain was positive for the Panton-Valentine leukocidin (PVL) genes. This study demonstrated that environmental surfaces in the Guangzhou metro system may be a hazardous reservoir for transmission of Staphylococci to passengers. The resistance to antibiotics and disinfectants observed among isolates was also noteworthy.
Xu, Changyun; Weese, Scott J; Namvar, Azadeh; Warriner, Keith
2015-04-01
The study described in this article aimed at establishing a baseline assessment of the sanitary status of ice and guest rooms within Canadian hotels. Collectively, 54 hotel rooms belonging to six different national chains were sampled. High-contact surfaces (comforter, alarm clock, bedside lamp, TV remote, bathroom countertop, faucet, and toilet seat) were sampled using adenosine triphosphate (ATP) swabs and replicate organism detection and counting plates. ATP swab readings ranged from 2.12 to 4.42 log relative light units. Coliforms were recovered from 36% of surfaces with high prevalence being recovered from the comforter, TV remote, bathroom countertop, faucet, and toilet seat. Oxacillin-resistant bacteria were recovered from 19% of surfaces with 46% of isolates confirmed as methicillin-resistant Staphylococcus aureus. Two toxigenic Clostridium difficile isolates were recovered in the course of the study. Collectively, 24% of the ice samples harbored coliforms with a single sample testing positive for E. coli. The authors' study demonstrates that hotel rooms represent a potential source of community-acquired infections and the need for enhanced sanitation practices.
Fu, Jimin; He, Chong; Xia, Biao; Li, Yan; Feng, Qiong; Yin, Qifang; Shi, Xinghua; Feng, Xue; Wang, Hongtao; Yao, Haimin
2016-01-01
Biological armors such as mollusk shells have long been recognized and studied for their values in inspiring novel designs of engineering materials with higher toughness and strength. However, no material is invincible and biological armors also have their rivals. In this paper, our attention is focused on the teeth of black carp (Mylopharyngodon piceus) which is a predator of shelled mollusks like snails and mussels. Nanoscratching test on the enameloid, the outermost layer of the teeth, indicates that the natural occlusal surface (OS) has much higher wear resistance compared to the other sections. Subsequent X-ray diffraction analysis reveals that the hydroxyapatite (HAp) crystallites in the vicinity of OS possess c-axis preferential orientation. The superior wear resistance of black carp teeth is attributed to the c-axis preferential orientation of HAp near the OS since the (001) surface of HAp crystal, which is perpendicular to the c-axis, exhibits much better wear resistance compared to the other surfaces as demonstrated by the molecular dynamics simulation. Our results not only shed light on the origin of the good wear resistance exhibited by the black carp teeth but are of great value to the design of engineering materials with better abrasion resistance. PMID:27001150
Rocha, Rafael dos Santos; Leite, Lana Oliveira; de Sousa, Oscarina Viana; Vieira, Regine Helena Silva dos Fernandes
2014-01-01
The contamination of seafood by bacteria of fecal origin, especially Escherichia coli, is a widely documented sanitary problem. The objective of the present study was to isolate E. coli strains from the gills, muscle, and body surface of farmed Nile tilapias (Oreochromis niloticus) fresh-marketed in supermarkets in Fortaleza (Ceará, Brazil), to determine their susceptibility to antibiotics of different families (amikacin, gentamicin, imipenem, cephalothin, cefotaxime, ciprofloxacin, aztreonam, ampicillin, nalidixic acid, tetracycline, and sulfametoxazol-trimetoprim), and to determine the nature of resistance by plasmid curing. Forty-four strains (body surface = 25, gills = 15, muscle = 4) were isolated, all of which were susceptible to amikacin, aztreonam, cefotaxime, ciprofloxacin, gentamicin, and imipenem. Gill and body surface samples yielded 11 isolates resistant to ampicillin, tetracycline, and sulfametoxazol-trimetoprim, 4 of which of plasmidial nature. The multiple antibiotic resistance index was higher for strains isolated from body surface than from gills. The overall high antibiotic susceptibility of E. coli strains isolated from fresh-marketed tilapia was satisfactory, although the occasional finding of plasmidial resistance points to the need for close microbiological surveillance of the farming, handling, and marketing conditions of aquaculture products. PMID:24808957
NASA Astrophysics Data System (ADS)
Suda, Yoshiyuki; Mizutani, Akitaka; Harigai, Toru; Takikawa, Hirofumi; Ue, Hitoshi; Umeda, Yoshito
2017-01-01
We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag-1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.
Nd:YAG laser ablation and acid resistance of enamel.
Kwon, Yong Hoon; Kwon, Oh-Won; Kim, Hyung-Il; Kim, Kyo-Han
2003-09-01
The acid resistance of Nd:YAG laser-ablated enamel surfaces was studied by evaluating crystal structure, mineral distribution, and fluorescence radiance and image in the present study. For comparison, 37% phosphoric acid etching was performed. The formation of beta-tricalcium phosphate (beta-TCP) was confirmed in the laser-ablated surface. The Ca/P ratio increased after ablation due to mineral re-distribution. In contrast, the Ca/P ratio decreased after acid etching due to mineral loss. The laser-ablated enamels showed a smaller increase of fluorescence radiances and less clear laser confocal scanning microscope images than those observed in the acid-etched enamels. The former suggests a minimized mineral loss. The Nd:YAG laser irradiation will enhance the acid resistance and retard the carious progression in enamel.
Costa-Berenguer, Xavier; García-García, Marta; Sánchez-Torres, Alba; Sanz-Alonso, Mariano; Figueiredo, Rui; Valmaseda-Castellón, Eduard
2018-01-01
To assess the effect of implantoplasty on the fracture resistance, surface roughness, and macroscopic morphology of standard diameter (4.1 mm) external connection dental implants. An in vitro study was conducted in 20 screw-shaped titanium dental implants with an external connection. In 10 implants, the threads and surface were removed and polished with high-speed burs (implantoplasty), while the remaining 10 implants were used as controls. The final implant dimensions were recorded. The newly polished surface quality was assessed by scanning electron microscopy (SEM) and by 3D surface roughness analysis using a confocal laser microscope. Finally, all the implants were subjected to a mechanical pressure resistance test. A descriptive analysis of the data was made. Also, Student's t tests were employed to detect differences regarding the compression tests. Implantoplasty was carried out for a mean time of 10 min and 48 s (standard deviation (SD) of 1 min 22 s). Macroscopically, the resulting surface had a smooth appearance, although small titanium shavings and silicon debris were present. The final surface roughness (S a values 0.1 ± 0.02 μm) was significantly lower than that of the original (0.75 ± 0.08 μm S a ) (p = .005). There was minimal reduction in the implant's inner body diameter (0.19 ± 0.03 mm), and no statistically significant differences were found between the test and control implants regarding the maximum resistance force (896 vs 880 N, respectively). Implantoplasty, although technically demanding and time-consuming, does not seem to significantly alter fracture resistance of standard diameter external connection implants. A smooth surface with S a values below 0.1 μm can be obtained through the use of silicon polishers. A larger sample is required to confirm that implantoplasty does not significantly affect the maximum resistance force of standard diameter external connection implants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...
NASA Astrophysics Data System (ADS)
Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng
2018-02-01
The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.
NASA Astrophysics Data System (ADS)
Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng
2017-08-01
The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.
Gomes Freitas, Denize; Silva, Rassan Dyego Romão; Bataus, Luis Artur Mendes; Barbosa, Mônica Santiago; da Silva Bitencourt Braga, Carla Afonso; Carneiro, Lilian Carla
2017-02-08
The fecal coliform can contaminate water of human consumption causing problems to public health. Many of these microorganisms may contain plasmid and transfer them to other bacteria. This genetic material may confer selective advantages, among them resistance to antibiotics. The objectives of this study were to analyze the presence of fecal coliforms in water and at drinker surface, to identify the existence of plasmid, conducting studies of resistance to antibiotics, plasmid stability and capacity of bacterial conjugation. Were collected microorganisms in water of drinker surface and were used specific culture media and biochemical tests for identification of organisms, tests were performed by checking the resistance to antibiotics (ampicillin 10 μg, tetracycline 30 μg, and ciprofloxacin 5 μg), was performed extraction of plasmid DNA, plasmid stability and bacterial conjugation. Was obtained results of 31% of Salmonella spp. and 51% for other coliforms. Among the samples positive for coliforms, 27 had plasmid stable and with the ability to perform conjugation. The plasmids had similar forms, suggesting that the resistance in some bacteria may be linked to those genes extra chromosomal.
NASA Astrophysics Data System (ADS)
Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia
2015-04-01
The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The coefficient of determination, R2, obtained with the values of the H surface is 0.67 and the coefficient corresponding to the T surface is higher, 0.81. Acknowledgements This research has been funded by the "Direccion General de Investigacion Cientifica y Tecnica del Ministerio de Economia y Competitividad" (Spain). (Project MINECO-13-CGL2012-33588)
NASA Astrophysics Data System (ADS)
Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.
2012-07-01
Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.
Friction and Surface Damage of Several Corrosion-resistant Materials
NASA Technical Reports Server (NTRS)
Peterson, Marshall B; Johnson, Robert L
1952-01-01
Friction and surface damage of several materials that are resistant to corrosion due to liquid metals was studied in air. The values of kinetic friction coefficient at low sliding velocities and photomicrographs of surface damage were obtained. Appreciable surface damage was evident for all materials tested. The friction coefficients for the combinations of steel, stainless steel, and monel sliding against steel, stainless steel, nickel, Iconel, and Nichrome ranged from 0.55 for the monel-Inconel combination to 0.97 for the stainless-steel-nickel combination; for steel, stainless steel, monel, and tungsten carbide against zirconium, the friction coefficient was approximately 0.47. Lower coefficients of friction (0.20 to 0.60) and negligible surface failure at light loads were obtained with tungsten carbide when used in combination with various plate materials.
NASA Astrophysics Data System (ADS)
Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf
2014-05-01
The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.
Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H
1997-08-01
Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.
The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices
NASA Astrophysics Data System (ADS)
Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.
2016-10-01
In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.
Surface coating metrology of carbides of cutting tools
NASA Astrophysics Data System (ADS)
Parfenov, V. D.; Basova, G. D.
2017-10-01
The coatings were studied by their main sign of the micrometric thickness by means of coating destruction and electron microscopical study of cleavage surfaces. Shock stress ruptures of heated carbides of cutting tools were performed. The discovery of the coating technology and creation of the coating structure for nonuniform and nonequilibrium conditions of the cutting process were dealt with. Multifracture microdestruction of nitride coatings, caused by complex external influences, was analysed to reveal the mechanism of interaction of elementary failures. Positive results were obtained in the form of improving the strength and wear resistance of the product, crack resistance increasing.
NASA Astrophysics Data System (ADS)
Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Roshan K.; Bage, Ashish K.
2017-06-01
Electrical resistivity tomography (ERT) is a useful tool to map near-surface conducting anomalies. The detailed ERT survey was taken over an already defined conducting zone on a regional scale through a magnetotelluric (MT) survey, in order to provide better resolution of the subsurface structure within the study area. The survey lines were carried out crossing the delineated conducting zone through MT giving a dense coverage over the area. The ERT survey were carried out along 15 lines covering an area of ~1 km2 with a line spacing of ~50 m in the northern fringe of the Dalma volcanics (DVs). The study utilised the 61-channel cum 64-electrode resistivity equipment, FlashRES-Universal ERT multi-electrode data acquisition system, developed by ZZ Resistivity Imaging, Australia. Data has been acquired both through conventional arrays i.e. Wenner, Schlumberger and ZZ unconventional arrays. Inversion of the data set have been performed using 2.5D finite element conjugate gradient algorithm after performing the quality check. Resistivity models along all the lines were obtained using Wenner, Schlumberger and combination of Wenner, Schlumberger and ZZ arrays. Resistivity models resolved four major zones: (1) resistivity less than 1 Ωm (2) resistivity 1-10 Ωm (3) resistivity 10-100 Ωm and (4) resistivity more than 100 Ωm . The resistivity results corroborate well with the geological succession from the drilling data. The conducting zones with resistivity values ranging from 1-10 Ωm correlates with the Lower Dalma volcanics while the Upper Dalma volcanics corresponds to the regions with resistivity values of less than 1 Ωm. The Upper Dalma volcanics corresponds to the metallogeny while the depth to the top of the ore body is ~25 m.
NASA Astrophysics Data System (ADS)
Krylova, S. E.; Oplesnin, S. P.; Manakov, N. A.; Yasakov, A. S.; Strizhov, A. O.
2018-01-01
Results of the developed commercial process for reconditioning the surface of corrosion-resistant steels by the method of laser surfacing are presented. A comparative analysis of the microstructures of the deposited wear-resistant layer, of the zone of fusion with the matrix material and of the diffusion zone after different variants of surfacing is performed. The hardness of the deposited layer is measured and a nondestructive inspection of the latter for the presence of flaws is performed.
Imaging of electrical response of NiO x under controlled environment with sub-25-nm resolution
Jacobs, Christopher B.; Ievlev, Anton V.; Collins, Liam F.; ...
2016-07-19
The spatially resolved electrical response of rf-sputtered polycrystalline NiO x films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy at 0%, 50%, and 80% relative humidity with sub 25nm resolution. The surface potential of NiO x decreased by about 180 mV and resistance decreased in a nonlinear fashion by about 2 G when relative humidity was increased from 0% to 80%. The dimensionality of surface features obtained through autocorrelation analysis of topological, surfacemore » potential and resistance maps increased linearly with increased relative humidity as water was adsorbed onto the film surface. Spatially resolved surface potential and resistance of the NiO x films were found to be heterogeneous, with distinct features that grew in size from about 60 nm to 175 nm between 0% and 80% RH levels, respectively. Here, we find that the changes in the heterogeneous character of the NiO films are consistent through the topological, surface potential, and resistance measurements, suggesting that the nanoscale surface potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO x film.« less
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Zhuqing, Wang; Tongxiang, Liang; Ken, Suzuki; Hideo, Miura
Surface molybdenum enrichment on 2205 duplex stainless steel was obtained by the ball milling technique. The electrochemical results showed molybdenum enrichment on the surface of 2205 duplex stainless steel improved its corrosion resistance in a typical proton exchange membrane fuel cell environment. This was mainly attributed to higher molybdenum content in the passive film formed on 2205 duplex stainless steel after ball milling. The decreased donor and acceptor concentrations improved significantly the corrosion resistance of surface molybdenum-enriched 2205 duplex stainless steel bipolar plates in the simulated cathodic proton exchange membrane fuel cells environment. In addition, the interfacial contact resistance of the 2205 duplex stainless steel bipolar plates slightly decreased due to surface molybdenum enrichment.
Phelps, Amanda C [Malibu, CA; Kirby, Kevin K [Calabasas Hills, CA; Gregoire, Daniel J [Thousand Oaks, CA
2012-02-14
A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.
Qian, Hongchang; Li, Minglu; Li, Zhong; Lou, Yuntian; Huang, Luyao; Zhang, Dawei; Xu, Dake; Du, Cuiwei; Lu, Lin; Gao, Jin
2017-11-01
In this study, a multilayer antibacterial film was assembled onto 316L stainless steel via mussel-inspired depositions of polydopamine (PDA) and silver (Ag) nanoparticles followed by post-modification with 1H, 1H, 2H, 2H-perfluorodecanethiol. The resulting surface exhibited excellent superhydrophobicity with hierarchical micro/nanostructures that were constructed by both PDA and Ag nanoparticles. The crystal structure and chemical composition of these surfaces were investigated using X-ray photoelectron spectroscopy (XPS) analysis. Potentiodynamic polarization measurements revealed that the corrosion resistance of the as-prepared surfaces were sequentially increased after each step of the fabrication process. Compared with the surface covered with only Ag nanoparticles, the superhydrophobic surfaces exhibited substantially enhanced antibacterial activity against the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, resulting from the synergistic antibacterial actions of the superhydrophobic surface and Ag nanoparticles. The superhydrophobic surface exhibited lower cytotoxicity, compared to the surface covered with Ag nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.
Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A
2016-01-01
The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.
Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing
Hryniewicz, Tadeusz; Rokosz, Krzysztof; Filippi, Massimiliano
2009-01-01
The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material − medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP) process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.
Forced vibrations of a two-layered shell in the case of viscous resistance
NASA Astrophysics Data System (ADS)
Aghalovyan, L. A.; Ghulghazaryan, L. G.
2018-04-01
Forced vibrations of a two-layered orthotropic shell are studied in the case of viscous resistance in the lower layer of the shell. Two versions of spatial boundary conditions on the upper surface of the shell are posed, and the displacement vector is given on the lower surface. An asymptotic method is used to solve the corresponding dynamic equations and relations of the three-dimensional problem of elasticity. The amplitudes of the forced vibrations are determined, and the resonance conditions are established.
Abdallah, Marwan; Chataigne, Gabrielle; Ferreira-Theret, Pauline; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine
2014-03-01
The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.
Samuel A. Cushman; Jesse S. Lewis; Erin L. Landguth
2014-01-01
There have been few assessments of the performance of alternative resistance surfaces, and little is known about how connectivity modeling approaches differ in their ability to predict organism movements. In this paper, we evaluate the performance of four connectivity modeling approaches applied to two resistance surfaces in predicting the locations of highway...
USDA-ARS?s Scientific Manuscript database
This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...
Tribological and corrosion properties of plasma nitrided and nitrocarburized 42CrMo4 steel
NASA Astrophysics Data System (ADS)
Kusmic, D.; Van Thanh, D.
2017-02-01
This article deals with tribological and corrosion resistance comparison of plasma nitrided and nitrocarburized 42CrMo4 steel used for breech mechanism in the armament production. Increasing of materials demands (like wear resistance, surface hardness, running-in properties and corrosion resistance) used for armament production and in other industrial application leads in the field of surface treatment. Experimental steel samples were plasma nitrided under different nitriding gas ratio at 500 °C for 15h and nitrocarburized for 45 min at temperature 590°C and consequently post-oxidized for 10 min at 430°C. Individual 42CrMo4 steel samples were subsequently metallographically evaluated and characterized by hardness and microhardness measuring. The wear test “ball on disc” was realized for measuring of adhesive wear and coefficient of friction during unlubricated sliding. NSS corrosion tests were realized for corrosion resistance evaluation and expressed by corroded area and calculated corrosion rate. The corrosion resistance evaluation is by the surface corrosion-free surfaces evaluation supplemented using the laser confocal microscopy. Due to different surface treatment and plasma nitriding conditions, there are wear resistance and corrosion resistance differences evident between the plasma nitrided steel samples as well.
SEM viewing of gypsiferous material and study of their influence on electrical resistivity
NASA Astrophysics Data System (ADS)
Dafalla, M.; Fouzan, F. Al
2012-04-01
The gypsum rich material is often linked to the cavity formation due to the high solubility of cal-cium carbonate in the presence of acidic media. This work is dedicated to a close-up look to the structure of materials rich of gypsum and material of less or traces of sulfate ions. Electrical resistivity measurements were conducted along extended lines on sections involving cavities and the resulting profiles were examined for any changes. Forms and features of gypsum and minerals containing sulfates were studied and compared to sam-ples tested using SEM (scanning electron microscope). The chemical analyses (EDAX) using electron beam was carried out and the elements present within these samples were established. Quantitative chemical testing for some parameters including sulfate ions was carried out. Structural forms variation and changes are studied in view of the chemical composition. The electrical resistivity was measured using Syscal R1 electerical resis-tivity equipment for several spots near surface. Statistical correlations between sulfate ions content and elec-trical resistivity, for near surface soils, is presented. This study is aiming at utilizing the geophysical testing methods of sulfate rich soils and predicting future cavity formation in areas of high risk to cavities due to chemical weathering.
Durfee, William K; Young, Joseph R; Ginz, Hans F
2014-05-01
ICU patients typically are given large amounts of fluid and often develop oedema. The purpose of this study was to evaluate whether the oedema would change inter-electrode resistance and, thus, require a different approach to using non-invasive electrical stimulation of nerves to assess muscle force. Inter-electrode tissue resistance in the lower leg was measured by applying a 300 µs constant current pulse and measuring the current through and voltage across the stimulating electrodes. The protocol was administered to nine ICU patients with oedema, eight surgical patients without oedema and eight healthy controls. No significant difference in inter-electrode resistance was found between the three groups. For all groups, resistance decreased as stimulation current increased. In conclusion, inter-electrode resistance in ICU patients with severe oedema is the same as the resistance in regular surgical patients and healthy controls. This means that non-invasive nerve stimulation devices do not need to be designed to accommodate different resistances when used with oedema patients; however, surface stimulation does require higher current levels with oedema patients because of the increased distance between the skin surface and the targeted nerve or muscle.
USDA-ARS?s Scientific Manuscript database
Agricultural runoff from areas receiving livestock manure can potentially contaminate surface water with antimicrobials and antimicrobial resistance genes (ARGs). The objective of this study was to investigate the effectiveness of narrow grass hedges (NGHs) on reducing the transport of antimicrobial...
Relationships between skid numbers, paving materials and mix design, and accumulated traffic.
DOT National Transportation Integrated Search
1977-01-01
The objectives of this study were to determine the periods of time over which materials used in pavement surfaces provide adequate skid resistance and to classify various aggregate sources on the basis of the skid resistance qualities of the material...
Durability of certain configurations for providing skid resistance on concrete pavements.
DOT National Transportation Integrated Search
1974-01-01
The main objective of this study was to establish the factors that influence the durability of the surface configurations that are used or can be used to provide high and long lasting skid resistance for portland cement concrete pavements. In the dev...
NASA Astrophysics Data System (ADS)
Cheng, Wen; Ge, Wen; Yang, Qian; Qu, Xinxin
2013-07-01
Nanocrystalline nickel coatings were produced by the method of reverse pulse electrodepositing on the surface of steel sheets. The crystallite size of nanocrystalline nickel coatings was determined by X-ray diffraction (XRD). The effect of saccharin concentration on the crystallite size of the coatings was studied. The average crystallite sizes were diminished as a result of increasing saccharin concentration. CHI660C electrochemical workstation was used to determine the Tafel polarization curves and electrochemical impedance spectroscopy (EIS) of the coatings. The value of corrosion potential, natural corrosion current density, polarizaiton resistance and impedance was calculated, the results suggested that smaller grain size led to higher polarization resistance. EIS gave the charge transfer resistance Rct and pore resistance Rpo variation trend from beginning to 30 min. Scanning electron microscopy (SEM) examination showed the surface morphology of the nickel coatings after the neutral salt spray (NSS) test or bathing in 10% HCl. The images indicated that the corrosion behavior of nanocrystalline nickel coatings was pitting corrosion, the mechanism was also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, L. L., E-mail: llm@isps.tsc.ru; Meisner, S. N.; National Research Tomsk State University, 36, Lenina Avenue, Tomsk, 634050
The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively. It is foundmore » that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.« less
Tencer, Michal; Berini, Pierre
2008-11-04
We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.
NASA Astrophysics Data System (ADS)
Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.
