Chantis, Athanasios N; Belashchenko, Kirill D; Tsymbal, Evgeny Y; van Schilfgaarde, Mark
2007-01-26
Fully relativistic first-principles calculations of the Fe(001) surface demonstrate that resonant surface (interface) states may produce sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single magnetic electrode. The effect is driven by the spin-orbit coupling. It shifts the resonant surface band via the Rashba effect when the magnetization direction changes. We find that spin-flip scattering at the interface is controlled not only by the strength of the spin-orbit coupling, but depends strongly on the intrinsic width of the resonant surface states.
Reactive Resonances in N+N2 Exchange Reaction
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Stallcop, James R.
2003-01-01
Rich reactive resonances are found in a 3D quantum dynamics study of the N + N2 exchange reaction using a recently developed ab initio potential energy surface. This surface is characterized by a feature in the interaction region called Lake Eyring , that is, two symmetric transition states with a shallow minimum between them. An L2 analysis of the quasibound states associated with the shallow minimum confirms that the quasibound states associated with oscillations in all three degrees of freedom in Lake Eyring are responsible for the reactive resonances in the state-to-state reaction probabilities. The quasibound states, mostly the bending motions, give rise to strong reasonance peaks, whereas other motions contribute to the bumps and shoulders in the resonance structure. The initial state reaction probability further proves that the bending motions are the dominating factors of the reaction probability and have longer life times than the stretching motions. This is the first observation of reactive resonances from a "Lake Eyring" feature in a potential energy surface.
Clean Os(0001) electronic surface states: A first-principle fully relativistic investigation
NASA Astrophysics Data System (ADS)
Urru, Andrea; Dal Corso, Andrea
2018-05-01
We analyze the electronic structure of the Os(0001) surface by means of first-principle calculations based on Fully Relativistic (FR) Density Functional Theory (DFT) and a Projector Augmented-Wave (PAW) approach. We investigate surface states and resonances analyzing their spin-orbit induced energy splitting and their spin polarization. The results are compared with previously studied surfaces Ir(111), Pt(111), and Au(111). We do not find any surface state in the gap similar to the L-gap of the (111) fcc surfaces, but find Rashba split resonances that cross the Fermi level and, as in the recently studied Ir(111) surface, have a characteristic downward dispersion. Moreover, for some selected surface states we study the spin polarization with respect to k∥, the wave-vector parallel to the surface. In some cases, such as the Rashba split resonances, the spin polarization shows a smooth behavior with slow rotations, in others the rotation is faster, due to mixing and anti-crossing of the states.
NASA Astrophysics Data System (ADS)
Tarasenko, S. V.; Shavrov, V. G.
2017-07-01
A pseudochiral mechanism of the formation of non-Tamm quasistationary surface polariton states, as well as surface polariton waves inside the light cone, has been proposed for an isolated interface between spatially uniform transparent dielectric media. The resonance excitation of these states by a quasimonochromatic plane wave incident from vacuum results in a sharp change in the group delay time of the reflected pulse. The effect is enhanced in the presence of an electromagnetic metasurface.
Zhong, Min; Li, Shuai; Duan, Hou-Jian; Hu, Liang-Bin; Yang, Mou; Wang, Rui-Qiang
2017-06-21
We investigate the thermoelectric effect on a topological insulator surface with particular interest in impurity-induced resonant states. To clarify the role of the resonant states, we calculate the dc and ac conductivities and the thermoelectric coefficients along the longitudinal direction within the full Born approximation. It is found that at low temperatures, the impurity resonant state with strong energy de-pendence can lead to a zero-energy peak in the dc conductivity, whose height is sensitively dependent on the strength of scattering potential, and even can reverse the sign of the thermopower, implying the switching from n- to p-type carriers. Also, we exhibit the thermoelectric signatures for the filling process of a magnetic band gap by the resonant state. We further study the impurity effect on the dynamic optical conductivity, and find that the resonant state also generates an optical conductivity peak at the absorption edge for the interband transition. These results provide new perspectives for understanding the doping effect on topological insulator materials.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra
2016-01-01
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428
Disorder enabled band structure engineering of a topological insulator surface
Xu, Yishuai; Chiu, Janet; Miao, Lin; ...
2017-02-03
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; ...
2016-10-14
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi 2Se 3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states canmore » emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. As a result, this work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yishuai; Chiu, Janet; Miao, Lin
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Spin polarized surface resonance bands in single layer Bi on Ge(1 1 1)
NASA Astrophysics Data System (ADS)
Bottegoni, F.; Calloni, A.; Bussetti, G.; Camera, A.; Zucchetti, C.; Finazzi, M.; Duò, L.; Ciccacci, F.
2016-05-01
The spin features of surface resonance bands in single layer Bi on Ge(1 1 1) are studied by means of spin- and angle-resolved photoemission spectroscopy and inverse photoemission spectroscopy. We characterize the occupied and empty surface states of Ge(1 1 1) and show that the deposition of one monolayer of Bi on Ge(1 1 1) leads to the appearance of spin-polarized surface resonance bands. In particular, the C 3v symmetry, which Bi adatoms adopt on Ge(1 1 1), allows for the presence of Rashba-like occupied and unoccupied electronic states around the \\overline{\\text{M}} point of the Bi surface Brillouin zone with a giant spin-orbit constant |{α\\text{R}}| =≤ft(1.4+/- 0.1\\right) eV · Å.
Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption.
de Graaf, S E; Faoro, L; Burnett, J; Adamyan, A A; Tzalenchuk, A Ya; Kubatkin, S E; Lindström, T; Danilov, A V
2018-03-20
Noise and decoherence due to spurious two-level systems located at material interfaces are long-standing issues for solid-state quantum devices. Efforts to mitigate the effects of two-level systems have been hampered by a lack of knowledge about their chemical and physical nature. Here, by combining dielectric loss, frequency noise and on-chip electron spin resonance measurements in superconducting resonators, we demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the charge-induced frequency noise in the resonators. These measurements provide experimental evidence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and highlights their role in generating charge noise in solid-state quantum devices.
Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.
Yang, Xueming; Zhang, Dong H
2008-08-01
[Reaction: see text]. The concept of transition state has played a crucial role in the field of chemical kinetics and reaction dynamics. Resonances in the transition state region are important in many chemical reactions at reaction energies near the thresholds. Detecting and characterizing isolated reaction resonances, however, have been a major challenge in both experiment and theory. In this Account, we review the most recent developments in the study of reaction resonances in the benchmark F + H 2 --> HF + H reaction. Crossed molecular beam scattering experiments on the F + H 2 reaction have been carried out recently using the high-resolution, highly sensitive H-atom Rydberg tagging technique with HF rovibrational states almost fully resolved. Pronounced forward scattering for the HF (nu' = 2) product has been observed at the collision energy of 0.52 kcal/mol in the F + H 2 (j = 0) reaction. Quantum dynamical calculations based on two new potential energy surfaces, the Xu-Xie-Zhang (XXZ) surface and the Fu-Xu-Zhang (FXZ) surface, show that the observed forward scattering of HF (nu' = 2) in the F + H 2 reaction is caused by two Feshbach resonances (the ground resonance and first excited resonance). More interestingly, the pronounced forward scattering of HF (nu' = 2) at 0.52 kcal/mol is enhanced considerably by the constructive interference between the two resonances. In order to probe the resonance potential more accurately, the isotope substituted F + HD --> HF + D reaction has been studied using the D-atom Rydberg tagging technique. A remarkable and fast changing dynamical picture has been mapped out in the collision energy range of 0.3-1.2 kcal/mol for this reaction. Quantum dynamical calculations based on the XXZ surface suggest that the ground resonance on this potential is too high in comparison with the experimental results of the F + HD reaction. However, quantum scattering calculations on the FXZ surface can reproduce nearly quantitatively the resonance picture of the F + HD reaction observed in the experiment. It is clear that the dynamics of the F + HD reaction below the threshold was dominated by the ground resonance state. Furthermore, the forward scattering HF (nu' = 3) channel from the F + H 2 ( j = 0) reaction was investigated and was attributed mainly to a slow-down mechanism over the centrifugal exit barrier, with small contributions from a shape resonance mechanism in a narrow collision energy range. A striking effect of the reagent rotational excitation on resonance was also observed in F + H 2 ( j = 1), in comparison with F + H 2 ( j = 0). From these concerted experimental and theoretical studies, a clear physical picture of the reaction resonances in this benchmark reaction has emerged, providing a textbook example of dynamical resonances in elementary chemical reactions.
Resonances and thresholds in the Rydberg-level population of multiply charged ions at solid surfaces
NASA Astrophysics Data System (ADS)
Nedeljković, Lj. D.; Nedeljković, N. N.
1998-12-01
We present a theoretical study of resonances and thresholds, two specific features of Rydberg-state formation of multiply charged ions (Z=6, 7, and 8) escaping a solid surface at intermediate velocities (v~1 a.u.) in the normal emergence geometry. The resonances are recognized in pronounced maxima of the experimentally observed population curves of Ar VIII ions for resonant values of the principal quantum number n=nres=11 and for the angular momentum quantum numbers l=1 and 2. Absence of optical signals in detectors of beam-foil experiments for n>nthr of S VI and Cl VII ions (with l=0, 1, and 2) and Ar VIII for l=0 is interpreted as a threshold phenomenon. An interplay between resonance and threshold effects is established within the framework of quantum dynamics of the low angular momentum Rydberg-state formation, based on a generalization of Demkov-Ostrovskii's charge-exchange model. In the model proposed, the Ar VIII resonances appear as a consequence of electron tunneling in the very vicinity of the ion-surface potential barrier top and at some critical ion-surface distances Rc. The observed thresholds are explained by means of a decay mechanism of ionic Rydberg states formed dominantly above the Fermi level EF of a solid conduction band. The theoretically predicted resonant and threshold values, nres and nthr of the principal quantum number n, as well as the obtained population probabilities Pnl=Pnl(v,Z), are in sufficiently good agreement with all available experimental findings.
Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface
NASA Astrophysics Data System (ADS)
Sun, Zhixiang; Maldonado, Ana; Paz, Wendel S.; Inosov, Dmytro S.; Schnyder, Andreas P.; Palacios, J. J.; Shitsevalova, Natalya Yu.; Filipov, Vladimir B.; Wahl, Peter
2018-06-01
The rise of topology in condensed-matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been proposed that a band inversion between 5 d and 4 f bands gives rise to topologically protected surface states. However, unambiguous proof of the existence and topological nature of these surface states is still missing, and its low-energy electronic structure is still not fully established. Here we present a study of samarium hexaboride by ultralow-temperature scanning tunneling microscopy and spectroscopy. We obtain clear atomically resolved topographic images of the sample surface. Our tunneling spectra reveal signatures of a hybridization gap with a size of about 8 meV and with a reduction of the differential conductance inside the gap by almost half, and surprisingly, several strong resonances below the Fermi level. The spatial variations of the energy of the resonances point toward a microscopic variation of the electronic states by the different surface terminations. High-resolution tunneling spectra acquired at 100 mK reveal a splitting of the Kondo resonance, possibly due to the crystal electric field.
Sub-molecular modulation of a 4f driven Kondo resonance by surface-induced asymmetry
NASA Astrophysics Data System (ADS)
Warner, Ben; El Hallak, Fadi; Atodiresei, Nicolae; Seibt, Philipp; Prüser, Henning; Caciuc, Vasile; Waters, Michael; Fisher, Andrew J.; Blügel, Stefan; van Slageren, Joris; Hirjibehedin, Cyrus F.
2016-09-01
Coupling between a magnetic impurity and an external bath can give rise to many-body quantum phenomena, including Kondo and Hund's impurity states in metals, and Yu-Shiba-Rusinov states in superconductors. While advances have been made in probing the magnetic properties of d-shell impurities on surfaces, the confinement of f orbitals makes them difficult to access directly. Here we show that a 4f driven Kondo resonance can be modulated spatially by asymmetric coupling between a metallic surface and a molecule containing a 4f-like moment. Strong hybridization of dysprosium double-decker phthalocyanine with Cu(001) induces Kondo screening of the central magnetic moment. Misalignment between the symmetry axes of the molecule and the surface induces asymmetry in the molecule's electronic structure, spatially mediating electronic access to the magnetic moment through the Kondo resonance. This work demonstrates the important role that molecular ligands have in mediating electronic and magnetic coupling and in accessing many-body quantum states.
Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.
2010-01-01
We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619
NASA Astrophysics Data System (ADS)
Klingel, S.; Oesterschulze, E.
2017-08-01
The apparent contact angle is frequently used as an indicator of the wetting state of a surface in contact with a liquid. However, the apparent contact angle is subject to hysteresis that depends furthermore strongly on both the material properties and the roughness and structure of the sample surface. In this work, we show that integrated microresonators can be exploited to determine the wetting state by measuring both the frequency shift caused by the hydrodynamic mass of the liquid and the change in the quality factor as a result of damping. For this, we integrated electrically driven hybrid bridge resonators (HBRs) into a periodically structured surface intended for wetting experiments. We could clearly differentiate between the Wenzel state and the Cassie-Baxter state because the resonant frequency and quality factor of the HBR changed by over 35% and 40%, respectively. This offers the capability to unambiguously distinguish between the different wetting states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassellino, A.; Romanenko, A.; Trenikhina, Y.
We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state ofmore » the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.« less
NASA Astrophysics Data System (ADS)
Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.
2017-09-01
We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.
Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens
USDA-ARS?s Scientific Manuscript database
Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...
NASA Astrophysics Data System (ADS)
Weichman, Marissa L.; Devine, Jessalyn A.; Babin, Mark C.; Li, Jun; Guo, Lifen; Ma, Jianyi; Guo, Hua; Neumark, Daniel M.
2017-10-01
The transition state governs how chemical bonds form and cleave during a chemical reaction and its direct characterization is a long-standing challenge in physical chemistry. Transition state spectroscopy experiments based on negative-ion photodetachment provide a direct probe of the vibrational structure and metastable resonances that are characteristic of the reactive surface. Dynamical resonances are extremely sensitive to the topography of the reactive surface and provide an exceptional point of comparison with theory. Here we study the seven-atom F + CH3OH → HF + CH3O reaction using slow photoelectron velocity-map imaging spectroscopy of cryocooled CH3OHF- anions. These measurements reveal spectral features associated with a manifold of vibrational Feshbach resonances and bound states supported by the post-transition state potential well. Quantum dynamical calculations yield excellent agreement with the experimental results, allow the assignment of spectral structure and demonstrate that the key dynamics of complex bimolecular reactions can be captured with a relatively simple theoretical framework.
Weichman, Marissa L; DeVine, Jessalyn A; Babin, Mark C; Li, Jun; Guo, Lifen; Ma, Jianyi; Guo, Hua; Neumark, Daniel M
2017-10-01
The transition state governs how chemical bonds form and cleave during a chemical reaction and its direct characterization is a long-standing challenge in physical chemistry. Transition state spectroscopy experiments based on negative-ion photodetachment provide a direct probe of the vibrational structure and metastable resonances that are characteristic of the reactive surface. Dynamical resonances are extremely sensitive to the topography of the reactive surface and provide an exceptional point of comparison with theory. Here we study the seven-atom F + CH 3 OH → HF + CH 3 O reaction using slow photoelectron velocity-map imaging spectroscopy of cryocooled CH 3 OHF - anions. These measurements reveal spectral features associated with a manifold of vibrational Feshbach resonances and bound states supported by the post-transition state potential well. Quantum dynamical calculations yield excellent agreement with the experimental results, allow the assignment of spectral structure and demonstrate that the key dynamics of complex bimolecular reactions can be captured with a relatively simple theoretical framework.
Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study
USDA-ARS?s Scientific Manuscript database
We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...
NASA Astrophysics Data System (ADS)
Ehlen, N.; Sanna, A.; Senkovskiy, B. V.; Petaccia, L.; Fedorov, A. V.; Profeta, G.; Grüneis, A.
2018-01-01
We report a Cs-doping-induced band inversion and the direct observation of a surface resonance state with an elliptical Fermi surface in black phosphorus (BP) using angle-resolved photoemission spectroscopy. By selectively inducing a higher electron concentration (1.7 ×1014cm-2 ) in the topmost layer, the changes in the Coulomb potential are sufficiently large to cause surface band inversion between the parabolic valence band of BP and a parabolic surface state around the Γ point of the BP Brillouin zone. Tight-binding calculations reveal that band gap openings at the crossing points in the two high-symmetry directions of the Brillouin zone require out-of-plane hopping and breaking of the glide mirror symmetry. Ab initio calculations are in very good agreement with the experiment if a stacking fault on the BP surface is taken into account. The demonstrated level of control over the band structure suggests the potential application of few-layer phosphorene in topological field-effect transistors.
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
2017-10-13
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Katyayani; Genov, Dentcho A.
Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption) that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metalmore » concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.« less
Zhang, Degang
2009-10-30
The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.
Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R
2016-09-28
A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.
Level crossings in the ionization of H(2) Rydberg molecules at a metal surface.
McCormack, E A; Ford, M S; Softley, T P
2010-10-28
The ionization of H(2) Rydberg states at a metal surface is investigated using a molecular beam incident at grazing incidence on a gold surface. The H(2) molecules, excited by stepwise two-color laser excitation, are selected in each of the accessible Stark eigenstates of the N(+) = 2, n = 17 Rydberg manifold in turn and the ionization at the surface is characterized by applying a field to extract the ions formed. Profiles of extracted ion signal versus applied field show resonances that can be simulated by assuming an enhancement of surface ionization at fields corresponding to energy-level crossings between the populated N(+) = 2 manifold and the near-degenerate N(+) = 0 Stark manifolds. It is concluded that the slow (microsecond time scale) rotation-electronic energy transfer to N(+) = 0 states occurring at these crossings takes place in the time interval following application of the field ramp when the molecule is still distant from, and unperturbed by, the surface. However, the energy levels are strongly perturbed by image-dipole interactions as the molecule approaches close to the surface, leading to additional energy-level crossings. Adiabatic behavior at such crossings affects the intensity of the observed resonances in the surface ionization signal but not their field positions. Resonances are also observed in the surface ionization profiles at fields above the field-ionization threshold; some of these show asymmetric "Fano-type" line shapes due to quantum interference in the nonradiative coupling to degenerate bound and continuum states.
NASA Astrophysics Data System (ADS)
Hildebrandt, Peter
1991-05-01
The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.
Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Cranswick, E.; Meremonte, M.E.; Odum, J.K.
2000-01-01
Resonances observed in earthquake seismograms recorded in Seattle, Washington, the central United States and Sherman Oaks, California, are correlated with each site's respective near-surface seismic velocity profile and reflectivity determined from shallow seismic-reflection/refraction surveys. In all of these cases the resonance accounts for the highest amplitude shaking at the site above 1 Hz. These results show that imaging near-surface reflections from the ground surface can locate impedance structures that are important contributors to earthquake ground shaking. A high-amplitude S-wave reflection, recorded 250-m northeast and 300-m east of the Seattle Kingdome earthquake-recording station, with a two-way travel time of about 0.23 to 0.27 sec (about 18- to 22-m depth) marks the boundary between overlying alluvium (VS < 180 m/sec) and a higher velocity material (VS about 400 m/sec). This reflector probably causes a strong 2-Hz resonance that is observed in the earthquake data for the site near the Kingdome. In the central United States, S-wave reflections from a high-impedance boundary (an S-wave velocity increase from about 200 m/sec to 2000 m/sec) at about 40-m depth corresponds to a strong fundamental resonance at about 1.5 Hz. In Sherman Oaks, strong resonances at about 1.0 and 4 Hz are consistently observed on earthquake seismograms. A strong S-wave reflector at about 40-m depth may cause the 1.0 Hz resonance. The 4.0-Hz resonance is possibly explained by constructive interference between the first overtone of the 1.0-Hz resonance and a 3.25- to 3.9-Hz resonance calculated from an areally consistent impedance boundary at about 10-m depth as determined by S-wave refraction data.
Handshake electron transfer from hydrogen Rydberg atoms incident at a series of metallic thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbard, J. A.; Softley, T. P.
2016-06-21
Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the atom. We show that “handshake” electronmore » transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given film thickness.« less
Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range
2013-01-01
We report an adjustable magnetic resonance frequency from 1.45 to 2.54 GHz for NiFe2O4 nanoparticles which were prepared by a sol–gel process. X-ray diffraction and scanning electron microscopy results indicate that the samples are polycrystalline nanoparticles, and the size of the particles increases obviously with the thermal treatment temperature. The consequence of the surface composition suggests that the oxygen defects are present in the nanoparticle surface, and this surface magnetic state can show a strong surface anisotropy. With decreasing size of the particle, the surface magnetic effect is predominant, resulting in an increase of resonance frequency for NiFe2O4 nanoparticles. This finding provides a new route for NiFe2O4 materials that can be used in the gigahertz range. PMID:24083340
Ultrafast dynamics of an unoccupied surface resonance state in B i2T e2Se
NASA Astrophysics Data System (ADS)
Munisa, Nurmamat; Krasovskii, E. E.; Ishida, Y.; Sumida, K.; Chen, Jiahua; Yoshikawa, T.; Chulkov, E. V.; Kokh, K. A.; Tereshchenko, O. E.; Shin, S.; Kimura, Akio
2018-03-01
Electronic structure and electron dynamics in the ternary topological insulator B i2T e2Se are studied with time- and angle-resolved photoemission spectroscopy using optical pumping. An unoccupied surface resonance split off from the bulk conduction band previously indirectly observed in scanning tunneling measurements is spectroscopically identified. Furthermore, an unoccupied topological surface state (TSS) is found, which is serendipitously located at about 1.5 eV above the occupied TSS, thereby facilitating direct optical transitions between the two surface states at ℏ ω =1.5 eV in an n -type topological insulator. An appreciable nonequilibrium population of the bottom of the bulk conduction band is observed for longer than 15 ps after the pump pulse. This leads to a long recovery time of the lower TSS, which is constantly populated by the electrons coming from the bulk conduction band. Our results demonstrate B i2T e2Se to be an ideal platform for designing future optoelectronic devices based on topological insulators.
NASA Astrophysics Data System (ADS)
Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.
2016-06-01
We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.
Magnetoresistance of a nanostep junction based on topological insulators
NASA Astrophysics Data System (ADS)
Hu, Wei; Hong, Jin-Bin; Zhai, Feng
2018-06-01
We investigate ballistic transport of helical electrons in a three-dimensional topological insulator traversing a nanostep junction. We find that a magnetic field perpendicular to its side surface shrinks the phase space for transmission, leading to magnetoresistance for the Fermi energy close to the Dirac point of the top surface. We also find transmission resonances and suppression of the Fano factor due to Landau-level-related quasibound states. The transmission blockade in the off-resonance case can result in a huge magnetoresistance for Fermi energy higher than the Dirac point of the side surface.
Observation of Schumann Resonances in the Earth's Ionosphere
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry
2011-01-01
The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.
Ab initio study of the electron-phonon coupling at the Cr(001) surface
NASA Astrophysics Data System (ADS)
Peters, L.; Rudenko, A. N.; Katsnelson, M. I.
2018-04-01
It is experimentally well established that the Cr(001) surface exhibits a sharp resonance around the Fermi level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle dz2 surface state renormalized by electron-phonon coupling or the orbital Kondo effect involving the degenerate dx z/ dy z states. In this paper we examine the electron-phonon coupling of the Cr(001) surface by means of ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2 surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement factors are not in agreement with the experimental data even if we use realistic values for the temperature range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally an electron-phonon mass-enhancement factor of 0.70 ±0.10 is obtained, which is not in agreement with our calculated values of 0.19 and 0.16. Our findings suggest that the experimentally observed resonance at the Cr(001) surface is not due to electron-phonon effects but due to electron-electron correlation effects.
Why surface chemistry matters for QD–QD resonance energy transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Jacob B.; Alam, Rabeka; Kamat, Prashant V.
Resonance energy transfer (RET) has been shown to occur in films of semiconductor quantum dots (QDs) with variation in QD composition and size. When coupled with charge carrier transfer, RET could provide a complementary strategy for light harvesting in QD based solid state photovoltaic devices. Due to a direct dependence on the optical properties of the donor and acceptor, QD surface chemistry plays a drastic role in determining the efficiency of RET. Here, the impact of QD surface chemistry on RET in QD films was investigated using a pair of different sized CdSe QDs spin-cast onto a glass substrate. Themore » effects of QD surface passivation on RET were studied by removing surface ligands through QD washing and adding an insulating ZnS shell. In addition, QD films were subjected to solid state ligand exchanges with thiolated ligands in order to mimic a layer-by-layer deposition method commonly used in the construction of QD photovoltaics. These solid state ligand exchanges exhibit drastic quenching of RET in the films. As a result, these experiments highlight the importance of understanding surface chemistry when designing photovoltaics that utilize RET.« less
Why surface chemistry matters for QD–QD resonance energy transfer
Hoffman, Jacob B.; Alam, Rabeka; Kamat, Prashant V.
2017-01-12
Resonance energy transfer (RET) has been shown to occur in films of semiconductor quantum dots (QDs) with variation in QD composition and size. When coupled with charge carrier transfer, RET could provide a complementary strategy for light harvesting in QD based solid state photovoltaic devices. Due to a direct dependence on the optical properties of the donor and acceptor, QD surface chemistry plays a drastic role in determining the efficiency of RET. Here, the impact of QD surface chemistry on RET in QD films was investigated using a pair of different sized CdSe QDs spin-cast onto a glass substrate. Themore » effects of QD surface passivation on RET were studied by removing surface ligands through QD washing and adding an insulating ZnS shell. In addition, QD films were subjected to solid state ligand exchanges with thiolated ligands in order to mimic a layer-by-layer deposition method commonly used in the construction of QD photovoltaics. These solid state ligand exchanges exhibit drastic quenching of RET in the films. As a result, these experiments highlight the importance of understanding surface chemistry when designing photovoltaics that utilize RET.« less
Importance of considering helium excited states in He+ scattering by an aluminum surface
NASA Astrophysics Data System (ADS)
Iglesias-García, A.; García, Evelina A.; Goldberg, E. C.
2014-11-01
The He+/Al system is a very interesting projectile-surface combination which was thought initially as an example of a pure Auger neutralization mechanism. Then, because of the measured reionization explained by the antibonding interaction of the projectile state with the core target states, the resonant charge exchange with the band states was considered as another important contribution to the neutralization. Nevertheless, by only considering the neutralization to the ground state of helium, the measured ion survival probability is still overestimated. On the other hand, measurements of electron emission from an Al surface bombarded by He positive ions suggested the possibility of occupied excited states of helium due to the ion-surface collision. In this work, we also include the excited states of He within the time-dependent scattering process in which both neutralization mechanisms, resonant and Auger, are simultaneously contemplated. Our starting point is a multiorbital Anderson Hamiltonian projected over the selected space of ground and excited atomic configurations. An extra term related to the Auger mechanism is added to this Hamiltonian. A difference with previous works is that this approach includes the electron spin and, therefore, the spin fluctuation statistics in the charge-exchange process is correctly taken into account. We find a notable improvement in the agreement with the experiments and also that the interference between both mechanisms is not dramatic.
Round, A N; Yan, B; Dang, S; Estephan, R; Stark, R E; Batteas, J D
2000-11-01
Atomic force microscopy and solid-state nuclear magnetic resonance have been used to investigate the effect of water absorption on the nanoscale elastic properties of the biopolyester, cutin, isolated from tomato fruit cuticle. Changes in the humidity and temperature at which fruits are grown or stored can affect the plant surface (cuticle) and modify its susceptibility to pathogenic attack by altering the cuticle's rheological properties. In this work, atomic force microscopy measurements of the surface mechanical properties of isolated plant cutin have been made as a first step to probing the impact of water uptake from the environment on surface flexibility. A dramatic decrease in surface elastic modulus (from approximately 32 to approximately 6 MPa) accompanies increases in water content as small as 2 wt %. Complementary solid-state nuclear magnetic resonance measurements reveal enhanced local mobility of the acyl chain segments with increasing water content, even at molecular sites remote from the covalent cross-links that are likely to play a crucial role in cutin's elastic properties.
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less
Fundamentals of metasurface lasers based on resonant dark states
NASA Astrophysics Data System (ADS)
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas; Soukoulis, Costas M.
2017-10-01
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. Here, we give a detailed discussion of the key functionality and benefits of this design, such as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. We examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.
Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces
NASA Astrophysics Data System (ADS)
Peters, L.; Jacob, D.; Karolak, M.; Lichtenstein, A. I.; Katsnelson, M. I.
2017-12-01
In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate dx z/dy z states. Despite several experimental and theoretical investigations, the origin is still under debate. In this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely, the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.
Surface Participation Effects in Titanium Nitride and Niobium Resonators
NASA Astrophysics Data System (ADS)
Dove, Allison; Kreikebaum, John Mark; Livingston, William; Delva, Remy; Qiu, Yanjie; Lolowang, Reinhard; Ramasesh, Vinay; O'Brien, Kevin; Siddiqi, Irfan
Improving the coherence time of superconducting qubits requires a precise understanding of the location and density of surface defects. Superconducting microwave resonators are commonly used for quantum state readout and are a versatile testbed to systematically characterize materials properties as a function of device geometry and fabrication method. We report on sputter deposited titanium nitride and niobium on silicon coplanar waveguide resonators patterned using reactive ion etches to define the device geometry. We discuss the impact of different growth conditions (temperature and electrical bias) and processing techniques on the internal quality factor (Q) of these devices. In particular, to investigate the effect of surface participation, we use a Bosch process to etch many-micron-deep trenches in the silicon substrate and quantify the impact of etch depth and profile on the internal Q. This research was supported by the ARO.
Wang, Shinn-Fwu
2009-01-01
A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.
Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji
2008-06-23
We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.
Active Radiative Thermal Switching with Graphene Plasmon Resonators.
Ilic, Ognjen; Thomas, Nathan H; Christensen, Thomas; Sherrott, Michelle C; Soljačić, Marin; Minnich, Austin J; Miller, Owen D; Atwater, Harry A
2018-03-27
We theoretically demonstrate a near-field radiative thermal switch based on thermally excited surface plasmons in graphene resonators. The high tunability of graphene enables substantial modulation of near-field radiative heat transfer, which, when combined with the use of resonant structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved heat conductance contrast between "ON" and "OFF" switching states and that a >10× higher modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative thermal switch. Furthermore, we derive shape-agnostic analytical approximations for the resonant heat transfer that provide general scaling laws and allow for direct comparison between different resonator geometries dominated by a single mode. The presented scheme is relevant for active thermal management and energy harvesting as well as probing excited-state dynamics at the nanoscale.
Fundamentals of metasurface lasers based on resonant dark states
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas; ...
2017-10-30
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, suchmore » as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.« less
NASA Technical Reports Server (NTRS)
Zhao, Meishan; Mladenovic, Mirjana; Truhlar, Donald G.; Schwenke, David W.; Sharafeddin, Omar
1989-01-01
Converged quantum mechanical calculations of scattering matrices and transition probabilities are reported for the reaction of H with H2 with total angular momentum 0, 1, and 4 as functions of total energy in the range 0.85-1.15 eV on an accurate potential energy surface. The resonance structure is illustrated with Argand diagrams. State-to-state reactive collision delay times and lifetimes are presented. For J = 0, 1, and 4, the lowest-energy H3 resonance is at total energies of 0.983, 0.985, and 1.01 eV, respectively, with lifetimes of about 16-17 fs. For J = 1 and 4 there is a higher-energy resonance at 1.10-1.11 eV. For J = 1 the lifetime is about 4 fs and for J = 4 it is about 1 fs.
Adiram-Filiba, Nurit; Schremer, Avital; Ohaion, Eli; Nadav-Tsubery, Merav; Lublin-Tennenbaum, Tammi; Keinan-Adamsky, Keren; Goobes, Gil
2017-05-31
Deriving the conformation of adsorbed proteins is important in the assessment of their functional activity when immobilized. This has particularly important bearings on the design of contemporary and new encapsulated enzyme-based drugs, biosensors, and other bioanalytical devices. Solid-state nuclear magnetic resonance (NMR) measurements can expand our molecular view of proteins in this state and of the molecular interactions governing protein immobilization on popular biocompatible surfaces such as silica. Here, the authors study the immobilization of ubiquitin on the mesoporous silica MCM41 by NMR and other techniques. Protein molecules are shown to bind efficiently at pH 5 through electrostatic interactions to individual MCM41 particles, causing their agglutination. The strong attraction of ubiquitin to MCM41 surface is given molecular context through evidence of proximity of basic, carbonyl and polar groups on the protein to groups on the silica surface using NMR measurements. The immobilized protein exhibits broad peaks in two-dimensional 13 C dipolar-assisted rotational resonance spectra, an indication of structural multiplicity. At the same time, cross-peaks related to Tyr and Phe sidechains are missing due to motional averaging. Overall, the favorable adsorption of ubiquitin to MCM41 is accompanied by conformational heterogeneity and by a major loss of motional degrees of freedom as inferred from the marked entropy decrease. Nevertheless, local motions of the aromatic rings are retained in the immobilized state.
NASA Astrophysics Data System (ADS)
Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.
2018-05-01
Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.
Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann
2016-03-10
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Optical absorption and oxygen passivation of surface states in III-nitride photonic devices
NASA Astrophysics Data System (ADS)
Rousseau, Ian; Callsen, Gordon; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas
2018-03-01
III-nitride surface states are expected to impact high surface-to-volume ratio devices, such as nano- and micro-wire light-emitting diodes, transistors, and photonic integrated circuits. In this work, reversible photoinduced oxygen desorption from III-nitride microdisk resonator surfaces is shown to increase optical attenuation of whispering gallery modes by 100 cm-1 at λ = 450 nm. Comparison of photoinduced oxygen desorption in unintentionally and n+-doped microdisks suggests that the spectral changes originate from the unpinning of the surface Fermi level, likely taking place at etched nonpolar III-nitride sidewalls. An oxygen-rich surface prepared by thermal annealing results in a broadband Q improvement to state-of-the-art values exceeding 1 × 104 at 2.6 eV. Such findings emphasize the importance of optically active surface states and their passivation for future nanoscale III-nitride optoelectronic and photonic devices.
Going beyond the second virial coefficient in the hadron resonance gas model
NASA Astrophysics Data System (ADS)
Bugaev, K. A.; Sagun, V. V.; Ivanytskyi, A. I.; Yakimenko, I. P.; Nikonov, E. G.; Taranenko, A. V.; Zinovjev, G. M.
