Sample records for surface results show

  1. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  2. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    PubMed Central

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-01-01

    Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications. PMID:25110862

  3. Lacunarity study of speckle patterns produced by rough surfaces

    NASA Astrophysics Data System (ADS)

    Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.

    2017-11-01

    In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lu; Hanson, David E

    Here we present the results on the study of surface properties of {beta}-HMX crystal utilizing molecular simulations. The surface polarity of three principal crystal surfaces are investigated by measuring the water contact angles. The calculated contact angles agree excellently with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain with and without nitroplasticizer from the three principal crystal surfaces were calculated using umbrella sampling technique. We find that the detaching free energy/force increases with the increasing HMX surface polarity. In addition, ourmore » results also show that nitroplasticizer plays an important role in the adhesion forces between Estane and HMX surfaces.« less

  5. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle

    PubMed Central

    Arakha, Manoranjan; Saleem, Mohammed; Mallick, Bairagi C.; Jha, Suman

    2015-01-01

    The work investigates the role of interfacial potential in defining antimicrobial propensity of ZnO nanoparticle (ZnONP) against different Gram positive and Gram negative bacteria. ZnONPs with positive and negative surface potential are tested against different bacteria with varying surface potentials, ranging −14.7 to −23.6 mV. Chemically synthesized ZnONPs with positive surface potential show very high antimicrobial propensity with minimum inhibitory concentration of 50 and 100 μg/mL for Gram negative and positive bacterium, respectively. On other hand, ZnONPs of the same size but with negative surface potential show insignificant antimicrobial propensity against the studied bacteria. Unlike the positively charged nanoparticles, neither Zn2+ ion nor negatively charged ZnONP shows any significant inhibition in growth or morphology of the bacterium. Potential neutralization and colony forming unit studies together proved adverse effect of the resultant nano-bacterial interfacial potential on bacterial viability. Thus, ZnONP with positive surface potential upon interaction with negative surface potential of bacterial membrane enhances production of the reactive oxygen species and exerts mechanical stress on the membrane, resulting in the membrane depolarization. Our results show that the antimicrobial propensity of metal oxide nanoparticle mainly depends upon the interfacial potential, the potential resulting upon interaction of nanoparticle surface with bacterial membrane. PMID:25873247

  6. Analysis of Tank 38H (HTF-38-17-52, -53) and Tank 43H (HTF-43-17-54, -55) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Coleman, C.; Diprete, D.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the tablemore » show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.« less

  7. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  8. Atmospheric water budget over the South Asian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.

    2018-04-01

    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (<500 mm/year). Similar result is observed in in NASA GLDAS data (1980-2014). The atmospheric water budget shows annual, seasonal, and intra-seasonal variations. Evapotranspiration does not show a high intra-seasonal variability as compared to other water budget components. The coupling among the water budget anomalies is investigated. The results show that regional inter-annual evapotranspiration anomalies are not exactly in phase with rainfall anomalies; it is strongly influenced by the surface conditions and other atmospheric forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  9. Preparation and characterization of soy protein films with a durable water resistance-adjustable and antimicrobial surface.

    PubMed

    Li, Shuzhao; Donner, Elizabeth; Xiao, Huining; Thompson, Michael; Zhang, Yachuan; Rempel, Curtis; Liu, Qiang

    2016-12-01

    A water resistant surface was first obtained by immobilizing hydrophobic copolymers, poly (styrene-co-glycidyl methacrylate) (PSG), with functional groups on soy protein isolate (SPI) films. XPS and AFM results showed that PSG copolymers were immobilized on the film by chemical bonding, and formed a rough surface with some bumps because of the segregation of two different phases on PSG copolymers. Water resistance of the modified films could be adjusted dramatically by further immobilizing different amounts of guanidine-based antimicrobial polymers, poly (hexamethylene guanidine hydrochloride) (PHMG) on the resulting hydrophobic surface. The introduction of hydrophilic PHMG on the resulting surface generated many micropores, which potentially increased the water uptake of the modified films. Furthermore, the modified SPI films showed higher thermostability compared to native SPI film and broad-spectrum antimicrobial activity by contact killing, attributed to the presence of PHMG on the surface. The modified SPI film with a multi-functional surface showed potential for applications in the packaging and medical fields. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film

    PubMed Central

    Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka

    2012-01-01

    The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169

  11. Using Multi-Dimensional Microwave Remote Sensing Information for the Retrieval of Soil Surface Roughness

    NASA Astrophysics Data System (ADS)

    Marzahn, P.; Ludwig, R.

    2016-06-01

    In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.

  12. Surface polarity of beta-HMX crystal and the related adhesive forces with Estane binder.

    PubMed

    Yang, Lu

    2008-12-02

    Here I present the results on the study of surface properties of beta-HMX crystal utilizing molecular dynamics simulations. The surface polarity of three principal crystal surfaces, (011), (010), and (110), is investigated by measuring the water contact angles. The calculated contact angles are in excellent agreement with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain (with and without surrounding nitroplasticizer molecules) from the three principal crystal surfaces are also calculated using the umbrella sampling method. I find that the force for Estane detachment increases with the increasing HMX surface polarity. In addition, my results show that the nitroplasticizer also plays an important role in the adhesion between Estane and HMX surfaces.

  13. Photogrammetry: An available surface characterization tool for solar concentrators. Part 2: Assessment of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shortis, M.; Johnston, G.

    1997-11-01

    In a previous paper, the results of photogrammetric measurements of a number of paraboloidal reflecting surfaces were presented. These results showed that photogrammetry can provide three-dimensional surface characterizations of such solar concentrators. The present paper describes the assessment of the quality of these surfaces as a derivation of the photogrammetrically produced surface coordinates. Statistical analysis of the z-coordinate distribution of errors indicates that these generally conform to a univariate Gaussian distribution, while the numerical assessment of the surface normal vectors on these surfaces indicates that the surface normal deviations appear to follow an approximately bivariate Gaussian distribution. Ray tracing ofmore » the measured surfaces to predict the expected flux distribution at the focal point of the 400 m{sup 2} dish show a close correlation with the videographically measured flux distribution at the focal point of the dish.« less

  14. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  15. Validation of Atmospheric Forcing Data for PIPS 3

    DTIC Science & Technology

    2001-09-30

    members shortly. RESULTS Surface Temperature: Figure 1 shows a comparison of surface air temperatures from the NOGAPS model , the IABP and the NCEP...with some 8,000 daily velocity observations from the IABP buoys shows that the sea-ice model performs better when driven with NOGAPS surface stresses...forcing variables, surface radiative fluxes, surface winds, and precipitation estimates to be used in the development and operation of the PIPS 3.0 model

  16. Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide

    NASA Astrophysics Data System (ADS)

    Koh, A.; Kestle, A.; Wright, C.; Wilks, S. P.; Mawby, P. A.; Bowen, W. R.

    2001-04-01

    A comparative study on the effect of wet and dry thermal oxidation on 4H-silicon carbide (SiC) and on sacrificial silicon (Si) thermal oxidation on 4H-SiC surface has been conducted using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM images show the formation of 'nano-islands' of varying density on the SiC surface after the removal of thermal oxide using hydrofluoric (HF) acid etch. These nano-islands are resistant to HF acid and have been previously linked to residual carbon [1-3] resulting from the oxidation process. This paper presents the use of a sacrificial silicon oxidation (SSO) step as a form of surface preparation that gives a reproducible clean SiC surface. XPS results show a slight electrical shift in binding energy between the wet and dry thermal oxidation on the standard SiC surface, while the surface produced by the SSO technique shows a minimal shift.

  17. Comparative Study of Lunar Roughness from Multi - Source Data

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Kang, Z.

    2017-07-01

    The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.

  18. Graphene Nanoplatelet Reinforced Tantalum Carbide

    DTIC Science & Technology

    2015-08-27

    testing showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study...showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study resulted...Wetting angle measurements are conducted to demonstrate the effectiveness of the PLC coating . Mechanical properties of the GrF-PLC hybrid are

  19. Risk Assessment of Carbon Fiber Composite in Surface Transportation

    NASA Technical Reports Server (NTRS)

    Hathaway, W. T.; Hergenrother, K. M.

    1980-01-01

    The vulnerability of surface transportation to airborne carbon fibers and the national risk associated with the potential use of carbon fibers in the surface transportation system were evaluated. Results show airborne carbon fibers may cause failure rates in surface transportation of less than one per year by 1995. The national risk resulting from the use of carbon fibers in the surface transportation system is discussed.

  20. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE PAGES

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek; ...

    2017-08-28

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  1. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  2. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  3. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE PAGES

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    2017-02-17

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  4. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering.

    PubMed

    Gaihre, Bipin; Jayasuriya, Ambalangodage C

    2016-12-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    NASA Astrophysics Data System (ADS)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  6. Surface characterization and free thyroid hormones response of chemically modified poly(ethylene terephthalate) blood collection tubes

    NASA Astrophysics Data System (ADS)

    Jalali Dil, Ebrahim; Kim, Samuel C.; Saffar, Amir; Ajji, Abdellah; Zare, Richard N.; Sattayapiwat, Annie; Esguerra, Vanessa; Bowen, Raffick A. R.

    2018-06-01

    The surface chemistry and surface energy of chemically modified polyethylene terephthalate (PET) blood collection tubes (BCTs) were studied and the results showed a significant increase in hydrophilicity and polarity of modified PET surface. The surface modification created nanometer-sized, needle-like asperities through molecular segregation at the surface. The surface dynamics of the modified PET was examined by tracking its surface properties over a 280-day period. The results showed surface rearrangement toward a surface with lower surface energy and fewer nanometer-sized asperities. Thromboelastography (TEG) was used to evaluate and compare the thrombogenicity of the inner walls of various types of BCTs. The TEG tracings and data from various types of BCTs demonstrated differences in the reactionand coagulation times but not in clot strength. The performance of the modified tubes in free triiodothyronine (FT3) and free thyroxine (FT4) hormone tests was examined, and it was found that the interference of modified PET tubes was negligible compared to that of commercially available PET BCTs.

  7. Comparative study on the copper activation and xanthate adsorption on sphalerite and marmatite surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yu; Luo, Deqiang; Chen, Luzheng; Deng, Jiushuai

    2018-05-01

    The copper activation and potassium butyl xanthate (PBX) adsorption on sphalerite and marmatite surfaces were comparatively investigated using in situ local electrochemical impedance spectroscopy (LEIS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and surface adsorption tests. Comparing the LEIS and surface adsorption results, it was found that the activation time is a key factor influencing the copper activation and PBX adsorption on marmatite surface, but it has a negligible influence on sphalerite. For a short activation time within 10 min, the Fe impurity in marmatite shows an adverse influence on the speed of Cu adsorption and ion exchange as well as on the subsequent PBX adsorption. For a long activation time of 30 min, the LEIS, ToF-SIMS and surface adsorption results suggested that the Fe impurity in marmatite enhances the copper adsorption, whereas such enhanced copper adsorption of marmatite cannot result in corresponding enhancing of PBX adsorption. DFT result showed that the Fe impurity in marmatite has harmful influence on the PBX interaction with the Cu-activated surface by increasing the interaction energy. ToF-SIMS result further indicated that the Cu distribution in the outermost surface of marmatite is less than that of the sphalerite, which also results in the less PBX adsorption for the marmatite.

  8. Local pH at the surface of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Kobayashi, Kaito; Yamaguchi, Shoichi

    2018-02-01

    The microenvironment at the surface of hen-egg-white lysozyme (HEWL) was examined by analyzing the change in pKa of fluorescein isothiocyanate (FITC) upon binding to the N-terminus of HEWL. The result showed that the local pH at the HEWL surface is higher than the bulk pH. Furthermore, the data showed that the difference between the local and bulk pH becomes larger with decreasing pH, suggesting HEWL repels more protons at lower pH. Because the local pH affects the protonation states of functional amino-acids at the protein surface, the results provide the fundamental insight into the microenvironment at the protein surface.

  9. Porous Organic Nanolayers for Coating of Solid-state Devices

    PubMed Central

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  10. On the urban land-surface impact on climate over Central Europe

    NASA Astrophysics Data System (ADS)

    Huszar, Peter; Halenka, Tomas; Belda, Michal; Zemankova, Katerina; Zak, Michal

    2014-05-01

    For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate over central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM) for urban and suburban land surface. This can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface processes on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0,6 m s-1 and both increases and decreases in summer depending the location with respect to cities and daytime (changes up to 0.3 ms-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts in our simulations the summer precipitation rate showing decrease over cities up to - 2 mm day-1. We further showed, that significant temperature increases are not limited to the urban canopy layer but spawn the whole boundary layer. Above that, a small but statistically significant temperature decrease is modeled. The comparison with observational data showed significant improvement in modeling the monthly surface temperatures in summer and the models better describe the diurnal temperature variation reducing the afternoon and evening bias due to the UHI development, which was not captured by the model if one does not apply the urban parameterization. Sensitivity experiments were carried out as well to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs, anthropogenic heat release etc. and showed that the results are rather robust and the choice of the key SLUCM parameters impacts the results only slightly (mainly temperature, ZPBL and wind velocity). Further, the important conclusion is that statistically significant impacts are modeled not only over large urbanized areas (cities), but the influence of cities is evident over remote rural areas as well with minor or without any urban surfaces. We show that this is the result of the combined effect of the distant influence of surrounding cities and the influence of the minor local urban surface coverage.

  11. Estimation of open water evaporation using land-based meteorological data

    NASA Astrophysics Data System (ADS)

    Li, Fawen; Zhao, Yong

    2017-10-01

    Water surface evaporation is an important process in the hydrologic and energy cycles. Accurate simulation of water evaporation is important for the evaluation of water resources. In this paper, using meteorological data from the Aixinzhuang reservoir, the main factors affecting water surface evaporation were determined by the principal component analysis method. To illustrate the influence of these factors on water surface evaporation, the paper first adopted the Dalton model to simulate water surface evaporation. The results showed that the simulation precision was poor for the peak value zone. To improve the model simulation's precision, a modified Dalton model considering relative humidity was proposed. The results show that the 10-day average relative error is 17.2%, assessed as qualified; the monthly average relative error is 12.5%, assessed as qualified; and the yearly average relative error is 3.4%, assessed as excellent. To validate its applicability, the meteorological data of Kuancheng station in the Luan River basin were selected to test the modified model. The results show that the 10-day average relative error is 15.4%, assessed as qualified; the monthly average relative error is 13.3%, assessed as qualified; and the yearly average relative error is 6.0%, assessed as good. These results showed that the modified model had good applicability and versatility. The research results can provide technical support for the calculation of water surface evaporation in northern China or similar regions.

  12. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  13. Numerical simulation of deformation and figure quality of precise mirror

    NASA Astrophysics Data System (ADS)

    Vit, Tomáš; Melich, Radek; Sandri, Paolo

    2015-01-01

    The presented paper shows results and a comparison of FEM numerical simulations and optical tests of the assembly of a precise Zerodur mirror with a mounting structure for space applications. It also shows how the curing of adhesive film can impact the optical surface, especially as regards deformations. Finally, the paper shows the results of the figure quality analysis, which are based on data from FEM simulation of optical surface deformations.

  14. Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies

    NASA Astrophysics Data System (ADS)

    Liu, P.; Kendelewicz, T.; Nelson, E. J.; Brown, G. E.

    1998-09-01

    Clean MgO(100) surfaces cleaved in vacuum and exposed to water vapor or bulk water were studied using the X-ray standing wave (XSW) technique in back reflection mode and surface sensitive, element specific O KLL and Mg KLL Auger electron yield detection. The effects of surface charging were mitigated, but not entirely eliminated, by using a low-energy electron flood gun. Simulation of the XSW signal showed that the effect of surface charging on the XSW data could be minimized with careful experimental design. We demonstrate that the XSW method can be applied to studies of insulating surfaces, and our results for MgO(100) surfaces exposed to water vapor or bulk water indicate the following: (1) the vacuum-cleaved clean surface undergoes no surface reconstruction or significant relaxation perpendicular to the surface; (2) Mg-OH distances on surfaces exposed to water vapor or bulk water measured perpendicular to the (100) surface are the same as in bulk MgO; and (3) the z-position of the surface Mg atoms does not change within the estimated error [±2% of the (200) spacing] after the surface is fully hydroxylated. Our results for the clean, vacuum-cleaved surface disagree with results from impact collision ion-scattering spectroscopy and surface-extended electron-loss fine structure for MgO(100), which indicate 15 and 17% inward relaxation, respectively, and they support results from low-energy electron diffraction, reflection high-energy electron diffraction, and photoelectron diffraction that show little, if any, relaxation or rumpling of the surface.

  15. Analysis of tank 38H (HTF-38-17-18, -19) and tank 43H (HTF-43-17-20, -21) samples for support of the enrichment control and corrosion control programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.; Coleman, C. J.; Diprete, D. P.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H samples ranged from 53.7 mg/L for the surface sample to 57.0 mg/L in the sub-surface sample. The Tank 43H samples showed uranium concentrations of 46.2 mg/L for the surface sample and 45.7 mg/L in the sub-surface sample. The U-235 percentage was 0.63% in the Tank 38H samples and 0.62% in the Tank 43H samples. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The plutonium results for the Tank 38Hmore » surface sample are slightly higher than recent sample results, while the Tank 43H plutonium results are within the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and subsurface samples are slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples are within the range of values measured on previous samples. The comparison of the sum of the cations in each sample versus the sum of the anions shows a difference of 23% for the Tank 38H surface sample and 18% for the Tank 43H surface sample. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 80.2 to 105 mg/L.« less

  16. Fatigue characteristics of SAE52100 steel via ultrasonic nanocrystal surface modification technology.

    PubMed

    Pyun, Young Sik; Suh, Chang Min; Yamaguchi, Tokutaro; Im, Jong Soon; Kim, Jun Hyong; Amanov, Auezhan; Park, Jeong Hyeon

    2012-07-01

    Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.

  17. Hexagonally ordered nanodots: Result of substrate rotation during oblique incidence low energy IBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debasree, E-mail: debasree.chowdhury@saha.ac.in; Ghose, Debabrata, E-mail: debasree.chowdhury@saha.ac.in

    The anisotropic regular patterns are often results during oblique incidence ion beam sputtering (IBS). Simultaneous substrate rotation (SR) during IBS can suppress surface roughening and removes anisotropic nature of surface pattern. Here, the evolution of Si surface morphology as result of with and without SR is studied during oblique incidence low energy Ar{sup +} sputtering. Resultant topography shows smooth surface to hexagonally ordered nanodots at different rotating conditions. Interestingly, surface roughness exhibits non-monotonic dependence on rotation frequency. The underlying mechanism for dot formation can be described within the framework of isotropic DKS equation.

  18. Slot-grating flat lens for telecom wavelengths.

    PubMed

    Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J

    2014-07-01

    We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.

  19. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    PubMed

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  20. Thermodynamic limitations on the resolution obtainable with metal replicas.

    PubMed

    Woodward, J T; Zasadzinski, J A

    1996-12-01

    The major factor limiting resolution of metal-shadowed surfaces for electron and scanning tunnelling microscopy is the granularity of the metal film. This granularity had been believed to result from a recrystallization of the evaporated film, and hence could be limited by use of higher melting point materials for replication, or inhibited by adding carbon or other impurities to the film. However, evaporated and sputtered films of amorphous metal alloys that do not crystallize also show a granularity that decreases with increasing alloy melting point. A simple thermodynamic analysis shows that the granularity results from a dewetting of the typically low surface energy sample by the high surface energy metal film, similar to the beading up of drops of spilled mercury. The metal granularity and the resulting resolution of the metal-coated surface is proportional to the mobility of the metal on the surface after evaporation, which is related to the difference in temperature between the melting point of the metal and the sample surface temperature.

  1. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  2. [Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai plateau wetland, Guizhou province].

    PubMed

    Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo

    2013-03-01

    The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.

  3. Natural laminar flow flight experiments on a swept wing business jet-boundary layer stability analyses

    NASA Technical Reports Server (NTRS)

    Rozendaal, R. A.

    1986-01-01

    The linear boundary layer stability analyses and their correlation with data of 18 cases from a natural laminar flow (NLF) flight test program using a Cessna Citation 3 business jet are described. The transition point varied from 5% to 35% chord for these conditions, and both upper and lower wing surfaces were included. Altitude varied from 10,000 to 43,000 ft and Mach number from 0.3 to 0.8. Four cases were at nonzero sideslip. Although there was much scatter in the results, the analyses of boundary layer stability at the 18 conditions led to the conclusion that crossflow instability was the primary cause of transition. However, the sideslip cases did show some interaction of crossflow and Tollmien-Schlichting disturbances. The lower surface showed much lower Tollmien-Schlichting amplification at transition than the upper surface, but similar crossflow amplifications. No relationship between Mach number and disturbance amplification at transition could be found. The quality of these results is open to question from questionable wing surface quality, inadequate density of transition sensors on the wing upper surface, and an unresolved pressure shift in the wing pressure data. The results of this study show the need for careful preparation for transition experiments. Preparation should include flow analyses of the test surface, boundary layer disturbance amplification analyses, and assurance of adequate surface quality in the test area. The placement of necessary instruments and usefulness of the resulting data could largely be determined during the pretest phase.

  4. Functionalization of polymer surfaces by medium frequency non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.

    2018-01-01

    This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.

  5. Atomic structure and dynamics properties of Cu50Zr50 films

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Qu, Bingyan; Li, Dongdong; Zhou, Rulong; Zhang, Bo

    2018-01-01

    In this paper, the structural and dynamic properties of Cu50Zr50 films are investigated by molecular dynamics simulations. Our results show that the dynamics of the surface atoms are much faster than those of the bulk. Especially, the diffusion coefficient of the surface atoms is about forty times larger than that of the bulk at 600 K, which qualitatively agrees with the experimental results. Meanwhile, we find that the population of the icosahedral (-like) clusters in the surface region is obviously higher than that of the bulk, which prevents the surface from crystallization. A new method to determine the string-like collective atomic motion is introduced in the paper, and it suggests a possible connection between the glass formation ability and collective atomic motion. By using the method, the effects of surface on collective motion are illustrated. Our results show that the string-like collective atomic motion of surface atoms is weakened while that of the interior atoms is strengthened. The studies clearly explain the effects of surface on the structural and dynamic properties of Cu50Zr50 films from the atomic scale.

  6. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    NASA Astrophysics Data System (ADS)

    Berryman, James G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.

  7. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less

  8. Research on effect of rough surface on FMCW laser radar range accuracy

    NASA Astrophysics Data System (ADS)

    Tao, Huirong

    2018-03-01

    The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.

  9. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium or barium oxide coated tungsten surface. The barium and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface.

  10. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings.

    PubMed

    Shen, Yang; Wang, Guixue; Chen, Liang; Li, Hao; Yu, Ping; Bai, Mengjun; Zhang, Qin; Lee, James; Yu, Qingsong

    2009-11-01

    Plasma nanocoated films with trimethylsilane-oxygen monomers showed outstanding biocompatibility in our previous studies. In this study, endothelialization on biomedical nitinol alloy surfaces was systematically investigated. Our study focuses on elucidating the effects of surface micropatternings with micropores and microgrooves combined with plasma nanocoating. Plasma nanocoatings with controlled thickness between 40 and 50 nm were deposited onto micropatterned nitinol surface in a direct current plasma reactor. Bovine aortic endothelial cells were cultured in vitro on these nitinol samples for 1, 3 and 5 days. It was found that rougher surfaces could enhance cell adhesion compared with the smoother surfaces; the surfaces patterned with micropores showed much more endothelialization than microgrooved surface after a 3 days culture. The cell culture results also showed that plasma nanocoatings significantly further increased cell proliferation and cell adhesion on the micropatterned nitinol surfaces, as compared with non-plasma nanocoated surface of nitinol samples. The surface micropatternings combined with plasma nanocoatings could improve the cell adhesion and accelerate surface endothelialization after implantation of intravascular stents, which is expected to reduce in-stent restenosis.

  11. Using well casing as an electrical source to monitor hydraulic fracture fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilt, Michael; Nieuwenhuis, Greg; MacLennan, Kris

    2016-03-09

    The depth to surface resistivity (DSR) method transmits current from a source located in a cased or openhole well to a distant surface return electrode while electric field measurements are made at the surface over the target of interest. This paper presents both numerical modelling results and measured data from a hydraulic fracturing field test where conductive water was injected into a resistive shale reservoir during a hydraulic fracturing operation. Modelling experiments show that anomalies due to hydraulic fracturing are small but measureable with highly sensitive sensor technology. The field measurements confirm the model results,showing that measured differences in themore » surface fields due to hydraulic fracturing have been detected above the noise floor. Our results show that the DSR method is sensitive to the injection of frac fluids; they are detectable above the noise floor in a commercially active hydraulic fracturing operation, and therefore this method can be used for monitoring fracture fluid movement.« less

  12. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator.

    PubMed

    Wu, Dandan; Ma, Wenhui; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-05-18

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The results of ICP analysis indicate that the dissolution of enhanced sulfurized malachite surface is significantly decreased. Zeta potential measurements indicate that a smaller isoelectric point value and a large number of copper-sulfide films formed on the malachite surface by enhancing sulfidation resulted in a large amount of sodium butyl xanthate absorbed onto the enhanced sulfurized malachite surface. EDS semi-quantitative analysis and XPS analysis show that malachite was easily sulfurized by sodium sulfide with ammonium ion. These results show that the addition of ammonium ion plays a significant role in the sulfidation of malachite and results in improved flotation performance.

  13. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  14. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  15. Will surface winds weaken in response to global warming?

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  16. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  17. Effect of Extreme Wettability on Platelet Adhesion on Metallic Implants: From Superhydrophilicity to Superhydrophobicity.

    PubMed

    Moradi, Sona; Hadjesfandiari, Narges; Toosi, Salma Fallah; Kizhakkedathu, Jayachandran N; Hatzikiriakos, Savvas G

    2016-07-13

    In order to design antithrombotic implants, the effect of extreme wettability (superhydrophilicity to superhydrophobicity) on the biocompatibility of the metallic substrates (stainless steel and titanium) was investigated. The wettability of the surface was altered by chemical treatments and laser ablation methods. The chemical treatments generated different functionality groups and chemical composition as evident from XPS analysis. The micro/nanopatterning by laser ablation resulted in three different pattern geometry and different surface roughness and consequently wettability. The patterned surface were further modified with chemical treatments to generate a wide range of surface wettability. The influence of chemical functional groups, pattern geometry, and surface wettability on protein adsorption and platelet adhesion was studied. On chemically treated flat surfaces, the type of hydrophilic treatment was shown to be a contributing factor that determines the platelet adhesion, since the hydrophilic oxidized substrates exhibit less platelet adhesion in comparison to the control untreated or acid treated surfaces. Also, the surface morphology, surface roughness, and superhydrophobic character of the surfaces are contributing factors to platelet adhesion on the surface. Our results show that superhydrophobic cauliflower-like patterns are highly resistant to platelet adhesion possibly due to the stability of Cassie-Baxter state for this pattern compared to others. Our results also show that simple surface treatments on metals offer a novel way to improve the hemocompatibility of metallic substrates.

  18. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    NASA Astrophysics Data System (ADS)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  19. A laboratory study of colloid and solute transport in surface runoff on saturated soil

    NASA Astrophysics Data System (ADS)

    Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar

    2011-05-01

    SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.

  20. Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing

    NASA Astrophysics Data System (ADS)

    Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean

    2014-11-01

    We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.

  1. Fabrication of broadband quasi-omnidirectional antireflective surface on glass for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Kumar, Praveen; Srinivas, G.; Jakeer Khan G., H.; Siju, Barshilia, Harish C.

    2016-05-01

    In this paper, we have demonstrated a simple and cost effective HF-vapor phase etching method to fabricate the broadband quasi-omnidirectional antireflective surface on glass substrate. Both-sides etched sodalime glass substrates under optimized conditions showed a broadband enhancement in the transmittance spectra with maximum transmittance as high as ~97% at 598 nm. FESEM results confirmed the formation of a graded nanoporous surface, which lowers it refractive index. The etched surface exhibited excellent AR property over a wide range of incidence angles (8°-48°), which is attributed due to the formation of graded porosity. Silicon solar cell covered with plain glass showed Isc of 0.123A and efficiency of 8.76%, while it showed Isc of 0.130A and efficiency of 9.2% when it was covered by etched glass. Furthermore, it exhibited an excellent anti-soiling property as compared to plain glass. All these results show its strong potential in the photovoltaic application.

  2. Force sum rules for stepped surfaces of jellium

    NASA Astrophysics Data System (ADS)

    Farjam, Mani

    2007-03-01

    The Budd-Vannimenus theorem for jellium surface is generalized for stepped surfaces of jellium. Our sum rules show that the average value of the electrostatic potential over the stepped jellium surface equals the value of the potential at the corresponding flat jellium surface. Several sum rules are tested with numerical results obtained within the Thomas-Fermi model of stepped surfaces.

  3. Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside

    NASA Astrophysics Data System (ADS)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-12-01

    Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".

  4. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.

    PubMed

    Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F

    2017-08-01

    Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation up to 10 days, when alkaline phosphatase (ALP) activity and osteogenic transcription factors were up-modulated. Altogether, our results showed for the first time that nano hydroxyapatite-blasted titanium surface promotes crucial intracellular signaling network responsible for cell adapting on the Ti-surface.Biotechnol. Bioeng. 2017;114: 1888-1898. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Crystal truncation rods from miscut surfaces

    DOE PAGES

    Petach, Trevor A.; Mehta, Apurva; Toney, Michael F.; ...

    2017-05-08

    Crystal truncation rods are used to study surface and interface structure. Since real surfaces are always somewhat miscut from a low index plane, it is important to study the effect of miscuts on crystal truncation rods. We develop a model that describes the truncation rod scattering from miscut surfaces that have steps and terraces. We show that nonuniform terrace widths and jagged step edges are both forms of roughness that decrease the intensity of the rods. Nonuniform terrace widths also result in a broad peak that overlaps the rods. We use our model to characterize the terrace width distribution andmore » step edge jaggedness on three SrTiO 3 (001) samples, showing excellent agreement between the model and the data, confirmed by atomic force micrographs of the surface morphology. As a result, we expect our description of terrace roughness will apply to many surfaces, even those without obvious terracing.« less

  6. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  7. Understanding the Changes to Biomass Surface Characteristics after Ammonia and Organosolv Pretreatments by Using Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS)

    DOE PAGES

    Tolbert, Allison K.; Yoo, Chang Geun; Ragauskas, Arthur J.

    2017-03-20

    Surface characteristic changes to poplar after ammonia and organosolv pretreatments were investigated by means of time-of-flight secondary-ion mass spectrometry (TOF-SIMS) analysis. Whereas normalized total polysaccharides and lignin contents on the surface differed from bulk chemical compositions, the surface cellulose ions detected by TOF-SIMS showed the same value trend as the cellulose content in the biomass. In addition, the lignin syringyl/guaiacyl ratio according to TOF-SIMS results showed the same trend as the ratio measured by means of NMR spectroscopic analysis, even though the ratio scales for each method were different. A similar correlation was determined between the surface cellulose and glucosemore » release after enzymatic hydrolysis. Lastly, these results demonstrate that surface characterization using TOF-SIMS can provide important information about the effects of pretreatment on biomass properties and its hydrolysis.« less

  8. Understanding the Changes to Biomass Surface Characteristics after Ammonia and Organosolv Pretreatments by Using Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Allison K.; Yoo, Chang Geun; Ragauskas, Arthur J.

    Surface characteristic changes to poplar after ammonia and organosolv pretreatments were investigated by means of time-of-flight secondary-ion mass spectrometry (TOF-SIMS) analysis. Whereas normalized total polysaccharides and lignin contents on the surface differed from bulk chemical compositions, the surface cellulose ions detected by TOF-SIMS showed the same value trend as the cellulose content in the biomass. In addition, the lignin syringyl/guaiacyl ratio according to TOF-SIMS results showed the same trend as the ratio measured by means of NMR spectroscopic analysis, even though the ratio scales for each method were different. A similar correlation was determined between the surface cellulose and glucosemore » release after enzymatic hydrolysis. Lastly, these results demonstrate that surface characterization using TOF-SIMS can provide important information about the effects of pretreatment on biomass properties and its hydrolysis.« less

  9. Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS

    NASA Astrophysics Data System (ADS)

    Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang

    2014-02-01

    Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.

  10. Role of thermal resistance on the performance of superconducting radio frequency cavities

    DOE PAGES

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2017-03-07

    Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less

  11. Role of thermal resistance on the performance of superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao

    Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less

  12. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    PubMed

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Surface forces between hydrophilic silica surfaces in a moisture-sensitive oleophilic diacrylate monomer liquid

    NASA Astrophysics Data System (ADS)

    Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru

    2018-02-01

    We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.

  14. Improving the work function of the niobium surface of SRF cavities by plasma processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, P. V.; Doleans, M.; Hannah, B.

    2016-01-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  15. Effects of orbital exposure on Halar during the LDEF mission

    NASA Technical Reports Server (NTRS)

    Brower, William E., Jr.; Holla, Harish; Bauer, Robert A.