2018-05-01
Seismic events of varying magnitudes have been associated with ruptures along unknown or incompletely mapped buried faults. The 2009 Mw 6.0 Karonga, Malawi earthquake caused a surface rupture length of 14-18 km along a single W-dipping fault [St. Mary Fault (SMF)] on the hanging wall of the North Basin of the Malawi Rift. Prior to this earthquake, there was no known surface expression or knowledge of the presence of this fault. Although the earthquake damage zone is characterized by surface ruptures and coseismic liquefaction-induced sand blows, the origin of the causative fault and the near-surface structure of the rupture zone are not known. We used high-resolution aeromagnetic and electrical resistivity data to elucidate the relationship between surface rupture locations and buried basement structures. We also acquired electrical resistivity tomography (ERT) profiles along and across the surface rupture zone to image the near-surface structure of the damaged zone. We applied mathematical derivative filters to the aeromagnetic data to enhance basement structures underlying the rupture zone and surrounding areas. Although several magnetic lineaments are visible in the basement, mapped surface ruptures align with a single 37 km long, 148°-162°—striking magnetic lineament, and is interpreted as the ruptured normal fault. Inverted ERT profiles reveal three regional geoelectric layers which consist of 15 m thick layer of discontinuous zones of high and low resistivity values, underlain by a 27 m thick zone of high electrical resistivity (up to 100 Ω m) and a basal layer of lower resistivity (1.0-6.0 Ω m) extending from 42 m depth downwards (the maximum achieved depth of investigation). The geoelectric layers are truncated by a zone of electrical disturbance (electrical mélange) coinciding with areas of coseismic surface rupturing and sediment liquefaction along the ruptured. Our study shows that the 2009 Karonga earthquake was associated with the partial rupture of the buried SMF, and illuminates other potential seismogenic buried faults within the Karonga area of the North Basin. Although our electrical surveys were conducted 6 yr after the 2009 Karonga earthquake, we observe that near-surface lenses of electrically conductive sediments imaged by our ERT profiles, coincide with zones of coseismic surface rupture and liquefaction sand blows. We suggest that the presence of these preserved near-surface lenses of potentially water-saturated sand pose potential hazard in the event of a future earthquake in the area. In addition, our ERT profiles reveal structures that could represent relics of previous earthquake events along the SMF. In addition, our study demonstrates that the integration of ERT and aeromagnetic data can be very useful in illuminating seismogenic buried faults, thereby significantly improving seismic hazard analysis in tectonically active areas.
NASA Astrophysics Data System (ADS)
Scotch, C.; Murgulet, D.; Hay, R.
2012-12-01
This study utilizes a multidisciplinary approach to better analyze the extent to which groundwater and surface water interact in the Oso Creek water shed of South Texas using temperature data, electrical resistivity and numerical modeling methods. The three primary objectives of this study are to: (1) identify primary areas of streambed groundwater-surface water interaction using temperature time series and resistivity soundings; (2) improve understanding of solute flow and groundwater, surface water, and sediment interaction in a semiarid, urban coastal area; (3) improve our understanding of groundwater contribution to contaminant transport and discharge to the bays and estuaries and ultimately the Gulf of Mexico. Temperature data was acquired over a one year period, using temperature loggers, from June 11, 2009 to May 18, 2010 at 15-minute intervals from 17 monitoring sites along Oso Creek and its tributaries. Each monitoring site consisted of 4 temperature loggers equally vertically spaced from the stream surface down to a depth of one meter. Furthermore, groundwater temperatures and water levels were collected from wells adjacent to the temperature monitoring sites. In order to fulfill the objectives of this study, existing hydrogeologic, stratigraphic, and other ancillary data are being integrated into a finite difference model developed using the USGS VS2DT software for the Oso Creek Watershed. The model will be calibrated using existing temperature and water level data and a resistivity component will also be added to assure accuracy of the model and temperature data by helping to identify varying lithologies and water conductivities. Compiling a time-series of temperature data and incorporating available hydrostratigraphic, geomorphologic and water level data will enable the development of a comprehensive database. This database is necessary to develop the detailed flow model that will enable an understanding of the extent of groundwater surface water interaction and their associated flow regimes.
Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.
Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Zhang, Z X; Xi, T F; Zhang, D Y
2009-08-01
The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10(5) for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.
Cattani-Lorente, M; Scherrer, S S; Durual, S; Sanon, C; Douillard, T; Gremillard, L; Chevalier, J; Wiskott, A
2014-10-01
Implant surface modifications are intended to enhance bone integration. The objective of this study was to assess the effect of different surface treatments on the resistance to hydrothermal degradation, hardness and elastic modulus of a 3Y-TZP ceramic used for dental implants. Samples grouped according to their surface morphologies (AS, as-sintered; C, coated; P, dry-polished; R, roughened; PA, polished and annealed; RA, roughened and annealed) were subjected to accelerated hydrothermal degradation (LTD) by exposure to water steam (134°C, 2bars) for 100h. The t-m phase transformation was quantified by grazing incidence X-ray diffraction (GIXDR) and by combined focused ion beam and scanning electron microscopy (FIB-SEM). Elastic modulus and hardness before- and after prolonged aging (100h) were assessed by nanoindentation. AS and C specimens presented a better resistance to hydrothermal degradation than P and R samples. After prolonged aging, the depth of the monoclinic transformed layer ranged from 11μm to 14μm. Hydrothermal degradation led to a significant decrease of elastic modulus and hardness. Surface treatments affected the resistance to hydrothermal degradation of the 3Y-TZP ceramic. Dry mechanical surface modifications should be avoided since a high t-m transformation rate associated to the initial monoclinic content was observed. Annealing was useful to reverse the initial t-m transformation, but did not improve the resistance to hydrothermal degradation. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study
NASA Astrophysics Data System (ADS)
Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur
2018-04-01
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself
Zhao, Jing; Frauenkron-Machedjou, Victorine Josiane; Fulton, Alexander; Zhu, Leilei; Davari, Mehdi D; Jaeger, Karl-Erich; Schwaneberg, Ulrich; Bocola, Marco
2018-04-04
Understanding of the structural and dynamic properties of enzymes in non-aqueous media (e.g., ionic liquids, ILs) is highly attractive for protein engineers and synthetic biochemists. Despite a growing number of molecular dynamics (MD) simulation studies on the influence of different ILs on wild-type enzymes, the effects of various amino acid substitutions on the stability and activity of enzymes in ILs remain to be unraveled at the molecular level. Herein, we selected fifty previously reported Bacillus subtilis lipase A (BSLA) variants with increased resistance towards an IL (15 vol% 1-butyl-3-methylimidazolium trifluoromethanesulfonate; [Bmim][TfO]), and also ten non-resistant BSLA variants for a MD simulation study to identify the underlying molecular principles. Some important properties differentiating resistant and non-resistant BSLA variants from wild-type were elucidated. Results show that, in 15 vol% [Bmim][TfO] aqueous solution, 40% and 60% of non-resistant variants have lower and equal probabilities to form a catalytically important hydrogen bond between S77 and H156 compared to wild-type, whereas 36% and 56% of resistant variants show increased and equal probabilities, respectively. Introducing positively charged amino acids close to the substrate-binding cleft for instance I12R is beneficial for the BSLA resistance towards 15 vol% [Bmim][TfO], likely due to the reduced probability of [Bmim]+ cations clustering near the cleft. In contrast, substitution with a large hydrophobic residue like I12F can block the cleft through hydrophobic interaction with a neighboring nonpolar loop 134-137 or/and an attractive π-π interaction with [Bmim]+ cations. In addition, the resistant variants having polar substitutions on the surface show higher ability to stabilize the surface water molecule network in comparison to non-resistant variants. This study can guide experimentalists to rationally design promising IL-resistant enzymes, and contribute to a deeper understanding of protein-IL interactions at the molecular level.
Factors promoting survival of bacteria in chlorinated water supplies.
LeChevallier, M W; Cawthon, C D; Lee, R G
1988-01-01
Results of our experiments showed that the attachment of bacteria to surfaces provided the greatest increase in disinfection resistance. Attachment of unencapsulated Klebsiella pneumoniae grown in medium with high levels of nutrients to glass microscope slides afforded the microorganisms as much as a 150-fold increase in disinfection resistance. Other mechanisms which increased disinfection resistance included the age of the biofilm, bacterial encapsulation, and previous growth conditions (e.g., growth medium and growth temperature). These factors increased resistance to chlorine from 2- to 10-fold. The choice of disinfectant residual was shown to influence the type of resistance mechanism observed. Disinfection by free chlorine was affected by surfaces, age of the biofilm, encapsulation, and nutrient effects. Disinfection by monochloramine, however, was only affected by surfaces. Importantly, results showed that these resistance mechanisms were multiplicative (i.e., the resistance provided by one mechanism could be multiplied by the resistance provided by a second mechanism). PMID:3288119
A study of the dry heat resistance of naturally occurring organisms widely dispersed on a surface
NASA Technical Reports Server (NTRS)
Garst, D. M.; Lindell, K. F.
1971-01-01
Although Bacillus subtilis var. niger is the standard test organism for NASA planetary quarantine sterilization studies, it was found that some naturally occurring soil organisms are more heat resistant. The separation of these organisms from soil particles is described. Experiments are discussed which were designed to show that the heat resistance is a natural characteristic of the organisms, rather than a condition induced by the clumping effect of agglomerated particles and organisms.
NASA Astrophysics Data System (ADS)
Fujishima, Tatsuya; Joglekar, Sameer; Piedra, Daniel; Lee, Hyung-Seok; Zhang, Yuhao; Uedono, Akira; Palacios, Tomás
2013-08-01
A BCl3 surface plasma treatment technique to reduce the resistance and to increase the uniformity of ohmic contacts in AlGaN/GaN high electron mobility transistors with a GaN cap layer has been established. This BCl3 plasma treatment was performed by an inductively coupled plasma reactive ion etching system under conditions that prevented any recess etching. The average contact resistances without plasma treatment, with SiCl4, and with BCl3 plasma treatment were 0.34, 0.41, and 0.17 Ω mm, respectively. Also, the standard deviation of the ohmic contact resistance with BCl3 plasma treatment was decreased. This decrease in the standard deviation of contact resistance can be explained by analyzing the surface condition of GaN with x-ray photoelectron spectroscopy and positron annihilation spectroscopy. We found that the proposed BCl3 plasma treatment technique can not only remove surface oxide but also introduce surface donor states that contribute to lower the ohmic contact resistance.
Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher
2013-01-01
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951
NASA Astrophysics Data System (ADS)
Getnet Tadesse, Melkie; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Catalin, Dumitras; Nierstrasz, Vincent
2017-06-01
Coating of textile fabrics with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) is one of the methods used for obtaining functional or smart applications. In this work, we prepared PEDOT:PSS polymer with certain additives such as polyethylene glycol, methanol (MeOH), and ethylene glycol on polyester fabric substrates by a simple immersion process. Surface resistance was measured and analyzed with analysis of variance to determine the coating parameters at 95% confidence level. Fourier transform infrared (FTIR) analysis and scanning electron microscopy (SEM) study of the samples were performed. Contact angle and washing fastness measurements were conducted, to observe the wettability and washing fastness of the samples, respectively. Surface resistance values were decreased by a factor of 100, due to conductive enhancers. As the immersion time and temperature condition varies, surface resistance showed no difference, statistically. FTIR analysis supports the idea that the mechanism responsible for the conductivity enhancement is the partial replacement of PSS from PEDOT chain by forming a hydrogen bond with hydroxyl ion (OH) of the conductive enhancers. A SEM images showed that PEDOT:PSS is well distributed to the surface of the fabrics. Contact angle measurements showed morphology change in the samples. The conductivity was reasonably stable after 10 washing cycles. Altogether, an effective simple immersion of coated polyester fabric is presented to achieve functional textiles that offer a broad range of possible applications.
NASA Astrophysics Data System (ADS)
Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William
2017-04-01
Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.
Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin
2017-08-01
NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.
Ruíz de Aguiar, A; Medina, J A; Garrido, G; Villacorta, J; Berenguer, J
1992-05-01
We have studied thirteen biliary stones resistant to biliary acids, using technical methods of stereomicroscopy, scanning electronic microscopy and EDX analyses. We have investigated changes on surface. Three biliary stones did not change and were considered resistant. Seven biliary stones appear partially dissolved and we observed many irregularities on surface and/or concentric dips in relation with cholesterol dissolution. In six cases, biliary pigment alternates with cholesterol. In three cases we observed a calcium carbonate coat on surface. One case included organic fibers. One biliary stone showed cholesterol with spherical bodies of calcium carbonate and pigment. It was a relapsed case of combined treatment. Three stones are composed of small black portions of polymerized calcium bilirubinate, rich in copper and iron. Our results demonstrate that biliary stones previously selected for treatment are a heterogeneous group. Because of this fact we get variable and unpredictable results.
Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J
2015-06-25
The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasma technologies application for building materials surface modification
NASA Astrophysics Data System (ADS)
Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.
2016-01-01
Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.
Ye, Chang; Zhou, Xianfeng; Telang, Abhishek; Gao, Hongyu; Ren, Zhencheng; Qin, Haifeng; Suslov, Sergey; Gill, Amrinder S; Mannava, S R; Qian, Dong; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Vasudevan, Vijay K
2016-01-01
We report herein the effects of Ultrasonic Nano-crystal Surface Modification (UNSM), a severe surface plastic deformation process, on the microstructure, mechanical (hardness, wear), wettability and biocompatibility properties of NiTi shape memory alloy. Complete surface amorphization of NiTi was achieved by this process, which was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The wear resistance of the samples after UNSM processing was significantly improved compared with the non-processed samples due to increased surface hardness of the alloy by this process. In addition, cell culture study demonstrated that the biocompatibility of the samples after UNSM processing has not been compromised compared to the non-processed sample. The combination of high wear resistance and good biocompatibility makes UNSM an appealing process for treating alloy-based biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.
Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.
Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M
2015-04-01
Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.
Knelson, Lauren P.; Williams, David A.; Gergen, Maria F.; Rutala, William A.; Weber, David J.; Sexton, Daniel J.; Anderson, Deverick J.
2014-01-01
A total of 1,023 environmental surfaces were sampled from 45 rooms with patients infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) before terminal room cleaning. Colonized patients had higher median total target colony-forming units (CFU) of MRSA or VRE than did infected patients (median, 25 CFU [interquartile range, 0–106 CFU] vs 0 CFU [interquartile range, 0–29 CFU]; P = .033). PMID:24915217
Goodman, Eric R.; Platt, Richard; Bass, Richard; Onderdonk, Andrew B.; Yokoe, Deborah S.; Huang, Susan S.
2009-01-01
OBJECTIVES To evaluate the adequacy of discharge room cleaning and the impact of a cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) on environmental surfaces in intensive care unit (ICU) rooms. DESIGN Prospective environmental study. SETTING AND SAMPLE Convenience sample of ICU rooms in an academic hospital. METHODS AND INTERVENTION The intervention consisted of (1) a change from the use of pour bottles to bucket immersion for applying disinfectant to cleaning cloths, (2) an educational campaign, and (3) feedback regarding adequacy of discharge cleaning. Cleaning of 15 surfaces was evaluated by inspecting for removal of a preapplied mark, visible only with an ultraviolet lamp (“black light”). Six surfaces were cultured for MRSA or VRE contamination. Outcomes of mark removal and culture positivity were evaluated by χ2 testing and generalized linear mixed models, clustering by room. RESULTS The black-light mark was removed from 44% of surfaces at baseline, compared with 71% during the intervention (P <.001). The intervention increased the likelihood of removal of black-light marks after discharge cleaning (odds ratio, 4.4; P < .001), controlling for ICU type (medical vs surgical) and type of surface. The intervention reduced the likelihood of an environmental culture positive for MRSA or VRE (proportion of cultures positive, 45% at baseline vs 27% during the intervention; adjusted odds ratio, 0.4; P = .02). Broad, flat surfaces were more likely to be cleaned than were doorknobs and sink or toilet handles. CONCLUSIONS Increasing the volume of disinfectant applied to environmental surfaces, providing education for Environmental Services staff, and instituting feedback with a black-light marker improved cleaning and reduced the frequency of MRSA and VRE contamination. PMID:18624666
Alisa A. Wade; Kevin S. McKelvey; Michael K. Schwartz
2015-01-01
Resistance-surface-based connectivity modeling has become a widespread tool for conservation planning. The current ease with which connectivity models can be created, however, masks the numerous untested assumptions underlying both the rules that produce the resistance surface and the algorithms used to locate low-cost paths across the target landscape. Here we present...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellakhal, N
2002-12-01
The exposure of a titanium sample to an NH{sub 3} low pressure plasma leads to the formation of a nitriding layer. The products formed at the titanium surface were identified by XRD spectroscopy. The modification of the corrosion resistance characteristics of titanium due to the NH{sub 3} plasma treatment were investigated by electrochemical tests. The recorded polarization curves of the treated titanium samples were used to determine the values of the corrosion potential E{sub corr}. This study confirms the increasing of the corrosion resistance as a function of the time exposure and the injected electric power in the silica reactor.more » The plasma treatment also induces drastic changes of the titanium target in hardness.« less
Weber, David J; Kanamori, Hajime; Rutala, William A
2016-08-01
This article reviews 'no touch' methods for disinfection of the contaminated surface environment of hospitalized patients' rooms. The focus is on studies that assessed the effectiveness of ultraviolet (UV) light devices, hydrogen peroxide systems, and self-disinfecting surfaces to reduce healthcare-associated infections (HAIs). The contaminated surface environment in hospitals plays an important role in the transmission of several key nosocomial pathogens including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Clostridium difficile, Acinetobacter spp., and norovirus. Multiple clinical trials have now demonstrated the effectiveness of UV light devices and hydrogen peroxide systems to reduce HAIs. A limited number of studies have suggested that 'self-disinfecting' surfaces may also decrease HAIs. Many studies have demonstrated that terminal cleaning and disinfection with germicides is often inadequate and leaves environmental surfaces contaminated with important nosocomial pathogens. 'No touch' methods of room decontamination (i.e., UV devices and hydrogen peroxide systems) have been demonstrated to reduce key nosocomial pathogens on inoculated test surfaces and on environmental surfaces in actual patient rooms. Further UV devices and hydrogen peroxide systems have been demonstrated to reduce HAI. A validated 'no touch' device or system should be used for terminal room disinfection following discharge of patients on contact precautions. The use of a 'self-disinfecting' surface to reduce HAI has not been convincingly demonstrated.
Impact of air exposure and surface chemistry on Li-Li 7La 3Zr 2O 12 interfacial resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharafi, Asma; Yu, Seungho; Naguib, Michael
Li 7La 3Zr 2O 12 (LLZO) is a promising solid-state electrolyte that could enable solid-state-batteries (SSB) employing metallic Li anodes. For a SSB to be viable, the stability and charge transfer kinetics at the Li–LLZO interface should foster facile plating and stripping of Li. Contrary to these goals, recent studies have reported high Li–LLZO interfacial resistance which was attributed to a contamination layer that forms upon exposure of LLZO to air. This study clarifies the mechanisms and consequences associated with air exposure of LLZO; additionally, strategies to minimize these effects are described. First-principles calculations reveal that LLZO readily reacts withmore » humid air; the most favorable reaction pathway involves protonation of LLZO and formation of Li2CO3. X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the surface and subsurface chemistry of LLZO as a function of relative humidity and exposure time. Additionally, electrochemical impedance spectroscopy was used to measure the Li–LLZO interfacial resistance as a function of surface contamination. These data indicate that air exposure-induced contamination impacts the interfacial resistance significantly, when exposure time exceeds 24 h. The results of this study provide valuable insight into the sensitivity of LLZO to air and how the effects of air contamination can be reversed.« less
Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate
2014-01-01
The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.
Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W.; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate
2014-01-01
The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated ‘hot spots.’ The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination. PMID:25479100
Electrostatic Evaluation: SCAPE Suit Materials
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos
2005-01-01
The surface resistivity tests are performed per the requirements of the ESD Association Standard Test Method ESD STM11.11*. These measurements are taken using a PRS-801 resistance system with an Electro Tech System (ETS) PRF-911 concentric ring resistance probe. The tests require a five pound weight on top of cylindrical electrodes and were conducted at both ambient and low humidity conditions. In order for materials to "pass" resistivity tests the surface of the materials must either be conductive or statically dissipative otherwise the materials "fail" ESD. Volume resistivity tests are also conducted to measure conductivity through the material as opposed to conductivity along the surface. These tests are conducted using the same PRS-801 resistance system with the Electro Tech System PRF-911 concentric ring resistance probe but are performed in accordance with ESD Association Standard Test Method ESD STM11.l2**.
ERIC Educational Resources Information Center
Waldern, Barbara
2006-01-01
This article is dedicated to an in-depth discussion of the theme community and the implications the multiple meanings of community hold for the field of qualitative research. This theme surfaced from Walderns 2003 study entitled Resistance to Research in Vancouvers Downtown Eastside, which dealt with participant resistance to joining research…
NASA Astrophysics Data System (ADS)
Lee, Hong-Sub; Park, Chang-Sun; Park, Hyung-Ho
2014-05-01
This study demonstrated that the resistive switching voltage of perovskite manganite material could be controlled by A-site cation substitution in "A" MnO3 perovskite manganite structure. A partial substitution of La3+ in La0.7Sr0.3MnO3 with smaller cation Gd3+ induced A-site vacancy of the largest Sr2+ cation with surface segregation of SrOy due to ionic size mismatch, and the induced vacancies reduced migration energy barrier. The operating voltage decreased from 3.5 V to 2.5 V due to a favorable condition for electrochemical migration and redox of oxygen ions. Moreover, surface-segregated SrOy was enhanced with Gd-substitution and the SrOy reduced Schottky-like barrier height and resistive switching ratio from the potential drop and screening effect. The relationship between A-site vacancy generation resulting in surface segregation of SrOy and resistive switching behavior was also investigated by energy resolved x-ray photoelectron spectroscopy, O 1s near edge x-ray absorption spectroscopy, and current voltage measurement.
NASA Astrophysics Data System (ADS)
Che, Ailan; Luo, Xianqi; Qi, Jinghua; Wang, Deyong
Shear wave velocity (Vs) of soil is one of the key parameters used in assessment of liquefaction potential of saturated soils in the base with leveled ground surface; determination of shear module of soils used in seismic response analyses. Such parameter can be experimentally obtained from laboratory soil tests and field measurements. Statistical relation of shear wave velocity with soil properties based on the surface wave survey investigation, and resonant column triaxial tests, which are taken from more than 14 sites within the depth of 10 m under ground surface, is obtained in Tianjin (China) area. The relationship between shear wave velocity and the standard penetration test N value (SPT-N value) of silt and clay in the quaternary formation are summarized. It is an important problem to research the effect of shear wave velocity on liquefaction resistance of saturated silts (sandy loams) for evaluating liquefaction resistance. According the results of cyclic triaxial tests, a correlation between liquefaction resistance and shear wave velocity is presented. The results are useful for ground liquefaction investigation and the evaluation of liquefaction resistance.