2018-02-01
We develop a novel formulation of the hadron resonance gas model which, besides a hard-core repulsion, explicitly accounts for the surface tension induced by the interaction between the particles. Such an equation of state allows us to go beyond the Van der Waals approximation for any number of different hard-core radii. A comparison with the Carnahan-Starling equation of state shows that the new model is valid for packing fractions 0.2-0.22, while the usual Van der Waals model is inapplicable at packing fractions above 0.1-0.11. Moreover, it is shown that the equation of state with induced surface tension is softer than the one of hard spheres and remains causal at higher particle densities. The great advantage of our model is that there are only two equations to be solved and neither their number nor their form depend on the values of the hard-core radii used for different hadronic resonances. Such an advantage leads to a significant mathematical simplification compared to other versions of truly multi-component hadron resonance gas models. Using this equation of state we obtain a high-quality fit of the ALICE hadron multiplicities measured at the center-of-mass energy 2.76 TeV per nucleon and we find that the dependence of χ2 / ndf on the temperature has a single global minimum in the traditional hadron resonance gas model with the multi-component hard-core repulsion. Also we find two local minima of χ2 / ndf in the model in which the proper volume of each hadron is proportional to its mass. However, it is shown that in the latter model a second local minimum located at higher temperatures always appears far above the limit of its applicability.
NASA Astrophysics Data System (ADS)
Regeta, K.; Allan, M.
2015-05-01
Detailed experimental information on the motion of a nuclear packet on a complex (resonant) anion potential surface is obtained by measuring 2-dimensional (2D) electron energy loss spectra. The cross section is plotted as a function of incident electron energy, which determines which resonant anion state is populated, i.e., along which normal coordinate the wave packet is launched, and of the electron energy loss, which reveals into which final states each specific resonant state decays. The 2D spectra are presented for acrylonitrile and methacrylonitrile, at the incident energy range 0.095-1.0 eV, where the incoming electron is temporarily captured in the lowest π∗ orbital. The 2D spectra reveal selectivity patterns with respect to which vibrations are excited in the attachment and de-excited in the detachment. Further insight is gained by recording 1D spectra measured along horizontal, vertical, and diagonal cuts of the 2D spectrum. The methyl group in methacrylonitrile increases the resonance width 7 times. This converts the sharp resonances of acrylonitrile into boomerang structures but preserves the essence of the selectivity patterns. Selectivity of vibrational excitation by higher-lying shape resonances up to 8 eV is also reported.
Martirez, John Mark P.; Carter, Emily A.
2017-01-01
Despite more than a century of advances in catalyst and production plant design, the Haber-Bosch process for industrial ammonia (NH3) synthesis still requires energy-intensive high temperatures and pressures. We propose taking advantage of sunlight conversion into surface plasmon resonances in Au nanoparticles to enhance the rate of the N2 dissociation reaction, which is the bottleneck in NH3 production. We predict that this can be achieved through Mo doping of the Au surface based on embedded multireference correlated wave function calculations. The Au component serves as a light-harvesting antenna funneling energy onto the Mo active site, whereby excited-state channels (requiring 1.4 to 1.45 eV, near-infrared–to–visible plasmon resonances) may be accessed. This effectively lowers the energy barriers to 0.44 to 0.77 eV/N2 (43 to 74 kJ/mol N2) from 3.5 eV/N2 (335 kJ/mol N2) in the ground state. The overall process requires three successive surface excitation events, which could be facilitated by amplified resonance energy transfer due to plasmon local field enhancement. PMID:29291247
Active tuning of surface phonon polariton resonances via carrier photoinjection
NASA Astrophysics Data System (ADS)
Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.
2018-01-01
Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (<50 ps) recovery of the resonance in 4H-SiC. This work demonstrates the potential for this method and opens a path towards actively tuned nanophotonic devices, such as modulators and beacons, in the infrared, and identifies important implications of coupling between electronic and phononic excitations.
NASA Astrophysics Data System (ADS)
Song, Shichao; Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Zhang, Zuojun; Gao, Ping; Luo, Xiangang
2018-04-01
Tunable multiband polarization conversion and manipulation are achieved by introducing vanadium dioxide (VO2) into a planar spiral asymmetric chiral metamaterial. Numerical simulations demonstrate that when VO2 is in the insulating state, circularly polarized electromagnetic waves are emitted at two distinct resonant frequencies. When VO2 is in the metallic state, the number of resonant frequencies changes from two to four. In addition, the initial left-handed and right-handed circularly polarized transmitted waves correspondingly transform into right and left ones. Moreover, the surface current distributions are studied in order to investigate the transformation behaviors of both the insulating and metallic states.
Kim, Ji-Wan; Kovalenko, Oleksandr; Liu, Yu; Bigot, Jean-Yves
2016-12-27
We report the anharmonic angstrom dynamics of self-assembled Au nanoparticles (Au:NPs) away from a nickel surface on top of which they are coupled by their near-field interaction. The deformation and the oscillatory excursion away from the surface are induced by picosecond acoustic pulses and probed at the surface plasmon resonance with femtosecond laser pulses. The overall dynamics are due to an efficient transfer of translational momentum from the Ni surface to the Au:NPs, therefore avoiding usual thermal effects and energy redistribution among the electronic states. Two modes are clearly revealed by the oscillatory shift of the Au:NPs surface plasmon resonance-the quadrupole deformation mode due to the transient ellipsoid shape and the excursion mode when the Au:NPs bounce away from the surface. We find that, contrary to the quadrupole mode, the excursion mode is sensitive to the distance between Au:NPs and Ni. Importantly, the excursion dynamics display a nonsinusoidal motion that cannot be explained by a standard harmonic potential model. A detailed modeling of the dynamics using a Hamaker-type Lennard-Jones potential between two media is performed, showing that each Au:NPs coherently evolves in a nearly one-dimensional anharmonic potential with a total excursion of ∼1 Å. This excursion induces a shift of the surface plasmon resonance detectable because of the strong near-field interaction. This general method of observing the spatiotemporal dynamics with angstrom and picosecond resolutions can be directly transposed to many nanostructures or biosystems to reveal the interaction and contact mechanism with their surrounding medium while remaining in their fundamental electronic states.
Resonant photoemission spectroscopic studies of SnO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Chauhan, R. S.; Panchal, Gyanendra; Singh, C. P.; Dar, Tanveer A.; Phase, D. M.; Choudhary, R. J.
2017-09-01
We report the structural and electronic properties of single phase, polycrystalline rutile tetragonal SnO2 thin film grown on Si (100) substrate by pulsed laser deposition technique. X-ray photoelectron and resonant photoemission spectroscopic (RPES) studies divulge that Sn is present in 4+ (˜91%) valence state with a very small involvement of 2+ (˜9%) valence state at the surface. Valence band spectrum of the film shows prominent contribution due to the Sn4+ valence state. RPES measurements were performed in the Sn 4d→5p photo absorption region. This study shows that O-2p, Sn-5s, and Sn-5p partial density of states are the main contributions to the valence band of this material. The resonance behavior of these three contributions has been analyzed. Constant initial state versus photon energy plots suggest that the low binding energy feature at ˜2.8 eV results from the hybridization of the O-2p and mixed valence states of Sn, while remaining features at higher binding energies are due to the hybridization between O-2p (bonding) orbitals and Sn4+ valence state.
NASA Astrophysics Data System (ADS)
Vinson, Alec M.; Hansen, Brad M. S.
2017-12-01
One long-standing problem for the potential habitability of planets within M dwarf systems is their likelihood to be tidally locked in a synchronously rotating spin state. This problem thus far has largely been addressed only by considering two objects: the star and the planet itself. However, many systems have been found to harbour multiple planets, with some in or very near to mean motion resonances. The presence of a planetary companion near a mean motion resonance can induce oscillatory variations in the mean motion of the planet, which we demonstrate can have significant effects on the spin state of an otherwise synchronously rotating planet. In particular, we find that a planetary companion near a mean motion resonance can excite the spin states of planets in the habitable zone of small, cool stars, pushing otherwise synchronously rotating planets into higher amplitude librations of the spin state, or even complete circulation resulting in effective stellar days with full surface coverage on the order of years or decades. This increase in illuminated area can have potentially dramatic influences on climate, and thus on habitability. We also find that the resultant spin state can be very sensitive to initial conditions due to the chaotic nature of the spin state at early times within certain regimes. We apply our model to two hypothetical planetary systems inspired by the K00255 and TRAPPIST-1 systems, both of which have Earth-sized planets in mean motion resonances orbiting cool stars.
Optical Tamm states in one-dimensional superconducting photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Abouti, O.; El Boudouti, E. H.; IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d'Ascq
2016-08-15
In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Differentmore » kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.« less
Direct observation of terahertz surface modes in nanometer-sized liquid water pools.
Boyd, J E; Briskman, A; Colvin, V L; Mittleman, D M
2001-10-01
The far-infrared absorption spectrum of nanometer-sized water pools at the core of AOT micelles exhibits a pronounced resonance which is absent in bulk water. The amplitude and spectral position of this resonance are sensitive to the size of the confined water core. This resonance results from size-dependent modifications in the vibrational density of states, and thus has far-reaching implications for chemical processes which involve water sequestered within small cavities. These data represent the first study of the terahertz dielectric properties of confined liquids.
Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)2Te3.
Shao, Yinming; Post, Kirk W; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J; Richardella, Anthony R; Lee, Joon Sue; Samarth, Nitin; Fogler, Michael M; Balatsky, Alexander V; Kharzeev, Dmitri E; Basov, D N
2017-02-08
Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2 Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.
Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ge; Fragner, A.; Koolstra, G.
2016-03-01
The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts thatmore » are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be approximate to 1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.« less
Novel doorways and resonances in large-scale classical systems
NASA Astrophysics Data System (ADS)
Franco-Villafañe, J. A.; Flores, J.; Mateos, J. L.; Méndez-Sánchez, R. A.; Novaro, O.; Seligman, T. H.
2011-05-01
We show how the concept of doorway states carries beyond its typical applications and usual concepts. The scale on which it may occur is increased to large classical wave systems. Specifically we analyze the seismic response of sedimentary basins covered by water-logged clays, a rather common situation for urban sites. A model is introduced in which the doorway state is a plane wave propagating in the interface between the sediments and the clay. This wave is produced by the coupling of a Rayleigh and an evanescent SP-wave. This in turn leads to a strong resonant response in the soft clays near the surface of the basin. Our model calculations are compared with measurements during Mexico City earthquakes, showing quite good agreement. This not only provides a transparent explanation of catastrophic resonant seismic response in certain basins but at the same time constitutes up to this date the largest-scale example of the doorway state mechanism in wave scattering. Furthermore the doorway state itself has interesting and rather unusual characteristics.
Swift, Andrew J; Rajaram, Smitha; Campbell, Michael J; Hurdman, Judith; Thomas, Steve; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G
2014-01-01
There are limited data on the prognostic value of cardiovascular magnetic resonance measurements in idiopathic pulmonary arterial hypertension, with no studies investigating the impact of correction of cardiovascular magnetic resonance indices for age and sex on prognostic value. Consecutive patients with idiopathic pulmonary arterial hypertension underwent cardiovascular magnetic resonance imaging at 1.5T. Steady-state free precession cardiac volumes and mass measurements were corrected for age, sex, and body surface area according to reference data and prognostic significance assessed. A total of 80 patients with idiopathic pulmonary arterial hypertension were identified, and 23 patients died during the mean follow-up of 32±14 months. Corrected for age, sex, and body surface area, right ventricular end-systolic volume (P=0.004) strongly predicted mortality, independent of World Health Organization functional class, mean right atrial pressure, cardiac index, and mixed venous oxygen saturations. Consideration should be given to correcting cardiovascular magnetic resonance measures for age, sex, and body surface area, particularly given the changing demographics of patients with idiopathic pulmonary arterial hypertension. Corrected right ventricular end-systolic volume is a strong prognostic marker in idiopathic pulmonary arterial hypertension, independent of invasively derived measurements, mean right atrial pressure cardiac index, and mixed venous oxygen saturations.
Theory of raman scattering from molecules adsorbed at semiconductor surfaces
NASA Astrophysics Data System (ADS)
Ueba, H.
1983-09-01
A theory is presented to calculate the Raman polarizability of an adsorbed molecule at a semiconductor surface, where the electronic excitation in the molecular site interacts with excitons (elementary excitations in the semiconductor) through non-radiative energy transfer between them, in an intermediate state in the Raman scattering process. The Raman polarizability thus calculated is found to exhibit a peak at the energy corresponding to a resonant excitation of excitons, thereby suggesting the possibility of surface enhanced Raman scattering on semiconductor surfaces. The mechanism studied here can also give an explanation of a recent observation of the Raman excitation profiles of p-NDMA and p-DMAAB adsorbed on ZnO or TiO 2, where those profiles were best described by assuming a resonant intermediate state of the exciton transition in the semiconductors. It is also demonstrated that in addition to vibrational Raman scattering, excitonic Raman scattering of adsorbed molecules will occur in the coupled molecule-semiconductor system, where the molecular returns to its ground electronic state by leaving an exciton in the semiconductor. A spectrum of the excitonic Raman scattering is expected to appear in the background of the vibrational Raman band and to be characterized by the electronic structure of excitons. A desirable experiment is suggested for an examination of the theory.
Monolithic Micromachined Quartz Resonator based Infrared Focal Plane Arrays
2012-05-05
following categories: PaperReceived Ping Kao, Srinivas Tadigadapa. Micromachined quartz resonator based infrared detector array, Sensors and...0. doi: 10.1088/0957-0233/20/12/124007 2012/05/08 19:47:37 6 S Tadigadapa, K Mateti. Piezoelectric MEMS sensors : state-of-the-art and perspectives...Ping Kao, David L. Allara, Srinivas Tadigadapa. Study of Adsorption of Globular Proteins on Hydrophobic Surfaces, IEEE Sensors Journal, (11 2011): 0
Probing semiconductor gap states with resonant tunneling.
Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H
2006-02-17
Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.
Fast Electron Spectroscopy of Enhanced Plasmonic N anoantenna Resonances
NASA Astrophysics Data System (ADS)
Day, Jared K.
Surface plasmons are elementary excitations of the collective and coherent oscillations of conductive band electrons coupled with photons at the surface of metals. Surface plasmons of metallic nanostructures can efficiently couple to light making them a new class of optical antennas that can confine and control light at nanometer scale dimensions. Nanoscale optical antennas can be used to enhance the energy transfer between nanoscale systems and freely-propagating radiation. Plasmonic nanoantennas have already been used to enhance single molecule detection, diagnosis and treat cancer, harvest solar energy, to create metamaterials with new optical properties and to enhance photo-chemical reactions. The applications for plasmonic nanoantennas are only limited by the fundamental understanding of their unique optical properties and the rational design of new coupled antenna systems. It is therefore necessary to interrogate and image the local electromagnetic response of nanoantenna systems to establish intuition between near-field coupling dynamics and far-field optical properties. This thesis focuses on the characterization and enhancement of the longitudinal multipolar plasmonic resonances of Au nanorod nanoantennas. To better understand these resonances fast electron spectroscopy is used to both visualize and probe the near- and far-field properties of multipolar resonances of individual nanorods and more complex nanorod systems through cathodoluminescence (CL). CL intensity maps show that coupled nanorod systems enhance and alter nanorod resonances away from ideal resonant behavior creating hybridized longitudinal modes that expand and relax at controllable locations along the nanorod. These measurements show that complex geometries can strengthen and alter the local density of optical states for nanoantenna designs with more functionality and better control of localized electromagnetic fields. Finally, the electron excitations are compared to plane wave optical stimulation both experimentally and through Finite Difference Time Domain simulations to begin to develop a qualitative picture of how the local density of optical states affects the far-field optical scattering properties of plasmonic nanoantennas.
Zhou, Zijian; Wu, Changqiang; Liu, Hanyu; Zhu, Xianglong; Zhao, Zhenghuan; Wang, Lirong; Xu, Ye; Ai, Hua; Gao, Jinhao
2015-03-24
Magnetic resonance angiography using gadolinium-based molecular contrast agents suffers from short diagnostic window, relatively low resolution and risk of toxicity. Taking into account the chemical exchange between metal centers and surrounding protons, magnetic nanoparticles with suitable surface and interfacial features may serve as alternative T1 contrast agents. Herein, we report the engineering on surface structure of iron oxide nanoplates to boost T1 contrast ability through synergistic effects between exposed metal-rich Fe3O4(100) facets and embedded Gd2O3 clusters. The nanoplates show prominent T1 contrast in a wide range of magnetic fields with an ultrahigh r1 value up to 61.5 mM(-1) s(-1). Moreover, engineering on nanobio interface through zwitterionic molecules adjusts the in vivo behaviors of nanoplates for highly efficient magnetic resonance angiography with steady-state acquisition window, superhigh resolution in vascular details, and low toxicity. This study provides a powerful tool for sophisticated design of MRI contrast agents for diverse use in bioimaging applications.
Resonant coherent excitation of 390 MeV/u Ar ions planar channeled in Si crystals
NASA Astrophysics Data System (ADS)
Komaki, K.; Azuma, T.; Ito, T.; Takabayashi, Y.; Yamazaki, Y.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.
1998-12-01
Resonant coherent excitation of the 1s electron to n=2 states in a hydrogen-like ion was studied through measurements of the survived fraction of 390 MeV/u Ar17+ planar channeled in a Si crystal. Adopting a totally depleted Si surface barrier detector as a target crystal, the charge state of the individual emerged ion was measured in coincidence with the energy deposition in the target. By changing the incident direction along the (2 overline2 0), (0 0 4), and (1 overline1 1) planes, a series of clear resonances were observed as the decrease in the survived charge fraction due to higher electron loss probability for the excited state. Each resonance profile reflects energy splitting of the n=2 manifold originated from l-s interaction and Stark effect due to the crystal field. From the correlation between the energy loss and survived charge fraction, transition energy as a function of the ion trajectory amplitude is deduced which is in good agreement with calculated results.
Superconducting surface impedance under radiofrequency field
Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.
2013-04-26
Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.
Microwave surface resistance of bulk YBa2Cu3O6+x material
NASA Astrophysics Data System (ADS)
Fathy, A.; Kalokitis, D.; Belohoubek, E.; Sundar, H. G. K.; Safari, A.
1988-10-01
Superconducting Y-Ba-Cu-O samples were prepared by conventional solid-state reaction. The microwave surface resistance of 1:2:3 compound superconductor material was measured in a special disk resonator structure at 10 GHz. At liquid-nitrogen temperatures the microwave surface resistance is comparable to that of Au. At lower temperature (~10 K) the surface resistance is an order of magnitude lower than that of Au at the same temperature.
Tabassum, Rana; Gupta, Banshi D
2015-03-21
A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.
Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems.
Flick, Johannes; Appel, Heiko; Ruggenthaler, Michael; Rubio, Angel
2017-04-11
In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation [ Flick et al. PNAS 2017 , 10.1073/pnas.1615509114 ] for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer between potential energy surfaces. This work at the interface of quantum chemistry and quantum optics paves the way for the full ab initio description of matter-photon systems.
Direct Observation of Twisted Surface skyrmions in Bulk Crystals
NASA Astrophysics Data System (ADS)
Zhang, S. L.; van der Laan, G.; Wang, W. W.; Haghighirad, A. A.; Hesjedal, T.
2018-06-01
Magnetic skyrmions in noncentrosymmetric helimagnets with Dn symmetry are Bloch-type magnetization swirls with a helicity angle of ±9 0 ° . At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with an arbitrary helicity angle has been proposed; however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu2 OSeO3 , in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.
All-dielectric frequency selective surface design based on dielectric resonator
NASA Astrophysics Data System (ADS)
Zheng-Bin, Wang; Chao, Gao; Bo, Li; Zhi-Hang, Wu; Hua-Mei, Zhang; Ye-Rong, Zhang
2016-06-01
In this work, we propose an all-dielectric frequency selective surface (FSS) composed of periodically placed high-permittivity dielectric resonators and a three-dimensional (3D) printed supporter. Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles, quadrupoles, and higher order terms. The re-radiated electric and magnetic fields by these multipoles interact with the incident fields, which leads to total reflection or total transmission in some special frequency bands. The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth (FBW) of 22.2%, which is consistent with the simulated result. Project supported by the National Natural Science Foundation of China (Grant Nos. 61201030, 61372045, 61472045, and 61401229), the Science and Technology Project of Jiangsu Province, China (Grant No. BE2015002), the Open Research Program of the State Key Laboratory of Millimeter Waves, China (Grant Nos. K201616 and K201622), and the Nanjing University of Posts and Telecommunications Scientific Foundation, China (Grant No. NY214148).
Faraday Rotation Due to Surface States in the Topological Insulator (Bi 1–xSbx) 2Te 3
Shao, Yinming; Post, Kirk W.; Wu, Jhih-Sheng; ...
2016-12-29
For this research, using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. Finally, the FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way formore » observing many exotic quantum phenomena in topological insulators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Masanori; Yamada, Yuji; Saito, Taku
2012-04-12
We have performed 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on single-crystalline Ba1-xKxFe2As2 for x = 0.27–1. 75As nuclear quadruple resonance frequency (νQ) increases linearly with increasing x. The Knight shift K in the normal state shows Pauli paramagnetic behavior with a weak temperature T dependence. K increases gradually with increasing x. By contrast, the nuclear spin–lattice relaxation rate 1/T1 in the normal state has a strong T dependence, which indicates the existence of large antiferomagnetic (AF) spin fluctuations for all x's. The T dependence of 1/T1 shows a gaplike behavior below approximately 100 K formore » 0.6 < x < 0.9. This behaviors is well explained by the change in the band structure with the expansion of hole Fermi surfaces and the shrinkage and disappearance of electron Fermi surfaces at the Brillouin zone (BZ) with increasing x. The anisotropy of 1/T1, represented by the ratio of 1/T1ab to 1/T1c, is always larger than 1 for all x's, which indicates that stripe-type AF fluctuations are dominant in this system. The K in the superconducting (SC) state decreases, which corresponds to the appearance of spin-singlet superconductivity. The T dependence of 1/T1 in the SC state indicates a multiple-SC-gap feature. A simple two-gap model analysis shows that the larger superconducting gap gradually decreases with increasing x from 0.27 to 1 and a smaller gap decreases rapidly and nearly vanishes for x > 0.6 where electron pockets in BZ disappear.« less
Double matrix effect in Low Energy Ion Scattering from La surfaces
NASA Astrophysics Data System (ADS)
Zameshin, Andrey A.; Yakshin, Andrey E.; Sturm, Jacobus M.; Brongerma, Hidde H.; Bijkerk, Fred
2018-05-01
Low Energy Ion Scattering (LEIS) has been performed on several lanthanum-based surfaces. Strong subsurface matrix effects - dependence of surface scattered He+ ion yield on the composition of subsurface layer - have been observed. The ion yield of He+ scattered by La differed by a factor of up to 2.5 for different surfaces, while only the La peak was visible in the spectra. To study these effects and enable surface quantification, He+ ion yields have been measured in a range of incident He+ energies from 1000 to 7500 eV for LaB6, La2O3, oxidized La and pure La surfaces. The investigation showed that as many as two simultaneous matrix effects are present, each one driven by a separate charge exchange mechanism. The first one is a resonant neutralization from the conduction band of La to an excited state of the He+ ion. It depends on the work function of the surface, which is lowered significantly when La interacts with O or B. The second mechanism is quasiresonant charge transfer between bound La levels and He 1s, which creates characteristic oscillations in the energy dependence of ion yields. The exact structure of the oscillations depends on small changes in binding energies of interacting La levels. This is the first time quasiresonant charge transfer is proven to be present in La. It is likely that La 5p orbitals participate in this resonance, which can be the first clear observation of a resonance between p and s orbitals in LEIS. This type of resonance was previously believed to be absent because of strong damping. We also demonstrated that despite the complex matrix effect precise measurements over a wide energy range allow quantification of the atomic composition of La-based surfaces.
High resolution resonance ionization imaging detector and method
Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.
1999-01-01
A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.
Transparent SiO2-Ag core-satellite nanoparticle assembled layer for plasmonic-based chemical sensors
NASA Astrophysics Data System (ADS)
Chen, Tsung-Han; Jean, Ren-Der; Chiu, Kuo-Chuang; Chen, Chun-Hua; Liu, Dean-Mo
2012-05-01
We discovered a promising sensing capability of SiO2@Ag core-satellite nanoparticles with respect to organic melamine when they were consolidated into a solid-type thin-film entity. A series of theoretical models were proposed which provided calculation outcomes superior to those of existing models for the localized surface plasmon resonance spectra of the solid-state assemblies. We envisioned not only that such a SiO2@Ag film is a potential candidate for a transparent solid-state optical nanosensor for the detection of organic molecules but also that the resulting plasmonic resonance model facilitates a better understanding of such a solid-state nanosensor used for a number of sensory applications.
Thermodynamic theory of the plasmoelectric effect
van de Groep, Jorik; Sheldon, Matthew T.; Atwater, Harry A.; ...
2016-03-18
Resonant metal nanostructures exhibit an optically induced electrostatic potential when illuminated with monochromatic light under off-resonant conditions. This plasmoelectric effect is thermodynamically driven by the increase in entropy that occurs when the plasmonic structure aligns its resonant absorption spectrum with incident illumination by varying charge density. As a result, the elevated steady-state temperature of the nanostructure induced by plasmonic absorption is further increased by a small amount. Here, we study in detail the thermodynamic theory underlying the plasmoelectric effect by analyzing a simplified model system consisting of a single silver nanoparticle. We find that surface potentials as large as 473more » mV are induced under 100 W/m2 monochromatic illumination, as a result of a 11 mK increases in the steady-state temperature of the nanoparticle. Hence, we discuss the applicability of this analysis for realistic experimental geometries, and show that this effect is generic for optical structures in which the resonance is linked to the charge density.« less
NASA Astrophysics Data System (ADS)
He, Xunjun; Yao, Yuan; Yang, Xingyu; Lu, Guangjun; Yang, Wenlong; Yang, Yuqiang; Wu, Fengmin; Yu, Zhigang; Jiang, Jiuxing
2018-03-01
By patterning two graphene resonators on a SiO2/Si substrate, a dynamically controlled electromagnetically induced transparency (EIT) in the terahertz graphene metamaterial was numerically studied through tuning the structural parameter and Fermi energy of graphene. The calculated surface current distributions demonstrate that the distinct EIT window in the graphene metamaterial results from the near-field coupling of two graphene resonators. Moreover, the EIT window can be actively controlled by tuning Fermi energy combined states of two resonators. When the Fermi energy combined state of two resonators changes from (0.21 and 0.16 eV) to (0.4 and 0.11 eV), the amplitude modulation depth of the EIT peak is 97.8% at 0.45 THz, and the corresponding enhanced factor of group delay with 6 times is obtained. This study offers an alternative tuning method to existing optical, thermal, and relative distance tuning, delivering a promising potential for designing active and miniaturized THz devices.
NASA Astrophysics Data System (ADS)
Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G.; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N.; Kabashin, Andrei V.
2018-02-01
We investigate conditions of excitation and properties of Plasmonic Surface Lattice Resonances (PSLR) over glass substrate-supported Au nanoparticle dimers ( 100-200 nm) arranged in a periodic metamaterial lattice, in Attenuated Total Reflection (ATR) optical excitation geometry, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. We show that spectral sensitivity of PSLR to RI variations is determined by the lattice periodicity ( 320 nm per RIU change in our case), while ultranarrow resonance lineshapes (down to a few nm full-widthat-half-maximum) provide very high figure-of-merit values evidencing the possibility of ultrasensitive biosensing measurements. Combining advantages of nanoscale architectures, including a strong concentration of electric field, the possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise a drastic advancement of current state-of-the-art plasmonic biosensing technology.
Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits
NASA Astrophysics Data System (ADS)
Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry
We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.
Photoinduced surface plasmon switching at VO2/Au interface.
Kumar, Nardeep; Rúa, Armando; Aldama, Jennifer; Echeverría, Karla; Fernández, Félix E; Lysenko, Sergiy
2018-05-28
Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO 2 /Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO 2 /Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.
Scattering of surface electrons by isolated steps versus periodic step arrays
NASA Astrophysics Data System (ADS)
Ortega, J. E.; Lobo-Checa, J.; Peschel, G.; Schirone, S.; Abd El-Fattah, Z. M.; Matena, M.; Schiller, F.; Borghetti, P.; Gambardella, P.; Mugarza, A.
2013-03-01
We investigate the scattering of electrons belonging to Shockley states of (111)-oriented noble metal surfaces using angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). Both ARPES and STM indicate that monatomic steps on a noble metal surface may act either as strongly repulsive or highly transmissive barriers for surface electrons, depending on the coherence of the step lattice, and irrespectively of the average step spacing. By measuring curved crystal surfaces with terrace length ranging from 30 to 180 Å, we show that vicinal surfaces of Au and Ag with periodic step arrays exhibit a remarkable wave function coherence beyond 100 Å step spacings, well beyond the Fermi wavelength limit and independently of the projection of the bulk band gap on the vicinal plane. In contrast, the analysis of transmission resonances investigated by STM shows that a pair of isolated parallel steps defining a 58 Å wide terrace confines and decouples the surface state of the small terrace from that of the (111) surface. We conclude that the formation of laterally confined quantum well states in vicinal surfaces as opposed to propagating superlattice states depends on the loss of coherence driven by imperfection in the superlattice order.
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties
2013-11-14
demonstrated efficient steam generation from aqueous nanoparticles solutions without heating the bulk volume of the liquid. Application in ethanol ...solutions without heating the bulk volume of the liquid. Applications in ethanol distillation and sanitation have been demonstrated. Key Accomplishments...nanoparticle surface. This state-selective population of adsorbate resonances could be exploited to prepare reactants in specific states on nanoparticle
Spatial Charge Inhomogeneity and Defect States in Topological Dirac Semimetal Thin Films
NASA Astrophysics Data System (ADS)
Edmonds, Mark; Collins, James; Hellerstedt, Jack; Yudhistira, Indra; Rodrigues, Joao Nuno Barbosa; Gomes, Lidia Carvalho; Adam, Shaffique; Fuhrer, Michael
Dirac materials are characterized by a charge neutrality point, where the system breaks into electron/hole puddles. In graphene, substrate disorder drives fluctuations in EF, necessitating ultra-clean substrates to observe Dirac point physics. Three-dimensional topological Dirac semimetals (TDS) obviate the substrate, and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. Yet, the local response of the charge carriers in a TDS to various perturbations has yet to be explored. Here we map the potential fluctuations in TDS 20nm Na3Bi films grown via MBE using scanning tunneling microscopy/spectroscopy. The potential fluctuations are significantly smaller than room temperature (ΔEF 5 meV = 60 K) and comparable to the highest quality graphene on h-BN; far smaller than graphene on SiO2,or the Dirac surface state of a topological insulator. This observation bodes well for exploration of Dirac point physics in TDS materials. Furthermore, surface Na vacancies show a bound resonance state close to the Dirac point with large spatial extent, a possible analogue to resonant impurities in graphene.
Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors
NASA Astrophysics Data System (ADS)
Lee, Joong-Sung; Huynh, Trung; Lee, Su-Yong; Lee, Kwang-Geol; Lee, Jinhyoung; Tame, Mark; Rockstuhl, Carsten; Lee, Changhyoup
2017-09-01
We investigate the use of twin-mode quantum states of light with symmetric statistical features in their photon number for improving intensity-sensitive surface plasmon resonance (SPR) sensors. For this purpose, one of the modes is sent into a prism setup where the Kretschmann configuration is employed as a sensing platform and the analyte to be measured influences the SPR excitation conditions. This influence modifies the output state of light that is subsequently analyzed by an intensity-difference measurement scheme. We show that quantum noise reduction is achieved not only as a result of the sub-Poissonian statistical nature of a single mode, but also as a result of the nonclassical correlation of the photon number between the two modes. When combined with the high sensitivity of the SPR sensor, we show that the use of twin-mode quantum states of light notably enhances the estimation precision of the refractive index of an analyte. With this we are able to identify a clear strategy to further boost the performance of SPR sensors, which are already a mature technology in biochemical and medical sensing applications.
NASA Astrophysics Data System (ADS)
Yu, Chien-fan; Whaley, K. Birgitta; Hogg, C. S.; Sibener, S. J.
1985-10-01
A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of ˜32 meV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.
NASA Astrophysics Data System (ADS)
Yu, C. F.; Whaley, K. B.; Hogg, C. S.; Sibener, S. J.
1985-08-01
A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of approximately 32 MeV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.
Oxide films state analysis by IR spectroscopy based on the simple oscillator approximation
NASA Astrophysics Data System (ADS)
Volkov, N. V.; Yakutkina, T. V.; Karpova, V. V.
2017-05-01
Stabilization of structure-phase state in a wide temperature range is one of the most important problems of improving properties of oxide compounds. As such, the search of new effective methods for obtaining metal oxides with desired physic-chemical, electro-physical and thermal properties and their control is important and relevant. The aim of this work is identification features state of the oxide films of some metals Be, Al, Fe, Cu, Zr on the metal surface of the polycrystalline samples by infrared spectroscopy. To identify the resonance emission bands the algorithm of IR-spectra processing was developed and realized on the basis of table processor EXCEL-2010, which allow revealing characteristic resonance bands successfully and identification of inorganic chemical compounds. In the frame of simple oscillator model, resonance frequencies of normal vibrations of water and some inorganic compounds: metal oxides - Be, Al, Fe, Cu, Zr were calculated and characteristic frequencies for different states (aggregate, deformation, phase) were specified. By means of IR-spectroscopy fundamental possibility of revealing oxides films on metal substrate features state is shown, that allow development and optimization of the technology for production of the oxide films with desired properties.