    1992-01-01

    Thermomechanical Analysis (TMA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) were performed on samples of Halar exposed on the LDEF Mission for 6 years in orbit and unexposed Halar control samples. Sections 10-100 microns thick were removed from the exposed surface down to a depth of 1,000 microns through the 3 mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no differences between the LDEF and the control samples. TMA scans were run from ambient to 300 C; results were compared by a tabulation of the glass transition temperatures. DSC scans were run from ambient to 700 C; the enthalpy of melting was compared for the samples as a function of section depth with the sample. The TGA results, which arise from the surface of the sample initially, showed a sharp increase in the topmost 50 micron section (the exposed, discolored side) in the weight loss of 170 C in oxygen. This weight loss dropped to bulk values in the range of depth of 50-200 microns. The control sample showed only a slight increase in weight loss as the top surface was approached. The LDEF Halar sample appears to be mechanically undamaged, with a surface layer which oxidizes faster as a result of orbital exposure.

  16. Impacts of Cation Type and Clay on Transport of Surface-modified Nanoparticles through Saturated Sand Columns

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Wan, J.; Tokunaga, T. K.

    2010-12-01

    Transport of three different nanoparticles (NPs) was studied in columns packed with different sands (unwashed Accusand, washed Accusand, and ultrapure quartz) at different ionic strengths (IS) and cation types. The NPs were functionalized (polyacrylic acid) quantum dots (QDs), carboxylic-modified latex, and bare silica. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis showed there were regions on the unwashed Accusand grains covered with clay particles. The SEM images of washed Accusand showed that the sand surfaces contained significantly less clay coatings. The breakthrough curves (BTCs) of QDs and latex NPs from unwashed Accusand columns showed minute deposition at 50 and 100 mM Na+. However, significant NP deposition occurred in unwashed Accusand columns at 0.5, 1, and 2 mM Ca2+. The amount of deposition increased as the Ca2+ concentration was increased. These results suggest that, in contrast to monovalent Na+, divalent Ca2+ enhanced deposition of the NPs. The BTCs of QDs and latex NPs in washed Accusand exhibited a similar trend as those of unwashed Accusand, however, much less deposition occurred at any given IS. The BTCs from the ultrapure quartz sand column showed negligible QD deposition at 2 mM Ca2+. Following completion of column experiments, a few Accusand sand grains were analyzed with SEM and the images showed that most of QDs were deposited on the clay surfaces. In contrast with our results from surface-modified NPs, the column experiments using bare silica NPs at 5 mM Ca2+ in unwashed Accusand showed negligible deposition. The enhanced deposition of surface-modified NPs may be attributed to cation bridging in which Ca2+ cations serve as a bridge between the NP, which contain carboxyl group on its surface, and negatively charged clay surfaces at 7. Because Ca2+ is commonly a major cation in groundwater, our results suggest that transport of carboxylic ligand-modified NPs may be very limited in subsurface environments.

  17. Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity.

    PubMed

    King, Helen E; Plümper, Oliver; Putnis, Christine V; O'Neill, Hugh St C; Klemme, Stephan; Putnis, Andrew

    2017-04-20

    Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe) 2 SiO 4 ) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.

  18. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.

    PubMed

    Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil

    2013-12-01

    Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.

  19. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  20. Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mucciolo, Eduardo R.; Calle, Carlos I.

    2006-01-01

    Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces.

  1. Influence of nanophase titania topography on bacterial attachment and metabolism

    PubMed Central

    Park, Margaret R; Banks, Michelle K; Applegate, Bruce; Webster, Thomas J

    2008-01-01

    Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection. PMID:19337418

  2. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    PubMed

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sub-grid scale precipitation in ALCMs: re-assessing the land surface sensitivity using a single column model

    NASA Astrophysics Data System (ADS)

    Pitman, Andrew J.; Yang, Zong-Liang; Henderson-Sellers, Ann

    1993-10-01

    The sensitivity of a land surface scheme to the distribution of precipitation within a general circulation model's grid element is investigated. Earlier experiments which showed considerable sensitivity of the runoff and evaporation simulation to the distribution of precipitation are repeated in the light of other results which show no sensitivity of evaporation to the distribution of precipitation. Results show that while the earlier results over-estimated the sensitivity of the surface hydrology to the precipitation distribution, the general conclusion that the system is sensitive is supported. It is found that changing the distribution of precipitation from falling over 100% of the grid square to falling over 10% leads to a reduction in evaporation from 1578 mm y-1 to 1195 mm y -1 while runoff increases from 278 mm y-1 to 602 mm y-1. The sensitivity is explained in terms of evaporation being dominated by available energy when precipitation falls over nearly the entire grid square, but by moisture availability (mainly intercepted water) when it falls over little of the grid square. These results also indicate that earlier work using stand-alone forcing to drive land surface schemes ‘off-line’, and to investigate the sensitivity of land surface codes to various parameters, leads to results which are non-repeatable in single column simulations.

  4. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer.

    PubMed

    Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew

    2015-07-08

    A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.

  5. Albumin adsorption on CoCrMo alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  6. Analyzing and improving surface texture by dual-rotation magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Wang, Yuyue; Zhang, Yun; Feng, Zhijing

    2016-01-01

    The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.

  7. CW laser damage testing of RAR nano-textured fused silica and YAG

    NASA Astrophysics Data System (ADS)

    MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey

    2017-11-01

    A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin-film AR coated surfaces. This result was correlated with PCI measurements that also show zero-added surface absorption for the RAR nano-textured YAG optics.

  8. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  9. Nitridation of an unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surface in an ammonia flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milakhina, D. S., E-mail: denironman@mail.ru; Malin, T. V.; Mansurov, V. G.

    This paper is devoted to the study of the nitridation of unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surfaces in an ammonia flow by reflection high-energy electron diffraction (RHEED). The experimental results show that sapphire nitridation occurs on the unreconstructed (1 × 1) surface, which results in AlN phase formation on the substrate surface. However, if sapphire nitridation is preceded by high-temperature annealing (1150°C) resulting in sapphire surface reconstruction with formation of the (√31 ×√31)R ± 9° surface, the crystalline AlN phase on the sapphire surface is not formed during surface exposure to an ammonia flow.

  10. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  11. Flow Liner Slot Edge Replication Feasibility Study

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2006-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  12. Fabrication of flower-like micro/nano dual scale structured copper oxide surfaces: Optimization of self-cleaning properties via Taguchi design

    NASA Astrophysics Data System (ADS)

    Moosavi, Saeideh Sadat; Norouzbeigi, Reza; Velayi, Elmira

    2017-11-01

    In the present work, copper oxide superhydrophobic surface is fabricated on a copper foil via the chemical bath deposition (CBD) method. The effects of some influential factors such as initial concentrations of Cu (II) ions and the surface energy modifier, solution pH, reaction and modification steps time on the wettability property of copper oxide surface were evaluated using Taguchi L16 experimental design. Results showed that the initial concentration of Cu (II) has the most significant impact on the water contact angle and wettability characteristics. The XRD, SEM, AFM and FTIR analyses were used to characterize the copper oxide surfaces. The Water contact angle (WCA) and contact angle hysteresis (CAH) were also measured. The SEM results indicated the formation of a flower-like micro/nano dual-scale structure of copper oxide on the substrate. This structure composed of numerous nano-petals with a thickness of about 50 nm. As a result, a copper oxide hierarchical surface with WCA of 168.4°± 3.5° and CAH of 2.73° exhibited the best superhydrophobicity under proposed optimum condition. This result has been obtained just by 10 min hydrolysis reaction. Besides, this surface showed a good stability under acidic and saline conditions.

  13. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  14. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    NASA Astrophysics Data System (ADS)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-04-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  15. What is the role of historical anthropogenically-induced land-cover change on the surface climate of West Africa? Results from the LUCID intercomparison project

    NASA Astrophysics Data System (ADS)

    Souleymane, S.

    2015-12-01

    West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an increase in QA), which is induced by the regional significance effect of CO2SST due to a small LULCC imposed. In contrast, the decrease of surface water balance resulting from LULCC effect is a similar sign to those resulting from CO2SST but the signal resulting of the biophysical effects of LULCC is stronger than the regional CO2SST impact.

  16. Influence of Surface Texture and Roughness of Softer and Harder Counter Materials on Friction During Sliding

    NASA Astrophysics Data System (ADS)

    Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.

    2015-01-01

    Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.

  17. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model.

    PubMed

    Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua

    2017-11-01

    The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Glacial Lake Growth and Associated Glacier Dynamics: Case Study from the Himalayas, Andes, Alaska and New Zealand

    NASA Astrophysics Data System (ADS)

    Binger, D. J.; Haritashya, U. K.; Kargel, J. S.; Shugar, D. H.

    2016-12-01

    Glacial lake growth and associated glacier dynamics: Case study from the Himalayas, Andes, Alaska and New Zealand David J. Binger1, Umesh K. Haritashya1 and Jeffrey S. Kargel21University of Dayton, Dayton, OH 2University of Arizona, Tucson, AZ As a result of climate change most of the world's alpine glaciers are undergoing measurable retreat and dynamic changes. The result of accelerated melting has led to the formation and growth of potentially dangerous glacial lakes. In this study, alpine glaciers and associated lakes from the Himalayas, Andes, Alaska and New Zealand, showing similar geomorphological settings were analyzed to compare differences in regional proglacial lake growth and its relationship with glacier dynamics. Specifically, we analyzed the surface area growth of the lakes, retreat of glacier terminus, changes in glacier velocity, surface temperature and potential glacial lake outburst flood triggers. Using Landsat and ASTER satellite images, Cosi - Corr software, and in house thermal mapping, 10 glaciers were analyzed and compared. Results show a substantial increase in proglacial lake surface area, accelerated velocity and significant calving of the glaciers. Glacier surface temperatures varied by location, with some remaining constant and others 2°C - 4°C increases; although increased surface temperature did not always show a direct correlation with increasing retreat rate. Lakes with high rates of surface area growth paired with glaciers with increased velocity and calving could prove to be unsustainable and lead to an increased risk for glacial lake outburst floods. Overall, result show the changing dynamics of the alpine glaciers in different mountain regions and the growth of their proglacial lakes.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, asmore » well as applications for electrons bound to a 2D surface.« less

  20. Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Implants with Different Surface Characteristics

    PubMed Central

    Larsson Wexell, C.; Thomsen, P.; Aronsson, B.-O.; Tengvall, P.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E.

    2013-01-01

    In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. PMID:24174936

  1. Emphasizing the role of surface chemistry on hydrophobicity and cell adhesion behavior of polydimethylsiloxane/TiO2 nanocomposite films.

    PubMed

    Yousefi, Seyedeh Zahra; Tabatabaei-Panah, Pardis-Sadat; Seyfi, Javad

    2018-07-01

    Improving the bioinertness of materials is of great importance for developing biomedical devices that contact human tissues. The main goal of this study was to establish correlations among surface morphology, roughness and chemistry with hydrophobicity and cell adhesion in polydimethylsiloxane (PDMS) nanocomposites loaded with titanium dioxide (TiO 2 ) nanoparticles. Firstly, wettability results showed that the nanocomposite loaded with 30 wt.% of TiO 2 exhibited a superhydrophobic behavior; however, the morphology and roughness analysis proved that there was no discernible difference between the surface structures of samples loaded with 20 and 30 wt.% of nanoparticles. Both cell culture and MTT assay experiments showed that, despite the similarity between the surface structures, the sample loaded with 30 wt.% nanoparticles exhibits the greatest reduction in the cell viability (80%) as compared with the pure PDMS film. According to the X-ray photoelectron spectroscopy results, the remarkable reduction in cell viability of the superhydrophobic sample could be majorly attributed to the role of surface chemistry. The obtained results emphasize the importance of adjusting the surface properties especially surface chemistry to gain the optimum cell adhesion behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Bai, Liqiang; Zhu, Liangjun; Min, Sijia; Liu, Lin; Cai, Yurong; Yao, Juming

    2008-03-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B ( CB) antimicrobial peptide, (NH 2)-NGIVKAGPAIAVLGEAAL-CONH 2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC·HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI).

  3. The Charging Events in Contact-Separation Electrification.

    PubMed

    Musa, Umar G; Cezan, S Doruk; Baytekin, Bilge; Baytekin, H Tarik

    2018-02-06

    Contact electrification (CE)-charging of surfaces that are contacted and separated, is a common phenomenon, however it is not completely understood yet. Recent studies using surface imaging techniques and chemical analysis revealed a 'spatial' bipolar distribution of charges at the nano dimension, which made a paradigm shift in the field. However, such analyses can only provide information about the charges that remained on the surface after the separation, providing limited information about the actual course of the CE event. Tapping common polymers and metal surfaces to each other and detecting the electrical potential produced on these surfaces 'in-situ' in individual events of contact and separation, we show that, charges are generated and transferred between the surfaces in both events; the measured potential is bipolar in contact and unipolar in separation. We show, the 'contact-charges' on the surfaces are indeed the net charges that results after the separation process, and a large contribution to tribocharge harvesting comes, in fact, from the electrostatic induction resulting from the generated CE charges. Our results refine the mechanism of CE providing information for rethinking the conventional ranking of materials' charging abilities, charge harvesting, and charge prevention.

  4. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  5. Stability of surface nanobubbles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Shantanu; van der Hoef, Martin; Zhang, Xuehua; Lohse, Detlef

    2015-11-01

    We have studied the stability and dissolution of surface nanobubbles on the chemical heterogenous surface by performing Molecular Dynamics (MD) simulations of binary mixture consists of Lennard-Jones (LJ) particles. Recently our group has derived the exact expression for equilibrium contact angle of surface nanobubbles as a function of oversaturation of the gas concentration in bulk liquid and the lateral length of bubble. It has been showed that the contact line pinning and the oversaturation of gas concentration in bulk liquid is crucial in the stability of surface nanobubbles. Our simulations showed that how pinning of the three-phase contact line on the chemical heterogenous surface lead to the stability of the nanobubble. We have calculated the equilibrium contact angle by varying the gas concentration in bulk liquid and the lateral length of the bubble. Our results showed that the equilibrium contact angle follows the expression derived analytically by our group. We have also studied the bubble dissolution dynamics and showed the ''stick-jump'' mechanism which was also observed experimentally in case of dissolution of nanodrops.

  6. Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, S.; Abe-Ouchi, A.

    2017-12-01

    Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.

  7. Droplet sliding on inclined superhydrophobic surfaces: the effect of anisotropic contact line

    NASA Astrophysics Data System (ADS)

    Jiang, Youhua; Cao, Lile; Guo, Zongqi; Choi, Chang-Hwan

    2017-11-01

    Although the effects of solid structures on droplet retention on superhydrophobic surfaces have been studied extensively, the investigation has been restricted to the sessile droplets on horizontal surfaces where the contact line motions are axisymmetric or isotropic (either advancing or receding). In the droplet retention on inclined surfaces, the contact line motions are asymmetric or anisotropic; the advancing and receding motions coexist. In this study, we investigate the correlation between the droplet boundary pinning and the surface morphology on inclined superhydrophobic surfaces. The evolution of the droplet contact angle and width show contrary behaviors between pillar- and pore-structured surfaces due to the distinctive microscopic contact line motions. Therefore, the visualizations of the contact line motions at different locations of the boundary on inclined superhydrophobic surfaces are performed and the averaged contact line density of the boundary is quantified. The result shows that the droplet retentive force monotonously increase with the increase in contact line density, regardless of the surface morphological types, dimensions, or the direction of contact line motion (advancing, receding, or both). The result indicates that the droplet retentive force on superhydrophobic surfaces is mainly determined by the contact line density, regardless of the isotropy of the contact line.

  8. Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus

    NASA Technical Reports Server (NTRS)

    Sakimoto, Susan E. H.; Zuber, Maria T.

    1995-01-01

    Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.

  9. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  10. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miljkovic, N; Enright, R; Nam, Y

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heatmore » transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.« less

  11. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.

    PubMed

    García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto

    2016-11-01

    The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.

  12. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    NASA Astrophysics Data System (ADS)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  13. Unique features of laterally aligned GeSi nanowires self-assembled on the vicinal Si (001) surface misoriented toward the [100] direction

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Vastola, Guglielmo; Zhang, Yong-Wei; Ren, Qijun; Fan, Yongliang; Zhong, Zhenyang

    2015-03-01

    We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs.We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07433e

  14. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    PubMed

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  15. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    NASA Astrophysics Data System (ADS)

    Vadym, Prysiazhnyi; Pavel, Slavicek; Eliska, Mikmekova; Milos, Klima

    2016-04-01

    This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.

  16. The effect of various dentifrices on surface roughness and gloss of resin composites.

    PubMed

    da Costa, Juliana; Adams-Belusko, Anne; Riley, Kelly; Ferracane, Jack L

    2010-01-01

    The purpose of this study was to evaluate the effect of different levels of abrasiveness (RDA) of dentifrices on the gloss and surface roughness of resin composites after toothbrushing. Sixty disk-shaped composite specimens (D=10.0mm, 2-mm thick, n=15 per material) were made of: microfill (Durafill), nanofill (Filtek Supreme), minifill hybrid (Filtek 250), and nanohybrid (Premise). One side of each specimen was finished with a carbide bur and polished with Enhance and Pogo. Five specimens of each composite were randomly assigned to one of the dentifrices, Colgate Total (CT; RDA 70), Colgate baking soda & peroxide whitening (CBS; RDA 145), and Colgate tartar control & whitening (CTW; RDA 200). Surface gloss was measured with a glossmeter and surface roughness with a profilometer before and after toothbrushing with a 1:2 slurry (dentifrice/deionised water) at 5760 strokes in a brushing machine (approximately 1Hz). Results were analyzed by three-way ANOVA/Tukey's (p<0.05). There was a significant reduction in gloss and increase in surface roughness after brushing with all dentifrices. There was no significant difference in gloss when Durafill was brushed with any dentifrice; the other composites showed less gloss reduction when brushed with CT. Durafill, Supreme and Premise did not show significantly different surface roughness results and CBS and CTW did not produce significantly different results. Dentifrices of lower abrasivity promote less reduction in gloss and surface roughness for composites of different particle sizes after brushing. Composites containing smaller average fillers showed less reduction in gloss and less increase in surface roughness than ones with larger fillers. Published by Elsevier Ltd.

  17. Electronic structures of the YBa2Cu3O7-x surface and its modification by sputtering and adatoms of Ti and Cu

    NASA Astrophysics Data System (ADS)

    Meyer, H. M., III; Hill, D. M.; Wagener, T. J.; Gao, Y.; Weaver, J. H.; Capone, D. W., II; Goretta, K. C.

    1988-10-01

    We present x-ray and inverse photoemission results for fractured surfaces of YBa2Cu3O6.9 before and after surface modification by Ar ion bombardment and the deposition of adatoms of Ti and Cu. Representative results are compared for samples prepared in three different ways. Two of the sample types exhibit substantial emission from grain-boundary phases because of both intergranular and transgranular fracture; they produce results that are very similar to those presented thus far in the literature. A third type was nearly free of contamination and clearly showed spectral features characteristic of the superconductor. Comparison of these nearly contamination-free valence-band results to those for clean La1.85Sr0.15CuO4 shows remarkably similar x-ray photoemission spectroscopy densities of states, with subtle differences near the Fermi level and at 3 eV. Inverse photoemission results show the top of the Cu-O hybrid orbitals to be 2 eV above EF and the empty states of Y and Ba at higher energy. Comparison with one-electron densities of states shows reasonable agreement, but there are large differences within the set of calculated results, and it is unclear from the valence bands alone how to account for final-state Cu d-d Coulomb correlation effects (satellite features show these effects very clearly). Argon sputtering for both types of samples shows destruction of the superconductor, with differences that can be related to sample surface quality. The deposition of adatoms of Ti and Cu results in reaction associated with oxygen withdrawal from the near-surface region. Studies of the Cu 2p3/2 line shape show that the deposition of as little as ~1 monolayer equivalent of Ti or Cu reduces the formal Cu2+ emission within the probed volume (30-50 Å deep). Core-level analysis shows that this chemical reduction of Cu is accompanied by crystal-structure modifications as well. Studies of Cu adatom interactions reveal the progression from Cu2+ to Cu1+ and ultimately, to Cu metal as the overlayer thickens (Cu 2p2/3 binding energy 932.5 eV for Cu metal, 933.1 eV for Cu1+, and 932.8 eV for the superconductor). Valence-band results during interface formation show the disappearance of emission near the Fermi level, consistent with the loss of Cu2+-O covalent bonds of the superconductor.

  18. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.

  19. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  20. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.

  1. Surface characterization of selected LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.

    1993-01-01

    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.

  2. Gait Characteristics When Walking on Different Slippery Walkways.

    PubMed

    Whitmore, Mariah W; Hargrove, Levi J; Perreault, Eric J

    2016-01-01

    This study sought to determine the changes in muscle activity about the ankle, knee, and hip in able-bodied people walking at steady state on surfaces with different degrees of slipperiness. Muscle activity was measured through electromyographic signals from selected lower limb muscles and quantified to directly compare changes across surface conditions. Our results showed distinct changes in the patterns of muscle activity controlling each joint. Muscles controlling the ankle showed a significant reduction in activity as the surface became more slippery, presumably resulting in a compliant distal joint to facilitate full contact with the surface. Select muscles about the knee and hip showed a significant increase in activity as the surface became more slippery. This resulted in increased knee and hip flexion likely contributing to a lowering of the body's center of mass and stabilization of the proximal leg and trunk. These findings suggest a proximal-distal gradient in the control of muscle activity that could inform the future design of adaptable prosthetic controllers. Walking on a slippery surface is extremely difficult, especially for individuals with lower limb amputations because current prostheses do not allow the compensatory changes in lower limb dynamics that occur involuntarily in unimpaired subjects. With recent advances in prosthetic control, there is the potential to provide some of these compensatory changes; however, we first need to understand how able-bodied individuals modulate their gait under these challenging conditions.

  3. Origin of tumor-promoter released fibronectin in fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrous, B.A.; Wolf, G.

    1986-05-01

    Previous work from the laboratory showed that the chemical tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated release of the cell surface glycoprotein, fibronectin (FN) from human lung fibroblasts (HLF), leading to depletion of cell surface FN, while FN synthesis is not altered by TPA. To further investigate the mechanism(s) by which TPA stimulates FN release, two types of experiments were performed. In the first, HLF were pulsed with /sup 35/S-methionine-labeled medium with or without TPA. In the second, cell-surface proteins were labeled by iodination (/sup 125/I) and then incubated in unlabeled medium with or without TPA. In both cases, the fate ofmore » labeled FN was followed over 12 hr. The /sup 35/S-meth-labeled HLF showed a rapid loss of labeled FN, first into a small, highly-labeled pool of cell surface FN (1 hr), later into the medium (4 hr or longer). Specific activities showed that this small pool in the cell surface turned over rapidly. TPA treatment resulted in more rapid movement of /sup 35/S-meth pulse-labeled FN to the cell surface and into the medium than in control cells. TPA thus affected the fate of intracellular FN. TPA treatment of HLF also resulted in more rapid removal of /sup 125/I-cell surface-labeled FN into the medium than in control cells. Thus, TPA affects the fate of preexisting cell surface FN in HLF. From these results, they hypothesize that TPA has two separate effects: it stimulates depletion of preexisting intracellular FN during the first hr of treatment, and it stimulates release of preexisting cell surface FN over all treatment times.« less

  4. The role of surface diffusion and wing tilt in the formation of localized stacking faults in high In-content InGaN MQW nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Yoshitake; Dapkus, P. Daniel

    Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I{sub 1} type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaNmore » QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.« less

  5. The role of surface diffusion and wing tilt in the formation of localized stacking faults in high In-content InGaN MQW nanostructures

    NASA Astrophysics Data System (ADS)

    Nakajima, Yoshitake; Dapkus, P. Daniel

    2016-08-01

    Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I1 type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaN QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.

  6. Collective Surfing of Chemically Active Particles

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  7. Orbiter windward surface entry Heating: Post-orbital flight test program update

    NASA Technical Reports Server (NTRS)

    Harthun, M. H.; Blumer, C. B.; Miller, B. A.

    1983-01-01

    Correlations of orbiter windward surface entry heating data from the first five flights are presented with emphasis on boundary layer transition and the effects of catalytic recombination. Results show that a single roughness boundary layer transition correlation developed for spherical element trips works well for the orbiter tile system. Also, an engineering approach for predicting heating in nonequilibrium flow conditions shows good agreement with the flight test data in the time period of significant heating. The results of these correlations, when used to predict orbiter heating for a high cross mission, indicate that the thermal protection system on the windward surface will perform successfully in such a mission.

  8. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    NASA Technical Reports Server (NTRS)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  9. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  10. Characteristics of Sputtered Cr Thin Films and Application as a Working Electrode in Transparent Conductive Oxide-Less Dye-Sensitized Solar Cells.

    PubMed

    Park, Yong Seob; Kang, Ki-Noh; Kim, Young-Baek; Hwang, Sung Hwan; Lee, Jaehyeong

    2018-09-01

    Cr metal electrode was suggested as the working electrode material to fabricate DSSCs without the TCO, and thin films were fabricated by an unbalanced magnetron sputtering system. The surface morphologies show uniform and smooth surfaces regardless of various film thicknesses, and the small crystallites of various sizes were showed with the vertical direction on the surface of Cr thin films with the increase of film thickness. And also, the root mean square (RMS) surface roughness value of Cr thin films increased, and the sheet resistance is decreased with the increase of film thickness. The maximum cell efficiency of the TCO-less DSSC was observed when a Cr working electrode with a thickness of 80 nm was applied to the TCO-less DSSC. Consequently, these results are related to the result of the optimization of conduction characteristics, transmission properties and surface properties of Cr thin films.

  11. Modelling and validation land-atmospheric heat fluxes by using classical surface parameters over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, W.; Ma, Y.; Hu, Z.; Zhong, L.

    2017-12-01

    In this study, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in situ long-term CAMP/Tibet observations. Firstly our field observation sites will be introduced based on ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences). Then, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in situ long-term CAMP/Tibet observations. The differences between the AMSR-E initialized model runs with the default model configuration and in situ data showed an apparent inconsistency in the model-simulated land surface heat fluxes. The results showed that the soil moisture was sensitive to the specific model configuration. To evaluate and verify the model stability, a long-term modeling study with AMSR-E soil moisture data ingestion was performed. Based on test simulations, AMSR-E data were assimilated into an atmospheric model for July and August 2007. The results showed that the land surface fluxes agreed well with both the in situ data and the results of the default model configuration. Therefore, the simulation can be used to retrieve land surface heat fluxes from an atmospheric model over the Tibetan Plateau.

  12. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyllingstad, E.D.; Denbo, D.W.

    Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less

  13. Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.

    PubMed

    Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C

    2013-09-01

    Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  15. Influence of non-smooth surface on tribological properties of glass fiber-epoxy resin composite sliding against stainless steel under natural seawater lubrication

    NASA Astrophysics Data System (ADS)

    Wu, Shaofeng; Gao, Dianrong; Liang, Yingna; Chen, Bo

    2015-11-01

    With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite (GF/EPR) coupled with stainless steel 316L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.

  16. Adsorption of guaiacol on Fe (110) and Pd (111) from first principles

    NASA Astrophysics Data System (ADS)

    Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin

    2016-06-01

    The catalytic properties of surfaces are highly dependent upon the effect said surfaces have on the geometric and electronic structure of adsorbed reactants, products, and intermediates. It is therefore crucial to have a surface-level understanding of the adsorption of the key species in a reaction in order to design active and selective catalysts. Here, we study the adsorption of guaiacol on Fe (110) and Pd (111) using dispersion-corrected density functional theory calculations as both of these metals are of interest as hydrodeoxygenation catalysts for the conversion of bio-oils to useable biofuels. Both vertical (via the oxygen functional groups) and horizontal (via the aromatic ring) adsorption configurations were examined and the resulting adsorption and molecular distortion energies showed that the vertical sites were only physisorbed while the horizontal sites were chemisorbed on both metal surfaces. A comparison of guaiacol's horizontal adsorption on Fe (110) and Pd (111) showed that guaiacol had a stronger adsorption on Pd (111) while the Fe (110) surface distorted the Csbnd O bonds to a greater degree. Electronic analyses on the horizontal systems showed that the greater adsorption strength for guaiacol on Pd (111) was likely due to the greater charge transfer between the aromatic ring and the surface Pd atoms. Additionally, the greater distortion of the Csbnd O bonds in adsorbed guaiacol on Fe (110) is likely due to the greater degree of interaction between the oxygen and surface Fe atoms. Overall, our results show that the Fe (110) surface has a greater degree of interaction with the functional groups and the Pd (111) surface has a greater degree of interaction with the aromatic ring.

  17. Improved understanding of the recombination rate at inverted p+ silicon surfaces

    NASA Astrophysics Data System (ADS)

    To, Alexander; Ma, Fajun; Hoex, Bram

    2017-08-01

    The effect of positive fixed charge on the recombination rate at SiN x -passivated p+ surfaces is studied in this work. It is shown that a high positive fixed charge on a low defect density, passivated doped surface can result in a near injection level independent lifetime in a certain injection level range. This behaviour is modelled with advanced computer simulations using Sentaurus TCAD, which replicates the measurements conditions during a photoconductance based effective minority carrier lifetime measurement. The resulting simulations show that the shape of the injection level dependent lifetime is a result of the surface recombination rate, which is non-linear due to the surfaces moving into inversion with increasing injection level. As a result, the surface recombination rate switches from being limited by electrons to holes. Equations describing the surface saturation current density, J 0s, during this regime are also derived in this work.

  18. Effect of incorporating graphene oxide and surface imprinting on polysulfone membranes on flux, hydrophilicity and rejection of salt and polycyclic aromatic hydrocarbons from water

    NASA Astrophysics Data System (ADS)

    Kibechu, Rose Waithiegeni; Ndinteh, Derek Tantoh; Msagati, Titus Alfred Makudali; Mamba, Bhekie Briliance; Sampath, S.

    2017-08-01

    We report a significant enhancement of hydrophillity of polysulfone (Psf) membranes after modification with graphene oxide (GO) as a filler followed by surface imprinting on the surface of GO/Psf composite imprinted membranes (CIMs). The surface imprinting on the GO-Psf membrane was employed in order to enhance its selectivity towards polycyclic aromatic hydrocarbons (PAHs) in water. The CIMs were prepared through a process of phase inversion of a mixture of graphene oxide and polysulfone (Psf) in N-methylpyrrolidone (NMP). Fourier-transform spectroscopy (FT-IR) of the imprinted showed new peaks at 935 cm-1 and 1638 cm-1 indicating success in surface imprinting on the GO-Psf membrane. The CIM also showed improvement in flux from 8.56 LM-2 h-1 of unmodified polysulfone membrane to 15.3 LM-2 h-1 in the CIM, salt rejection increased from 57.2 ± 4.2% of polysulfone membrane to 76 ± 4.5%. The results obtained from the contact angle measurements showed a decrease with increase in GO content from 72 ± 2.7% of neat polysulfone membrane to 62.3 ± 2.1% of CIM indicating an improvement in surface hydrophilicity. The results from this study shows that, it is possible to improve the hydrophilicity of the membranes without affecting the performance of the membranes.

  19. Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Li, Shengyi; Guan, Chaoliang; Shen, Xinmin; Dai, Yifan; Wang, Zhuo

    2013-04-01

    Nanoparticle jet polishing (NJP) is presented as a posttreatment to remove magnetorheological finishing (MRF) marks. In the NJP process the material is removed by chemical impact reaction, and the material removal rate of convex part is larger than that of the concave part. Smoothing thus can progress automatically in the NJP process. In the experiment, a silica glass sample polished by MRF was polished by NJP. Experiment results showed the MRF marks were removed clearly. The uniform polishing process shows that the NJP process can remove the MRF marks without destroying the original surface figure. The surface root-mean-square roughness is improved from 0.72 to 0.41 nm. power spectral density analysis indicates the surface quality is improved, and the experimental result validates effective removal of MRF marks by NJP.

  20. Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment.

    PubMed

    Liu, Yan Jun; Loh, Wei Wei; Leong, Eunice Sok Ping; Kustandi, Tanu Suryadi; Sun, Xiao Wei; Teng, Jing Hua

    2012-11-23

    Ultrafine 50 nm line and space nanogratings were fabricated using nanoimprint lithography, and were further used as an alignment layer for liquid crystals. The surface morphologies of the nanogratings were characterized and their surface energies were estimated through the measurement of the contact angles for two different liquids. Experimental results show that the surface energies of the nanogratings are anisotropic: the surface free energy towards the direction parallel to the grating lines is higher than that in the direction perpendicular to the grating lines. Electro-optical characteristics were tested from a twisted nematic liquid crystal cell, which was assembled using two identical nanogratings. Experimental results show that such a kind of nanograting is promising as an alternative to the conventional rubbing process for liquid crystal alignment.

  1. Biocompatibility and hemocompatibility of surface-modified NiTi alloys.

    PubMed

    Armitage, David A; Parker, Terry L; Grant, David M

    2003-07-01

    Nickel titanium (NiTi) shape memory alloys have been investigated for several years with regard to biomedical applications. However, little is known about the influences of surface modifications on the biocompatibility of these alloys. The effects of a range of surface treatments were investigated. Cytotoxicity and cytocompatibility studies with both fibroblast and endothelial cells showed no differences in the biocompatibility of any of the NiTi surfaces. The cytotoxicity and cytocompatibility of all surfaces were favorable compared to the controls. The hemolysis caused by a range of NiTi surfaces was no different from that caused by polished 316L stainless steel or polished titanium surfaces. The spreading of platelets has been linked to the thrombogenicity of materials. Platelet studies here showed a significant increase in thrombogenicity on polished NiTi surfaces compared to 316L stainless steel and pure titanium surfaces. Heat treatment of NiTi was found to significantly reduce thrombogenicity, to the level of the control. The XPS results showed a significant decrease in the concentration of surface nickel with heat treatment and changes in the surface nickel itself from a metallic to an oxide state. This correlates with the observed reduction in thrombogenicity. Copyright 2003 Wiley Periodicals, Inc.