The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies
NASA Technical Reports Server (NTRS)
1982-01-01
The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.
Improving protein resistance of α-Al 2O 3 membranes by modification with POEGMA brushes
NASA Astrophysics Data System (ADS)
He, Huating; Jing, Wenheng; Xing, Weihong; Fan, Yiqun
2011-11-01
A kind of protein-resistant ceramic membrane is prepared by grafting poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes onto the surfaces and pore walls of α-Al2O3 membrane (AM) by surface-initiated atom-transfer radical polymerization (SI-ATRP). Contact-angle, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and field-emission scanning electron microscopy (FESEM) were measured to confirm that the surfaces and pore walls of the ceramic porous membranes have been modified by the brushes with this method successfully. The protein interaction behavior with the POEGMA modified membranes (AM-POEGMA) was studied by the model protein of bovine serum albumin (BSA). A protein-resistant mechanism of AM-POEGMA was proposed to describe an interesting phenomenon discovered in the filtration experiment, in which the initial flux filtrating BSA solution is higher than the pure water flux. The fouling of AM-POEGMA was easier to remove than AM for the action of POEGMA brushes, indicated that the ceramic porous membranes modified with POEGMA brushes exhibit excellent protein resistance.
Analysis of surface wave propagation in a grounded dielectric slab covered by a resistive sheet
NASA Technical Reports Server (NTRS)
Shively, David G.
1992-01-01
Both parallel and perpendicular polarized surface waves are known to propagate on lossless and lossy grounded dielectric slabs. Surface wave propagation on a grounded dielectric slab covered with a resistive sheet is considered. Both parallel and perpendicular polarizations are examined. Transcendental equations are derived for each polarization and are solved using iterative techniques. Attenuation and phase velocity are shown for representative geometries. The results are applicable to both a grounded slab with a resistive sheet and an ungrounded slab covered on each side with a resistive sheet.
Saw, Phei Er; Park, Jinho; Jon, Sangyong; Farokhzad, Omid C
2017-02-01
A major problem with cancer chemotherapy begins when cells acquire resistance. Drug-resistant cancer cells typically upregulate multi-drug resistance proteins such as P-glycoprotein (P-gp). However, the lack of overexpressed surface biomarkers has limited the targeted therapy of drug-resistant cancers. Here we report a drug-delivery carrier decorated with a targeting ligand for a surface marker protein extra-domain B(EDB) specific to drug-resistant breast cancer cells as a new therapeutic option for the aggressive cancers. We constructed EDB-specific aptide (APT EDB )-conjugated liposome to simultaneously deliver siRNA(siMDR1) and Dox to drug-resistant breast cancer cells. APT EDB -LS(Dox,siMDR1) led to enhanced delivery of payloads into MCF7/ADR cells and showed significantly higher accumulation and retention in the tumors. While either APT EDB -LS(Dox) or APT EDB -LS(siMDR1) did not lead to appreciable tumor retardation in MCF7/ADR orthotropic model, APT EDB -LS(Dox,siMDR1) treatment resulted in significant reduction of the drug-resistant breast tumor. Taken together, this study provides a new strategy of drug delivery for drug-resistant cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Teeple, Andrew; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.
2009-01-01
To help manage and understand the Platte River system in Nebraska, the Platte River Cooperative Hydrology Study (COHYST), a group of state and local governmental agencies, developed a regional ground-water model. The southern boundary of this model lies along the Republican River, where an area with insufficient geologic data immediately north of the Republican River led to problems in the conceptualization of the simulated flow system and to potential problems with calibration of the simulation. Geologic descriptions from a group of test holes drilled in south-central Nebraska during 2001 and 2002 indicated a possible hydrologic disconnection between the Quaternary-age alluvial deposits in the uplands and those in the Republican River lowland. This disconnection was observed near a topographic high in the Cretaceous-age Niobrara Formation, which is the local bedrock. In 2003, the U.S. Geological Survey, in cooperation with the COHYST, collected surface geophysical data near these test holes to better define this discontinuity. Two-dimensional imaging methods for direct-current resistivity and capacitively coupled resistivity were used to define the subsurface distribution of resistivity along several county roads near Riverton and Inavale, Nebraska. The relation between the subsurface distribution of resistivity and geology was defined by comparing existing geologic descriptions of test holes to surface-geophysical resistivity data along two profiles and using the information gained from these comparisons to interpret the remaining four profiles. In all of the resistivity profile sections, there was generally a three-layer subsurface interpretation, with a resistor located between two conductors. Further comparison of geologic data with the geophysical data and with surficial features was used to identify a topographic high in the Niobrara Formation near the Franklin Canal which was coincident with a resistivity high. Electrical properties of the Niobrara Formation made accurate interpretation of the resistivity profile sections difficult and less confident because of similar resistivity of this formation and that of the coarser-grained sediment of the Quaternary-age deposits. However, distinct conductive features were identified within the resistivity profile sections that aided in delineating the contact between the resistive Quaternary-age deposits and the resistive Niobrara Formation. Using this information, an interpretive boundary was drawn on the resistivity profile sections to represent the contact between the Quaternary-age alluvial deposits and the Cretaceous-age Niobrara Formation. A digital elevation model (DEM) of the top of the Niobrara Formation was constructed using the altitudes from the interpreted contact lines. This DEM showed that the general trend of top of the Niobrara Formation dips to the southeast. At the north edge of the study site, the Niobrara Formation topographic high trends east-west with an altitude range of 559 meters in the west to 543 meters in the east. Based on the land-surface elevation and the Niobrara Formation DEM, the estimated thickness of the Quaternary-age alluvial deposits throughout the study area was mapped and showed a thinning of the Quaternary-age alluvial deposits to the north, approximately where the topographic high of the Niobrara Formation is located. This topographic high in the Niobrara Formation has the potential to act as a barrier to ground-water flow from the uplands alluvial aquifer to the Republican River alluvial aquifer as shown in the resistivity profile sections. The Quaternary-age alluvial deposits in the uplands and those in the Republican River Valley are not fully represented as disconnected because it is possible that there are ground-water flow paths that were not mapped during this study.
Akhter, Gulraiz; Farid, Asim; Ahmad, Zulfiqar
2012-01-01
Velocity and density measured in a well are crucial for synthetic seismic generation which is, in turn, a key to interpreting real seismic amplitude in terms of lithology, porosity and fluid content. Investigations made in the water wells usually consist of spontaneous potential, resistivity long and short normal, point resistivity and gamma ray logs. The sonic logs are not available because these are usually run in the wells drilled for hydrocarbons. To generate the synthetic seismograms, sonic and density logs are required, which are useful to precisely mark the lithology contacts and formation tops. An attempt has been made to interpret the subsurface soil of the aquifer system by means of resistivity to seismic inversion. For this purpose, resistivity logs and surface resistivity sounding were used and the resistivity logs were converted to sonic logs whereas surface resistivity sounding data transformed into seismic curves. The converted sonic logs and the surface seismic curves were then used to generate synthetic seismograms. With the utilization of these synthetic seismograms, pseudo-seismic sections have been developed. Subsurface lithologies encountered in wells exhibit different velocities and densities. The reflection patterns were marked by using amplitude standout, character and coherence. These pseudo-seismic sections were later tied to well synthetics and lithologs. In this way, a lithology section was created for the alluvial fill. The cross-section suggested that the eastern portion of the studied area mainly consisted of sandy fill and the western portion constituted clayey part. This can be attributed to the depositional environment by the Indus and the Kabul Rivers.
Archundia, D; Duwig, C; Lehembre, F; Chiron, S; Morel, M-C; Prado, B; Bourdat-Deschamps, M; Vince, E; Aviles, G Flores; Martins, J M F
2017-01-15
An increasing number of studies pointed out the ubiquitous presence of medical residues in surface and ground water as well as in soil compartments. Not only antibiotics can be found in the environment but also their transformation products about which little information is generally available. The development of bacterial resistance to antibiotics is particularly worrying as it can lead to sanitary and health problems. Studies about the dissemination of antibiotics and associated resistances in the Bolivian Altiplano are scarce. We provide baseline information on the occurrence of Sulfamethoxazole (SMX) and Trimethoprim (TMP) antibiotics as well as on the most common human SMX transformation products (TP) and on the occurrence of sulfonamide resistance genes. The studied water and soil compartments presented high levels of antibiotic pollution. This situation was shown to be mainly linked with uncontrolled discharges of treated and untreated wastewaters, resulting on the presence of antibiotics in the Titicaca Lake. SMX TPs were detected in surface waters and on soil sampled next to the wastewater treatment plant (WWTP). SMX resistance genes sulI and sulII were widely detected in the basin hydrological network, even in areas unpolluted with antibiotics. Mechanisms of co-selection of antibiotic- and metal- resistance may be involved in the prevalence of ARG's in pristine areas with no anthropogenic activity and free of antibiotic pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.
Kiel-Jamrozik, Marta; Szewczenko, Janusz; Basiaga, Marcin; Nowińska, Katarzyna
2015-01-01
The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Electric parameters deter- mined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.
NASA Astrophysics Data System (ADS)
Polius, Jemilia R.
This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.
NASA Astrophysics Data System (ADS)
Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael
2017-08-01
Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.
Spatially resolved resistance of NiO nanostructures under humid environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Christopher B; Ievlev, Anton; Collins, Liam F
2016-01-01
The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5more » G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.« less
Low friction wear resistant graphene films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali
A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.
Structural-phase states and wear resistance of surface formed on steel by surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapralov, Evgenie V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.
2014-11-14
Investigations of elementary and phase structure, state of defect structure and tribological characteristics of a surfacing, formed on a low carbon low-alloy steel by a welding method were carried out. It was revealed that a surfacing, formed on a steel surface is accompanied by the multilayer formation, and increases the wear resistance of the layer surfacing as determined.
NASA Astrophysics Data System (ADS)
Yeh, Wei-Ming; Lawson, Richard A.; Tolbert, Laren M.; Henderson, Clifford L.
2012-03-01
As the semiconductor industry continues to push to smaller critical dimensions, pattern collapse during lithographic processing caused by unbalanced capillary forces during the final rinse and drying process has become an important problem that can limit the practical resolution of a resist material to feature sizes larger than its intrinsic resolution limit. One of the primary modes of pattern collapse is via elastoplastic pattern deformation which is strongly related to the mechanical properties of the resist. One approach to mitigating such collapse problems is to enhance the mechanical properties of the resist features. Since such modification of resist physical properties for pattern collapse purposes is difficult to achieve through modified formulation of the resist itself (i.e. due to the complex set of requirements that a resist must satisfy and the complex set of physical and chemical phenomena that underlie the imaging processing itself), we have pursued an alternative strategy for improving the resist mechanical properties after features are developed in the film but before they are rinsed and dried. The family of techniques being developed in this work function through the use of aqueous compatible reactive rinse solutions that can be applied to developed resist features while they are wet during normal rinse processing on a track system. By applying these techniques during the rinse process, the resist features can be strengthened before they are subjected to significant capillary forces during the final drying step. In this work, the use of diamine compounds to reactively crosslink the surface of resists containing carboxylic acid groups through formation of amide bonds using carbodiimide chemistry has been explored. One advantage of this approach is that it is an aqueous process that should be easily compatible with high volume, track-based lithographic processes. Contact angle studies and x-ray photoelectron spectroscopy (XPS) were used to characterize the surface crosslinking reaction using such diamine surface rinse treatments. Pattern collapse test structures were fabricated and analyzed to measure the amount of mechanical property improvement imparted by such treatments. Application of such amine reactive rinses was found to clearly result in an improvement in the resistance of resists to pattern collapse as observed by SEM. A comparison of the critical stress at the point of pattern collapse as a function of resist feature size also clearly shows a significant improvement in mechanical resilience of resist samples processed with the reactive rinse treatment.
NASA Astrophysics Data System (ADS)
Ovidiu, Avram; Rusu, Emil; Maftei, Raluca-Mihaela; Ulmeanu, Antonio; Scutelnicu, Ioan; Filipciuc, Constantina; Tudor, Elena
2017-12-01
Electrometry is most frequently applied geophysical method to examine dynamical phenomena related to the massive salt presence due to resistivity contrasts between salt, salt breccia and geological covering formations. On the vertical resistivity sections obtained with VES devices these three compartments are clearly differentiates by high resistivity for the massive salt, very low for salt breccia and variable for geological covering formations. When the land surface is inclined, shallow formations are moving gravitationally on the salt back, producing a landslide. Landslide monitoring involves repeated periodically measurements of geoelectrical profiles into a grid covering the slippery surface, in the same conditions (climate, electrodes position, instrument and measurement parameters). The purpose of monitoring landslides in Slanic Prahova area, was to detect the changes in resistivity distribution profiles to superior part of subsoil measured in 2014 and 2015. Measurement grid include several representative cross sections in susceptibility to landslides point of view. The results are graphically represented by changing the distribution of topography and resistivity differences between the two sets of geophysical measurements.
Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming
2016-03-23
A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.
Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming
2016-01-01
A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy. PMID:28773345
Dependence of the Contact Resistance on the Design of Stranded Conductors
Zeroukhi, Youcef; Napieralska-Juszczak, Ewa; Vega, Guillaume; Komeza, Krzysztof; Morganti, Fabrice; Wiak, Slawomir
2014-01-01
During the manufacturing process multi-strand conductors are subject to compressive force and rotation moments. The current distribution in the multi-strand conductors is not uniform and is controlled by the transverse resistivity. This is mainly determined by the contact resistance at the strand crossovers and inter-strand contact resistance. The surface layer properties, and in particular the crystalline structure and degree of oxidation, are key parameters in determining the transverse resistivity. The experimental set-ups made it possible to find the dependence of contact resistivity as a function of continuous working stresses and cable design. A study based on measurements and numerical simulation is made to identify the contact resistivity functions. PMID:25196112
Surface Modifications for Improved Wear Performance in Artificial Joints: A Review
NASA Astrophysics Data System (ADS)
Sullivan, Stacey J. L.; Topoleski, L. D. Timmie
2015-11-01
Artificial joint replacement is one of the most successful treatments for arthritis. Excellent wear and corrosion resistance, together with high strength and fracture toughness, are fundamental requirements for implant materials. Wear and/or corrosion of the materials used in artificial joints may lead to implant failure. Therefore, hard and wear-resistant materials, like cobalt-chromium-molybdenum and ceramic, are currently used as bearing surfaces. However, even using such hard materials, wear and/or corrosion related failure of artificial joints remains a central concern. One primary goal in orthopedic biomaterials research is to create more wear-resistant surfaces. Different technologies have been used to create new surfaces, or to modify existing surfaces, to prevent wear. It is the intent of this overview first to provide a summary of materials currently used as bearing surfaces in artificial joints, their functions, and their contributions to device longevity. Then, we will discuss advancements in modifying those bearing surfaces to produce more wear-resistant artificial joints.
NASA Astrophysics Data System (ADS)
Hassan, Mohammad M.; Leighs, Samuel J.
2017-10-01
The surface of wool fabrics is frequently modified to make them shrink-resistant, water repellent and also to improve their handle properties. In this work, we investigated the effect of common surface modification treatments on fabric stain-resistance, hydrophilicity and UV absorption performance. The surface of wool fabrics was modified by chlorination and also by reacting the chlorinated wool fabrics with a polyamide, a fibre-reactive amino-functional siloxane and a fluorocarbon polymer. The surface of the various treated fabrics was characterised by ATR-FTIR, contact angle measurement and scanning electron microscopy. The effect of surface modification on the tensile strength, surface hydrophilicity, stain-resistance, and UV absorption capacity of the fabric was investigated. It was found that all the treatments except the treatment with the amino-functional siloxane polymer slightly improved the tensile strength of the fabric. The chlorination treatment and the treatment with the polyamide resin made the fabric hydrophilic, and fluorocarbon and silicone resin treatment made the fabric hydrophobic.
Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru
2011-04-19
The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society
The effects of argon ion bombardment on the corrosion resistance of tantalum
NASA Astrophysics Data System (ADS)
Ramezani, A. H.; Sari, A. H.; Shokouhy, A.
2017-02-01
Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.
Microcolonial fungi: survival potential of terrestrial vegetative structures.
Gorbushina, Anna
2003-01-01
So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.
Gu, Minghao; Kilduff, James E; Belfort, Georges
2012-02-01
Three critical aspects of searching for and understanding how to find highly resistant surfaces to protein adhesion are addressed here with specific application to synthetic membrane filtration. They include the (i) discovery of a series of previously unreported monomers from a large library of monomers with high protein resistance and subsequent low fouling characteristics for membrane ultrafiltration of protein-containing fluids, (ii) development of a new approach to investigate protein-resistant mechanisms from structure-property relationships, and (iii) adaptation of a new surface modification method, called atmospheric pressure plasma-induced graft polymerization (APP), together with a high throughput platform (HTP), for low cost vacuum-free synthesis of anti-fouling membranes. Several new high-performing chemistries comprising two polyethylene glycol (PEG), two amines and one zwitterionic monomers were identified from a library (44 commercial monomers) of five different classes of monomers as strong protein-resistant monomers. Combining our analysis here, using the Hansen solubility parameters (HSP) approach, and data from the literature, we conclude that strong interactions with water (hydrogen bonding) and surface flexibility are necessary for producing the highest protein resistance. Superior protein-resistant surfaces and subsequent anti-fouling performance was obtained with the HTP-APP as compared with our earlier HTP-photo graft-induced polymerization (PGP). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoever, Carsten; Kropp, Wolfgang
2015-09-01
The reduction of rolling resistance is essential for a more environmentally friendly road transportation sector. Both tyre and road design can be utilised to reduce rolling resistance. In both cases a reliable simulation tool is needed which is able to quantify the influence of design parameters on the rolling resistance of a tyre rolling on a specific road surface. In this work a previously developed tyre/road interaction model is extended to account for different tread patterns and for losses due to small-scale tread deformation. Calculated contact forces and tyre vibrations for tyre/road interaction under steady-state rolling are used to predict rolling losses in the tyre. Rolling resistance is calculated for a series of different tyre/road combinations. Results are compared with rolling resistance measurements. The agreement between simulations and measurements is generally very good. It is found that both the tyre structure and small-scale tread deformations contribute to the rolling losses. The small-scale contribution depends mainly on the road roughness profile. The mean profile depth of the road surface is identified to correlate very well with the rolling resistance. Additional calculations are performed for non-traditional rubberised road surfaces, however, with mixed results. This possibly indicates the existence of additional loss mechanisms for these surfaces.
Human infection with bacteria exhibiting mono or multiple antimicrobial resistance (MAR) has been a growing problem in the US, and studies have implicated livestock as a source of MAR bacteria primarily through foodborne transmission routes. However, waterborne transmission of...
DOT National Transportation Integrated Search
2007-01-01
"Aggregates used in the construction of roads must be durable, abrasion resistant, and freeze-thaw resistant in : order to perform well in pavement or as base course. The objective of this study was to investigate whether the : Micro-Deval test will ...
Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces
de Candia, Silvia; Morea, Maria; Baruzzi, Federico
2015-01-01
This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel, and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria sp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48 h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays. The addition of naturally contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria sp. strains, led to its complete inactivation after 4 days of treatment. To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly used material in food packaging. The results of this study could be useful for reducing pathogen cross-contamination phenomena during cold food storage. PMID:26236306
Reporting numeric values of complete crowns. Part 2: Retention and resistance theories.
Tiu, Janine; Al-Amleh, Basil; Waddell, J Neil; Duncan, Warwick J
2015-07-01
Determining the retention and resistance of a tooth preparation for a complete crown has only existed in theory, and these theories have never been measured on tooth preparations performed in vivo. The purpose of this study was to measure the theoretical retention and resistance of clinically produced complete crown preparations by using an objective measuring method. Stone dies from 236 complete crown preparations were collected from dental laboratories. The dies were scanned and analyzed with the coordinate geometry method. Cross-sectional images were captured, and the surface area was measured with a cone frustum and right truncated pyramid formula. Two different theories of resistance form, the "on" or "off" theory (limiting taper) and the linear model (resistance length), were calculated for premolar and molar preparations. The mean surface areas ranged from 33.97 mm(2) to 105.44 mm(2) for the cone frustum formula and 41.75 mm(2) to 117.50 mm(2) for the right truncated pyramid formula. The facial side of maxillary premolars exhibited the highest percentage of resistance form with the limiting taper, at 58%, and the mesial side of the mandibular molars exhibited the lowest percentage of resistance form, at 6%. The objective method used in this study provides a way for retention and resistance theories to be tested and for further clinical implications to be investigated. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruschi, Stefania; Bertolini, Rachele; Ghiotti, Andrea
We report that magnesium alloys are becoming increasingly attractive for producing temporary prosthetic devices thanks to their bioresorbable characteristics in human body. However, their poor corrosion resistance to body fluids seriously limits their applicability. In this work, machining-induced surface transformations are explored as means to enhance corrosion resistance of AZ31 magnesium alloy. Surface characteristics including topography, residual stresses, wettability, microstructures and depth of transformed layer, were analysed and correlated to in-vitro corrosion resistance. Results showed that cryogenic machining at low feed provided the most promising corrosion reduction. Finally, thorough physical characterizations gave fundamental insights into possible drivers for this enhancedmore » resistance.« less
Bruschi, Stefania; Bertolini, Rachele; Ghiotti, Andrea; ...
2018-04-22
We report that magnesium alloys are becoming increasingly attractive for producing temporary prosthetic devices thanks to their bioresorbable characteristics in human body. However, their poor corrosion resistance to body fluids seriously limits their applicability. In this work, machining-induced surface transformations are explored as means to enhance corrosion resistance of AZ31 magnesium alloy. Surface characteristics including topography, residual stresses, wettability, microstructures and depth of transformed layer, were analysed and correlated to in-vitro corrosion resistance. Results showed that cryogenic machining at low feed provided the most promising corrosion reduction. Finally, thorough physical characterizations gave fundamental insights into possible drivers for this enhancedmore » resistance.« less
Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.
Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott
2012-11-01
Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.