Thompson, Karen J; Harley, Cynthia M; Barthel, Grant M; Sanders, Mark A; Mesce, Karen A
2015-01-01
The staining of neurons with silver began in the 1800s, but until now the great resolving power of the laser scanning confocal microscope has not been utilized to capture the in-focus and three-dimensional cytoarchitecture of metal-impregnated cells. Here, we demonstrate how spectral confocal microscopy, typically reserved for fluorescent imaging, can be used to visualize metal-labeled tissues. This imaging does not involve the reflectance of metal particles, but rather the excitation of silver (or gold) nanoparticles and their putative surface plasmon resonance. To induce such resonance, silver or gold particles were excited with visible-wavelength laser lines (561 or 640 nm), and the maximal emission signal was collected at a shorter wavelength (i.e., higher energy state). Because the surface plasmon resonances of noble metal nanoparticles offer a superior optical signal and do not photobleach, our novel protocol holds enormous promise of a rebirth and further development of silver- and gold-based cell labeling protocols. DOI: http://dx.doi.org/10.7554/eLife.09388.001 PMID:26670545
NASA Astrophysics Data System (ADS)
Mukhamedzhanov, A. M.; Shubhchintak, Bertulani, C. A.
2017-08-01
In this paper we discuss the R -matrix approach to treat the subthreshold resonances for the single-level and one-channel and for the single-level and two-channel cases. In particular, the expression relating the asymptotic normalization coefficient (ANC) with the observable reduced width, when the subthreshold bound state is the only channel or coupled with an open channel, which is a resonance, is formulated. Since the ANC plays a very important role in nuclear astrophysics, these relations significantly enhance the power of the derived equations. We present the relationship between the resonance width and the ANC for the general case and consider two limiting cases: wide and narrow resonances. Different equations for the astrophysical S factors in the R -matrix approach are presented. After that we discuss the Trojan horse method (THM) formalism. The developed equations are obtained using the surface-integral formalism and the generalized R -matrix approach for the three-body resonant reactions. It is shown how the Trojan horse (TH) double-differential cross section can be expressed in terms of the on-the-energy-shell astrophysical S factor for the binary subreaction. Finally, we demonstrate how the THM can be used to calculate the astrophysical S factor for the neutron generator 13C(α ,n )16O in low-mass AGB stars. At astrophysically relevant energies this astrophysical S factor is controlled by the threshold level 1 /2+,Ex=6356 keV. Here, we reanalyzed recent TH data taking into account more accurately the three-body effects and using both assumptions that the threshold level is a subthreshold bound state or it is a resonance state.
Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Grassellino, Anna; Martinello, Martina
2017-05-01
The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.
Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.
Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H
2014-04-18
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20 μm (95% C.L.).
Scanning Tunneling Microscopy Observation of Phonon Condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-01-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Chen, J M; Lu, K T
2001-04-02
State-specific desorption for SiCl4 adsorbed on a Si(100) surface at approximately 90 K with variable coverage following the Cl 2p and Si 2p core-level excitations has been investigated using synchrotron radiation. The Cl+ yields show a significant enhancement following the Cl 2p-->8a*1 excitation. The Cl- yields are notably enhanced at the 8a*1 resonance at both Cl 2p and Si 2p edges. The enhancement of the Cl- yield occurs through the formation of highly excited states of the adsorbed molecules. These results provide some new dissociation processes from adsorbates on surfaces via core-level excitation.
Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.
Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang
2016-03-09
The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.
Resonant coherent excitation of relativistic Ar 17+ ions channeled in a Si crystal
NASA Astrophysics Data System (ADS)
Azuma, T.; Ito, T.; Yamazaki, Y.; Komaki, K.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.
1998-02-01
We observed resonant coherent excitation (RCE) of 1s electron to n=2 states in Ar 17+ through measurements of the survived fraction of 390 MeV/u hydrogen-like Ar 17+ channeled in a Si crystal. We adopted a totally depleted Si surface barrier detector as a target crystal as well as a probe of the energy deposition. The charge state of emerged ions was measured by a combination of a charge separation magnet and a 2D-position sensitive detector. We observed the RCE for planar channeled ions by tilting the target Si crystal from the direction of [1 1 0] axis in the (2 2¯ 0) , (0 0 4) , and (1 1¯ 1) planes. Prominent resonances at tilt angles under the resonance condition were observed. Moreover, each resonance profile is split into several lines due to the l· s interaction and the Stark effect originating in the static crystal field. The energy deposition in the crystal gives the information of the amplitude of the ion trajectory. The resonance peak position, intensity and width in the survived fraction of Ar 17+ reflect the position dependent strength of the crystal field, the RCE and the electron loss probabilities. They are in good accord with our calculation of the transition energy and probability.
Four-channel surface coil array for sequential CW-EPR image acquisition
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi
2013-09-01
This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojie; Wang, Cai -Zhuang
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
Liu, Xiaojie; Wang, Cai -Zhuang
2017-04-03
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
NASA Astrophysics Data System (ADS)
Kashan, M. A. M.; Kalavally, V.; Lee, H. W.; Ramakrishnan, N.
2016-05-01
We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface.
Skocek, Oliver; Uiberacker, Christoph; Jakubetz, Werner
2011-06-30
A computational investigation of HCN → HNC isomerization in the electronic ground state by one- and few-cycle infrared pulses is presented. Starting from a vibrationally pre-excited reagent state, isomerization yields of more than 50% are obtained using single one- to five-cycle pulses. The principal mechanism includes two steps of population transfer by dipole-resonance (DR), and hence, the success of the method is closely linked to the polarity of the system and, in particular, the stepwise change of the dipole moment from reactant to transition state and on to products. The yield drops massively if the diagonal dipole matrix elements are artificially set to zero. In detail, the mechanism includes DR-induced preparation of a delocalized vibrational wavepacket, which traverses the barrier region and is finally trapped in the product well by DR-dominated de-excitation. The excitation and de-excitation steps are triggered by pulse lobes of opposite field direction. As the number of optical cycles is increased, the leading field lobes prepare a vibrational superposition state by off-resonant ladder climbing, which is then subjected to the three steps of the principal isomerization mechanism. DR excitation is more efficient from a preformed vibrational wavepacket than from a molecular eigenstate. The entire process can be loosely described as Tannor-Kosloff-Rice type transfer mechanism on a single potential surface effected by a single pulse, individual field lobes assuming the roles of pump- and dump-pulses. Pre-excitation to a transient wavepacket can be enhanced by applying a separate, comparatively weak few-cycle prepulse, in which the prepulse prepares a vibrational wavepacket. The two-pulse setup corresponds to a double Tannor-Kosloff-Rice control scheme on a single potential surface.
Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface.
Minitti, Michael P; Zhang, Yao; Rosenberg, Martin; Brogaard, Rasmus Y; Deb, Sanghamitra; Sølling, Theis I; Weber, Peter M
2012-01-19
We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.
Wang, Shuo; Poon, Gregory M K; Wilson, W David
2015-01-01
Biosensor-surface plasmon resonance (SPR) technology has emerged as a powerful label-free approach for the study of nucleic acid interactions in real time. The method provides simultaneous equilibrium and kinetic characterization for biomolecular interactions with low sample requirements and without the need for external probes. A detailed and practical guide for protein-DNA interaction analyses using biosensor-SPR methods is presented. Details of SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips and samples, experimental design, quantitative and qualitative data analyses and presentation. A specific example of the interaction of a transcription factor with DNA is provided with results evaluated by both kinetic and steady-state SPR methods.
[Express diagnostics of bovine leucosis by immune sensor based on surface plasmon resonance].
Pyrohova, L V; Starodub, M F; Artiukh, V P; Nahaieva, L I; Dobrosol, H I
2002-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. The sensor was used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the blood serum. The industrially manufactured BLV antigen for screening test in the agar gel immunodiffusion (AGID) required the additional purification in order to be used in immune sensor analysis. It was shown that immune sensor analysis was more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor was capable to be used for performance of bovine leucosis screening at the farms and the minimal dilution of the serum should be 1:500.
Vacuum ultraviolet photon fluxes in argon-containing inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Radovanov, S. B.; Persing, H. M.; Wang, S.; Culver, C. L.; Boffard, J. B.; Lin, C. C.; Wendt, A. E.
2013-09-01
Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. Damage of materials is induced by energy transfer from the VUV photons to the surface, causing disorder in the surface region, surface reactions, and affecting bonds in the material bulk. Monitoring of the surface flux of VUV photons from inductively coupled plasmas (ICP) and its dependence on discharge parameters is thus highly desirable. Results of non-invasive, direct windowless VUV detection using a photosensitive diode will be presented. Relative VUV fluxes were also obtained using a sodium salicylate coating on the inside of a vacuum window, converting VUV into visible light detected through the vacuum window. The coating is sensitive to wavelengths in the range 80-300 nm, while the photodiode is only sensitive to wavelengths below 120 nm. In argon the VUV emissions are primarily produced by spontaneous decay from 3p5 4 s resonance levels (1s2,1s4) and may be reabsorbed by ground state atoms. Real-time resonance level concentrations were measured and used to predict the VUV photon flux at the detector for a range of different ICP pressures, powers, and for various admixtures of Ar with N2, and H2. This work was supported in part by NSF grant PHY-1068670.
Modulation of electromagnetic local density of states by coupling of surface phonon-polariton
NASA Astrophysics Data System (ADS)
Li, Yao; Zhang, Chao-Jie; Wang, Tong-Biao; Liu, Jiang-Tao; Yu, Tian-Bao; Liao, Qing-Hua; Liu, Nian-Hua
2017-02-01
We studied the electromagnetic local density of state (EM-LDOS) near the surface of a one-dimensional multilayer structure (1DMS) alternately stacked by SiC and Si. EM-LDOS of a semi-infinite bulk appears two intrinsic peaks due to the resonance of surface phonon-polariton (SPhP) in SiC. In contrast with that of SiC bulk, SPhP can exist at the interface of SiC and Si for the 1DMS. The SPhPs from different interfaces can couple together, which can lead to a significant modulation of EM-LDOS. When the component widths of 1DMS are large, the spectrum of EM-LDOS exhibits oscillation behavior in the frequency regime larger than the resonance frequency of SPhP. While the component widths are small, due to the strong coupling of SPhPs, another peak appears in the EM-LDOS spectrum besides the two intrinsic ones. And the position of the new peak move toward high frequency when the width ratio of SiC and Si increases. The influences of distance from the surfaces and period of 1DMS on EM-LDOS have also been studied in detail. The results are helpful in studying the near-field radiative heat transfer and spontaneous emission.
Chen, Daqun; Hu, Weihua
2017-04-18
Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.
Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin
2016-08-12
We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}.
Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; ...
2015-07-14
Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. Amore » metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.« less
Effects of spin excitons on the surface states of SmB 6 : A photoemission study
Arab, Arian; Gray, A. X.; Nemšák, S.; ...
2016-12-12
We present the results of a high-resolution valence-band photoemission spectroscopic study of SmB 6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data are interpreted in terms of the existence of heavy 4 f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about - 9 meV at low temperatures. We also attribute this feature tomore » a resonance caused by the spin-exciton scattering in SmB 6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. Thus, the existence of a low-energy spin exciton may be responsible for the scattering, which suppresses the formation of coherent surface quasiparticles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.« less
Tip-induced reduction of the resonant tunneling current on semiconductor surfaces.
Jelínek, Pavel; Svec, Martin; Pou, Pablo; Perez, Ruben; Cháb, Vladimír
2008-10-24
We report scanning tunneling microscope measurements showing a substantial decrease of the current, almost to zero, on the Si(111)-(7x7) reconstruction in the near-to-contact region under low bias conditions. First principles simulations for the tip-sample interaction and transport calculations show that this effect is driven by the substantial local modification of the atomic and electronic structure of the surface. The chemical reactivity of the adatom dangling bond states that dominate the electronic density of states close to the Fermi level and their spatial localization result in a strong modification of the electronic current.
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators
Spinelli, P.; Verschuuren, M.A.; Polman, A.
2012-01-01
Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells or photodetectors, reflection is an unwanted loss process. Many ways to reduce reflection from a substrate have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching and scattering from plasmonic nanoparticles. Here we present an entirely new concept that suppresses the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders designed to possess strongly substrate-coupled Mie resonances yields almost zero total reflectance over the entire spectral range from the ultraviolet to the near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states. PMID:22353722
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin; ...
2016-09-30
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
Boundary layer and separation control on wings at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Yang, Shanling
Results on boundary layer and separation control through acoustic excitation at low Re numbers are reported. The Eppler 387 profile is specifically chosen because of its pre-stall hysteresis and bi-stable state behavior in the transitional Re regime, which is a result of flow separation and reattachment. External acoustic forcing on the wing yields large improvements (more than 70%) in lift-to-drag ratio and flow reattachment at forcing frequencies that correlate with the measured anti-resonances in the wind tunnel. The optimum St/Re1/2 range for Re = 60,000 matches the proposed optimum range in the literature, but there is less agreement for Re = 40,000, which suggests that correct St scaling has not been determined. The correlation of aerodynamic improvements to wind tunnel resonances implies that external acoustic forcing is facility-dependent, which inhibits practical application. Therefore, internal acoustic excitation for the same wing profile is also pursued. Internal acoustic forcing is designed to be accomplished by embedding small speakers inside a custom-designed wing that contains many internal cavities and small holes in the suction surface. However, initial testing of this semi-porous wing model shows that the presence of the small holes in the suction surface completely transforms the aerodynamic performance by changing the mean chordwise separation location and causing an originally separated, low-lift state flow to reattach into a high-lift state. The aerodynamic improvements are not caused by the geometry of the small holes themselves, but rather by Helmholtz resonance that occurs in the cavities, which generate tones that closely match the intrinsic flow instabilities. Essentially, opening and closing holes in the suction surface of a wing, perhaps by digital control, can be used as a means of passive separation control. Given the similarity of wing-embedded pressure tap systems to Helmholtz resonators, particular attention must be given to the setup of pressure taps in wings in order to avoid acoustic resonance effects. Local acoustic forcing is achieved through the activation of internally embedded speakers in combination with thin diaphragms placed across the holes in the suction surface to eliminate Helmholtz resonance effects. Activating various speakers in different spanwise and chordwise distributions successfully controls local flow separation on the wing at Re = 40,000 and 60,000. The changes in aerodynamic performance differ from those observed through external acoustic forcing, indicating that internal acoustic forcing is facility-independent. Combining the effect of Helmholtz resonance and the effect of pure internal acoustic forcing yields a completely different set of performance improvements. Since the internal acoustic forcing studies in the literature did not separate these two effects, there is reason to question the validity of the true nominal performance of the wings in previously reported internal acoustic studies. Stability analysis is performed on experimental velocity profiles by means of a numerical Orr-Sommerfeld solver, which extracts the initially least stable frequencies in the boundary layer using parallel and 2-d flow assumptions. Velocity profiles of the E387 wing are chosen at a condition where acoustic excitation at various chordwise locations and frequencies promotes the originally separated, low-lift state flow into a reattached, high-lift state. Preliminary stability analysis of the flow at different chordwise stations for the wing in its nominal state (without acoustic excitation) indicates that the flow is initially stable. The least stable frequencies are found to be equal to, and sub harmonics of, the preferential acoustic forcing frequencies determined in experiments. However, potentially improper and oversimplified flow assumptions are most likely sources of inaccuracy since the Orr-Sommerfeld equation is not generally used for separated flows or for boundary layers that grow significantly over the chord length. The reported numerical results serve as a basis for further validation. (Abstract shortened by UMI.)
Low-loss plasmon-assisted electro-optic modulator.
Haffner, Christian; Chelladurai, Daniel; Fedoryshyn, Yuriy; Josten, Arne; Baeuerle, Benedikt; Heni, Wolfgang; Watanabe, Tatsuhiko; Cui, Tong; Cheng, Bojun; Saha, Soham; Elder, Delwin L; Dalton, Larry R; Boltasseva, Alexandra; Shalaev, Vladimir M; Kinsey, Nathaniel; Leuthold, Juerg
2018-04-01
For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology 3-6 , sensing 7,8 , nonlinear optics 9,10 , optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.
Polarized Fermi Condensates with Unequal Masses: Tuning the Tricritical Point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parish, M. M.; Marchetti, F. M.; Simons, B. D.
We consider a two-component atomic Fermi gas within a mean-field, single-channel model, where both the mass and population of each component are unequal. We show that the tricritical point at zero temperature evolves smoothly from the BEC to BCS side of the resonance as a function of mass ratio r. We find that the interior gap state proposed by Liu and Wilczek is always unstable to phase separation, while the breached pair state with one Fermi surface for the excess fermions exhibits differences in its density of states and pair correlation functions depending on which side of the resonance itmore » lies. Finally, we show that, when r > or appro. 3.95, the finite-temperature phase diagram of trapped gases at unitarity becomes topologically distinct from the equal mass system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, suchmore » as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.« less
NASA Astrophysics Data System (ADS)
Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.
2017-07-01
High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.
NASA Astrophysics Data System (ADS)
Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant
2014-03-01
Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-05-17
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-01-01
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469
NASA Astrophysics Data System (ADS)
Francois, Alexandre; Boehm, Jonathan; Penno, Megan; Hoffmann, Peter; Monro, Tanya M.
2011-05-01
The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light. Here we show for the first time that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. It is applicable to a range of SPR geometries, including optical fibres. As an example, this approach has been used to demonstrate the detection of a protein identified as a being a biomarker for cancer.
On Selberg's trace formula: chaos, resonances and time delays
NASA Astrophysics Data System (ADS)
Lévay, Péter
2000-06-01
The quantization of the chaotic geodesic motion on Riemann surfaces Σg,κ of constant negative curvature with genus g and a finite number of points κ infinitely far away (cusps) describing scattering channels is investigated. It is shown that terms in Selberg's trace formula describing scattering states can be expressed in terms of a renormalized time delay. This quantity is the time delay associated with the surface in question minus the time delay corresponding to the scattering problem on the Poincaré upper half-plane uniformizing our surface. Poles in these quantities give rise to resonances reflecting the chaos of the underlying classical dynamics. Our results are illustrated for the surfaces Σ1,1 (Gutzwiller's leaky torus), Σ0,3 (pants), and a class of Σg,2 surfaces. The generalization covering the inclusion of an integer B≥2 magnetic field is also presented. It is shown that the renormalized time delay is not dependent on the magnetic field. This shows that the semiclassical dynamics with an integer magnetic field is the same as the free dynamics.
First-principles study of the Kondo physics of a single Pu impurity in a Th host
Zhu, Jian -Xin; Albers, R. C.; Haule, K.; ...
2015-04-23
Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5f electrons and the heavy actinides that have localized 5f electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantummore » Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal. With the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. We show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu - 5f hybridization with the ligands at the surface.« less
NASA Astrophysics Data System (ADS)
Muscat, J. P.; Newns, D. M.
1980-10-01
We present a muffin tin based calculation on (TM) 3H, (TM) 7H and (TM) 19H clusters embedded at the surface of an effective jellium-like medium whose potential is treated in scattering length approximation. We consider the changes occurring when the d-like perturbation of the TM muffin tins is switched on. The broad chemisorption-induced resonance seen for H on the effective jellium surface is narrowed and shifted down in energy. Furthermore the occupation of this resonance is increased from about 1.1 electrons to about 1.4 (on 3d metals) or 1.8 (on 4d metals), due to d-like states dropping down from the d band to form a relatively welldefined "bonding state". An antibonding state containing about 0.4 electrons is formed at the top of the d band. The results are compared with other calculations and with photoemission data. Implications for the metal-hydrogen distance and (for Ni) the demagnetizing effect of hydrogen chemisorption are discussed. We use the change in total single particle energy when the d-like perturbation is switched on to estimate trends in chemisorption energy along the 3d and 4d series. In the 3d case experimental data is available on the difference in chemisorption energy between Ni and Cu which is in reasonable agreement with our estimate.
Sharp Transition from Nonmetallic Au246 to Metallic Au279 with Nascent Surface Plasmon Resonance.
Higaki, Tatsuya; Zhou, Meng; Lambright, Kelly J; Kirschbaum, Kristin; Sfeir, Matthew Y; Jin, Rongchao
2018-05-02
The optical properties of metal nanoparticles have attracted wide interest. Recent progress in controlling nanoparticles with atomic precision (often called nanoclusters) provide new opportunities for investigating many fundamental questions, such as the transition from excitonic to plasmonic state, which is a central question in metal nanoparticle research because it provides insights into the origin of surface plasmon resonance (SPR) as well as the formation of metallic bond. However, this question still remains elusive because of the extreme difficulty in preparing atomically precise nanoparticles larger than 2 nm. Here we report the synthesis and optical properties of an atomically precise Au 279 (SR) 84 nanocluster. Femtosecond transient absorption spectroscopic analysis reveals that the Au 279 nanocluster shows a laser power dependence in its excited state lifetime, indicating metallic state of the particle, in contrast with the nonmetallic electronic structure of the Au 246 (SR) 80 nanocluster. Steady-state absorption spectra reveal that the nascent plasmon band of Au 279 at 506 nm shows no peak shift even down to 60 K, consistent with plasmon behavior. The sharp transition from nonmetallic Au 246 to metallic Au 279 is surprising and will stimulate future theoretical work on the transition and many other relevant issues.
NASA Astrophysics Data System (ADS)
Bahramy, M. S.; Clark, O. J.; Yang, B.-J.; Feng, J.; Bawden, L.; Riley, J. M.; Marković, I.; Mazzola, F.; Sunko, V.; Biswas, D.; Cooil, S. P.; Jorge, M.; Wells, J. W.; Leandersson, M.; Balasubramanian, T.; Fujii, J.; Vobornik, I.; Rault, J. E.; Kim, T. K.; Hoesch, M.; Okawa, K.; Asakawa, M.; Sasagawa, T.; Eknapakul, T.; Meevasana, W.; King, P. D. C.
2018-01-01
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
Surface plasmon resonance phenomenon of the insulating state polyaniline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com; Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275; Triyana, Kuwat
2015-04-16
Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism.more » SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.« less
Li, Qian; Jesse, Stephen; Tselev, Alexander; ...
2015-01-05
In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less
Freeman, Lindsay M; Pang, Lin; Fainman, Yeshaiahu
2014-08-26
Although surface-enhanced Raman spectroscopy (SERS) has previously been performed with nucleic acids, the measured intensities for each nucleic acid have varied significantly depending on the SERS substrate and excitation wavelength. We have demonstrated that the charge-transfer (CT) mechanism, also known as the chemical enhancement of SERS, is responsible for the discrepancies previously reported in literature. The electronic states of cytosine and guanine attached to silver atoms are computationally calculated and experimentally measured to be in the visible range, which leads to a resonance Raman effect at the corresponding maximum wavelengths. The resulting SERS measurements are in good agreement with the simulated values, in which cytosine-silver shows stronger enhancement at 532 nm and guanine-silver shows stronger enhancement at 785 nm. An atomic layer of aluminum oxide is deposited on substrates to prevent charge-transfer, and corresponding measurements show weaker Raman signals caused by the suppression of the chemical resonance. These findings suggest the optimal SERS signal can be achieved by tuning the excitation wavelength to match both the electromagnetic and chemical resonances, paving the way for future single molecule detection of nucleic acids other than adenine.
White-Light Whispering Gallery Mode Optical Resonator System and Method
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)
2009-01-01
An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region
Cavity-mode selection in spontaneous emission from oriented molecules in a microparticle.
Arnold, S; Holler, S; Goddard, N L; Griffel, G
1997-10-01
We observe preferential cavity-mode selection in spontaneous emission by oriented molecules at the surface of a microparticle. Polarization-analyzed images of a levitated microdroplet containing surface active molecules reveal a well-defined system in terms of molecular position and orientation. The measured fluorescence spectrum is compared with that of a semiclassical emission-rate-enhancement model that treats the coupling between an excited state and Mie resonances as an oscillating dipole interacting with its self-scattered field. By comparing results obtained with this theory with the relative strengths of TE to TM modes measured in the emission spectrum, we show that one can elucidate the heterogeneity of a particle from this resonant structure and determine the orientation of the emission moments relative to the phase boundary.
Distinct oxygen hole doping in different layers of Sr₂CuO 4-δ/La₂CuO₄ superlattices
Smadici, S.; Lee, J. C. T.; Rusydi, A.; ...
2012-03-28
X-ray absorption in Sr₂CuO 4-δ/La₂CuO₄ (SCO/LCO) superlattices shows a variable occupation with doping of a hole state different from holes doped for x≲x optimal in bulk La 2-xSr xCuO₄ and suggests that this hole state is on apical oxygen atoms and polarized in the a-b plane. Considering the surface reflectivity gives a good qualitative description of the line shapes of resonant soft x-ray scattering. The interference between superlattice and surface reflections was used to distinguish between scatterers in the SCO and the LCO layers, with the two hole states maximized in different layers of the superlattice.
Egidi, Franco; Bloino, Julien; Cappelli, Chiara; Barone, Vincenzo
2015-01-01
We present an effective time-independent implementation to model vibrational resonance Raman (RR) spectra of medium-large molecular systems with the inclusion of Franck-Condon (FC) and Herzberg-Teller (HT) effects and a full account of the possible differences between the harmonic potential energy surfaces of the ground and resonant electronic states. Thanks to a number of algorithmic improvements and very effective parallelization, the full computations of fundamentals, overtones, and combination bands can be routinely performed for large systems possibly involving more than two electronic states. In order to improve the accuracy of the results, an effective inclusion of the leading anharmonic effects is also possible, together with environmental contributions under different solvation regimes. Reduced-dimensionality approaches can further enlarge the range of applications of this new tool. Applications to imidazole, pyrene, and chlorophyll a1 in solution are reported, as well as comparisons with available experimental data. PMID:26550003
Microcavity surface plasmon resonance bio-sensors
NASA Astrophysics Data System (ADS)
Mosavian, Nazanin
This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.
The Photon Shell Game and the Quantum von Neumann Architecture with Superconducting Circuits
NASA Astrophysics Data System (ADS)
Mariantoni, Matteo
2012-02-01
Superconducting quantum circuits have made significant advances over the past decade, allowing more complex and integrated circuits that perform with good fidelity. We have recently implemented a machine comprising seven quantum channels, with three superconducting resonators, two phase qubits, and two zeroing registers. I will explain the design and operation of this machine, first showing how a single microwave photon | 1 > can be prepared in one resonator and coherently transferred between the three resonators. I will also show how more exotic states such as double photon states | 2 > and superposition states | 0 >+ | 1 > can be shuffled among the resonators as well [1]. I will then demonstrate how this machine can be used as the quantum-mechanical analog of the von Neumann computer architecture, which for a classical computer comprises a central processing unit and a memory holding both instructions and data. The quantum version comprises a quantum central processing unit (quCPU) that exchanges data with a quantum random-access memory (quRAM) integrated on one chip, with instructions stored on a classical computer. I will also present a proof-of-concept demonstration of a code that involves all seven quantum elements: (1), Preparing an entangled state in the quCPU, (2), writing it to the quRAM, (3), preparing a second state in the quCPU, (4), zeroing it, and, (5), reading out the first state stored in the quRAM [2]. Finally, I will demonstrate that the quantum von Neumann machine provides one unit cell of a two-dimensional qubit-resonator array that can be used for surface code quantum computing. This will allow the realization of a scalable, fault-tolerant quantum processor with the most forgiving error rates to date. [4pt] [1] M. Mariantoni et al., Nature Physics 7, 287-293 (2011.)[0pt] [2] M. Mariantoni et al., Science 334, 61-65 (2011).
Nanopillar Optical Antenna Avalanche Detectors
2014-08-30
tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support
Physical properties of YBa 2Cu 3O 7- δ thin films using microstrip ring resonators technique
NASA Astrophysics Data System (ADS)
Lai, L. S.; Zeng, H. K.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Lin, J. Y.; Gou, Y. S.
2006-09-01
Microstrip ring resonators with quality factor ( Q) over 10 4 at temperature 5 K, were fabricated using the double-side YBa 2Cu 3O 7- δ (YBCO) epitaxial films deposited on LaAlO 3 (LAO) substrates. By placing a narrow gap in the ring resonator, we observed that the original fundamental resonating mode (resonance frequency f = 3.61 GHz) splits into a dual-mode with different resonating frequencies ( f = 1.80 GHz and f = 5.33 GHz). These two kinds of the resonator allow us to determine the temperature and frequency dependences of the magnetic penetration depth λ( T, f) and the surface loss. Several salient features of the above findings related to the nature of low-lying excitations for high- Tc superconductivity as a function of oxygen content will be elucidated. In particular, the current models, suggested by Wen and Lee, will be examined in a quantitative manner. It allows us to give a justification of quasiparticle as Fermi-liquid in the superconducting state. In addition, an equivalent inductance circuit model is suggested to account for the occurrence of the dual-mode resonance.
2016-05-05
SECURITY CLASSIFICATION OF: The goal of this proposal is to purchase the GWC Technologies, Inc. Horizontal Surface Plasmon Resonance Imaging (SPRi...Unlimited UU UU UU UU 05-05-2016 1-Feb-2014 31-Jan-2016 Final Report: Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Surface Plasmon Resonance Imager, Digital
NASA Astrophysics Data System (ADS)
Al-Baiaty, Zahraa; Cumming, Benjamin P.; Gan, Xiaosong; Gu, Min
2018-02-01
We demonstrate that the optically detected magnetic resonance (ODMR) signal of a nitrogen vacancy (NV) centre can be coupled to propagating surface plasmons for the detection of the NV centre spin states, and of external magnetic fields. By coupling the spin dependent luminescence signal of a NV centre in a nanodiamond (ND) to a chemically synthesized silver nanowire, we demonstrate the readout of the ODMR signal as a reduction in the surface plasmon polariton intensity, with improved contrast in comparison to the emission from the NV centre. Furthermore, on the application of a permanent magnetic field from zero to 13 G, we demonstrate that the Zeeman splitting of the magnetic spin states of the nitrogen vacancy centre ground states can also be detected in the coupled surface plasmons. This is an important step in the development of a compact on-chip information processing system utilizing the nitrogen vacancy in nanodiamond as an on-chip source with efficient magnetometry sensing properties.
Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.
2012-01-01
Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.
Ultrafast plasmon-enhanced hot electron process in model heterojunctions: Ag/TiO2 and Ag/graphite
NASA Astrophysics Data System (ADS)
Petek, Hrvoje
We study the plasmonically enhanced nonlinear photoemission from Ag nanocluster-decorated graphite and TiO2(110) surfaces by time-resolved two-photon photoemission spectroscopy (TR-2PP). Evaporating Ag atoms on graphite and TiO2 surfaces forms pancake-like Ag clusters with 5 nm diameter and 1-1.5 nm height through self-limiting growth mode. The Ag nanoparticles enhance the two-photon photoemission (2PP) signal by approximately two-orders of magnitude as compared with the bare surfaces for p-polarized excitation. In the case of s-polarization there is essentially no enhancement for graphite, and only about an order-of-magnitude enhancement for TiO2. Wavelength dependent measurements of the enhancement reveal that for Ag/graphite there is a single plasmonic resonance due to the ⊥-plasmon mode at 3.6 eV. By contrast, for Ag/TiO2 there are ⊥ and ||-plasmon modes with resonant energies of 3.8 and 3.1 eV, respectively. Apparently the dielectric properties of the substrate have strong influence on the type and frequency of Ag plasmonic modes that can exist on the surfaces. 2PP spectra of the Ag/graphite and Ag/TiO2 surfaces reveal two distinct components that are common to both. The high energy component consists of a coherent 2PP process from an occupied interface state, which only exists in the presence of Ag. We identify this state, as an interface state formed by charge donation from the Ag-5s band to the unoccupied states of the substrates. The low energy component consists of a hot electron signal that is created by plasmon dephasing. TR-2PP measurements are performed on the plasmon-induced electron dynamics to assess their relevance for plasmonically enhanced femtochemistry. This research was supported by NSF Grant CHE-1414466.
Gather, Malte C; Yun, Seok Hyun
2014-12-08
Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.
Gather, Malte C.; Yun, Seok Hyun
2015-01-01
Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet = 22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles. PMID:25483850
Multidomain Skyrmion Lattice State in Cu2OSeO3.
Zhang, S L; Bauer, A; Burn, D M; Milde, P; Neuber, E; Eng, L M; Berger, H; Pfleiderer, C; van der Laan, G; Hesjedal, T
2016-05-11
Magnetic skyrmions in chiral magnets are nanoscale, topologically protected magnetization swirls that are promising candidates for spintronics memory carriers. Therefore, observing and manipulating the skyrmion state on the surface level of the materials are of great importance for future applications. Here, we report a controlled way of creating a multidomain skyrmion state near the surface of a Cu2OSeO3 single crystal, observed by soft resonant elastic X-ray scattering. This technique is an ideal tool to probe the magnetic order at the L3 edge of 3d metal compounds giving an average depth sensitivity of ∼50 nm. The single-domain 6-fold-symmetric skyrmion lattice can be broken up into domains, overcoming the propagation directions imposed by the cubic anisotropy by applying the magnetic field in directions deviating from the major cubic axes. Our findings open the door to a new way to manipulate and engineer the skyrmion state locally on the surface or on the level of individual skyrmions, which will enable applications in the future.
Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters
NASA Astrophysics Data System (ADS)
Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent
2017-06-01
We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.
Nematic superconductivity in CuxBi2Se3 : Surface Andreev bound states
NASA Astrophysics Data System (ADS)
Hao, Lei; Ting, C. S.
2017-10-01
We study theoretically the topological surface states (TSSs) and the possible surface Andreev bound states (SABSs) of CuxBi2Se3 , which is known to be a topological insulator at x =0 . The superconductivity (SC) pairing of this compound is assumed to have broken spin-rotation symmetry, similar to that of the A-phase of 3He as suggested by recent nuclear-magnetic resonance experiments. For both spheroidal and corrugated cylindrical Fermi surfaces with the hexagonal warping terms, we show that the bulk SC gap is rather anisotropic; the minimum of the gap is negligibly small as compared to the maximum of the gap. This would make the fully gapped pairing effectively nodal. For a clean system, our results indicate the bulk of this compound to be a topological superconductor with the SABSs appearing inside the bulk SC gap. The zero-energy SABSs, which are Majorana fermions, together with the TSSs not gapped by the pairing, produce a zero-energy peak in the surface density of states (SDOS). The SABSs are expected to be stable against short-range nonmagnetic impurities, and the local SDOS is calculated around a nonmagnetic impurity. The relevance of our results to experiments is discussed.