  2. Effect of perfluorodecyltrichlorosilane on the surface properties and anti-corrosion behavior of poly(dimethylsiloxane)-ZnO coatings

    NASA Astrophysics Data System (ADS)

    Arukalam, Innocent O.; Meng, Meijiang; Xiao, Haigang; Ma, Yuantai; Oguzie, Emeka E.; Li, Ying

    2018-03-01

    Poly(dimethylsiloxane)-ZnO coatings modified with different amounts of perfluorodecyltrichlorosilane (FDTS) were prepared using sol-gel technique. The results of field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) examinations showed that the surface structures and roughness of the coatings were respectively influenced by the increasing addition of FDTS. The water contact angle measurements showed maximum value of 130.52° with the 0.10 g FDTS-modified coating sample. The X-ray photoelectron spectroscopy (XPS) results indicated the coatings' hydrophobicity was also influenced by surface chemistry. The FTIR-ATR characterization results showed there was remarkable increase in the crystallinity of 0.10 g FDTS-modified coating after modification, and was confirmed by differential scanning calorimetry (DSC) analysis of crystallization temperature and the X-ray diffraction (XRD) results with an estimation of 71.29% percent crystallinity. The mechanical properties of the coatings were also conducted. The EIS measurements for anti-corrosion behavior showed that 0.10 g FDTS-modified coating had the highest barrier performance and lowest rate of degradation. Indeed, the obtained data have demonstrated that 0.10 g (≈ 0.18%) FDTS produced the most significantly effect on the surface and barrier properties of the coatings and thus, can effectively be used for anti-corrosion application in the marine environments.

  3. A numerical study of electromagnetic scattering from ocean like surfaces

    NASA Technical Reports Server (NTRS)

    Lentz, R. R.

    1972-01-01

    The integral equations describing electromagnetic scattering from one dimensional conducting surfaces are formulated and numerical results are presented. The results are compared with those obtained using approximate methods such as physical optics, geometrical optics, and perturbation theory. The integral equation solutions show that the surface radius of curvature must be greater than 2.5 wavelengths for either the physical optics or geometric optics to give satisfactory results. It has also been shown that perturbation theory agrees with the exact fields as long as the root mean square surface roughness is less than one-tenth of a wavelength.

  4. CO2 sensing of La0.875Ca0.125FeO3 in wet vapor: a comparison of experimental results and first-principles calculations.

    PubMed

    Wang, Xiaofeng; Chen, Yanping; Qin, Hongwei; Li, Ling; Shi, Changmin; Liu, Liang; Hu, Jifan

    2015-05-28

    Experimental results show that with an increase of relative humidity, the resistance of La0.875Ca0.125FeO3 decreases at room temperature but increases at higher temperatures (140-360 °C). The humid effect at room temperature is due to the movement of H(+) or H3O(+) inside of the condensed water layer on the surface of La0.875Ca0.125FeO3. Regarding the humid effect at high temperatures, the density functional theory (DFT) calculations show that H2O can be adsorbed onto the La0.875Ca0.125FeO3 surface in the molecular and dissociative adsorption configurations, where the La0.875Ca0.125FeO3 surface gains some electrons from H2O or its dissociative products, consistent with our observation. Experimental results also show that CO2 sensing response at high temperatures decreases with an increase of room-temperature relative humidity. DFT calculations indicate that CO2 adsorbed onto the La0.875Ca0.125FeO3(010) surface, where high concentration oxygen adsorption occurs without water adsorption nearby, releases some electrons into the semiconductor surface, playing the role of a donor. The interaction between CO2 and the local La0.875Ca0.125FeO3(010) surface with pre-adsorption of H2O nearby results in some electron transfer from the La0.875Ca0.125FeO3 surface to CO2, which is responsible for the weakening of CO2 response at high temperatures for La0.875Ca0.125FeO3 with an increase of room-temperature relative humidity.

  5. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less

  6. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-07-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.

  7. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    PubMed Central

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-01-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation. PMID:27468811

  8. Ball Aerospace SBMD Coating Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Robert; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The Sub-scale Beryllium Mirror Demonstrator that was successfully tested to demonstrate cryogenic figuring of a bare mirror has been coated with a protected gold reflective surface and retested at cryogenic temperatures. Results showing less than 9 nm rms surface distortion attributable to the added coating are presented.

  9. Characterization of Etch Pit Formation via the Everson-Etching Method on CdZnTe Crystal Surfaces from the Bulk to the Nano-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, L.; Duff, M.; Cadieux, J.

    2010-09-24

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  10. Fabrication of superhydrophobic surface on zinc substrate by 3-trifluoromethylbenzene diazonium tetrafluoroborate salts

    NASA Astrophysics Data System (ADS)

    Li, Hong; Huang, Chengya; Zhang, Long; Lou, Wanqiu

    2014-09-01

    In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF3BD), which shows a water contact angle of 160° for a 4 μl water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc.

  11. Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton

    2017-11-01

    Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.

  12. The effect of toothbrush bristle stiffness on nanohybrid surface roughness

    NASA Astrophysics Data System (ADS)

    Zairani, O.; Irawan, B.; Damiyanti, M.

    2017-08-01

    The surface of a restoration can be affected by toothpaste containing abrasive agents and the stiffness of toothbrush bristles. Objective: To identify the effect of toothbrush bristle stiffness on nanohybrid surface roughness. Methods: Sixteen nanohybrid specimens were separated into two groups. The first group was brushed using soft-bristle toothbrushes, and the second group was brushed using medium-bristle toothbrushes. Media such as aqua bides was used for brushing in both groups. Brushing was done 3 times for 5 minutes. Surface roughness was measured initially and at 5, 10, and 15 minutes using a surface roughness tester. Results: The results, tested with One-Way ANOVA and Independent Samples t Test, demonstrated that after brushing for 15 minutes, the soft-bristle toothbrush group showed a significantly different value (p < 0.05) of nanohybrid surface roughness. The group using medium-bristle toothbrushes showed the value of nano hybrid surface roughness significant difference after brushing for 10 minutes. Conclusion: Roughness occurs more rapidly when brushing with medium-bristle tooth brushes than when brushing with soft-bristle toothbrushes.

  13. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Jiang, Xiumei; Ji, Yinglu; Bai, Ru; Zhao, Yuliang; Wu, Xiaochun; Chen, Chunying

    2013-08-01

    We investigated how surface chemistry influences the interaction between gold nanorods (AuNRs) and cell membranes and the subsequent cytotoxicity arising from them in a serum-free cell culture system. Our results showed that the AuNRs coated with cetyl trimethylammonium bromide (CTAB) molecules can generate defects in the cell membrane and induce cell death, mainly due to the unique bilayer structure of CTAB molecules on the surface of the rods rather than their charge. Compared to CTAB-capped nanorods, positively charged polyelectrolyte-coated, i.e. poly(diallyldimethyl ammonium chloride) (PDDAC), AuNRs show improved biocompatibility towards cells. Thus, the present results indicate that the nature of surface molecules, especially their packing structures on the surface of AuNRs rather than surface charge, play a more crucial role in determining cytotoxicity. These findings about interfacial interactions could also explain the effects of internalized AuNRs on the structures or functions of organelles. This study will help understanding of the toxic nature of AuNRs and guide rational design of the surface chemistry of AuNRs for good biocompatibility in pharmaceutical therapy.

  14. Application of IEM model on soil moisture and surface roughness estimation

    NASA Technical Reports Server (NTRS)

    Shi, Jiancheng; Wang, J. R.; Oneill, P. E.; Hsu, A. Y.; Engman, E. T.

    1995-01-01

    Monitoring spatial and temporal changes of soil moisture are of importance to hydrology, meteorology, and agriculture. This paper reports a result on study of using L-band SAR imagery to estimate soil moisture and surface roughness for bare fields. Due to limitations of the Small Perturbation Model, it is difficult to apply this model on estimation of soil moisture and surface roughness directly. In this study, we show a simplified model derived from the Integral Equation Model for estimation of soil moisture and surface roughness. We show a test of this model using JPL L-band AIRSAR data.

  15. Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.

    NASA Astrophysics Data System (ADS)

    Azcuaga, Valery Francisco Godinez

    1995-01-01

    This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.

  16. Swimming Motility Reduces Deposition to Silica Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation pointmore » flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.« less

  17. A macro- and nanostructure evaluation of a novel dental implant.

    PubMed

    Tetè, Stefano; Mastrangelo, Filiberto; Traini, Tonino; Vinci, Raffaele; Sammartino, Gilberto; Marenzi, Gaetano; Gherlone, Enrico

    2008-09-01

    Success in implant dentistry also comes from the implant macrodesign and nanostructure of its surface. Titanium implant surface treatments have been shown to enhance osseointegration, maximize bone healing, and bone-to-implant contact for predictable clinical results. The aim of the study, was to evaluate the geometric macrodesign and the surface nanostructure of a novel dental implant full contact covering (FCC) obtained by electrochemical procedures. FCC implants were analyzed by scanning electronic microscope, profilometer, and x-ray photoelectron spectroscopy and compared with commercial sandblasted and sandblasted, large-grit acid-etched dental implants. Sample analysis allowed to distinguish the different implant macrodesigns, the step and the profile of the coils that cover the fixture, and the surface characteristics. FCC implant showed novel macro-characteristic of crestal module, coils, and apical zone compared with sandblasted and sandblasted and acid-etched dental implants. Moreover, the FCC nanostructure surface showed roughness values statistically higher than the 2 other surfaces, with a more homogeneity in a peaks and valleys arrangement. Finally, the x-ray photoelectron spectroscopy analysis detected differences between the examined surfaces, with the presence of several contaminants according to the different treatment procedures. Research on new macrostructures and nano morphology should result in a better qualitative and quantitative osseointegration response, with a predictability of the clinical results and long-term success of the implants.

  18. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    NASA Astrophysics Data System (ADS)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  19. Tailor-made functional surfaces: potential elastomeric biomaterials I.

    PubMed

    Desai, Shrojal; Bodas, Dhananjay; Patil, K R; Patole, Milind; Singh, R P

    2003-01-01

    In the present investigation, different functional monomers, like hydroxyethyl methacrylate, acrylic acid, N-vinyl pyrrolidone and glycidyl methacrylate, have been grafted onto the surface of EPDM film (approx. 200 microm) using simultaneous photo-grafting (lambda > or = 290 nm) and cold plasma-grafting techniques, to alter the surface properties, such as hydrophilicity and, therefore, biocompatibility. Here, we have carried out simultaneous plasma-grafting, unlike the conventional post plasma-grafting. The effect of different surface grafting techniques on the degree of surface modification and resultant biocompatibility has been investigated. The chemical changes on the polymer backbone are followed from the results of attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), which shows the peaks corresponding to the functional groups of the monomers grafted onto the film surface. The morphology of the modified surfaces was investigated using scanning electron microscopy (SEM) technique. The induced hydrophilicity and resultant cell compatibility were followed from the water contact angle measurements and in vitro human carcinoma cell adhesion/proliferation tests, respectively. All the grafted samples exhibited variable cell compatibilities depending upon the type of monomer and their degree of grafting; however, always better than the neat samples. Hydroxyethyl methacrylate and acrylic acid showed exceptionally high cell compatibility in terms of cell adhesion and proliferation.

  20. Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.

    PubMed

    Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter

    2013-12-01

    Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  1. Infrared camera assessment of skin surface temperature--effect of emissivity.

    PubMed

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Changes of the surface structure of corn stalk in the cooking process with active oxygen and MgO-based solid alkali as a pretreatment of its biomass conversion.

    PubMed

    Pang, Chunsheng; Xie, Tujun; Lin, Lu; Zhuang, Junping; Liu, Ying; Shi, Jianbin; Yang, Qiulin

    2012-01-01

    This study presents a novel, efficient and environmentally friendly process for the cooking of corn stalk that uses active oxygen (O2 and H2O2) and a recoverable solid alkali (MgO). The structural changes on the surface of corn stalk before and after cooking were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The results showed that lignin and extractives were effectively removed, especially those on the surface of corn stalk. Additionally, the changes included becoming fibrillar, the exposure of cellulose and hemi-cellulose and the pitting corrosion on the surface, etc. The results also showed that the removal reaction is from outside to inside, but the main reaction is possibly on the surface. Furthermore, the results of active oxygen cooking with a solid alkali are compared with those of alkaline cooking in the paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Lin, Fan-Shun

    2018-07-01

    In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.

  4. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  5. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  6. Physicochemical variation of mica surface by low energy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    We report the transformation of smooth and hydrophilic mica surface to a patterned and hydrophobic surface by 12 keV Ar+ and N+ ion bombardment at oblique ion incidence. Periodic ripple pattern has been found on the mica surface when nitrogen like lighter or argon like heavier ions are bombarded at an angle 60° with respect to the surface normal. During ion bombardment the different components of multi-elemental mica are eroded at different rate; as a result surface chemistry is changed, as well as a surface ripple pattern is developed on the surface due to the generation of surface instabilities. The change of surface chemistry and presence of pattern change the hydrophilic nature of the mica surface. X-ray photoelectron spectroscopy (XPS) study of irradiated mica surface shows that the upper K atoms are sputtered most. The vertical and lateral dimensions of the surface patterns are controlled by varying the ion fluence. Contact angle measurement of un-irradiated and irradiated mica surface shows a certain change from hydrophilicity to hydrophobicity. The physicochemical changes of mica surface due to Ar+ and N+ ion bombardment have been discussed.

  7. Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique

    NASA Astrophysics Data System (ADS)

    Yin, Jiali; Mei, May Lei; Li, Quanli; Xia, Rong; Zhang, Zhihong; Chu, Chun Hung

    2016-05-01

    We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fluorinert FC-70) into the polyfluoroalkyl-silanized rough surface resulted in an enamel surface with slippery liquid-infused porous surface (SLIPS). The results of water contact angle measurement, diffuse-reflectance Fourier transform infrared spectroscopy, and atomic force microscope confirmed that the SLIPS was successfully constructed on the enamel surface. The antibiofouling property of the SLIPS was evaluated by the adsorption of salivary protein of mucin and Streptococcus mutans in vitro, as well as dental biofilm formation using a rabbit model in vivo. The results showed that the SLIPS on the enamel surface significantly inhibited mucin adhesion and S. mutans biofilm formation in vitro, and inhibited dental plaque formation in vivo.

  8. On the use of SPM to probe the interplay between polymer surface chemistry and polymer surface mechanics

    NASA Astrophysics Data System (ADS)

    Brogly, Maurice; Noel, Olivier; Awada, Houssein; Castelein, Gilles

    2007-03-01

    Adhesive properties of a polymer surface results from the complex contribution of surface chemistry and activation of sliding and dissipating mechanisms within the polymer surface layer. The purpose of this study is to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish relationships between the surface viscoelastic properties of the polymer, the surface chemistry of functionalized polymer surfaces and the adhesive forces, as determined by C-AFM experiments. Indeed we are interested in the measurements of local attractive or adhesive forces in AFM contact mode, of controlled chemical and mechanical model substrates. In order to investigate the interplay between mechanical or viscoelastic mechanisms and surface chemistry during the tip - polymer contact, we achieved force measurements on model PDMS polymer networks, whose surfaces are chemically controlled with the same functional groups as before (silicon substrates). On the basis of AFM nano-indentation experiments, surface Young moduli have been determined. The results show that the viscoelastic contribution is dominating in the adhesion force measurement. We propose an original model, which express the local adhesion force to the energy dissipated within the contact and the surface properties of the material (thermodynamic work of adhesion). Moreover we show that the dissipation function is related to Mc, the mass between crosslinks of the network.

  9. A SUB-PIXEL COEFFICIENT MODEL TO FORM AGGREGATE IMPERVIOUUS SURFACE ESTIMATES FROM NATIONAL LAND COVER DATA

    EPA Science Inventory

    Using GIS to produce impervious surface coefficients from National Land Cover Data

    National Laud Cover Data (NLCD) and county level planimetric impervious surface data were utilized to derive an impervious coefficient per NLCD class. Results show that coefficients fall in...

  10. Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis.

    PubMed

    Wu, Shiwei; Liu, Yu; Ma, Caiqing; Wang, Jing; Zhang, Yao; Song, Peng; Xia, Lixin

    2018-06-26

    4-Aminothiophenol (PATP) and 4-aminophenyl disulfide (APDS) in contact with silver will form H 2 N-C 6 H 4 -S-Ag (PATP-Ag), and under the conditions of surface-enhanced Raman spectroscopy (SERS), a coupling reaction will generate 4,4-dimercaptoazobenzene (DMAB). DMAB is strongly Raman-active, showing strong peaks at ν ≈ 1140, 1390, and 1432 cm -1 , and is widely used in surface-plasmon-assisted catalysis. Using APDS, PATP, p-nitrothiophenol (PNTP), and p-nitrodiphenyl disulfide (NPDS) as probe molecules, Raman spectroscopy and imaging techniques have been used to study the effect of intermolecular distance on surface-plasmon-assisted catalysis. Theoretically, PATP-Ag formed from APDS will be bound at proximal Ag atoms on the Ag surface due to S-S bond cleavage. The results show that APDS is more prone to surface-plasmon-assisted catalytic coupling due to the smaller distance between surface PATP-Ag moieties than those derived from PATP. Therefore, APDS has a higher reaction efficiency, better Raman activity, and better Raman imaging than does PATP. Analogous experiments with PNTP and NPDS gave similar results. Thus, this technique has great application prospects in the fields of surface chemistry and materials chemistry.

  11. Surface plasmon resonances of protein-conjugated gold nanoparticles on graphitic substrates

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Hoang, Trinh X.; Nghiem, Thi H. L.; Woods, Lilia M.

    2013-10-01

    We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine serum molecules aggregating on gold surfaces can be quantitatively determined for gold nanoparticles with arbitrary size by means of the Mie theory and the absorption spectra. The presence of a graphene substrate near the protein-conjugated gold nanoparticles results in a red shift of the surface plasmon resonances of the nanoparticles. This effect can be modulated upon changing the graphene chemical potential. Our findings show that the graphene and graphite affect the absorption spectra in a similar way.

  12. Temperature Dependence and Energetics of Single Ions at the Aqueous Liquid-Vapor Interface

    PubMed Central

    Ou, Shuching; Patel, Sandeep

    2014-01-01

    We investigate temperature-dependence of free energetics with two single halide anions, I− and Cl−, crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I− has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl− shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I− generates significantly greater interfacial fluctuations compared to Cl−. The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I− as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally-excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface-stability of I−. Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability. PMID:23537166

  13. Surface modification of a gold-coated microcantilever and application in biomarker detection

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; Nhat Khoa Phan, Thanh; Nguyen, Thanh Trung; Pham, Xuan Thanh Tung; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    Biosensors have been rapidly developed recently. Biological receptors, such as antibodies, must be immobilized on these sensors’ surfaces to make the sensor capable of capturing a target analyte. In this research we studied how to modify a gold-coated surface of a microcantilever, a sensor with high potential in biological and medical applications. Thiol chemistry was adapted to create a cysteamine layer on a gold surface, and subsequently glutaraldehyde was used as a cross-linking agent to react with amine groups in receptors. In order to evaluate the efficiency of immobilizing protein on an Au surface and also whether the protein retains its biological activity, horseradish peroxidase enzyme (HRP) with its activity to catalyze a reaction between 2,2‧-azino-bis [3-ethylbenzothiazoline-6-sulphonic acid] (ABTS) and {{{H}}}2{{{{O}}}2}- was used as a testing protein. The result showed that HRP was immobilized successfully on cysteamine and glutaraldehyde layers and retained its activity. The cantilever’s tip deflection was also measured, and results showed that each layer created surface stress and made the cantilever bend—in particular, the cysteamine layer induced bending as high as 6 μm. An antibody of alpha-fetoprotein (AFP) was immobilized on the cantilever surface, and the measurement deflection showed that the sensor responded to solution containing AFP with concentration from 100 to 500 ng ml-1.

  14. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

    PubMed Central

    Güngör, Merve Bankoğlu; Bal, Bilge Turhan; Ünver, Senem; Doğan, Aylin

    2016-01-01

    PURPOSE The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS 120 specimens (10×10×2 mm) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with 125 µm grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin. PMID:27555894

  15. Selective cell response on natural polymer bio-interfaces textured by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.

    2018-02-01

    This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.

  16. Sub-monolayer growth of Ag on flat and nanorippled SiO{sub 2} surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto

    2016-05-30

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on themore » flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.« less

  17. Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

    NASA Astrophysics Data System (ADS)

    Ziyaei, E.; Atapour, M.; Edris, H.; Hakimizad, A.

    2017-07-01

    The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample's surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

  18. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  19. TIME EVOLUTION OF KELVIN–HELMHOLTZ VORTICES ASSOCIATED WITH COLLISIONLESS SHOCKS IN LASER-PRODUCED PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuramitsu, Y.; Moritaka, T.; Mizuta, A.

    2016-09-10

    We report experimental results on Kelvin–Helmholtz (KH) instability and resultant vortices in laser-produced plasmas. By irradiating a double plane target with a laser beam, asymmetric counterstreaming plasmas are created. The interaction of the plasmas with different velocities and densities results in the formation of asymmetric shocks, where the shear flow exists along the contact surface and the KH instability is excited. We observe the spatial and temporal evolution of plasmas and shocks with time-resolved diagnostics over several shots. Our results clearly show the evolution of transverse fluctuations, wavelike structures, and circular features, which are interpreted as the KH instability andmore » resultant vortices. The relevant numerical simulations demonstrate the time evolution of KH vortices and show qualitative agreement with experimental results. Shocks, and thus the contact surfaces, are ubiquitous in the universe; our experimental results show general consequences where two plasmas interact.« less

  20. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    PubMed

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Control of crankshaft finish by scattering technique

    NASA Astrophysics Data System (ADS)

    Fontani, Daniela; Francini, Franco; Longobardi, Giuseppe; Sansoni, Paola

    2001-06-01

    The paper describes a new sensor dedicated to measure and check the surface quality of mechanical products. The results were obtained comparing the light scattered from two different ranges of angles by means of 16 photodiodes. The device is designed for obtaining valid data from curved surfaces as that of a crankshaft. Experimental measurements show that the ratio between scattered and reflected light intensity increases with the surface roughness. This device was developed for the off-tolerance detection of mechanical pieces in industrial production. Results of surface quality on crankshaft supplied by Renault were carried out.

  2. Characterization of retrieved orthodontic miniscrew implants.

    PubMed

    Eliades, Theodore; Zinelis, Spiros; Papadopoulos, Moschos A; Eliades, George

    2009-01-01

    The purposes of this study were to characterize the morphologic, structural, and compositional alterations and to assess any hardness changes in used orthodontic miniscrew implants. Eleven miniscrew implants (Aarhus Anchorage System, Medicon eG, Tuttlingen, Germany) placed in 5 patients were retrieved after successful service of 3.5 to 17.5 months; none showed signs of mobility or failure. These implants, and brand-, type-, and size-matched specimens as controls, were subjected to multi-technique characterization. Optical microscopy indicated loss of gloss with variable discoloration. Scanning electron microscopy and x-ray microanalysis showed morphologic alteration of the miniscrew implant surfaces with integuments formed on the surface. The materials precipitated on the surfaces were sodium, potassium, chlorine, iron, calcium, and phosphorus from the contact of the implant with biologic fluids such as blood and exudates, forming sodium chloride, potassium chloride, and calcium-phosphorus precipitates. The composition of the implant was similar to that of a titanium alloy. X-ray microtomography analysis showed no bulk structure alterations. Vickers microhardness testing showed no increased bulk or surface hardness of the retrieved specimens compared with the controls, excluding the possibility of strain-hardening phenomena as a result of self-tapping and self-drilling placement and related loading conditions. Used titanium-alloy miniscrew implants have morphologic and surface structural alterations including adsorption of an integument that is calcified as a result of contact of the implants with biologic fluids. Randomly organized osseointegration islets on these smooth titanium-alloy miniscrew surfaces might be enhanced by the extended period of retention in alveolar bone in spite of the smooth surface and immediate loading pattern of these implants.

  3. Multifunctional Ultra-high Vacuum Apparatus for Studies of the Interactions of Chemical Warfare Agents on Complex Surfaces

    DTIC Science & Technology

    2014-01-02

    of the formation of a hydrogen-bonded hydroxyl. Characteristic modes of the sarin molecule itself are also ob- served. These experimental results show...chemical warfare agent, surface science, uptake, decontamination, filtration , UHV, XPS, FTIR, TPD REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science

  4. Characterization, modeling and simulation of fused deposition modeling fabricated part surfaces

    NASA Astrophysics Data System (ADS)

    Taufik, Mohammad; Jain, Prashant K.

    2017-12-01

    Surface roughness is generally used for characterization, modeling and simulation of fused deposition modeling (FDM) fabricated part surfaces. But the average surface roughness is not able to provide the insight of surface characteristics with sharp peaks and deep valleys. It deals in the average sense for all types of surfaces, including FDM fabricated surfaces with distinct surface profile features. The present research work shows that kurtosis and skewness can be used for characterization, modeling and simulation of FDM surfaces because these roughness parameters have the ability to characterize a surface with sharp peaks and deep valleys. It can be critical in certain application areas in tribology and biomedicine, where the surface profile plays an important role. Thus, in this study along with surface roughness, skewness and kurtosis are considered to show a novel strategy to provide new transferable knowledge about FDM fabricated part surfaces. The results suggest that the surface roughness, skewness and kurtosis are significantly different at 0° and in the range (0°, 30°], [30°, 90°] of build orientation.

  5. Nano-patterned SU-8 surface using nanosphere-lithography for enhanced neuronal cell growth

    NASA Astrophysics Data System (ADS)

    Kim, Eunhee; Yoo, Seung-Jun; Kim, Eunjung; Kwon, Tae-Hwan; Zhang, Li; Moon, Cheil; Choi, Hongsoo

    2016-04-01

    Mimicking the nanoscale surface texture of the extracellular matrix can affect the regulation of cellular behavior, including adhesion, differentiation, and neurite outgrowth. In this study, SU-8-based polymer surfaces with well-ordered nanowell arrays were fabricated using nanosphere lithography with polystyrene nanoparticles. We show that the SU-8 surface with nanowells resulted in similar neuronal development of rat pheochromocytoma (PC12) cells compared with an unpatterned poly-L-lysine (PLL)-coated SU-8 surface. Additionally, even after soaking the substrate in cell culture medium for two weeks, cells on the nanowell SU-8 surface showed long-term neurite outgrowth compared to cells on the PLL-coated SU-8 surface. The topographical surface modification of the nanowell array demonstrates potential as a replacement for cell adhesive material coatings such as PLL, for applications requiring long-term use of polymer-based implantable devices.

  6. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    PubMed

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  7. A study of rain effects on radar scattering from water waves

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George

    1988-01-01

    Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.

  8. Potential surface for the collinear collision of Ne and H/sub 2//sup +/. [eendoergicity, surface parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, E.F.; Siu, A.K.Q.; Chapman, F.M. Jr.

    1976-09-01

    A potential energy surface for the Ne--H/sub 2//sup +/ reaction has been obtained in the LCAO--MO--SCF approximation. Analysis of the surface indicates that the reaction Ne+H/sub 2//sup +/..-->..NeH/sup +/+H should proceed with an endoergicity of 12 kcal/mole, in agreement with the experimental results of Chupka and Russell. Several procedures for parameterizing a diatomics-in-molecules (DIM) representation of the NeH/sub 2//sup +/ surface are considered. The results show that an accurate representation of the SCF surface can be obtained from the DIM model using a minimum of diatomic and triatomic data. (AIP)

  9. Metal powder absorptivity: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  10. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  11. Wafer-scale plasmonic and photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.

    2015-08-01

    200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

  12. The Effect of Hydrofluoric Acid Surface Treatment on the Cyclic Fatigue Resistance of K3 NiTi Instruments

    PubMed Central

    2017-01-01

    The aim of this study was to investigate the effect of 50% hydrofluoric acid (HF) surface treatment on the cyclic fatigue resistance (CFR) of K3 NiTi instruments. Twenty as-received and twenty HF-treated K3 NiTi instruments were compared in CFR. The surface texture and fracture surface of two instrument groups were examined with a scanning electron microscope (SEM). Additionally, any change of Ni and Ti composition from both instrument groups was investigated using energy dispersive spectrometry. The results were analyzed with t-test. The HF-treated K3 group showed statistically higher cyclic fatigue resistance than as-received K3 group (P < 0.05). HF-treated K3 instruments showed smoother and rounded surface compared to as-received K3 under SEM observation. The fracture surfaces of both groups showed typical patterns of cyclic fatigue fracture. There was no difference in surface Ni and Ti composition between two groups. HF treatment of K3 instruments smoothed the file surface and increased the cyclic fatigue resistance, while it had no effect on surface ion composition and the file fracture pattern. PMID:28539854

  13. Synthesis of Quaternary Ammonium Salts Based on Diketopyrrolopyrroles Skeletons and Their Applications in Copper Electroplating.

    PubMed

    Chen, Biao; Xu, Jie; Wang, Limin; Song, Longfeng; Wu, Shengying

    2017-03-01

    A series of DPP derivatives bearing quaternary ammonium salt centers with different lengths of carbon chains have been designed and synthesized. Their inhibition actions on copper electroplating were first investigated. A total of four diketopyrrolopyrrole (DPP) derivatives showed different inhibition capabilities on copper electroplating. To investigate interactions between metal surface and additives, we used quantum chemical calculations. Static and dynamic surface tension of four DPP derivatives had been measured, and the results showed DPP-10C (1c) with a faster-decreasing rate of dynamic surface tension among the four derivatives, which indicated higher adsorption rate of additive on the cathode surface and gives rise to stronger inhibiting effect of copper electrodeposition. Then, DPP-10C (1c) as the representative additive, was selected for the systematic study of the leveling influence during microvia filling through comprehensive electroplating tests. In addition, field-emission scanning electron microscope images and X-ray diffraction results showed the surface morphology, which indicated that addition of DPP derivative (1c) could lead a fine copper deposit and cause the preferential orientations of copper deposits to change from [220] to [111], which happened in particular at higher concentrations.

  14. High-speed micro-droplet impact on a super-heated surface

    NASA Astrophysics Data System (ADS)

    Fujita, Yuta; Tran, Tuan; Tagawa, Yoshiyuki; Xie, Yanbo; Sun, Chao; Lohse, Detlef

    2017-11-01

    In this study, we experimentally show that the condition for micro-droplets to splash depends on the temperature of the surface on which the droplets impact. We vary droplet diameter (30 120 μm) and surface temperature (20 500°C). For an impacting droplet, splashing becomes possible for high surface temperature T > 160°C and Weber number We > 100. In contrast, at low surface temperature T < 140°C, no splash was observed up to the maximum Weber number in our experiments, i.e. We 7,000. Our results show that the criteria for splashing of micro-droplets may be different from those of milli-sized droplets, in particular when the impacted surface is heated. This work was supported by JSPS KAKENHI Grant Number 16K14166.

  15. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose*

    PubMed Central

    Nakamura, Akihiko; Tasaki, Tomoyuki; Ishiwata, Daiki; Yamamoto, Mayuko; Okuni, Yasuko; Visootsat, Akasit; Maximilien, Morice; Noji, Hiroyuki; Uchiyama, Taku; Samejima, Masahiro; Igarashi, Kiyohiko; Iino, Ryota

    2016-01-01

    Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα. The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30–40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose. PMID:27609516

  16. Influence of hydrophobic surface treatment toward performance of air filter

    NASA Astrophysics Data System (ADS)

    Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study investigated the performance of hydrophobic surface treatment by using silica aerogel powder via spray coating techniques. Hydrophobic properties were determined by measuring the level of the contact angle. Meanwhile, performance was evaluated in term of the hydrogen gas flow and humidity rejection. The results are shown by contact angle that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder. Results also showed that the absorption and rejection filter performance filter has increased after the addition of silica aerogel powder. The results showed that with the addition of 5 grams of powder of silica aerogel have the highest result of wetting angle 134.11°. The highest humidity rejection found with 5 grams of powder of silica aerogel.

  17. Understanding the stability of surface nanobubbles.

    PubMed

    Wang, Shuo; Liu, Minghuan; Dong, Yaming

    2013-05-08

    Surface nanobubbles emerging at solid-liquid interfaces show extreme stability. In this paper, the stability of surface nanobubbles in degassed water is discussed and investigated by AFM. The result demonstrates that surface nanobubbles are kinetically stable and the liquid/gas interface is gas impermeable. The force modulation experiment further proves that there is a layer coating on nanobubbles. These critical properties suggest that surface nanobubbles may be stabilized by a layer which has a great diffusive resistance.

  18. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    PubMed

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  19. Fabrication of zero contact angle ultra-super hydrophilic surfaces.