Soon, Rachel L; Nation, Roger L; Harper, Marina; Adler, Ben; Boyce, John D; Tan, Chun-Hong; Li, Jian; Larson, Ian
2011-12-01
The diminishing antimicrobial development pipeline has forced the revival of colistin as a last line of defence against infections caused by multidrug-resistant Gram-negative 'superbugs' such as Acinetobacter baumannii. The complete loss of lipopolysaccharide (LPS) mediates colistin resistance in some A. baumannii strains. Atomic force microscopy was used to examine the surface properties of colistin-susceptible and -resistant A. baumannii strains at mid-logarithmic and stationary growth phases in liquid and in response to colistin treatment. The contribution of LPS to surface properties was investigated using A. baumannii strains constructed with and without the lpxA gene. Bacterial spring constant measurements revealed that colistin-susceptible cells were significantly stiffer than colistin-resistant cells at both growth phases (P<0.01), whilst colistin treatment at high concentrations (32 mg/L) resulted in more rigid surfaces for both phenotypes. Multiple, large adhesive peaks frequently noted in force curves captured on colistin-susceptible cells were not evident for colistin-resistant cells. Adhesion events were markedly reduced following colistin exposure. The cell membranes of strains of both phenotypes remained intact following colistin treatment, although fine topographical details were illustrated. These studies, conducted for the first time on live A. baumannii cells in liquid, have contributed to our understanding of the action of colistin in this problematic pathogen. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
Either classical or low temperature epitaxial growth techniques can be used to control the deposition of buffer layers of GaAs on semiconducting substrates and to obtain the resistivity and purity desired. Techniques developed to study, as a function of thickness, the evolution of mobilities by photoHall, and the spectroscopy of shallow and deep centers by cathodoluminescence and current transients reveal one very pure layer of medium resistivity and high mobility, and another "dead layer" of elevated resistivity far from the surface. The highly resistive layer remains pure over several microns, which appears interesting for implantation.
Surface property detection apparatus and method
Martens, J.S.; Ginley, D.S.; Hietala, V.M.; Sorensen, N.R.
1995-08-08
Apparatus and method for detecting, determining, and imaging surface resistance corrosion, thin film growth, and oxide formation on the surface of conductors or other electrical surface modification. The invention comprises a modified confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor, conductor, dielectric, or semiconductor. 4 figs.
Zago, Hugo B; Siqueira, Herbert Á A; Pereira, Eliseu J G; Picanço, Marcelo C; Barros, Reginaldo
2014-03-01
Insecticide resistance is probably the major cause of control failure of Plutella xylostella (L.) in Brazil. In most production regions, the use of chemicals has been the prevalent method of control, with reduced efficacy through cropping seasons, even for the most recent use of products based on Bacillus thuringiensis (Bt). The current status of the resistance to these products was assessed, as well as the behavioural response of P. xylostella populations to Bt sprays. Most populations of P. xylostella were resistant to Bt products, particularly to Xentari®WDG (2-54-fold). Differences in walking characteristics of larvae were variable for most populations, for both Dipel®WP and Xentari®WDG, but not associated with resistance. Most females preferred to lay eggs on untreated surfaces and showed a reduced proportion of oviposition on treated surfaces that only correlated with resistance to Dipel®WP (r = -0.74, P = 0.02). Broad and indiscriminate use of Bt-based products has selected Brazilian P. xylostella populations to resistance. Larval movement appears to be a resistance-independent mechanism. Most populations of P. xylostella preferred to lay eggs on Bt-free surfaces, which might be a result of growers' practice of spraying the cabbage head. Reduced oviposition on treated surfaces correlated with physiological resistance, suggesting a behavioural response among the Bt-resistant colonies to Dipel®WP. © 2013 Society of Chemical Industry.
Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief.
Han, Jennifer H; Sullivan, Nancy; Leas, Brian F; Pegues, David A; Kaczmarek, Janice L; Umscheid, Craig A
2015-10-20
The cleaning of hard surfaces in hospital rooms is critical for reducing health care-associated infections. This review describes the evidence examining current methods of cleaning, disinfecting, and monitoring cleanliness of patient rooms, as well as contextual factors that may affect implementation and effectiveness. Key informants were interviewed, and a systematic search for publications since 1990 was done with the use of several bibliographic and gray literature resources. Studies examining surface contamination, colonization, or infection with Clostridium difficile, methicillin-resistant Staphylococcus aureus, or vancomycin-resistant enterococci were included. Eighty studies were identified-76 primary studies and 4 systematic reviews. Forty-nine studies examined cleaning methods, 14 evaluated monitoring strategies, and 17 addressed challenges or facilitators to implementation. Only 5 studies were randomized, controlled trials, and surface contamination was the most commonly assessed outcome. Comparative effectiveness studies of disinfecting methods and monitoring strategies were uncommon. Future research should evaluate and compare newly emerging strategies, such as self-disinfecting coatings for disinfecting and adenosine triphosphate and ultraviolet/fluorescent surface markers for monitoring. Studies should also assess patient-centered outcomes, such as infection, when possible. Other challenges include identifying high-touch surfaces that confer the greatest risk for pathogen transmission; developing standard thresholds for defining cleanliness; and using methods to adjust for confounders, such as hand hygiene, when examining the effect of disinfecting methods.
NASA Astrophysics Data System (ADS)
Zhang, Yanhui; Zhang, Haoran; Chen, Zhiying; Ge, Xiaoming; Liang, Yijian; Hu, Shike; Deng, Rongxuan; Sui, Yan-ping; Yu, Guang-hui
2017-06-01
The morphology and distribution of the stripes caused by Cu surface reconstruction were measured, and the effects of stripes on graphene stability were studied by oxidation and corrosion. The results reveal that the stripes are determined by the crystal orientation of both the Cu surface and graphene, which can both change the stripe distribution, and the stripes can also be influenced by the graphene thickness. The stripes would not induce cracks or destruction to the graphene. The oxidation resistance of graphene can be improved by Cu surface reconstruction. The local nonuniform distortion of the stripe area may induce a bigger strain in the graphene which, in turn, may induce structure instability and result in local stability degeneration in the stripe area.
DOT National Transportation Integrated Search
2011-07-01
Many entities currently use permeability specifications in portland cement concrete (PCC) pavements and structures. This project investigated the use of a surface resistivity device as an indication of concretes ability to resist chloride ion pene...
Resistivity scaling and electron relaxation times in metallic nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart
2014-08-14
We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less
NASA Astrophysics Data System (ADS)
Liu, Hailang; Zhang, Guopei; Huang, Yiping; Qi, Zhengwei; Wang, Bo; Yu, Zhibiao; Wang, Dezhi
2018-04-01
To improve surface properties of Inconel 617 alloy (referred to as 617 alloy), co-alloy coating metallurgically bonded to substrate was prepared on the surface of 617 alloy by electron beam cladding. The microstructure, phase composition, microhardness, tribological properties and corrosion resistance of the coatings were investigated. The XRD results of the coatings reinforced by co-alloy (Co800) revealed the presence of γ-Co, CoCx and Cr23C6 phase as matrix and new metastable phases of Cr2Ni3 and Co3Mo2Si. These hypoeutectic structures contain primary dendrites and interdendritic eutectics. The metallurgical bonding forms well between the cladding layer and the matrix of 617 alloy. In most studied conditions, the co-alloy coating displays a better hardness, tribological performance, i.e., lower coefficient of frictions and wear rates, corrosion resistance in 1 mol L‑1 HCl solution, than the 617 alloy.
Corrosion resistance and mechanical properties of titanium nitride plating on orthodontic wires.
Sugisawa, Haruki; Kitaura, Hideki; Ueda, Kyosuke; Kimura, Keisuke; Ishida, Masahiko; Ochi, Yumiko; Kishikawa, Akiko; Ogawa, Saika; Takano-Yamamoto, Teruko
2018-03-30
Titanium nitride (TiN) coating by ion plating has properties such as high hardness, wear resistance, corrosion resistance, and surface lubricity, therefore TiN coating is often used in various dental appliances and materials. In this study, we evaluated the corrosion behaviors and mechanical properties of TiN coated stainless steel (SS) and nickel titanium (Ni-Ti) orthodontic wires prepared by ion plating. TiN coating by ion plating improves the corrosion resistance of orthodontic wires. The corrosion pitting of the TiN coated wire surface become small. The tensile strength and stiffness of SS wire were increased after TiN coating. In contrast, its elastic force, which is a property for Ni-Ti wire, was decreased. In addition, TiN coating provided small friction forces. The low level of friction may increase tooth movement efficiently. Therefore, TiN coated SS wire could be useful for orthodontics treatment.
Surface impedance and optimum surface resistance of a superconductor with an imperfect surface
NASA Astrophysics Data System (ADS)
Gurevich, Alex; Kubo, Takayuki
2017-11-01
We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.
NASA Technical Reports Server (NTRS)
Gebers, Friedrich
1925-01-01
The proof of the validity of the Reynolds law of similitude for the surface resistance of planes has been developed with an accuracy hitherto unattained and for a large range of lengths and speeds. It has been shown that, in addition to the form resistance, the resistance of the longitudinal edges must be taken into account.
Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii
Tiwari, Vishvanath; Tiwari, Monalisa
2014-01-01
Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii. PMID:25309531
Corrosion and wear properties of laser surface modified NiTi with Mo and ZrO 2
NASA Astrophysics Data System (ADS)
Ng, K. W.; Man, H. C.; Yue, T. M.
2008-08-01
Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni + ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body. This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO 2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks' solution. Electrochemical impedance spectroscopy was measured.
NASA Astrophysics Data System (ADS)
Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo
2018-01-01
Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.
Al-Harbi, Albandaree K.
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution. PMID:29337992
Emran, Khadijah M; Al-Harbi, Albandaree K
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.
Ultrasonic Monitoring of Setting and Strength Development of Ultra-High-Performance Concrete.
Yoo, Doo-Yeol; Shin, Hyun-Oh; Yoon, Young-Soo
2016-04-19
In this study, the setting and tensile strength development of ultra-high-performance concrete (UHPC) at a very early age was investigated by performing the penetration resistance test (ASTM C403), as well as the direct tensile test using the newly developed test apparatus, and taking ultrasonic pulse velocity (UPV) measurements. In order to determine the optimum surface treatment method for preventing rapid surface drying of UHPC, four different methods were examined: plastic sheet, curing cover, membrane-forming compound, and paraffin oil. Based on the test results, the use of paraffin oil was found to be the best choice for measuring the penetration resistance and the UPV, and attaching the plastic sheet to the exposed surface was considered to be a simple method for preventing the rapid surface drying of UHPC elements. An S-shaped tensile strength development at a very early age (before 24 h) was experimentally obtained, and it was predicted by a power function of UPV. Lastly, the addition of shrinkage-reducing and expansive admixtures resulted in more rapid development of penetration resistance and UPV of UHPC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mukul M.; Freeman, Benny D.; Van Wagner, Elizabeth M.
2010-08-01
The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterizationmore » of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved fouling resistance compared to unmodified membranes of similar initial water flux, possibly due to steric hindrance imparted by the PEG chains. Fouling resistance was higher for membranes modified with higher molecular weight PEG. Fouling was more extensive for feeds containing the cationic surfactant, potentially due to electrostatic attraction with the negatively charged membranes. However, fouling was also observed in the presence of the anionic surfactant, indicating hydrodynamic forces are also responsible for fouling.« less
Near surface geophysical techniques on subsoil contamination: laboratory experiments
NASA Astrophysics Data System (ADS)
Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo
2016-04-01
Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of electrical properties of the subsoil at high depths and, in some cases, a detailed assessment of dynamic processes in the subsurface environment (Binley et al., 2002). Our study confirms the link between hydrocarbons contamination and geoelectrical signal and the capability of cross-hole electrical resistivity tomographies to realize a non-invasive characterization of LNAPL contamination of the media. Although, the electrical behaviour is much more complex and the relation with the contaminants depends also by time of investigation.
Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan
2012-10-24
The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2017-04-04
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2015-10-13
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin
2017-05-01
Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.
Grewal, Harjeet; Varshney, Kavita; Thomas, Lee C; Kok, Jen; Shetty, Amith
2013-06-01
Blood pressure (BP) cuffs are potential vectors for transmission of multi-resistant organisms (MROs). The present study aims to determine MRO colonisation rates in BP cuffs from areas of high patient flow as an assessment of the quality of disinfection and infection control practices. BP cuffs in the ED, high dependency unit (HDU) and operating theatres (OT) were prospectively examined after routine disinfection procedures. Swabs collected from the inner and outer surfaces of BP cuffs during inter-patient intervals were plated onto replicate organism detection and counting, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) chromogenic agar plates to detect rates of bacterial, MRSA and VRE colonisation, respectively. High bacterial colonisation rates were detected in BP cuffs from all three areas. BP cuffs from OT were significantly less colonised compared with cuffs from HDU and ED; 76% versus 96% and 100% (P < 0.0001) for inner surfaces and 86% versus 98% and 100% (P < 0.0001) for outer surfaces, respectively. Equivalent or higher bacterial growth was observed on the inner surface compared with outer surface in 54%, 84% and 86% of BP cuffs from OT, HDU and ED, respectively. MRSA was detected in 3 of 150 (2%) swabs collected, but no VRE was detected. Although MRSA and VRE were infrequently isolated, current disinfection and infection control protocols need to be improved given the greater recovery of organisms from the inner compared with outer surfaces of BP cuffs. © 2013 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
NASA Astrophysics Data System (ADS)
Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, Lawrence
2011-02-01
Nano- and hetero-structures of carbon nanotube (CNT) and indium tin oxide (ITO) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as sensing and actuator under cyclic loading. Optimized preparing conditions were obtained for multi-functional purpose of the specimen by obtaining the best dispersion and turbidity in the solution. Optical transmittance and electrical properties were investigated for CNT and ITO dipping and spraying coating on boro-silicate glass and polyethylene terephthalate (PET) substrates by electrical resistance measurement under cyclic loading and wettability test. Uniform dip-coating was performed using Wilhelmy plate method due to its simple and convenience. Spraying coating was applied to the specimen additionally. The change in the electrical resistance and optical properties of coated layer were mainly dependent upon the number of dip-coating, the concentration of CNT and ITO solutions, and the surface treatment condition. Electric properties of coating layers were measured using four-point probe method, and surface resistance was calculated using a dual configuration method. Optical transmittance of CNT and ITO coated PET film was also evaluated using UV spectrum. Surface energy and their hydrophilic and hydrophobic properties of CNT and ITO coated substrates were investigated by wettability test via static and dynamic contact angle measurements. As the elapsing time of cyclic loading passed, the stability of surface resistance and thus comparative interfacial adhesion between coated layer and substrates was evaluated to compare the thermodynamic work of adhesion, Wa. As dip-coating number increased, surface resistance of coated CNT decreased, whereas the transmittance decreased step-by-step due to the thicker CNT and ITO networked layer. Nano- and heterostructural effects of CNT and ITO solution on the optical and electrical effects have been studied continuously.
Durable, Low-Surface-Energy Treatments
NASA Technical Reports Server (NTRS)
Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.
1992-01-01
Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.
Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae.
Velkov, Tony; Deris, Zakuan Z; Huang, Johnny X; Azad, Mohammad A K; Butler, Mark; Sivanesan, Sivashangarie; Kaminskas, Lisa M; Dong, Yao-Da; Boyd, Ben; Baker, Mark A; Cooper, Matthew A; Nation, Roger L; Li, Jian
2014-05-01
This study examines the interaction of polymyxin B and colistin with the surface and outer membrane components of a susceptible and resistant strain of Klebsiella pneumoniae. The interaction between polymyxins and bacterial membrane and isolated LPS from paired wild type and polymyxin-resistant strains of K. pneumoniae were examined with N-phenyl-1-naphthylamine (NPN) uptake, fluorometric binding and thermal shift assays, lysozyme and deoxycholate sensitivity assays, and by (1)H NMR. LPS from the polymyxin-resistant strain displayed a reduced binding affinity for polymyxins B and colistin in comparison with the wild type LPS. The outer membrane NPN permeability of the resistant strain was greater compared with the susceptible strain. Polymyxin exposure enhanced the permeability of the outer membrane of the wild type strain to lysozyme and deoxycholate, whereas polymyxin concentrations up to 32 mg/ml failed to permeabilize the outer membrane of the resistant strain. Zeta potential measurements revealed that mid-logarithmic phase wild type cells exhibited a greater negative charge than the mid-logarithmic phase-resistant cells. Taken together, our findings suggest that the resistant derivative of K. pneumoniae can block the electrostatically driven first stage of polymyxin action, which thereby renders the hydrophobically driven second tier of polymyxin action on the outer membrane inconsequential.
Stanton, Gregory P.; Kress, Wade; Hobza, Christopher M.; Czarnecki, John B.
2003-01-01
A surface-geophysical investigation of the Red River Aluminum site at Stamps, Arkansas, was conducted in cooperation with the Arkansas Department of Environmental Quality to determine the possible extent and depth of saltwater contamination. Water-level measurements indicate the distance to water level below land surface ranges from about 1.2 to 3.9 feet (0.37 to 1.19 meters) in shallow monitor wells and about 10.5 to 17.1 feet (3.20 to 5.21 meters) in deeper monitoring wells. The two-dimensional, direct-current resistivity method identified resistivities less than 5 ohm-meters which indicated possible areas of salt contamination occurring in near-surface or deep subsurface ground water along four resistivity lines within the site. One line located east of the site yielded data that demonstrated no effect of salt contamination. Sections from two of the five data sets were modeled. The input model grids were created on the basis of the known geology and the results and interpretations of borehole geophysical data. The clay-rich Cook Mountain Formation is modeled as 25 ohm-meters and extends from 21 meters (68.9 feet) below land surface to the bottom of the model (about 52 meters (170.6 feet)). The models were used to refine interpretation of the resistivity data and to determine extent of saltwater contamination and depth to the Cook Mountain Formation. Data from the resistivity lines indicate both near-surface and subsurface saltwater contamination. The near-surface contamination appears as low resistivity (less than 5 ohm-meters) on four of the five resistivity lines, extending up to 775 meters (2,542.8 feet) horizontally in a line that traverses the entire site south to north. Model resistivity data indicate that the total depth of saltwater contamination is about 18 meters (59 feet) below land surface. Data from four resistivity lines identified areas containing low resistivity anomalies interpreted as possible salt contamination. A fifth line located just east of the site showed no saltwater contamination.
Kaygin, Bulent; Akgun, Emre
2008-01-01
The long-term durability of varnished wooden surfaces used in either indoors or outdoors environments depends on the resistance of varnish layers on these surfaces against potential physical, mechanical and chemical effects to which they may be exposed. In this study, “Nanolacke ultraviolet varnish”, developed by a Turkish dying and varnish industry company and widely accepted as a 21st century technology has been compared to other conventional varnish systems widely used in the industry in terms of dry film resistance properties. In this study, cellulosic, polyurethane, polyester, synthetic and Nanolacke ultraviolet varnish have been applied on beech (Fagus orientalis L.) and oak (Quercus robur L.) wood samples which had been prepared according to the industry standards. Then, the hardness and adhesion resistance of these layers have been determined according to ASTM D 4366 and ASTM D 3359-2 standards, respectively. PMID:19325763
Nicholas, R; Dunton, P; Tatham, A; Fielding, L
2013-08-01
The effects of gaseous ozone and open air factor (OAF) on environmental Listeria monocytogenes attached to three common food contact surfaces were investigated. Listeria monocytogenes on different food contact surfaces was treated with ozone and OAF. Microbiological counts, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. Ozone at 10 ppm gave <1-log reduction when L. monocytogenes was attached to stainless steel, while 45 ppm gave a log reduction of 3.41. OAF gave better log reductions than 10 ppm ozone, but lower log reductions than 45 ppm. Significant differences were found between surfaces. Biofilm organisms were significantly more resistant than those surface attached on stainless steel. SEM and AFM demonstrated different membrane and cell surface modifications following ozone or OAF treatment. The strain used demonstrated higher resistance to ozone than previous studies. This may be due to the fact that it was isolated from a food manufacturing premises that used oxidizing disinfectants. OAF was more effective at reducing the levels of the organism than an ozone concentration of 10 ppm. Pathogen management strategies must account for resistance of environmental strains when validating cleaning and disinfection. OAF has shown potential for surface decontamination compared with ozone. SEM and AFM are valuable tools for determining mechanisms of action of antimicrobial agents. © 2013 The Society for Applied Microbiology.
DOT National Transportation Integrated Search
2011-07-01
This project investigated the use of a surface resistivity device as an indication of concretes ability to resist chloride ion penetration for use in quality assurance (QA) and acceptance of high performance concrete (HPC). : The objectives of thi...
Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria
USDA-ARS?s Scientific Manuscript database
The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Chernenko, N. L.
2016-03-01
The effect of plastic deformation that occurs in the zone of the sliding friction contact on structural transformations in the 12Kh18N9T austenitic steel subjected to subsequent 1-h oxidation in air at temperatures of 300-800°C, as well as on its wear resistance, has been studied. It has been shown that severe deformation induced by dry sliding friction produces the two-phase nanocrystalline γ + α structure in the surface layer of the steel ~10 μm thick. This structure has the microhardness of 5.2 GPa. Subsequent oxidation of steel at temperatures of 300-500°C leads to an additional increase in the microhardness of its deformed surface layer to the value of 7.0 GPa. This is due to the active saturation of the austenite and the strain-assisted martensite (α') with the oxygen atoms, which diffuse deep into the metal over the boundaries of the γ and α' nanocrystals with an increased rate. The concentration of oxygen in the surface layer of the steel and in wear products reaches 8 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ and α' phases, which enhances the strength and wear resistance of the surface of the 12Kh18N9T steel. The oxidation of steel at temperatures of 550-800°C under a light normal load (98 N) results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance during dry sliding friction in a pair with 40Kh13 steel. Under a heavy normal load (196 N), the toughness of 12Kh18N9T steel and, therefore, the wear resistance of its surface layer decrease due to the presence of the brittle oxide phase.
Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles
NASA Astrophysics Data System (ADS)
Anil, Asha; Darshana R, Bangoria; Misra, S. N.
A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.
Chembath, Manju; Balaraju, J N; Sujata, M
2015-11-01
The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in Hanks' solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantification of the internal resistance distribution of microbial fuel cells.
Fan, Yanzhen; Sharbrough, Evan; Liu, Hong
2008-11-01
Identifying the limiting factors in a microbial fuel cell (MFC) system requires qualifying the contribution of each component of an MFC to internal resistance. In this study, a new method was developed to calculate the internal resistance distribution of an MFC. Experiments were conducted to identify the limiting factors in single-chamber MFCs by varying the anode surface areas, cathode surface areas, and phosphate buffer concentrations. For the MFCs with equally sized electrodes (7 cm2) and 200 mM phosphate buffer, the anode contributed just 5.4% of the internal resistance, while the cathode and the electrolyte each contributed 47.3%, indicating that the anode was not the limiting factor in power generation. The limitation of the cathode was further revealed by the 780% higher area-specific resistance (284.4 omega cm2) than the 32.3 omega cm2 of the anode. The electrolyte limitation was also evidenced by the greatly increased contribution of electrolyte in internal resistance from 47.3 to 78.2% when the concentration of phosphate buffer was decreased from 200 to 50 mM. An anodic power density of 6860 mW/m2 was achieved at a current density of 2.62 mA/cm2 using the MFCs with an anode/cathode area ratio of 1/14 and 200 mM phosphate buffer. The method was also successfully applied to analyze the internal resistance distribution of the two chamber MFCs from a previously reported study. The comparison of the internal resistances of the two air cathode systems indicates that the much lower resistances, including anode, cathode, and membrane resistances, contributed to the much better performance of the single-chamber MFCs than the two-chamber system.
Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge
2002-07-01
The present paper compares the transformation behaviour and mechanical properties of two orthodontic wires of close chemical compositions. The effects of surface topography and surface finish residues on the potentiodynamic corrosion behaviour and biocompatibility are also reported. The cytotoxicity tests were performed on both alloys in fibroblast cell cultures from human gingiva using the MTT test. It is shown that the surface finish and the amounts of surface finish residues affect dramatically the corrosion resistance. Bad surface finish results in lower corrosion resistance. The in vitro biocompatibility, though not affected to the extent of corrosion resistance, is also reduced as the surface roughness and the amounts of residues increase. This is thought to be due to surface effects on corrosion and metallic ions release.
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
The heat resistant, protective glove is made up of first and second shell sections which define a palm side and a backside, respectively. The first shell section is made of a twill wave fabric of a temperature-resistant aromatic polyamide fiber. The second shell section is made of a knitted fabric of a temperature-resistant aromatic polyamide fiber. The first and second shell sections are secured to one another, e.g., by sewing, to provide the desired glove configuration and an opening for insertion of the wearer's hand. The protective glove also includes a first liner section which is secured to and overlies the inner surface of the first shell section and is made of a felt fabric of a temperature-resistant aromatic polyamide fiber and has a flame resistant, elastomenic coating on the surface facing and overlying the inner surface of the first shell section.
NASA Astrophysics Data System (ADS)
Qi, F.; Leng, Y. X.; Huang, N.; Bai, B.; Zhang, P. Ch.
2007-04-01
17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film.
Hassan, Marwa M; Ranzoni, Andrea; Phetsang, Wanida; Blaskovich, Mark A T; Cooper, Matthew A
2017-02-15
Many bacterial pathogens have now acquired resistance toward commonly used antibiotics, such as the glycopeptide antibiotic vancomycin. In this study, we show that immobilization of vancomycin onto a nanometer-scale solid surface with controlled local density can potentiate antibiotic action and increase target affinity of the drug. Magnetic nanoparticles were conjugated with vancomycin and used as a model system to investigate the relationship between surface density and drug potency. We showed remarkable improvement in minimum inhibitory concentration against vancomycin-resistant strains with values of 13-28 μg/mL for conjugated vancomycin compared to 250-4000 μg/mL for unconjugated vancomycin. Higher surface densities resulted in enhanced affinity toward the bacterial target compared to that of unconjugated vancomycin, as measured by a competition experiment using a surrogate ligand for bacterial Lipid II, N-Acetyl-l-Lys-d-Ala-d-Ala. High density vancomycin nanoparticles required >64 times molar excess of ligand (relative to the vancomycin surface density) to abrogate antibacterial activity compared to only 2 molar excess for unconjugated vancomycin. Further, the drug-nanoparticle conjugates caused rapid permeabilization of the bacterial cell wall within 2 h, whereas no effect was seen with unconjugated vancomycin, suggesting additional modes of action for the nanoparticle-conjugated drug. Hence, immobilization of readily available antibiotics on nanocarriers may present a general strategy for repotentiating drugs that act on bacterial membranes or membrane-bound targets but have lost effectiveness against resistant bacterial strains.
Kang, Kyoung-Mi; Mishra, Nagendra N; Park, Kun Taek; Lee, Gi-Yong; Park, Yong Ho; Bayer, Arnold S; Yang, Soo-Jin
2017-02-01
Daptomycin (DAP) has potent activity in vitro and in vivo against both methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. DAP-resistance (DAP-R) in S. aureus has been mainly observed in MRSA strains, and has been linked to single nucleotide polymorphisms (SNPs) within the mprF gene leading to altered cell membrane (CM) phospholipid (PL) profiles, enhanced positive surface charge, and changes in CM fluidity. The current study was designed to delineate whether these same genotypic and phenotypic perturbations are demonstrated in clinically-derived DAP-R MSSA strains. We used three isogenic DAP-susceptible (DAP-S)/DAP-R strainpairs and compared: (i) presence of mprF SNPs, (ii) temporal expression profiles of the two key determinants (mprF and dltABCD) of net positive surface charge, (iii) increased production of mprF-dependent lysinylated-phosphatidylglycerol (L-PG), (iv) positive surface charge assays, and (v) susceptibility to cationic host defense peptides (HDPs) of neutrophil and platelet origins. Similar to prior data in MRSA, DAP-R (vs DAP-S) MSSA strains exhibited hallmark hot-spot SNPs in mprF, enhanced and dysregulated expression of both mprF and dltA, L-PG overproduction, HDP resistance and enhanced positive surface charge profiles. However, in contrast to most DAP-R MRSA strains, there were no changes in CM fluidity seen. Thus, charge repulsion via mprF-and dlt-mediated enhancement of positive surface charge may be the main mechanism to explain DAP-R in MSSA strains.
Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing
Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard
2015-01-01
The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. PMID:25746243
Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B
2016-06-01
Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Surface Resistance of Jute Fibre/Polylactic Acid Biocomposite to Wet Heat
NASA Astrophysics Data System (ADS)
Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa
2016-04-01
Jute fibre/polylactic acid (PLA) composite is of special interest because both resin and reinforcement come from renewable resources. Thus, it could be a more eco-friendly alternative to glass fibre composite [1] and to conventional wood-based panels made with phenol-formaldehyde resin which present many drawbacks for the workers and the environment [2]. Yet the water affinity of the natural fibres, the susceptibility of PLA towards hydrolysis and the low glass transition of the PLA raise a question about the surface resistance of such composites to wet heat in service condition for a furniture application [3]. In this work, the surface resistance of PLA/jute composite alone and with two different varnishes are investigated in regard to an interior application following the standard test method in accordance to BS EN 18721:2009: "Furniture: assessment of surface resistance to wet heat". It is compared to two common wood based panels, plywood and hardboard. After test, the composite material surface is found to be more affected than plywood and hardboard, but it becomes resistant to wet heat when a layer of biosourced varnish or petrol-based polyurethane varnish are applied on the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Andreas, E-mail: andreas.tyler@medbio.umu.se; Johansson, Anders; Karlsson, Terese
Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expressionmore » of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin resistance of NSCLC and MPM cells. Tumour cell resistance to MDR1 inhibitors of cell surface MDR1 and Gb3 could explain the aggressiveness of NSCLC and MPM. Therapy with GCS activity inhibitors or toxin targeting of the Gb3 receptor may substantially reduce acquired cisplatin drug resistance of NSCLC and MPM cells. - Highlights: • The cisplatin-resistant cells had increased cell surface Gb3 and MDR1. • PPMP decreased extracellular Gb3 in the resistant cell lines. • Cyclosporin A decreased extracellular Gb3 and MDR1 in H1299 cells. • PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. • Resistance to inhibitors of MDR1 and Gb3 could explain aggressiveness of NSCLC and MPM.« less
Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria
2014-01-01
Background Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. We determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance. Methods Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 ≥ 5 reduction in bacterial cell count. Results SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance. Conclusions SDCs were generally effective against gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents. PMID:24885029
Wannigama, D Leshan; Dwivedi, Rishabh; Zahraei-Ramazani, Alireza
2014-01-01
Background Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India. Methods: Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods. Results: Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04%) and Bl. germanica (35.96%). However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three. Conclusion: Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases. PMID:25629061
Eddy Current Probe for Surface and Sub-Surface Inspection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2014-01-01
An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.
DOT National Transportation Integrated Search
2012-07-01
This study focused on the use of nanotechnology in concrete to improve the wearing resistance of concrete. The nano : materials used were polymer cross-linked aerogels, carbon nanotubes, and nano-SiO2, nano-CaCO3, and nano-Al2O3 : particles. As an in...
USDA-ARS?s Scientific Manuscript database
Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine ...
NASA Astrophysics Data System (ADS)
Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.
2017-11-01
Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.
NASA Astrophysics Data System (ADS)
Pan, Y.; Wu, D.; Angevaare, J. R.; Luigjes, H.; Frantzeskakis, E.; de Jong, N.; van Heumen, E.; Bay, T. V.; Zwartsenberg, B.; Huang, Y. K.; Snelder, M.; Brinkman, A.; Golden, M. S.; de Visser, A.
2014-12-01
In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)2(Te,Se)3 (BSTS) has been proposed as a topological insulator with high resistivity and a low carrier concentration (Ren et al 2011 Phys. Rev. B 84 165311). Here we present a study to further refine the bulk-insulating properties of BSTS. We have synthesized BSTS single crystals with compositions around x = 0.5 and y = 1.3. Resistance and Hall effect measurements show high resistivity and record low bulk carrier density for the composition Bi1.46Sb0.54Te1.7Se1.3. The analysis of the resistance measured for crystals with different thicknesses within a parallel resistor model shows that the surface contribution to the electrical transport amounts to 97% when the sample thickness is reduced to 1 μm. The magnetoconductance of exfoliated BSTS nanoflakes shows 2D weak antilocalization with α ≃ -1 as expected for transport dominated by topological surface states.
Thermal and electrical contact conductance studies
NASA Technical Reports Server (NTRS)
Vansciver, S. W.; Nilles, M.
1985-01-01
Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact.
NASA Astrophysics Data System (ADS)
Amanov, A.; Umarov, R.
2018-05-01
In this study, a combination of local heat treatment (LHT) with (w/) and without (w/o) ultrasonic nanocrystal surface modification (UNSM) technique was applied to Inconel 690 alloy at room and high temperatures (RT and HT). The main purpose of this study is to investigate the influence of LHT w/ and w/o UNSM processing on the mechanical and fretting wear mitigation of Inconel 690 alloy. The surface roughness of the specimens was increased with increasing the LHT temperature w/ and w/o UNSM from RT to HT at 700 °C, while the surface hardness of the RT and HT at 300 °C specimens was increased and softening occurred at HT at 700 °C. The mechanical properties of the specimens were investigated using a tensile stress test. It was found that the stress-strain curve of the UNSM-treated at RT exhibited better mechanical characteristics in comparison with the as-received one. Moreover, the specimens treated at HT at 300 and 700 °C exhibited better results in terms of strain, but there was no significant difference in stress. The UNSM treated specimens at HT of 300 °C had better results in comparison with other specimens. In addition, the fretting wear resistance of those specimens was assessed using a ball-on-disk fretting wear tester at temperatures of 25 and 80 °C. The fretting wear resistance of Inconel 690 alloy was also increased by the combination of LHT + UNSM processing, which may be attributed to the increase in mechanical properties, increase in surface roughness, induced compressive residual stress and the presence of a nanostructured surface layer. Hence, Inconel 690 alloy with the increased mechanical properties and fretting wear resistance by the combination of LHT + UNSM processing could be beneficial for nuclear applications.
Nonlinear damage analysis: Postulate and evaluation
NASA Technical Reports Server (NTRS)
Leis, B. N.; Forte, T. P.
1983-01-01
The objective of this program is to assess the viability of a damage postulate which asserts that the fatigue resistance curve of a metal is history dependent due to inelastic action. The study focusses on OFE copper because this simple model material accentuates the inelastic action central to the damage postulate. Data relevant to damage evolution and crack initiation are developed via a study of surface topography. The effects of surface layer residual stresses are explored via comparative testing as were the effects in initial prestraining. The results of the study very clearly show the deformation history dependence of the fatigue resistance of OFE copper. Furthermore the concept of deformation history dependence is shown to qualitatively explain the fatigue resistance of all histories considered. Likewise quantitative predictions for block cycle histories are found to accurately track the observed results. In this respect the assertion that damage per cycle for a given level of the damage parameter is deformation history dependent appears to be physically justified.
Active anterior rhinomanometry in paediatrics. Normality criteria.
Juliá, J C; Burchés, M Enriqueta; Martorell, A
2011-01-01
Active anterior rhinomanometry with a face mask was used to establish the lower age limit for application of the technique, define normality reference standards, and determine the most appropriate pressure for referencing the nasal resistance values. A total of 409 children of both sexes and aged 5-14 years were studied. The subjects were selected from among healthy children in two primary care centres and one school. The Rhinospir 164 rhinomanometer was used for the tests. Rhinomanometry was performed according to the guidelines of the International Committee on Standardization of Rhinomanometry. The SPSS (Statistical Package for the Social Sciences) was used for the analysis of the results. The study sample was divided into five age groups involving intervals of two years from 5 to 14 years of age, and four body surface groups. The dependent variables studied (resistances and flows at pressure differences of 75 and 100) showed significantly different mean values according to age and body surface. All the mean ratios were over 1.4 units, i.e., the measures of each variable on one side and the other differed between 40% and 44%. 1.- The lower age limit for rhinomanometry is five years. 2.- The most appropriate pressures for referencing the resistance and flow values are 75 and 100. 3.- The reference standards are established with respect to total resistance and according to subject age and body surface. Copyright © 2010 SEICAP. Published by Elsevier Espana. All rights reserved.
Viarbitskaya, S; Arocas, J; Heintz, O; Colas-Des-Francs, G; Rusakov, D; Koch, U; Leuthold, J; Markey, L; Dereux, A; Weeber, J-C
2018-04-16
Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ellipsometry experiments. By probing a parametric space of realistic values for parameters of the Drude model, we obtain a nearly univocal dependence of the surface plasmon damping distance on the dc resistivity demonstrating the relevance of dc resistivity for the evaluation of the plasmonic performances of TiN at telecom frequencies. Finally, we show that better plasmonic performances are obtained for TiN films featuring a low content of oxygen. For low oxygen content and corresponding low resistivity, we attribute the increase of the surface plasmon damping distances to a lower confinement of the plasmon field into the metal and not to a decrease of the absorption of TiN.
NASA Astrophysics Data System (ADS)
Lesparre, Nolwenn; Cabrera, Justo; Courbet, Christelle
2015-04-01
We explore the capacity of electrical resistivity tomography and muon density imaging to detect spatio-temporal variations of the medium surrounding a regional fault crossing the underground platform of Tournemire (Aveyron, France). The studied Cernon fault is sub-vertical and intersects perpendicularly the tunnel of Tournemire and extends to surface. The fault separates clay and limestones layers of the Dogger from limestones layers of the Lias. The Cernon fault presents a thickness of a ten of meters and drives water from an aquifer circulating at the top of the Dogger clay layer to the tunnel. An experiment combining electrical resistivity imaging and muon density imaging was setup taking advantage of the tunnel presence. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault in order to acquire data in transmission across the massif to better cover the sounded medium. Electrical resistivity is particularly sensitive to water presence in the medium and thus carry information on the main water flow paths and on the pore space saturation. At the same time a muon sensor was placed in the tunnel under the fault region to detect muons coming from the sky after their crossing of the rock medium. Since the muon flux is attenuated as function of the quantity of matter crossed, muons flux measurements supply information on the medium average density along muons paths. The sensor presents 961 angles of view so measurements performed from one station allows a comparison of the muon flux temporal variations along the fault as well as in the medium surrounding the fault. As the water saturation of the porous medium fluctuates through time the medium density might indeed present sensible variations as shown by gravimetric studies. During the experiment important rainfalls occurred leading variations of the medium properties affecting density and electrical resistivity physical parameters. We show with data sets acquired before and after an important rainfall event how muon density and electrical resistivity imaging may complementary characterize variations of the medium properties. The development of such innovative experiments for hydrogeophysical studies presents then the ability to supply new information on fluid dynamics in the sub-surface.
Fetterly, Christopher R; Olsen, Brian C; Luber, Erik J; Buriak, Jillian M
2018-04-24
Electron beam lithography (EBL) is a highly precise, serial method for patterning surfaces. Positive tone EBL resists enable patterned exposure of the underlying surface, which can be subsequently functionalized for the application of interest. In the case of widely used native oxide-capped silicon surfaces, coupling an activated silane with electron beam lithography would enable nanoscale chemical patterning of the exposed regions. Aminoalkoxysilanes are extremely useful due to their reactive amino functionality but have seen little attention for nanopatterning silicon surfaces with an EBL resist due to background contamination. In this work, we investigated three commercial positive tone EBL resists, PMMA (950k and 495k) and ZEP520A (57k), as templates for vapor-phase patterning of two commonly used aminoalkoxysilanes, 3-aminopropyltrimethoxysilane (APTMS) and 3-aminopropyldiisopropylethoxysilane (APDIPES). The PMMA resists were susceptible to significant background reaction within unpatterned areas, a problem that was particularly acute with APTMS. On the other hand, with both APTMS and APDIPES exposure, unpatterned regions of silicon covered by the ZEP520A resist emerged pristine, as shown both with SEM images of the surfaces of the underlying silicon and through the lack of electrostatically driven binding of negatively charged gold nanoparticles. The ZEP520A resist allowed for the highly selective deposition of these alkoxyaminosilanes in the exposed areas, leaving the unpatterned areas clean, a claim also supported by contact angle measurements with four probe liquids and X-ray photoelectron spectroscopy (XPS). We investigated the mechanistic reasons for the stark contrast between the PMMA resists and ZEP520A, and it was found that the efficacy of resist removal appeared to be the critical factor in reducing the background functionalization. Differences in the molecular weight of the PMMA resists and the resulting influence on APTMS diffusion through the resist films are unlikely to have a significant impact. Area-selective nanopatterning of 15 nm gold nanoparticles using the ZEP520A resist was demonstrated, with no observable background conjugation noted in the unexposed areas on the silicon surface by SEM.
NASA Astrophysics Data System (ADS)
Hilali, Mohamed M.
2005-11-01
A simple cost-effective approach was proposed and successfully employed to fabricate high-quality screen-printed (SP) contacts to high sheet-resistance emitters (100 O/sq) to improve the Si solar cell efficiency. Device modeling was used to quantify the performance enhancement possible from the high sheet-resistance emitter for various cell designs. It was found that for performance enhancement from the high sheet-resistance emitter, certain cell design criteria must be satisfied. Model calculations showed that in order to achieve any performance enhancement over the conventional ˜40 O/sq emitter, the high sheet resistance emitter solar cell must have a reasonably good (<120,000 cm/s) or low front-surface recombination velocity (FSRV). Model calculations were also performed to establish requirements for high fill factors (FFs). The results showed that the series resistance should be less than 0.8 O-cm2, the shunt resistance should be greater than 1000 O-cm2, and the junction leakage current should be less than 25 nA/cm2. Analytical microscopy and surface analysis techniques were used to study the Ag-Si contact interface of different SP Ag pastes. Physical and electrical properties of SP Ag thick-film contacts were studied and correlated to understand and achieve good-quality ohmic contacts to high sheet-resistance emitters for solar cells. This information was then used to define the criteria for high-quality screen-printed contacts. The role of paste constituents and firing scheme on contact quality were investigated to tailor the high-quality screen-printed contact interface structure that results in high performance solar cells. Results indicated that small particle size, high glass transition temperature, rapid firing and less aggressive glass frit help in producing high-quality contacts. Based on these results high-quality SP contacts with high FFs > 0.78 on high sheet-resistance emitters were achieved for the first time using a simple single-step firing process. This technology was applied to different substrates (monocrystalline and multicrystalline) and surfaces (textured and planar). Cell efficiencies of ˜16.2% on low-cost EFG ribbon substrates were achieved on high sheet-resistance emitters with SP contacts. A record high-efficiency SP solar cell of 19% with textured high sheet-resistance emitter was also fabricated and modeled.
Decoupling pipeline influences in soil resistivity measurements with finite element techniques
NASA Astrophysics Data System (ADS)
Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.
2018-03-01
Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.
Gencur, Sara J; Rimnac, Clare M; Kurtz, Steven M
2006-03-01
To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups.
USDA-ARS?s Scientific Manuscript database
Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...
Peng, Jingguang; Zhao, Yan; Chen, Di; Li, Kiade; Lu, Wei; Yan, Biao
2016-01-01
Powder metallurgy (PM) components are widely used in the auto industry due to the advantage of net-shape forming, low cost, and high efficiency. Still, usage of PM components is limited in the auto industry when encountering rigorous situations, like heavy load, due to lower strength, hardness, wear resistance, and other properties compared to wrought components due to the existence of massive pores in the PM components. In this study, through combining the powder metallurgy process and rolling process, the pores in the PM components were decreased and a homogenous densified layer was formed on the surface, which resulted in the enhancement of the strength, hardness, wear resistance, and other properties, which can expand its range of application. In this paper, we study the impact of different rolling feeds on the performance of the components’ surfaces. We found that with the increase of the rolling feed, the depth of the densified layer increased. PMID:28773970
Peng, Jingguang; Zhao, Yan; Chen, Di; Li, Kiade; Lu, Wei; Yan, Biao
2016-10-19
Powder metallurgy (PM) components are widely used in the auto industry due to the advantage of net-shape forming, low cost, and high efficiency. Still, usage of PM components is limited in the auto industry when encountering rigorous situations, like heavy load, due to lower strength, hardness, wear resistance, and other properties compared to wrought components due to the existence of massive pores in the PM components. In this study, through combining the powder metallurgy process and rolling process, the pores in the PM components were decreased and a homogenous densified layer was formed on the surface, which resulted in the enhancement of the strength, hardness, wear resistance, and other properties, which can expand its range of application. In this paper, we study the impact of different rolling feeds on the performance of the components' surfaces. We found that with the increase of the rolling feed, the depth of the densified layer increased.
García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto
2016-11-01
The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.
Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R
2011-05-01
The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.
Downscaling Coarse Actual ET Data Using Land Surface Resistance
NASA Astrophysics Data System (ADS)
Shen, T.
2017-12-01
This study proposed a new approach of downscaling ETWATCH 1km actual evapotranspiration (ET) product to a spatial resolution of 30m using land surface resistance that simulated mainly from monthly Landsat8 data and Jarvis method, which combined the benefits of both high temporal resolution of ETWATCH product and fine spatial resolution of Landsat8. The driving factor, surface resistance (Rs), was chosen for the reason that could reflect the transfer ability of vapor flow over canopy. Combined resistance Rs both upon canopy conditions, atmospheric factors and available water content of soil, which remains stable inside one ETWATCH pixel (1km). In this research, we used ETWATCH 1km ten-day actual ET product from April to October in a total of twenty-one images and monthly 30 meters cloud-free NDVI of 2013 (two images from HJ as a substitute due to cloud contamination) combined meteorological indicators for downscaling. A good agreement and correlation were obtained between the downscaled data and three flux sites observation in the middle reach of Heihe basin. The downscaling results show good consistency with the original ETWATCH 1km data both temporal and spatial scale over different land cover types with R2 ranged from 0.8 to 0.98. Besides, downscaled result captured the progression of vegetation transpiration well. This study proved the practicability of new downscaling method in the water resource management.
Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming
2013-02-14
University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less
Xu, Chen; Reece, Charles E.; Kelley, Michael J.
2016-03-22
A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R s) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field H c, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we havemore » estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q 0 performance differences for fine grain niobium. Lastly, we describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.« less
New materials based on polylactide modified with silver and carbon ions
NASA Astrophysics Data System (ADS)
Kurzina, I. A.; Pukhova, I. V.; Botvin, V. V.; Davydova, D. V.; Filimoshkin, A. G.; Savkin, K. P.; Oskomov, K. V.; Oks, E. M.
2015-11-01
An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1.1014, 1.1015 and 1.1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced.
Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics
Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100
NASA Astrophysics Data System (ADS)
Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang
2014-01-01
The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1983-01-01
A method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface is summarized. The novel feature of the invention is two concentric cylinders, inserted into the ground surface with a measured pressure applied to the surface inside the inner cylinder. The outer cylinder vents a plane beneath the surface to the atmosphere through an air space. The flow to the inner cylinder is measured thereby indicating the flow from the surface to the plane beneath the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanenko, A.; Grassellino, A.
Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B{sub rf}{approx}115 mT. We reveal that the residual resistance decreases with field at B{sub rf} Less-Than-Or-Equivalent-To 40 mT and strongly increases in chemically treated niobium at B{sub rf}>80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 Degree-Sign C vacuum baking.
Hooper, E. B.; Sovinec, C. R.
2016-10-06
An instability observed in whole-device, resistive magnetohydrodynamic simulations of the driven phase of coaxial helicity injection in the National Spherical Torus eXperiment is identified as a current-driven resistive mode in an unusual geometry that transiently generates a current sheet. The mode consists of plasma flow velocity and magnetic field eddies in a tube aligned with the magnetic field at the surface of the injected magnetic flux. At low plasma temperatures (~10–20 eV), the mode is benign, but at high temperatures (~100 eV) its amplitude undergoes relaxation oscillations, broadening the layer of injected current and flow at the surface of themore » injected toroidal flux and background plasma. The poloidal-field structure is affected and the magnetic surface closure is generally prevented while the mode undergoes relaxation oscillations during injection. Furthermore, this study describes the mode and uses linearized numerical computations and an analytic slab model to identify the unstable mode.« less
Tiwari, Vimal K; Shripathi, T; Lalla, N P; Maiti, Pralay
2012-01-07
We have developed multifunctional nanohybrids of poly(vinylidene fluoride-co-chlorotrifluoroethylene) (CTFE) with a small percentage of surface modified inorganic layered silicate showing dramatic improvement in toughness, radiation resistant and piezoelectric properties vis-à-vis pristine polymer. Massive intercalation (d(001) 1.8 → 3.9 nm) of polymer inside the nanoclay galleries and unique crystallization behavior of the fluoropolymer on the surface of individual silicate layer has been reported. Toughness in the nanohybrid increases more than three orders of magnitude as compared to pure CTFE. High energy radiation (80 MeV Si(+7)) causes chain session, amorphization and creates olefinic bonds in the pure polymer while the nanohybrids are radiation resistant at a similar dose. Nanoclay induces the metastable piezoelectric β-phase in CTFE, suitable for sensor and actuator application. Molecular level changes after irradiation and controlled morphology for smart membrane have been confirmed by using spectroscopy, sol-gel technique, surface morphology studies and in situ residual gas analysis.
Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2018-01-01
A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m-1 without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes.
Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028
NASA Astrophysics Data System (ADS)
Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu
2018-06-01
The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.
Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun
2017-03-29
Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.
NASA Technical Reports Server (NTRS)
Nemani, Ramakrishna R.; Running, Steven W.
1989-01-01
Infrared surface temperatures from satellite sensors have been used to infer evaporation and soil moisture distribution over large areas. However, surface energy partitioning to latent versus sensible heat changes with surface vegetation cover and water availability. The hypothesis that the relationship between surface temperature and canopy density is sensitivite to seasonal changes in canopy resistance of conifer forests is presently tested. Surface temperature and canopy density were computed for a 20 x 25 km forested region in Montana, from the NOAA/AVHRR for 8 days during the summer of 1985. A forest ecosystem model, FOREST-BGC, simulated canopy resistance for the same period. For all eight days, surface temperatures had high association with canopy density, measured as Normalized Difference Vegetation Index, implying that latent heat exchange is the major cause of spatial variations in surface radiant tmeperatures.
Wijesekara, Hasintha Rangana; De Silva, Sunethra Nalin; Wijesundara, Dharani Thanuja De Silva; Basnayake, Bendict Francis Antony; Vithanage, Meththika Suharshini
2015-01-01
This study presents the use of direct current resistivity techniques (DCRT) for investigation and characterization of leachate-contaminated subsurface environment of an open solid waste dumpsite at Kandy, Sri Lanka. The particular dumpsite has no liner and hence the leachate flows directly to the nearby river via subsurface and surface channels. For the identification of possible subsurface flow paths and the direction of the leachate, DCRT (two-dimensional, three-dimensional and vertical electrical sounding) have been applied. In addition, the physico-chemical parameters such as pH, electrical conductivity (EC), alkalinity, hardness, chloride, chemical oxygen demand (COD) and total organic carbon (TOC) of leachate collected from different points of the solid waste dumping area and leachate drainage channel were analysed. Resistivity data confirmed that the leachate flow is confined to the near surface and no separate plume is observed in the downstream area, which may be due to the contamination distribution in the shallow overburden thickness. The stratigraphy with leachate pockets and leachate plume movements was well demarcated inside the dumpsite via low resistivity zones (1-3 Ωm). The recorded EC, alkalinity, hardness and chloride contents in leachate were averaged as 14.13 mS cm⁻¹, 3236, 2241 and 320 mg L⁻¹, respectively, which confirmed the possible causes for low resistivity values. This study confirms that DCRT can be effectively utilized to assess the subsurface characteristics of the open dumpsites to decide on corridor placement and depth of permeable reactive barriers to reduce the groundwater contamination.
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
NASA Astrophysics Data System (ADS)
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
NASA Astrophysics Data System (ADS)
Aguirre, E. E.; Karchewski, B.
2017-12-01
DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.
Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj
2015-01-01
Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132
Research on Heat Exchange Process in Aircraft Air Conditioning System
NASA Astrophysics Data System (ADS)
Chichindaev, A. V.
2017-11-01
Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.
Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta
2015-01-28
Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint.
NASA Astrophysics Data System (ADS)
Kumari, Renu; Blawert, Carsten; Majumdar, J. Dutta
2016-02-01
In the present study, plasma electrolytic oxidation (PEO) of Ti6Al4V has been performed in an electrolyte containing 20 g/L of Na2SiO3, 10 g/L of Na3PO4, 2 g/L of KOH, and 5 g/L of hydroxyapatite at an optimum constant potential of 430 V for 10 minutes. Followed by PEO treatment, surface roughness was measured using non-contact optical profilometer. A detailed characterization of microstructure, composition and phase analysis was carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopic analysis, Fourier-transform infrared, and X-ray diffraction study. The mechanical properties of the surface have been evaluated by measuring nano-hardness and wear resistance. The effect of surface modification on corrosion resistance property has also been evaluated in Hank's solution. Finally, wettability and bioactivity test have been also performed. PEO developed a thick (150 μm) porous (35 pct) oxide film on the surface of Ti-6Al-4V consisting of anatase, rutile, and SiO2. The nano-hardness of the PEO-treated surface is increased to 8 ± 0.5 GPa as compared to 2 ± 0.4 GPa of the as-received Ti-6Al-4V. Wear and corrosion resistance were improved following oxidation. There is an improvement in wettability in terms of decrease in contact angle from 60 ± 1.5 to 45 ± 1 deg. Total surface energy and its polar component were also increased significantly on PEO-treated surface as compared to the as-received Ti6Al4V.
Degradable Polymer with Protein Resistance in a Marine Environment.
Ma, Jielin; Ma, Chunfeng; Zhang, Guangzhao
2015-06-16
Protein resistance is the central issue in marine antibiofouling. We have prepared poly(ε-caprolactone) (PCL)-based polyurethane with 2-(dimethylamino) ethyl methacrylate (DEM) as pendant groups by a combination of the thiol-ene click reaction and the condensation reaction. By the use of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR), we have investigated the adsorption of fibrinogen, bovine serum albumin (BSA), and lysozyme on the polymer surface. The polymer exhibits protein resistance in seawater but not in fresh water because DEM pendant groups carry net neutral charges in the former. The evaluation of antibacterial adhesion of the polymer by using Micrococcus luteus demonstrates that the polymer can effectively inhibit the settlement of marine bacteria. Our studies also show that the polymer is degradable in marine environments.
Yeroslavsky, Gil; Girshevitz, Olga; Foster-Frey, Juli; Donovan, David M; Rahimipour, Shai
2015-01-27
Antibiotic resistance and the colonization of bacteria on surfaces, often as biofilms, prolong hospitalization periods, increase mortality, and are thus major concerns for health care providers. There is an urgent need for antimicrobial and antibiofilm surface treatments that are permanent, can eradicate both biofilms and planktonic pathogens over long periods of time, and do not select for resistant strains. In this study, we have demonstrated a simple, robust, and biocompatible method that utilizes the adhesive property of polydopamine (PDA) to covalently attach the antimicrobial enzyme lysostaphin (Lst) to a variety of surfaces to generate antibacterial and antibiofilm interfaces. The immobilization of the recombinant Lst onto PDA-coated surfaces was carried out under physiological conditions, most probably through the C-terminal His6-tag fragment of the enzyme, minimizing the losses of bioagent activity. The modified surfaces were extensively characterized by X-ray photoelectron spectroscopy and peak force quantitative nanomechanical mapping (PeakForce QNM) AFM-based method, and the presence of Lst on the surfaces was further confirmed immunochemically using anti-Lst antibody. We also found that, in contrast to the physically adsorbed Lst, the covalently attached Lst does not leach from the surfaces and maintains its endopeptidase activity to degrade the staphylococcal cell wall, avoiding most intracellular bacterial resistance mechanisms. Moreover, the Lst-coated surfaces kill hospital strains of Staphylococcus aureus in less than 15 min and prevent biofilm formation. This immobilization method should be applicable also to other proteins and enzymes that are recombinantly expressed to include the His6-tag fragment.
NASA Astrophysics Data System (ADS)
Kibria, Golam
Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of undisturbed soil samples, resistivity decreased as much as sixteen fold (49.4 to 3.2 Ohm-m) for an increase of saturation from 31 to 100%. Furthermore, the resistivity results were different for the specimens at a specific degree of saturation because of varied surface activity and isomorphous substitution of clayey soils. In addition to physical properties, compressibility of clays was correlated with electrical conductivity. Based on the investigation, it was determined that the electrical conductivity vs. pressure curves followed similar trends as e vs. logp curves. Multiple linear regression (MLR) models were developed for compacted and undisturbed samples using statistical analysis software SAS (2009). During model development, degree of saturation and CEC were selected as independent variables. The proposed models were validated using experimental results on a different set of samples. Moreover, the applicability of the models in the determination of degrees of saturation was evaluated using field RI tests.
Okamoto, Eiji; Kato, Yoshikuni; Kikuchi, Sakiko; Mitamura, Yoshinori
2014-01-01
The electrical property between an electrode and skin or tissue is one of the important issues for communication performance of the transcutaneous communication system (TCS) using a human body as a conductive medium.In this study, we used a simple method to measure interface resistance between the electrode and skin on the surface of the body. The electrode-electrode impedance was measured by a commercially available LCR meter with changes in the distance between two electrodes on an arm of a healthy male subject, and we obtained the tissue resistivity and electrode-skin interface resistance using the cross-sectional area of the arm.We also measured transmission gain of the TCS on the surface of the body, and we investigated the relationship between electrode-skin interface resistance and transmission gain. We examined four kinds of electrodes: a stainless steel electrode, a titanium electrode, an Ag-AgCl electrode and an Ag-AgCl paste electrode. The stainless steel electrode, which had lower electrode-skin resistance, had higher transmission gain.The results indicate that an electrode that has lower electrode-skin resistance will contribute to improvement of the performance of the TCS and that electrode-skin interface resistance is one of valuable evaluation parameters for selecting an optimum electrode for the TCS.
In vitro corrosion resistance of porous NiTi intervertebral fusion devices
NASA Astrophysics Data System (ADS)
Schrooten, Jan; Assad, Michel; Van Humbeeck, Jan; Leroux, Michel A.
2007-02-01
Porous titanium-nickel (PTN) intervertebral fusion devices, produced by self-propagating high-temperature synthesis, represent an alternative to traditional long-term implants in the orthopaedic field. PTN promotes tissue ingrowth and has succeeded short-term and long-term biocompatibility in vivo testing. In this in vitro study, the PTN morphology was characterized using microfocus computer tomography (μCT) in order to calculate the active PTN surface. Potentiodynamic polarization testing was then performed to evaluate the in vitro corrosion resistance of PTN devices in Hanks' based salt solution. Direct coupling experiments of PTN with Ti6Al4V were also performed in order to establish the galvanic corrosion resistance of PTN intervertebral implants in the presence of potential Ti6Al4V supplemental fixation devices. Compared to the behaviour of other orthopaedic biomaterials and solid NiTi devices, PTN devices showed a level of corrosion resistance that is comparable to other NiTi devices and acceptable for the intended orthopaedic application. Further improvement of the corrosion resistance is still possible by specific electrochemical surface treatments.
Oh, So-Ram; Chang, Seok-Woo; Lee, Yoon; Gu, Yu; Son, Won-Jun; Lee, Woocheol; Baek, Seung-Ho; Bae, Kwang-Shik; Choi, Gi-Woon; Lim, Sang-Min; Kum, Kee-Yeon
2010-04-01
This study examined the effect of the manufacturing methods (ground, electropolished, and twisted) and the cross-sectional area (CSA) of nickel-titanium (NiTi) rotary instruments on their cyclic fatigue resistance. A total of 80 NiTi rotary instruments (ISO 25/.06 taper) from 4 brands (K3, ProFile, RaCe, and TF) were rotated in a simulated root canal with pecking motion until fracture. The number of cycles to failure (NCF) was calculated. The CSA at 3 mm from the tip of new instruments of each brand was calculated. The correlation between the CSA and NCF was evaluated. All fractured surfaces were analyzed using a scanning electron microscope to determine the fracture mode. The TF instruments were the most resistant to fatigue failure. The resistance to cyclic failure increased with decreasing CSA. All fractured surfaces showed the coexistence of ductile and brittle properties. The CSA had a significant effect on the fatigue resistance of NiTi rotary instruments. Copyright 2010 Mosby, Inc. All rights reserved.
Accili, D; Frapier, C; Mosthaf, L; McKeon, C; Elbein, S C; Permutt, M A; Ramos, E; Lander, E; Ullrich, A; Taylor, S I
1989-01-01
Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells. Images PMID:2573522
DOT National Transportation Integrated Search
2004-01-01
The purpose of this study was to assess the relative functional performance, including skid resistance and splash and spray, of five hot-mix-asphalt (HMA) surfaces and a tinned portland cement concrete highway surface during controlled wet and wintry...
Protein resistance of surfaces modified with oligo(ethylene glycol) aryl diazonium derivatives.
Fairman, Callie; Ginges, Joshua Z; Lowe, Stuart B; Gooding, J Justin
2013-07-22
Anti-fouling surfaces are of great importance for reducing background interference in biosensor signals. Oligo(ethylene glycol) (OEG) moieties are commonly used to confer protein resistance on gold, silicon and carbon surfaces. Herein, we report the modification of surfaces using electrochemical deposition of OEG aryl diazonium salts. Using electrochemical and contact angle measurements, the ligand packing density is found to be loose, which supports the findings of the fluorescent protein labelling that aryl diazonium OEGs confer resistance to nonspecific adsorption of proteins albeit lower than alkane thiol-terminated OEGs. In addition to protein resistance, aryl diazonium attachment chemistry results in stable modification. In common with OEG species on gold electrodes, OEGs with distal hydroxyl moieties do confer superior protein resistance to those with a distal methoxy group. This is especially the case for longer derivatives where superior coiling of the OEG chains is possible. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland
2010-12-01
In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.
Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium
NASA Astrophysics Data System (ADS)
Suresh, Girija; Kishor, P. S. V. R. A.; Dasgupta, Arup; Upadhyay, B. N.; Mallika, C.; Kamachi Mudali, U.
2017-02-01
The manuscript presents the effect of laser surface melting on the corrosion property of 304L SS weldment in nitric acid medium. 304L SS weldment was prepared by gas tungsten arc welding process and subsequently laser surface melted using Nd:YAG laser. The microstructure and corrosion resistance of laser surface melted 304L SS weldment was evaluated and compared with that of 304L SS as-weldment and 304L SS base. Microstructural evaluation was carried out using optical and scanning electron microscopes attached with energy-dispersive x-ray spectroscopy. Corrosion investigations were carried out in 4 and 8 M nitric acid by potentiodynamic polarization technique. From the results, it was found that laser surface melting of the weldment led to chemical and microstructural homogeneities, accompanied by a substantial decrease in delta ferrite content, that enhanced the corrosion resistance of the weldment in 4 and 8 M nitric acid. However, the enhancement in the corrosion resistance was not substantial. The presence of small amount of delta ferrite (2-4 wt.%) in the laser surface melted specimens was found to be detrimental in nitric acid. X-ray photoelectron spectroscopy studies were carried out to investigate the composition of the passive film.
Nanosized carbon modifier used to control plastic deformations of asphalt concrete
NASA Astrophysics Data System (ADS)
Vysotskaya, M. A.; Shekhovtsova, S. Yu; Barkovsky, D. V.
2018-03-01
Aspects related to plastic track, the formation of which directly depends on the properties of the binder in the composition of asphalt concrete, are considered in this article. The effect of primary carbon nanomaterials on the quality of polymer and bitumen binder in comparison with the traditional binder including cross-linking agent is evaluated. The influence of binders on the resistance to the track formation of type B asphalt concrete is studied. To quantify the service life of surfacing, a calculation method based on the criteria for the resistance of surfacing material to plastic deformations is used.
Abrasion resistant track shoe grouser
Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A
2013-04-23
A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.
NASA Astrophysics Data System (ADS)
Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio
2017-08-01
A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.
Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments
NASA Astrophysics Data System (ADS)
Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.
2012-03-01
Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.
NASA Astrophysics Data System (ADS)
Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.
2018-03-01
Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.
Feasibility Study Exploring the Potential of Novel Battacin Lipopeptides as Antimicrobial Coatings.
De Zoysa, Gayan Heruka; Sarojini, Vijayalekshmi
2017-01-18
Colonization of medical implant surfaces by pathogenic microorganisms causes implant failure and undermines their clinical applicability. Alarming increase in multidrug-resistant bacteria poses serious concerns with the use of medical implants. Antimicrobial peptides (AMPs) that form part of the innate immune system in all forms of life are attractive alternatives to conventional antibiotics to treat multidrug-resistant bacterial biofilms. The aim of this study was to assess the in vitro antibacterial potency of our recently discovered lipopeptides from the battacin family upon immobilization to various surfaces. To achieve this, glass, silicon, and titanium surfaces were functionalized through silanization followed by addition of the heterobifunctional cross-linker, succinimidyl-[N-maleimidopropionamido]-poly(ethylene glycol) ester to generate maleimide-functionalized surfaces. The lipopeptide, GZ3.27, with an added N-terminal cysteine was covalently coupled to the surfaces via a thioether bond through a Michael-type addition between the cysteine sulfhydryl group and the maleimide moiety. Success of surface immobilization and antimicrobial activity of the coated surfaces was assessed using water contact angle measurements, X-ray photoelectron spectroscopy, ellipsometry, scanning electron microscopy, colony forming unit assays and biofilm analysis. The lipopeptide-coated surfaces caused significant damage to the cellular envelop of Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) upon contact and prevented surface colonization by P. aeruginosa and E. coli biofilms. The lipopeptides investigated in this study were not hemolytic to mouse blood cells in solution. Findings from this study indicate that these lipopeptides have the potential to be developed as promising antimicrobial coatings on medical implants.
Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance.
Bonifait, Laetitia; Grignon, Louis; Grenier, Daniel
2008-08-01
In this study, we showed that supplementing the culture medium with fibrinogen induced biofilm formation by Streptococcus suis in a dose-dependent manner. Biofilm-grown S. suis cells were much more resistant to penicillin G than planktonic cells. S. suis bound fibrinogen to its surface, a property that likely contributes to biofilm formation.
Compressed sodium chloride as a fast-acting antimicrobial surface: results of a pilot study.
Whitlock, B D; Smith, S W
2016-10-01
Antimicrobial surfaces are currently being studied as an aid to reduce transmission of pathogens leading to healthcare-associated infections (HAIs). Among the most harmful and costly pathogens that cause HAIs is meticillin-resistant Staphylococcus aureus (MRSA). Currently available and previously investigated antimicrobial surface technologies that are effective against MRSA (e.g. copper alloy surfaces) take 30min to several hours to achieve significant reduction. This article presents a new antimicrobial surface technology made of compressed sodium chloride that reduces MRSA 20-30 times faster than copper alloy surfaces. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Rong; Fu, Licai; Zhou, Lingping
2016-12-01
A surface nanocrystalline 1090 steel has been fabricated by using sandblasting technique. The surface average grain size was about 78 nm. The high strain rate and strain in sandblasting were main reasons for surface nanocrystallization. The wear resistance of 1090 steel was considerably enhanced as grain size decreased. The microstructure and hardness of contact zones before and after wear tests have been examined by XRD, SEM and TEM. Except the higher hardness, the results demonstrated that parts of ferrite transferred to cementite and martensite. It was additional beneficial for improving the wear resistance of 1090 steel as the grain size decreased.
NASA Astrophysics Data System (ADS)
Ghanbari, A.; Attar, M. M.
2014-10-01
The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.
NASA Astrophysics Data System (ADS)
Visbal, Heidy; Fujiki, Satoshi; Aihara, Yuichi; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang
2014-12-01
The influence of selected carbonate species on LiNi0.8Co0.15Al0.05O2 (NCA) surface for all-solid-state lithium-ion battery (ASSB) with a sulfide based solid electrolyte was studied for its electrochemical properties, structural stabilities, and surface characteristics. The rated discharge performance improved with the reduction of the carbonate concentration on the NCA surface due to the decrease of the interface resistance. The species and coordination of the adsorbed carbonates on the NCA surface were analyzed by diffuse reflectance Fourier transformed infrared (DRIFT) spectroscopy. The coordination of the adsorbed carbonate anion was determined based on the degree of splitting of the ν3(CO) stretching vibrations. It is found that the surface carbonate species exists in an unidentate coordination on the surface. They react with the sulfide electrolyte to form an irreversible passivation layer. This layer obstructs the charge transfer process at the cathode/electrolyte interface, and results in the rise of the interface resistance and drop of the rated discharge capability.
NASA Technical Reports Server (NTRS)
Horne, W. B.; Griswold, G. D.
1975-01-01
A high pressure water blast with rotating spray bar treatment for removing paint and rubber deposits from airport runways is studied. The results of the evaluation suggest that the treatment is very effective in removing above surface paint and rubber deposits to the point that pavement skid resistance is restored to trafficked but uncontaminated runway surface skid resistance levels. Aircraft operating problems created by runway slipperiness are reviewed along with an assessment of the contributions that pavement surface treatments, surface weathering, traffic polishing, and rubber deposits make in creating or alleviating runway slipperiness. The results suggest that conventional surface treatments for both portland cement and asphaltic concrete runways are extremely vulnerable to rubber deposit accretions which can produce runway slipperiness conditions for aircraft operations as or more slippery than many snow and ice-covered runway conditions. Pavement grooving surface treatments are shown to be the least vulnerable to rubber deposits accretion and traffic polishing of the surface treatments examined.
Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.
2008-01-01
Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.
Surface mediated cooperative interactions of drugs enhance mechanical forces for antibiotic action
NASA Astrophysics Data System (ADS)
Ndieyira, Joseph W.; Bailey, Joe; Patil, Samadhan B.; Vögtli, Manuel; Cooper, Matthew A.; Abell, Chris; McKendry, Rachel A.; Aeppli, Gabriel
2017-02-01
The alarming increase of pathogenic bacteria that are resistant to multiple antibiotics is now recognized as a major health issue fuelling demand for new drugs. Bacterial resistance is often caused by molecular changes at the bacterial surface, which alter the nature of specific drug-target interactions. Here, we identify a novel mechanism by which drug-target interactions in resistant bacteria can be enhanced. We examined the surface forces generated by four antibiotics; vancomycin, ristomycin, chloroeremomycin and oritavancin against drug-susceptible and drug-resistant targets on a cantilever and demonstrated significant differences in mechanical response when drug-resistant targets are challenged with different antibiotics although no significant differences were observed when using susceptible targets. Remarkably, the binding affinity for oritavancin against drug-resistant targets (70 nM) was found to be 11,000 times stronger than for vancomycin (800 μM), a powerful antibiotic used as the last resort treatment for streptococcal and staphylococcal bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Using an exactly solvable model, which takes into account the solvent and membrane effects, we demonstrate that drug-target interactions are strengthened by pronounced polyvalent interactions catalyzed by the surface itself. These findings further enhance our understanding of antibiotic mode of action and will enable development of more effective therapies.
KuKanich, Kate S; Ghosh, Anuradha; Skarbek, Jennifer V; Lothamer, Kale M; Zurek, Ludek
2012-02-15
To determine the prevalence of bacterial contamination on 4 surfaces of 4 types of standard equipment in small animal veterinary hospitals. Surveillance study. 10 small animal veterinary hospitals. Each hospital was visited 3 times at 4-month intervals; at each visit, a cage door, stethoscope, rectal thermometer, and mouth gag were swabbed. Swab samples were each plated onto media for culture of enterococci and organisms in the family Enterobacteriaceae. Enterococci were identified via a species-specific PCR assay and sodA gene sequencing; species of Enterobacteriaceae were identified with a biochemical test kit. Antimicrobial susceptibility was assessed via the disk diffusion method. Enterococci were screened for virulence traits and genotyped to assess clonality. Among the 10 hospitals, enterococci were isolated from cage doors in 7, from stethoscopes in 7, from thermometers in 6, and from mouth gags in 1; contamination with species of Enterobacteriaceae was rare. Enterococci were mainly represented by Enterococcus faecium (35.4%), Enterococcus faecalis (33.2%), and Enterococcus hirae (28.3%). Antimicrobial resistance was common in E. faecium, whereas virulence traits were present in 99% of E. faecalis isolates but not in E. faecium isolates. Clonal multidrug-resistant E. faecium was isolated from several surfaces at 1 hospital over multiple visits, whereas sporadic nonclonal contamination was detected in other hospitals. Contamination of surfaces in small animal veterinary hospitals with multidrug-resistant enterococci is a potential concern for pets and humans contacting these surfaces. Implementing precautions to minimize enterococcal contamination on these surfaces is recommended.
Thiele, R M; Conchola, E C; Palmer, T B; DeFreitas, J M; Thompson, B J
2015-01-01
The purpose of this study was to investigate the effects of a high-intensity free-weight back-squat exercise on postural stability characteristics in resistance-trained males. Eighteen college-aged (mean ± SD: age = 22.9 ± 2.9 years; height = 175.8 ± 6.4 cm; mass = 86.3 ± 9.3 kg), resistance-trained males performed postural stability testing before and after completing five sets of eight repetitions of back-squat exercises at 80% of one-repetition maximum. A commercial balance testing device was used to assess sway index at pre- and at 0, 5, 10, 15 and 20 min post-exercise. Each balance assessment consisted of four, 20-s static stance conditions: eyes-open firm surface, eyes-closed firm surface, eyes-open soft surface and eyes-closed soft surface. Sway index was greater (P = 0.001-0.020) at Post 0 than at all other time points. No differences (P > 0.05) were observed between any other time phases. Sway index was greater (P < 0.001) for eyes-closed soft surface than all other conditions. These findings revealed sway index for all conditions significantly increased following completion of the back-squat; however, sway index recovered within 5 min of exercise. Higher sway index values as a result of neuromuscular fatigue induced by a back-squat exercise may have performance and injury risk consequences to subsequent activities that rely on postural stability. However, these findings suggest balance impairments may recover in ~5 min following high-intensity lower body resistance exercise.
Characterization of the Electrostatic Environment of Launchers
NASA Astrophysics Data System (ADS)
Soyah, Jamila; Mantion, Pascal; Herlem, Yannick
2016-05-01
The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.
NASA Astrophysics Data System (ADS)
Rahman, Zia ur; Pompa, Luis; Haider, Waseem
2014-11-01
Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion of these alloys leads to metal ions release. These ions leach to the adjacent tissues and result in adverse biological reactions and mechanical failure of implant. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing and magnetoelectropolishing were carried out on commercially pure titanium, Ti6Al4V, and Ti6Al4V-ELI. These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance, and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard F-2129-12. The surface morphology, roughness, and wettability of these alloys were studied using scanning electron microscope, atomic force microscope, and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on them.
Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.
Cheng, Lei; Chen, Wei; Kunz, Martin; Persson, Kristin; Tamura, Nobumichi; Chen, Guoying; Doeff, Marca
2015-01-28
Cubic garnet phases based on Al-substituted Li7La3Zr2O12 (LLZO) have high ionic conductivities and exhibit good stability versus metallic lithium, making them of particular interest for use in next-generation rechargeable battery systems. However, high interfacial impedances have precluded their successful utilization in such devices until the present. Careful engineering of the surface microstructure, especially the grain boundaries, is critical to achieving low interfacial resistances and enabling long-term stable cycling with lithium metal. This study presents the fabrication of LLZO heterostructured solid electrolytes, which allowed direct correlation of surface microstructure with the electrochemical characteristics of the interface. Grain orientations and grain boundary distributions of samples with differing microstructures were mapped using high-resolution synchrotron polychromatic X-ray Laue microdiffraction. The electrochemical characteristics are strongly dependent upon surface microstructure, with small grained samples exhibiting much lower interfacial resistances and better cycling behavior than those with larger grain sizes. Low area specific resistances of 37 Ω cm(2) were achieved; low enough to ensure stable cycling with minimal polarization losses, thus removing a significant obstacle toward practical implementation of solid electrolytes in high energy density batteries.
Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.
Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P
2013-02-19
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jin Wan; Lee, Raymond; Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel
2017-02-01
Below the threshold for laser ablation, the mineral phase of enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Studies suggest the possibility of achieving the conversion without visible surface alteration. In this study, changes in the surface morphology, reflectivity, and acid resistance were monitored with varying irradiation intensity. Bovine enamel specimens were irradiated using a CO2 laser operating at 9.4 μm with a Gaussian spatial beam profile-1.6 to 3.1 mm in diameter. After laser treatment, samples were subjected to demineralization to simulate the acidic intraoral conditions of dental decay. The resulting demineralization and erosion were assessed using polarization-sensitive optical coherence tomography, three-dimensional digital microscopy, and polarized light microscopy. Distinct changes in the surface morphology and the degree of inhibition were found within the laser-treated area in accordance with the laser intensity profile. Subtle visual changes were noted below the melting point for enamel that appear to correspond to thresholds for denaturation of the organic phase and thermal decomposition of the mineral phase. There was significant protection from laser irradiation in areas in which the reflectivity was not increased significantly, suggesting that aesthetically sensitive areas of the tooth can be treated for caries prevention.
Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.
Wang, Chao; Fuller, Mark E; Schaefer, Charles; Caplan, Jeffrey L; Jin, Yan
2012-05-30
2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are common contaminants around active military firing ranges. Dissolution of these compounds is usually the first step prior to their spreading in subsurface environments. Nevertheless, dissolution of individual TNT, RDX, and HMX under continuous flow conditions has not been well investigated. This study applied spectral confocal microscopy to observe and quantify the dissolution of TNT, RDX, and HMX (<100 μm crystals) in micromodel channels. Dissolution models were developed to describe the changes of their radii, surface areas, volumes, and specific surface areas as a function of time. Results indicated that a model incorporating a resistance term that accounts for the surface area in direct contact with the channel surfaces (and hence, was not exposed to the flowing water) described the dissolution processes well. The model without the resistance term, however, could not capture the observed data at the late stage of TNT dissolution. The model-fitted mass transfer coefficients were in agreement with the previous reports. The study highlights the importance of including the resistance term in the dissolution model and illustrates the utility of the newly developed spectral imaging method for quantification of mass transfer of TNT, RDX, and HMX. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling pore corrosion in normally open gold- plated copper connectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien
2008-09-01
The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less
Prospects of using titanium nickelide implants with modified surface in dental implantology.
Razdorsky, V V
2008-06-01
Corrosion resistance and biocompatibility of 60 specimens of titanium nickelide with modified surfaces implanted into spongy bone were studied in rabbit experiments. Specimens modified by molybdenum ions exhibited high inertness and favorable tissue reaction. No accumulation of nickel and titanium ions in animal organs was detected.
Effect of Natural Antimicrobials to reduce Biofilm formed by Environmental Isolates of Salmonella
USDA-ARS?s Scientific Manuscript database
Biofilm formation by enteric pathogens on food and equipment surfaces is a concern because sessile bacteria within biofilms are resistant to cleaning and disinfection. The formation of biofilms by Salmonella enterica on food surfaces has been documented. The purpose of this study was to evaluate t...
Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...
The Influence of Surface Roughness on Biocompatibility and Fatigue Life of Titanium Based Alloys
NASA Astrophysics Data System (ADS)
Major, S.; Cyrus, P.; Hubálovská, M.
2017-02-01
This article deals with the effect of treatment on the mechanical properties ofbiocompatible alloys. In the case of implants, it is desirable to ensure good biocompatibility. Generally, the environment in the body is very aggressive and implants can quickly degrade due the corrosion. The process of corrosion leads to the release of harmful particles into the body. Other reasons for rejection of the implants, is their coverage bacterial plaque. Another reason for the rejection of the implant may be a smooth surface. In some cases, the tissue does not adhere to the smooth surface of the implant, in this regionsoccurs an accumulation of body fluids. This problem can be solved with a rough surface. From the viewpoint of fatigue resistance, the rough surface containing grooves and holes has a negative influence on the fatigue resistance against mechanical loading. The rough surface can be produced by machining or asymmetric deposition of particles of oxides, nitrides or other particles on surface. In this work the formation and propagation of fatigue cracks in the material with granular surface is analysed. The formation and growth of fatigue crack originated from granular surface is simulated. Also, experimental studies were carried out.
Experimental study of the thermal stability of materials in high temperature oxygen-containing media
NASA Technical Reports Server (NTRS)
Abaltusov, Y. Y.; Bagramyan, A. R.; Grishin, A. M.; Yukhvid, V. I.
1986-01-01
An experimental study is made of the interaction of several materials with a high temperature medium containing oxygen. The temperature of the surface was measured as a function of time. It is found that the higher the velocity of mass removal from the surface, the more effective is the material from the viewpoint of heat resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaofeng; Qui, Renhui; Fifield, Leonard S.
2012-05-17
Effects of surface treatments on the strength and water resistance of kenaf fiber-reinforced unsaturated polyester (UPE) composites were investigated. A new coupling agent that consists of 1,6-diisocyanato-hexane (DIH) and 2-hydroxylethyl acrylate (HEA) was investigated for surface treatments of kenaf fibers. The surface treatments were found to significantly enhance the tensile strength, modulus of rupture, modulus of elasticity, and water resistance of the resulting kenaf UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed that DIH-HEA was covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed that chemical treatment of kenaf fibers with a combination of DIHmore » and HEA improved the interfacial adhesion between kenaf fibers and UPE resin in the DIHHEA-treated kenafUPE composites. The mechanisms by which the chemical treatment of kenaf fiber surfaces improved strength and water resistance of the resulting kenaf UPE composites were discussed.« less
Titanium-tethered vancomycin prevents resistance to rifampicin in Staphylococcus aureus in vitro.
Rottman, Martin; Goldberg, Joel; Hacking, S Adam
2012-01-01
Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×10⁶ CFU, however inocula greater than 2×10⁶ CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 10⁶ CFU/cm² by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×10⁸ CFU.
Titanium-Tethered Vancomycin Prevents Resistance to Rifampicin in Staphylococcus aureus in vitro
Hacking, S. Adam
2012-01-01
Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×106 CFU, however inocula greater than 2×106 CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 106 CFU/cm2 by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×108 CFU. PMID:23285213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru
2014-11-14
For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB{sub 2}Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beammore » processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.« less
Tungsten coating for improved wear resistance and reliability of microelectromechanical devices
Fleming, James G.; Mani, Seethambal S.; Sniegowski, Jeffry J.; Blewer, Robert S.
2001-01-01
A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 .degree. C. in the presence of gaseous nitrogen trifluoride (NF.sub.3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF.sub.6) at an elevated temperature, preferably about 450.degree. C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.
Verma, Santosh K; Chang, Wen Ruey; Courtney, Theodore K; Lombardi, David A; Huang, Yueng-Hsiang; Brennan, Melanye J; Mittleman, Murray A; Ware, James H; Perry, Melissa J
2011-04-01
Slips and falls are a leading cause of injury at work. Few studies, however, have systematically examined risk factors of slipping outside the laboratory environment. This study examined the association between floor surface characteristics, slip-resistant shoes, floor cleaning frequency and the risk of slipping in limited-service restaurant workers. 475 workers from 36 limited-service restaurants from three major chains in six states in the USA were recruited to participate in a prospective cohort study of workplace slipping. Kitchen floor surface roughness and coefficient of friction (COF) were measured in eight working areas and then averaged within each restaurant. The use of slip-resistant shoes was determined by examining the participant's shoes and noting the presence of a 'slip-resistant' marking on the sole. Restaurant managers reported the frequency of daily kitchen floor cleaning. Participants reported their slip experience and work hours weekly for up to 12 weeks. The survey materials were made available in three languages: English, Spanish and Portuguese. The associations between rate of slipping and risk factors were assessed using a multivariable negative binomial generalised estimating equation model. The mean of individual slipping rate varied among the restaurants from 0.02 to 2.49 slips per 40 work hours. After adjusting for age, gender, BMI, education, primary language, job tenure and restaurant chain, the use of slip-resistant shoes was associated with a 54% reduction in the reported rate of slipping (95% CI 37% to 64%), and the rate of slipping decreased by 21% (95% CI 5% to 34%) for each 0.1 increase in the mean kitchen COF. Increasing floor cleaning frequency was significantly associated with a decreasing rate of slipping when considered in isolation but not after statistical adjustment for other factors. These results provide support for the use of slip-resistant shoes and measures to increase COF as preventive interventions to reduce slips, falls and injuries.
Resistance of CFRP structures to environmental degradation in low Earth orbit
NASA Astrophysics Data System (ADS)
Suliga, Agnieszka
Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical requirement to make their use in space applications truly feasible.
Effect of corona discharge on cadmium sulphide and lead sulphide films
NASA Astrophysics Data System (ADS)
Koul Chaku, Anemone; Singh, Pramod K.; Bhattacharya, Bhaskar
2018-03-01
This paper describes the effect of corona discharge on cadmium sulphide (CdS) and lead sulphide (PbS) films prepared using the chemical route. The property of films before and after exposure to corona has been described in detail. The electronic properties of the CdS and PbS films have been studied by current-voltage (I-V), capacitance-voltage (C-V) measurements. The structural properties and surface morphology were studied by using X-ray diffraction and scanning electron microscopy before and after exposing to Corona discharge. The films displayed the change in surface morphology after exposure to the corona discharge. It has been found that the films showed an increase in resistivity after exposure. This change in property has been attributed to modification in surface states. Time-dependent recovery indicated that room temperature annealing is sufficient to regain the normal resistivity of the films. The experiment was carried with the aim of studying the effect of the interaction of corona discharge on the semiconductor films and its subsequent effects.
Biocompatibility enhancement of rare earth magnesium alloy by laser surface processing
NASA Astrophysics Data System (ADS)
Nie, Shilin; Wang, Yuqing; Liu, Haifeng; Guan, Yingchun
2018-01-01
Although magnesium and magnesium alloys are considered biocompatible and biodegradable, insufficient biocompatibility in body fluid environment is still the major drawback of magnesium alloys for their successful applications as biodegradable orthopaedic implants. In this work, magnesium alloy surface with both enhanced corrosion resistance and better cell adhesion property was directly fabricated by laser surface processing. Laser surface melting was used to improve corrosion resistance of Mg-6Gd-0.6Ca alloy. After laser surface melting, laser surface texturing was utilized on melted surface for better cell adhesion property. The corrosion resistance of laser-treated and as-received samples were evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using scanning electron microscopy, optical microscopy and X-ray diffraction. This work investigated the effect of laser treatment on cell distribution across the surface of magnesium alloy substrates. Osteoblast was cultured on the laser-treated surface and as-received surface. Cell morphology was observed with a scanning electron microscopy, and cell viability was evaluated by optical density measurement.
Al-Bazi, Samar M; Abbassy, Mona A; Bakry, Ahmed S; Merdad, Leena A; Hassan, Ali H
2016-01-01
The objectives of this study were to evaluate the effects of applying 0.50% chlorhexidine (CHX) gel using the dental drug delivery system (3DS) on salivary Streptococcus mutans (S. mutans) and on the surface topography of metal and ceramic orthodontic brackets. The study involved 20 orthodontic patients with high levels of salivary S. mutans. The patients were treated with professional mechanical tooth cleaning followed by application of 0.50% CHX using individual trays (3DS). Salivary S. mutans levels were repeatedly measured 1, 2, 4, and 8 weeks post-treatment. In vitro study utilized forty ceramic and metallic brackets that were immersed in 0.50% CHX gel for 10 min, whereas another untreated forty brackets served as controls. The frictional resistances of stainless steel wires to the brackets before and after CHX treatment were recorded using a universal testing machine. Scanning electron microscopy was used to compare changes in the surface topography of brackets. Statistical analyses were used to determine the effect of CHX on bacterial count and to evaluate the effect of CHX on frictional resistance. According to the results of this study, S. mutans levels were reduced significantly (P < 0.05). There were no significant changes in the frictional resistance and surface topography of brackets before or after application of CHX. (J Oral Sci 58, 35-42, 2016).
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Sweeney, Joseph W.; Browning, Paul F.
2002-01-01
The purpose of this study was to examine the effects of extended exposures on the near-surface fatigue resistance of a disk superalloy. Powder metallurgy processed, supersolvus heat-treated Udimet 720 (U720) fatigue specimens were exposed in air at temperatures from 650 to 705 C for 100 hr to over 1000 hr. They were then tested using conventional fatigue tests at 650 C to determine the effects of exposure on fatigue resistance. The exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Fractographic evaluations indicated the failure mode was shifted by the exposures from internal to surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.
Disorder enabled band structure engineering of a topological insulator surface
Xu, Yishuai; Chiu, Janet; Miao, Lin; ...
2017-02-03
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Laser and Electrochemical Studies of Metallizations Electronic Devices
1990-10-01
AES Surface Analyses Profile at Laser Non-Irradiated Zone .... ............ .. 47 Fig 3.15 AES Surface Analyses Profile at laser Gold Depsit Zone...After Various Times of Ion Sputtering .... ............. ... 48 Fig 3.16 ESCA Surface Analyses Profile of Laser Gold Deposit Zone After Sputtering...57 Table 3.4 Resistance Measurement of Two Point Probes Laser Gold Line Deposits on Superconductive Specimen Material ..... . 58 Fig 3.19
Curtis, Colin K; Marek, Antonin; Smirnov, Alex I
2017-01-01
This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces. PMID:29046852
McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S
2012-07-01
Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei
2016-01-01
The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Xue; Wang, Yusheng; Li, Xide, E-mail: lixide@tsinghua.edu.cn
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects ofmore » the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li–Etsion–Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.« less
NASA Astrophysics Data System (ADS)
Kim, Hak-Kwan; Jang, Ju-Woong
2004-10-01
Commercially pure titanium is used as a clinical implant material for many orthopedic and dental implant devices owing to its excellent corrosion resistance and good biocompatibility. However, there remains concern over the release of metal ions from prostheses and unresolved questions about its behavior in a biological environment. Our research investigated the influence of surface oxide thickness and phase on the corrosion resistance in 0.9% NaCl solution by potentiostat and XRD. Also, the MG-63 osteoblast like cell morphology and proliferation were studied to evaluate the biocompatibility in terms of surface treatment. It is demonstrated that a substantial decrease in the current density may be attained due to surface oxide thickening and phase transformation by thermal oxidation. The osteoblast adhesion morphology and proliferation data indicated that the osteoblast cell response is not conspicuously influenced by the thermal oxidation and nitric acid passivation treatments but by surface roughness and porosity of 3rd networking.
NASA Astrophysics Data System (ADS)
Gururaj, T.; Subasri, R.; Raju, K. R. C. Soma; Padmanabham, G.
2011-02-01
An attempt was made to study the effect of plasma surface activation on the adhesion of UV-curable sol-gel coatings on polycarbonate (PC) and polymethylmethacrylate (PMMA) substrates. The sol was synthesized by the hydrolysis and condensation of a UV-curable silane in combination with Zr-n-propoxide. Coatings deposited by dip coating were cured using UV-radiation followed by thermal curing between 80 °C and 130 °C. The effect of plasma surface treatment on the wettability of the polymer surface prior to coating deposition was followed up by measuring the water contact angle. The water contact angle on the surface of as-cleaned substrates was 80° ± 2° and that after plasma treatment was 43° ± 1° and 50° ± 2° for PC and PMMA respectively. Adhesion as well as mechanical properties like scratch resistance and taber abrasion resistance were evaluated for coatings deposited over plasma treated and untreated surfaces.
NASA Astrophysics Data System (ADS)
Batkova, Marianna; Batko, Ivan; Gabáni, Slavomír; Gažo, Emil; Konovalova, Elena; Filippov, Vladimir
2018-05-01
We studied electrical resistance of a single-crystalline SmB6 sample with a focus on the region of the "low-temperature resistivity plateau". Our observations did not show any true saturation of the electrical resistance at temperatures below 3 K down to 70 mK. According to our findings, temperature dependence of the electrical conduction in a certain temperature interval above 70 mK can be decomposed into a temperature-independent term and a temperature-activated term that can be described by variable-range hopping formula for two-dimensional systems, exp [ -(T0 / T) 1 / 3 ]. Thus, our results indicate importance of hopping type of electrical transport in the near-surface region of SmB6.