NASA Astrophysics Data System (ADS)
Nishikawa, Kazutaka; Kishida, Yoshihiro; Ito, Kota; Tamura, Shin-ichi; Takeda, Yasuhiko
2017-11-01
Nanoparticles (NPs) of vanadium dioxide (VO2) in the metal state exhibit localized surface plasmon resonance (LSPR) at 1200-1600 nm, which fills the gap between the absorption ranges of silicon and the LSPR of conventional transparent conductor NPs (ZnO:Al, In2O3:Sn, etc.). However, two issues of the lithographic process for NP formation and the metal-insulator transition temperature (69 °C) higher than room temperature have made it difficult to use VO2 NPs for applications such as energy conversion devices, near infrared (NIR) light detectors, and bio-therapy. In this study, we developed a self-growing process for tungsten (W)-doped VO2 NPs that are in the metal state at room temperature, using sputter deposition and post-lamp annealing. The changes in the LSPR peak wavelengths with the NP size were well controlled by changing the deposited film thickness and oxygen pressure during the post-annealing treatment. The presented results resolve the difficulties of using the metal-insulator transition material VO2 for practical NIR utilization.
Dissociation dynamics of simple chlorine containing molecules upon resonant Cl K-σ{sup *} excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohinc, R., E-mail: rok.bohinc@ijs.si; Bučar, K.; Kavčič, M.
2014-04-28
A theoretical analysis of dissociation dynamics of chlorine K-σ{sup *} core-excited molecules is performed. The potential energy surfaces of HCl, Cl{sub 2}, CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, and CF{sub 3}Cl are calculated along the normal vibrational modes of the ground electronic state yielding the widths of the corresponding Franck-Condon distributions. An insight into the potential energy surface of 1st σ{sup *} resonances shows that the initial dissociation dynamics of chloro(fluoro)methanes mainly involves the distancing of the carbon and the core-excited chlorine atom and is practically independent of other atoms in themore » molecule, which is in agreement with the recent experimental findings. The carbon atom pulls out the remaining three atoms shortly after piercing the three-atom plane resulting in a high vibrationally excited state of the fragment if the reconnection time is smaller than the lifetime of the L shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shaohua; School of Automation, Chongqing University, Chongqing 400044; Sun, Quanping
This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Puttingmore » tracking differentiator into chaos controller solves the ‘explosion of complexity’ of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.« less
Imaging quasiperiodic electronic states in a synthetic Penrose tiling
NASA Astrophysics Data System (ADS)
Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.
2017-06-01
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
Imaging quasiperiodic electronic states in a synthetic Penrose tiling.
Collins, Laura C; Witte, Thomas G; Silverman, Rochelle; Green, David B; Gomes, Kenjiro K
2017-06-22
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
Optimizing surface defects for atomic-scale electronics: Si dangling bonds
NASA Astrophysics Data System (ADS)
Scherpelz, Peter; Galli, Giulia
2017-07-01
Surface defects created and probed with scanning tunneling microscopes are a promising platform for atomic-scale electronics and quantum information technology applications. Using first-principles calculations we demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1-2 nm) lead to an isolated impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new methods for tuning the properties of defects on surfaces for electronic and quantum information applications. Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and simulations.
Surface plasmon resonance sensor using vari-focal liquid lens under angular interrogation
NASA Astrophysics Data System (ADS)
Lee, Muyoung; Bang, Yousung; Lee, Jooho; Jang, Wonjae; Won, Yong Hyub
2017-02-01
In this paper, a surface plasmon resonance sensor for the detection of refractive index variation is presented. A novel waveguide type surface plasmon resonance sensing configuration with focal length variable liquid lens is introduced. The method of surface plasmon resonance sensor is based on the waveguide type with incident angle variation. The incident angle is varied by using an electrowetting liquid lens which is possible to actively change focal length as applying voltage. The optical system, which is adapted to electrowetting lens can continuously change the incident angle of light from 73 to 78 degrees with compact size. The surface plasmon waves are excited between metal and dielectric interface. The sensing surfaces are prepared by a coating of gold metal above high refractive index glass substrate. The incident light which is 532nm monochromatic light source passes through a noble metal coated substrate to detect intensity with incident angle variation. An analysis to distinguish the contribution of light with various incident angle is focused on the angular characteristics of the surface plasmon sensor under wavelength interrogation. The resonance angle is determined corresponding to sensing material refractive index with high sensitivity. The result suggests that the performance of surface plasmon resonance sensor can be improved by real time varying incident angle. From this presented study, it provides a different approach for angular interrogation surface plasmon resonance sensor and can be miniaturized for a portable device.
Liu, Yang; Wilson, W David
2010-01-01
Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
NASA Astrophysics Data System (ADS)
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-01
We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
Enhanced absorption of light by charged nanoparticles.
Rosenkrantz, Etai; Arnon, Shlomi
2010-04-15
We found that various charged nanoparticles (NPs) can raise the attenuation of electromagnetic (EM) radiation over 30 times more efficiently during resonance in comparison to equivalent noncharged particles for a given set of parameters. A condition that indicates a state of resonance between the incident EM radiation and the NP surface excitations is mathematically derived. Our results shed light on the mechanism responsible for the strong absorption of light by such charged NPs. The outcome of this research could help to design a new generation of communication devices as well as a new technique for biological cell imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jinjia; Gong, Xueyu; Xiang, Dong
The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: onemore » arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.« less
Ion cyclotron range of frequencies heating of plasma with small impurity production
Ohkawa, Tihiro
1987-01-01
Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.
V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.
Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K
2013-01-28
An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.
Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics
Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...
2017-02-03
Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less
Mechanical vibration of viscoelastic liquid droplets
NASA Astrophysics Data System (ADS)
Sharp, James; Harrold, Victoria
2014-03-01
The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, M.; Aderhold, S.; Chandrasekaran, S. K.
The radio-frequency surface resistance of niobium resonators is incredibly reduced when nitrogen impurities are dissolved as interstitial in the material, conferring ultra-high Q-factors at medium values of accelerating field. This effect has been observed in both high and low temperature nitrogen treatments. As a matter of fact, the peculiar anti Q-slope observed in nitrogen doped cavities, i.e. the decreasing of the Q-factor with the increasing of the radio-frequency field, come from the decreasing of the BCS surface resistance component as a function of the field. Such peculiar behavior has been considered consequence of the interstitial nitrogen present in the niobiummore » lattice after the doping treatment. The study here presented show the field dependence of the BCS surface resistance of cavities with different resonant frequencies, such as: 650 MHz, 1.3 GHz, 2.6 GHz and 3.9 GHz, and processed with different state-of-the-art surface treatments. These findings show for the first time that the anti Q-slope might be seen at high frequency even for clean Niobium cavities, revealing useful suggestion on the physics underneath the anti Q-slope effect.« less
Surface Plasmon Resonance: New Biointerface Designs and High-Throughput Affinity Screening
NASA Astrophysics Data System (ADS)
Linman, Matthew J.; Cheng, Quan Jason
Surface plasmon resonance (SPR) is a surface optical technique that measures minute changes in refractive index at a metal-coated surface. It has become increasingly popular in the study of biological and chemical analytes because of its label-free measurement feature. In addition, SPR allows for both quantitative and qualitative assessment of binding interactions in real time, making it ideally suited for probing weak interactions that are often difficult to study with other methods. This chapter presents the biosensor development in the last 3 years or so utilizing SPR as the principal analytical technique, along with a concise background of the technique itself. While SPR has demonstrated many advantages, it is a nonselective method and so, building reproducible and functional interfaces is vital to sensing applications. This chapter, therefore, focuses mainly on unique surface chemistries and assay approaches to examine biological interactions with SPR. In addition, SPR imaging for high-throughput screening based on microarrays and novel hyphenated techniques involving the coupling of SPR to other analytical methods is discussed. The chapter concludes with a commentary on the current state of SPR biosensing technology and the general direction of future biosensor research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaegers, Nicholas R.; Wan, Chuan; Hu, Mary Y.
Supported V2O5/SiO2 catalysts were studied using solid state 51V MAS NMR at a sample spinning rate of 36 kHz and at a magnetic field of 19.975 T for a better understanding of the coordination of the vanadium oxide as a function of environmental conditions . Structural transformations of the supported vanadium oxide species between the catalyst in the dehydrated state and hydrated state under an ambient environment were revisited to examine the degree of oligomerization and the effect of water. The experimental results indicate the existence of a single dehydrated surface vanadium oxide species that resonates at -675 ppm andmore » two vanadium oxide species under ambient conditions that resonate at -566 and -610 ppm, respectively. No detectable structural difference was found as a function of vanadium oxide loading on SiO2 (3% V2O5/SiO2 and 8% V2O5/SiO2). Quantum chemistry simulations of the 51V NMR chemical shifts on predicted surface structures were used as an aide in understanding potential surface vanadium oxide species on the silica support. The results suggest the formation of isolated surface VO4 units for the dehydrated catalysts with the possibility of dimer and cyclic trimer presence. The absence of bridging V-O-V vibrations (~200-300 cm-1) in the Raman spectra [Gao et al. J. Phys. Chem. B 1998, 102, 10842-10852], however, indicates that the isolated surface VO4 sites are the dominant dehydrated surface vanadia species on silica. Upon exposure to water, hydrolysis of the bridging V-O-Si bonds is most likely responsible for the decreased electron shielding experienced by vanadium. No indicators for the presence of hydrated decavanadate clusters or hydrated vanadia gels previously proposed in the literature were detected in this study.« less
NASA Astrophysics Data System (ADS)
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
Characterization of complementary electric field coupled resonant surfaces
NASA Astrophysics Data System (ADS)
Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.
2008-11-01
We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.
Synthesis and characterization of triangulene
NASA Astrophysics Data System (ADS)
Pavliček, Niko; Mistry, Anish; Majzik, Zsolt; Moll, Nikolaj; Meyer, Gerhard; Fox, David J.; Gross, Leo
2017-05-01
Triangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core and verification of the triplet ground state via electron paramagnetic resonance measurements. Here we show the on-surface generation of unsubstituted triangulene that consists of six fused benzene rings. The tip of a combined scanning tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor molecules. STM measurements in combination with density functional theory (DFT) calculations confirmed that triangulene keeps its free-molecule properties on the surface, whereas AFM measurements resolved its planar, threefold symmetric molecular structure. The unique topology of such non-Kekulé hydrocarbons results in open-shell π-conjugated graphene fragments that give rise to high-spin ground states, potentially useful in organic spintronic devices. Our generation method renders manifold experiments possible to investigate triangulene and related open-shell fragments at the single-molecule level.
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less
Maurer, Reinhard J; Reuter, Karsten
2013-07-07
Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.
USDA-ARS?s Scientific Manuscript database
Prescribed burning and thinning are gaining popularity as low-cost forest protection measures. Such field management practices could alter the chemical properties of soil organic matter (SOM), especially humic substances. In this work, we collected surface soil samples from the Bankhead National For...
Gunawidjaja, Philips N.; Mathew, Renny; Lo, Andy Y. H.; Izquierdo-Barba, Isabel; García, Ana; Arcos, Daniel; Mattias Edén, María Vallet-Regí
2012-01-01
We review the benefits of using 29Si and 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for probing the local structures of both bulk and surface portions of mesoporous bioactive glasses (MBGs) of the CaO–SiO2−(P2O5) system. These mesoporous materials exhibit an ordered pore arrangement, and are promising candidates for improved bone and tooth implants. We discuss experimental MAS NMR results from three MBGs displaying different Ca, Si and P contents: the 29Si NMR spectra were recorded either directly by employing radio-frequency pulses to 29Si, or by magnetization transfers from neighbouring protons using cross polarization, thereby providing quantitative information about the silicate speciation present in the pore wall and at the MBG surface, respectively. The surface modifications were monitored for the three MBGs during their immersion in a simulated body fluid (SBF) for intervals between 30 min and one week. The results were formulated as a reaction sequence describing the interconversions between the distinct silicate species. We generally observed a depletion of Ca2+ ions at the MBG surface, and a minor condensation of the silicate-surface network over one week of SBF soaking. PMID:22349247
NASA Astrophysics Data System (ADS)
Vlasov, R. A.; Gadomskii, O. H.; Gadomskaia, I. V.; Samartsev, V. V.
1986-06-01
The method of integrodifferential equations related to the optical Bloch equations is used to study the nonlinear reflection (or refraction) of a scanning laser beam at the surface of a resonant medium excited by traveling and standing surface electromagnetic waves at resonant frequency. The effect of the phase memory of surface atoms on the pulsed action of fields with space-time resolution is taken into account. The reversal of the scanning beam from the excited surface with phase conjugation of the wave front is considered. In addition, the spectrum of the nonlinear surface polaritons is analyzed as a function of the area of the exciting pulse and the penetration depth of polaritons in the resonant optical medium.
NASA Astrophysics Data System (ADS)
Johnson, Grant; Priest, Thomas; Laskin, Julia
2012-02-01
Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.
Cooperative Search of Autonomous Vehicles for Unknown Targets
NASA Astrophysics Data System (ADS)
Yang, Sheng Qing; Yu, Jian Qiao; Zhang, Si Yu
2013-01-01
We study the orbital-dependent superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides. Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface, the superconducting gap in an A_{1g} pairing state may exhibit anisotropy. This anisotropy varies with the degree of J1-J2 magnetic frustration. We have also calculated the dynamical spin susceptibility in the superconducting state. The frequency dependence of the susceptibility at the antiferromagnetic wavevector (\\pi,0) shows a resonance, whose width is enhanced by the orbital dependence of the superconducting gap; when the latter is sufficiently strong, the resonance peak may be split into two. We discuss the implications of our results on the recent angle-resolved photoemission and neutron-scattering measurements in several superconducting iron pnictides.
Probing topological protection using a designer surface plasmon structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fei; Gao, Zhen; Shi, Xihang
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
Probing topological protection using a designer surface plasmon structure
Gao, Fei; Gao, Zhen; Shi, Xihang; ...
2016-05-20
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
``New'' energy states lead to phonon-less optoelectronic properties in nanostructured silicon
NASA Astrophysics Data System (ADS)
Singh, Vivek; Yu, Yixuan; Korgel, Brian; Nagpal, Prashant
2014-03-01
Silicon is arguably one of the most important technological material for electronic applications. However, indirect bandgap of silicon semiconductor has prevented optoelectronic applications due to phonon assistance required for photon light absorption/emission. Here we show, that previously unexplored surface states in nanostructured silicon can couple with quantum-confined energy levels, leading to phonon-less exciton-recombination and photoluminescence. We demonstrate size dependence (2.4 - 8.3 nm) of this coupling observed in small uniform silicon nanocrystallites, or quantum-dots, by direct measurements of their electronic density of states and low temperature measurements. To enhance the optical absorption of the these silicon quantum-dots, we utilize generation of resonant surface plasmon polariton waves, which leads to several fold increase in observed spectrally-resolved photocurrent near the quantum-confined bandedge states. Therefore, these enhanced light emission and absorption enhancement can have important implications for applications of nanostructured silicon for optoelectronic applications in photovoltaics and LEDs.
2012-10-24
of the atoms in a chemical system , at the maximal peak of the energy surface separating reactants from products . In the transition state every normal...Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E...calculations of ground state resonance structure associated with water complexes of Mg and the interaction of these complexes with Ozone using DFT. The
Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation.
Lan, Yung-Chiang; Chang, Che-Jung; Lee, Peng-Hsiao
2009-01-01
We investigate cavity-modulated resonant tunneling through a silver film with periodic grooves on both surfaces. A strip cavity embedded in the film affects tunneling frequencies via a coupling mode and waveguide mode. In the coupling mode, both the resonant tunneling through the gap between the groove and the cavity and the cavity itself form an entire resonant structure. In the waveguide mode, however, the cavity functions as a surface-plasmon waveguide. Hence, tunneling frequencies are close to resonant absorption frequencies of the groove structure and are irrelevant to cavity properties.
Mass sensing AlN sensors for waste water monitoring
NASA Astrophysics Data System (ADS)
Porrazzo, R.; Potter, G.; Lydecker, L.; Foraida, Z.; Gattu, S.; Tokranova, N.; Castracane, J.
2014-08-01
Monitoring the presence of nanomaterials in waste water from semiconductor facilities is a critical task for public health organizations. Advanced semiconductor technology allows the fabrication of sensitive piezoelectric-based mass sensors with a detection limit of less than 1.35 ng/cm2 of nanomaterials such as nanoparticles of alumina, amorphous silica, ceria, etc. The interactions between acoustic waves generated by the piezoelectric sensor and nanomaterial mass attached to its surface define the sensing response as a shift in the resonant frequency. In this article the development and characterization of a prototype AlN film bulk acoustic resonator (FBAR) are presented. DC reactive magnetron sputtering was used to create tilted c-axis oriented AlN films to generate shear waves which don't propagate in liquids thus minimizing the acoustic losses. The high acoustic velocity of AlN over quartz allows an increase in resonance frequency in comparison with a quartz crystal microbalance (QCM) and results in a higher frequency shift per mass change, and thus greater sensitivity. The membrane and electrodes were fabricated using state of the art semiconductor technology. The device surface functionalization was performed to demonstrate selectivity towards a specific nanomaterial. As a result, the devices were covered with a "docking" layer that allows the nanomaterials to be selectively attached to the surface. This was achieved using covalent modification of the surface, specifically targeting ZnO nanoparticles. Our functionalization approach was tested using two different types of nanoparticles, and binding specificity was confirmed with various analytical techniques.
Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications
Nguyen, Hoang Hiep; Park, Jeho; Kang, Sebyung; Kim, Moonil
2015-01-01
Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review. PMID:25951336
NASA Astrophysics Data System (ADS)
Ljungberg, Mathias P.
2017-12-01
A method is presented for describing vibrational effects in x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) using a combination of the classical Franck-Condon (FC) approximation and classical trajectories run on the core-excited state. The formulation of RIXS is an extension of the semiclassical Kramers-Heisenberg formalism of Ljungberg et al. [Phys. Rev. B 82, 245115 (2010), 10.1103/PhysRevB.82.245115] to the resonant case, retaining approximately the same computational cost. To overcome difficulties with connecting the absorption and emission processes in RIXS, the classical FC approximation is used for the absorption, which is seen to work well provided that a zero-point-energy correction is included. In the case of core-excited states with dissociative character, the method is capable of closely reproducing the main features for one-dimensional test systems, compared to the quantum-mechanical formulation. Due to the good accuracy combined with the relatively low computational cost, the method has great potential of being used for complex systems with many degrees of freedom, such as liquids and surface adsorbates.
A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Binping; Reece, Charles E.
2014-02-01
There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. Themore » surprising reduction in resistance with increasing field is explained to be an intrinsic effect.« less
Surface waves in an incompressible fluid - Resonant instability due to velocity shear
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Yang, G.; Cadez, V. M.; Gakovic, B.
1990-01-01
The effects of velocity shear on the resonance absorption of incompressible MHD surface waves are studied. It is found that there are generally values of the velocity shear for which the surface wave decay rate becomes zero. In some cases, the resonance absorption goes to zero even for very small velocity shears. It is also found that the resonance absorption can be strongly enhanced at other values of the velocity shear, so the presence of flows may be generally important for determining the effects of resonance absorption, such as might occur in the interaction of p-modes with sunspots. Resonances leading to instability of the global surface mode can exist, and instability can occur for velocity shears significantly below the Kelvin-Helmholtz threshold. These instabilities may play a role in the development or turbulence in regions of strong velocity shear in the solar wind or the earth's magnetosphere.
Astrophysical reaction rates from a symmetry-informed first-principles perspective
NASA Astrophysics Data System (ADS)
Dreyfuss, Alison; Launey, Kristina; Baker, Robert; Draayer, Jerry; Dytrych, Tomas
2017-01-01
With a view toward a new unified formalism for studying bound and continuum states in nuclei, to understand stellar nucleosynthesis from a fully ab initio perspective, we studied the nature of surface α-clustering in 20Ne by considering the overlap of symplectic states with cluster-like states. We compute the spectroscopic amplitudes and factors, α-decay width, and absolute resonance strength - characterizing major contributions to the astrophysical reaction rate through a low-lying 1- resonant state in 20Ne. As a next step, we consider a fully microscopic treatment for the n+4 He system, based on the successful first-principles No-Core Shell Model/Resonating Group Method (NCSM/RGM) for light nuclei, but with the capability to reach intermediate-mass nuclei. The new model takes advantage of the symmetry-based concept central to the Symmetry-Adapted No-Core Shell Model (SA-NCSM) to reduce computational complexity in physically-informed and methodical way, with sights toward first-principles calculations of rates for important astrophysical reactions, such as the 23 Al(p , γ) 24 Si reaction, believed to have a strong influence on X-ray burst light curves. Supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and the LSU Center for Computation & Technology.
NASA Astrophysics Data System (ADS)
Zolot, Alexander M.
This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel, whereby newly formed molecules leave the surface without equilibrating, and (ii) a partially accommodated fraction that shares vibrational, rotational, and translational energy with the liquid surface before returning to the gas phase. Finally, a velocity map ion imaging apparatus has been implemented to investigate reaction dynamics in crossed molecular beams. Resonantly enhanced multiphoton ionization (REMPI) results in rotational, vibrational, and electronic state selectivity. Velocity map imaging measurements provide differential cross sections and information about the internal energy distribution of the undetected collision partner.
Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films.
Kang, Minhee; Ahn, Myeong-Su; Lee, Youngseop; Jeong, Ki-Hun
2017-10-25
Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it; Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris; Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
Strain engineered barium strontium titanate for tunable thin film resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khassaf, H.; Khakpash, N.; Sun, F.
2014-05-19
Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.
Ring-breaking electron attachment to uracil: following bond dissociations via evolving resonances.
Gianturco, Franco A; Sebastianelli, F; Lucchese, R R; Baccarelli, I; Sanna, N
2008-05-07
Calculations are carried out at various distinct energies to obtain both elastic cross sections and S-matrix resonance indicators (poles) from a quantum treatment of the electron scattering from gas-phase uracil. The low-energy region confirms the presence of pi(*) resonances as revealed by earlier calculations and experiments which are compared with the present findings. They turn out to be little affected by bond deformation, while the transient negative ions (TNIs) associated with sigma(*) resonances in the higher energy region ( approximately 8 eV) indeed show that ring deformations which allow vibrational redistribution of the excess electron energy into the molecular target strongly affect these shape resonances: They therefore evolve along different dissociative pathways and stabilize different fragment anions. The calculations further show that the occurrence of conical intersections between sigma(*) and pi(*)-type potential energy surfaces (real parts) is a very likely mechanism responsible for energy transfers between different TNIs. The excess electron wavefunctions for such scattering states, once mapped over the molecular space, provide nanoscopic reasons for the selective breaking of different bonds in the ring region.
Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance.
Messina, Grazia M L; Bocchinfuso, Gianfranco; Giamblanco, Nicoletta; Mazzuca, Claudia; Palleschi, Antonio; Marletta, Giovanni
2018-04-26
Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins.
Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.
Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less
NASA Astrophysics Data System (ADS)
Gupta, Banshi D.; Kant, Ravi
2018-05-01
Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.
Interferometric detection of nanoparticles
NASA Astrophysics Data System (ADS)
Hayrapetyan, Karen
Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.
Automated surface-scanning detection of pathogenic bacteria on fresh produce
NASA Astrophysics Data System (ADS)
Horikawa, Shin; Du, Songtao; Liu, Yuzhe; Chen, I.-Hsuan; Xi, Jianguo; Crumpler, Michael S.; Sirois, Donald L.; Best, Steve R.; Wikle, Howard C.; Chin, Bryan A.
2017-05-01
This paper investigates the effects of surface-scanning detector position on the resonant frequency and signal amplitude of a wireless magnetoelastic (ME) biosensor for direct pathogen detection on solid surfaces. The experiments were conducted on the surface of a flat polyethylene (PE) plate as a model study. An ME biosensor (1 mm × 0.2 mm × 30 μm) was placed on the PE surface, and a surface-scanning detector was brought close and aligned to the sensor for wireless resonant frequency measurement. The position of the detector was accurately controlled by using a motorized three-axis translation system (i.e., controlled X, Y, and Z positions). The results showed that the resonant frequency variations of the sensor were -125 to +150 Hz for X and Y detector displacements of +/-600 μm and Z displacements of +100 to +500 μm. These resonant frequency variations were small compared to the sensor's initial resonant frequency (< 0.007% of 2.2 MHz initial resonant frequency) measured at the detector home position, indicating high accuracy of the measurement. In addition, the signal amplitude was, as anticipated, found to decrease exponentially with increasing detection distance (i.e., Z distance). Finally, additional experiments were conducted on the surface of cucumbers. Similar results were obtained.
Reflection Spectromicroscopy for the Design of Nanopillar Optical Antenna Detectors
2014-08-29
diameter of individual nanowires makes surface plasmon polariton (SPP) resonances an attractive option, as regular metal scattering centers can overcome...individual nanowires makes surface plasmon polariton (SPP) resonances an attractive option, as regular metal scattering centers can overcome the momentum...minimized. The ability to lithographically define the position and diameter of individual nanowires makes surface plasmon polariton (SPP) resonances an
Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yin; Chen, Shaohua, E-mail: chenshaohua72@hotmail.com, E-mail: shchen@LNM.imech.ac.cn
2015-07-28
A recently developed continuum theory considering surface effect in nanomaterials is adopted to investigate the resonant properties of nanowires with different boundary conditions in the present paper. The main feature of the adopted theory is that the surface effect in nanomaterials is characterized by the surface energy density of the corresponding bulk materials and the surface relaxation parameter in nanoscale. Based on a fixed-fixed beam model and a cantilever one, the governing equation of resonant frequency for corresponding nanowires is obtained. Numerical calculation of the fundamental resonant frequency is carried out, the result of which is well consistent with themore » existing numerical ones. Comparing to the result predicted by the conventionally structural dynamics, the resonant frequency of a fixed-fixed nanowire is improved, while that of a cantilever nanowire is weakened due to the surface effect. Both a decreasing characteristic size (height or diameter) and an increasing aspect ratio could further enhance the varying trend of resonant properties for both kinds of nanowires. The present result should be helpful for the design of nano-devices and nanostructures related to nanowires.« less
Resonant difference-frequency atomic force ultrasonic microscope
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
He, Haixiang; Zhu, Weimin; Su, Wenli; Dong, Lihui; Li, Bin
2018-03-08
The H + + H 2 reaction and its isotopic variants as the simplest triatomic ion-molecule reactive system have been attracting much interests, however there are few studies on the titled reaction at state-to-state level until recent years. In this work, accurate state-to-state quantum dynamics studies of the titled reaction have been carried out by a reactant Jacobi coordinate-based time-dependent wave packet approach on diabatic potential energy surfaces constructed by Kamisaka et al. Product ro-vibrational state-resolved information has been calculated for collision energies up to 0.2 eV with maximal total angular momentum J = 40. The necessity of including all K-component for accounting the Coriolis coupling for the reaction has been illuminated. Competitions between the two product channels, (D + + HD' → D' + + HD and D + + HD' → H + + DD') were investigated. Total integral cross sections suggest that resonances enhance the reactivity of channel D + + HD'→ H + + DD', however, resonances depress the reactivity of the another channel D + + HD' → D' + + HD. The structures of the differential cross sections are complicated and depend strongly on collision energies of the two channels and also on the product rotational states. All of the product ro-vibrational state-resolved differential cross sections for this reaction do not exhibit rigorous backward-forward symmetry which may indicate that the lifetimes of the intermediate resonance complexes should not be that long. The dynamical observables of this deuterated isotopic reaction are quite different from the reaction of H + + H 2 → H 2 + H + reported previously.
Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system
NASA Astrophysics Data System (ADS)
Kostyukevych, Sergey A.; Kostyukevych, Kateryna V.; Khristosenko, Roman V.; Lysiuk, Viktor O.; Koptyukh, Anastasiya A.; Moscalenko, Nadiya L.
2017-12-01
The problems related to the development of a multielement immunosensor device with the prism type of excitation of a surface plasmon resonance in the Kretschmann configuration and with the scanning of the incidence angle of monochromatic light aimed at the reliable determination of the levels of three molecular markers of the system of hemostasis (fibrinogen, soluble fibrin, and D-dimer) are considered. We have analyzed the influence of a technology for the production of a gold coating, modification of its surface, and noise effects on the enhancement of sensitivity and stability of the operation of devices. A means of oriented immobilization of monoclonal antibodies on the surface of gold using a multilayer film of copper aminopentacyanoferrate is developed. For the model proteins of studied markers, the calibrating curves (maximum sensitivity of 0.5 μg/ml) are obtained, and the level of fibrinogen in blood plasma of donors is determined. A four-channel modification of the device with an application of a reference channel for comparing the elimination of the noise of temperature fluctuations has been constructed. This device allows one to execute the express-diagnostics of prethrombotic states and the monitoring of the therapy of diseases of the blood circulation system.
Simulation of MST tokamak discharges with resonant magnetic perturbations
NASA Astrophysics Data System (ADS)
Cornille, B. S.; Sovinec, C. R.; Chapman, B. E.; Dubois, A.; McCollam, K. J.; Munaretto, S.
2016-10-01
Nonlinear MHD modeling of MST tokamak plasmas with an applied resonant magnetic perturbation (RMP) reveals degradation of flux surfaces that may account for the experimentally observed suppression of runaway electrons with the RMP. Runaway electrons are routinely generated in MST tokamak discharges with low plasma density. When an m = 3 RMP is applied these electrons are strongly suppressed, while an m = 1 RMP of comparable amplitude has little effect. The computations are performed using the NIMROD code and use reconstructed equilibrium states of MST tokamak plasmas with q (0) < 1 and q (a) = 2.2 . Linear computations show that the (1 , 1) -kink and (2 , 2) -tearing modes are unstable, and nonlinear simulations produce sawtoothing with a period of approximately 0.5 ms, which is comparable to the period of MHD activity observed experimentally. Adding an m = 3 RMP in the computation degrades flux surfaces in the outer region of the plasma, while no degradation occurs with an m = 1 RMP. The outer flux surface degradation with the m = 3 RMP, combined with the sawtooth-induced distortion of flux surfaces in the core, may account for the observed suppression of runaway electrons. Work supported by DOE Grant DE-FC02-08ER54975.
Stability of a two-volume MRxMHD model in slab geometry
NASA Astrophysics Data System (ADS)
Tuen, Li Huey
Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for background and perturbed magnetic fields to existing cylindrical working. An expression is formulated for the stability eigenvalues by creating a model for the slab geometry system. The eigenvalues for system stability at a minimum energy state are found to depend upon the rationality of the magnetic field pitch at resonant surfaces. Various system parameter scans are conducted to determine their affect upon system stability and their implications. While tearing instabilities exist at low order rational resonances, investigating the instability of high-order rationals requires study of pressure-driven instabilities.
NASA Astrophysics Data System (ADS)
Cheng, Jian-Yih; Fisher, Brandon L.; Guisinger, Nathan P.; Lilley, Carmen M.
2017-12-01
Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni-Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni-Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I-V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. All of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.
Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.; ...
2017-05-22
Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.
Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less
NASA Astrophysics Data System (ADS)
Khuong, Anne Chudolij
This work demonstrates the viability of the whispering gallery mode (WGM) photonic sensing method for use as a biosensor by demonstrating a surface immobilization strategy for histidine tagged biomolecules to the WGM sensor surface. The WGM resonator is a dielectric spherical microstructure that can sustain high-Q electromagnetic waves confined to the sphere by total internal reflection. Light circumnavigates the periphery of the WGM resonator and when the trapped light constructively superimposes onto itself on the round trip, a resonance condition is achieved. Because of minimal loss due to reflection, these modes can reach unusually high quality factors. When a change occurs in the evanescent field at the boundary of the resonator and surrounding environment, such as when a molecule binds to the resonator surface, a shift results in the resonance wavelength; this enables the WGM resonator to be used as a sensor. WGM optical biosensors offer a powerful alternative to conventional analytical techniques due to their high sensitivity, specificity and their ability to directly detect label-free events in real time. There has been considerable growth in this field over the last decade and potential applications to medical and biotechnological research are numerous; however, there are still obstacles limiting the widespread commercial use of these devices. The obstacle we address in this work relates to a general fundamental difficulty incorporating biomaterial into biosensors. We demonstrate a specific and controlled functionalization strategy intended for subsequent assimilation of biomolecules onto the WGM resonator surface. We have developed a general method which can be used to controllably immobilize recombinant proteins to WGM silica surfaces via their histidine tags. In the work presented herein we monitor by WGM, in real time, a two step functionalization strategy to incorporate an NTA-Ni2+ motif onto the surface of a WGM resonator. We estimated the equilibrium constant and surface the density for each of the two reaction steps. Our NTA-Ni2+ functionalized resonator can be used to immobilize histidine tagged biomolecules for subsequent interrogation of protein-protein or protein-ligand binding events and provides a general platform to immobilize biomolecules to WGM biosensors.
Transmission characteristics of a subwavelength metallic slit with perpendicular groove
NASA Astrophysics Data System (ADS)
Jin, Li; Zhou, Jun; Zou, Weibo; Zhang, Haopeng; Zhang, Lingfen
2011-12-01
The transmission property of a subwavelength metallic slit with perpendicular groove is investigated by using finite element method. The lengths for the slits at both sides of the groove are set as the length of a metallic slit without groove at the surface plasmon fundamental mode resonance. In the grooved subwavelength metallic slit, enhanced transmission is found to be attributed to two kinds of resonance including surface plasmon waveguide resonance along the propagating direction and the transversely constructive interferential resonance. For the former resonance, integer antinodes of surface plasmon are formed in the groove. For the later resonance, there is a tradeoff between the maximum amplitude and the full width at half maximum of the transmitted peaks with the change of the groove width. And, the transmission enhancement of the grooved subwavelength metallic slit is related to the number of groove and the incident wavelength. Furthermore, the above resonances also exist in the structure whose lengths of metallic slits are set as the length of a slit without groove at the surface plasmon high-order mode resonance. By optimizing the geometric parameters, the transmission enhancement of the grooved subwavelength metallic slit as high as about 15367% is achieved.
NASA Astrophysics Data System (ADS)
Maghari, A.; Kermani, M. M.
2018-04-01
A system of two interacting atoms confined in 1D harmonic trap and perturbed by an absorbing boundary potential is studied using the Lippmann-Schwinger formalism. The atom-atom interaction potential was considered as a nonlocal separable model. The perturbed absorbing boundary potential was also assumed in the form of Scarf II complex absorbing potential. The model is used for the study of 1D optical lattices that support the trapping of a pair atom within a unit cell. Moreover, it allows to describe the scattering particles in a tight smooth trapping surface and to analyze the bound and resonance states. The analytical expressions for wavefunctions and transition matrix as well as the absorption probabilities are calculated. A demonstration of how the complex absorbing potential affecting the bound states and resonances of particles confined in a harmonic trap is described.