    PubMed

    Jothi Prakash, C G; Clement Raj, C; Prasanth, R

    2017-06-15

    Zero contact angle surfaces have been created with the combined effect of nanostructure and UV illumination. The contact angle of titanium surface has been optimized to 3.25°±1°. with nanotubular structures through electrochemical surface modification. The porosity and surface energy of tubular TiO 2 layer play critical role over the surface wettability and the hydrophilicity of the surface. The surface free energy has been enhanced from 23.72mJ/m 2 (bare titanium surface) to 87.11mJ/m 2 (nanotubular surface). Similar surface with TiO 2 nanoparticles coating shows superhydrophilicity with contact angle up to 5.63°±0.95°. This implies liquid imbibition and surface curvature play a crucial role in surface hydrophilicity. The contact angle has been further reduced to 0°±0.86° by illuminating the surface with UV radiation. Results shows that by tuning the nanotube morphology, highly porous surfaces can be fabricated to reduce contact angle and enhance wettability. This study provides an insight into the inter-relationship between surface structural factors and ultra-superhydrophilic surfaces which can help to optimize thermal hydraulic and self cleaning surfaces. Copyright © 2017. Published by Elsevier Inc.

  20. Ultralow energy ion beam surface modification of low density polyethylene.

    PubMed

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  1. The changes of lumbar muscle flexion-relaxation phenomenon due to antero-posteriorly slanted ground surfaces.

    PubMed

    Hu, Boyi; Ning, Xiaopeng; Dai, Fei; Almuhaidib, Ibrahim

    2016-09-01

    Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (-15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed. Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, Gilad, E-mail: zorn@ge.com; Castner, David G.; Tyagi, Anuradha

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints ofmore » the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.« less

  3. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    PubMed Central

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  4. Rock surface roughness measurement using CSI technique and analysis of surface characterization by qualitative and quantitative results

    NASA Astrophysics Data System (ADS)

    Mukhtar, Husneni; Montgomery, Paul; Gianto; Susanto, K.

    2016-01-01

    In order to develop image processing that is widely used in geo-processing and analysis, we introduce an alternative technique for the characterization of rock samples. The technique that we have used for characterizing inhomogeneous surfaces is based on Coherence Scanning Interferometry (CSI). An optical probe is first used to scan over the depth of the surface roughness of the sample. Then, to analyse the measured fringe data, we use the Five Sample Adaptive method to obtain quantitative results of the surface shape. To analyse the surface roughness parameters, Hmm and Rq, a new window resizing analysis technique is employed. The results of the morphology and surface roughness analysis show micron and nano-scale information which is characteristic of each rock type and its history. These could be used for mineral identification and studies in rock movement on different surfaces. Image processing is thus used to define the physical parameters of the rock surface.

  5. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    PubMed

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  6. Fabrication of Nanostructures on Implantable Biomaterials for Biocompatibility Enhancement and Infection Resistance

    NASA Astrophysics Data System (ADS)

    Liu, Luting

    An implant or implantable medical device, which is used to replace or restore the function of traumatized or degenerated tissues or organs, or acts as a fraction of or the whole biological structure, has been used in many different parts of the body for various applications (such as orthopedics, cardiovascular stents, or drug delivery systems for medical treatment). The best performance of the vast majority of implants is achieved when the biomaterial used promotes some biological activity (such as bone regeneration) while minimizing undesirable activity (such as infection, one of the most common reasons for the failure of many implants). The surface of the implant, through its interactions with proteins, bacteria and tissue forming cells, plays a critical role in the success or failure of the implant. Therefore, in this study, we sought to employ various nanofabrication techniques for tailoring implant surfaces to minimize bacteria and promote mammalian cell functions without using drugs. Titanium (Ti) and polyetheretherketone (PEEK) are commonly used biomaterials in orthopedic implants. Further surface modification is needed to support osseointegration while inhibiting bacteria attachment. Herein, temperature controlled atomic layer deposition (ALD) was utilized to provide unique nanostructured TiO2 coatings on commercial Ti. In vitro bacteria experiments revealed that the nano-TiO2 coatings showed promising antimicrobial efficacy towards Gram-positive bacteria (S. aureus), Gram-negative bacteria (E. coli) and antibiotic-resistant bacteria ( MRSA). Impressively, cell results indicated that this nano-TiO 2 coating stimulated osteoblast (or bone forming cell) adhesion and proliferation while suppressing undesirable fibroblast functions. The same procedure was performed on PEEK and also resulted in enhanced osteoblast functions and produced antimicrobial properties. In another study, to isolate the effect of surface chemistry on cell and bacteria activities, a simple template-molding method (in which a material with a special structure is used as a template to imprint its structure onto another material) with nanotubular anodized Ti was used to formulate a physical nanostructured pattern on a PDMS (a commonly used polymeric catheter material) surface without changing its surface chemistry. Results showed that increased PDMS surface nanoscale roughness alone inhibited both Gram-negative ( E. coli) and Gram-positive (S. aureus) bacteria adhesion and growth without using antibiotics while remaining non-toxic to fibroblasts and endothelial cells. A model was developed for the first time to correlate bacteria responses to nanoscale roughness with initial protein adsorption (specifically, casein protein, which is well known for preventing bacteria attachment). Data also revealed that an increase in nanoscale roughness and greater surface hydrophilicity together contributed to increased protein adsorption, which may decrease the interactions at the bacteria-nanorough surface interface and achieve effective antimicrobial properties. Mechanistically, this thesis also investigated the influence of specific surface properties (i.e., nanoscale surface roughness, surface wettability and associated surface energy) on cell and bacteria functions. Results showed a direct proportional linear correlation of surface energy with surface roughness. It was found that surface energy plays a major role in determining cell and bacteria functions, and specifically all proposed nanofabricated samples with an initial surface energy at 40 mJ/m2 showed relatively promising antibacterial properties and desirable cellular functions. Overall, the results of this study provided alternative, inexpensive, methods for fabricating various implant surfaces with nanostructures to enhance biocompatibility and prevent bacterial attachment simultaneously, which will be beneficial for numerous biomedical applications.

  7. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    NASA Astrophysics Data System (ADS)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  8. Surface modification of porous titanium with rice husk as space holder

    NASA Astrophysics Data System (ADS)

    Wang, Xinsheng; Hou, Junjian; Liu, Yanpei

    2018-06-01

    Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.

  9. Reflective properties of randomly rough surfaces under large incidence angles.

    PubMed

    Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J

    2014-06-01

    The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.

  10. Extension of Kirchhoff's formula to radiation from moving surfaces

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1988-01-01

    Kirchhoff's formula for radiation from a closed surface has been used recently for prediction of the noise of high speed rotors and propellers. Because the closed surface on which the boundary data are prescribed in these cases is in motion, an extension of Kirchhoff's formula to this condition is required. In this paper such a formula, obtained originally by Morgans for the interior problem, is derived for regions exterior to surfaces moving at speeds below the wave propagation speed by making use of some results of generalized function theory. It is shown that the usual Kirchhoff formula is a special case of the main result of the paper. The general result applies to a deformable surface. However, the special form it assumes for a rigid surface in motion is also noted. In addition, Morgans' result is further extended by showing that edge line integrals appear in the formula when applied to a surface that is piecewise smooth. Some possible areas of application of the formula to problems of current interest in aeroacoustics are discussed.

  11. Extension of Kirchhoff's formula to radiation from moving surfaces

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1987-01-01

    Kirchhoff's formula for radiation from a closed surface has been used recently for prediction of the noise of high speed rotors and propellers. Because the closed surface on which the boundary data are prescribed in these cases is in motion, an extension of Kirchhoff's formula to this condition is required. In this paper such a formula, obtained originally by Morgans for the interior problem, is derived for regions exterior to surfaces moving at speeds below the wave propagation speed by making use of some results of generalized function theory. It is shown that the usual Kirchhoff formula is a special case of the main result of the paper. The general result applies to a deformable surface. However, the special form it assumes for a rigid surface in motion is also noted. In addition, Morgans' result is further extended by showing that edge line integrals appear in the formula when applied to a surface that is piecewise smooth. Some possible areas of application of the formula to problems of current interest in aeroacoustics are discussed.

  12. Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin

    2016-12-01

    The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.

  13. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.

  14. Analyzing and Modelling the Corrosion Behavior of Ni/Al2O3, Ni/SiC, Ni/ZrO2 and Ni/Graphene Nanocomposite Coatings

    PubMed Central

    Saeed, Adil; Braun, Wolfgang; Bajwa, Rizwan; Rafique, Saqib

    2017-01-01

    A study has been presented on the effects of intrinsic mechanical parameters, such as surface stress, surface elastic modulus, surface porosity, permeability and grain size on the corrosion failure of nanocomposite coatings. A set of mechano-electrochemical equations was developed by combining the popular Butler–Volmer and Duhem expressions to analyze the direct influence of mechanical parameters on the electrochemical reactions in nanocomposite coatings. Nanocomposite coatings of Ni with Al2O3, SiC, ZrO2 and Graphene nanoparticles were studied as examples. The predictions showed that the corrosion rate of the nanocoatings increased with increasing grain size due to increase in surface stress, surface porosity and permeability of nanocoatings. A detailed experimental study was performed in which the nanocomposite coatings were subjected to an accelerated corrosion testing. The experimental results helped to develop and validate the equations by qualitative comparison between the experimental and predicted results showing good agreement between the two. PMID:29068395

  15. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    USDA-ARS?s Scientific Manuscript database

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  16. Quantum group symmetry of the quantum Hall effect on non-flat surfaces

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Shafei Deh Abad, A.

    1996-02-01

    After showing that the magnetic translation operators are not the symmetries of the quantum Hall effect (QHE) on non-flat surfaces, we show that another set of operators which leads to the quantum group symmetries for some of these surfaces exists. As a first example we show that the su(2) symmetry of the QHE on a sphere leads to 0305-4470/29/3/010/img6(2) algebra in the equator. We explain this result by a contraction of su(2). Second, with the help of the symmetry operators of QHE on the Poincaré upper half plane, we will show that the ground-state wavefunctions form a representation of the 0305-4470/29/3/010/img6(2) algebra.

  17. Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi

    2018-05-01

    The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.

  18. The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality?

    NASA Technical Reports Server (NTRS)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.; Or, Dani; Best, Martin J.; Johnson, Helen R.; Balsamo, Gianpaolo; Boone, Aaron; Cuntz, Matthais; Decharme, Bertrand; hide

    2016-01-01

    The PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER) illustrated the value of prescribing a priori performance targets in model intercomparisons. It showed that the performance of turbulent energy flux predictions from different land surface models, at a broad range of flux tower sites using common evaluation metrics, was on average worse than relatively simple empirical models. For sensible heat fluxes, all land surface models were outperformed by a linear regression against downward shortwave radiation. For latent heat flux, all land surface models were outperformed by a regression against downward shortwave, surface air temperature and relative humidity. These results are explored here in greater detail and possible causes are investigated. We examine whether particular metrics or sites unduly influence the collated results, whether results change according to time-scale aggregation and whether a lack of energy conservation in fluxtower data gives the empirical models an unfair advantage in the intercomparison. We demonstrate that energy conservation in the observational data is not responsible for these results. We also show that the partitioning between sensible and latent heat fluxes in LSMs, rather than the calculation of available energy, is the cause of the original findings. Finally, we present evidence suggesting that the nature of this partitioning problem is likely shared among all contributing LSMs. While we do not find a single candidate explanation forwhy land surface models perform poorly relative to empirical benchmarks in PLUMBER, we do exclude multiple possible explanations and provide guidance on where future research should focus.

  19. A demonstration of the antimicrobial effectiveness of various copper surfaces

    PubMed Central

    2013-01-01

    Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176

  20. Interfaces of electrical contacts in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Demirkan, Korhan

    Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5,2'-ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene (PS) and ozone treated polystyrene (PS-O3) surfaces by thermal deposition of aluminum. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer, for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of Al with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Formation of metal oxide and metal-organic compound is detected during the Al metallization of MEH-PPV and ozone-treated PS surfaces. Our results showed that the condensation of Al on polymer surfaces is highly dependent on surface reactivity. Enormous differences were observed for the condensation coefficient of Al on PS and PS-O3 surfaces. For the inert PS surface, results showed that Al atoms poorly wet the polymer surface and form distributed clusters at the surface. Results on reactive polymer surfaces suggest morphology reminiscent of a Stranski-Krastanov-type growth and high contact area. Many studies have shown that the insertion of a thin interlayer of the oxide or fluoride of alkali or alkaline metals between the low work function electrode and the organic semiconductor layers dramatically lowers the onset voltage and increases the efficiency compared to identical devices without the insulating layer. Various modes have been suggested for the mechanism of device performance enhancement. We have investigated the chemical and electrical interaction of (i) LiF with MEH-PPV, (ii) Al with MEH-PPV in the presence of a thin LiF layer at the interface, and finally (iii) the interaction of Al with LiF. AFM and XPS data showed that LiF forms island on the surface. Our data in agreement with various existing models suggested the (i) alteration in the electronic properties under applied bias, (ii) doping of the organic semiconductor, (iii) formation of metal alloy (Au-Li). In addition to the possible electrical modifications at the interface suggested previously, our data also suggest a change in the film growth on LiF modified surfaces.

  1. Deformation and stability of surface states in Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Lu, Yuan-Ming; Randeria, Mohit

    2018-04-01

    The unusual surface states of topological semimetals have attracted a lot of attention. Recently, we showed [Proc. Natl. Acad. Sci. USA 113, 8648 (2016), 10.1073/pnas.1524787113] that for a Dirac semimetal (DSM) arising from band inversion, such as Na3Bi and Cd3As2 , the expected double Fermi arcs on the surface are not topologically protected. Quite generally, the arcs deform into states similar to those on the surface of a strong topological insulator. Here we address two questions related to deformation and stability of surface states in DSMs. First, we discuss why certain perturbations, no matter how large, are unable to destroy the double Fermi arcs. We show that this is related to a certain extra (particle-hole) symmetry, which is nongeneric in materials. Second, we discuss situations in which the surface states are completely destroyed without breaking any symmetry or impacting the bulk Dirac nodes. We are not aware of any experimental or density functional theory (DFT) candidates for a material which is a bulk DSM without any surface states, but our results clearly show that this is possible.

  2. Surface characterization and adhesion of oxygen plasma-modified LARC-TPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, J.W.; Wightman, J.P.

    1992-01-01

    LARC-TPI, an aromatic thermoplastic polyimide, was exposed to an oxygen plasma as a surface pretreatment of adhesive bonding. Chemical and physical changes which occurred in the polyimide surface as a result of the plasma treatment were investigated using X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IR-RAS), contact angle analysis, ellipsometry and high resolution scanning electron microscopy (HR-SEM). A 180{degree} peel test with an acrylate-based pressure sensitive adhesive as a flexible adherend was utilized to study the interactions of the plasma-treated polyimide surface with other polymeric materials. The surface characterization and adhesion testing results showed that the oxygen plasma treatment, whilemore » creating a more hydrophilic, polar surface, also caused chain scission resulting in the formation of a weak boundary layer which inhibited adhesion.« less

  3. Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene

    PubMed Central

    Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui

    2014-01-01

    In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279

  4. Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region

    NASA Astrophysics Data System (ADS)

    Hong, X.; Wang, S.; Nachamkin, J. E.

    2017-12-01

    Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.

  5. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography.

    PubMed

    Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Cortelli, Daniele; Dellasega, David; Podestà, Alessandro; Milani, Paolo; Gade, W N

    2012-06-01

    The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO(2) film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO(2) films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO(2) film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell-surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell-implant interactions.

  6. Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector.

    PubMed

    Fan, Peng; Ma, Tianyu; Wei, Qingyang; Yao, Rutao; Liu, Yaqiang; Wang, Shi

    2016-02-07

    The objective of this study was to choose the crystal surface finishing for a dual-ended readout (DER) DOI detector. Through Monte Carlo simulations and experimental studies, we evaluated 4 crystal surface finishing options as combinations of crystal surface polishing (diffuse or specular) and reflector (diffuse or specular) options on a DER detector. We also tested one linear and one logarithm DOI calculation algorithm. The figures of merit used were DOI resolution, DOI positioning error, and energy resolution. Both the simulation and experimental results show that (1) choosing a diffuse type in either surface polishing or reflector would improve DOI resolution but degrade energy resolution; (2) crystal surface finishing with a diffuse polishing combined with a specular reflector appears a favorable candidate with a good balance of DOI and energy resolution; and (3) the linear and logarithm DOI calculation algorithms show overall comparable DOI error, and the linear algorithm was better for photon interactions near the ends of the crystal while the logarithm algorithm was better near the center. These results provide useful guidance in DER DOI detector design in choosing the crystal surface finishing and DOI calculation methods.

  7. Photodegradation of selected polycyclic aromatic hydrocarbons in surface microlayer under direct solar irradiance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, K.; Dickhut, R.M.

    1995-12-31

    Photodegradation kinetics of selected polycyclic aromatic hydrocarbons (PAHs) in the presence of various particle and dissolved phases were examined in surface microlayer (SM) and surface water under direct solar irradiance during different seasons. Halflives of PAHs during different seasons in the various media were determined. The results showed shorter halflives measured at the surface for PAHs in the SM media than in surface water. Submergence depth also significantly affected rate constants, and halflives for PAH compounds were 1.4 to 5 times shorter at the surface than at 14cm depth below the surface. In bulk SM media, the annual average halflivesmore » varied from 1.3 to 43 hours (midday) with different PAH compounds, and in filtered SM from 1.8 to 56.9 hours (midday). The effects of particles and DOC on the photodegradation of PAHs were also inspected. The results showed particulates and DOC both enhanced or decreased the photodegradation rate constants for selected PAHs. Overall, PAH photoreactivity is related to the compound`s maximum net atomic charge (MNAC) on the most reactive carbon center of a specific PAH molecule.« less

  8. Surface Cleaning of Iron Artefacts by Lasers

    NASA Astrophysics Data System (ADS)

    Koh, Y. S.; Sárady, I.

    In this paper the general method and ethics of the laser cleaning technique for conservation are presented. The results of two experiments are also presented; experiment 1 compares cleaning of rust by an Nd:YAG laser and micro-blasting whilst experiment 2 deals with removing the wax coating from iron samples by a TEA CO2 laser. The first experiment showed that cleaning with a pulsed laser and higher photon energy obtained a better surface structure than micro blasting. The second experiment showed how differences in energy density affect the same surface.

  9. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization.

    PubMed

    Zorn, Gilad; Castner, David G; Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi

    2015-03-01

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

  10. Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Banerjee, Shashwat S.; Jalota-Badhwar, Archana; Zope, Khushbu R.; Todkar, Kiran J.; Mascarenhas, Russel R.; Chate, Govind P.; Khutale, Ganesh V.; Bharde, Atul; Calderon, Marcelo; Khandare, Jayant J.

    2015-05-01

    Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01797a

  11. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  12. Comprehensive characterization of chitosan/PEO/levan ternary blend films.

    PubMed

    Bostan, Muge Sennaroglu; Mutlu, Esra Cansever; Kazak, Hande; Sinan Keskin, S; Oner, Ebru Toksoy; Eroglu, Mehmet S

    2014-02-15

    Ternary blend films of chitosan, PEO (300,000) and levan were prepared by solution casting method and their phase behavior, miscibility, thermal and mechanical properties as well as their surface energy and morphology were characterized by different techniques. FT-IR analyses of blend films indicated intermolecular hydrogen bonding between blend components. Thermal and XRD analysis showed that chitosan and levan suppressed the crystallinity of PEO up to nearly 25% of PEO content in the blend, which resulted in more amorphous film structures at higher PEO/(chitosan+levan) ratios. At more than 30% of PEO concentration, contact angle (CA) measurements showed a surface enrichment of PEO whereas at lower PEO concentrations, chitosan and levan were enriched on the surfaces leading to more amorphous and homogenous surfaces. This result was further confirmed by atomic force microscopy (AFM) images. Cell proliferation and viability assay established the high biocompatibility of the blend films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.

    PubMed

    Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo

    2016-08-16

    Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.

  14. Electronic and Chemical Properties of a Surface-Terminated Screw Dislocation in MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mckenna, Keith P.

    2013-12-18

    Dislocations represent an important and ubiquitous class of topological defect found at the surfaces of metal oxide materials. They are thought to influence processes as diverse as crystal growth, corrosion, charge trapping, luminescence, molecular adsorption and catalytic activity, however, their electronic and chemical properties remain poorly understood. Here, through a detailed first principles investigation into the properties of a surface terminated screw dislocation in MgO we provide atomistic insight into these issues. We show that surface dislocations can exhibit intriguing electron trapping properties which are important for understanding the chemical and electronic characteristics of oxide surfaces. The results presented inmore » this article taken together with recent experimental reports show that surface dislocations can be equally as important as more commonly considered surface defects, such as steps, kinks and vacanies, but are now just beginning to be understood.« less

  15. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  16. Electronic and Chemical Properties of a Surface-Terminated Screw Dislocation in MgO

    PubMed Central

    2013-01-01

    Dislocations represent an important and ubiquitous class of topological defect found at the surfaces of metal oxide materials. They are thought to influence processes as diverse as crystal growth, corrosion, charge trapping, luminescence, molecular adsorption, and catalytic activity; however, their electronic and chemical properties remain poorly understood. Here, through a detailed first-principles investigation into the properties of a surface-terminated screw dislocation in MgO we provide atomistic insight into these issues. We show that surface dislocations can exhibit intriguing electron trapping properties which are important for understanding the chemical and electronic characteristics of oxide surfaces. The results presented in this article taken together with recent experimental reports show that surface dislocations can be equally as important as more commonly considered surface defects, such as steps, kinks, and vacancies, but are now just beginning to be understood. PMID:24279391

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian

    The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less

  18. A novel approach for quantitative evaluation of the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor.

    PubMed

    Lin, Hongjun; Zhang, Meijia; Mei, Rongwu; Chen, Jianrong; Hong, Huachang

    2014-11-01

    This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Seeing a straight line on a curved surface: decoupling of patterns from surfaces by single IT neurons

    PubMed Central

    Ratan Murty, N. Apurva

    2016-01-01

    We have no difficulty seeing a straight line drawn on a paper even when the paper is bent, but this inference is in fact nontrivial. Doing so requires either matching local features or representing the pattern after factoring out the surface shape. Here we show that single neurons in the monkey inferior temporal (IT) cortex show invariant responses to patterns across rigid and nonrigid changes of surfaces. We recorded neuronal responses to stimuli in which the pattern and the surrounding surface were varied independently. In a subset of neurons, we found pattern-surface interactions that produced similar responses to stimuli across congruent pattern and surface transformations. These interactions produced systematic shifts in curvature tuning of patterns when overlaid on convex and flat surfaces. Our results show that surfaces are factored out of patterns by single neurons, thereby enabling complex perceptual inferences. NEW & NOTEWORTHY We have no difficulty seeing a straight line on a curved piece of paper, but in fact, doing so requires decoupling the shape of the surface from the pattern itself. Here we report a novel form of invariance in the visual cortex: single neurons in monkey inferior temporal cortex respond similarly to congruent transformations of patterns and surfaces, in effect decoupling patterns from the surface on which they are overlaid. PMID:27733595

  20. Influence of surface roughness on cetyltrimethylammonium bromide adsorption from aqueous solution.

    PubMed

    Wu, Shuqing; Shi, Liu; Garfield, Lucas B; Tabor, Rico F; Striolo, Alberto; Grady, Brian P

    2011-05-17

    The influence of surface roughness on surfactant adsorption was studied using a quartz crystal microbalance with dissipation (QCM-D). The sensors employed had root-mean-square (R) roughness values of 2.3, 3.1, and 5.8 nm, corresponding to fractal-calculated surface area ratios (actual/nominal) of 1.13, 1.73, and 2.53, respectively. Adsorption isotherms measured at 25 °C showed that adsorbed mass of cetyltrimethylammonium bromide per unit of actual surface area below 0.8 cmc, or above 1.2 cmc, decreases as the surface roughness increases. At the cmc, both the measured adsorbed amount and the measured dissipation increased dramatically on the rougher surfaces. These results are consistent with the presence of impurities, suggesting that roughness exacerbates well-known phenomena reported in the literature of peak impurity-related adsorption at the cmc. The magnitude of the increase, especially in dissipation, suggests that changes in adsorbed amount may not be the only reason for the observed results, as aggregates at the cmc on rougher surfaces are more flexible and likely contain larger amounts of solvent. Differences in adsorption kinetics were also found as a function of surface roughness, with data showing a second, slower adsorption rate after rapid initial adsorption. A two-rate Langmuir model was used to further examine this effect. Although adsorption completes faster on the smoother surfaces, initial adsorption at zero surface coverage is faster on the rougher surfaces, suggesting the presence of more high-energy sites on the rougher surfaces.

  1. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  2. Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014

    USGS Publications Warehouse

    Driscoll, Jessica M.; Brandt, Justin T.

    2017-08-14

    The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show inconsistent land-surface elevation changes over the Albuquerque Basin, likely because of the lack of significant change and the complexity of subsurface stratigraphy in addition to the spatial and temporal heterogeneity of groundwater withdrawals over the study period. Results from the InSAR analysis show areas of land-surface elevation increase after 2008, which could be attributed to elastic recovery of the aquifer system. The spatial extent to which elastic recovery of the aquifer system has resulted in recovery of land-surface elevation is limited to the in-situ measurements at the extensometer. Examination of spatially distributed InSAR data relative to limited spatial extent of the complex heterogeneity subsurface stratigraphy may explain some of the heterogeneity of land-surface elevation changes over this study period.

  3. Evaluation of flood inundation in Crystal Springs Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam; Hess, Glen

    2016-05-25

    Efforts to improve fish passage have resulted in the replacement of six culverts in Crystal Springs Creek in Portland, Oregon. Two more culverts are scheduled to be replaced at Glenwood Street and Bybee Boulevard (Glenwood/Bybee project) in 2016. Recently acquired data have allowed for a more comprehensive understanding of the hydrology of the creek and the topography of the watershed. To evaluate the impact of the culvert replacements and recent hydrologic data, a Hydrologic Engineering Center-River Analysis System hydraulic model was developed to estimate water-surface elevations during high-flow events. Longitudinal surface-water profiles were modeled to evaluate current conditions and future conditions using the design plans for the culverts to be installed in 2016. Additional profiles were created to compare with the results from the most recent flood model approved by the Federal Emergency Management Agency for Crystal Springs Creek and to evaluate model sensitivity.Model simulation results show that water-surface elevations during high-flow events will be lower than estimates from previous models, primarily due to lower estimates of streamflow associated with the 0.01 and 0.002 annual exceedance probability (AEP) events. Additionally, recent culvert replacements have resulted in less ponding behind crossings. Similarly, model simulation results show that the proposed replacement culverts at Glenwood Street and Bybee Boulevard will result in lower water-surface elevations during high-flow events upstream of the proposed project. Wider culverts will allow more water to pass through crossings, resulting in slightly higher water-surface elevations downstream of the project during high-flows than water-surface elevations that would occur under current conditions. For the 0.01 AEP event, the water-surface elevations downstream of the Glenwood/Bybee project will be an average of 0.05 ft and a maximum of 0.07 ft higher than current conditions. Similarly, for the 0.002 AEP event, the water-surface elevations will be an average of 0.04 ft and a maximum of 0.19 ft higher than current conditions.

  4. Enhanced specific surface area by hierarchical porous graphene aerogel/carbon foam for supercapacitor

    NASA Astrophysics Data System (ADS)

    Xin, Zhaopeng; Li, Weixin; Fang, Wei; He, Xuan; Zhao, Lei; Chen, Hui; Zhang, Wanqiu; Sun, Zhimin

    2017-12-01

    In this work, graphene aerogel/carbon foam is prepared by in situ inducing graphene aerogels in the pores of carbon foam. This novel hierarchical porous structure possesses a higher specific surface area as the introduction of graphene aerogels in carbon foam increases the proportion of micropores thus making it a superior candidate as electrodes for supercapacitors. The characterization and comparison of various properties of carbon foam and graphene aerogels/carbon foam have been investigated systematically. The result shows that specific surface area is up to 682.8 m2/g compared with initial carbon foam which increased about 55%, and the pore distribution curve shows more pore volume at 0.3 nm for F-CF/GA. It is demonstrated that the introduction of graphene aerogels not only increases the specific surface area, but also improves the conductivity, thus resulting in the reduction of the internal resistance and the improvement of the electrochemical performance. Consequently, graphene aerogel/carbon foam shows an excellent specific capacitance of 193.1 F/g at 1 A/g which is 72% higher than that of carbon foam acted as electrodes for supercapacitors.

  5. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the change distribution model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Mora K.; Hiemstra, T; Machesky, Michael L.

    2012-01-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3 11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Sternmore » layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (110) rutile surface (Zhang et al., 2004b). TheMDsimulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.« less

  6. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.

  7. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  8. 13. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF POOR CONSTRUCTION WORK. THOUGH NOT A SERIOUS STRUCTURAL DEFICIENCY, THE 'HONEYCOMB' TEXTURE OF THE CONCRETE SURFACE WAS THE RESULT OF INADEQUATE TAMPING AT THE TIME OF THE INITIAL 'POUR'. - Hume Lake Dam, Sequioa National Forest, Hume, Fresno County, CA

  9. Surface chemistry of InP ridge structures etched in Cl{sub 2}-based plasma analyzed with angular XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchoule, Sophie, E-mail: sophie.bouchoule@lpn.cnrs.fr; Cambril, Edmond; Guilet, Stephane

    2015-09-15

    Two x-ray photoelectron spectroscopy configurations are proposed to analyze the surface chemistry of micron-scale InP ridge structures etched in chlorine-based inductively coupled plasma (ICP). Either a classical or a grazing configuration allows to retrieve information about the surface chemistry of the bottom surface and sidewalls of the etched features. The procedure is used to study the stoichiometry of the etched surface as a function of ridge aspect ratio for Cl{sub 2}/Ar and Cl{sub 2}/H{sub 2} plasma chemistries. The results show that the bottom surface and the etched sidewalls are P-rich, and indicate that the P-enrichment mechanism is rather chemically driven.more » Results also evidence that adding H{sub 2} to Cl{sub 2} does not necessarily leads to a more balanced surface stoichiometry. This is in contrast with recent experimental results obtained with the HBr ICP chemistry for which fairly stoichiometric surfaces have been obtained.« less

  10. Effect of surface charge density on the affinity of oxide nanoparticles for the vapor-water interface.

    PubMed

    Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen

    2013-04-23

    Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

  11. Discontinuous contact line motion of evaporating particle-laden droplet on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Yamada, Yutaka; Horibe, Akihiko

    2018-04-01

    The three-phase contact line motion on a superhydrophobic surface through particle-laden sessile droplet evaporation was investigated. Sample surfaces with micro- and nanoscale structures were generated by various durations of chemical treatment and Si O2 spherical particles with different sizes were used as additives of test liquid. The contact angle and contact radius profiles were studied, and the discontinuous motion of those profiles on micro- and nanostructured hierarchical surfaces was observed, while it was not observed on a nanostructured superhydrophobic surface. Suspensions with low particle concentration induced a relatively large contact radius jump compared to the high-concentrated condition; in contrast, the previous report showed the opposite trend for flat surfaces. In order to explain this result, a simple explanation was provided—that the stacked particles at the contact line region suppressed to the deformation of the liquid-vapor interface near the contact line. This is confirmed by side-view images of the deposition results because the contact line region after evaporation of the dense suspension showed a large contact angle compared to that of the diluted suspension. In addition, deposition at the contact line region was observed by scanning electron microscopy to discuss the effect of the characteristic length scale of the surface structure and particles on the contact line motion. We believe that these results will help one to understand the deposition phenomenon during particle-laden droplet evaporation on the superhydrophobic surface and its applications such as evaporation-driven materials deposition.

  12. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Y.; Liou, K. N.; Lee, W. -L.

    2012-01-01

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m -2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up tomore » 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m -2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m -2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. Finally, the hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.« less

  13. Satellite remote sensing of surface energy and mass balance - Results from FIFE

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.

    1991-01-01

    Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.

  14. Magnetic field-related heating instabilities in the surface layers of the sun and stars

    NASA Technical Reports Server (NTRS)

    Ferrari, A.; Rosner, R.; Vaiana, G. S.

    1982-01-01

    The stability of a magnetized low-density plasma to current-driven filamentation instabilities is investigated and the results are applied to the surface layers of stars. Unlike previous studies, the initial (i.e., precoronal) state of the stellar surface atmosphere is taken to be a low-density, optically thin magnetized plasma in radiative equilibrium. The linear analysis shows that the surface layers of main-sequence stars (including the sun) which are threaded by magnetic fields are unstable; the instabilities considered lead to structuring perpendicular to the ambient magnetic fields. These results suggest that relatively modest surface motions, in conjunction with the presence of magnetic fields, suffice to account for the presence of inhomogeneous chromospheric and coronal plasma overlying a star's surface.

  15. Photoelectron studies of machined brass surfaces

    NASA Astrophysics Data System (ADS)

    Potts, A. W.; Merrison, J. P.; Tournas, A. D.; Yacoot, A.

    UV photoelectron spectroscopy has been used to determine the surface composition of machined brass. The results show a considerable change between the photoelectron surface composition and the bulk composition of the same sample determined by energy-dispersive X-ray fluorescence. On the surface the lead composition is increased by ˜900 G. This is consistent with the important part that lead is believed to play in improving the machinability of this alloy.