A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies
Bedrosian, Paul A.; Schamper, Cyril; Auken, Esben
2016-01-01
The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near-surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.
NASA Astrophysics Data System (ADS)
Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.
2012-12-01
In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.
Nanofabrication and characterization of PVA-organofiller/Ag nanocoatings on pMAD plasmids
NASA Astrophysics Data System (ADS)
Erdonmez, D.; Mosayyebi, S.; Erkan, K.; Salimi, K.; Nagizade, N.; Saglam, N.; Rzayev, Z. M. O.
2014-11-01
Nowadays, the most important problem in microbial researches is bacterial resistance which is carried out by DNA plasmids against antibacterial agents. The effect of antibacterial nanoparticles on bacteria is remarkable, but studies on the interactions of these particles with plasmids do not search or there are no adequate studies. We proposed that the nanoparticles, which are disrupted the self-assembled structure of plasmids, may decrease the resistance of bacteria, and therefore, increase the activity of utilized antibacterial agents. In this work, we synthesized polymer nanofiber webs samples by electrospinning technique from pure water solution of nanocomposites with different contents of silver nanoparticles, and surface morphology of nanofibers composites were characterized by SEM microscopy. Their interactions with pMAD DNA plasmids were investigated. It was demonstrated that the synthesized Ag-carrying nanohybrid composites with higher surface contacted areas were significantly inhibited the activity of plasmid DNA against bacterial resistance. Agreeing with obtained results, synthesized nanofiber coatings can be recommended for the widely applications in nanobiotechnology, nanomedicine, and bioengineering processing.
NASA Astrophysics Data System (ADS)
Tóth, A.; Veres, M.; Kereszturi, K.; Mohai, M.; Bertóti, I.; Szépvölgyi, J.
2011-10-01
The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and ID/ IG ratio and between chroma and ID/ IG ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp 2 carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the ID/ IG ratio and inverse correlations between surface energy and ID/ IG ratio and between dispersive component of surface energy and ID/ IG ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp 2 carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the π → π* shake-up satellite of the C 1s peak.
Zhu, J.; Currens, J.C.; Dinger, J.S.
2011-01-01
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.
A Survey of Staphylococcus sp and its Methicillin Resistance aboard the International Space Station
NASA Technical Reports Server (NTRS)
Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Ott, C.; Healy, M.; Pierson, D. L.
2004-01-01
Background: Within the past few years, methicillin-resistant Staphylococcus aureus has emerged in environments with susceptible hosts in close proximity, such as hospitals and nursing homes. As the International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts occupying ISS or on surfaces of the space station itself. Methods: Identification of isolates was completed using VITEK (GPI cards, BioMerieux), 16S ribosomal DNA analysis (MicroSeq 500, ABI), and Rep-PCR DNA fingerprinting (Divemilab, Bacterial Barcodes). Susceptibility tests were performed using VITEK (GPS-105 cards, BioMerieux) and resistance characteristics were evaluated by testing for the presence of the mecA gene (PBP2' MRSA test kit, Oxoid). Results: Rep-PCR analysis indicated the transfer of S. aureus between crewmembers and between crewmembers and ISS surfaces. While a variety of S. aureus were identified from both the crewmembers and environment, evaluations of the microbial population indicated minimal methicillin resistance. Results of this study indicated that within the semi-closed ISS environment, transfer of bacteria between crewmembers and their environment has been occurring, although there was no indication of a high concentration of methicillin resistant Staphylococcus species. Conclusions: While this study suggests that the spread of methicillin resistant S. aureus is not currently a concern aboard ISS, the increasing incidence of Earth-based antibiotic resistance indicates a need for continued clinical and environmental monitoring.
Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals.
Dias, Carla; Borges, Anabela; Saavedra, Maria José; Simões, Manuel
2018-03-01
The 'One Health' concept recognises that the health of humans, animals and the environment are interconnected. Therefore, knowledge on the behaviour of micro-organisms from the most diverse environmental niches is important to prevent the emergence and dissemination of antimicrobial resistance. Wild animals are known to carry antimicrobial-resistant micro-organisms with potential public health impact. However, no data are available on the behaviour of sessile bacteria from wild animals, although antimicrobial resistance is amplified in biofilms. This study characterised the ciprofloxacin susceptibility and the adhesion and biofilm formation abilities of 14 distinct Aeromonas spp. (8 Aeromonas salmonicida, 3 Aeromonas eucrenophila, 2 Aeromonas bestiarum and 1 Aeromonas veronii) isolated from wild animals and already characterised as resistant to β-lactam antibiotics. The ciprofloxacin MIC was determined according to CLSI guidelines. A biofilm formation assay was performed by a modified microtitre plate method. Bacterial surface hydrophobicity was assessed by sessile drop contact angle measurement. All Aeromonas spp. strains were resistant to ciprofloxacin (MICs of 6-60μg/mL) and had hydrophilic surfaces (range 2-37mJ/m 2 ). These strains were able to adhere and form biofilms with distinct magnitudes. Biofilm exposure to 10×MIC of ciprofloxacin only caused low to moderate biofilm removal. This study shows that the strains tested are of potential public health concern and emphasises that wild animals are potential reservoirs of multidrug-resistant strains. In fact, Aeromonas spp. are consistently considered opportunistic pathogens. Moreover, bacterial ability to form biofilms increases antimicrobial resistance and the propensity to cause persistent infections. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wosik, J.; Robin, T.; Davis, M.; Wolfe, J. C.; Forster, K.; Deshmukh, S.; Bensaoula, A.; Sega, R.; Economou, D.; Ignatiev, A.
1990-01-01
Measurements of millimeter-wave surface resistance versus temperature have been performed for YBa2Cu3O(x) thin films on 100 line-type SrTiO(3) substrates using a TE(011) cylindrical copper cavity at 80 GHz. The 0.6-micron thick films were grown at several deposition temperatures in the range 690 C to 810 C by means of a pulsed excimer laser ablation technique. A surface resistance minimum (60 milliohm at 77 K) near 770 C is shown to correlate with a minimum in c-axis lattice parameter (11.72 A). The highest value of Tc also occurs near this temperature. The surface resistance of films deposited at 790 C on 110 line-type LaAlO3 subtrates is lower, reaching 8 milliohm at 98 GHz and 80 K, demonstrating the influence of substate material on film quality.
Fracture processes and mechanisms of crack growth resistance in human enamel
NASA Astrophysics Data System (ADS)
Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne
2010-07-01
Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.
Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.
Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R
2016-12-01
Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.
Investigation of wear resistance of polyurethanes in abrasive soil mass
NASA Astrophysics Data System (ADS)
Napiórkowski, Jerzy; Ligier, Krzysztof
2018-04-01
This paper presents a comparative study of polyurethane wear in different abrasive soil masses. Two types of polyurethanes of various chemical compositions and untreated 38GSA steel were tested, the latter being used as a reference standard. The study was conducted in natural soil mass at a "rotating bowl" stand. Relative wear resistance was determined from measurements of mass wear for the materials under study. The condition of the surface of the materials under wear test was analysed.
The Influence of Yttrium on High Temperature Oxidation of Valve Steels
NASA Astrophysics Data System (ADS)
Grzesik, Z.; Migdalska, M.; Mrowec, S.
2015-04-01
The influence of small amounts of yttrium, electrochemically deposited on the surface of four steels utilized in the production of valves in car engines, on the protective properties of the oxide scale and its adherence to the surface of the oxidized materials has been studied under isothermal and thermal cycle conditions. Oxidation measurements have been carried out at 1173 K. It has been found that yttrium addition improves considerably the scale adherence to the substrate surface, increasing thereby corrosion resistance of the studied materials.
Flow resistivity instrument in the earth
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor)
1984-01-01
Method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface. The novel feature of the invention is two concentric cylinders, 22 and 23, inserted into the ground surface 24 with a measured pressure 21 applied to the surface inside the inner cylinder 22. The outer cylinder 23 vents a plane B-B beneath the surface to the atmosphere through an air space 28. The flow to the inner cylinder is measured (16) thereby indicating the flow from the surface to the plane beneath the surface.
PVD coating for optical applications on temperature-resistant thermoplastics
NASA Astrophysics Data System (ADS)
Munzert, Peter; Schulz, Ulrike; Kaiser, Norbert
2004-02-01
The performance of the high temperature resistant polymers Pleximid, APEC and Ultrason as substrate materials in plasma-assisted physical vapor deposition processes was studied and compared with well-known thermoplastics for optical applications. Different effects of UV irradiation and plasma exposure on the polymers' optical features, surface energy and adhesion properties for oxide layers, typically used for interference multilayer coatings, are shown.
NASA Astrophysics Data System (ADS)
Fan, Yue-Nong; Cheng, Yong-Zhi; Nie, Yan; Wang, Xian; Gong, Rong-Zhou
2013-06-01
We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.
The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer.
Oberacker, Lisa M; Davis, Shala E; Haff, G Gregory; Witmer, Chad A; Moir, Gavin L
2012-10-01
The purpose of this study was to compare the effects of resistance training performed on either a stable or unstable surface on performance tests in female soccer players. Nineteen National Collegiate Athletic Association Division II female soccer players were assigned to either an unstable training group (UST: 19.0 ± 0.47 years; 1.69 ± 6.4 m; 67.8 ± 7.7 kg) or a stable training group (ST: 19.6 ± 0.49 years; 1.64 ± 3.2 m; 62.7 ± 6.27 kg). Player positions were distributed evenly between the groups. Both the groups followed a 5-week periodized resistance training program designed to develop maximum muscular strength. The groups performed the same exercises during each workout, with the UST performing 2 of the exercises in each session on an unstable surface. Pretraining and posttraining measures of straight-line sprint speed, planned and reactive agility, aerobic capacity, and countermovement vertical jump (CMJ) were taken. Significant main effects for time were reported for straight-line sprint speed, planned agility, and reactive agility with both groups demonstrating improvements during the posttraining testing session. The ST demonstrated a significant increase in CMJ during the posttraining session (change in mean: 0.04 m) in contrast to the decline demonstrated by the UST (change in mean: -0.01 m). Performing resistance training exercises on an unstable surface confers no advantage over traditional resistance training exercises for improving the speed, agility, and aerobic capacity of female soccer players. Furthermore, the use of an unstable surface may inhibit the effects of resistance training on vertical jump height, an important variable in soccer performance.
Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr
2018-06-01
Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.
Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation
Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri
2005-01-01
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797
Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.
2009-01-01
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni
2011-01-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2011-02-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
Survival of spacecraft-associated microorganisms under simulated martian UV irradiation.
Newcombe, David A; Schuerger, Andrew C; Benardini, James N; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri
2005-12-01
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.
Burkhardt, Rino; Ruiz Magaz, Vanessa; Hämmerle, Christoph H F; Lang, Niklaus P
2016-04-01
The aim of this study was to evaluate the role of a connective tissue graft (CTG) or a collagen matrix (CM) interpositioned between flaps and non-shedding hard surfaces on wound stability. Sixty bone dehiscence defects were prepared in five Beagle dogs. Three treatments were performed in 12 sites per dog: (1) repositioned flaps were sutured onto instrumented dentin surfaces (control), (2) repositioning of flaps with an interpositioned CTG and (3) repositioning of flaps with the application of a CM. To allow postoperative healing with n = 5 for 1, 3, 7 and 14 days before evaluation, the sutures were removed, incision lines retraced and tensile forces applied to the flaps. The minimum magnitude of forces required to detach the flaps from the wound bed was recorded. After 1 week of healing, 6 N had to be applied to disrupt flaps from their wound bed in the CTG group. In the control group, a similar magnitude of resistance was achieved after 2 weeks (6.1 N). Flap resistance to tearing was highest in the CTG group (maximum 9.1 N) 2 weeks postoperatively. On the third postoperative day, the mean tearing forces of all groups differed significantly, displaying a 50% lower resistance to tearing in the CM compared to the CTG group. In comparison, flap resistance to tearing forces established earlier and in higher magnitude in sites with an interpositioned CTG than in flaps repositioned on dentin or CM. Application of a CTG, sutured to a non-shedding hard surface, significantly increased flap resistance to tearing when applying disrupting forces compared to controls. A less pronounced effect was achieved by interpositioning of a CM. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zenati, K; Touati, A; Bakour, S; Sahli, F; Rolain, J M
2016-01-01
Investigation of several outbreaks of multidrug-resistant Acinetobacter baumannii infection has demonstrated that contamination of the inanimate hospital environment could be implicated in the spread of these multidrug-resistant strains. To investigate the occurrence of carbapenem-resistant A. baumannii on inanimate surfaces and possible dissemination in the hospital environment in Algeria as a potential source of infection in humans. A. baumannii strains were isolated from the hospital environment and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility was determined using disc diffusion and E-test methods. Carbapenemase activity was detected using microbiological tests, including modified Hodge test, modified Carba NP test, and EDTA test. Carbapenem resistance determinants were studied by polymerase chain reaction (PCR) and sequencing. Clonal relatedness was determined using multi-locus sequence typing (MLST). A total of 67 A. baumannii isolates were obtained from 868 environmental samples and identified by MALDI-TOF MS. Among them, 61 isolates were resistant to imipenem with minimum inhibitory concentration >32 μg/mL and positive by the modified Hodge test and modified Carba NP test. In addition, the activity of carbapenemase was inhibited by EDTA in 32 strains. PCR and sequencing showed the presence of blaOXA-23 gene in 29 strains, and the blaNDM-1 gene in 32 isolates. MLST demonstrated the presence of five types of ST (ST19, ST2, ST85, ST98, and ST115). Our study demonstrated the dissemination of carbapenemase-producing A. baumannii strains recovered from inanimate surfaces in a hospital environment, surrounding patients, healthcare workers and visitors, in Algeria as a potential source for nosocomial infection. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability.
Boban, Mathew; Golovin, Kevin; Tobelmann, Brian; Gupte, Omkar; Mabry, Joseph M; Tuteja, Anish
2018-04-11
The utility of omniphobic surfaces stems from their ability to repel a multitude of liquids, possessing a broad range of surface tensions and polarities, by causing them to bead up and either roll or slide off. These surfaces may be self-cleaning, corrosion-resistant, heat-transfer enhancing, stain-resistant or resistant to mineral- or biofouling. The majority of reported omniphobic surfaces use texture, lubricants, and/or grafted monolayers to engender these repellent properties. Unfortunately, these approaches often produce surfaces with deficiencies in long-term stability, durability, scalability, or applicability to a wide range of substrates. To overcome these limitations, we have fabricated an all-solid, substrate-independent, smooth, omniphobic coating composed of a fluorinated polyurethane and fluorodecyl polyhedral oligomeric silsesquioxane. Liquids of varying surface tension, including water, hexadecane, ethanol, and silicone oil, exhibit low-contact-angle hysteresis (<15°) on these surfaces, allowing liquid droplets to slide off, leaving no residue. Moreover, we demonstrate that these robust surfaces retained their repellent properties more effectively than textured or lubricated omniphobic surfaces after being subjected to mechanical abrasion.
Corrosion control of cement-matrix and aluminum-matrix composites
NASA Astrophysics Data System (ADS)
Hou, Jiangyuan
Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the treatment, the surface was non-uniform due to rusting. Sand blasting also made the surface uniform, but is an expensive process, compared to the water immersion method. For cathodic protection of steel rebar reinforced concrete, mortar overlay containing carbon fibers and latex needed 11% less driving voltage to protect the rebar in concrete than plain mortar overlay. However, multiple titanium electrical contacts were necessary, whether the overlay contained carbon fibers or not. For the same overlay (containing carbon fibers and latex), admixtures in the concrete also made a significant difference on the effect of cathodic protection; concrete with carbon fibers and silica fume needed 18% less driving voltage than plain concrete and 28% less than concrete containing silica fume.
Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P
2015-11-25
We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.
Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces
Aurand, John F.
1999-01-01
An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.
NASA Astrophysics Data System (ADS)
Yasuhiro, Matsuda; Katsushi, Okuyama; Hiroko, Yamamoto; Hisanori, Komatsu; Masashi, Koka; Takahiro, Sato; Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano
2015-04-01
To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials ["MS coats F" (MSF)] and fluoride-free sealing materials ("hybrid coats 2" [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8-4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries.
BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.
Kobayashi, Kazuo; Iwano, Megumi
2012-07-01
Biofilms are surface-associated bacterial aggregates, in which bacteria are enveloped by polymeric substances known as the biofilm matrix. Bacillus subtilis biofilms display persistent resistance to liquid wetting and gas penetration, which probably explains the broad-spectrum resistance of the bacteria in these biofilms to antimicrobial agents. In this study, BslA (formerly YuaB) was identified as a major contributor to the surface repellency of B. subtilis biofilms. Disruption of bslA resulted in the loss of surface repellency and altered the biofilm surface microstructure. BslA localized to the biofilm matrix in an exopolysaccharide-dependent manner. Purified BslA exhibited amphiphilic properties and formed polymers in response to increases in the area of the air-water interface in vitro. Genetic and biochemical analyses showed that the self-polymerization activity of BslA was essential for its ability to localize to the biofilm matrix. Confocal laser scanning microscopy showed that BslA formed a layer on the biofilm surface. Taken together, we propose that BslA, standing for biofilm-surface layer protein, is responsible for the hydrophobic layer on the surface of biofilms. © 2012 Blackwell Publishing Ltd.
Vora, Hitesh D; Shanker Rajamure, Ravi; Dahotre, Sanket N; Ho, Yee-Hsien; Banerjee, Rajarshi; Dahotre, Narendra B
2014-09-01
A laser based surface nitriding process was adopted to further enhance the osseo-integration, corrosion resistance, and tribological properties of the commonly used bioimplant alloy, Ti-6Al-4V. Earlier preliminary osteoblast, electrochemical, and corrosive wear studies of laser nitrided titanium in simulated body fluid clearly revealed improvement of cell adhesion as well as enhancement in corrosion and wear resistance but mostly lacked the in-depth fundamental understanding behind these improvements. Therefore, a novel integrated experimental and theoretical approach were implemented to understand the physical phenomena behind the improvements and establish the property-structure-processing correlation of nitrided surface. The first principle and thermodynamic calculations were employed to understand the thermodynamic, electronic, and elastic properties of TiN for enthalpy of formation, Gibbs free energy, density of states, and elastic properties of TiN were investigated. Additionally, open circuit potential and cyclic potentio-dynamic polarization tests were carried out in simulated body fluid to evaluate the corrosion resistance that in turn linked with the experimentally measured and computationally predicted surface energies of TiN. From these results, it is concluded that the enhancement in the corrosion resistance after laser nitriding is mainly attributed to the presence of covalent bonding via hybridization among Ti (p) and N (d) orbitals. Furthermore, mechanical properties, such as, Poisson׳s ratio, stiffness, Pugh׳s ductility criteria, and Vicker׳s hardness, predicted from first principle calculations were also correlated to the increase in wear resistance of TiN. All the above factors together seem to have contributed to significant improvement in both wear and corrosion performance of nitride surface compared to the bare Ti-6Al-4V in physiological environment indicating its suitability for bioimplant applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Psakhie, S. G.; Meisner, S. N.; Lotkov, A. I.; Meisner, L. L.; Tverdokhlebova, A. V.
2014-07-01
This paper presents the study on changes in element and phase compositions in the near-surface layer and on surface topography of the NiTi specimens after the silicon ion-beam treatment. The effect of these parameters of the near-surface layer on corrosion properties in biochemical solutions and biocompatibility with mesenchymal stem cells of rat marrow is studied. Ion-beam surface modification of the specimens was performed by a DIANA-3 implanter (Tomsk, Russia), using single-ion-beam pulses under oil-free pumping and high vacuum (10-4 Pa) conditions in a high-dose ion implantation regime. The fluence made 2 × 1017 cm-2, at an average accelerating voltage of 60 kV, and pulse repetition frequency of 50 Hz. The silicon ion-beam treatment of specimen surfaces is shown to bring about a nearly twofold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ~3400 and ~6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed). It is shown that improvement of NiTi corrosion resistance after treatment by Si ions occurs mainly due to the formation of two-layer composite coating based on Ti oxides (outer layer) on the NiTi surface and adjacent inner layer of oxides, carbides, and silicides of the NiTi alloy components. Inner layer with high silicon concentration serves as a barrier layer preventing nickel penetration into biomedium. This, in our opinion, is the main reason why the NiTi alloy exhibits no cytotoxic properties after ion modification of its surface and leads to the biocompatibility improvement at the cellular level, respectively.
Strengthening of oxidation resistant materials for gas turbine applications
NASA Technical Reports Server (NTRS)
Platts, D. R.; Kirchner, H. P.; Gruver, R. M.
1972-01-01
Compressive surface layers were formed on hot-pressed silicon carbide and nitride. The objective of these treatments was to improve the impact resistance of these materials at 1590 K (2400 F). Quenching was used to form compressive surface layers on silicon carbide. The presence of the compressive stresses was demonstrated by slotted rod tests. Compressive stresses were retained at elevated temperatures. Improvements in impact resistance at 1590 K (2400 F) and flexural strength at room temperature were achieved using cylindrical rods 3.3 mm (0.13 in.) in diameter. Carburizing treatments were used to form the surface layers on silicon nitride. In a few cases using rectangular bars improvements in impact resistance at 1590 K (2400 F) were observed.
Spherical microglass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Veerabhadra Rao, P.; Buckley, D. H.
1984-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Gates, Thomas S.
2006-01-01
The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite.
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri
2017-12-01
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of ˜ 300-1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.
Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil
2018-06-14
Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, L.; Bareno, J.; Trask, S.
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Somerville, L.; Bareno, J.; Trask, S.; ...
2016-10-22
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Surface modification of AISI H13 tool steel by laser cladding with NiTi powder
NASA Astrophysics Data System (ADS)
Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.
2016-04-01
This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.
Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji
2013-01-16
Interfacial thermal transport via van der Waals interaction is quantitatively evaluated using an individual multi-walled carbon nanotube bonded on a platinum hot-film sensor. The thermal boundary resistance per unit contact area was obtained at the interface between the closed end or sidewall of the nanotube and platinum, gold, or a silicon dioxide surface. When taking into consideration the surface roughness, the thermal boundary resistance at the sidewall is found to coincide with that at the closed end. A new finding is that the thermal boundary resistance between a carbon nanotube and a solid surface is independent of the materials within the experimental errors, which is inconsistent with a traditional phonon mismatch model, which shows a clear material dependence of the thermal boundary resistance. Our data indicate the inapplicability of existing phonon models when weak van der Waals forces are dominant at the interfaces.
Protecting the surface of a light absorber in a photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shu; Lewis, Nathan S.
A photoanode includes a passivation layer on a light absorber. The passivation layer is more resistant to corrosion than the light absorber. The photoanode includes a surface modifying layer that is location on the passivation layer such that the passivation layer is between the light absorber and the surface modifying layer. The surface modifying layer reduces a resistance of the passivation layer to conduction of holes out of the passivation layer.
Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces
Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.
2011-01-01
We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481