NASA Astrophysics Data System (ADS)
Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert
2015-03-01
High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.
Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires.
Li, Zhen; Xu, Enzhi; Losovyj, Yaroslav; Li, Nan; Chen, Aiping; Swartzentruber, Brian; Sinitsyn, Nikolai; Yoo, Jinkyoung; Jia, Quanxi; Zhang, Shixiong
2017-09-14
The recent discovery of excellent thermoelectric properties and topological surface states in SnTe-based compounds has attracted extensive attention in various research areas. Indium doped SnTe is of particular interest because, depending on the doping level, it can either generate resonant states in the bulk valence band leading to enhanced thermoelectric properties, or induce superconductivity that coexists with topological states. Here we report on the vapor deposition of In-doped SnTe nanowires and the study of their surface oxidation and thermoelectric properties. The nanowire growth is assisted by Au catalysts, and their morphologies vary as a function of substrate position and temperature. Transmission electron microscopy characterization reveals the formation of an amorphous surface in single crystalline nanowires. X-ray photoelectron spectroscopy studies suggest that the nanowire surface is composed of In 2 O 3 , SnO 2 , Te and TeO 2 which can be readily removed by argon ion sputtering. Exposure of the cleaned nanowires to atmosphere leads to rapid oxidation of the surface within only one minute. Characterization of electrical conductivity σ, thermopower S, and thermal conductivity κ was performed on the same In-doped nanowire which shows suppressed σ and κ but enhanced S yielding an improved thermoelectric figure of merit ZT compared to the undoped SnTe.
Frequency shifts of an electric-dipole resonance near a conducting surface
NASA Technical Reports Server (NTRS)
Holland, W. R.; Hall, D. G.
1984-01-01
The resonance frequency of an electric dipole placed near a conducting surface is shifted by the dipole-surface interaction. The observation and measurement of these shifts at optical frequencies is reported for an experimental system that consists of a metal-island film spaced a distance d from a continuous Ag film. The dependence of the shift in the frequency of the island resonance on d shows good agreement with that predicted by a classical theory of the dipole-surface interaction.
STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs
NASA Astrophysics Data System (ADS)
Lee, Donghun; Daughton, David; Gupta, Jay
2009-03-01
Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)
NASA Astrophysics Data System (ADS)
Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan
2008-04-01
We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.
Optical biosensors using surface plasmon resonance
NASA Astrophysics Data System (ADS)
Homola, Jiri; Brynda, Eduard; Tobiska, Petr; Tichy, Ivo; Skvor, Jiri
1999-12-01
We present a surface plasmon resonance sensor base on prism excitation of surface plasmons and spectral interrogation. For specific detection of biomolecular analytes, multilayers of monoclonal antibodies are immobilized on the surface of the sensor. Detection of biomolecular analytes such as human (beta) -2)-microglobulin, choriogonadotropin, hepatitis B surface antigen, salmonella enteritidis is demonstrated.
Effective conductivity of wire mesh reflectors for space deployable antenna systems
NASA Technical Reports Server (NTRS)
Davis, William A.
1994-01-01
This report summarizes efforts to characterize the measurement of conductive mesh and smooth surfaces using proximity measurements for a dielectric resonator. The resonator operates in the HEM11 mode and is shown to have an evanescent field behavior in the vicinity of the sample surface, raising some question to the validity of measurements requiring near normal incidence on the material. In addition, the slow radial field decay outside of the dielectric resonator validates the sensitivity to the planar supporting structure and potential radiation effects. Though these concerns become apparent along with the sensitivity to the gap between the dielectric and the material surface, the basic concept of the material measurement using dielectric resonators has been verified for useful comparison of material surface properties. The properties, particularly loss, may be obtained by monitoring the resonant frequency along with the resonator quality factor (Q), 3 dB bandwidth, or the midband transmission amplitude. Comparison must be made to known materials to extract the desired data.
NASA Astrophysics Data System (ADS)
Xie, Yu-Bo; Liu, Zheng-Yang; Wang, Qian-Jin; Sun, Guang-Hou; Zhang, Xue-Jin; Zhu, Yong-Yuan
2016-03-01
Optical nanoantennas, usually referring to metal structures with localized surface plasmon resonance, could efficiently convert confined optical energy to free-space light, and vice versa. But it is difficult to manipulate the confined visible light energy for its nanoscale spatial extent. Here, a simple method is proposed to solve this problem by controlling surface plasmon polaritons to indirectly manipulate the localized plasmons. As a proof of principle, we demonstrate an optical rotation device which is a grating with central circular polarization optical nanoantenna. It realized the arbitrary optical rotation of linear polarized light by controlling the retard of dual surface plasmon polaritons sources from both side grating structures. Furthermore, we use a two-parameter theoretical model to explain the experimental results.
Bloch surface wave structures for high sensitivity detection and compact waveguiding
NASA Astrophysics Data System (ADS)
Khan, Muhammad Umar; Corbett, Brian
2016-01-01
Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.
Microfluidic transmission surface plasmon resonance enhancement for biosensor applications
NASA Astrophysics Data System (ADS)
Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao
2017-01-01
The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.
Microwave Resonators and Filters
2015-12-22
endorsed by the United States Government. 2 Equation Chapter 1 Section 1Introduction Why use superconductors ? Although superconductors have zero...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...for the use of superconductors in many applications, such as in high performance filters, is low loss even in a very small size. The energy stored is
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.
Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains
NASA Astrophysics Data System (ADS)
Yang, Zhaoju; Zhang, Baile
2016-11-01
Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.
Arrays of Carbon Nanotubes as RF Filters in Waveguides
NASA Technical Reports Server (NTRS)
Hoppe, Daniel; Hunt, Brian; Hoenk, Michael; Noca, Flavio; Xu, Jimmy
2003-01-01
Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.
Levitation and propulsion of a Mie-resonance particle by a surface plasmon.
Maslov, A V
2017-09-01
It is predicted that the optical force induced by a surface plasmon can form a stable equilibrium position for a resonant particle at a finite distance from the surface. The levitated particle can be efficiently propelled along the surface without touching it. The levitation originates from the strong interaction of the particle with the surface.
Electromagnetic resonances of plasma column between two metallic plates
NASA Astrophysics Data System (ADS)
Dvinin, Sergey; Dovzhenko, Vitaly; Sinkevich, Oleg
2015-09-01
It is known that there are two types of electrodynamic resonances of bounded supercritical plasma, placed between the two metal planes are possible. The first type is associated with the excitation of surface waves propagating along the lateral surface. The second one is caused by standing surface waves in the sheath at plasma-metal boundary. This work is concerned with theoretical study of the resonance properties of plasma slab in cases where both effects can be observed together. Resonance densities and frequencies are calculated. Solution of Maxwell's equations is demonstrated that directions of energy flows in first and second cases are opposite. Energy transfer to lateral surface waves is prevailing, if the field frequency is higher than the frequency, corresponding to the geometric plasma-sheath resonance. Amplitude of waves at plasma metal boundary becomes greater in opposite case. Discharge properties in both cases are calculated including joint excitation.
Topological acoustic polaritons: robust sound manipulation at the subwavelength scale
NASA Astrophysics Data System (ADS)
Yves, Simon; Fleury, Romain; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy
2017-07-01
Topological insulators, a hallmark of condensed matter physics, have recently reached the classical realm of acoustic waves. A remarkable property of time-reversal invariant topological insulators is the presence of unidirectional spin-polarized propagation along their edges, a property that could lead to a wealth of new opportunities in the ability to guide and manipulate sound. Here, we demonstrate and study the possibility to induce topologically non-trivial acoustic states at the deep subwavelength scale, in a structured two-dimensional metamaterial composed of Helmholtz resonators. Radically different from previous designs based on non-resonant sonic crystals, our proposal enables robust sound manipulation on a surface along predefined, subwavelength pathways of arbitrary shapes.
Magnetic Earth Ionosphere Resonant Frequencies
NASA Technical Reports Server (NTRS)
Spaniol, Craig
1994-01-01
The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.
NASA Astrophysics Data System (ADS)
He, Qilu; Lilley, Carmen M.
2012-10-01
The influence of both surface and shear effects on the resonant frequency of nanowires (NWs) was studied by incorporating the Young-Laplace equation with the Timoshenko beam theory. Face-centered-cubic metal NWs were studied. A dimensional analysis of the resonant frequencies for fixed-fixed gold (100) NWs were compared to molecular dynamic simulations. Silver NWs with diameters from 10 nm-500 nm were modeled as a cantilever, simply supported and fixed-fixed system for aspect ratios from 2.5-20 to identify the shear, surface, and size effects on the resonant frequencies. The shear effect was found to have a larger significance than surface effects when the aspect ratios were small (i.e., <5) regardless of size for the diameters modeled. Finally, as the aspect ratio grows, the surface effect becomes significant for the smaller diameter NWs.
Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N; Kabashin, Andrei V
2018-05-01
When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLR air , PSLR wat for air and water, respectively) and substrate (PSLR sub ) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 10 5 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
Kravets, V G; Kabashin, A V; Barnes, W L; Grigorenko, A N
2018-06-27
When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1-2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.
From single magnetic adatoms on superconductors to coupled spin chains
NASA Astrophysics Data System (ADS)
Franke, Katharina J.
Magnetic adsorbates on conventional s-wave superconductors lead to exchange interactions that induce Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Here, we employ tunneling spectroscopy at 1.1 K to investigate magnetic atoms and chains on superconducting Pb surfaces. We show that individual Manganese (Mn) atoms give rise to a distinct number of YSR-states. The single-atom junctions are stable over several orders of magnitude in conductance. We identify single-electron tunneling as well as Andreev processes. When the atoms are brought into sufficiently close distance, the Shiba states hybridize, thus giving rise to states with bonding and anti-bonding character. It has been shown that the Pb(110) surface supports the self-assembly of Fe chains, which exhibit fingerprints of Majorana bound states. Using superconducting tips, we resolve a rich subgap structure including peaks at zero energy and low-energy resonances, which overlap with the putative Majorana states. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through collaborative research Grant Sfb 658, and through Grant FR2726/4, as well by the European Research Council through Consolidator Grant NanoSpin.
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.
Creating a zero-order resonator using an optical surface transformation
Sun, Fei; Ge, Xiaochen; He, Sailing
2016-01-01
A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359
Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots
2014-06-23
Resonant scattering of surface plasmon polaritons by dressed quantum dots Danhong Huang,1 Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4 Shawn... polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In con- trast to...induced polarization field, treated as a source term9 arising from photo-excited electrons, allows for a resonant scattering of surface plasmon- polariton
Solid-state dewetting of thin Au films studied with real-time, in situ spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Magnozzi, M.; Bisio, F.; Canepa, M.
2017-11-01
We report the design and testing of a small, high vacuum chamber that allows real-time, in situ spectroscopic ellipsometry (SE) measurements; the chamber was designed to be easily inserted within the arms of a commercial ellipsometer. As a test application, we investigated the temperature-induced solid-state dewetting of thin (20 to 8 nm) Au layers on Si wafers. In situ SE measurements acquired in real time during the heating of the samples reveal features that can be related to the birth of a localized surface plasmon resonance (LSPR), and demonstrate the presence of a temperature threshold for the solid-state dewetting.
Fossez, K.; Michel, N.; Nazarewicz, W.; ...
2015-01-12
In this paper, bound and resonance states of the dipole-bound anion of hydrogen cyanide HCN – are studied using a nonadiabatic pseudopotential method and the Berggren expansion technique involving bound states, decaying resonant states, and nonresonant scattering continuum. We devise an algorithm to identify the resonant states in the complex energy plane. To characterize spatial distributions of electronic wave functions, we introduce the body-fixed density and use it to assign families of resonant states into collective rotational bands. We find that the nonadiabatic coupling of electronic motion to molecular rotation results in a transition from the strong-coupling to weak-coupling regime.more » In the strong-coupling limit, the electron moving in a subthreshold, spatially extended halo state follows the rotational motion of the molecule. Above the ionization threshold, the electron's motion in a resonance state becomes largely decoupled from molecular rotation. Finally, the widths of resonance-band members depend primarily on the electron orbital angular momentum.« less
Direct Identification of Dilute Surface Spins on Al2 O3 : Origin of Flux Noise in Quantum Circuits
NASA Astrophysics Data System (ADS)
de Graaf, S. E.; Adamyan, A. A.; Lindström, T.; Erts, D.; Kubatkin, S. E.; Tzalenchuk, A. Ya.; Danilov, A. V.
2017-02-01
An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2 O3 . We measure a spin density of 2.2 ×1 017 spins/m2 , attributed to physisorbed atomic hydrogen and S =1 /2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota
2015-11-15
Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.
Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment
NASA Astrophysics Data System (ADS)
Niemiec, Jan; Überall, Herbert; Bao, X. L.
2002-05-01
Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.
NASA Astrophysics Data System (ADS)
Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek
2018-05-01
Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.
Application of surface complexation models to anion adsorption by natural materials.
Goldberg, Sabine
2014-10-01
Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.
NASA Astrophysics Data System (ADS)
Bilheux, Hassina; Liu, Yuan; Alton, Gerald; Cole, John; Williams, Cecil; Reed, Charles
2004-11-01
Performance of ECR ion sources can be significantly enhanced by increasing the physical size of their ECR zones in relation to the size of their plasma volumes (spatial and frequency domain methods).^3-5 A 6 GHz, all-permanent magnet ECR ion source with a large resonant plasma volume has been tested at ORNL.^6 The magnetic circuit can be configured for creating both flat-β (volume) and conventional minimum-β (surface) resonance conditions. Direct comparisons of the performance of the two source types can be made under similar operating conditions. In this paper, we clearly demonstrate that the flat-β source outperforms its minimum-β counterpart in terms of charge state distribution and intensity within a particular charge state. ^1bilheuxhn@ornl.gov ^2Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. ^3G.D. Alton, D.N. Smithe, Rev. Sci. Instrum. 65 (1994) 775. ^4G.D. Alton et al., Rev. Sci. Instrum. 69 (1998) 2305. ^5Z.Q. Xie, C.M. Lyneis, Rev. Sci. Instrum. 66 (1995) 4218. ^6Y. Liu et al., Rev. Sci. Instrum. 69 (1998) 1311.
Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators
NASA Astrophysics Data System (ADS)
Liu, Tong; Zhang, Yang; Yu, Chang-Shui; Zhang, Wei-Ning
2017-05-01
Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.
Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel
2013-03-11
It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.
Strong interference effects in the resonant Auger decay of atoms induced by intense x-ray fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demekhin, Philipp V.; Cederbaum, Lorenz S.
2011-02-15
The theory of resonant Auger decay of atoms in a high-intensity coherent x-ray pulse is presented. The theory includes the coupling between the ground state and the resonance due to an intense x-ray pulse, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the final ionic states coherently. The theory also considers the impact of the direct photoionization of the resonance state itself which typically populates highly excited ionic states. The combined action of the resonant decay and of the direct ionization of the ground state in the field induces amore » non-Hermitian time-dependent coupling between the ground and the ''dressed'' resonance stats. The impact of these competing processes on the total electron yield and on the 2s{sup 2}2p{sup 4}({sup 1}D)3p {sup 2}P spectator and 2s{sup 1}2p{sup 6} {sup 2}S participator Auger decay spectra of the Ne 1s{yields}3p resonance is investigated. The role of the direct photoionization of the ground state and of the resonance increases dramatically with the field intensity. This results in strong interference effects with distinct patterns in the electron spectra, which differ for the participator and spectator final states.« less
Poincaré-Treshchev Mechanism in Multi-scale, Nearly Integrable Hamiltonian Systems
NASA Astrophysics Data System (ADS)
Xu, Lu; Li, Yong; Yi, Yingfei
2018-02-01
This paper is a continuation to our work (Xu et al. in Ann Henri Poincaré 18(1):53-83, 2017) concerning the persistence of lower-dimensional tori on resonant surfaces of a multi-scale, nearly integrable Hamiltonian system. This type of systems, being properly degenerate, arise naturally in planar and spatial lunar problems of celestial mechanics for which the persistence problem ties closely to the stability of the systems. For such a system, under certain non-degenerate conditions of Rüssmann type, the majority persistence of non-resonant tori and the existence of a nearly full measure set of Poincaré non-degenerate, lower-dimensional, quasi-periodic invariant tori on a resonant surface corresponding to the highest order of scale is proved in Han et al. (Ann Henri Poincaré 10(8):1419-1436, 2010) and Xu et al. (2017), respectively. In this work, we consider a resonant surface corresponding to any intermediate order of scale and show the existence of a nearly full measure set of Poincaré non-degenerate, lower-dimensional, quasi-periodic invariant tori on the resonant surface. The proof is based on a normal form reduction which consists of a finite step of KAM iterations in pushing the non-integrable perturbation to a sufficiently high order and the splitting of resonant tori on the resonant surface according to the Poincaré-Treshchev mechanism.
NASA Astrophysics Data System (ADS)
Paik, Seoyoung
A study of spin-dependent electronic transitions at the (111) oriented phosphorous doped crystalline silicon (c-Si) to silicon dioxide (SiO 2) interface is presented for [31P] = 1015 cm-3 and [31P] = 1016 cm -3 and a temperature range between T ≈ 5K and T ≈ 15K. Using pulsed electrically detected magnetic resonance (pEDMR), spin-dependent transitions involving 31P donor states and two different interface states are observed, namely (i) Pb centers which can be identified by their characteristic anisotropy and (ii) the E' center which is attributed to defects of the near interface SiO 2 bulk. Correlation measurements of the dynamics of spin-dependent recombination confirm that previously proposed transitions between 31P and the interface defects take place. The influence of these near interface transitions on the 31P donor spin coherence time T 2 as well as the donor spin-lattice relaxation time T 1 is then investigated by comparison of spin Hahn echo decay measurements obtained from conventional bulk sensitive pulsed electron paramagnetic resonance and surface sensitive pEDMR measurements, as well as surface sensitive electrically detected inversion recovery experiments. The measurements reveal that the T2 times of both interface states and 31P donor electrons spins in proximity of them are consistently shorter than the T1 times, and both T2 and T1 times of the near interface donors are reduced by several orders of magnitude from those in the bulk, at T ≤ 13 K. The T 2 times of the 31P donor electrons are in agreement with the prediction by De Sousa that they are limited by interface defect-induced field noise. To further investigate the dynamic properties of spin-dependent near interface processes, electrical detection of spin beat oscillation between resonantly induced spin-Rabi nutation is conducted at the phosphorous doped (1016cm-3) Si(111)/SiO2 interface. Predictions of Rabi beat oscillations based on several different spin-pair models are compared with measured Rabi beat nutation data. Due to the g-factor anisotropy of the Pb center (a silicon surface dangling bond), one can tune intra-pair Larmor frequency differences (Larmor separations) by orientation of the crystal with regard to an external magnetic field. Since Larmor separation governs the number of beating spin-pairs, crystal orientation can control the beat current. This is used to identify spin states that are paired by mutual electronic transitions. Based on the agreement between hypothesis and data, the experiments confirm the presence of the previously observed 31P-P b transition and the previously hypothesized P b to near interface SiO2 bulk state (E' center) transition.
Surface acoustic wave oxygen pressure sensor
NASA Technical Reports Server (NTRS)
Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)
1994-01-01
A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Shao, Wen; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2018-06-01
Silver thin films with linear variable thickness were deposited at room temperature. The corresponding tunability of optical properties and Raman scattering intensity were realized by thermal annealing process. With the thickness increasing, the topography of as-annealed silver thin films was observed to develop from discontinued nanospheres into continuous structure with a redshift of the surface plasmon resonance wavelength in visible region. Both the various nanosphere sizes and states of aggregation of as-annealed silver thin films contributed to significantly increasing the sensitivity of surface enhanced Raman scattering (SERS).
Resonances in the reaction ortho- and para- D2 + H at temperatures below 10 K
NASA Astrophysics Data System (ADS)
Simbotin, I.; Côté, R.
2016-05-01
In a previous study we reported cross sections for the reaction H2 + D in the temperature regime 10-6 < T < 10 K, and found pronounced shape resonances, especially in the p and d partial waves. We found that the resonant structures were sensitive to the initial rovibrational state of H2; in particular, we showed that the effect of the nuclear-spin symmetry was very important, since ortho- and para- H2 gave significantly different results. We now investigate the reaction D2 + H for vibrationally excited ortho- and para- D2, and compare and contrast these results with those for H2 + D. We remark that this benchmark system is a prototypical example of reactions with a strong barrier, which have very small cross sections in the cold and ultracold regimes. However, shape resonances can enhance the reaction cross sections by orders of magnitude for temperatures around and below T = 1 K. Moreover, resonant features would provide stringent tests for quantum chemistry calculations of potential energy surfaces. Partial support from the US Army Research Office (Grant No. W911NF-13-1-0213).
A flexible surface-coil-type resonator using triaxial cable
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Ono, Mitsuhiro
1997-09-01
This note describes a newly developed flexible surface-coil-type resonator (FSCR) used for electron paramagnetic resonance (EPR) measurements. A conventional FSCR has used a balanced transmission line made by coaxial lines. The new resonator uses triaxial cable in order to avoid anisotropy of flexure of the transmission line. Experimental results show that the EPR signal measured with the triaxial FSCR is 35% stronger than that measured with the conventional FSCR.
Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging
2016-02-13
switchable array, RF magnetic field, NQR , MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance ( NQR ) techniques. REF [1] and [6] explain the differences between NMR and NQR . What NMR and NQR ...of resonance NQR frequency of 28.1MHz. The matching and tuning is explain in detail in the next section of this paper. Rectangle Surface Coil
NASA Astrophysics Data System (ADS)
Fannin, Alexander L.; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Magnusson, Robert
2017-12-01
We treat fundamental resonance effects in hybridized metal-dielectric elements that may find applications in absorption, sensing, and displays. The hybrid structures support guided-mode resonance (GMR) and surface plasmon resonance (SPR) operating independently or in unison. Numerical simulations of periodic resonant films coated in gold that effectively combine principles of both resonance effects show viability of absorbers with equalized spectra and hybrid waveguides. The experimentally measured spectra show qualitative agreement with theoretical models. We introduce a hybrid GMR/SPR refractive-index sensor consisting of a thin aluminum film integrated with a subwavelength silicon-dioxide grating. The sensor operates between the Rayleigh wavelengths of the cover and the substrate. A GMR is excited by TE-polarized light and is subsequently attenuated by the Rayleigh anomaly as the cover index increases. In transverse-magnetic-polarized light, it operates as a Rayleigh sensor with sharp spectral features that would be easily monitored with a spectrum analyzer. As a final device example, we present simulation results pertaining to a one-dimensional color filter utilizing SPR, GMR, and the Rayleigh anomaly and convert it into a polarization insensitive two-dimensional device. With dual periods along orthogonal directions, two resonant peaks are induced within the visible spectrum for unpolarized input light rendering a color-mixing effect. The output color of the dual pixel is tunable with the input polarization state.
NASA Astrophysics Data System (ADS)
Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania
2013-12-01
Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.
NASA Astrophysics Data System (ADS)
Islam, M. F.; Canali, C. M.; Pertsova, A.; Balatsky, A.; Mahatha, S. K.; Carbone, C.; Barla, A.; Kokh, K. A.; Tereshchenko, O. E.; Jiménez, E.; Brookes, N. B.; Gargiani, P.; Valvidares, M.; Schatz, S.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Jung, J.; Bathon, T.; Fauth, K.; Bode, M.; Sessi, P.
2018-04-01
The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3 . By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-ray magnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.
Orientation-dependent imaging of electronically excited quantum dots
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin
2018-02-01
We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|
Orientation-dependent imaging of electronically excited quantum dots.
Nguyen, Duc; Goings, Joshua J; Nguyen, Huy A; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin
2018-02-14
We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x 0 , y 0 ) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x 0 , y 0 ) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density φ i x 0 ,y 0 2 of the excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy E i . The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.
Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters
NASA Technical Reports Server (NTRS)
Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.
1997-01-01
Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.
Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability
NASA Astrophysics Data System (ADS)
Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong
2017-06-01
Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.
Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang
2013-01-01
Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943
Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events.
Mann, Michael E; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A; Miller, Sonya K; Coumou, Dim
2017-03-27
Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Zueqian
2010-01-01
Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-anglemore » X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.« less
Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations
NASA Astrophysics Data System (ADS)
Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.
2017-10-01
Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.
Development of optical WGM resonators for biosensors
NASA Astrophysics Data System (ADS)
Brice, I.; Pirktina, A.; Ubele, A.; Grundsteins, K.; Atvars, A.; Viter, R.; Alnis, J.
2017-12-01
Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.
Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots
Zhang, Yusheng; Han, Zhanghua
2015-01-01
Novel spoof surface plasmon based terahertz (THz) antennas are realized using a few number of rectangular grooves perforated in ultrathin metal stripes and the properties of them, including both scattering cross sections and field enhancement, are numerically analyzed. The dependence of these properties on the incident angle and groove number is discussed and the results show that sharp resonances in scattering cross section spectra associated with strong local field enhancement can be achieved. These resonances are due to the formation of Fabry-Perot resonances of the spoof surface plasmon mode and it is found that the order of resonance exhibiting strongest field enhancements is found to coincide with the number of grooves at normal incidence, due to hybridization of the antenna resonance with the individual groove resonance. The terahertz hotspots within the grooves at resonances due to the local field enhancement may open up new possibilities for the investigation of terahertz-matter interactions and boost a variety of THz applications including novel sensing and THz detections. The planar stripe antennas with sharper resonances than dipolar-like resonances, together with their ease of fabrication may also promise new design methodology for metamaterials. PMID:26691003
Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators
Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.
2015-01-01
Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141
Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga
2018-01-01
In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.
Nonlinear density waves in planetary rings
NASA Technical Reports Server (NTRS)
Borderies, Nicole; Goldreich, Peter; Tremaine, Scott
1986-01-01
The steady-state structure of planetary rings in the presence of density waves at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density waves, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density waves lead to an enhancement of the background surface density in the wave zone.
NASA Astrophysics Data System (ADS)
Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing
2011-12-01
In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.
Sindona, A; Pisarra, M; Maletta, S; Riccardi, P; Falcone, G
2010-12-01
Resonant neutralization of hyperthermal energy Na(+) ions impinging on Cu(100) surfaces is studied, focusing on two specific collision events: one in which the projectile is reflected off the surface, the other in which the incident atom penetrates the outer surface layers initiating a series of scattering processes, within the target, and coming out together with a single surface atom. A semi-empirical model potential is adopted that embeds: (i) the electronic structure of the sample, (ii) the central field of the projectile, and (iii) the contribution of the Cu atom ejected in multiple scattering events. The evolution of the ionization orbital of the scattered atom is simulated, backwards in time, using a wavepacket propagation algorithm. The output of the approach is the neutralization probability, obtained by projecting the time-reversed valence wavefunction of the projectile onto the initially filled conduction band states. The results are in agreement with available data from the literature (Keller et al 1995 Phys. Rev. Lett. 75 1654) indicating that the motion of surface atoms, exiting the targets with kinetic energies of the order of a few electronvolts, plays a significant role in the final charge state of projectiles.
Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D
2017-08-01
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
NASA Astrophysics Data System (ADS)
Franςois, A.; Boehm, J.; Oh, S. Y.; Kok, T.; Monro, T. M.
2011-06-01
The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light as first described byKretschmann. Here we show that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. This approach addresses existing practical limitations associated with current SPR technologies, including bulk, cost and calibration. It is applicable to a range of SPR geometries, including optical fibres, planar waveguides and prism configurations, and is in principle capable of detecting multiple analytes simultaneously. Moreover, this technique allows to combine SPR sensing and fluorescence sensing into a single platform which has never been demonstrated before and consequently use these two methods for a more reliable diagnostic. As an example, this approach has been used to demonstrate the rapid detection of the seasonal influenza virus.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.
Bouillard, J-S; Vilain, S; Dickson, W; Wurtz, G A; Zayats, A V
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp
Bouillard, J.-S; Vilain, S.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. PMID:23170197
Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene
2016-01-01
A thiol-modified carotene, 7′-apo-7′-(4-mercaptomethylphenyl)-β-carotene, was used to obtain nonresonant surface-enhanced Raman scattering (SERS) spectra of carotene at an excitation wavelength of 1064 nm, which were compared with resonant SERS spectra at an excitation wavelength of 532 nm. These spectra and surface-enhanced hyper-Raman scattering (SEHRS) spectra of the functionalized carotene were compared with the spectra of nonmodified β-carotene. Using SERS, normal Raman, and SEHRS spectra, all obtained for the resonant case, the interaction of the carotene molecules with silver nanoparticles, as well as the influence of the resonance enhancement and the SERS enhancement on the spectra, were investigated. The interaction with the silver surface occurs for both functionalized and nonfunctionalized β-carotene, but only the stronger functionalization-induced interaction enables the acquisition of nonresonant SERS spectra of β-carotene at low concentrations. The resonant SEHRS and SERS spectra are very similar. Nevertheless, the SEHRS spectra contain additional bands of infrared-active modes of carotene. Increased contributions from bands that experience low resonance enhancement point to a strong interaction between silver nanoparticles and electronic levels of the molecules, thereby giving rise to a decrease in the resonance enhancement in SERS and SEHRS. PMID:28077983
Laboratory Experiments for Exploring the Surface Plasmon Resonance
ERIC Educational Resources Information Center
Pluchery, Olivier; Vayron, Romain; Van, Kha-Man
2011-01-01
The surface plasmon wave is a surface wave confined at the interface between a dielectric and a metal. The excitation of the surface plasmon resonance (SPR) on a gold thin film is discussed within the Kretschmann configuration, where the coupling with the excitation light is achieved by means of a prism in total reflection. The electromagnetic…
Resonant Tunneling in Photonic Double Quantum Well Heterostructures.
Cox, Joel D; Singh, Mahi R
2010-01-30
Here, we study the resonant photonic states of photonic double quantum well (PDQW) heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices.
Resonant power processors. I - State plane analysis
NASA Technical Reports Server (NTRS)
Oruganti, R.; Lee, F. C.
1984-01-01
State-plane techniques in conjunction with piecewise-linear analysis is employed to study the steady-state and transient characteristics of a series resonant converter. With the direct viewing of the resonant tank energy and the device switching instants, the state portrayal provides unique insights into the complex behavior of the converter. Operation of the converter under both continuous and discontinuous current modes and at frequencies both below and above resonant frequency are discussed.
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, Allan; Boozer, Allen
1987-01-01
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, A.; Boozer, A.
1984-10-31
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Malkin, A. M.; Sergeev, A. S.; Fil'chenkov, S. E.; Zaslavsky, V. Yu.
2018-04-01
In the frame of the quasi-optical approach we solve the diffraction problem and describe surface modes confined at a metallic plate with a shallow grating of finite length. We prove that such planar grating can form a highly selective surface-wave Bragg resonator. For a given material conductivity and grating length, we find the optimum corrugation depth that provides the maximum value of Q factor. These results are applicable for developing resonators for terahertz frequency bands.
NASA Astrophysics Data System (ADS)
Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.
2012-09-01
The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.
Duo, Jia; Bruno, JoAnne; Kozhich, Alexander; David-Brown, Donata; Luo, Linlin; Kwok, Suk; Santockyte, Rasa; Haulenbeek, Jonathan; Liu, Rong; Hamuro, Lora; Peterson, Jon E; Piccoli, Steven; DeSilva, Binodh; Pillutla, Renuka; Zhang, Yan J
2018-04-01
Ligand-binding assay (LBA) performance depends on quality reagents. Strategic reagent screening and characterization is critical to LBA development, optimization and validation. Application of advanced technologies expedites the reagent screening and assay development process. By evaluating surface plasmon resonance technology that offers high-throughput kinetic information, this article aims to provide perspectives on applying the surface plasmon resonance technology to strategic LBA critical reagent screening and characterization supported by a number of case studies from multiple biotherapeutic programs.
Piezoelectric resonator assembly with thin molybdenum mounting clips
Peters, R. Donald
1981-01-01
A resonator mounting assembly wherein the resonator blank is mounted agai an essentially planar surface presented by a plurality of peripherally disposed mounting clips and bonded to this surface to provide substantially all the mechanical support for the blank in a direction normal to the major faces of the resonator blank, while being flexible in the directions parallel to said major faces so as to minimize radial stresses on the resonator blank, particularly during thermal cycling of the resonator assembly. The clips are fabricated of a low thermal expansion material, such as molybdenum, which also has considerable yield strength after exposure to processing temperatures; the bonding of the clips to the edges of the resonator blank can be achieved by a polyimide containing electrically conductive particles.
Kryshtal, R G; Medved, A V
2014-02-01
Application of surface acoustic wave resonators with a phase format of an output signal as the thermometric "magnifying glass" is suggested. Possibilities of monitoring and measuring of small changes of temperature from 0.001 K to 0.3 K of objects having thermal contact with the resonator's substrate are shown experimentally.
Effect of interstitial impurities on the field dependent microwave surface resistance of niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, M.; Grassellino, A.; Checchin, M.
Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobiummore » resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. Lastly, these results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less
Effect of interstitial impurities on the field dependent microwave surface resistance of niobium
Martinello, M.; Grassellino, A.; Checchin, M.; ...
2016-08-09
Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobiummore » resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. Lastly, these results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less
Label-free screening of foodborne Salmonella using surface plasmon resonance imaging
USDA-ARS?s Scientific Manuscript database
Since 15 pathogens cause approximately 95% of the foodborne infections, it is desirable to develop rapid and simultaneous screening methods for these major pathogens. In this study, we developed an immunoassay for Salmonella based on surface plasmon resonance imaging (SPRi). The sensor surface modif...
NASA Astrophysics Data System (ADS)
Hou, Jie; Wang, Yu; Eguchi, Keitaro; Nanjo, Chihiro; Takaoka, Tsuyoshi; Sainoo, Yasuyuki; Awaga, Kunio; Komeda, Tadahiro
2018-05-01
We report scanning tunneling microscope (STM) observation of vanadyl tetrakis(thiadiazole) porphyrazine (VOTTDPz) molecules, which is a family molecule of phthalocyanine (Pc) but without Csbnd H termination in the perimeter, deposited on Au(1 1 1) surface. Well-ordered film corresponding to 4 × 4 superstructure with respect to Au(1 1 1) surface is formed, in which the centers of the molecules are separated by 1.12 nm, which is much smaller than that observed for a VOPc molecule on Au(1 1 1), due to the absence of Csbnd H termination. At the same time, the azimuthal angles of neighboring molecules rotate with each other by 30°. A contrast variation of bright and dark molecules is observed, which are interpreted as O-up and O-down molecules, respectively, based on the density functional theory simulation. Spin-polarized local density of states calculation shows spin-polarized V 3d state, which is delocalized over the ring. Spin detection is executed by measuring Kondo resonance in the tunneling spectroscopy near the Fermi level, which is caused by the interaction of an isolated spin and conduction electron of the substrate. We detected asymmetric and weak Kondo peak for out-of-plane outer magnetic field of 0 T, which becomes strong and symmetric peak at 5 T, which is understood by the shift of the spin center of the Kondo resonance from V 3d to delocalized π state in ring with the magnetic field.