  16. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    NASA Astrophysics Data System (ADS)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  17. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective

    NASA Astrophysics Data System (ADS)

    Navas, Javier; Araujo, Daniel; Piñero, José Carlos; Sánchez-Coronilla, Antonio; Blanco, Eduardo; Villar, Pilar; Alcántara, Rodrigo; Montserrat, Josep; Florentin, Matthieu; Eon, David; Pernot, Julien

    2018-03-01

    Phenomena related with the diamond surface of both power electronic and biosensor devices govern their global behaviour. In particular H- or O-terminations lead to wide variations in their characteristics. To study the origins of such aspects in greater depth, different methods to achieve oxygen terminated diamond were investigated following a multi-technique approach. DFT calculations were then performed to understand the different configurations between the C and O atoms. Three methods for O-terminating the diamond surface were performed: two physical methods with ozone at different pressures, and an acid chemical treatment. X-ray photoelectron spectroscopy, spectroscopic ellipsometry, HRTEM, and EELS were used to characterize the oxygenated surface. Periodic-DFT calculations were undertaken to understand the effect of the different ways in which the oxygen atoms are bonded to carbon atoms on the diamond surface. XPS results showed the presence of hydroxyl or ether groups, composed of simple Csbnd O bonds, and the acid treatment resulted in the highest amount of O on the diamond surface. In turn, ellipsometry showed that the different treatments led to the surface having different optical properties, such as a greater refraction index and extinction coefficient in the case of the sample subjected to acid treatment. TEM analysis showed that applying temperature treatment improved the distribution of the oxygen atoms at the interface and that this generates a thinner amount of oxygen at each position and higher interfacial coverage. Finally, DFT calculations showed both an increase in the number of preferential electron transport pathways when π bonds and ether groups appear in the system, and also the presence of states in the middle of the band gap when there are π bonds, Cdbnd C or Cdbnd O.

  18. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  19. Analysis of Tank 38H (HTF-38-16-80, 81) and Tank 43H (HTF-43-16-82, 83) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.

    2016-10-24

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 57.6 mg/L, while the sub-surface sample was 106 mg/L. The Tank 43H samples ranged from 50.0 to 51.9 mg/L total uranium. The U-235 percentage was consistent for all four samples at 0.62%. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and somewhat higher concentrations than previous samples. The Pu-238 concentrationmore » is more than forty times higher in the Tank 38H sub-surface sample than the surface sample. The surface and sub-surface Tank 43H samples contain similar plutonium concentrations and are within the range of values measured on previous samples. The four samples analyzed show silicon concentrations somewhat higher than the previous sample with values ranging from 104 to 213 mg/L.« less

  20. Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan

    2007-07-15

    Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barriermore » and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)« less

  1. Assessment of Tablet Surface Hardness by Laser Ablation and Its Correlation With the Erosion Tendency of Core Tablets.

    PubMed

    Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif

    2017-01-01

    Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    NASA Astrophysics Data System (ADS)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2017-01-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  3. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies.

    PubMed

    Burgdorf, R J; Laing, M D; Morris, C D; Jamal-Ally, S F

    2014-01-01

    Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05) from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05). The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies.

  4. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies

    PubMed Central

    Burgdorf, R.J.; Laing, M.D.; Morris, C.D.; Jamal-Ally, S.F.

    2014-01-01

    Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05) from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05). The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies. PMID:25477934

  5. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  6. Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Steven Overbury

    2015-01-08

    We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less

  7. Distribution characteristics of organochlorine pesticide in the water environment in Lanzhou section of Yellow River

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhao, X.; Shen, J. M.; Chen, Z. L.; Wang, X. C.; Qiu, H. R.

    2017-04-01

    Surface water, surface sediments and suspended particles in the Lanzhou section of Yellow River were collected. After the samples were lyophilised, extracted, concentrated, purified and separated, organochlorine pesticides in the samples were analysed by GC-MS. Results showed that organochlorine pesticide contents in surface water, surface sediments and suspended particles ranged from 28.63 ng/L to 123.2 ng/L, from 0.86 ng/g to 4.51 ng/g and from 23.29 ng/g to 126.14 ng/g, respectively. HCHs, DDTs and HCB were high; among these contents, HCH contents ranged from 1.49 ng/L to 18.1 ng/L, from 0.04ng/g to 1.53 ng/g and from 2.74ng/g to 25.64 ng/g, respectively. DDT contents ranged from 1.49 ng/Lto 18.1 ng/L, from 0.04 ng/g to 1.53 ng/g and from 2.74 ng/g to 25.64 ng/g, respectively. Component analysis results showed that organochlorine pesticide in the Lanzhou section of Yellow River was mainly from early residues or soil after pesticides were applied and long-term weathering occurred. Correlation analysis results showed that total organic carbon was an important factor affecting the distribution of organochlorine pesticide in sediments. Moderate organochlorine pesticide contents were detected in surface water in Lanzhou section of Yellow River compared with other rivers in our country and in other countries. Furthermore, the ecological risk of organochlorine pesticide in surface sediments was low.

  8. Electrostatic Properties of Polymers Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Boucher, D.; Calle, C. I.

    2007-01-01

    this study, PE, PTFE, PS and PMMA were exposed to a He+O2, APGD and pre and post treatment surface chemistries were analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab-initio calculations were performed to correlate the experimental results with sonic plausible molecular and electronic structure features of the oxidation process. For the PE and PS, significant surface oxidation showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angles was observed. For the PTFE and PM MA, little change in the surface composition was observed. The molecular modeling calculations were performed on single and multiple oligomers and showed regardless of oxidation mechanism, e.g. -OH, =O or a combination thereof, experimentally observed levels of surface oxidation were unlikely to lead to a significant change in the electronic structure of PE and PS, and that the increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. Calculations for PTFE and PMMA argue strongly against significant oxidation of those materials, as confirmed by the XPS results.

  9. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Kaneshige, John T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  10. Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  11. Grafting of ionic liquids on stainless steel surface for antibacterial application.

    PubMed

    Pang, Li Qing; Zhong, Li Juan; Zhou, Hui Fang; Wu, Xue E; Chen, Xiao Dong

    2015-02-01

    Stainless steel (SS) is favored for many uses due to its excellent chemical resistance, thermal stability and mechanical properties. Biofilms can be formed on stainless steel and may lead to serious hygiene problems and economic losses in many areas, e.g. food processing, public infrastructure and healthcare. For the first time, our work endeavored to make SS having antibacterial properties, ionic liquids (ILs) were grafted on SS surface via silane treatment followed by thiol-ene click reaction. The chemical structure and composition of the ILs grafted stainless-steel coupon surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The antibacterial activity has been investigated, and the results showed that the ILs grafted SS surface exhibited significant antibacterial effects against Gram-negative Escherichia coli. Additionally, the results obtained here indicated that the ILs used here having bromide anion showed much better antibacterial activity against E. coli than the corresponding ILs with tetrafluoroborate and hexafluorophosphate as anions. These results obtained here can help to design novel and more efficient stainless steel having antibacterial surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  13. Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards.

    PubMed

    Horwell, Claire J; Fenoglio, Ivana; Vala Ragnarsdottir, K; Sparks, R Steve J; Fubini, Bice

    2003-10-01

    The fine-grained character of volcanic ash generated in the long-lived eruption of the Soufrière Hills volcano, Montserrat, West Indies, raises the issue of its possible health hazards. Surface- and free-radical production has been closely linked to bioreactivity of dusts within the lung. In this study, electron paramagnetic resonance (EPR) techniques have been used, for the first time, on volcanic ash to measure the production of radicals from the surface of particles. Results show that concentrations of hydroxyl radicals (HO*) in respirable ash are two to three times higher than a toxic quartz standard. The dome-collapse ash contains cristobalite, a crystalline silica polymorph that may cause adverse health effects. EPR experiments indicate, however, that cristobalite in the ash does not contribute to HO* generation. Our results show that the main cause of reactivity is removable divalent iron (Fe2+), which is present in abundance on the surfaces of the particles and is very reactive in the lung. Our analyses show that fresh ash generates more HO* than weathered ash (which has undergone progressive oxidation and leaching of iron from exposed surfaces), an effect replicated experimentally by incubating fresh ash in dilute acid. HO* production experiments also indicate that iron-rich silicate minerals are responsible for surface reactivity in the Soufrière Hills ash.

  14. Potential Impacts from Using Photoactive Roads as AN Air Quality Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Toro, C.; Jobson, B. T.; Shen, S.; Chung, S. H.; Haselbach, L.

    2013-12-01

    Mobile sources are major contributors to photochemical air pollution in urban areas. It has been proposed that the use of TiO2 coated roadways ('photoactive roads') could be an effective approach to reduce mobile source emissions by oxidizing NOx and VOC emissions at the roadway surface. However, studies have shown that formation of HONO and aldehydes can occur from some TiO2 treated surfaces during the photocatalytic oxidation of NOx and VOC, respectively. By changing the NOx-to-VOC ratio and generating photolabile HOx radical precursors, photoactive roads may enhance ozone formation rates in urban areas. In this work we present results that quantify NOx and VOC loss rates onto TiO2 treated asphalt and concrete samples, as well as HONO and aldehydes yields that result from the photocatalytic process. The treatment used a commercially available product. These objectives are relevant considering that the quantification of pollutant loss rates and yields of byproducts have not been determined for asphalt and that in the US more than 90% of the roadway surface is made of this material. Surface reaction probabilities (γ) and byproduct yields were determined using a CSTR photochemical chamber under varying conditions of water vapor and UV-A light intensity. Our results indicate that asphalt surfaces have a significantly higher molar yield of HONO compared to concrete surfaces with similar TiO2 loading. Concrete surfaces have reaction probabilities with NO one order of magnitude higher than asphalt samples. Fresh asphalt samples showed negligible photocatalytic activity, presumably due to absorption of TiO2 into the bitumen substrate. Laboratory-prepared asphalt samples with a higher degree of exposed aggregates showed increased HONO molar yields when compared to real-road asphalt samples, whose HONO molar yield was ~1%. Preliminary results for aldehydes formation showed similar molar yields between aged asphalt and concrete, even though aged asphalt samples had twice the TiO2 loading than concrete samples.

  15. Tropospheric ozone in the western Pacific Rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations

    NASA Technical Reports Server (NTRS)

    Young, Sun-Woo; Carmichael, Gregory R.

    1994-01-01

    Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.

  16. Adsorption and desorption of hydrogen at nonpolar GaN (1 1 ¯ 00 ) surfaces: Kinetics and impact on surface vibrational and electronic properties

    NASA Astrophysics Data System (ADS)

    Lymperakis, L.; Neugebauer, J.; Himmerlich, M.; Krischok, S.; Rink, M.; Kröger, J.; Polyakov, V. M.

    2017-05-01

    The adsorption of hydrogen at nonpolar GaN (1 1 ¯00 ) surfaces and its impact on the electronic and vibrational properties is investigated using surface electron spectroscopy in combination with density functional theory (DFT) calculations. For the surface mediated dissociation of H2 and the subsequent adsorption of H, an energy barrier of 0.55 eV has to be overcome. The calculated kinetic surface phase diagram indicates that the reaction is kinetically hindered at low pressures and low temperatures. At higher temperatures ab initio thermodynamics show, that the H-free surface is energetically favored. To validate these theoretical predictions experiments at room temperature and under ultrahigh vacuum conditions were performed. They reveal that molecular hydrogen does not dissociatively adsorb at the GaN (1 1 ¯00 ) surface. Only activated atomic hydrogen atoms attach to the surface. At temperatures above 820 K, the attached hydrogen gets desorbed. The adsorbed hydrogen atoms saturate the dangling bonds of the gallium and nitrogen surface atoms and result in an inversion of the Ga-N surface dimer buckling. The signatures of the Ga-H and N-H vibrational modes on the H-covered surface have experimentally been identified and are in good agreement with the DFT calculations of the surface phonon modes. Both theory and experiment show that H adsorption results in a removal of occupied and unoccupied intragap electron states of the clean GaN (1 1 ¯00 ) surface and a reduction of the surface upward band bending by 0.4 eV. The latter mechanism largely reduces surface electron depletion.

  17. Graphene thickness dependent adhesion force and its correlation to surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112

    2014-04-28

    In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less

  18. SEMICONDUCTOR TECHNOLOGY Texturization of mono-crystalline silicon solar cells in TMAH without the addition of surfactant

    NASA Astrophysics Data System (ADS)

    Weiying, Ou; Yao, Zhang; Hailing, Li; Lei, Zhao; Chunlan, Zhou; Hongwei, Diao; Min, Liu; Weiming, Lu; Jun, Zhang; Wenjing, Wang

    2010-10-01

    Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2 (OH)22-.

  19. Surface properties and cytocompatibillity of silk fibroin films cast from aqueous solutions in different concentrations

    NASA Astrophysics Data System (ADS)

    Lian, Xiao-Jie; Wang, Song; Zhu, He-Sun

    2010-03-01

    Silk fibroin film (SFF) has been widely used in biomaterials. SFF is usually prepared from a regenerated silk aqueous solution and its properties depend remarkably on the preparation conditions. However, the effect of the silk fibroin concentration ( C 0) on the SFF surface properties as well as the cytocompatibility has rarely been investigated. In this work we prepared a series of Bombyx mori SFFs by casting SF aqueous solutions with the concentration from 10° to 102 mg/mL on TCPS substrate at 60°C. The test results of atomic force microscopy, attenuated total reflection Fourier transform infrared and contact angles analysis showed that the film surface roughness and β-sheet structure increased with the increase of C 0, whereas the surface hydrophilicity increased with the decrease of C 0. The in vitro clotting time measurement results revealed that the SFFs prepared from the thinner solution showed a longer APTT (activated partial thromboplastin time) and TT (thrombin time). The results of microscopy and MTT assay also revealed that cell adhesion and growth were enhanced on the SFF cast from lower C 0 for fibroblasts. In contrast, endothelial cells showed a similar behavior on all those films that were prepared from the solution in different concentrations.

  20. Pancam multispectral imaging results from the Spirit Rover at Gusev crater

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  1. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  2. Mechanism of oxygen electroreduction on gold surfaces in basic media.

    PubMed

    Kim, Jongwon; Gewirth, Andrew A

    2006-02-16

    The mechanism of the electroreduction of oxygen on Au surfaces in basic media is examined using surface-enhanced Raman scattering (SERS) measurements and density functional theory (DFT) calculations. The spectroscopy reveals superoxide species as a reduction intermediate throughout the oxygen electroreduction, while no peroxide is detected. The spectroscopy also shows the presence of superoxide after the addition of hydrogen peroxide. The calculations show no effect of OH addition to the Au(100) surface with regard to O-O length. These results suggest that the four-electron reduction of O(2) on Au(100) in base arises from a disproportionation mechanism which is enhanced on Au(100) relative to the other two low Miller index faces of Au.

  3. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.

    PubMed

    Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A

    2004-08-06

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  4. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; hide

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  5. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  6. Fundamental studies on silicon dioxide chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Mahajan, Uday

    Chemical Mechanical Polishing (CMP) has lately been adopted on a large scale by the semiconductor industry for planarizing and patterning metal and dielectric films. Additionally, CMP has been used for hundreds of years for optical polishing. Still, several aspects of this process remain poorly understood. In this study, some results on CMP of SiO2 are presented with a view to characterizing the effects of abrasive properties and slurry chemistry on the polishing process. Additionally, some results from a novel in-situ friction force measuring instrument are also presented. The friction force results showed the effect of several parameters such as surface roughness, solution pH and ionic strength on wafer-pad interactions. Additionally, monitoring the friction as a function of velocity showed that the transition from boundary lubrication to full fluid-film lubrication depends on the roughness (conditioning) of the polishing pad. The parameters investigated in the polishing experiments include abrasive size and concentration. From the experimental results, it was found that an optimum concentration exists for each abrasive size, which shifts to lower values and becomes narrower as particle size increases. From calculations, this was attributed to a decreased ability of the large particles to chemically modify the surface of the SiO2 films. The smaller particles, having a much larger surface area, are able to better adsorb dissolution and abrasion products at high concentrations, thus leading to high removal rates under those conditions. Studies on the effect of slurry ionic strength showed that the ability of a metal ion to shield the surface charge on the surfaces interacting during polishing is what determined removal rate. This was due to the reduced electrostatic repulsion between the surfaces, which resulted in better contact and thus higher polishing rates. These results were corroborated by the earlier friction force measurements. Finally, the influence of particle density on polishing was shown, with denser alumina particles being able to polish SiO2 much more effectively. Some preliminary results on polishing with different abrasives as a function of slurry pH indicate that the material properties of the abrasives seem to change around their Iso-electric Points (IEP), resulting in almost no polishing, and severe particle contamination on the SiO2 surface.

  7. Miscut dependent surface evolution in the process of N-polar GaN(000 1 bar) growth under N-rich condition

    NASA Astrophysics Data System (ADS)

    Krzyżewski, Filip; Załuska-Kotur, Magdalena A.; Turski, Henryk; Sawicka, Marta; Skierbiszewski, Czesław

    2017-01-01

    The evolution of surface morphology during the growth of N-polar (000 1 bar) GaN under N-rich conditions is studied by kinetic Monte Carlo (kMC) simulations for two substrates miscuts 2° and 4°. The results are compared with experimentally observed surface morphologies of (000 1 bar) GaN layers grown by plasma-assisted molecular beam epitaxy. The proposed kMC two-component model of GaN(000 1 bar) surface where both types of atoms, nitrogen and gallium, attach to the surface and diffuse independently shows that at relatively high rates of the step flow (miscut angle < 2 °) the low mobility of gallium adatoms causes surface instabilities and leads to experimentally observed roughening while for low rates of the step flow (miscut 4°), smooth surface can be obtained. In the presence of almost immobile nitrogen atoms under N-rich conditions crystal growth is realized by the process of two-dimensional island nucleation and coalescence. Larger crystal miscut, lower growth rate or higher temperature results in similar effect of the surface smoothening. We show that the surface also smoothens for the growth conditions with very high N-excess. In the presence of large number of nitrogen atoms the mobility of gallium atoms changes locally thus providing easier coalescence of separated island.

  8. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks

    PubMed Central

    Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Colombo, Marco; Scribante, Andrea

    2012-01-01

    Aim: The aim of this study is to evaluate the surface roughness of four flowable resin composites following exposure to acidic and alcoholic drinks. Materials and Methods: SureFil SDR flow, TetricEvoFlow, Esthet-X Flow and Amaris Flow HT samples were immersed in artificial saliva, Coca Cola and Chivas Regal Whisky. Each specimen was examined using a Leica DCM 3D microscope: Arithmetical mean height of the surface profiles was measured (Sa). Results: Kruskal-Wallis test showed significant differences among various groups (P<0,001). Mann Whitney test was applied and control groups showed significantly lower Sa values than other groups (P=0,008). Coca Cola groups showed highest Sa values (P<0,021). No significant differences (P=0,14) in surface texture were found among the specimens of the different materials. No significant differences were found among TetricEvoFlow, Esthet-X Flow and Amaris Flow under control conditions nor after Coca Cola application. Under control condition and after Coca Cola application SureFil SDR flow showed significantly higher Sa values. Moreover, after whisky application Amaris Flow showed significantly lower Sa values then the other three groups that showed no significant differences among them. Conclusions: Acidic and alcoholic drinks eroded the surface roughness of all evaluated flowable resin composites. PMID:22557811

  9. Mutual influence of molecular diffusion in gas and surface phases

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2018-01-01

    We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.

  10. Surface analysis of graphite fiber reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  11. Optimal sample formulations for DNP SENS: The importance of radical-surface interactions

    DOE PAGES

    Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian; ...

    2017-11-15

    The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less

  12. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-03

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  13. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    NASA Astrophysics Data System (ADS)

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  14. Calculational investigation of impact cratering dynamics - Early time material motions

    NASA Technical Reports Server (NTRS)

    Thomsen, J. M.; Austin, M. G.; Ruhl, S. F.; Schultz, P. H.; Orphal, D. L.

    1979-01-01

    Early time two-dimensional finite difference calculations of laboratory-scale hypervelocity (6 km/sec) impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed and the resulting material motions analyzed. Results show that the initial jetting of vaporized target material is qualitatively similar to experimental observation. The velocity flow field developed within the target is shown to have features quite similar to those found in calculations of near-surface explosion cratering. Specific application of Maxwell's analytic Z-Model (developed to interpret the flow fields of near-surface explosion cratering calculations), shows that this model can be used to describe the flow fields resulting from the impact cratering calculations, provided that the flow field center is located beneath the target surface, and that application of the model is made late enough in time that most of the projectile momentum has been dissipated.

  15. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  16. A closed form large deformation solution of plate bending with surface effects.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2017-01-04

    We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.

  17. Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning

    2016-12-01

    Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.

  18. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse.

    PubMed

    Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun

    2014-01-15

    We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.

  19. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application.

    PubMed

    Gonçalves, Juliana P L; Shaikh, Afnan Q; Reitzig, Manuela; Kovalenko, Daria A; Michael, Jan; Beutner, René; Cuniberti, Gianaurelio; Scharnweber, Dieter; Opitz, Jörg

    2014-01-01

    Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an adsorption and immobilization of modified nanodiamonds on titanium; where aminosilanized nanodiamonds coupled with O-phosphorylethanolamine show a homogeneous interaction with the titanium substrate.

  20. Electron spectroscopy imaging and surface defect configuration of zinc oxide nanostructures under different annealing ambient

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd

    2013-01-01

    In this study, electron spectroscopy imaging was used to visualize the elemental distribution of zinc oxide nanopowder. Surface modification in zinc oxide was done through annealing treatment and type of surface defect was also inferred from the electron spectroscopy imaging investigation. The micrographs revealed the non-stoichiometric distribution of the elements in the unannealed samples. Annealing the samples in nitrogen and oxygen ambient at 700 °C would alter the density of the elements in the samples as a result of removal or absorption of oxygen. The electrical measurement showed that nitrogen annealing treatment improved surface electrical conductivity, whereas oxygen treatment showed an adverse effect. Observed change in the photoluminescence green emission suggested that oxygen vacancies play a significant role as surface defects. Structural investigation carried out through X-ray diffraction revealed the polycrystalline nature of both zinc oxide samples with hexagonal phase whereby annealing process increased the crystallinity of both zinc oxide specimens. Due to the different morphologies of the two types of zinc oxide nanopowders, X-ray diffraction results showed different stress levels in their structures and the annealing treatment give significant effect to the structural stress. Electron spectroscopy imaging was a useful technique to identify the elemental distribution as well as oxygen defect in zinc oxide nanopowder.

  1. Lithium diffusion at Si-C interfaces in silicon-graphene composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odbadrakh, Khorgolkhuu; McNutt, N. W.; Nicholson, D. M.

    2014-08-04

    Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.

  2. Characterization of bio char derived from tapioca skin

    NASA Astrophysics Data System (ADS)

    Hasnan, F. I.; Iamail, K. N.; Musa, M.; Jaapar, J.; Alwi, H.; Hamid, K. K. K.

    2018-03-01

    Pyrolysis of tapioca skin was conducted to produce bio chars in the range between 500°C–800°C. Surface modification treatment were performed on bio chars by using chemicals within 24 hours at 30°C and hot water within 1 hour to enhance the bio char’s adsorption properties according to surface area, pore volume, pore size, crystallinity structure and functional groups. The samples were characterized by using BET, XRD, FTIR and Methylene Blue adsorption. Based on BET result, it showed the surface area increased as the pyrolysis temperature increased followed by pore volume and pore size for S0. The optimum temperature for SNaOH, SHW and SMeOH was at 600°C, 700°C and 800°C with the surface area of 75.9874, 274.5066 and 351.5531 m2/g respectively compared to S0 while SP3HO4 has the worst result since it felt on macroporous structure. The percentage of MB adsorption was followed the size of bio chars surface area. Based on FTIR result, at temperature 500°C to 700°C, the bio chars still have functional groups while at 800°C, many functional groups were diminished due to high temperature struck on them. XRD result showed all the bio chars were amorphous. In conclusion, the best surface modification treatment was by Methanol followed by hot water and Sodium Hydroxide at temperature of 700°C and 800°C while Ortho-Phosphoric acid was the worst one and was not suitable for bio char’s surface modification for adsorption purpose.

  3. Aging and the discrimination of 3-D shape from motion and binocular disparity.

    PubMed

    Norman, J Farley; Holmin, Jessica S; Beers, Amanda M; Cheeseman, Jacob R; Ronning, Cecilia; Stethen, Angela G; Frost, Adam L

    2012-10-01

    Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55 % coherent surface, 55 % of the stimulus points fell on a 3-D surface, while 45 % of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binocular-disparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binocular-disparity-defined surfaces was superior (i.e., the observers' surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45 % of the stimulus points (or more) constituted noise.

  4. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  5. Study on the sulfidation behavior of smithsonite

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-02-01

    Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pHIEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, CS in the solution declined from 1000 × 10-6 mol/L to 1.4 × 10-6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S2- and CO32- ions.

  6. Effects of aqueous ammonia treatment on fiber's surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    NASA Astrophysics Data System (ADS)

    Ling, Tang Pei; Hassan, Osman

    2013-11-01

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber's surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber's surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber's surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.

  7. Statistical Investigation of the Effect of Process Parameters on the Shear Strength of Metal Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda

    2017-06-01

    The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.

  8. Structural and surface changes in glassy carbon due to strontium implantation and heat treatment

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L. C.; Njoroge, E. G.; Erasmus, R.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2018-01-01

    There are still questions around the microstructure of glassy carbon (GC), like the observation of the micropores. These were proposed to explain the low density of GC. This paper explains the effect of ion bombardment (200 keV Sr+, 1 × 1016 Sr+/cm2 at RT) on the microstructure of GC. TEM and AFM show that micropores in pristine GC are destroyed leading to densification of GC from 1.42 g/cm3 to 2.03 g/cm3. The amorphisation of glassy carbon was also not complete with graphitic strands embedded within the GC. These were relatively few, as Raman analysis showed that the Sr implantation resulted in a typical amorphous Raman spectrum. Annealing of the sample at 900 °C only resulted in a slight recovery of the GC structure. AFM and SEM analysis showed that the surface of the sample became rougher after Sr implantation. The roughness increased after the sample was annealed at 600 °C due to segregation of Sr towards the surface of the GC. SEM measurements of a sample with both implanted and un-implanted edges after annealing at 900 °C, showed that the high temperature heat treatment did not affect the surface topography of un-irradiated GC.

  9. Raman spectra of adsorbed layers on space shuttle and AOTV thermal protection system surface

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1987-01-01

    Surfaces of interest to space vehicle heat shield design were struck by a 2 W argon ion laser line while subjected to supersonic arc jet flow conditions. Emission spectra were taken at 90 deg to the angle of laser incidence on the test object. Results showed possible weak Raman shifts which could not be directly tied to any particular parameter such as surface temperature or gas composition. The investigation must be considered exploratory in terms of findings. Many undesirable effects were found and corrected as the project progressed. For instance, initial spectra settings led to ghosts which were eliminated by closing the intermediate of filter slit of the Spex from 8 to 3 mm. Further, under certain conditions, plasma lines from the laser were observed. Several materials were also investigated at room temperature for Raman shifts. Results showed Raman shifts for RCC and TEOS coated materials. The HRSI materials showed only weak Raman shifts, however, substantial efforts were made in studying these materials. Baseline materials showed the technique to be sound. The original goal was to find a Raman shift for the High-temperature Reusable Surface Insulation (HRSI) Reaction Cured borosilicate Glass (RCG) coated material and tie the amplitude of this peak to Arc jet conditions. Weak Raman shifts may be present, however, time limitations prevented confirmation.

  10. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    NASA Astrophysics Data System (ADS)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  11. Directional self-cleaning superoleophobic surface.

    PubMed

    Zhao, Hong; Law, Kock-Yee

    2012-08-14

    In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self-cleaning effect exhibited in the parallel direction suggests that groove texturing is a viable approach to create mechanically robust, self-cleaning, superoleophobic surfaces.

  12. Tailoring of the titanium surface by immobilization of heparin/fibronectin complexes for improving blood compatibility and endothelialization: an in vitro study.

    PubMed

    Li, Guicai; Yang, Ping; Liao, Yuzhen; Huang, Nan

    2011-04-11

    To improve the blood compatibility and endothelialization simultaneously and to ensure the long-term effectiveness of the cardiovascular implants, we developed a surface modification method, enabling the coimmobilization of biomolecules to metal surfaces. In the present study, a heparin and fibronectin mixture (Hep/Fn) covalently immobilized on a titanium (Ti) substrate for biocompatibility was investigated. Different systems [N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide, electrostatic] were used for the formation of Hep/Fn layers. Atomic force microscopy (AFM) showed that the roughness of the silanized Ti surface decreased after the immobilization of Hep/Fn. Fourier transform infrared spectroscopy (FTIR), Toluidine Blue O (TBO) test, and immunochemistry assay showed that Hep/Fn mixture was successfully immobilized on Ti surface. Blood compatibility tests (hemolysis rate, APTT, platelet adhesion, fibrinogen conformational change) showed that the coimmobilized films of Hep/Fn mixture reduced blood hemolysis rate, prolonged blood coagulation time, reduced platelets activation and aggregation, and induced less fibrinogen conformational change compared with a bare Ti surface. Endothelial cell (EC) seeding showed more EC with better morphology on pH 4 samples than on pH 7 and EDC/NHS samples, which showed rounded and aggregated cells. Systematic evaluation showed that the pH 4 samples also had much better blood compatibility. All results suggest that the coimmobilized films of Hep/Fn can confer excellent antithrombotic properties and with good endothelialization. We envisage that this method will provide a potential and effective solution for the surface modification of cardiovascular implant materials.

  13. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    NASA Astrophysics Data System (ADS)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  14. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Furong; Zhao, Yan; Sun, Jinghui; Zhao, Wenwei; Guo, Xiaoli; Zhang, Ke

    2011-09-01

    We use a data set of 23 surface pollen samples from moss polsters in the Zoige Basin to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen samples spanned four types of plant communities: Carex muliensis marsh, Stipa and Kobresia meadow, Carex-dominated forb meadow and Sibiraea angustata scrub. Principal-components analysis (PCA) was used to determine the relationships between modern pollen and vegetation and environmental variables. The results show that the pollen assemblages of surface moss samples generally reflect the features of the modern vegetation, basically similar in the vegetation types and the dominant genera; however, they don't show a very clear distinction between different communities. Our results also demonstrate that pollen representation of different families or genus varied. Some tree taxa, such as Pinus and Betula, and herb types, such as Artemisia are over-represented, while Asteraceae, Ranunculaceae and Cyperaceae are moderately represented, and Poaceae and Rosaceae are usually under-represented in our study region. PCA results indicate that the distribution of vegetation in the Zoige Basin is mainly controlled by precipitation and altitude.

  15. Flight test results of riblets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Anderson, Bianca T.; Bertelrud, Arild

    1992-01-01

    A flight experiment to test and evaluate the skin friction drag characteristics of a riblet surface in turbulent flow at supersonic speeds was conducted at NASA Dryden. Riblets of groove sizes 0.0030 and 0.0013 in. were mounted on the F-104G flight test fixture. The test surfaces were surveyed with boundary layer rakes and pressure orifices to examine the boundary layer profiles and pressure distributions of the flow. Skin friction reductions caused by the riblet surface were reported based on measured differences of momentum thickness between the smooth and riblet surfaces obtained from the boundary layer data. Flight test results for the 0.0030 in. riblet show skin friction reductions of 4 to 8 % for Mach numbers ranging from 1.2 to 1.6 and Reynolds numbers ranging from 2 to 3.4 million per unit foot. The results from the 0.0013 in. riblets show skin friction reductions of 4 to 15 % for Mach 1.2 to 1.4 and Reynolds numbers ranging from 3.6 to 6 million per unit foot.

  16. Optimization of palm fruit sterilization by microwave irradiation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Madinah, I.; Salamah, S.

    2018-02-01

    This study reported optimization of palm fruit sterilization process by microwave irradiation. The results of fractional factorial experiments showed no significant external factors affecting temperature of microwave sterilization (MS). Response surface methodology (RSM) was employed and model equation of MS of palm fruit was built. Response surface plots and their corresponding contour plots were analyzed as well as solving model equation. The optimum process parameters for lipase reduction were obtained from MS of 1 kg palm fruit at microwave power of 486 Watt and heating time of 14 minutes. The experimental results showed reduction of lipase activity in the present work under MS treatment. The adequacy of the model equation for predicting the optimum response value was verified by validation data (P>0.15).

  17. Skating on a Film of Air: Drops Impacting on a Surface

    NASA Astrophysics Data System (ADS)

    Kolinski, John M.; Rubinstein, Shmuel M.; Mandre, Shreyas; Brenner, Michael P.; Weitz, David A.; Mahadevan, L.

    2012-02-01

    The commonly accepted description of drops impacting on a surface typically ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air breaks down as the fluid wets the surface via a spinodal-like mechanism. Our results show that the dynamics of impacting drops are much more complex than previously thought, with a rich array of unexpected phenomena that require rethinking classic paradigms.

  18. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    PubMed

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  19. Coupling surface and mantle dynamics: A novel experimental approach

    NASA Astrophysics Data System (ADS)

    Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea

    2015-05-01

    Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.

  20. Ices on the Satellites of Jupiter, Saturn, and Uranus

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Brown, Robert H.; Calvin, Wendy M.; Roush, Ted L.

    1995-01-01

    Three satellites of Jupiter, seven satellites of Saturn, and five satellites of Uranus show spectroscopic evidence of H2O ice on their surfaces, although other details of their surfaces are highly diverse. The icy surfaces contain contaminants of unknown composition in varying degrees of concentration, resulting in coloration and large differences in albedo. In addition to H2O, Europa has frozen SO2, and Ganymede has O2 in the surface; in both of these cases external causes are implicated in the deposition or formation of these trace components. Variations in ice exposure across the surfaces of the satellites are measured from the spectroscopic signatures. While H2O ice occurs on the surfaces of many satellites, the range of bulk densities of these bodies shows that its contribution to their overall compositions is highly variable from one object to another.

  1. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    PubMed

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  2. Biosorption of metal ions from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiaping; Yiacoumi, Sotira

    1997-01-01

    Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role inmore » the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.« less

  3. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  4. General minimal surface solution for gravitational instantons

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Kalaycı, J.; Nutku, Y.

    1997-07-01

    We construct the general instanton metric obtained from Weierstrass' general local solution for minimal surfaces using the correspondence between minimal surfaces in three-dimensional Euclidean space and gravitational instantons admitting two Killing vectors. The resulting metric contains one arbitrary analytic function and we show that it can be transformed to the Gibbons-Hawking form of an instanton metric that was reported earlier.

  5. Increased efficiency with surface texturing in ITO/InP solar cells

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Fatemi, Navid; Li, Xiaonan; Scheiman, David; Bailey, Sheila

    1992-01-01

    Optimization of an InP solar cell with a V-grooved surface is discussed. Total internal reflection in the coverglass reduces surface reflection and can recover light reflected from the front metallization. Results from the first ITO/InP solar cells on low-angle V-grooved substrates are presented, showing a 5.8 percent increase in current.

  6. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  7. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction

    NASA Astrophysics Data System (ADS)

    Brennan, Joseph C.; Geraldi, Nicasio R.; Morris, Robert H.; Fairhurst, David J.; McHale, Glen; Newton, Michael I.

    2015-05-01

    In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500.

  8. Springtime microwave emissivity changes in the southern Kara Sea

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Anderson, Mark R.

    1994-01-01

    Springtime microwave brightness temperatures over first-year ice are examined for the southern Kara Sea. Snow emissivity changes are revealed by episodic drops in the 37- to 18-GHz brightness temperature gradient ratio measured by the Nimbus 7 scanning multichannel microwave radiometer. We suggest that the negative gradient ratios in spring 1982 result from increased scatter at 37 GHz due to the formation of a near-surface hoar layer. This interpretation is supported by the results of a surface radiation balance model that shows the melt signature occurring at below freezing temperatures but under clear-sky conditions with increased solar input to the surface. Published observations from the Greenland ice cap show a surface hoar layer forming under similar atmospheric conditions owing to the increased penetration and absorption of solar radiation just below the surface layer. In spring/early summer 1984 similar gradient ratio signatures occur. They appear to be due to several days of freeze-thaw cycling following the movement of a low-pressure system through the region. These changes in surface emissivity represent the transition from winter to summer conditions (as defined by the microwave response) and are shown to be regional in extent and to vary with the synoptic circulations.

  9. Comparison of Surface Properties in Natural and Artificially Generated Fractures in a Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Vogler, Daniel; Walsh, Stuart D. C.; Bayer, Peter; Amann, Florian

    2017-11-01

    This work studies the roughness characteristics of fracture surfaces from a crystalline rock by analyzing differences in surface roughness between fractures of various types and sizes. We compare the surface properties of natural fractures sampled in situ and artificial (i.e., man-made) fractures created in the same source rock under laboratory conditions. The topography of the various fracture types is compared and characterized using a range of different measures of surface roughness. Both natural and artificial, and tensile and shear fractures are considered, along with the effects of specimen size on both the geometry of the fracture and its surface characterization. The analysis shows that fracture characteristics are substantially different between natural shear and artificial tensile fractures, while natural tensile fracture often spans the whole result domain of the two other fracture types. Specimen size effects are also evident, not only as scale sensitivity in the roughness metrics, but also as a by-product of the physical processes used to generate the fractures. Results from fractures generated with Brazilian tests show that fracture roughness at small scales differentiates fractures from different specimen sizes and stresses at failure.

  10. The Role of Nanodiamonds in the Polishing Zone During Magnetorheological Finishing (MRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGroote, J.E.; Marino, A.E.; WIlson, J.P.

    2008-01-07

    In this work we discuss the role that nanodiamond abrasives play in magnetorheological finishing. We hypothesize that, as the nanodiamond MR fluid is introduced to the magnetic field, the micron sized spherical carbonyl iron (CI) particles are pulled down towards the rotating wheel, leaving a thin layer of nanodiamonds at the surface of the stiffened MR fluid ribbon. Our experimental results shown here support this hypothesis. We also show that surface roughness values inside MRF spots show a strong correlation with the near surface mechanical properties of the glass substrates and with drag force.

  11. Mössbauer study on the deformed surface of high-manganese steel

    NASA Astrophysics Data System (ADS)

    Nasu, S.; Tanimoto, H.; Fujita, F. E.

    1990-07-01

    Conversion electron, X-ray backscattering and conventional transmission57Fe Mössbauer measurements have been performed to investigate the origin of the remarkable work hardening at the surface of a high-manganese steel which is called Hadfield steel. Mössbauer results show that α' martensite has no relation to work hardening. From the comparison of conversion electron to X-ray backscattering spectra, the occurrence of decarbonization is suggested at the surface. The transmission Mössbauer spectrum at 20 K for deformed specimen shows the existence of ɛ martensite which could be related to the work hardening of Hadfield steel.

  12. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  13. Nanolubricant: magnetic nanoparticle based

    NASA Astrophysics Data System (ADS)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  14. Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology

    NASA Astrophysics Data System (ADS)

    Schuler, Alexander; Weckenmann, Albert; Hausotte, Tino

    2014-06-01

    Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results.

  15. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    NASA Astrophysics Data System (ADS)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  16. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering

    PubMed Central

    Malvindi, Maria Ada; De Matteis, Valeria; Galeone, Antonio; Brunetti, Virgilio; Anyfantis, George C.; Athanassiou, Athanassia; Cingolani, Roberto; Pompa, Pier Paolo

    2014-01-01

    We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay. Our results show that NPs surface passivation reduces the oxidative stress and alteration of iron homeostasis and, consequently, the overall toxicity, despite bare and passivated NPs show similar cell internalization efficiency. We found that the higher toxicity of bare NPs is due to their stronger in-situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. Our results indicate that surface engineering of Fe3O4/SiO2 NPs plays a key role in improving particles stability in biological environments reducing both cytotoxic and genotoxic effects. PMID:24465736

  17. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX

    PubMed Central

    Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas

    2014-01-01

    Background During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Material/Methods Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). Results The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Conclusions Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients’ oral cavities. PMID:24857929

  18. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 < We < 200), in which wettability affects both drop maximum spreading and spreading characteristic time; and a high Weber number regime (We > 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  19. UV sensitivity of planktonic net community production in ocean surface waters

    NASA Astrophysics Data System (ADS)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  20. Catastrophic failure of contaminated fused silica optics at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genin, F. Y., LLNL

    1996-12-03

    For years, contamination has been known to degrade the performance of optics and to sometimes initiate laser-induced damage to initiate. This study has W to quantify these effects for fused silica windows used at 355 mm Contamination particles (Al, Cu, TiO{sub 2} and ZrO{sub 2}) were artificially deposited onto the surface and damage tests were conducted with a 3 ns NdYAG laser. The damage morphology was characterized by Nomarski optical microscopy. The results showed that the damage morphology for input and output surface contamination is different. For input surface contamination, both input and output surfaces can damage. In particular, themore » particle can induce pitting or drilling of the surface where the beam exits. Such damage usually grows catastrophically. Output surface contamination is usually ablated away on the shot but can also induce catastrophic damage. Plasmas are observed during illumination and seem to play an important role in the damage mechanism. The relationship between fluence and contamination size for which catastrophic damage occurred was plotted for different contamination materials. The results show that particles even as small as 10 {micro}m can substantially decrease the damage threshold of the window and that metallic particles on the input surface have a more negative effect than oxide particles.« less

  1. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response

    PubMed Central

    OLIVEIRA, Natássia Cristina Martins; MOURA, Camilla Christian Gomes; ZANETTA-BARBOSA, Darceny; MENDONÇA, Daniela Baccelli Silveira; MENDONÇA, Gustavo; DECHICHI, Paula

    2015-01-01

    In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7 days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p<0.05), but with greater fold induction for Porous and Vulcano. The secretion of transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) was not significantly affected by surface treatment in any experimental time (p>0.05). Although no significant correlation was found for growth factors secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response. PMID:23498218

  2. Evaluation of surface detail reproduction, dimensional stability and gypsum compatibility of monophase polyvinyl-siloxane and polyether elastomeric impression materials under dry and moist conditions

    PubMed Central

    Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad

    2016-01-01

    Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions. PMID:27583217

  3. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    ERIC Educational Resources Information Center

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-01-01

    The self-motion of an ester boat is investigated depending on the physicochemical properties of the surface-active substance. The results show that the ester boat moves towards the higher surface tension generating as the driving force.

  4. Application of an Unstructured Grid Navier-Stokes Solver to a Generic Helicopter Boby: Comparison of Unstructured Grid Results with Structured Grid Results and Experimental Results

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1999-01-01

    An unstructured-grid Navier-Stokes solver was used to predict the surface pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag coefficients on the ROBIN configuration (a generic helicopter) without a rotor at four angles of attack. The results are compared to those predicted by two structured- grid Navier-Stokes solvers and to experimental surface pressure distributions. The surface pressure distributions from the unstructured-grid Navier-Stokes solver are in good agreement with the results from the structured-grid Navier-Stokes solvers. Agreement with the experimental pressure coefficients is good over the forward portion of the body. However, agreement is poor on the lower portion of the mid-section of the body. Comparison of the predicted surface flow patterns showed similar regions of separated flow. Predicted lift and drag coefficients were in fair agreement with each other.

  5. Numerical modelling of surface waves generated by low frequency electromagnetic field for silicon refinement process

    NASA Astrophysics Data System (ADS)

    Geža, V.; Venčels, J.; Zāģeris, Ģ.; Pavlovs, S.

    2018-05-01

    One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus, therefore, approach under development will address this problem. An approach of creating surface waves on silicon melt’s surface is proposed in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which include coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.

  6. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-07-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  7. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods.

    PubMed

    Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud

    2016-09-01

    A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Technical Note: Kinect V2 surface filtering during gantry motion for radiotherapy applications.

    PubMed

    Nazir, Souha; Rihana, Sandy; Visvikis, Dimitris; Fayad, Hadi

    2018-04-01

    In radiotherapy, the Kinect V2 camera, has recently received a lot of attention concerning many clinical applications including patient positioning, respiratory motion tracking, and collision detection during the radiotherapy delivery phase. However, issues associated with such applications are related to some materials and surfaces reflections generating an offset in depth measurements especially during gantry motion. This phenomenon appears in particular when the collimator surface is observed by the camera; resulting in erroneous depth measurements, not only in Kinect surfaces itself, but also as a large peak when extracting a 1D respiratory signal from these data. In this paper, we proposed filtering techniques to reduce the noise effect in the Kinect-based 1D respiratory signal, using a trend removal filter, and in associated 2D surfaces, using a temporal median filter. Filtering process was validated using a phantom, in order to simulate a patient undergoing radiotherapy treatment while having the ground truth. Our results indicate a better correlation between the reference respiratory signal and its corresponding filtered signal (Correlation coefficient of 0.76) than that of the nonfiltered signal (Correlation coefficient of 0.13). Furthermore, surface filtering results show a decrease in the mean square distance error (85%) between the reference and the measured point clouds. This work shows a significant noise compensation and surface restitution after surface filtering and therefore a potential use of the Kinect V2 camera for different radiotherapy-based applications, such as respiratory tracking and collision detection. © 2018 American Association of Physicists in Medicine.

  9. Variations of surface ozone concentration across the Klang Valley, Malaysia

    NASA Astrophysics Data System (ADS)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  10. Fabrication of Biocompatible Potassium Sodium Niobate Piezoelectric Ceramic as an Electroactive Implant

    PubMed Central

    Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun

    2017-01-01

    The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration. PMID:28772704

  11. Fabrication of Biocompatible Potassium Sodium Niobate Piezoelectric Ceramic as an Electroactive Implant.

    PubMed

    Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun

    2017-03-26

    The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration.

  12. Effect of metal surface topography on mechanical bonding at simulated total hip stem-cement interfaces.

    PubMed

    Chen, C Q; Scott, W; Barker, T M

    1999-01-01

    Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.

  13. Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against Salmonella typhi

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, G.; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2017-12-01

    Polycarbonate (PC) films were irradiated by 100 MeV gold (Au7+) ions and characterized to study changes in its optical, chemical, surface morphology and thermal properties. UV-Visible spectroscopic results revealed the decrease in the optical band gap of PC after ion irradiation due to chain scission mainly at the carbonyl group which is corroborated by Fourier Transform Infrared spectroscopic results. X-ray diffractogram study showed decrease in crystallinity of PC film after irradiation. Scanning electron microscopic results showed the micropores formation in PC which results in surface roughening. Differential scanning calorimetric results revealed decrease in glass transition temperature indicating the decrease in molecular weight of PC corroborated by rheometric studies. PC films irradiated by 100 MeV Au7+ ions showed increased anti-biofilm activity against the human pathogen, Salmonella typhi (S. typhi). Morphology of S. typhi was changed due to stress of Au7+ irradiated PC. Cells length was increased with increasing fluences. The average cell length, cell volume and surface area was increased significantly (P<0.05) with increasing ion fluences. Biofilm formation was inhibited ≈ 20% at lower fluence and 96% at higher fluence, which observed to be enhanced anti-biofilm activity in Au7+ irradiated PC.

  14. Time-dependent investigation of sub-monolayers of Ni on Pd using Positron-annihilation induced Auger Electron Spectroscopy and XPS

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Piochacz, Christian; Vohburger, Sebastian; Hugenschmidt, Christoph

    2016-01-01

    The surface of a polycrystalline Pd-substrate covered with (sub-) monolayers of Ni was investigated with Positron-annihilation induced Auger Electron Spectroscopy (PAES). Comparative studies using conventional AES induced by electrons and X-rays showed the outstanding surface sensitivity of PAES. Time-dependent PAES was performed on a 0.5 ML Ni cover layer on Pd and compared with conventional X-ray induced Photoelectron Spectroscopy (XPS) in order to observe changes in the elemental composition of the surface. The PAES results appear to show a migration of Ni atoms into the Pd substrate, whereas the Ni signal shows a decrease of 12% within 13 h with respect to the initial value.

  15. Viscoelastic representation of surface waves in patchy saturated poroelastic media

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi

    2014-08-01

    Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.

  16. Pattern of uptake of americium-241 by the rat skeleton and its subsequent redistribution and retention: implications for human dosimetry and toxicology.

    PubMed

    Priest, N D; Howells, G; Green, D; Haines, J W

    1983-01-01

    The distribution and retention of intravenously injected 241Am in the skeleton of the female rat has been investigated using autoradiographic and radiochemical techniques. The studies were designed to assess the dosimetric and toxicologic implications of an 241Am intake by man. They showed that in the rat approximately one third of the intravenously injected 241Am was deposited in the skeleton where it appeared to be retained with a long biological half-time. The studies also showed: 1 241Am is initially deposited onto all types of bone surface including endosteal surfaces, periosteal surfaces and those of the vascular canals within cortical bone, but seems to be preferentially deposited onto those that are resorbing, 2 Bone accretion results in the burial of surface deposits of 241Am, 3 Bone resorption causes the removal of 241Am from surfaces, 4 Resorbed 241Am is retained by phagocytic cells (probably macrophages) in the bone marrow, 5 The transfer of 241Am from the phagocytic cells in the marrow to adjacent bone surfaces seems to occur, (local recycling). 6 The possibility that some of the 241Am removed from the bone surfaces enters the blood and is redeposited in bone, (systemic recycling) cannot be dismissed. These results show that 241Am deposition and redistribution in bone shares many characteristics with other 'bone surface-seeking radionuclides' typified by 239Pu. Consequently, it is suggested that a similar model to that used to calculate annual limits of intake for 239Pu in man would be suitable for the calculation of corresponding values for the 241Am isotopes.

  17. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    PubMed

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

  18. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement

    PubMed Central

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin

    2017-01-01

    PURPOSE To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (P<.001). For LDC, AS surface treatment showed the highest FPBS results (100.31 ± 10.7 MPa) and the lowest values were obtained in RNC (23.63 ± 9.0 MPa) for control group. SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. CONCLUSION The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials. PMID:29279763

  19. Surface receptors on human haematopoietic cell lines.

    PubMed Central

    Huber, C; Sundström, C; Nilsson, K; Wigzell, H

    1976-01-01

    The expression of complement receptors, of Fc receptors, of SRBC receptors and of S-Ig was investigated on human haematopoietic cell lines of proved malignant derivation. According to their origin and to a panel of phenotypic markers these lines have been classified into lymphoma lines, myeloma lines and leukemia lines. Results were compared with those obtained on non-malignant EBV carrying lymphoblastoid cell lines (LCL). Among the lymphoid cell lines the LCL showed a pattern of B-lymphocyte surface markers, i.e. surface immunoglobulins, C3 receptors but low density of Fc receptors. The non-Burkitt lymphoma lines bore in varying degree these B-lymphocyte markers. The lines U-698 M and DG-75 were exceptional in having only surface immunoglobulin. The Burkitt lymphoma lines had all B-lymphocyte markers. The myeloma lines differed from the lymphoid lines in lacking C3 and Fc receptors and showed only trace amounts of surface immunoglobulins. In contrast to lymphoid and myeloma lines, the leukaemia lines were completely lacking surface immunoglobulins, but showed C3 and Fc receptors in variable densities. On line, the ALL derived line MOLT-3 showed the capacity to spontaneous rosette formation with SRBC. The findings that LCL presented a homogeneous pattern of B-lymphocyte surface markers may be of value in order to discriminate between these lines and lines derived from haematopoietic malignancies other than Burkitt lymphomas. PMID:963908

  20. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.

    PubMed

    Sprenger, K G; Pfaendtner, Jim

    2016-06-07

    Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.

  1. Surface Treatment on Physical Properties and Biocompatibility of Orthodontic Power Chains

    PubMed Central

    Cheng, H. C.; Chen, M. S.; Peng, B. Y.; Lin, W. T.; Wang, Y. H.

    2017-01-01

    The conventional orthodontic power chain, often composed of polymer materials, has drawbacks such as a reduction of elasticity owing to water absorption as well as surface discoloration and staining resulting from food or beverages consumed by the patient. The goal of this study was to develop a surface treatment (nanoimprinting) for orthodontic power chains and to alleviate their shortcomings. A concave template (anodic alumina) was manufactured by anodization process using pure aluminum substrate by employing the nanoimprinting process. Convex nanopillars were fabricated on the surface of orthodontic power chains, resulting in surface treatment. Distinct parameters of the nanoimprinting process (e.g., imprinting temperature, imprinting pressure, imprinting time, and demolding temperature) were used to fabricate nanopillars on the surface of orthodontic power chains. The results of this study showed that the contact angle of the power chains became larger after surface treatment. In addition, the power chains changed from hydrophilic to hydrophobic. The power chain before surface treatment without water absorption had a water absorption rate of approximately 4%, whereas a modified chain had a water absorption rate of approximately 2%–4%. Furthermore, the color adhesion of the orthodontic power chains after surface modification was less than that before surface modification. PMID:28540299

  2. Liquid-Vapor Interfacial Properties of Aqueous Solutions of Guanidinium and Methyl Guanidinium Chloride: Influence of Molecular Orientation on Interface Fluctuations

    PubMed Central

    Ou, Shuching; Cui, Di; Patel, Sandeep

    2014-01-01

    The guanidinium cation (C(NH2)3+) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules (”salting-in”) and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte’s interaction with hydrophobic interfaces as they impact protein denaturation (solubilization). PMID:23937431

  3. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells.

    PubMed

    Marcatti Amarú Maximiano, William; Marino Mazucato, Vivian; Tambasco de Oliveira, Paulo; Célia Jamur, Maria; Oliver, Constance

    2017-08-01

    Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017. © 2017 Wiley Periodicals, Inc.

  4. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations

    NASA Astrophysics Data System (ADS)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong

    2018-04-01

    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  5. Relationship between surface property and catalytic application of amorphous NiP/Hβ catalyst for n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Chen, Jinshe; Duan, Zunbin; Song, Zhaoyang; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2017-12-01

    The amorphous NiP nanoparticles were synthesized and a novel amorphous NiP/Hβ catalyst was prepared successfully further. Due to the superior surface property of amorphous NiP/Hβ catalyst, it exhibited good catalytic application for n-hexane isomerization. The catalytic activity of amorphous NiP/Hβ catalyst was close to that of the prepared Pt/Hβ sample, and better than that of commercial catalyst and crystalline Ni2P/Hβ catalyst. What's more, the amorphous NiP/Hβ catalyst shows high resistance to different sulfur compounds and water on account of its unique surface property. The effect of loading amounts on surface property and catalytic performance was investigated, and the structure-function relationship among them was studied ulteriorly. The results demonstrate that loading amounts have effect on textural property and surface acid property, which further affect the catalytic performance. The 10 wt.% NiP/Hβ sample has appropriate pore structure and acid property with uniformly dispersed NiP nanoparticles on surface, which is helpful for providing suitable synergistic effect. The effects of reaction conditions on surface reactions and the mechanism for n-hexane isomerization were investigated further. Based on these results, the amorphous NiP/Hβ catalyst with superior surface property probably pavesa way to overcome the drawbacks of traditional noble metal catalyst, which shows good catalytic application prospects.

  6. Near-Surface Geophysical Character of a Holocene Fault Carrying Geothermal Flow Near Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Dudley, C.; Dorsey, A.; Louie, J. N.; Schwering, P. C.; Pullammanappallil, S.

    2012-12-01

    Lines of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources, providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass shows a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location to a depth of at least 60 m at 11 ka. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey comprises near-surface seismic reflection and refraction, nine near-surface refraction microtremor (SeisOpt® ReMi™) arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys at and near the tufa columns. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results show no indication of any fast (> 500 m/s) tufa below the surface at or near the tufa columns. Vs30 averages were 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results also show no indication of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that deposition of the lakebeds in the Quaternary buried and preserved older tufa columns within the section. Near-surface Wenner arrays with a-spacings up to 30 m show a higher resistivity near the faults, and tufa, than away from the faults. Resistivity averages were 33 ± 17 ohm-m on the fault, 13 ± 3 ohm-m east of the fault, and 9 ± 3 ohm-m west of the fault. It is possible the geothermal waters are fresher than waters held in the lakebed clays. Water samples from more than 1 km depth in exploration wells had almost drinking-water quality. This higher resistivity of the waters carried by the fault zone, with perhaps a higher porosity and permeability along the fault, could explain the higher resistivity near the fault. Our work shows that there is no high-velocity, high-resistivity tufa along the faults below the surface, so we are unable to use buried tufa to locate faults with geothermal upwellings in this area. We can further hypothesize that as sedimentation buried the tufa during the Quaternary, warm geothermal waters re-dissolved it, and re-precipitated it only in the cold lake-bottom water.

  7. Effect of surface etching and electrodeposition of copper on nitinol

    NASA Astrophysics Data System (ADS)

    Ramos-Moore, E.; Rosenkranz, A.; Matamala, L. F.; Videla, A.; Durán, A.; Ramos-Grez, J.

    2017-10-01

    Nitinol-based materials are very promising for medical and dental applications since those materials can combine shape memory, corrosion resistance, biocompatibility and antibacterial properties. In particular, surface modifications and coating deposition can be used to tailor and to unify those properties. We report preliminary results on the study of the effect of surface etching and electrodeposition of Copper on Nitinol using optical, chemical and thermal techniques. The results show that surface etching enhances the surface roughness of Nitinol, induces the formation of Copper-based compounds at the Nitinol-Copper interface, reduces the austenitic-martensitic transformations enthalpies and reduces the Copper coating roughness. Further studies are needed in order to highlight the influence of the electrodeposited Copper on the memory shape properties of NiTi.

  8. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Synergistic Effect of Sarocladium sp. and Cryptococcus sp. Co-Culture on Crude Oil Biodegradation and Biosurfactant Production.

    PubMed

    Kamyabi, Aliyeh; Nouri, Hoda; Moghimi, Hamid

    2017-05-01

    This study was conducted to evaluate the co-culture ability of two yeast (Sarocladium sp. and Cryptococcus sp.) isolates as compared to their individual cultures in surfactant production and oil degradation. The results showed that individual culture of each strain was capable of producing surfactant, degrading oil, and pyrene; also, a synergistic effect was observed when a co-culture was applied. Oil removal and biomass production were 28 and 35% higher in the co-culture than in individual cultures, respectively. To investigate the synergistic effects of mix culture on oil degradation, the surface tension, emulsification activity (EA), and cell surface hydrophobicity of individual and co-culture were studied. A comparison between the produced biosurfactant and chemical surfactants showed that individual culture of each yeast strain could reduce the surface tension like SDS and about 10% better than Tween 80. The results showed that the microbial consortium could reduce the surface tension more, by 10 and 20%, than SDS and Tween 80, respectively. Both individual cultures of Sarocladium sp. and Cryptococcus sp. showed good emulsification activity (0.329 and 0.412, respectively) when compared with a non-inoculated medium. Emulsification activity measurement for the two yeast mix cultures showed an excellent 33 and 67% increase as compared to the individual culture of Sarocladium sp. and Cryptococcus sp., respectively. The cell surface hydrophobicity of Sarocladium sp. and Cryptococcus sp. increased (38 and 85%) when the cells were treated with pyrene as a hydrophobic substrate for four generations. Finally, a 40% increase for pyrene degradation was measured in a co-culture of the two yeast mix culture. According to the results of the present study, the co-culture system exhibited better performance and this study will enhance the understanding of the synergistic effects of yeast co-culture on oil degradation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less

  11. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    NASA Astrophysics Data System (ADS)

    Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2014-09-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.

  12. Microwave remote sensing and its application to soil moisture detection

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.

  13. Evaluation of Fine Aggregate Morphology by Image Method and Its Effect on Skid-Resistance of Micro-Surfacing.

    PubMed

    Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei

    2018-05-29

    Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.

  14. Kenaf Bast Fibers—Part II: Inorganic Nanoparticle Impregnation for Polymer Composites

    DOE PAGES

    Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; ...

    2011-01-01

    The objective of this study was to investigate an inorganic nanoparticle impregnation (INI) technique to improve the compatibility between kenaf bast fibers and polyolefin matrices. The Scanning Electron Microscopy (SEM) was used to examine the surface morphology of the INI-treated fibers showing that the CaCO 3 nanoparticle crystals grew onto the fiber surface. Energy-dispersive X-ray spectroscopy (EDS) was used to verify the CaCO 3 nanoparticle deposits on the fiber surface. The tension tests of the individual fiber were conducted, and the results showed that the tensile strength of the fibers increased significantly (more than 20%) after the INI treatments. Polymermore » composites were fabricated using the INI-treated fiber as reinforcement and polypropylene (PP) as the matrix. The results showed that the INI treatments improved the compatibility between kenaf fibers and PP matrix. The tensile modulus and tensile strength of the composites reinforced with INI-treated fibers increased by 25.9% and 10.4%, respectively, compared to those reinforced with untreated kenaf fibers.« less

  15. Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Brian James

    1994-05-01

    Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H 2, O 2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8,more » results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.« less

  16. NASA Radar Images Show Continued Deformation from Mexico Quake

    NASA Image and Video Library

    2010-08-04

    This image shows a UAVSAR interferogram swath overlaid atop a Google Earth image. New NASA airborne radar images show the continuing deformation in Earth surface resulting from the magnitude 7.2 temblor in Baja California on April 4, 2010.

  17. The effect of surface charge, negative and bipolar ionization on the deposition of airborne bacteria.

    PubMed

    Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A

    2009-04-01

    A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.

  18. Slip length measurement of confined air flow on three smooth surfaces.

    PubMed

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-02

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  19. Biological control of surface temperature in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  20. Characterization and cell behavior of titanium surfaces with PLL/DNA modification via a layer-by-layer technique.

    PubMed

    Gao, Wenli; Feng, Bo; Lu, Xiong; Wang, Jianxin; Qu, Shuxin; Weng, Jie

    2012-08-01

    This study describes the fabrication of two types of multilayered films onto titanium by layer-by-layer (LBL) self-assembly, using poly-L-lysine (PLL) as the cationic polyelectrolyte and deoxyribonucleic acid (DNA) as the anionic polyelectrolyte. The assembling process of each component was studied using atomic force microscopy (AFM) and quartz crystal balance (QCM). Zeta potential of the LBL-coated microparticles was measured by dynamic light scattering. Titanium substrates with or without multilayered films were used in osteoblast cell culture experiments to study cell proliferation, viability, differentiation, and morphology. Results of AFM and QCM indicated the progressive build-up of the multilayered coatings. The surface morphology of three types of multilayered films showed elevations in the nanoscale range. The data of zeta potential showed that the surface terminated with PLL displayed positive charge while the surface terminated with DNA displayed negative charge. The proliferation of osteoblasts on modified titanium films was found to be greater than that on control (p < 0.05) after 3 and 7 days culture, respectively. Alamar blue measurement showed that the PLL/DNA-modified films have higher cell viability (p < 0.05) than the control. Still, the alkaline phosphatase activity assay revealed a better differentiated phenotype on three types of multilayered surfaces compared to noncoated controls. Collectively our results suggest that PLL/DNA were successfully used to surface engineer titanium via LBL technique, and enhanced its cell biocompatibility. Copyright © 2012 Wiley Periodicals, Inc.

  1. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    NASA Astrophysics Data System (ADS)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process without individual following up surface modification process.

  2. Nature of the Elimination of the Penicillinase Plasmid from Staphylococcus aureus by Surface-Active Agents

    PubMed Central

    Sonstein, Stephen A.; Baldwin, J. N.

    1972-01-01

    Growth of Stapylococcus aureus in various ionic surface-active agents resulted in loss of the ability to produce penicillinase, whereas growth in nonionic surface-active agents had no effect on penicillinase production. The curing effect of various alkyl sulfates was found to be dependent upon the chain length. Curing by surface-active agents could be inhibited by magnesium. Reciprocal transduction experiments showed that curing by a surface-active agent was a property of the plasmid, not of the bacterial strain in which the plasmic resides. PMID:4204903

  3. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    PubMed Central

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  4. Causes and solutions to surface facilities upsets following acid stimulation in the Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, D.K.; Stone, P.J.; Ali, S.A.

    1997-02-01

    This paper presents test data on the effects of acid and acid additives on emulsion and water treating in the Gulf of Mexico. This work also discusses the test methods developed to select acid additives and treating chemicals that will allow the producer to treat both oil and water more consistently and cost effectively while the acid flowback is in the system. It also presents system results that confirm the importance of the joint selection of acid and surface treating additives and show that significant cost savings can be gained by use of this process. Also discussed are the propermore » system application techniques for treating chemicals that can minimize surface treating problems caused by acid flowbacks. The results show that the proper selection and use of acid additives and surface treating products can eliminate or significantly reduce costly upsets in oil- and water-treating systems. Data on individual acid additives that impact water and oil treating are also presented. The results of this work are currently being used to solve produced-water- and oil-treating problems on offshore and onshore facilities in and around the Gulf of Mexico by reduction of production losses resulting from acid-flowback-related problems; reduction of the use and cost of tanks and barges used to segregate acid flowbacks; and development of effective methodology to select acid and surface treating additives that have resulted in lower overall treating costs.« less

  5. Aluminum and gold deposition on cleaved single crystals of Bi2CaSr2Cu2O8 superconductor

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-02-01

    We have used photoelectron spectroscopy to study the changes in the electronic structure of cleaved, single crystal Bi2CaSr2Cu2O8 caused by deposition of aluminum and gold. Al reacts strongly with the superconductor surface. Even the lowest coverages of Al reduces the valency of Cu in the superconductor, draws oxygen out of the bulk, and strongly modifies the electronic states in the valence band. The Au shows little reaction with the superconductor surface. Underneath Au, the Cu valency is unchanged and the core peaks show no chemically shifted components. Au appears to passivate the surface of the superconductor and thus may aid in the processing of the Bi-Ca-Sr-Cu-O material. These results are consistent with earlier studies of Al and Au interfaces with other, polycrystalline oxide superconductors. Comparing with our own previous results, we conclude that Au is superior to Ag in passivating the Bi-Ca-Sr-Cu-O surface.

  6. Stability of peatland carbon to rising temperatures

    DOE PAGES

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; ...

    2016-12-13

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less

  7. Stability of peatland carbon to rising temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less

  8. DFT study of cyanide oxidation on surface of Ge-embedded carbon nanotube

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Milad Abrishamifar, Seyyed; Ebrahimzadeh Rajaei, Gholamreza; Razavi, Razieh; Najafi, Meysam

    2018-03-01

    In recent years, the discovery of suitable catalyst to oxidation of the cyanide (CN) has high importance in the industry. In present study, in the first step, the carbon nanotube (CNT) with the Ge atom embedded and the surface of Ge-CNT via the O2 molecule activated. In second step, the oxidation of CN on surface of the Ge-CNT via the Langmuir Hinshelwood (LH) and the Eley Rideal (ER) mechanisms was investigated. Results show that O2-Ge-CNT oxidized the CN molecule via the Ge-CNT-O-O∗ + CN → Ge-CNT-O-O∗-CN → Ge-CNT-O∗ + OCN and the Ge-CNT-O∗ + CN → Ge-CNT + OCN reactions. Results show that oxidation of CN on surface of Ge-CNT via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that Ge-CNT is acceptable catalyst with high performance for CN oxidation, form theoretical point of view.