Differentiating and characterizing geminal silanols in silicas by (29)Si NMR spectroscopy.
Murray, David K
2010-12-01
Single and geminal hydroxyl species in silicas have been characterized using solid-state (29)Si NMR spectroscopy. Differentiating hydroxyl types is important in understanding their roles in chemical toxicity mechanisms for inhaled crystalline silicas responsible for silicosis. (1)H-(29)Si cross polarization NMR spectroscopy has been employed to obtain (29)Si NMR chemical shift data and signal accrual and relaxation characteristics. Spectral deconvolution is used to examine relative single and geminal hydroxyl resonance areas for a series of representative silicas and silica gels. Silicon-containing materials examined include 1878a quartz, and 1879a cristobalite from the National Institute for Science and Technology, kaolin, and several widely used respirable silicas and silica gels. Geminal hydroxyls were observed in every case, with relative resonance areas accounting for 21-65% of total hydroxyl signals. Factors affecting relative areas measured as a function of contact time, relaxation, and surface area are discussed. Subsequent (29)Si and (31)P NMR studies of a silica coated with various sodium hydrogen phosphates show preferential single silanol-phosphate interaction for basic phosphates, and oligomerization products for acidic phosphates. Geminal hydroxyl resonance areas displayed significant error (4-17%) for low surface area silicas, limiting this method to studies exhibiting major changes in chemical or spectroscopic properties. Published by Elsevier Inc.
Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek
2018-05-15
Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism. Copyright © 2018. Published by Elsevier B.V.
Foppa, Murilo; Arora, Garima; Gona, Philimon; Ashrafi, Arman; Salton, Carol J; Yeon, Susan B; Blease, Susan J; Levy, Daniel; O'Donnell, Christopher J; Manning, Warren J; Chuang, Michael L
2016-03-01
Cardiac magnetic resonance is uniquely well suited for noninvasive imaging of the right ventricle. We sought to define normal cardiac magnetic resonance reference values and to identify the main determinants of right ventricular (RV) volumes and systolic function using a modern imaging sequence in a community-dwelling, longitudinally followed cohort free of clinical cardiovascular and pulmonary disease. The Framingham Heart Study Offspring cohort has been followed since 1971. We scanned 1794 Offspring cohort members using steady-state free precession cardiac magnetic resonance and identified a reference group of 1336 adults (64±9 years, 576 men) free of prevalent cardiovascular and pulmonary disease. RV trabeculations and papillary muscles were considered cavity volume. Men had greater RV volumes and cardiac output before and after indexation to body size (all P<0.001). Women had higher RV ejection fraction than men (68±6% versus 64±7%; P<0.0001). RV volumes and cardiac output decreased with advancing age. There was an increase in raw and height-indexed RV measurements with increasing body mass index, but this trend was weakly inverted after indexation of RV volumes to body surface area. Sex, age, height, body mass index, and heart rate account for most of the variability in RV volumes and function in this community-dwelling population. We report sex-specific normative values for RV measurements among principally middle-aged and older adults. RV ejection fraction is greater in women. RV volumes increase with body size, are greater in men, and are smaller in older people. Body surface area seems to be appropriate for indexation of cardiac magnetic resonance-derived RV volumes. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Lei, Zeyu; Zhou, Xin; Yang, Jie; He, Xiaolong; Wang, Yalin; Yang, Tian
2017-04-01
Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free biosensing systems that have a dip-and-read configuration, high compatibility with fiber-optic techniques, and in vivo monitoring capability, which however meets the challenge to match the performance of free-space counterparts. We report a second-order distributed feedback (DFB) SPR cavity on an SMF end facet and its application in protein interaction analysis. In our device, a periodic array of nanoslits in a gold film is used to couple fiber guided lightwaves to surface plasmon polaritons (SPPs) with its first order spatial Fourier component, while the second order spatial Fourier component provides DFB to SPP propagation and produces an SPP bandgap. A phase shift section in the DFB structure introduces an SPR defect state within the SPP bandgap, whose mode profile is optimized to match that of the SMF to achieve a reasonable coupling efficiency. We report an experimental refractive index sensitivity of 628 nm RIU-1, a figure-of-merit of 80 RIU-1, and a limit of detection of 7 × 10-6 RIU. The measurement of the real-time interaction between human immunoglobulin G molecules and their antibodies is demonstrated.
Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators.
Xu, Gangyi; Colombelli, Raffaele; Braive, Remy; Beaudoin, Gregoire; Le Gratiet, Luc; Talneau, Anne; Ferlazzo, Laurence; Sagnes, Isabelle
2010-05-24
We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.
Linear and nonlinear response of a rotating tokamak plasma to a resonant error-field
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard
2014-09-01
An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of constant-ψ, resistive-magnetohydrodynamical theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived and their domains of validity mapped out in parameter space.
NASA Astrophysics Data System (ADS)
Meng, Xuan; Shibayama, Tamaki; Yu, Ruixuan; Takayanagi, Shinya; Watanabe, Seiichi
2013-08-01
Ag-Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar-ion irradiation of 30 nm Ag-Au bimetallic films deposited on SiO2 glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 1017 cm-2, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag-Au nanospheroids with a FCC structure partially embedded in the SiO2 substrate was confirmed, which has a potential application in solid-state devices.
Applications of high-frequency radar
NASA Astrophysics Data System (ADS)
Headrick, J. M.; Thomason, J. F.
1998-07-01
Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Lee, Jihoon
2018-05-01
As a promising candidate for the improved performance, silver nanoparticles (Ag NPs) have been successfully adapted in various applications such as photovoltaics, light emitting diodes (LEDs), sensors and catalysis by taking the advantage of their controllable plasmonic properties. In this paper, the control on the morphologies and optical properties of Ag NPs on c-plane sapphire (0001) is demonstrated by the systematic control of annealing temperature (between 200 and 950 °C) with 20 and 6 nm thick Ag films through the solid state dewetting. With the relatively thicker film of 20 nm, various configuration and size of Ag NPs are fabricated such as irregular, round dome-shaped and tiny Ag NPs depending on the annealing temperature. In a shrill contrast, the 6 nm Ag set exhibits a sharp distinction with the formation of densely packed small NPs and ultra-highly dense tiny Ag NPs due to the higher dewetting rate. While, the surface diffusion assumes the main driving force in the evolution process of Ag NP morphologies up to 550 °C, the sublimation of Ag atoms has played a significant role on top on the surface diffusion between 600 and 950 °C. The reflectance spectra of Ag NPs exhibit the quadrupolar resonance and dipolar resonance peaks, and the evolution of peaks, shift and average reflectance were discussed based on the Ag NPs size and surface coverage. In particular, the dipolar resonance peak in the reflectance spectra red shifts from ~475 to ~570 nm due to the size increment of Ag NPs (38.31 to 74.68 nm). The wide surface coverage of Ag NPs exhibits the highest average reflectance (~27%) and the lowest Raman intensity.
Zhu, S; Chen, T P; Cen, Z H; Goh, E S M; Yu, S F; Liu, Y C; Liu, Y
2010-10-11
The split of surface plasmon resonance of self-assembled gold nanoparticles on Si substrate is observed from the dielectric functions of the nanoparticles. The split plasmon resonances are modeled with two Lorentz oscillators: one oscillator at ~1 eV models the polarization parallel to the substrate while the other at ~2 eV represents the polarization perpendicular to the substrate. Both parallel and perpendicular resonances are red-shifted when the nanoparticle size increases. The red shifts in both resonances are explained by the image charge effect of the Si substrate.
Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P
2007-08-01
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.
Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials
NASA Astrophysics Data System (ADS)
Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi
2016-06-01
We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.
Low-profile wireless passive resonators for sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xun; An, Linan
A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmittingmore » a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.« less
Overvoltage protection system for wireless power transfer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, Paul H.; Jones, Perry T.; Miller, John M.
A wireless power transfer overvoltage protection system is provided. The system includes a resonant receiving circuit. The resonant receiving circuit includes an inductor, a resonant capacitor and a first switching device. The first switching device is connected the ends of the inductor. The first switching device has a first state in which the ends of the inductor are electrically coupled to each other through the first switching device, and a second state in which the inductor and resonant capacitor are capable of resonating. The system further includes a control module configured to control the first switching device to switching betweenmore » the first state and the second state when the resonant receiving circuit is charging a load and a preset condition is satisfied and otherwise, the first switching device is maintained in the first state.« less
The decay widths, the decay constants, and the branching fractions of a resonant state
NASA Astrophysics Data System (ADS)
de la Madrid, Rafael
2015-08-01
We introduce the differential and the total decay widths of a resonant (Gamow) state decaying into a continuum of stable states. When the resonance has several decay modes, we introduce the corresponding partial decay widths and branching fractions. In the approximation that the resonance is sharp, the expressions for the differential, partial and total decay widths of a resonant state bear a close resemblance with the Golden Rule. In such approximation, the branching fractions of a resonant state are the same as the standard branching fractions obtained by way of the Golden Rule. We also introduce dimensionless decay constants along with their associated differential decay constants, and we express experimentally measurable quantities such as the branching fractions and the energy distributions of decay events in terms of those dimensionless decay constants.
Microcavities coupled to multilevel atoms
NASA Astrophysics Data System (ADS)
Schmid, Sandra Isabelle; Evers, Jörg
2011-11-01
A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.
Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions
NASA Astrophysics Data System (ADS)
Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui
2016-05-01
We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.
Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances
NASA Astrophysics Data System (ADS)
Vesseur, E. J. R.
2011-07-01
Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide range of applications of nanoantennas operating both in receiving and transmitting mode. This thesis presents how the dispersion and confinement of surface plasmons in nanoantennas are resolved and further engineered. Fabrication of nanostructures is done using focused ion beam milling (FIB) in metallic surfaces. We demonstrate that patterning in single-crystal substrates allows us to precisely control the geometry in which plasmons are confined. The nanoscale properties of the resonant plasmonic fields are resolved using a new technique developed in this thesis: angle- and polarization controlled cathodoluminescence (CL) imaging spectroscopy. The use of a tightly focused electron beam allows us to probe the optical antenna properties with deep subwavelength resolution. We show using this technique that nanoantennas consisting of 500-1200 nm long polycrystalline Au nanowires support standing plasmon waves. We directly observe the plasmon wavelengths which we use to derive the dispersion relation of guided nanowire plasmons. A 590-nm-long ridge-shaped nanoantenna was fabricated using FIB milling on a single-crystal Au substrate, demonstrating a level of control over the fabrication impossible with polycrystalline metals. CL experiments show that the ridge supports multiple-order resonances. The confinement of surface plasmons to the ridge is confirmed by boundary-element-method (BEM) calculations. The resonant modes in plasmonic whispering gallery cavities consisting of a FIB-fabricated circular groove are resolved. We find an excellent agreement between boundary element method calculations and the measured CL emission from the ring-shaped cavities. The calculations show that the ring supports resonances with increasing azimuthal or radial order. The smallest cavity fits only one wavelength in its circumference. We theoretically show that in these cavities, spontaneous emission can be enhanced over a broad spectral band due to the small modal volume of the plasmon resonances. A Purcell factor >2000 was found. We further study the mode symmetries and coupling of the ring resonances using far-field excitation, fluorescence, angle-resolved cathodoluminescence and photoelectron emission microscopy. We demonstrate spectral reshaping of emitters, mode-specific angular emission patterns, and a mode-selective excitation by incoming light, and we directly resolve the modal fields at high resolution. In the next chapter, we present metal-insulator-metal plasmon waveguides in which we engineer the dispersion to reach a refractive index of zero. Using spatially- and angle-resolved CL we directly observe the spatial mode profiles and determine the dispersion relation of plasmon modes. At the cutoff frequency, the emission pattern corresponds to that of a line dipole antenna demonstrating the entire waveguide is in phase (n=0). A strongly enhanced density of optical states is directly observed at cutoff from the enhanced CL intensity. Finally, we present 5 possible applications: a localized surface plasmon sensor, a plasmon ring laser, template stripping technique, an in-situ monitor of ionoluminescence and cathodoluminescence in a FIB system and a single-photon source.
NASA Astrophysics Data System (ADS)
Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo
In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.
Daghestani, Hikmat N.; Day, Billy W.
2010-01-01
Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed. PMID:22163431
Genuine quark state versus dynamically generated structure for the Roper resonance
NASA Astrophysics Data System (ADS)
Golli, B.; Osmanović, H.; Širca, S.; Švarc, A.
2018-03-01
In view of the recent results of lattice QCD simulation in the P 11 partial wave that has found no clear signal for the three-quark Roper state we investigate a different mechanism for the formation of the Roper resonance in a coupled channel approach including the π N , π Δ , and σ N channels. We fix the pion-baryon vertices in the underlying quark model while the s -wave sigma-baryon interaction is introduced phenomenologically with the coupling strength, the mass, and the width of the σ meson as free parameters. The Laurent-Pietarinen expansion is used to extract the information about the S -matrix pole. The Lippmann-Schwinger equation for the K matrix with a separable kernel is solved to all orders. For sufficiently strong σ N N coupling the kernel becomes singular and a quasibound state emerges at around 1.4 GeV, dominated by the σ N component and reflecting itself in a pole of the S matrix. The alternative mechanism involving a (1s ) 22 s quark resonant state is added to the model and the interplay of the dynamically generated state and the three-quark resonant state is studied. It turns out that for the mass of the three-quark resonant state above 1.6 GeV the mass of the resonance is determined solely by the dynamically generated state, nonetheless, the inclusion of the three-quark resonant state is imperative to reproduce the experimental width and the modulus of the resonance pole.
Graphene enhanced surface plasmon resonance sensing based on Goos-Hänchen shift
NASA Astrophysics Data System (ADS)
Chen, Huifang; Tong, Jinguang; Wang, Yiqin; Jiang, Li
2018-03-01
A graphene/Ag structure is engineered as an enhanced platform for surface plasmon resonance sensing due to the high impermeability nature of graphene and the superior surface plasmon resonance performance of Ag. This structure is ultrasensitive to even tiny refractive index change of analytes based on Goos-Hänchen shift measurement compared to the traditional SPR sensor with bare Au film. The graphene/Ag configuration is consisted of five components, including BK7 glass slide, titanium thin film, silver thin film, two-dimensional graphene layers and biomolecular analyte layer. We have optimized the parameters of each layer and theoretically analyzed Goos-Hänchen shift of the plasmonic structure under surface plasmon resonance effect. The optimized graphene/Ag structure is monolayer graphene coated on Ag thin film with the thickness of 42 nm.
An all-optical switch based on a surface plasmon polariton resonator
NASA Astrophysics Data System (ADS)
Pan, Zijuan; Lang, Peilin; Duan, Gaoyan
2018-04-01
All-optical switch is one of the key parts of optical circuit. We employ a temperature-sensitive resonator to form an optical switch. The resonator deforms under the applied light and adjusts the transmittance of the structure. To our knowledge, this is the first design of an all-optical surface plasmon polariton (SPP) switch based on the heat deformation effect.
NASA Astrophysics Data System (ADS)
Abeln, Brant Anthony
The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width of the resonance, can be found directly as an isolated pole in the complex energy plane. Unlike the straight complex scaling, ECS on the electronic coordinates overcomes the non-analytic behavior of the nuclear attraction potential, as a function of complex [special characters omitted] where the sum is over each nucleus in a molecular system. Discouragingly, the Gaussian basis functions, which are computationally well-suited for bound electronic structure, fail at forming an effective basis set for ECS due to the derivative discontinuity generated by the complex coordinate rotation and the piecewise defined contour. This thesis seeks to explore methods for implementing ECS indirectly without losing the numerical simplicity and power of Gaussian basis sets. The separable insertion method takes advantage of existing software by constructing a N2-term separable potential of the target system using Gaussian functions to be inserted into a finite-element discrete variable representation (FE-DVR) grid that implements ECS. This work reports an exhaustive investigation into this approach for calculating resonances. This thesis shows that this technique is successful at describing an anion shape resonance of a closed-shell atom or molecule in the static-exchange approximation. This method is applied to the 2P Be-, 2pig N2- and 2pi u CO2- shape resonances to calculate their complex Seigert energies. Additionally, many details on the exact construction of the separable potential and of the expansion basis are explored. The future work considers methods for faster convergence of the resonance energy, moving beyond the static-exchange approximation and applying this technique to polyatomic systems of interest.
NASA Astrophysics Data System (ADS)
Mikhailova, G. A.; Mikhailov, Y. M.
Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the parameters of the lower ionosphere. Solar flares cause magnetic and ionosphere storms, which lead up to additional ionisation in the D and E layers and lowering of the upper boundary of cavity. That decreases the resonance frequencies of the cavity. Thus, the state of the human habitat proves to be dependent on the solar activity through variations of the parameters of the lower ionosphere, which govern variations of the Schuman resonances. These variations we suppose to measure on "Kompass-2" and "Vulcan" satellites.
State-plane analysis of zero-voltage-switching resonant dc/dc power converters
NASA Astrophysics Data System (ADS)
Kazimierczuk, Marian K.; Morse, William D.
The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.
NASA Astrophysics Data System (ADS)
Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih
2015-03-01
We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W.
Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabricationmore » result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.« less
Mechanisms of Surface-Mediated DNA Hybridization
2015-01-01
Single-molecule total internal reflection fluorescence microscopy was employed in conjunction with resonance energy transfer (RET) to observe the dynamic behavior of donor-labeled ssDNA at the interface between aqueous solution and a solid surface decorated with complementary acceptor-labeled ssDNA. At least 100 000 molecular trajectories were determined for both complementary strands and negative control ssDNA. RET was used to identify trajectory segments corresponding to the hybridized state. The vast majority of molecules from solution adsorbed nonspecifically to the surface, where a brief two-dimensional search was performed with a 7% chance of hybridization. Successful hybridization events occurred with a characteristic search time of ∼0.1 s, and unsuccessful searches resulted in desorption from the surface, ultimately repeating the adsorption and search process. Hybridization was reversible, and two distinct modes of melting (i.e., dehybridization) were observed, corresponding to long-lived (∼15 s) and short-lived (∼1.4 s) hybridized time intervals. A strand that melted back onto the surface could rehybridize after a brief search or desorb from the interface. These mechanistic observations provide guidance for technologies that involve DNA interactions in the near-surface region, suggesting a need to design surfaces that both enhance the complex multidimensional search process and stabilize the hybridized state. PMID:24708278
GAUSSIAN BEAM LASER RESONATOR PROGRAM
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.
NASA Astrophysics Data System (ADS)
Sarkisyan, M. A.
1989-02-01
An analysis is made of the interaction of a three-level "cascade" atomic system with a resonant laser field. An investigation is made of the dynamics of the populations of the quasienergy states and of the atomic levels over times greater than the spontaneous transition times. In the steady-state regime the distribution of atoms over various quasienergy states is obtained under two-photon resonance conditions and for the case when all the resonances are strong. It is found that a suitable selection of the interaction parameters can establish an inversion between the quasienergy states and also due to atomic transitions. The total probability of spontaneous scattering is calculated. It is shown that, under two-photon resonance conditions, the scattering intensity increases sharply due to a self-induced resonance.
Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan
2017-08-01
The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.
NASA Astrophysics Data System (ADS)
Diyanah Samsuri, Nurul; Maisarah Mukhtar, Wan; Rashid, Affa Rozana Abdul; Dasuki, Karsono Ahmad; Awangku Yussuf, Awangku Abdul Rahman Hj.
2017-11-01
Gold nanoparticles (GNPs) have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR) sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR) and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.
Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift
Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa
2017-01-01
Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850
NASA Astrophysics Data System (ADS)
Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2015-03-01
Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.
Biopharmaceutical production: Applications of surface plasmon resonance biosensors.
Thillaivinayagalingam, Pranavan; Gommeaux, Julien; McLoughlin, Michael; Collins, David; Newcombe, Anthony R
2010-01-15
Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 2009 Elsevier B.V. All rights reserved.
Steady-state performance analysis of fiber-optic ring resonator
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.
2009-01-01
This paper presents a full steady-state analysis of a fiber-optic ring resonator (FORR). Although in the literature the steady-state response of the FORR has been described, a detailed description of the same is not available. As an understanding of the different steady-state characteristics of the FORR is required to appreciate its characteristic response, in this paper, the expressions for the output and loop intensities, phase angles of the fields, conditions for resonance, output and loop intensities at resonance and off-resonance, finesse, and group delay of the FORR are given for different ideal and practical operating conditions of the resonator. Graphical plots of all the above characteristics are given, by highlighting the important results. The information presented in this paper will be helpful in explaining and understanding the pulse response of the resonator used in different applications of FORR.
Extending Quantum Chemistry of Bound States to Electronic Resonances
NASA Astrophysics Data System (ADS)
Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.
2017-05-01
Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.
Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique
ERIC Educational Resources Information Center
Tang, Yijun; Zeng, Xiangqun; Liang, Jennifer
2010-01-01
Surface plasmon resonance (SPR) has become an important optical biosensing technology in the areas of biochemistry, biology, and medical sciences because of its real-time, label-free, and noninvasive nature. The high cost of commercial devices and consumables has prevented SPR from being introduced in the undergraduate laboratory. Here, we present…
Effect of interstitial impurities on the field dependent microwave surface resistance of niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, M., E-mail: mmartine@fnal.gov; Checchin, M.; Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. This effect is attributed to the lowering of the Mattis-Bardeen surface resistance with increasing accelerating field; however, the microscopic origin of this phenomenon is poorly understood. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper, we conduct a systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surfacemore » treatments for niobium resonators. Adding these results together, we are able to show which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide insights on the physics behind the change in the field dependence of the Mattis-Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less
Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber
NASA Astrophysics Data System (ADS)
Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.
2018-03-01
We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.
Development of techniques in magnetic resonance and structural studies of the prion protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitter, Hans-Marcus L.
2000-07-01
Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which themore » dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping 129Xe gas.« less
Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture.
Takita, Maika; Córcoles, A D; Magesan, Easwar; Abdo, Baleegh; Brink, Markus; Cross, Andrew; Chow, Jerry M; Gambetta, Jay M
2016-11-18
We present parity measurements on a five-qubit lattice with connectivity amenable to the surface code quantum error correction architecture. Using all-microwave controls of superconducting qubits coupled via resonators, we encode the parities of four data qubit states in either the X or the Z basis. Given the connectivity of the lattice, we perform a full characterization of the static Z interactions within the set of five qubits, as well as dynamical Z interactions brought along by single- and two-qubit microwave drives. The parity measurements are significantly improved by modifying the microwave two-qubit gates to dynamically remove nonideal Z errors.
Surface contamination detection by means of near-infrared stimulation of thermal luminescence
NASA Astrophysics Data System (ADS)
Carrieri, Arthur H.; Roese, Erik S.
2006-02-01
A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.
NASA Astrophysics Data System (ADS)
Paz, Y.; Naaman, R.
1990-08-01
Energy distribution in aniline molecules scattered from organized organic monolayers was investigated using a resonance-enhanced two-photon ionization technique. Two type of monolayers were used, one exposing a floppy unsubstituted aliphatic chain (OTS, n-octadecyltrichlorosilane), and the second having a perfluorinated tail (PFDA, perfluorodecanoic acid). The dependence of the internal and translational energy of the scattered aniline is monitored as a function of collision energy and surface properties. The data reveal an unusually high propensity for excitation of the NH 2 inversion mode in aniline. Vibrationally excited molecules are scattered with a narrower time-of-flight (TOF) distribution than those in the ground vibrational state.
Lithium Niobate Whispering Gallery Resonators: Applications and Fundamental Studies
NASA Astrophysics Data System (ADS)
Maleki, L.; Matsko, A. B.
Optical whispering gallery modes (WGMs) are closed circulating electromagnetic waves undergoing total internal reflection inside an axio-symmetric body of a transparent dielectric that forms a resonator. Radiative losses are negligible in these modes if the radius of the resonator exceeds several tens of wavelengths, and surface scattering losses can be made small with surface conditioning techniques. Thus, the quality factor (Q) in crystalline WGM resonators is limited by material losses that are, nevertheless, extremely small in optical materials. WGM resonators made of LiNbO3 have been successfully used in optics and microwave photonics. The resonators are characterized by narrow bandwidth, in the hundred kilohertz to gigahertz range. A proper choice of highly transparent and/or nonlinear resonator material, like lithium niobate, allows for realization of a number of high performance devices: tunable and multi-pole filters, resonant electro-optic modulators, photonic microwave receivers, opto-electronic microwave oscillators, and parametric frequency converters, among others.
A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Huang, Wen; Zou, Xu-Bo; Guo, Guang-Can
2015-06-01
We theoretically study the system of a superconducting transmission line resonator coupled to two interacting superconducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology. Project supported by the National Fundamental Research Program of China (Grant No. 2011cba00200), the National Natural Science Foundation of China (Grant No. 11274295), and the Doctor Foundation of Education Ministry of China (Grant No. 20113402110059).
Lee, Aram; Mills, Thomas; Xu, Yong
2015-03-23
We report an experimental technique where one uses a standard silica fiber as a cylindrical whispering gallery mode (WGM) resonator to sense airborne nanoscale aerosols produced by electric arc welding. We find that the accumulation of aerosols on the resonator surface induces a measurable red-shift in resonance frequency, and establish an empirical relation that links the magnitude of resonance shift with the amount of aerosol deposition. The WGM quality factors, by contrast, do not decrease significantly, even for samples with a large percentage of surface area covered by aerosols. Our experimental results are discussed and compared with existing literature on WGM-based nanoparticle sensing.
Detecting light in whispering-gallery-mode resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Mohageg, Makan (Inventor); Le, Thanh M. (Inventor)
2012-01-01
An optical device including a whispering gallery mode (WGM) optical resonator configured to support one or more whispering gallery modes; and a photodetector optically coupled to an exterior surface of the optical resonator to receive evanescent light from the optical resonator to detect light inside the optical resonator.
Nanostructures Exploit Hybrid-Polariton Resonances
NASA Technical Reports Server (NTRS)
Anderson, Mark
2008-01-01
Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of designing a nanostructure to exhibit the desired radiation-absorption properties translates, in large part, to selecting particle sizes and shapes to obtain the desired enhanced coupling of energy from photons to plasmons and phonons. To broaden the spectral region(s) of enhanced absorption, one would select a distribution of particle sizes and shapes.
Investigating a Quadrant Surface Coil Array for NQR Remote Sensing
2014-10-23
UNCLASSIFIED 1 Abstract—this paper is on the design and fabrication of a surface coil array in a quadrant layout for NQR (Nuclear Quadrupole...coupling and SNR (Signal-to-Noise Ratio) at standoff distances perpendicular from each coil. Index Terms— Nuclear Quadrupole Resonance, NQR ...Coil Array, probe, Nuclear Magnetic Resonance, tuning, decoupling, RLC, mutual coupling, RLC I. INTRODUCTION N Nuclear quadrupole resonance ( NQR
Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case
NASA Astrophysics Data System (ADS)
Cheng, Jing; Chen, Xi; Shan, Chuan-Jia
2018-06-01
We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2015-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2016-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
NASA Astrophysics Data System (ADS)
Ye, Zhicheng; Zheng, Jun; Zhang, Chenchen; Sun, Shu
2011-12-01
Optical responses in Bi-layer metallic nanowire grating are investigated. There are two kinds of Surface Plasmon resonances: lateral propagating Surface Plasmon waveguide modes excited by the diffraction of the grating which lead to dips in transmission; Surface Plasmon resonance between the slits of the grating, which leads to high extinction ration of TM to TE transmission. With simultaneous resonances, a compacted device of integrated color filter and polarizer can be achieved. In order to improve the transmission of TM light, an undercut structure is proposed. The mechanism of the enhancement is analyzed. Bi-layer metallic nanowire gratings are fabricated by laser interference lithography and subsequent E-beam deposition. The measured transmission and reflection spectra confirmed the theoretical and numerical simulations. The results will have wide potential applications in Displays, Optical communication, and integrated Optics.
Wittenberg, Nathan J.; Wootla, Bharath; Jordan, Luke R.; Denic, Aleksandar; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses
2014-01-01
Characterization of binding kinetics and affinity between a potential new drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment. PMID:24625008
NASA Astrophysics Data System (ADS)
Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.
2017-04-01
In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...
2017-02-14
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen
2018-06-27
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.
Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I
2018-06-01
We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.
Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators
NASA Astrophysics Data System (ADS)
Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.
2018-06-01
We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.
NASA Astrophysics Data System (ADS)
Uy, C. F.; Hogg, C. S.; Cowin, J. P.; Whaley, K. B.; Light, J. C.; Sibener, S. J.
1982-08-01
Rotationally mediated selective adsorption scattering resonances are used to make an experimental and theoretical study of the laterally averaged interaction potential between HD and a weakly corrugated system, Ag(111). The experimentally observed resonances determine the vibrational levels of the HD/Ag(111) physisorption potential as a function of bound rotational state. These vibrational levels show J-dependent shifts due to the orientational anisotropy of the potential. Exact quantum scattering calculations using a full laterally averaged potential of the form V sub o(z,0) = v sub o (z) (1 + beta P sub 2 (cos theta)) have been carried out to obtain rotationally inelastic transition probabilities. Experimental and theoretical resonance energies are compared for two forms of v sub o(z), a Morse and a variable exponent potential, as a function of Beta, and are found to be very close to the first order perturbed energies of a free rotor in bound states of v sub o(z). Both potential forms give equally good fits to the data, yielding an optimum value of the asymmetry parameter, Beta approx. -0.05. The determination of Beta is relatively insensitive to small changes in the v sub o(z) well depth.
First measurement of 30S+α resonant elastic scattering for the 30S(α ,p ) reaction rate
NASA Astrophysics Data System (ADS)
Kahl, D.; Yamaguchi, H.; Kubono, S.; Chen, A. A.; Parikh, A.; Binh, D. N.; Chen, J.; Cherubini, S.; Duy, N. N.; Hashimoto, T.; Hayakawa, S.; Iwasa, N.; Jung, H. S.; Kato, S.; Kwon, Y. K.; Nishimura, S.; Ota, S.; Setoodehnia, K.; Teranishi, T.; Tokieda, H.; Yamada, T.; Yun, C. C.; Zhang, L. Y.
2018-01-01
Background: Type I x-ray bursts are the most frequently observed thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The 30S(α ,p ) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in 34Ar and determine their quantum properties. In particular, natural-parity states with large α -decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of 30S+α resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for 30S(α ,α ) near 150∘ in the center-of-mass frame. The experimental data were analyzed with R -matrix calculations, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of 30S(α ,p ) based on all available experimental data of 34Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the 30S(α ,p )33Cl rate significantly affects the predicted nuclear energy generation rate during the burst.
NASA Astrophysics Data System (ADS)
Yang, Dongzheng; Huang, Jing; Zuo, Junxiang; Hu, Xixi; Xie, Daiqian
2018-05-01
A full-dimensional ab initio potential energy surface for the H2-HF van der Waals complex was constructed by employing the coupled-cluster singles and doubles with noniterative inclusion of connected triples with augmented correlation-consistent polarised valence quadruple-zeta basis set plus bond functions. Using the improved coupled-states approximation including the nearest neighbor Coriolis couplings, we calculated the state-to-state scattering dynamics for pure rotational and ro-vibrational energy transfer processes. For pure rotational energy transfer, our results showed a different dynamical behavior for para-H2 and ortho-H2 in collision with hydrogen fluoride (HF), which is consistent with the previous study. Interestingly, some strong resonant peaks were presented in the cross sections for ro-vibrational energy transfer. In addition, the calculated vibrational-resolved rate constant is in agreement with the experimental results reported by Bott et al. These dynamics data can be further applied to the numerical simulation of HF chemical lasers.
Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks
Ghali, Hala; Chibli, Hicham; Nadeau, Jay L.; Bianucci, Pablo; Peter, Yves-Alain
2016-01-01
Whispering Gallery Mode (WGM) microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q) factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 104 is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme. PMID:27153099
Localized spoof surface plasmon resonances at terahertz range
NASA Astrophysics Data System (ADS)
Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming
2016-11-01
The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.
TlCaBaCuO high Tc superconducting microstrip ring resonators designed for 12 GHz
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.
1993-01-01
Microwave properties of sputtered Tl-Ca-Ba-Cu-O thin films were investigated by designing, fabricating, and testing microstrip ring resonators. Ring resonators designed for 12 GHz fundamental resonance frequency, were fabricated and tested. From the unloaded Q values for the resonators, the surface resistance was calculated by separating the conductor losses from the total losses. The penetration depth was obtained from the temperature dependence of resonance frequency, assuming that the shift in resonance frequency is mainly due to the temperature dependence of penetration depth. The effective surface resistance at 12 GHz and 77 K was determined to be between 1.5 and 2.75 mOmega, almost an order lower than Cu at the same temperature and frequency. The effective penetration depth at 0 K is approximately 7000 A.
One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
NASA Astrophysics Data System (ADS)
Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li
2017-07-01
We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.
NASA Astrophysics Data System (ADS)
Pratt, T. L.