  9. Mechanical and Functional Properties of Nickel Titanium Adhesively Bonded Joints

    NASA Astrophysics Data System (ADS)

    Niccoli, F.; Alfano, M.; Bruno, L.; Furgiuele, F.; Maletta, C.

    2014-07-01

    In this study, adhesive joints made up of commercial NiTi sheets with shape memory capabilities are analyzed. Suitable surface pre-treatments, i.e., degreasing, sandblasting, and chemical etching, are preliminary compared in terms of surface roughness, surface energy, and substrate thinning. Results indicate that chemical etching induces marked substrate thinning without substantial gains in terms of surface roughness and free energy. Therefore, adhesive joints with degreased and sandblasted substrates are prepared and tested under both static and cyclic conditions, and damage development within the adhesive layer is monitored in situ using a CCD camera. Sandblasted specimens have a significantly higher mechanical static strength with respect to degreased ones, although they essentially fail in similar fashion, i.e., formation of microcracks followed by decohesion along the adhesive/substrate interface. In addition, the joints show a good functional response with almost complete shape memory recovery after thermo-mechanical cycling, i.e., a small accumulation of residual deformations occurs. The present results show that adhesive bonding is a viable joining technique for NiTi alloys.

  10. Tantalum induced butterfly-like clusters on Si (111)-7 × 7 surface: STM/STS study at low coverage

    NASA Astrophysics Data System (ADS)

    Shukrynau, Pavel; Mutombo, Pingo; Švec, Martin; Hietschold, Michael; Cháb, Vladimír

    2012-02-01

    The adsorption of the small amounts of tantalum on Si (111)-7 × 7 reconstructed surface is investigated systematically using scanning tunneling microscopy and tunneling spectroscopy combined with first-principles density functional theory calculations. We find out that the moderate annealing of the Ta covered surface results in the formation of clusters of the butterfly-like shape. The clusters are sporadically distributed over the surface and their density is metal coverage dependent. Filled and empty state STM images of the clusters differ strongly suggesting the existence of covalent bonds within the cluster. Tunneling spectroscopy measurements reveal small energy gap, showing semiconductor-like behavior of the constituent atoms. The cluster model based on experimental images and theoretical calculations has been proposed and discussed. Presented results show that Ta joins the family of adsorbates, that are known to form magic clusters on Si (111)-7 × 7, but its magic cluster has the structural and electronic properties that are different from those reported before.

  11. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  12. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  13. Theoretical analyses of localized surface plasmon resonance spectrum with nanoparticles imprinted polymers

    NASA Astrophysics Data System (ADS)

    Li, Hong; Peng, Wei; Wang, Yanjie; Hu, Lingling; Liang, Yuzhang; Zhang, Xinpu; Yao, Wenjuan; Yu, Qi; Zhou, Xinlei

    2011-12-01

    Optical sensors based on nanoparticles induced Localized Surface Plasmon Resonance are more sensitive to real-time chemical and biological sensing, which have attracted intensive attentions in many fields. In this paper, we establish a simulation model based on nanoparticles imprinted polymer to increase sensitivity of the LSPR sensor by detecting the changes of Surface Plasmon Resonance signals. Theoretical analysis and numerical simulation of parameters effects to absorption peak and light field distribution are highlighted. Two-dimensional simulated color maps show that LSPR lead to centralization of the light energy around the gold nanoparticles, Transverse Magnetic wave and total reflection become the important factors to enhance the light field in our simulated structure. Fast Fourier Transfer analysis shows that the absorption peak of the surface plasmon resonance signal resulted from gold nanoparticles is sharper while its wavelength is bigger by comparing with silver nanoparticles; a double chain structure make the amplitude of the signals smaller, and make absorption wavelength longer; the absorption peak of enhancement resulted from nanopore arrays has smaller wavelength and weaker amplitude in contrast with nanoparticles. These simulation results of the Localized Surface Plasmon Resonance can be used as an enhanced transduction mechanism for enhancement of sensitivity in recognition and sensing of target analytes in accordance with different requirements.

  14. Surface and structure modification induced by high energy and highly charged uranium ion irradiation in monocrystal spinel

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing; Meng, Yancheng; Zhang, Hengqing; Ma, Yizhun

    2014-05-01

    Due to its high temperature properties and relatively good behavior under irradiation, magnesium aluminate spinel (MgAl2O4) is considered as a possible material to be used as inert matrix for the minor actinides burning. In this case, irradiation damage is an unavoidable problem. In this study, high energy and highly charged uranium ions (290 MeV U32+) were used to irradiate monocrystal spinel to the fluence of 1.0 × 1013 ions/cm2 to study the modification of surface and structure. Highly charged ions carry large potential energy, when they interact with a surface, the release of potential energy results in the modification of surface. Atomic force microscopy (AFM) results showed the occurrence of etching on surface after uranium ion irradiation. The etching depth reached 540 nm. The surprising efficiency of etching is considered to be induced by the deposition of potential energy with high density. The X-ray diffraction results showed that the (4 4 0) diffraction peak obviously broadened after irradiation, which indicated that the distortion of lattice has occurred. After multi-peak Gaussian fitting, four Gaussian peaks were separated, which implied that a structure with different damage layers could be formed after irradiation.

  15. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    NASA Astrophysics Data System (ADS)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  16. Consolidation of Surface Coatings by Friction Stir Techniques

    DTIC Science & Technology

    2010-09-01

    alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments

  17. The Effect of Nylon and Polyester Peel Ply Surface Preparation on the Bond Quality of Composite Laminates

    NASA Astrophysics Data System (ADS)

    Moench, Molly K.

    The preparation of the surfaces to be bonded is critical to the success of composite bonds. Peel ply surface preparation is attractive from a manufacturing and quality assurance standpoint, but is a well known example of the extremely system-specific nature of composite bonds. This study examined the role of the surface energy, morphology, and chemistry left by peel ply removal in resulting bond quality. It also evaluated the use of contact angle surface energy measurement techniques for predicting the resulting bond quality of a prepared surface. The surfaces created by preparing three aerospace fiber-reinforced composite prepregs were compared when prepared with a nylon vs a polyester peel ply. The prepared surfaces were characterized with contact angle measurements with multiple fluids, scanning electron microscopy (SEM), and x-ray electron spectroscopy. The laminates were bonded with aerospace grade film adhesives. Bond quality was assessed via double cantilever beam testing followed by optical and scanning electron microscopy of the fracture surfaces.The division was clear between strong bonds (GIC of 600- 1000J/m2 and failure in cohesion) and weak bonds (GIC of 80-400J/m2 and failure in adhesion). All prepared laminates showed the imprint of the peel ply texture and evidence of peel ply remnants after fabric removal, either through SEM or XPS. Within an adhesive system, large amounts of SEM-visible peel ply material transfer correlated with poor bond quality and cleaner surfaces with higher bond quality. The both sides of failed weak bonds showed evidence of peel ply remnants under XPS, showing that at least some failure is occurring through the remnants. The choice of adhesive was found to be significant. AF 555 adhesive was more tolerant of peel ply contamination than MB 1515-3. Although the bond quality results varied substantially between tested combinations, the total surface energies of all prepared surfaces were very similar. Single fluid contact angle measurements/water break tests were therefore not predictive of bond quality, and are recommended against. The multiple fluids used allowed the construction of wettability envelopes, a more detailed look at the surface energy profile. The envelopes of nylon and polyester prepared systems were noticeably different, but while potentially useful for detecting changes or errors in surface preparation of known systems, they were not valid for predicting bond quality in new systems. Ultimately, it was determined that wetting is a necessary but not sufficient condition for bonding.

  18. Melting of SiC powders preplaced duplex stainless steel using TIG welding

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Afiq, M.

    2018-01-01

    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  19. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    NASA Astrophysics Data System (ADS)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-12-01

    We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES.

  20. Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.

  1. Surface functionalization of thin-film diamond for highly stable and selective biological interfaces

    PubMed Central

    Stavis, Courtney; Clare, Tami Lasseter; Butler, James E.; Radadia, Adarsh D.; Carr, Rogan; Zeng, Hongjun; King, William P.; Carlisle, John A.; Aksimentiev, Aleksei; Bashir, Rashid; Hamers, Robert J.

    2011-01-01

    Carbon is an extremely versatile family of materials with a wide range of mechanical, optical, and mechanical properties, but many similarities in surface chemistry. As one of the most chemically stable materials known, carbon provides an outstanding platform for the development of highly tunable molecular and biomolecular interfaces. Photochemical grafting of alkenes has emerged as an attractive method for functionalizing surfaces of diamond, but many aspects of the surface chemistry and impact on biological recognition processes remain unexplored. Here we report investigations of the interaction of functionalized diamond surfaces with proteins and biological cells using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and fluorescence methods. XPS data show that functionalization of diamond with short ethylene glycol oligomers reduces the nonspecific binding of fibrinogen below the detection limit of XPS, estimated as > 97% reduction over H-terminated diamond. Measurements of different forms of diamond with different roughness are used to explore the influence of roughness on nonspecific binding onto H-terminated and ethylene glycol (EG)-terminated surfaces. Finally, we use XPS to characterize the chemical stability of Escherichia coli K12 antibodies on the surfaces of diamond and amine-functionalized glass. Our results show that antibody-modified diamond surfaces exhibit increased stability in XPS and that this is accompanied by retention of biological activity in cell-capture measurements. Our results demonstrate that surface chemistry on diamond and other carbon-based materials provides an excellent platform for biomolecular interfaces with high stability and high selectivity. PMID:20884854

  2. The chemical modification and characterization of polypropylene membrane with environment response by in-situ chlorinating graft copolymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Liu, Jiankai; Hu, Wenjie; Feng, Ying; Zhao, Jiruo

    2017-08-01

    In this study, a novel chemical surface modification method of polyolefin membranes is applied following the in-situ chlorinating graft copolymerization (ISCGC). Polypropylene (PP)/methyl methacrylate (MMA) system was used as an example. A unique structure was formed by the modification process on the original membrane surface and the product exhibited an environmental response. Chlorine free radicals were generated using ultraviolet and heat and were used to capture the hydrogen in the polymer chains on the substrate surface. The formed macromolecular radicals could react with MMA over 2 h to achieve a high coverage ratio polymer on the PP membrane surface. The graft copolymers were characterized using FTIR, 1H-NMR, DSC, and XPS, which all proved the feasibility of chemically modifying the PP membrane surface by ISCGC. The surface morphology of the grafted PP membrane was characterized using SEM and AFM. The results showed that the grafted product presents a uniform, neat, and dense mastoid structure with an average thickness of 4.44 μm, which was expected to be similar to the brush-like surface structure. The contact angle and AFM tests indicated that the product surface is responsive to solvent and pH. The experimental results showed that the PP membrane surface structure can be reconstructed using ISCGC, a method that can be used for environment-responsive polymer materials. Moreover, the product has the characteristics of polymer interfacial brush.

  3. The effect of organic contaminants on the spectral induced polarization response of porous media - mechanistic approach

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2012-12-01

    In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition, direct evidence showed that the organic cation was adsorbed on the soil surface and exchanged with inorganic ions that usually exist in soil. This experiment confirmed that adsorption to the soil surface and the associated release of inorganic ions is the main mechanism affecting the complex conductivity of the contaminated porous media. Furthermore, our results show that adsorption of organic ions to the soil surface resulted in a decrease of the soil polarization. Using a chemical complexation model of the soil surface and a model for the polarization of the Stern layer, we were able to show that the decrease in the polarization of the soil can be related to the decrease in the surface site density of inorganic ions, and that the contribution of the soil-organic complexes to the polarization of the soil is negligible. We attribute this to the strong interaction between polar organic compounds and soil which results in a significant decrease in the mobility of the organic compounds in the Stern layer. The results of this work are essential to better interpret SIP signatures of soil contaminated with organic contaminants.

  4. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli

    2018-05-01

    Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.

  5. Analysis of the Mechanical Behavior and Surface Rugosity of Different Dental Die Materials.

    PubMed

    Niekawa, Ciro T; Kreve, Simone; A'vila, Gisseli Bertozzi; Godoy, Gilmar Gil; Eduardo Vieira da Silva, J R; Dias, Sergio Candido

    2017-01-01

    This work evaluated the mechanical and surface behavior of different die materials. The studied materials are polyurethane resin Exakto-Form (Bredent), Gypsum type IV, Fuji Rock EP (Gc), and Durone (Dentsply). Two metallic matrices molded in polyvinyl siloxane provided 30 cylindrical test specimens for the diametral compression test and 30 hemispherical test specimens for the surface rugosity test. The cylindrical test specimens were submitted to tests of diametral compression strength using a DL2000 universal assay machine, with a load cell of 2000 Kgf and constant speed of 1 mm/min connected to the software. Kruskal-Wallis and Dunn's nonparametric tests were used to analyze the results. The hemispheres were submitted to the surface rugosity assay using a SJ201-P rugosimeter with a sensitivity of 300 μm, speed of 0.5 mm/s, and cut-off of 0.8 mm, and the readings were taken on the convex surface of the test specimens and metallic matrix. Results were analyzed using with Fisher's least significant differences test (LSD) and Dunnett's test. Kruskal-Wallis test showed significant difference between die materials for diametral compression strength ( P = 0.002). Dunn's test showed significantly higher values for modified polyurethane resin (Exakto-Form). The gypsum type IV, which did not significantly differ regarding diametral compression strength, showed 34.0% (Durone) and 42.7% (Fuji Rock) lower values in comparison to Exakto-Form. Within the parameters adopted in this study, it is possible to conclude that Exakto-Form polyurethane resin showed higher resistance to compression and was closer to the metallic matrix rugosity, and, along with the gypsum type IV Durone, showed better reproducibility of details relative to the Fuji Rock.

  6. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.

    PubMed

    Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G

    2005-10-01

    Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.

  7. Research on aspheric focusing lens processing and testing technology in the high-energy laser test system

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Fu, Xiu-hua; Jia, Zong-he; Wang, Zhe; Dong, Huan

    2014-08-01

    In the high-energy laser test system, surface profile and finish of the optical element are put forward higher request. Taking a focusing aspherical zerodur lens with a diameter of 100mm as example, using CNC and classical machining method of combining surface profile and surface quality of the lens were investigated. Taking profilometer and high power microscope measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 0.5μm and the surface finish is □, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  8. Compressor cascade performance deterioration caused by sand ingestion

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    Airfoil cascade erosion and performance deterioration was investigated in a gas particle cascade tunnel. The cascade blades were made of 2024 aluminum alloy and the solid particles used were quartz sand. The results of the experimental measurements are presented to show the change in the blade surface erosion, pressure distribution and the total loss coefficient with erosion. The surface quality of the blades exposed to particulate flows are changing the material surfaces. With time, the surface roughness increases and leads to a decrease in engine performance. It was found that the surface roughness values increase asymptotically to a maximum value with increased erosion. The experimental results indicate that the roughness parameters correlate well against the mass of particles impacting unit area of the surface. Such a correlation is useful in aerodynamics and performance computations in turbomachinery.

  9. Effect of tungsten on the corrosion behavior of sulfuric acid-resistant steels for flue gas desulfurization system

    NASA Astrophysics Data System (ADS)

    Ji, Woo-Soo; Jang, Young-Wook; Kim, Jung-Gu

    2011-06-01

    Flue gas desulfurization systems (FGDs) are operated in severely corrosive environments that cause sulfuric acid dew-point corrosion. The corrosion behavior of low-alloy steels was tested using electrochemical techniques (electrochemical impedance spectroscopy, potentiodynamic tests, potentiostatic tests), and the corrosion products were analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical results showed that alloying W with small amounts of Sb, Cu, and Co improves the corrosion resistance of steels. The results of surface analyses showed that the surface of the steels alloyed with W consisted of W oxides and higher amounts of Sb and Cu oxides. This suggests that the addition of W promotes the formation of a protective WO3 film, in addition to Sb2O5 and CuO films on the surface.

  10. Microstructure of In x Ga1-x N nanorods grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Soundararajah, Q. Y.; Griffiths, I. J.; Cherns, D.; Novikov, S. V.; Foxon, C. T.

    2015-11-01

    Transmission electron microscopy is used to examine the structure and composition of In x Ga1-x N nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core-shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration.

  11. Proton irradiation of MgO- or Sc 2O 3 passivated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, B.; Ren, F.; Allums, K. K.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.; Fitch, R. C.; Gillespie, J. K.; Jenkins, T. J.; Dettmer, R.; Sewell, J.; Via, G. D.; Crespo, A.; Baca, A. G.; Shul, R. J.

    2003-06-01

    AlGaN/GaN high electron mobility transistors with either MgO or Sc 2O 3 surface passivation were irradiated with 40 MeV protons at a dose of 5×10 9 cm -2. While both forward and reverse bias current were decreased in the devices as a result of decreases in channel doping and introduction of generation-recombination centers, there was no significant change observed in gate lag measurements. By sharp contrast, unpassivated devices showed significant decreases in drain current under pulsed conditions for the same proton dose. These results show the effectiveness of the oxide passivation in mitigating the effects of surface states present in the as-grown structures and also of surface traps created by the proton irradiation.

  12. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.

    PubMed

    Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur

    2014-01-01

    Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.

  13. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231)

    PubMed Central

    Xia, Ling; Huang, Rong; Li, Yinta

    2017-01-01

    The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production. PMID:29045481

  14. Influence of Decontaminating Agents and Swipe Materials on Laboratory Simulated Working Surfaces Wet Spilled with Sodium Pertechnetate.

    PubMed

    Akchata, Suman; Lavanya, K; Shivanand, Bhushan

    2017-01-01

    Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Lab-simulated working surface materials. Experimental study design. Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine. Radiacwash may show better result for 99mTc labelled product and other radionuclide contamination on the laboratory working surface area.

  15. The ESPAT tool: a general-purpose DSS shell for solving stochastic optimization problems in complex river-aquifer systems

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Tilmant, Amaury

    2015-04-01

    Stochastic programming methods are better suited to deal with the inherent uncertainty of inflow time series in water resource management. However, one of the most important hurdles in their use in practical implementations is the lack of generalized Decision Support System (DSS) shells, usually based on a deterministic approach. The purpose of this contribution is to present a general-purpose DSS shell, named Explicit Stochastic Programming Advanced Tool (ESPAT), able to build and solve stochastic programming problems for most water resource systems. It implements a hydro-economic approach, optimizing the total system benefits as the sum of the benefits obtained by each user. It has been coded using GAMS, and implements a Microsoft Excel interface with a GAMS-Excel link that allows the user to introduce the required data and recover the results. Therefore, no GAMS skills are required to run the program. The tool is divided into four modules according to its capabilities: 1) the ESPATR module, which performs stochastic optimization procedures in surface water systems using a Stochastic Dual Dynamic Programming (SDDP) approach; 2) the ESPAT_RA module, which optimizes coupled surface-groundwater systems using a modified SDDP approach; 3) the ESPAT_SDP module, capable of performing stochastic optimization procedures in small-size surface systems using a standard SDP approach; and 4) the ESPAT_DET module, which implements a deterministic programming procedure using non-linear programming, able to solve deterministic optimization problems in complex surface-groundwater river basins. The case study of the Mijares river basin (Spain) is used to illustrate the method. It consists in two reservoirs in series, one aquifer and four agricultural demand sites currently managed using historical (XIV century) rights, which give priority to the most traditional irrigation district over the XX century agricultural developments. Its size makes it possible to use either the SDP or the SDDP methods. The independent use of surface and groundwater can be examined with and without the aquifer. The ESPAT_DET, ESPATR and ESPAT_SDP modules were executed for the surface system, while the ESPAT_RA and the ESPAT_DET modules were run for the surface-groundwater system. The surface system's results show a similar performance between the ESPAT_SDP and ESPATR modules, with outperform the one showed by the current policies besides being outperformed by the ESPAT_DET results, which have the advantage of the perfect foresight. The surface-groundwater system's results show a robust situation in which the differences between the module's results and the current policies are lower due the use of pumped groundwater in the XX century crops when surface water is scarce. The results are realistic, with the deterministic optimization outperforming the stochastic one, which at the same time outperforms the current policies; showing that the tool is able to stochastically optimize river-aquifer water resources systems. We are currently working in the application of these tools in the analysis of changes in systems' operation under global change conditions. ACKNOWLEDGEMENT: This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) funds.

  16. Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance.

    PubMed

    Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R; Hong, Yi; Gamble, Lara J; Ishihara, Kazuhiko; Wagner, William R

    2013-07-02

    Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi- and SBSSi-modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys.

  17. Nodal surface semimetals: Theory and material realization

    NASA Astrophysics Data System (ADS)

    Wu, Weikang; Liu, Ying; Li, Si; Zhong, Chengyong; Yu, Zhi-Ming; Sheng, Xian-Lei; Zhao, Y. X.; Yang, Shengyuan A.

    2018-03-01

    We theoretically study the three-dimensional topological semimetals with nodal surfaces protected by crystalline symmetries. Different from the well-known nodal-point and nodal-line semimetals, in these materials, the conduction and valence bands cross on closed nodal surfaces in the Brillouin zone. We propose different classes of nodal surfaces, both in the absence and in the presence of spin-orbit coupling (SOC). In the absence of SOC, a class of nodal surfaces can be protected by space-time inversion symmetry and sublattice symmetry and characterized by a Z2 index, while another class of nodal surfaces are guaranteed by a combination of nonsymmorphic twofold screw-rotational symmetry and time-reversal symmetry. We show that the inclusion of SOC will destroy the former class of nodal surfaces but may preserve the latter provided that the inversion symmetry is broken. We further generalize the result to magnetically ordered systems and show that protected nodal surfaces can also exist in magnetic materials without and with SOC, given that certain magnetic group symmetry requirements are satisfied. Several concrete nodal-surface material examples are predicted via the first-principles calculations. The possibility of multi-nodal-surface materials is discussed.

  18. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    NASA Astrophysics Data System (ADS)

    Hou, Bao-feng; Wang, Ye-fei; Huang, Yong

    2015-03-01

    Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.

  19. Jet blown PTFE for control of biocompatibility

    NASA Astrophysics Data System (ADS)

    Leibner, Evan Scott

    The development of fully hemocompatible cardiovascular biomaterials will have a major impact on the practice of modern medicine. Current artificial surfaces, unlike native vascular surfaces, are not able to control clot and thrombus formation. Protein interactions are an important component in hemocompatibility and can result in decreased patency due to thrombus formation or surface passivation which can improve endothelization. It is believed that controlling these properties, specifically the nanometer sizes of the fibers on the material's surface, will allow for better control of biological responses. The biocompatibility of Teflon, a widely used polymer for vascular grafts, would be improved with nanostructured control of surface features. Due to the difficultly in processing polytetrafluoroethylene (PTFE), it has not been possible to create nanofibrous PTFE surfaces. The novel technique of Jet Blowing allows for the formation of nanostructured PTFE (nPTFE). A systematic investigation into controlling polymer properties by varying the processing conditions of temperature, pressure, and gas used in the Jet Blowing allows for an increased understanding of the effects of plasticization on the material's properties. This fundamental understanding of the material science behind the Jet Blowing process has enabled control of the micro and nanoscale structure of nPTFE. While protein adsorption, a key component of biocompatibility, has been widely studied, it is not fully understood. Major problems in the field of biomaterials include a lack of standard protocols to measure biocompatibility, and inconstant literature on protein adsorption. A reproducible protocol for measuring protein adsorption onto superhydrophobic surfaces (ePTFE and nPTFE) has been developed. Both degassing of PBS buffer solutions and evacuation of the air around the expanded PTFE (ePTFE) prior to contact with protein solutions are essential. Protein adsorption experiments show a four-fold difference in the measure of proteins adsorbed using radiometry (I-125 labeled human serum albumin (HSA)) and electrophoresis (unlabeled HSA). This provides evidence that the standard method of radiolabeled protein for measuring adsorption does not fully account for changes to the HSA molecules due to labeling. The differences between measured protein values can be attributed to the radiolabel affecting the HSA hydrophobicity resulting in a change in the protein's interactions with the hydrophobic surface. Additionally, our work has provided repeatable results showing that the amount of protein adsorbed onto the polymer surface, after washing, accounted for only 65% of the amount of protein that was removed from solution based on depletion analysis. This implies that measurement of the amount of strongly bound protein on the material significantly underestimates the actual amount of protein adsorbing into the surface region of the material interface. HSA adsorption isotherms demonstrate an increase in protein adsorption capacity on the nPTFE surface compared to adsorption on the same surface area of ePTFE. Preliminary cell work shows that the nPTFE surfaces had a larger number of cells growing on the surface of the material when compared to ePTFE surfaces. The research also shows that while most endothelial cells were not viable on the ePTFE surface after 96 hours, they remained alive on the nPTFE surface during that same time period. Surface functionalization using ammonia plasma has been performed. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of amine groups on the nPTFE surface. The amine groups can be used to couple polypeptides onto the PTFE surface in the future. The selection of different peptides will allow for selective control of cell adhesion. This research shows that nPTFE has potential for improved biocompatibility over standard ePTFE, based on increased protein adsorption capacity, increased viability of endothelial cells, and the ability to plasma modify the PTFE surface.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veelen, Arjen; Bargar, John R.; Law, Gareth T. W.

    Polarization-dependent grazing incidence X-ray absorption spectroscopy (XAS) measurements were completed on oriented single crystals of magnesite [MgCO 3] and brucite [Mg(OH) 2] reacted with aqueous uranyl chloride above and below the solubility boundaries of schoepite (500, 50, and 5 ppm) at pH 8.3 and at ambient (P CO2 = 10 –3.5) or reduced partial pressures of carbon dioxide (P CO2 = 10 –4.5). X-ray absorption near edge structure (XANES) spectra show a striking polarization dependence (χ = 0° and 90° relative to the polarization plane of the incident beam) and consistently demonstrated that the uranyl molecule was preferentially oriented withmore » its O axial = U(VI) = O axial linkage at high angles (60–80°) to both magnesite (101¯4) and brucite (0001). Extended X-ray absorption fine structure (EXAFS) analysis shows that the “effective” number of U(VI) axial oxygens is the most strongly affected fitting parameter as a function of polarization. Furthermore, axial tilt in the surface thin films (thickness ~ 21 Å) is correlated with surface roughness [σ]. Our results show that hydrated uranyl(-carbonate) complexes polymerize on all of our experimental surfaces and that this process is controlled by surface hydroxylation. Lastly, these results provide new insights into the bonding configuration expected for uranyl complexes on the environmentally significant carbonate and hydroxide mineral surfaces.« less

  1. Uranium immobilization and nanofilm formation on magnesium-rich minerals

    DOE PAGES

    van Veelen, Arjen; Bargar, John R.; Law, Gareth T. W.; ...

    2016-03-18

    Polarization-dependent grazing incidence X-ray absorption spectroscopy (XAS) measurements were completed on oriented single crystals of magnesite [MgCO 3] and brucite [Mg(OH) 2] reacted with aqueous uranyl chloride above and below the solubility boundaries of schoepite (500, 50, and 5 ppm) at pH 8.3 and at ambient (P CO2 = 10 –3.5) or reduced partial pressures of carbon dioxide (P CO2 = 10 –4.5). X-ray absorption near edge structure (XANES) spectra show a striking polarization dependence (χ = 0° and 90° relative to the polarization plane of the incident beam) and consistently demonstrated that the uranyl molecule was preferentially oriented withmore » its O axial = U(VI) = O axial linkage at high angles (60–80°) to both magnesite (101¯4) and brucite (0001). Extended X-ray absorption fine structure (EXAFS) analysis shows that the “effective” number of U(VI) axial oxygens is the most strongly affected fitting parameter as a function of polarization. Furthermore, axial tilt in the surface thin films (thickness ~ 21 Å) is correlated with surface roughness [σ]. Our results show that hydrated uranyl(-carbonate) complexes polymerize on all of our experimental surfaces and that this process is controlled by surface hydroxylation. Lastly, these results provide new insights into the bonding configuration expected for uranyl complexes on the environmentally significant carbonate and hydroxide mineral surfaces.« less

  2. Uranium Immobilization and Nanofilm Formation on Magnesium-Rich Minerals.

    PubMed

    van Veelen, Arjen; Bargar, John R; Law, Gareth T W; Brown, Gordon E; Wogelius, Roy A

    2016-04-05

    Polarization-dependent grazing incidence X-ray absorption spectroscopy (XAS) measurements were completed on oriented single crystals of magnesite [MgCO3] and brucite [Mg(OH)2] reacted with aqueous uranyl chloride above and below the solubility boundaries of schoepite (500, 50, and 5 ppm) at pH 8.3 and at ambient (PCO2 = 10(-3.5)) or reduced partial pressures of carbon dioxide (PCO2 = 10(-4.5)). X-ray absorption near edge structure (XANES) spectra show a striking polarization dependence (χ = 0° and 90° relative to the polarization plane of the incident beam) and consistently demonstrated that the uranyl molecule was preferentially oriented with its Oaxial═U(VI)═Oaxial linkage at high angles (60-80°) to both magnesite (101̅4) and brucite (0001). Extended X-ray absorption fine structure (EXAFS) analysis shows that the "effective" number of U(VI) axial oxygens is the most strongly affected fitting parameter as a function of polarization. Furthermore, axial tilt in the surface thin films (thickness ∼ 21 Å) is correlated with surface roughness [σ]. Our results show that hydrated uranyl(-carbonate) complexes polymerize on all of our experimental surfaces and that this process is controlled by surface hydroxylation. These results provide new insights into the bonding configuration expected for uranyl complexes on the environmentally significant carbonate and hydroxide mineral surfaces.

  3. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanah, Lilik, E-mail: lilikhasanah@upi.edu; Suhendi, Endi; Tayubi, Yuyu Rahmat

    In this work we discuss the surface roughness of Si interface impact to the tunneling current of the Si/Si{sub 1-x}Ge{sub x}/Si heterojunction bipolar transistor. The Si interface surface roughness can be analyzed from electrical characteristics through the transversal electron velocity obtained as fitting parameter factor. The results showed that surface roughness increase as Ge content of virtual substrate increase This model can be used to investigate the effect of Ge content of the virtual substrate to the interface surface condition through current-voltage characteristic.

  5. Waypoints Following Guidance for Surface-to-Surface Missiles

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Khalil, Elsayed M.; Rahman, Tawfiqur; Chen, Wanchun

    2018-04-01

    The paper proposes waypoints following guidance law. In this method an optimal trajectory is first generated which is then represented through a set of waypoints that are distributed from the starting point up to the final target point using a polynomial. The guidance system then works by issuing guidance command needed to move from one waypoint to the next one. Here the method is applied for a surface-to-surface missile. The results show that the method is feasible for on-board application.

  6. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.

    2018-06-01

    We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.

  7. Effects of aqueous ammonia treatment on fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Tang Pei; Hassan, Osman

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%.more » Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber’s surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber’s surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.« less

  8. Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Y Cao, T.; Su, J.; Qin, G. L.

    2013-12-01

    In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested.

  9. The Tunneling Microscope: A New Look at the Atomic World.

    ERIC Educational Resources Information Center

    Golovchenko, J. A.

    1986-01-01

    A new instrument called the tunneling microscope has recently been developed that is capable of generating real-space images of surfaces showing atomic structure. Discusses current capabilities, limitations, and the physics involved in the technique. Includes results from a study of silicon crystal surfaces. (JN)

  10. Dropwise condensation on hydrophobic bumps and dimples

    NASA Astrophysics Data System (ADS)

    Yao, Yuehan; Aizenberg, Joanna; Park, Kyoo-Chul

    2018-04-01

    Surface topography plays an important role in promoting or suppressing localized condensation. In this work, we study the growth of water droplets on hydrophobic convex surface textures such as bumps and concave surface textures such as dimples with a millimeter scale radius of curvature. We analyze the spatio-temporal droplet size distribution under a supersaturation condition created by keeping the uniform surface temperature below the dew point and show its relationship with the sign and magnitude of the surface curvature. In particular, in contrast to the well-known capillary condensation effect, we report an unexpectedly less favorable condensation on smaller, millimeter-scale dimples where the capillary condensation effect is negligible. To explain these experimental results, we numerically calculated the diffusion flux of water vapor around the surface textures, showing that its magnitude is higher on bumps and lower on dimples compared to a flat surface. We envision that our understanding of millimetric surface topography can be applied to improve the energy efficiency of condensation in applications such as water harvesting, heating, ventilation, and air conditioning systems for buildings and transportation, heat exchangers, thermal desalination plants, and fuel processing systems.

  11. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.

    PubMed

    Li, Chun-Yi; Liao, Ying-Chih

    2016-05-11

    In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices.

  12. Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper.