2017-12-01
Unconsolidated, near-surface sediments can influence the amplitudes and frequencies of ground shaking during earthquakes. Ideally these effects are accounted for when determining ground motion prediction equations and in hazard estimates summarized in seismic hazard maps. This study explores the use of teleseismic arrivals recorded on linear receiver arrays to estimate the seismic velocities, determine the frequencies of fundamental resonance peaks, and image the major reflectors in the Atlantic Coastal Plain (ACP) and Mississippi Embayment (ME) strata of the central and southeastern United States. These strata have thicknesses as great as 2 km near the coast in the study areas, but become thin and eventually pinch out landward. Spectral ratios relative to bedrock sites were computed from teleseismic arrivals recorded on linear arrays deployed across the sedimentary sequences. The large contrast in properties at the bedrock surface produces a strong fundamental resonance peak in the 0.2 to 4 Hz range. Contour maps of sediment thicknesses derived from drill hole data allow for the theoretical estimation of average velocities by matching the observed frequencies at which resonance peaks occur. The sloping bedrock surface allows for calculation of a depth-varying velocity profile, under the assumption that the velocities at each depth do not change laterally between stations. The spectral ratios can then be converted from frequency to depth, resulting in an image of the subsurface similar to that of a seismic reflection profile but with amplitudes being the spectral ratio caused by a reflector at that depth. The complete data set thus provides an average velocity function for the sedimentary sequence, the frequencies and amplitudes of the major resonance peaks, and a subsurface image of the major reflectors producing resonance peaks. The method is demonstrated using three major receiver arrays crossing the ACP and ME strata that originally were deployed for imaging the crust and mantle, confirming that teleseismic signals can be used to characterize sedimentary strata in the upper km.
Tuning method for microresonators and microresonators made thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Olsson, Roy H.; Greth, Karl Douglas
2015-12-01
A micromechanical resonator is disclosed. The resonator includes a resonant micromechanical element. A film of annealable material can be deposited on a facial surface of the element. The resonance of the element can be tuned by annealing the deposited film. Also disclosed are methods of applying a film on a resonator and annealing the film, thereby tuning one or more resonant properties of the resonator.
Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.
Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G
2015-03-07
The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.
Waveguiding by a locally resonant metasurface
NASA Astrophysics Data System (ADS)
Maznev, A. A.; Gusev, V. E.
2015-09-01
Dispersion relations for acoustic and electromagnetic waves guided by resonant inclusions located at the surface of an elastic solid or an interface between two media are analyzed theoretically within the effective medium approximation. Oscillators on the surface of an elastic half-space are shown to give rise to a Love-type surface acoustic wave only existing below the oscillator frequency. A simple dispersion relation governing this system is shown to also hold for electromagnetic waves guided by Lorentz oscillators at an interface between two media with equal dielectric constants. Different kinds of behavior of the dispersion of the resonantly guided mode are identified, depending on whether the bulk wave in the absence of oscillators can propagate along the surface or interface.
USDA-ARS?s Scientific Manuscript database
The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...
Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers
NASA Astrophysics Data System (ADS)
Gabardi, David Richard
1990-08-01
The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuziemko, G.M.; Stroh, M.; Stevens, R.C.
1996-05-21
The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance aremore » similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.« less
Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells
NASA Astrophysics Data System (ADS)
Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.
2018-06-01
The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M Baris; Kravchenko, Ivan I; Kalinin, Sergei V; Tselev, Alexander
2017-01-04
Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm -1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.
Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells
NASA Astrophysics Data System (ADS)
Farzi, Bahman; Cetinkaya, Cetin
2017-09-01
The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330 ± 70 kHz and two breathing resonance frequencies of 1.53 ± 0.12 and 2.02 ± 0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20 ± 2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the currently known metabolistic response times of cells (milliseconds to seconds), thus, it has the potential to decouple metabolistic and mechanotransduction effects from external stimuli and to operate at high throughput rates.
Selective electron spin resonance measurements of micrometer-scale thin samples on a substrate
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon
2013-11-01
An approach to the selective observation of paramagnetic centers in thin samples or surfaces with electron spin resonance (ESR) is presented. The methodology is based on the use of a surface microresonator that enables the selective obtention of ESR data from thin layers with minimal background signals from the supporting substrate. An experimental example is provided, which measures the ESR signal from a 1.2 µm polycrystalline silicon layer on a glass substrate used in modern solar-cell technology. The ESR results obtained with the surface microresonator show the effective elimination of background signals, especially at low cryogenic temperatures, compared to the use of a conventional resonator. The surface microresonator also facilitates much higher absolute spin sensitivity, requiring much smaller surfaces for the measurement.
Nonlocal boundary conditions for corrugated acoustic metasurface with strong near-field interactions
NASA Astrophysics Data System (ADS)
Schwan, Logan; Umnova, Olga; Boutin, Claude; Groby, Jean-Philippe
2018-03-01
The propagation of long-wavelength sound in the presence of a metasurface made by arranging acoustic resonators periodically upon or slightly above an impervious substrate is studied. The method of two-scale asymptotic homogenization is used to derive effective boundary conditions, which account for both the surface corrugation and the low-frequency resonance. This method is applied to periodic arrays of resonators of any shape operating in the long-wavelength regime. The approach relies on the existence of a locally periodic boundary layer developed in the vicinity of the metasurface, where strong near-field interactions of the resonators with each other and with the substrate take place. These local effects give rise to an effective surface admittance supplemented by nonlocal contributions from the simple and double gradients of the pressure at the surface. These phenomena are illustrated for the periodic array of cylindrical Helmholtz resonators with an extended inner duct. Effects of the centre-to-centre spacing and orientation of the resonators' opening on the nonlocality and apparent resonance frequency are studied. The model could be used to design metasurfaces with specific effective boundary conditions required for particular applications.
Thickness shear mode (TSM) resonators used for biosensing
NASA Astrophysics Data System (ADS)
Bailey, Claude A.; Fiebor, Ben; Yen, Wei; Vodyanoy, Vitaly; Cernosek, Richard W.; Chin, Bryan A.
2002-02-01
The Auburn University Detection and Food Safety Center has demonstrated real-time biosensor for the detection of Salmonella typimhurium, consisting of a thickness shear-mode (TSM) quartz resonator with antibodies immobilized in a Langmuir-Blodgett surface film. Scanning Electron Microscopy (SEM) images of bound Salmonella bacteria to both polished and unpolished TSM resonators were taken to correlate the mass of the bound organism to the Sauerbrey equation. Theoretical frequency shifts for unpolished TSM resonators predicted by the Sauerbrey equation are much smaller than experimentally measured frequency shift. The Salmonella detector operates in a liquid environment. The viscous properties of this liquid overlayer could influence the TSM resonator's response. Various liquid media were studied as a function of temperature (0 to 50 degree(s)C). The chicken exudate samples with varying fat content show coagulation occurring at temperatures above 35 degree(s)C. Kinematic viscosity test were performed with buffer solutions containing varying quantities of Salmonella bacteria. Since the TSM resonators only entrain a boundary layer of fluid near the surface, they do not respond to these background viscous property changes. Bilk viscosity increases when bacteria concentrations are high. This paper describes investigations of TSM resonator surface acoustic interactions - mass, fluid viscosity, and viscoelasticity - that affect the sensor.
Quick, Martin; Dobryakov, Alexander L; Ioffe, Ilya N; Granovsky, Alex A; Kovalenko, Sergey A; Ernsting, Nikolaus P
2016-10-20
In the photoisomerization path of stilbene, a perpendicular state P on the S 1 potential energy surface is expected just before internal conversion through a conical intersection S 1 /S 0 . For decades the observation of P was thwarted by a short lifetime τ P in combination with slow population flow over a barrier. But these limitations can be overcome by ethylenic substitution. Following optical excitation of trans-1,1'-dicyanostilbene, P is populated significantly (τ P = 27 ps in n-hexane) and monitored by an exited-state absorption band at 370 nm. Here we report stimulated Raman lines of P. The strongest, at 1558 cm -1 , is attributed to stretching vibrations of the phenyl rings. Transient electronic states, resonance conditions, and corresponding Raman signals are discussed.
Model of resonant high harmonic generation in multi-electron systems
NASA Astrophysics Data System (ADS)
Redkin, P. V.; Ganeev, R. A.
2017-09-01
We extend the 4-step analytical model of resonant enhancement of high harmonic generation to the systems possessing resonant transitions of inner-shell electrons. Resonant enhancement is explained by lasing without inversion in a three-level system of ground, excited and shifted resonant states, which are coupled to the fundamental field and its high harmonics. The role of inelastic scattering is studied by simulation of an excited state’s population dynamics. It is shown that maximal gain is achieved when the energy shift between the excited state and resonant state is close to the energy of the fundamental photon. To prove the concept we demonstrate the enhancement of harmonics in the In plasma using different pumps.
Li, Yuan; Jalil, Mansoor B. A.; Tan, S. G.; Zhao, W.; Bai, R.; Zhou, G. H.
2014-01-01
Time-periodic perturbation can be used to modify the transport properties of the surface states of topological insulators, specifically their chiral tunneling property. Using the scattering matrix method, we study the tunneling transmission of the surface states of a topological insulator under the influence of a time-dependent potential and finite gate bias voltage. It is found that perfect transmission is obtained for electrons which are injected normally into the time-periodic potential region in the absence of any bias voltage. However, this signature of Klein tunneling is destroyed when a bias voltage is applied, with the transmission probability of normally incident electrons decreasing with increasing gate bias voltage. Likewise, the overall conductance of the system decreases significantly when a gate bias voltage is applied. The characteristic left-handed helicity of the transmitted spin polarization is also broken by the finite gate bias voltage. In addition, the time-dependent potential modifies the large-angle transmission profile, which exhibits an oscillatory or resonance-like behavior. Finally, time-dependent transport modes (with oscillating potential in the THz frequency) can result in enhanced overall conductance, irrespective of the presence or absence of the gate bias voltage. PMID:24713634
NASA Astrophysics Data System (ADS)
Vondráček, M.; Cornils, L.; Minár, J.; Warmuth, J.; Michiardi, M.; Piamonteze, C.; Barreto, L.; Miwa, J. A.; Bianchi, M.; Hofmann, Ph.; Zhou, L.; Kamlapure, A.; Khajetoorians, A. A.; Wiesendanger, R.; Mi, J.-L.; Iversen, B.-B.; Mankovsky, S.; Borek, St.; Ebert, H.; Schüler, M.; Wehling, T.; Wiebe, J.; Honolka, J.
2016-10-01
We report on the quenching of single Ni adatom moments on Te-terminated Bi2Te2Se and Bi2Te3 topological insulator surfaces. The effect is noted as a missing x-ray magnetic circular dichroism for resonant L3 ,2 transitions into partially filled Ni 3 d states of theory-derived occupancy nd=9.2 . On the basis of a comparative study of Ni and Fe using scanning tunneling microscopy and ab initio calculations, we are able to relate the element specific moment formation to a local Stoner criterion. Our theory shows that while Fe adatoms form large spin moments of ms=2.54 μB with out-of-plane anisotropy due to a sufficiently large density of states at the Fermi energy, Ni remains well below an effective Stoner threshold for local moment formation. With the Fermi level remaining in the bulk band gap after adatom deposition, nonmagnetic Ni and preferentially out-of-plane oriented magnetic Fe with similar structural properties on Bi2Te2Se surfaces constitute a perfect platform to study the off-on effects of time-reversal symmetry breaking on topological surface states.
Spata, Vincent A; Carter, Emily A
2018-04-24
Nanoparticles synthesized from plasmonic metals can absorb low-energy light, producing an oscillation/excitation of their valence electron density that can be utilized in chemical conversions. For example, heterogeneous photocatalysis can be achieved within heterometallic antenna-reactor complexes (HMARCs), by coupling a reactive center at which a chemical reaction occurs to a plasmonic nanoparticle that acts as a light-absorbing antenna. For example, HMARCs composed of aluminum antennae and palladium (Pd) reactive centers have been demonstrated recently to catalyze selective hydrogenation of acetylene to ethylene. Here, we explore within a theoretical framework the rate-limiting step of hydrogen photodesorption from a Pd surface-crucial to achieving partial rather than full hydrogenation of acetylene-to understand the mechanism behind the photodesorption process within the HMARC assembly. To properly describe electronic excited states of the metal-molecule system, we employ embedded complete active space self-consistent field and n-electron valence state perturbation theory to second order within density functional embedding theory. The results of these calculations reveal that the photodesorption mechanism does not create a frequently invoked transient negative ion species but instead enhances population of available excited-state, low-barrier pathways that exhibit negligible charge-transfer character.
Electronic confining effects in Sierpiński triangle fractals
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Xue; Jiang, Zhuoling; Wang, Yongfeng; Hou, Shimin
2018-03-01
Electron confinement in fractal Sierpiński triangles (STs) on Ag(111) is investigated using scanning tunneling spectroscopy and theoretically simulated by employing an improved two-dimensional (2D) multiple scattering theory in which the energy-dependent phase shifts are explicitly calculated from the electrostatic potentials of the molecular building block of STs. Well-defined bound surface states are observed in three kinds of triangular cavities with their sides changing at a scale factor of 2. The decrease in length of the cavities results in an upshift of the resonances that deviates from an expected inverse quadratic dependence on the cavity length due to the less efficient confinement of smaller triangular cavities. Differential conductance maps at some specific biases present a series of alternative bright and dark rounded triangles preserving the symmetry of the boundary. Our improved 2D multiple scattering model reproduces the characteristics of the standing wave patterns and all features in the differential conductance spectra measured in experiments, illustrating that the elastic loss boundary scattering dominates the resonance broadening in these ST quantum corrals. Moreover, the self-similar structure of STs, that a larger central cavity is surrounded by three smaller ones with a half side length, gives rise to interactions of surface states confined in neighboring cavities, which are helpful for the suppression of the linewidth in differential conductance spectra.
Ring Resonator for Detection of Melting Brine Under Shallow Subsurface of Mars
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximillian C.
2016-01-01
Laboratory experimental evidence using Raman spectroscopy has shown that liquid brine may form below the shallow subsurface of Mars. A simpler experimental method to verify the presence of liquid brine or liquid water below Mars surface is needed. In this paper, a ring resonator is used to detect the phase change between frozen water and liquid water below a sandy soil that simulates the Mars surface. Experimental data shows that the ring resonator can detect the melting of thin layers of frozen brine or water up to 15 mm below the surface.
NASA Astrophysics Data System (ADS)
Li, Hong; Peng, Wei; Wang, Yanjie; Hu, Lingling; Liang, Yuzhang; Zhang, Xinpu; Yao, Wenjuan; Yu, Qi; Zhou, Xinlei
2011-12-01
Optical sensors based on nanoparticles induced Localized Surface Plasmon Resonance are more sensitive to real-time chemical and biological sensing, which have attracted intensive attentions in many fields. In this paper, we establish a simulation model based on nanoparticles imprinted polymer to increase sensitivity of the LSPR sensor by detecting the changes of Surface Plasmon Resonance signals. Theoretical analysis and numerical simulation of parameters effects to absorption peak and light field distribution are highlighted. Two-dimensional simulated color maps show that LSPR lead to centralization of the light energy around the gold nanoparticles, Transverse Magnetic wave and total reflection become the important factors to enhance the light field in our simulated structure. Fast Fourier Transfer analysis shows that the absorption peak of the surface plasmon resonance signal resulted from gold nanoparticles is sharper while its wavelength is bigger by comparing with silver nanoparticles; a double chain structure make the amplitude of the signals smaller, and make absorption wavelength longer; the absorption peak of enhancement resulted from nanopore arrays has smaller wavelength and weaker amplitude in contrast with nanoparticles. These simulation results of the Localized Surface Plasmon Resonance can be used as an enhanced transduction mechanism for enhancement of sensitivity in recognition and sensing of target analytes in accordance with different requirements.
Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L
2009-05-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L.
2010-01-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18 mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20 mm. PMID:19268615
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
Magnetic dipole excitations of 50Cr
NASA Astrophysics Data System (ADS)
Pai, H.; Beck, T.; Beller, J.; Beyer, R.; Bhike, M.; Derya, V.; Gayer, U.; Isaak, J.; Krishichayan, Kvasil, J.; Löher, B.; Nesterenko, V. O.; Pietralla, N.; Martínez-Pinedo, G.; Mertes, L.; Ponomarev, V. Yu.; Reinhard, P.-G.; Repko, A.; Ries, P. C.; Romig, C.; Savran, D.; Schwengner, R.; Tornow, W.; Werner, V.; Wilhelmy, J.; Zilges, A.; Zweidinger, M.
2016-01-01
The low-lying M 1 strength of the open-shell nucleus 50Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton backscattered photons at the High Intensity γ -ray Source (HI γ S ) facility between 6 and 9.7 MeV of the initial photon energy. Fifteen 1+ states have been observed between 3.6 and 9.7 MeV. Following our analysis the lowest 1+ state at 3.6 MeV can be considered as an isovector orbital mode with some spin admixture. The obtained results generally match the estimations and trends typical for the scissors-like mode. Detailed calculations within the Skyrme quasiparticle random-phase-approximation method and the large-scale shell model justify our conclusions. The calculated distributions of the orbital current for the lowest 1+-state suggest the schematic view of Lipparini and Stringari (isovector rotation-like oscillations inside the rigid surface) rather than the scissors-like picture of Lo Iudice and Palumbo. The spin M 1 resonance is shown to be mainly generated by spin-flip transitions between the orbitals of the f p shell.
NASA Astrophysics Data System (ADS)
Bailey, Claude Albert
This dissertation outlines the developmental procedure for a real-time food-borne pathogen detector that uses a thickness shear mode (TSM) quartz resonator. A theory is discussed which provides some understanding of the measured signals obtained from the TSM resonator-based Salmonella detector. The theory explains surface viscosity and mass effects, but has yet to be fully implemented for anomalous bacterial interactions. An equivalent circuit model for an immunochemical coating and its effect on the TSM resonator frequency is presented. The latter part of this dissertation describes immunological experiments with precoated piezoelectric quartz crystals. A highly purified immunological system was used to optimize the immobilization procedure. The use of biosensors is becoming a viable alternative to conventional analysis and promises to experience dramatic growth, especially after their true potential is realized and more cost-effective assays are developed. Concern about the safety of our food and water supplies will undoubtedly stimulate further research, and miniaturized biosensors will be developed for use by safety inspectors, and concerned personnel. A Salmonella detector has been demonstrated consisting of a TSM resonator with antibodies immobilized in a Langmuir Blodgett (LB) film on the surface [3]. Scanning Electron Microscopy (SEM) images of bound Salmonella bacteria to both polished and unpolished TSM resonators were taken to correlate the mass of the bound organism to the Sauerbrey equation. Antigen-antibody interactions change the acoustic resonant properties that are reflected in the sensor frequency response. The Salmonella detector operates in a liquid environment (Salmonella suspended in a phosphate buffered saline solution). The viscous properties of this liquid overlayer could influence the TSM resonator's response. Various liquid media (buffer solutions, chicken exudate, and varying fat contents of milk) were studied as a function of temperature (0 to 50°C). Kinematic viscosity test were performed with buffer solutions and fat free milk with varying quantities of Salmonella bacteria. The response of the TSM quartz resonator is examined theoretically by modeling the sensor load as a viscoelastic film with a semi-infinite Newtonian liquid overlayer. This study analyzes the surface mechanical impedance of the TSM resonator using a Butterworth Van-Dyke equivalent circuit model [4, 5], modified to describe the surface load as lumped circuit elements [6, 7]. The sensor's impedance parameters are first modeled as a generic surface load, and then decomposed into individual impedance parameters that describe the films viscoelastic properties and liquid overlayer behavior [7]. This document describes investigations of TSM resonator surface acoustic interactions---mass, fluid viscosity, and viscoelasticity---that affect the sensor. (Abstract shortened by UMI.)
Ittianuwat, R; Fard, M; Kato, K
2017-01-01
Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.
NASA Astrophysics Data System (ADS)
Panchenko, Evgeniy; Cadusch, Jasper J.; James, Timothy D.; Roberts, Ann
2017-02-01
Metal-semiconductor-metal (MSM) photodiodes are commonly used in ultrafast photoelectronic devices. Recently it was shown that localized surface plasmons can sufficiently enhance photodetector capabilities at both infrared and visible wavelengths. Such structures are of great interest since they can be used for fast, broadband detection. By utilizing the properties of plasmonic structures it is possible to design photodetectors that are sensitive to the polarization state of the incident wave. The direct electrical readout of the polarization state of an incident optical beam has many important applications, especially in telecommunications, bio-imaging and photonic computing. Furthermore, the fact that surface plasmon polaritons can circumvent the diffraction limit, opens up significant opportunities to use them to guide signals between logic gates in modern integrated circuits where small dimensions are highly desirable. Here we demonstrate two MSM photodetectors integrated with aluminum nanoantennas capable of distinguishing orthogonal states of either linearly or circularly polarized light with no additional filters. The localized plasmon resonances of the antennas lead to selective screening of the underlying silicon from light with a particular polarization state. The non-null response of the devices to each of the basis states expands the potential utility of the photodetectors while improving precision. We also demonstrate a design of waveguide-coupled MSM photodetector suitable for planar detection of surface plasmons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopwood, Jeffrey A.; Wu, Chen; Hoskinson, Alan R.
A microplasma generator includes first and second conductive resonators disposed on a first surface of a dielectric substrate. The first and second conductive resonators are arranged in line with one another with a gap defined between a first end of each resonator. A ground plane is disposed on a second surface of the dielectric substrate and a second end of each of the first and second resonators is coupled to the ground plane. A power input connector is coupled to the first resonator at a first predetermined distance from the second end chosen as a function of the impedance ofmore » the first conductive resonator. A microplasma generating array includes a number of resonators in a dielectric material substrate with one end of each resonator coupled to ground. A micro-plasma is generated at the non-grounded end of each resonator. The substrate includes a ground electrode and the microplasmas are generated between the non-grounded end of the resonator and the ground electrode. The coupling of each resonator to ground may be made through controlled switches in order to turn each resonator off or on and therefore control where and when a microplasma will be created in the array.« less
Surface acoustic wave resonators
NASA Astrophysics Data System (ADS)
Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco
1991-10-01
The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.
Bound and resonance states of positronic copper atoms
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Umair, Muhammad; Kino, Yasushi
2017-10-01
We report a theoretical calculation for the bound and S-wave resonance states of the positronic copper atom (e+Cu). A positron is a positively charged particle; therefore, a positronic atom has an attractive correlation between the positron and electron. A Gaussian expansion method is adopted to directly describe this correlation as well as the strong repulsive interaction with the nucleus. The correlation between the positron and electron is much more important than that between electrons in an analogous system of Cu-, although the formation of a positronium (Ps) in e+Cu is not expressed in the ground state structure explicitly. Resonance states are calculated with a complex scaling method and identified above the first excited state of the copper atom. Resonance states below Ps (n = 2) + Cu+ classified to a dipole series show agreement with a simple analytical law. Comparison of the resonance energies and widths of e+Cu with those of e+K, of which the potential energy of the host atom resembles that of e+Cu, reveals that the positions of the resonance for the e+Cu dipole series deviate equally from those of e+K.
Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors
Lereu, Aude L.; Zerrad, M.; Passian, Ali; ...
2017-07-07
In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less
MacQuarrie, E. R.; Otten, M.; Gray, S. K.; ...
2017-02-06
Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain couplingmore » in the excited state is 13.5 ± 0.5 times stronger than the ground state spin-strain coupling. Lastly, we then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacQuarrie, E. R.; Otten, M.; Gray, S. K.
Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain couplingmore » in the excited state is 13.5 ± 0.5 times stronger than the ground state spin-strain coupling. Lastly, we then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.« less
Joint experimental-theoretical investigation of the lower bound states of the NO(X2Pi)-Kr complex.
Wen, Bo; Meyer, Henning; Kłos, Jacek; Alexander, Millard H
2009-07-02
We describe the first measurement of the near IR spectrum of the NO-Kr van der Waals complex. A variant of IR-REMPI double-resonance spectroscopy is employed in which the IR and UV lasers are scanned simultaneously in such a way that throughout the scan the sum of the two photon energies is kept constant, matching a UV resonance of the system. In the region of the first overtone vibration of the NO monomer, we observe several rotationally resolved bands for the NO-Kr complex. In addition to the origin band located at 3723.046 cm(-1), we observe excited as well as hot bands involving the excitation of one or two quanta of z-axis rotation. Another band is assigned to the excitation of one quantum of bending vibration. The experimental spectra are compared with results of bound-state calculations for a new set of potential energy surfaces calculated at the spin-restricted coupled cluster level. For the average vibration-rotation energies, there is excellent agreement between the theoretical results based on the coupled states (CS) approximation and the full close-coupling (CC) treatment. Finer details like the electrostatic splitting and the P-type doubling of the rotational levels are accounted for only within the CC formalism. The comparison of the CC results with the measured spectra confirms the high quality of the PESs. However, the high resolution of the experiments is sufficient to identify some inaccuracies in the difference between the potential energy surfaces of A' and A'' reflection symmetry.
Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien
2013-05-06
We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.
Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun
2016-01-01
We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417
NASA Astrophysics Data System (ADS)
Marsman, A.; Horbatsch, M.; Hessels, E. A.
2017-12-01
The resonant line shape from driving a transition between two states, |a 〉 and |b 〉 , can be distorted due to a quantum-mechanical interference effect involving a resonance between two different states, |c 〉 and |d 〉 , if |c 〉 has a decay path to |a 〉 and |d 〉 has a decay path to |b 〉 . This interference can cause a shift of the measured resonance, despite the fact that the two resonances do not have a common initial or final state. As an example, we demonstrate that such a shift affects measurements of the atomic hydrogen 2 S1 /2 -to-2 P1 /2 Lamb-shift transition due to 3 S -to-3 P transitions if the 3 S1 /2 state has some initial population.
Atomic and molecular data for spacecraft re-entry plasmas
NASA Astrophysics Data System (ADS)
Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.
2016-06-01
The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.
Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events
Mann, Michael E.; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A.; Miller, Sonya K.; Coumou, Dim
2017-01-01
Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6–8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art (“CMIP5”) historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability. PMID:28345645
Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.
Dubrovkin, Alexander M; Qiang, Bo; Krishnamoorthy, Harish N S; Zheludev, Nikolay I; Wang, Qi Jie
2018-05-02
Improvements in device density in photonic circuits can only be achieved with interconnects exploiting highly confined states of light. Recently this has brought interest to highly confined plasmon and phonon polaritons. While plasmonic structures have been extensively studied, the ultimate limits of phonon polariton squeezing, in particular enabling the confinement (the ratio between the excitation and polariton wavelengths) exceeding 10 2 , is yet to be explored. Here, exploiting unique structure of 2D materials, we report for the first time that atomically thin van der Waals dielectrics (e.g., transition-metal dichalcogenides) on silicon carbide substrate demonstrate experimentally record-breaking propagating phonon polaritons confinement resulting in 190-times squeezed surface waves. The strongly dispersive confinement can be potentially tuned to greater than 10 3 near the phonon resonance of the substrate, and it scales with number of van der Waals layers. We argue that our findings are a substantial step towards infrared ultra-compact phonon polaritonic circuits and resonators, and would stimulate further investigations on nanophotonics in non-plasmonic atomically thin interface platforms.
Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S
2014-10-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.
Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.
2014-01-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.
2014-10-15
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is eithermore » surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.« less
NASA Astrophysics Data System (ADS)
Amirjani, Amirmostafa; Bagheri, Mozhgan; Heydari, Mojgan; Hesaraki, Saeed
2016-09-01
In this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver. UV-vis spectrophotometery was used to monitor the changes of the localized surface plasmon resonance of AgNPs at wavelengths of 400 and 550 nm. The developed colorimetric sensor has a wide dynamic range of 1.0 × 10-7 M-1.0 × 10-3 M for detection of Timolol with a low detection limit of 1.2 × 10-6 M. The proposed method was successfully applied for the determination of Timolol concentration in ophthalmic eye-drop solution with a response time lower than 40 s.
Targeting TMPRSS2 ERG in Prostate Cancer
2016-09-01
Assay development for surface Plasmon resonance with purified ERG protein (months 31-36, completed July 2016) 7c. Perform thermal shift and...surface Plasmon resonance on compounds and determine binding constants (months 37-42, completed July 2016) Task 8. Identify FDA approved drugs that
Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, David; Lowell, David; Mao, Michelle
2016-07-28
In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.
Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan
2011-10-10
We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.
Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.
2007-01-01
A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.
Heterogeneous catalysis with lasers
NASA Astrophysics Data System (ADS)
George, T. F.
1986-06-01
Theoretical techniques have been developed to describe a variety of laser-induced molecular rate processes occurring at solid surfaces which are involved in heterogeneous catalysis. Such processes include adsorption, migration, chemical reactions and desorption. The role of surface phonons in laser-selective processes and laser heating has been analyzed. The importance of electronic degrees of freedom has been considered for semiconductor and metal substrates, with special emphasis on the laser excitation of surface states. Surface-modified photochemistry has also been investigated, where the effect of a metal surface on the resonance fluorescence spectrum of a laser-driven atom/molecule has been assessed by means of surface-dressed optical Bloch equations. It is seen that the spectrum can be significantly different from the gas-phase case. Two related gas-surface collision processes have also been studied. First, the feasibility of the formation of the electron-hole pairs in a semiconductor by vibrationally excited molecules has been explored. Second, charge transfer in ion-surface collisions has been examined for both one-electron and two-electron transfer processes. Work has been initiated on microstructures and rough structures, including clusters and surface gratings.
Even-parity resonances with synchrotron radiation from Laser Excited Lithium at 1s^22p State
NASA Astrophysics Data System (ADS)
Huang, Ming-Tie; Wehlitz, Ralf
2010-03-01
Correlated many-body dynamics is still one of the unsolved fundamental problems in physics. Such correlation effects can be most clearly studied in processes involving single atoms for their simplicity.Lithium, being the simplest open shell atom, has been under a lot of study. Most of the studies focused on ground state lithium. However, only odd parity resonances can be populated through single photon (synchrotron radiation) absorption from ground state lithium (1s^22s). Lithium atoms, after being laser excited to the 1s^22p state, allow the study of even parity resonances. We have measured some of the even parity resonances of lithium for resonant energies below 64 eV. A single-mode diode laser is used to excite lithium from 1s^22s ground state to 1s^22p (^2P3/2) state. Photoions resulting from the interaction between the excited lithium and synchrotron radiation were analyzed and collected by an ion time-of-flight (TOF) spectrometer with a Z- stack channel plate detector. The Li^+ ion yield was recorded while scanning the undulator along with the monochromator. The energy scans have been analyzed regarding resonance energies and parameters of the Fano profiles. Our results for the observed resonances will be presented.
Linear and Nonlinear Response of a Rotating Tokamak Plasma to a Resonant Error-Field
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard
2014-10-01
An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of resistive-MHD theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived, and their domains of validity mapped out in parameter space. This research was funded by the U.S. Department of Energy under Contract DE-FG02-04ER-54742.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xuan; Yu, Ruixuan; Takayanagi, Shinya
2013-08-07
Ag–Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar–ion irradiation of 30 nm Ag–Au bimetallic films deposited on SiO{sub 2} glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 10{sup 17} cm{sup −2}, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linearmore » shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag–Au nanospheroids with a FCC structure partially embedded in the SiO{sub 2} substrate was confirmed, which has a potential application in solid-state devices.« less
Tuoriniemi, Jani; Moreira, Beatriz; Safina, Gulnara
2016-10-04
The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (n eff ) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (d part ) and the particle number concentration (c p ) by fitting the measured n eff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The d part and c p determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the c p of submicrometer particles in dispersion.
LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum.
Aćimović, Srdjan S; Ortega, Maria A; Sanz, Vanesa; Berthelot, Johann; Garcia-Cordero, Jose L; Renger, Jan; Maerkl, Sebastian J; Kreuzer, Mark P; Quidant, Romain
2014-05-14
Label-free biosensing based on metallic nanoparticles supporting localized surface plasmon resonances (LSPR) has recently received growing interest (Anker, J. N., et al. Nat. Mater. 2008, 7, 442-453). Besides its competitive sensitivity (Yonzon, C. R., et al. J. Am. Chem. Soc. 2004, 126, 12669-12676; Svendendahl, M., et al. Nano Lett. 2009, 9, 4428-4433) when compared to the surface plasmon resonance (SPR) approach based on extended metal films, LSPR biosensing features a high-end miniaturization potential and a significant reduction of the interrogation device bulkiness, positioning itself as a promising candidate for point-of-care diagnostic and field applications. Here, we present the first, paralleled LSPR lab-on-a-chip realization that goes well beyond the state-of-the-art, by uniting the latest advances in plasmonics, nanofabrication, microfluidics, and surface chemistry. Our system offers parallel, real-time inspection of 32 sensing sites distributed across 8 independent microfluidic channels with very high reproducibility/repeatability. This enables us to test various sensing strategies for the detection of biomolecules. In particular we demonstrate the fast detection of relevant cancer biomarkers (human alpha-feto-protein and prostate specific antigen) down to concentrations of 500 pg/mL in a complex matrix consisting of 50% human serum.
Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.
Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong
2017-03-01
Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Size-dependent resonance frequencies of cantilevered and bridged nanosensors
NASA Astrophysics Data System (ADS)
Shi, W.; Zou, J.; Lee, K. Y.; Li, X. F.
2018-03-01
This paper studies transverse vibration of nanoscale cantilevered and bridged sensors carrying a nanoparticle. The nanoscale sensors are modelled as Euler-Bernoulli beams with surface effect and nanoparticle as a concentrated mass. Frequency equations of cantilevered and bridged beam-mass system are derived and exact resonance frequencies are calculated. An alternative Fredholm integral equation method is used to obtain an approximate explicit expression for the fundamental frequency for both cases. A comparison between the approximate and analytical results is made and the approximation accuracy is satisfactory. The influences of the residual surface stress, surface elasticity, and attached mass on the resonance frequencies and mode shapes are discussed. These results are useful to illustrate the surface phenomena and are helpful to design micro-/nano-mechanical sensors.
Plasmon Resonance Methods in GPCR Signaling and Other Membrane Events
Alves, I.D.; Park, C.K.; Hruby, V.J.
2005-01-01
The existence of surface guided electromagnetic waves has been theoretically predicted from Maxwell’s equations and investigated during the first decades of the 20th century. However, it is only since the late 1960’s that they have attracted the interest of surface physicists and earned the moniker of “surface plasmon”. With the advent of commercially available instruments and well established theories, the technique has been used to study a wide variety of biochemical and biotechnological phenomena. Spectral response of the resonance condition serves as a sensitive indicator of the optical properties of thin films immobilized within a wavelength of the surface. This enhanced surface sensitivity has provided a boon to the surface sciences, and fosters collaboration between surface chemistry, physics and the ongoing biological and biotechnological revolution. Since then, techniques based on surface plasmons such as Surface Plasmon Resonance (SPR), SPR Imaging, Plasmon Waveguide Resonance (PWR) and others, have been increasingly used to determine the affinity and kinetics of a wide variety of real time molecular interactions such as protein-protein, lipid-protein and ligand-protein, without the need for a molecular tag or label. The physical-chemical methodologies used to immobilize membranes at the surface of these optical devices are reviewed, pointing out advantages and limitations of each method. The paper serves to summarize both historical and more recent developments of these technologies for investigating structure-function aspects of these molecular interactions, and regulation of specific events in signal transduction by G-protein coupled receptors (GPCRs). PMID:16101432
Coupled channel effects on resonance states of positronic alkali atom
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Kino, Yasushi
2018-01-01
S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.
Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.
Wang, Tao; Li, Peining; Hauer, Benedikt; Chigrin, Dmitry N; Taubner, Thomas
2013-11-13
Plasmonic antennas are crucial components for nano-optics and have been extensively used to enhance sensing, spectroscopy, light emission, photodetection, and others. Recently, there is a trend to search for new plasmonic materials with low intrinsic loss at new plasmon frequencies. As an alternative to metals, polar crystals have a negative real part of permittivity in the Reststrahlen band and support surface phonon polaritons (SPhPs) with weak damping. Here, we experimentally demonstrate the resonance of single circular microcavities in a thin gold film deposited on a silicon carbide (SiC) substrate in the mid-infrared range. Specifically, the negative permittivity of SiC leads to a well-defined, size-tunable SPhP resonance with a Q factor of around 60 which is much higher than those in surface plasmon polariton (SPP) resonators with similar structures. These infrared resonant microcavities provide new possibilities for widespread applications such as enhanced spectroscopy, sensing, coherent thermal emission, and infrared photodetectors among others throughout the infrared frequency range.
Linear ultrafast dynamics of plasmon and magnetic resonances in nanoparticles
NASA Astrophysics Data System (ADS)
Lazzarini, Carlo Maria; Tadzio, Levato; Fitzgerald, Jamie M.; Sánchez-Gil, José A.; Giannini, Vincenzo
2017-12-01
In this study we present an analytical description of the ultrafast localized surface plasmon and magnetic resonance dynamics in a single nanoparticle (Ag or Si), driven by an ultrashort (fs time scale) Gaussian pulse. Three possible scenarios have been found depending on the incident field, i.e., pulse duration much shorter than, similar to, and much longer than the localized surface plasmon resonance (LSPR) lifetime. A rich physics arises for τpulse<τLSPR , even in the linear regime. The surface plasmon dynamics is manifested as (i) a temporal delay of the surface plasmon excitation with regard to the freely propagating pulse and as (ii) a negative exponential tail after the exciting pulse is over. In addition, for sub-fs pulses clear oscillations in the near-field decay have been observed. A similar scenario has been observed considering a nonabsorbing Si sphere. Nanoparticle resonance dynamics may lead to a wealth of new phenomena and applications in nanophotonics such as multipole order resonance interference, pulse-induced delay or temporal shaping on the fs scale, high harmonic generation, attosecond near-field pulse sources, and electron acceleration from metasurface or 3D engineered nanostructures.
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation
Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin
2015-01-01
We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735
Surface plasmon resonance (SPR) detection of Staphylococcal Enterotoxin A in food samples
USDA-ARS?s Scientific Manuscript database
An automated and rapid method for detection of staphylococcal enterotoxins (SE) is needed. A sandwich assay was developed using a surface plasmon resonance (SPR) biosensor for detection of staphylococcal enterotoxin A (SEA) at subpicomolar concentration. Assay conditions were optimized for capturing...
Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment
NASA Technical Reports Server (NTRS)
Pickett, H. M.; Chiou, A. E. T.
1983-01-01
Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.
Sanz, A S; Miret-Artés, S
2005-01-01
The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.
Averaging, passage through resonances, and capture into resonance in two-frequency systems
NASA Astrophysics Data System (ADS)
Neishtadt, A. I.
2014-10-01
Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.
Tunable Micro- and Nanomechanical Resonators
Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang
2015-01-01
Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294
Probing plasmon resonances of individual aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi
2018-01-01
The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.
NASA Astrophysics Data System (ADS)
Liu, Chao; Wang, Famei; Zheng, Shijie; Sun, Tao; Lv, Jingwei; Liu, Qiang; Yang, Lin; Mu, Haiwei; Chu, Paul K.
2016-07-01
A highly birefringent photonic crystal fibre is proposed and characterized based on a surface plasmon resonance sensor. The birefringence of the sensor is numerically analyzed by the finite-element method. In the numerical simulation, the resonance wavelength can be directly positioned at this birefringence abrupt change point and the depth of the abrupt change of birefringence reflects the intensity of excited surface plasmon. Consequently, the novel approach can accurately locate the resonance peak of the system without analyzing the loss spectrum. Simulated average sensitivity is as high as 1131 nm/RIU, corresponding to a resolution of 1 × 10-4 RIU in this sensor. Therefore, results obtained via the approach not only show polarization independence and less noble metal consumption, but also reveal better performance in terms of accuracy and computation efficiency.
Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang
2014-01-01
Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.
Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.
Pipino, Andrew C. R.
2003-02-04
A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2016-10-01
Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.
Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.
Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet
2013-05-21
Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.
Noise suppression for micromechanical resonator via intrinsic dynamic feedback
NASA Astrophysics Data System (ADS)
Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu
2008-09-01
We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.
Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry.
Krasavin, Alexey V; Randhawa, Sukanya; Bouillard, Jean-Sebastien; Renger, Jan; Quidant, Romain; Zayats, Anatoly V
2011-12-05
We demonstrate both experimentally and numerically a compact and efficient, optically tuneable plasmonic component utilizing a surface plasmon polariton ring resonator with nonlinearity based on trans-cis isomerization in a polymer material. We observe more than 3-fold change between high and low transmission states of the device at milliwatt control powers (∼100 W/cm2 by intensity), with the performance limited by switching speed of the material. Such plasmonic components can be employed in optically programmable and reconfigurable integrated photonic circuitry.
2012-10-24
geometric arrangement of the atoms in a chemical system , at the maximal peak of the energy surface separating reactants from products . In the...Sonnenberg, M. Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery... using DFT. The calculation of ground state resonance structure is for the construction of parameterized dielectric response functions for excitation
Enhanced Imaging of Specific Cell-Surface Glycosylation Based on Multi-FRET.
Yuan, Baoyin; Chen, Yuanyuan; Sun, Yuqiong; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Meng, Xiangxian; Yang, Xiaohai; Wen, Xiaohong; Li, Zenghui; Li, Lie; Wang, Kemin
2018-05-15
Cell-surface glycosylation contains abundant biological information that reflects cell physiological state, and it is of great value to image cell-surface glycosylation to elucidate its functions. Here we present a hybridization chain reaction (HCR)-based multifluorescence resonance energy transfer (multi-FRET) method for specific imaging of cell-surface glycosylation. By installing donors through metabolic glycan labeling and acceptors through aptamer-tethered nanoassemblies on the same glycoconjugate, intramolecular multi-FRET occurs due to near donor-acceptor distance. Benefiting from amplified effect and spatial flexibility of the HCR nanoassemblies, enhanced multi-FRET imaging of specific cell-surface glycosylation can be obtained. With this HCR-based multi-FRET method, we achieved obvious contrast in imaging of protein-specific GalNAcylation on 7211 cell surfaces. In addition, we demonstrated the general applicability of this method by visualizing the protein-specific sialylation on CEM cell surfaces. Furthermore, the expression changes of CEM cell-surface protein-specific sialylation under drug treatment was accurately monitored. This developed imaging method may provide a powerful tool in researching glycosylation functions, discovering biomarkers, and screening drugs.
Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator
NASA Astrophysics Data System (ADS)
Chen, H. Y.; MacQuarrie, E. R.; Fuchs, G. D.
2018-04-01
We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain coupled to a NV center's orbital states, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multiphonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV-center orbital states.
NASA Astrophysics Data System (ADS)
Tu, Xiuwen
2008-10-01
Several novel phenomena at the single-atom and single-molecule level occurring on the surfaces of single crystals were studied with home-built low temperature scanning tunneling microscopes. The results revealed intriguing properties of single atoms and single molecules, including nonlinearity, resonance, charging, and motion. First, negative differential resistance (NDR) was observed in the dI/dV spectra for single copper-phthalocyanine (CuPc) molecules adsorbed on one- and two-layer sodium bromide (NaBr), but not for single CuPc molecules adsorbed on three-layer NaBr, all grown on a NiAl(110) surface. This transition from NDR to the absence of NDR was explained as the result of competing effects in the double-barrier tunnel junction (DBTJ) and was reproduced in a calculation based on a resonant-tunneling model. Second, the nonlinearity of the STM junction due to a single manganese (Mn) atom or MnCO molecule adsorbed on a NiAl(110) surface was used to rectify microwave irradiation. The resulting rectification current was shown to be sensitive to the spin-splitting of the electronic states of the Mn atom and to the vibrations of the MnCO molecule. Next, the ordering of cesium (Cs) atoms adsorbed on a Au(111) surface and a NiAl(110) surface was imaged in real space. Because of charge transfer to the substrates, Cs adatoms were positively charged on both surfaces. Even at 12 K, Cs adatoms were able to move and adjust according to coverage. On Au(111), the Cs first layer had a quasi-hexagonal lattice and islands of the second Cs layer did not appear until the first was completed. On NiAl(110), a locally disordered Cs first layer was observed before a locally ordered layer appeared at higher coverages. The cation-pi interactions were then studied at the single molecular level. We were able to form cation-pi complexes such as Cs···DSB, Cs···DSB···Cs, Rb···DSB, and Rb···ZnEtiol controllably by manipulation with the STM tip. We could also separate these complexes controllably by voltage pulses. STM imaging and spectroscopy revealed precise information about the atomic and electronic structure of these cation-pi complexes. Finally, electron transport through single atoms and molecules in a double-barrier tunnel junction (DBTJ) was examined. Charge bistability was observed for single ZnEtioI molecules adsorbed in several different conformations on ultrathin aluminum oxide. A sudden decrease in local apparent barrier height (LABH) was observed at the onset of an adsorbate electronic orbital for single ZnEtioI molecules and Cs atoms supported by the ultrathin aluminum oxide. The resonant-tunneling model, which was proposed to explain the transition from NDR to the absence of NDR, was found useful in explaining the sudden decrease in LABH, too. NDR, bipolar tunneling, and vibronic states were also observed and discussed in the context of DBTJ.
Rapid Detection of Nivalenol and Deoxynivalenol in Wheat Using Surface Plasmon Resonance Immunoassay
USDA-ARS?s Scientific Manuscript database
Surface plasmon resonance immunoassay using a monoclonal antibody was developed to measure nivalenol (NIV) and deoxynivalenol (DON) contamination in wheat. A DON-immobilized sensor chip having high sensitivity and stability was prepared, and an SPR detection procedure was developed. The competitiv...
Nanorod mediated surface plasmon resonance sensor based on effective medium theory
USDA-ARS?s Scientific Manuscript database
A novel nanorod mediated surface plasmon resonance (SPR) sensor was investigated for enhancing sensitivity of the sensor. The theoretical model containing an anisotropic layer of nanorod was investigated using four-layer Fresnel equations and effective medium theory. The properties of the nanorod me...
Vacuum-induced Autler-Townes splitting in a superconducting artificial atom
NASA Astrophysics Data System (ADS)
Peng, Z. H.; Ding, J. H.; Zhou, Y.; Ying, L. L.; Wang, Z.; Zhou, L.; Kuang, L. M.; Liu, Yu-xi; Astafiev, O. V.; Tsai, J. S.
2018-06-01
We experimentally study a vacuum-induced Autler-Townes doublet in a superconducting three-level artificial atom strongly coupled to a coplanar waveguide resonator and simultaneously to a transmission line. The Autler-Townes splitting is observed in the reflection spectrum from the three-level atom in a transition between the ground state and the second excited state when the transition between the two excited states is resonant with a resonator. By applying a driving field to the resonator, we observe a change in the regime of the Autler-Townes splitting from quantum (vacuum-induced) to classical (with many resonator photons). Furthermore, we show that the reflection of propagating microwaves in a transmission line could be controlled by different frequency microwave fields at the single-photon level in a resonator.
Coupling two spin qubits with a high-impedance resonator
NASA Astrophysics Data System (ADS)
Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.
2018-06-01
Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.
Quantum statistics of four-wave mixing by a nonlinear resonant microcavity
NASA Astrophysics Data System (ADS)
Sherkunov, Y.; Whittaker, David M.; Schomerus, Henning; Fal'ko, Vladimir
2014-09-01
We analyze the correlation and spectral properties of two-photon states resonantly transmitted by a nonlinear optical microcavity. We trace the correlation properties of transmitted two-photon states to the decay spectrum of multiphoton resonances in the nonlinear microcavity.
Graded-index whispering gallery mode resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor)
2005-01-01
Whispering gallery mode optical resonators which have spatially-graded refractive indices. In one implementation, the refractive index spatially increases with a distance from an exterior surface of such a resonator towards an interior of the resonator to produce substantially equal spectral separations for different whispering gallery modes. An optical coupler may be used with such a resonator to provide proper optical coupling.
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
NASA Astrophysics Data System (ADS)
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.
Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface
NASA Astrophysics Data System (ADS)
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.
Evolution of the SrTiO3 surface electronic state as a function of LaAlO3 overlayer thickness
NASA Astrophysics Data System (ADS)
Plumb, N. C.; Kobayashi, M.; Salluzzo, M.; Razzoli, E.; Matt, C. E.; Strocov, V. N.; Zhou, K. J.; Shi, M.; Mesot, J.; Schmitt, T.; Patthey, L.; Radović, M.
2017-08-01
The novel electronic properties emerging at interfaces between transition metal oxides, and in particular the discovery of conductivity in heterostructures composed of LaAlO3 (LAO) and SrTiO3 (STO) band insulators, have generated new challenges and opportunities in condensed matter physics. Although the interface conductivity is stabilized when LAO matches or exceeds a critical thickness of 4 unit cells (uc), other phenomena such as a universal metallic state found on the bare surface of STO single crystals and persistent photon-triggered conductivity in otherwise insulating STO-based interfaces raise important questions about the role of the LAO overlayer and the possible relations between vacuum/STO and LAO/STO interfaces. Here, using angle-resolved photoemission spectroscopy (ARPES) on in situ prepared samples complemented by resonant inelastic X-ray scattering (RIXS), we study how the metallic STO surface state evolves during the growth of a crystalline LAO overlayer. In all the studied samples, the character of the conduction bands, their carrier densities, the Ti3+ crystal field, and the response to photon irradiation bear strong similarities. Nevertheless, we report here that studied LAO/STO interfaces exhibit an instability toward an apparent 2 × 1 folding of the Fermi surface at and above a 4 uc thickness threshold, which distinguishes these heterostructures from bare STO and sub-critical-thickness LAO/STO.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qian; Walter, Eric D.; Cosimbescu, Lelia
2016-02-29
Organic radical batteries (ORBs) bearing robust radical polymers as energy storage species, are emerging promisingly with durable high energy and power characteristics by unique tunable redox properties. Here we report the development and application of in situ electrochemical-electron spin resonance (ESR) methodologies to identify the charge transfer mechanism of Poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) based organic radical composite cathodes in the charge-discharge process of lithium half cells. The in situ experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstratemore » a two-electron redox reaction of PTMA. Moreover, two different local environments of radical species are found in the composite electrode that includes both concentrated and isolated radicals. These two types of radicals show similarities during the redox reaction process while behave quite differently in the non-faradic reaction of ion sorption/desorption on the electrode surface.« less
Signature of a highly spin polarized resonance state at Co2MnSi(0 0 1)/Ag(0 0 1) interfaces
NASA Astrophysics Data System (ADS)
Lidig, Christian; Minár, Jan; Braun, Jürgen; Ebert, Hubert; Gloskovskii, Andrei; Kronenberg, Alexander; Kläui, Mathias; Jourdan, Martin
2018-04-01
We investigated interfaces of halfmetallic Co2MnSi(1 0 0) Heusler thin films with Ag(1 0 0), Cr(1 0 0), Cu and Al layers relevant for spin valves by high energy x-ray photoemission spectroscopy (HAXPES). Experiments on Co2MnSi samples with an Ag(1 0 0) interface showed a characteristic spectral shoulder feature close to the Fermi edge, which is strongly diminished or suppressed at Co2MnSi (1 0 0) interfaces with the other metallic layers. This feature is found to be directly related to the Co2MnSi(1 0 0) layer, as reflected by control experiments with reference non-magnetic films, i.e. without the Heusler layer. By comparison with HAXPES calculations, the shoulder feature is identified as originating from an interface state related to a highly spin polarized surface resonance of Co2MnSi (1 0 0).
Surface density mapping of natural tissue by a scanning haptic microscope (SHM).
Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide
2013-02-01
To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Hirata, Hiroshi
2014-02-01
This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.
Ultrasensitive biochemical sensing device and method of sensing analytes
Pinchuk, Anatoliy
2017-06-06
Systems and methods biochemically sense a concentration of a ligand using a sensor having a substrate having a metallic nanoparticle array formed onto a surface of the substrate. A light source is incident on the surface. A matrix is deposited over the nanoparticle array and contains a protein adapted to binding the ligand. A detector detects s-polarized and p-polarized light from the reflective surface. Spacing of nanoparticles in the array and wavelength of light are selected such that plasmon resonance occurs with an isotropic point such that -s and -p polarizations of the incident light result in substantially identical surface Plasmon resonance, wherein binding of the ligand to the protein shifts the resonance such that differences between the -S and -P polarizations give in a signal indicative of presence of the ligand.
Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor
NASA Astrophysics Data System (ADS)
Son, J. R.; Kim, G.; Kothapalli, A.; Morgan, M. T.; Ess, D.
2007-04-01
The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 105 cfu/ml.
The effect of TiO2 phase on the surface plasmon resonance of silver thin film
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Jing, Ming; Tao, Chunxian; Zhang, Dawei
2016-10-01
A series of silver films with various thicknesses were deposited on TiO2 covered silica substrates by magnetron sputtering at room temperature. The effects of TiO2 phase on the structure, optical properties and surface plasmon resonance of silver thin films were investigated by x-ray diffraction, optical absorption and Raman scattering measurements, respectively. By adjusting the silver layer thickness, the resonance wavelength shows a redshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and TiO2 layer. Raman scattering measurement results showed that optical absorption plays an important role in surface plasmon enhancement, which is also related to different crystal phase.
Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft
NASA Technical Reports Server (NTRS)
Johnson, J. W.; Jones, W. L.; Weissman, D. E.
1981-01-01
A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.
Impedance-matching system for a flexible surface-coil-type resonator
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Ono, Mitsuhiro
1997-09-01
This article describes an impedance-matching system for a flexible surface-coil-type resonator (FSCR) used in electron paramagnetic resonance (EPR) experiments. To design the matching system, the input impedance of the FSCR was formulated using transmission line theory, and then the parameters of a matching circuit using varicap diodes were calculated. Experimental measurements of input impedance showed the validity of the formulation and the usefulness of the matching system. The matching circuit made by the varicap diodes 1SV186 offered the tunable bandwidth of 50 MHz for the prototype FSCR. Such a matching system also offers the possibility of remotely tuning EPR resonators electronically.
Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)
2007-01-01
A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.
Porous silicon ring resonator for compact, high sensitivity biosensing applications
Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.
2015-01-01
A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.
Multiplex and label-free screening of foodborne pathogens using surface plasmon resonance imaging
USDA-ARS?s Scientific Manuscript database
In order to protect outbreaks caused by foodborne pathogens, more rapid and efficient methods are needed for pathogen screening from food samples. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for label-free screening of multiple targets simultaneously with ...
Detection of mycotoxins using imaging surface plasmon resonance (iSPR)
USDA-ARS?s Scientific Manuscript database
Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...
Limitations of a localized surface plasmon resonance sensor on Salmonella detection
USDA-ARS?s Scientific Manuscript database
We have designed a localized surface plasmon resonance (LSPR) biosensor to perform the whole cell detection of Salmonella using gold nanoparticls fabricated by oblique angle deposition technique. The LSPR sensor showed a plasmon peak shift due to the Salmonella antigen and anti-Salmonella antibody r...
Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins
USDA-ARS?s Scientific Manuscript database
More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...
USDA-ARS?s Scientific Manuscript database
Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...
The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces
NASA Astrophysics Data System (ADS)
Jones, Andrew C.; O'Callahan, Brian T.; Yang, Honghua U.; Raschke, Markus B.
2013-12-01
One of the most universal physical processes shared by all matter at finite temperature is the emission of thermal radiation. The experimental characterization and theoretical description of far-field black-body radiation was a cornerstone in the development of modern physics with the groundbreaking contributions from Gustav Kirchhoff and Max Planck. With its origin in thermally driven fluctuations of the charge carriers, thermal radiation reflects the resonant and non-resonant dielectric properties of media, which is the basis for far-field thermal emission spectroscopy. However, associated with the underlying fluctuating optical source polarization are fundamentally distinct spectral, spatial, resonant, and coherence properties of the evanescent thermal near-field. These properties have been recently predicted theoretically and characterized experimentally for systems with thermally excited molecular, surface plasmon polariton (SPP), and surface phonon polariton (SPhP) resonances. We review, starting with the early historical developments, the emergence of theoretical models, and the description of the thermal near-field based on the fluctuation-dissipation theory and in terms of the electromagnetic local density of states (EM-LDOS). We discuss the optical and spectroscopic characterization of distance dependence, magnitude, spectral distribution, and coherence of evanescent thermal fields. Scattering scanning near-field microscopy proved instrumental as an enabling technique for the investigations of several of these fundamental thermal near-field properties. We then discuss the role of thermal fields in nano-scale heat transfer and optical forces, and the correlation to the van der Waals, Casimir, and Casimir-Polder forces. We conclude with an outlook on the possibility of intrinsic and extrinsic resonant manipulation of optical forces, control of nano-scale radiative heat transfer with optical antennas and metamaterials, and the use of thermal infrared near-field spectroscopy (TINS) for broadband chemical nano-spectroscopic imaging, where the thermally driven vibrational optical dipoles provide their own intrinsic light source.
Gd³⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy.
Pitchaimani, Arunkumar; Duong, Tuyen; Nguyen, Thanh; Maurmann, Leila; Key, Jaehong; Bossmann, Stefan H; Aryal, Santosh
2017-04-01
Near infrared (NIR) mediated photothermal therapy and magnetic resonance imaging (MRI) are promising treatment and imaging modalities in the field of cancer theranostics. Gold nanorods are the first choice of materials for NIR-mediated photothermal therapy due to their strong localized surface plasmon resonance (LSPR) at NIR region. Similarly, gadolinium based MRI contrast agents have an ability to increase the ionic and molecular relaxivity, thereby enhancing the solvent proton relaxation rate resulting in contrast enhancement. Herein, the effort has been made to engineer a dual front theranostic agent with combined photothermal and magnetic resonance imaging capacity using gadolinium tethered gold nanorods (Gd3+-AuNR). NIR-responsive gold nanorods were surface fabricated by means of Au-thiol interaction using a thiolated macrocyclic chelator that chelates Gd3+ ions, and further stabilized by thiolated polyethylene glycol (PEG-SH). The magnetic properties of the Gd3+-AuNR displayed an enhanced r 1 relaxivity of 12.1 mM–1s–1, with higher biological stability, and contrast enhancement in both solution state and in cell pellets. In-vitro (cell-free) and ex-vivo (on pig skin) analysis of the Gd3+-AuNR shows enhanced photothermal properties as equivalent to that of the raw AuNR. Furthermore, Gd3+-AuNR showed competent cellular entry and intracellular distribution as revealed by hyperspectral microscopy. In addition, Gd3+-AuNR also exhibits significant thermal ablation of B16–F10 cells in the presence of NIR. Thus, Gd3+-AuNR features a significant theranostic potential with combined photothermal and imaging modality, suggesting a great potential in anticancer therapy.
Surface origin and control of resonance Raman scattering and surface band gap in indium nitride
NASA Astrophysics Data System (ADS)
Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.
2016-06-01
Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm-1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g = 0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.
Survey of Tsunamis Formed by Atmospheric Forcing on the East Coast of the United States
NASA Astrophysics Data System (ADS)
Lodise, J.; Shen, Y.; Wertman, C. A.
2014-12-01
High-frequency sea level oscillations along the United States East Coast have been linked to atmospheric pressure disturbances observed during large storm events. These oscillations have periods similar to tsunami events generated by earthquakes and submarine landslides, but are created by moving surface pressure anomalies within storm systems such as mesoscale convective systems or mid-latitude cyclones. Meteotsunamis form as in-situ waves, directly underneath a moving surface pressure anomaly. As the pressure disturbances move off the east coast of North America and over the continental shelf in the Atlantic Ocean, Proudman resonance, which is known to enhance the amplitude of the meteotsunami, may occur when the propagation speed of the pressure disturbance is equal to that of the shallow water wave speed. At the continental shelf break, some of the meteotsunami waves are reflected back towards the coast. The events we studied date from 2007 to 2014, most of which were identified using an atmospheric pressure anomaly detection method applied to atmospheric data from two National Data Buoy Center stations: Cape May, New Jersey and Newport, Rhode Island. The coastal tidal records used to observe the meteotsunami amplitudes include Montauk, New York; Atlantic City, New Jersey; and Duck, North Carolina. On average, meteotsunamis ranging from 0.1m to 1m in amplitude occurred roughly twice per month, with meteotsunamis larger than 0.4m occurring approximately 4 times per year, a rate much higher than previously reported. For each event, the amplitude of the recorded pressure disturbance was compared to the meteotsunami amplitude, while radar and bathymetry data were analyzed to observe the influence of Proudman resonance on the reflected meteotsunami waves. In-situ meteotsunami amplitudes showed a direct correlation with the amplitude of pressure disturbances. Meteotsunamis reflected off the continental shelf break were generally higher in amplitude when the average storm speed was closer to that of the shallow water wave speed, which suggests that Proudman resonance has a significant influence on meteotsunami amplitude over the continental shelf. Through the application of these findings the frequency and severity of future meteotsunamis can be better predicted along the east coast of the United States.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Amarie, Dragos (Inventor)
2013-01-01
Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.
Space charge in nanostructure resonances
NASA Astrophysics Data System (ADS)
Price, Peter J.
1996-10-01
In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.
2016-03-01
The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.
Dual-band reflective polarization converter based on slotted wire resonators
NASA Astrophysics Data System (ADS)
Li, Fengxia; Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Zhao, Rui; Zhou, Yang; Liang, Difei; Lu, Haipeng; Deng, Longjiang
2018-02-01
A dual-band and high-efficiency reflective linear polarization converter composed of a layer of slotted metal wires has been proposed. Both the simulated and experimental results indicate that the structure can convert a linearly polarized wave to its cross-polarized state for two distinct frequency bands under normal incidence: 9.8-15.1 and 19.2-25.7 GHz. This phenomenon is attributed to a resonance that corresponds to the "trapped mode" at 15.8 GHz. This mode is stable with structural parameters and incident angle at a relatively wide range, and thus becomes promising for dual-band (also multiband) devices design. By surface current distribution and electric field analysis, the operation mechanism has been illuminated, especially for the "trapped mode", identified by the equally but also oppositely directed currents in each unit cell.
NASA Astrophysics Data System (ADS)
Sotoma, Shingo; Igarashi, Ryuji; Shirakawa, Masahiro
2016-05-01
We demonstrate that a moderate plasma treatment increases the quality of optically detected magnetic resonance (ODMR) signals from negatively charged nitrogen-vacancy centres in nanodiamonds (NDs). We measured the statistics of the ODMR spectra of 50-nm-size NDs before and after plasma treatment. We then evaluated each ODMR spectrum in terms of fluorescence and ODMR intensities, line width and signal-to-noise (SN) ratio. Our results showed that plasma treatment for more than 10 min contributes to higher-quality ODMR signals, i.e. signals that are brighter, stronger, sharper and have a higher SN ratio. We showed that such signal improvement is due to alteration of the surface chemical states of the NDs by the plasma treatment. Our study contributes to the advancement of biosensing applications using ODMR of NDs.
NASA Astrophysics Data System (ADS)
Mann, M. E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B. A.; Miller, S. K.; Coumou, D.
2017-12-01
Persistent episodes of extreme weather in the Northern Hemisphere summer are typically associated with high-amplitude quasi-stationary atmospheric Rossby waves with zonal wavenumbers. Such disturbances are favoured by the phenomenon of Quasi-Resonant Amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally-averaged surface temperature field. Examining future state-of-the-art (CMIP5) climate model projections we find that such events are likely to increase by 50% over the next century under business-as-usual carbon emissions, but there is considerable variation among climate models, with some models predicting a near tripling of QRA events by the end of the century. These results are strongly dependent on assumptions regarding the prominence of changes in radiative forcing associated with anthropogenic aerosols over the next century.
NASA Astrophysics Data System (ADS)
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-04-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55-4.60 GHz and 4.54-4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications.
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-01-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55–4.60 GHz and 4.54–4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications. PMID:27052098
Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons.
Yang, Liu; Wang, Yue; Xu, Haiyang; Liu, Weizhen; Zhang, Cen; Wang, Chunliang; Wang, Zhongqiang; Ma, Jiangang; Liu, Yichun
2018-05-09
Color-tunable light-emitting devices (LEDs) have a great impact on our daily life. Herein, LEDs with tunable electroluminescence (EL) color were achieved via introducing Ag nanowires surface plasmons into p-GaN/n-ZnO film heterostructures. By optimizing the surface coverage density of coated Ag nanowires, the EL color was changed continuously from yellow-green to blue-violet. Transient-state and temperature-variable fluorescence emission characterizations uncovered that the spontaneous emission rate and the internal quantum efficiency of the near-UV emission were increased as a consequence of the resonance coupling interaction between Ag nanowires surface plasmons and ZnO excitons. This effect induces the selective enhancement of the blue-violet EL component but suppresses the defect-related yellow-green emission, leading to the observed tunable EL color. The proposed strategy of introducing surface plasmons can be further applied to many other kinds of LEDs for their selective enhancement of EL intensity and effective adjustment of the emission color.
On the dynamics of water molecules at the protein solute interfaces.
Bernini, A; Spiga, O; Ciutti, A; Chiellini, S; Menciassi, N; Venditti, V; Niccolai, N
2004-10-01
Proteins, with the large variety of chemical groups they present at their molecular surface, are a class of molecules which can be very informative on most of the possible solute-solvent interactions. Hen egg white lysozyme has been used as a probe to investigate the complex solvent dynamics occurring at the protein surface, by analysing the results obtained from Nuclear Magnetic Resonance, X-ray diffractometry and Molecular Dynamics simulations. A consistent overall picture for the dynamics of water molecules close to the protein is obtained, suggesting that a rapid exchange occurs, in a picosecond timescale, among all the possible hydration surface sites both in solution and the solid state, excluding the possibility that solvent molecules can form liquid-crystal-like supramolecular adducts, which have been proposed as a molecular basis of 'memory of water'.
Dual-mode resonant instabilities of the surface dust-acoustic wave in a Lorentzian plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2015-08-15
The dual-mode resonant instabilities of the dust-acoustic surface wave propagating at the plasma-vacuum interfaces of the generalized Lorentzian dusty plasma slab are kinetically investigated. The dispersion relation is derived for the two propagation modes: symmetric and anti-symmetric waves. We have found that the temporal growth rate of the resonant instability increases with an increase of the slab thickness for both modes. Especially, the nonthermality of plasmas enhances the growth rate of the anti-symmetric resonant wave, and the nonthermal effect is enhanced as the slab thickness is increased. It is also found that the growth rate increases with increasing angular frequencymore » of the rotating dust grain due to the enhanced resonant energy exchange.« less
Xiao, W W; Evans, T E; Tynan, G R; Yoon, S W; Jeon, Y M; Ko, W H; Nam, Y U; Oh, Y K
2017-11-17
The propagation dynamics of resonant magnetic perturbation fields in KSTAR H-mode plasmas with injection of small edge perturbations produced by a supersonic molecular beam injection is reported for the first time. The results show that the perturbation field first excites a plasma response on the q=3 magnetic surface and then propagates inward to the q=2 surface with a radially averaged propagation velocity of resonant magnetic perturbations field equal to 32.5 m/ s. As a result, the perturbation field brakes the toroidal rotation on the q=3 surface first causing a momentum transport perturbation that propagates both inward and outward. A higher density fluctuation level is observed. The propagation velocity of the resonant magnetic perturbations field is larger than the radial propagation velocity of the perturbation in the toroidal rotation.
Surface-plasmon mediated total absorption of light into silicon.
Yoon, Jae Woong; Park, Woo Jae; Lee, Kyu Jin; Song, Seok Ho; Magnusson, Robert
2011-10-10
We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.
All-metal meta-surfaces for narrowband light absorption and high performance sensing
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang
2016-11-01
We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849 × 10-6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.
Resonant scattering due to adatoms in graphene: Top, bridge, and hollow positions
NASA Astrophysics Data System (ADS)
Irmer, Susanne; Kochan, Denis; Lee, Jeongsu; Fabian, Jaroslav
2018-02-01
We present a theoretical study of resonance characteristics in graphene from adatoms with s or pz character binding in top, bridge, and hollow positions. The adatoms are described by two tight-binding parameters: on-site energy and hybridization strength. We explore a wide range of different magnitudes of these parameters by employing T -matrix calculations in the single adatom limit and by tight-binding supercell calculations for dilute adatom coverage. We calculate the density of states and the momentum relaxation rate and extract the resonance level and resonance width. The top position with a large hybridization strength or, equivalently, small on-site energy, induces resonances close to zero energy. The bridge position, compared to top, is more sensitive to variation in the orbital tight-binding parameters. Resonances within the experimentally relevant energy window are found mainly for bridge adatoms with negative on-site energies. The effect of resonances from the top and bridge positions on the density of states and momentum relaxation rate is comparable and both positions give rise to a power-law decay of the resonant state in graphene. The hollow position with s orbital character is affected from destructive interference, which is seen from the very narrow resonance peaks in the density of states and momentum relaxation rate. The resonant state shows no clear tendency to a power-law decay around the impurity and its magnitude decreases strongly with lowering the adatom content in the supercell calculations. This is in contrast to the top and bridge positions. We conclude our study with a comparison to models of pointlike vacancies and strong midgap scatterers. The latter model gives rise to significantly higher momentum relaxation rates than caused by single adatoms.