    PubMed

    Ashori, Alireza; Cordeiro, Nereida; Faria, Marisa; Hamzeh, Yahya

    2013-07-01

    The use of non-wood fibers in the paper industry has been an economical and environmental necessity. The application of dry-strength agents has been a successful method to enhance the strength properties of paper. The experimental results evidencing the potential of chitosan and cationic starch utilization in bagasse paper subjected to hot water pre-extraction has been presented in this paper. The research analyzes the surface properties alterations due to these dry-strength agents. Inverse gas chromatography was used to evaluate the properties of surface chemistry of the papers namely the surface energy, active sites, surface area as well as the acidic/basic character. The results of the study revealed that the handsheets process causes surface arrangement and orientation of chemical groups, which induce a more hydrophobic and basic surface. The acid-base surface characteristics after the addition of dry-strength agents were the same as the bagasse handsheets with and without hot water pre-extraction. The results showed that the dry-strength agent acts as a protecting film or glaze on the surfaces of bagasse paper handsheets. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units

    PubMed Central

    Ma, Zheng; Li, Yaoming; Xu, Lizhang

    2015-01-01

    Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens. PMID:27034611

  14. The influence of surface preparation on low temperature HfO{sub 2} ALD on InGaAs (001) and (110) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Tyler; Edmonds, Mary; Kummel, Andrew C.

    2015-10-28

    Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitancemore » voltage indicated the (001) surface with no buffered oxide etch had a higher C{sub max} hypothesized to be a result of poor nucleation of HfO{sub 2} on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low D{sub it} high C{sub ox} MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared.« less

  15. Nutrient loss in leachate and surface runoff from surface-broadcast and subsurface-banded broiler litter.

    PubMed

    Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H

    2013-09-01

    Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    PubMed

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (P<0.05) as the thickness of their nano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification (P<0.01). CCK-8 cytotoxicity test results showed that coated samples did not exhibit cytotoxicity. The antibacterial experimental results showed that the nano-silver coating can significantly improve the antibacterial activity and bacterial adhesion ability of the PEEK samples. The compact and homogeneous nano-silver coating was successfully prepared on the surface of PEEK through magnetron sputtering. The nano-silver coated PEEKs demonstrated enhanced antibacterial activities and bacterial adhesion abilities and had no cytotoxic effects. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Effects of isotropic and anisotropic slip on droplet impingement on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel

    2015-12-01

    The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces with isotropic and anisotropic slip are investigated. While several analytical models exist to predict droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the effect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent for many of these surfaces. This paper presents a model that accounts for slip during spreading and recoiling. A broad range of Weber numbers and slip length values were investigated at low Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the impingement process for low Weber numbers but can exert significant influence for high Weber numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing Weber number. Experiments were performed on isotropic and anisotropic micro-structured superhydrophobic surfaces and the agreement between the experimental results and the model is very good.

  18. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    PubMed Central

    Cai, Yang; Wang, Xiaosong; Yuan, Shijian

    2017-01-01

    Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD) to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening. PMID:28772658

  19. Surface oxidation: an effective way to induce piezoelectricity in 2D black phosphorus

    NASA Astrophysics Data System (ADS)

    Li, Jiabin; Zhao, Ting; He, Chaoyu; Zhang, Kaiwang

    2018-03-01

    In this letter, first-principles methods are employed to investigate the elastic stiffness and piezoelectric tensors of surface-oxidized black phosphorene. Our results show that the piezoelectric coefficients d 11 and d 12 for surface-oxidized black phosphorene are 88.54 pm V-1 and  -1.94 pm V-1, respectively, which are comparable to those of group-IV monochalcogenides and more remarkable than those of the experimentally viable h-BN and MoS2. These results indicate that surface-oxidization is an effective way to make black phosphorene into an excellent piezoelectric material for potential applications in sensors, actuators, electric field generators and any other applications requiring electrical and mechanical energy conversion. We expect further experimental exploration on this interesting result to confirm our predictions.

  20. Influence of Decontaminating Agents and Swipe Materials on Laboratory Simulated Working Surfaces Wet Spilled with Sodium Pertechnetate

    PubMed Central

    Akchata, Suman; Lavanya, K; Shivanand, Bhushan

    2017-01-01

    Context: Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. Aim: To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Settings and Design: Lab-simulated working surface materials. Experimental study design. Materials and Methods: Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Statistical Analysis: Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Results: Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Conclusions: Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine. Radiacwash may show better result for 99mTc labelled product and other radionuclide contamination on the laboratory working surface area. PMID:28680198

  1. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX.

    PubMed

    Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas

    2014-05-25

    During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients' oral cavities.

  2. Surface integrity and fatigue behaviour of electric discharged machined and milled austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundberg, Mattias, E-mail: mattias.lundberg@liu.se

    Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclicmore » behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured. - Highlights: •Milled samples exhibit fatigue behaviour, but not EDM samples. •Four-point bending is not suitable for materials exhibiting pronounced ratcheting. •LAGB density can be used to quantitatively measure plastic deformation. •Grain shearing and rotation result in bent mechanical twins. •Nano sized grains evolve due to the heat of the operation.« less

  3. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface network and the use of broadband instrumentation. The results indicate that sparse surface networks of high quality instruments can provide rich and reliable datasets for evaluation of the impact and effectiveness of hydraulic fracture operations in regions with favorable surface noise, local stress and attenuation characteristics.

  4. SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, A; Schoenfeld, A; Poppinga, D

    Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurementsmore » were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.« less

  5. Atmospheric-pressure-plasma-enhanced fabrication of nonfouling nanocoatings for 316 stainless steel biomaterial interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun

    2018-03-01

    Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.

  6. Effects of erbium, chromium:YSGG laser irradiation on root surface: morphological and atomic analytical studies.

    PubMed

    Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K

    2001-04-01

    The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.

  7. Effect of land cover and green space on land surface temperature of a fast growing economic region in Malaysia

    NASA Astrophysics Data System (ADS)

    Sheikhi, A.; Kanniah, K. D.; Ho, C. H.

    2015-10-01

    Green space must be increased in the development of new cities as green space can moderate temperature in the cities. In this study we estimated the land surface temperature (LST) and established relationships between LST and land cover and various vegetation and urban surface indices in the Iskandar Malaysia (IM) region. IM is one of the emerging economic gateways of Malaysia, and is envisaged to transform into a metropolis by 2025. This change may cause increased temperature in IM and therefore we conducted a study by using Landsat 5 image covering the study region (2,217 km2) to estimate LST, classify different land covers and calculate spectral indices. Results show that urban surface had highest LST (24.49 °C) and the lowest temperature was recorded in, forest, rubber and water bodies ( 20.69 to 21.02°C). Oil palm plantations showed intermediate mean LST values with 21.65 °C. We further investigated the relationship between vegetation and build up densities with temperature. We extracted 1000 collocated pure pixels of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Built-up Index (NDBI), Urban Index (UI) and LST in the study area. Results show a strong and significant negative correlation with (R2= -0.74 and -0.79) respectively between NDVI, NDWI and LST . Meanwhile a strong positive correlation (R2=0.8 and 0.86) exists between NDBI, UI and LST. These results show the importance of increasing green cover in urban environment to combat any adverse effects of climate change.

  8. Surface induced molecular dynamics of thin lipid films confined to submicron cavities: A 1H multiple-quantum NMR study

    NASA Astrophysics Data System (ADS)

    Jagadeesh, B.; Prabhakar, A.; Demco, D. E.; Buda, A.; Blümich, B.

    2005-03-01

    The dynamics and molecular order of thin lipid (lecithin) films confined to 200, 100 and 20 nm cylindrical pores with varying surface coverage, were investigated by 1H multiple-quantum NMR. The results show that the molecular dynamics in the surface controlled layers are less hindered compared to those in the bulk. Dynamic heterogeneity among terminal CH 3 groups is evident. Enhanced dynamic freedom is observed for films with area per molecule, ˜ 128 Å 2. The results are discussed in terms of changes in the lipid molecular organization with respect to surface concentration, its plausible motional modes and dynamic heterogeneity.

  9. Two-dimensional random surface model for asperity-contact in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Sidik, S. M.

    1979-01-01

    Relations for the asperity-contact time function during elastohydrodynamic lubrication of a ball bearing are presented. The analysis is based on a two-dimensional random surface model, and actual profile traces of the bearing surfaces are used as statistical sample records. The results of the analysis show that transition from 90 percent contact to 1 percent contact occurs within a dimensionless film thickness range of approximately four to five. This thickness ratio is several times large than reported in the literature where one-dimensional random surface models were used. It is shown that low pass filtering of the statistical records will bring agreement between the present results and those in the literature.

  10. The Cantor-Bendixson Rank of Certain Bridgeland-Smith Stability Conditions

    NASA Astrophysics Data System (ADS)

    Aulicino, David

    2018-01-01

    We provide a novel proof that the set of directions that admit a saddle connection on a meromorphic quadratic differential with at least one pole of order at least two is closed, which generalizes a result of Bridgeland and Smith, and Gaiotto, Moore, and Neitzke. Secondly, we show that this set has finite Cantor-Bendixson rank and give a tight bound. Finally, we present a family of surfaces realizing all possible Cantor-Bendixson ranks. The techniques in the proof of this result exclusively concern Abelian differentials on Riemann surfaces, also known as translation surfaces. The concept of a "slit translation surface" is introduced as the primary tool for studying meromorphic quadratic differentials with higher order poles.

  11. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization.

    PubMed

    Struzzi, Claudia; Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF 4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

  12. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

    PubMed Central

    Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions. PMID:28904833

  13. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Yilmaz, Turgut; Hines, William; Sun, Fu-Chang; Pletikosić, Ivo; Budnick, Joseph; Valla, Tonica; Sinkovic, Boris

    2017-06-01

    In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi2Se3 films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  14. Atomic force microscopy evaluation of aqueous interfaces of immobilized hyaluronan.

    PubMed

    Morra, Marco; Cassinelli, Clara; Pavesio, Alessandra; Renier, Davide

    2003-03-15

    Hyaluronan (HA) was immobilized on aminated glass surfaces in three different ways: by simple ionic interaction and by covalent linking at low density and at full density. In agreement with previous reports, in vitro experiments show that the outcome of fibroblast adhesion tests is markedly affected by the details of the coupling procedure, suggesting that different interfacial forces are operating at the aqueous/HA interface in the three cases investigated. The interfacial properties of the HA-coated surfaces were probed by force-distance curves obtained with the atomic force microscope (AFM). This approach readily shows significant differences among the tested samples, which are directly related to the coupling strategy and to results of cell adhesion tests. In particular, the range of interaction between the tip and the surface is much lower when HA is covalently linked than when it is ionically coupled, suggesting a more compact surface structure in the former case. Increasing HA surface density minimizes the interaction force between the surface and the AFM tip, likely reflecting more complete shielding by the HA chains of the underlying substrate. In summary, these measurements clearly show the different nature of the aqueous interfaces tested, and underline the role of this analytical approach in the development and control of finely tuned biomaterial surfaces.

  15. Surface modification of amorphous substrates by disulfide derivatives: A photo-assisted route to direct functionalization of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Amalric, Julien; Marchand-Brynaert, Jacqueline

    2011-12-01

    A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.

  16. Oxidation of anthracene using waste Mn oxide minerals: the importance of wetting and drying sequences.

    PubMed

    Clarke, Catherine; Tourney, Janette; Johnson, Karen

    2012-02-29

    PAHs are a common problem in contaminated urban soils due to their recalcitrance. This study presents results on the oxidation of anthracene on synthetic and natural Mn oxide surfaces. Evaporation of anthracene spiked Mn oxide slurries in air results in the oxidation of 30% of the anthracene to anthraquinone. Control minerals, quartz and calcite, also oxidised a small but significant proportion of the anthracene (4.5% and 14% conversion, respectively) when spiked mineral slurries were evaporated in air. However, only Mn oxide minerals showed significant anthracene oxidation (5-10%) when evaporation took place in the absence of oxygen (N2 atmosphere). In the fully hydrated systems where no drying took place, natural Mn oxides showed an increase in anthracene oxidation with decreasing pH, with a conversion of 75% anthracene at pH 4. These results show both acidification and drying favor the oxidation of anthracene on Mn oxide mineral surfaces. It has also been demonstrated that non-redox active mineral surfaces, such as calcite, may play a role in contaminant breakdown during wetting and drying sequences. Given that climate changes suggest that wetting and drying sequences are likely to become more significant these results have important implications for contaminated land remediation technologies. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Large-scale molecular dynamics simulations of TiN/TiN(001) epitaxial film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edström, Daniel, E-mail: daned@ifm.liu.se; Sangiovanni, Davide G.; Hultman, Lars

    2016-07-15

    Large-scale classical molecular dynamics simulations of epitaxial TiN/TiN(001) thin film growth at 1200 K are carried out using incident flux ratios N/Ti = 1, 2, and 4. The films are analyzed as a function of composition, island size distribution, island edge orientation, and vacancy formation. Results show that N/Ti = 1 films are globally understoichiometric with dispersed Ti-rich surface regions which serve as traps to nucleate 111-oriented islands, leading to local epitaxial breakdown. Films grown with N/Ti = 2 are approximately stoichiometric and the growth mode is closer to layer-by-layer, while N/Ti = 4 films are stoichiometric with N-rich surfaces. As N/Ti is increased from 1 to 4, islandmore » edges are increasingly polar, i.e., 110-oriented, and N-terminated to accommodate the excess N flux, some of which is lost by reflection of incident N atoms. N vacancies are produced in the surface layer during film deposition with N/Ti = 1 due to the formation and subsequent desorption of N{sub 2} molecules composed of a N adatom and a N surface atom, as well as itinerant Ti adatoms pulling up N surface atoms. The N vacancy concentration is significantly reduced as N/Ti is increased to 2; with N/Ti = 4, Ti vacancies dominate. Overall, our results show that an insufficient N/Ti ratio leads to surface roughening via nucleation of small dispersed 111 islands, whereas high N/Ti ratios result in surface roughening due to more rapid upper-layer nucleation and mound formation. The growth mode of N/Ti = 2 films, which have smoother surfaces, is closer to layer-by-layer.« less

  18. Effects of Atmospheric Water and Surface Wind on Passive Microwave Retrievals of Sea Ice Concentration: a Simulation Study

    NASA Astrophysics Data System (ADS)

    Shin, D.; Chiu, L. S.; Clemente-Colon, P.

    2006-05-01

    The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water, water vapor and surface wind on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor's field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric effects from cloud liquid water, water vapor and surface wind tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. This compensating effect reduces the retrieval uncertainties of total (FY and MY) ice concentration. Over marginal ice zones, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations in the normal ranges of these variables.

  19. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    PubMed Central

    2009-01-01

    Background Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. Methods Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. Results We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. Conclusion Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis. PMID:19527490

  20. Interface Trap Density Reduction for Al2O3/GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition.

    PubMed

    Zhernokletov, Dmitry M; Negara, Muhammad A; Long, Rathnait D; Aloni, Shaul; Nordlund, Dennis; McIntyre, Paul C

    2015-06-17

    We correlate interfacial defect state densities with the chemical composition of the Al2O3/GaN interface in metal-oxide-semiconductor (MOS) structures using synchrotron photoelectron emission spectroscopy (PES), cathodoluminescence and high-temperature capacitance-voltage measurements. The influence of the wet chemical pretreatments involving (1) HCl+HF etching or (2) NH4OH(aq) exposure prior to atomic layer deposition (ALD) of Al2O3 were investigated on n-type GaN (0001) substrates. Prior to ALD, PES analysis of the NH4OH(aq) treated surface shows a greater Ga2O3 component compared to either HCl+HF treated or as-received surfaces. The lowest surface concentration of oxygen species is detected on the acid etched surface, whereas the NH4OH treated sample reveals the lowest carbon surface concentration. Both surface pretreatments improve electrical characteristics of MOS capacitors compared to untreated samples by reducing the Al2O3/GaN interface state density. The lowest interfacial trap density at energies in the upper band gap is detected for samples pretreated with NH4OH. These results are consistent with cathodoluminescence data indicating that the NH4OH treated samples show the strongest band edge emission compared to as-received and acid etched samples. PES results indicate that the combination of reduced carbon contamination while maintaining a Ga2O3 interfacial layer by NH4OH(aq) exposure prior to ALD results in fewer interface traps after Al2O3 deposition on the GaN substrate.

  1. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  2. The role of surface chemistry in the cytotoxicity profile of graphene.

    PubMed

    Majeed, Waqar; Bourdo, Shawn; Petibone, Dayton M; Saini, Viney; Vang, Kieng Bao; Nima, Zeid A; Alghazali, Karrer M; Darrigues, Emilie; Ghosh, Anindya; Watanabe, Fumiya; Casciano, Daniel; Ali, Syed F; Biris, Alexandru S

    2017-04-01

    Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. A review of the different techniques for solid surface acid-base characterization.

    PubMed

    Sun, Chenhang; Berg, John C

    2003-09-18

    In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).

  4. Surface Curvatures Computation from Equidistance Contours

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromi T.; Kling, Olivier; Lee, Daniel T. L.

    1990-03-01

    The subject of our research is on the 3D shape representation problem for a special class of range image, one where the natural mode of the acquired range data is in the form of equidistance contours, as exemplified by a moire interferometry range system. In this paper we present a novel surface curvature computation scheme that directly computes the surface curvatures (the principal curvatures, Gaussian curvature and mean curvature) from the equidistance contours without any explicit computations or implicit estimates of partial derivatives. We show how the special nature of the equidistance contours, specifically, the dense information of the surface curves in the 2D contour plane, turns into an advantage for the computation of the surface curvatures. The approach is based on using simple geometric construction to obtain the normal sections and the normal curvatures. This method is general and can be extended to any dense range image data. We show in details how this computation is formulated and give an analysis on the error bounds of the computation steps showing that the method is stable. Computation results on real equidistance range contours are also shown.

  5. The dark side of gloss.

    PubMed

    Kim, Juno; Marlow, Phillip J; Anderson, Barton L

    2012-11-01

    Our visual system relies on the image structure generated by the interaction of light with objects to infer their material properties. One widely studied surface property is gloss, which can provide information that an object is smooth, shiny or wet. Studies have historically focused on the role of specular highlights in modulating perceived gloss. Here we show in human observers that glossy surfaces can generate both bright specular highlights and dark specular 'lowlights', and that the presence of either is sufficient to generate compelling percepts of gloss. We show that perceived gloss declines when the image structure generated by specular lowlights is blurred or misaligned with surrounding surface shading and that perceived gloss can arise from the presence of lowlights in surface regions isolated from highlights. These results suggest that the image structure generated by specular highlights and lowlights is used to construct our experience of surface gloss.

  6. Calculation of a solid/liquid surface tension: A methodological study

    NASA Astrophysics Data System (ADS)

    Dreher, T.; Lemarchand, C.; Soulard, L.; Bourasseau, E.; Malfreyt, P.; Pineau, N.

    2018-01-01

    The surface tension of a model solid/liquid interface constituted of a graphene sheet surrounded by liquid methane has been computed using molecular dynamics in the Kirkwood-Buff formalism. We show that contrary to the fluid/fluid case, the solid/liquid case can lead to different structurations of the first fluid layer, leading to significantly different values of surface tension. Therefore we present a statistical approach that consists in running a series of molecular simulations of similar systems with different initial conditions, leading to a distribution of surface tensions from which an average value and uncertainty can be extracted. Our results suggest that these distributions converge as the system size increases. Besides we show that surface tension is not particularly sensitive to the choice of the potential energy cutoff and that long-range corrections can be neglected contrary to what we observed in the liquid/vapour interfaces. We have not observed the previously reported commensurability effect.

  7. Protection of surface states in topological nanoparticles

    NASA Astrophysics Data System (ADS)

    Siroki, Gleb; Haynes, Peter D.; Lee, Derek K. K.; Giannini, Vincenzo

    2017-07-01

    Topological insulators host protected electronic states at their surface. These states show little sensitivity to disorder. For miniaturization one wants to exploit their robustness at the smallest sizes possible. This is also beneficial for optical applications and catalysis, which favor large surface-to-volume ratios. However, it is not known whether discrete states in particles share the protection of their continuous counterparts in large crystals. Here we study the protection of the states hosted by topological insulator nanoparticles. Using both analytical and tight-binding simulations, we show that the states benefit from the same level of protection as those on a planar surface. The results hold for many shapes and sustain surface roughness which may be useful in photonics, spectroscopy, and chemistry. They complement past studies of large crystals—at the other end of possible length scales. The protection of the nanoparticles suggests that samples of all intermediate sizes also possess protected states.

  8. The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.

  9. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  10. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    NASA Astrophysics Data System (ADS)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2014-03-01

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  11. Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding

    NASA Astrophysics Data System (ADS)

    Bush, Derek B.; Knotts, Thomas A.

    2017-04-01

    Antibody microarrays have the potential to revolutionize molecular detection for many applications, but their current use is limited by poor reliability, and efforts to change this have not yielded fruitful results. One difficulty which limits the rational engineering of next-generation devices is that little is known, at the molecular level, about the antibody-antigen binding process near solid surfaces. Atomic-level structural information is scant because typical experimental techniques (X-ray crystallography and NMR) cannot be used to image proteins bound to surfaces. To overcome this limitation, this study uses molecular simulation and an advanced, experimentally validated, coarse-grain, protein-surface model to compare fab-lysozyme binding in bulk solution and when the fab is tethered to hydrophobic and hydrophilic surfaces. The results show that the tether site in the fab, as well as the surface hydrophobicity, significantly impacts the binding process and suggests that the optimal design involves tethering fabs upright on a hydrophilic surface. The results offer an unprecedented, molecular-level picture of the binding process and give hope that the rational design of protein-microarrays is possible.

  12. Hydrogen peroxide on the surface of Europa

    USGS Publications Warehouse

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  13. Hydrogen peroxide on the surface of Europa.

    PubMed

    Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L

    1999-03-26

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  14. Parametric design and analysis on the landing gear of a planet lander using the response surface method

    NASA Astrophysics Data System (ADS)

    Zheng, Guang; Nie, Hong; Luo, Min; Chen, Jinbao; Man, Jianfeng; Chen, Chuanzhi; Lee, Heow Pueh

    2018-07-01

    The purpose of this paper is to obtain the design parameter-landing response relation for designing the configuration of the landing gear in a planet lander quickly. To achieve this, parametric studies on the landing gear are carried out using the response surface method (RSM), based on a single landing gear landing model validated by experimental results. According to the design of experiment (DOE) results of the landing model, the RS (response surface)-functions of the three crucial landing responses are obtained, and the sensitivity analysis (SA) of the corresponding parameters is performed. Also, two multi-objective optimizations designs on the landing gear are carried out. The analysis results show that the RS (response surface)-model performs well for the landing response design process, with a minimum fitting accuracy of 98.99%. The most sensitive parameters for the three landing response are the design size of the buffers, struts friction and the diameter of the bending beam. Moreover, the good agreement between the simulated model and RS-model results are obtained in two optimized designs, which show that the RS-model coupled with the FE (finite element)-method is an efficient method to obtain the design configuration of the landing gear.

  15. Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.

    2013-11-01

    In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.

  16. Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments.

    PubMed

    Lopes, Hélio P; Elias, Carlos N; Vieira, Márcia V B; Vieira, Victor T L; de Souza, Letícia Chaves; Dos Santos, Alexander Lopes

    2016-06-01

    The goal of the present study was to evaluate the influence of surface grooves (peaks and valleys) resulting from machining during the manufacturing process of polished and unpolished nickel-titanium BR4C endodontic files on the fatigue life of the instruments. Ten electropolished and 10 unpolished endodontic files were provided by the manufacturer. Specimens were from the same batch, but the unpolished instruments were removed from the production line before surface treatment. The instruments were evaluated with a profilometer to quantify the surface roughness on the working part of the instruments. Then the files were subjected to rotating bending fatigue tests. Analysis with the profilometer showed that surface grooves were deeper on the unpolished instruments compared with their electropolished counterparts. In the rotating bending fatigue test, the mean and standard deviation for the number of cycles until fracture (NCF) were greater for instruments with less pronounced grooves. Student t test revealed significant differences in all tests (P < .05). The results from the present study showed that the depth of the surface grooves on the working part affected the NCF of the instruments tested; the smaller the groove depth, the greater the NCF. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-12-06

    Control over bacterial attachment and proliferation onto nanofibrous materials constitutes a major challenge for a variety of applications, including filtration membranes, protective clothing, wound dressings, and tissue engineering scaffolds. To develop effective devices, the interactions that occur between bacteria and nanofibers with different morphological and physicochemical properties need to be investigated. This paper explores the influence of fiber surface chemistry on bacterial behavior. Different chemical functionalities were generated on the surface of electrospun polystyrene nanofibers through plasma polymerization of four monomers (acrylic acid, allylamine, 1,7-octadiene, and 1,8-cineole). The interactions of Escherichia coli with the surface modified fibers were investigated through a combination of scanning electron microscopy and confocal laser scanning microscopy. Fiber wettability, surface charge, and chemistry were found to affect the ability of bacterial cells to attach and proliferate throughout the nanofiber meshes. The highest proportion of viable cells attachment occurred on the hydrophilic amine rich coating, followed by the hydrophobic octadiene. The acrylic acid coating rich in carboxyl groups showed a significantly lower attraction of bacterial cells. The 1,8-cineole retained the antibacterial activity of the monomer, resulting with a high proportion of dead isolated cells attached onto the fibers. Results showed that the surface chemistry properties of nanofibrous membranes can be strategically tuned to control bacterial behavior.

  18. Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water

    DOE PAGES

    Pham, Tuan Anh; Lee, Donghwa; Schwegler, Eric; ...

    2014-11-17

    By combining ab initio molecular dynamics simulations and many-body perturbation theory calculations of electronic energy levels, we determined the band edge positions of functionalized Si(111) surfaces in the presence of liquid water, with respect to vacuum and to water redox potentials. We considered surface terminations commonly used for Si photoelectrodes in water splitting experiments. We found that, when exposed to water, the semiconductor band edges were shifted by approximately 0.5 eV in the case of hydrophobic surfaces, irrespective of the termination. The effect of the liquid on band edge positions of hydrophilic surfaces was much more significant and determined bymore » a complex combination of structural and electronic effects. These include structural rearrangements of the semiconductor surfaces in the presence of water, changes in the orientation of interfacial water molecules with respect to the bulk liquid, and charge transfer at the interfaces, between the solid and the liquid. Our results showed that the use of many-body perturbation theory is key to obtain results in agreement with experiments; they also showed that the use of simple computational schemes that neglect the detailed microscopic structure of the solid–liquid interface may lead to substantial errors in predicting the alignment between the solid band edges and water redox potentials.« less

  19. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts

    NASA Astrophysics Data System (ADS)

    Torres-García, E.; Canizal, G.; Velumani, S.; Ramírez-Verduzco, L. F.; Murrieta-Guevara, F.; Ascencio, J. A.

    2004-12-01

    Oil refinery related catalysis, particularly hydro desulfurization is viewed as a mature technology, but still we view that more efforts have to be made to boost the efficiency of the existing catalysts. So in this article we report the use of WOx/ZrO2 catalysts for the oxidation of dibenzothiophene (DBT) as a more effective material in nanometer scales. The WOx/ZrO2 samples were prepared by solid impregnation of ZrO2-x(OH)2x with ammonium metatungstate solution maintaining the pH at 10. Detailed structural and surface morphological analyses were carried out using Raman spectroscopy and Atomic force microscopy. In order to understand the catalytic activity which is largely influenced by the surface morphology, an interpretation based on the experimental results is given. The results showed an important correlation between the catalytic efficiency with the morphology of the surface which is identified as arrays of planes with steps of around 10 nm with the structures showing faceting with a preferential angle of 90°. It was established that when the number of W atoms in the surface increase the catalytic efficiency also increases. Thus we conclude that the material efficiency as a catalyst is directly related with the surface structure.

  20. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  1. An in vivo study of the effect of a 38 percent hydrogen peroxide in-office whitening agent on enamel.

    PubMed

    Cadenaro, Milena; Navarra, Chiara Ottavia; Mazzoni, Annalisa; Nucci, Cesare; Matis, Bruce A; Di Lenarda, Roberto; Breschi, Lorenzo

    2010-04-01

    In an in vivo study, the authors tested the hypothesis that no difference in enamel surface roughness is detectable either during or after bleaching with a high-concentration in-office whitening agent. The authors performed profilometric and scanning electron microscopic (SEM) analyses of epoxy resin replicas of the upper right incisors of 20 participants at baseline (control) and after each bleaching treatment with a 38 percent hydrogen peroxide whitening agent, applied four times, at one-week intervals. The authors used analysis of variance for repeated measures to analyze the data statistically. The profilometric analysis of the enamel surface replicas after the in vivo bleaching protocol showed no significant difference in surface roughness parameters (P > .05) compared with those at baseline, irrespective of the time interval. Results of the correlated SEM analysis showed no relevant alteration on the enamel surface. Results of this in vivo study support the tested hypothesis that the application of a 38 percent hydrogen peroxide in-office whitening agent does not alter enamel surface roughness, even after multiple applications. The use of a 38 percent hydrogen peroxide in-office whitening agent induced no roughness alterations of the enamel surface, even after prolonged and repeated applications.

  2. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation.

    PubMed

    Yang, Yang; Li, Xiangjia; Zheng, Xuan; Chen, Zeyu; Zhou, Qifa; Chen, Yong

    2018-03-01

    Biomimetic functional surfaces are attracting increasing attention for various technological applications, especially the superhydrophobic surfaces inspired by plant leaves. However, the replication of the complex hierarchical microstructures is limited by the traditional fabrication techniques. In this paper, superhydrophobic micro-scale artificial hairs with eggbeater heads inspired by Salvinia molesta leaf was fabricated by the Immersed surface accumulation three dimensional (3D) printing process. Multi-walled carbon nanotubes were added to the photocurable resins to enhance the surface roughness and mechanical strength of the microstructures. The 3D printed eggbeater surface reveals interesting properties in terms of superhydrophobilicity and petal effect. The results show that a hydrophilic material can macroscopically behave as hydrophobic if a surface has proper microstructured features. The controllable adhesive force (from 23 μN to 55 μN) can be easily tuned with different number of eggbeater arms for potential applications such as micro hand for droplet manipulation. Furthermore, a new energy-efficient oil/water separation solution based on our biomimetic structures was demonstrated. The results show that the 3D-printed eggbeater structure could have numerous applications, including water droplet manipulation, 3D cell culture, micro reactor, oil spill clean-up, and oil/water separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  4. Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.

    PubMed

    Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung

    2017-04-12

    The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.

  5. The Estimation of Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Miller, David O.; Schwemmer, Geary

    2000-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method uses aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement with an rms error and bias of about 50 and 25 W per square meters, respectively. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  6. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction

    PubMed Central

    Brennan, Joseph C; Geraldi, Nicasio R; Morris, Robert H; Fairhurst, David J; McHale, Glen; Newton, Michael I

    2015-01-01

    In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500. PMID:25975704

  7. Super-Resolution Imaging by Arrays of High-Index Spheres Embedded in Transparent Matrices

    DTIC Science & Technology

    2014-06-25

    microsphere-assisted imaging. Roles of surface excitations, plasmons, polaritons and Tamm-states, as well as the role of nanoscale gap separating the object...nanometric gap between the object and spheres and the role of surface polariton -plasmons in the metallic nanostructures. Our results, however, show that

  8. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology

    USDA-ARS?s Scientific Manuscript database

    Streptococcus thermophilus normally exhibits different survival rates in different bacteria medium during freeze-drying. In this study, response surface methodology (RSM) was applied on the design of experiments for optimizing the cryoprotective medium. Results showed that the most significant facto...

  9. Singular perturbation of smoothly evolving Hele-Shaw solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, M.; Tanveer, S.

    1996-01-01

    We present analytical scaling results, confirmed by accurate numerics, to show that there exists a class of smoothly evolving zero surface tension solutions to the Hele-Shaw problem that are significantly perturbed by an arbitrarily small amount of surface tension in order one time. {copyright} {ital 1996 The American Physical Society.}

  10. Exploring the work function variability and structural stability of VO2(1 1 0) surface upon noble metal (Ag, Au, Pt) adsorption and incorporation

    NASA Astrophysics Data System (ADS)

    Chen, Lanli; Cui, Yuanyuan; Shi, Siqi; Luo, Hongjie; Gao, Yanfeng

    2018-08-01

    Vanadium dioxide (VO2) has attracted great attention, with scientific and technological advances over the past few decades due to its reversible metal-insulator transition at 340 K. However, the high phase transition temperature (Tc) of VO2 limits its practical applications. Our first-principles calculations show that VO2(1 1 0) surfaces with adsorbed noble metals (Ag, Au, Pt) exhibit a lower work function compared with the clean surface and further induces a lower Tc due to charge transfer from the noble metals to the VO2(1 1 0) surface. However, the work functions of the VO2(1 1 0) surfaces after the incorporation of noble metals are higher than that of the clean surface. In addition, the results of formation energies of various configurations show that the VO2(1 1 0) surface with the adsorption and incorporation of Ag is energetically more favorable than those with Au and Pt. Therefore, it may be concluded that the adsorption and incorporation of noble metals can not only tailor the work function of VO2, in turn realizing the rational tuning of Tc of VO2, but also stabilize the structures of VO2 thin films. These results provide guidance for further exploration of VO2-based optical switching devices and smart windows.

  11. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  12. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.

    PubMed

    Chen, Mingjun; Liu, Henan; Cheng, Jian; Yu, Bo; Fang, Zhen

    2017-07-01

    In order to achieve the deterministic finishing of optical components with concave surfaces of a curvature radius less than 10 mm, a novel magnetorheological finishing (MRF) process using a small ball-end permanent-magnet polishing head with a diameter of 4 mm is introduced. The characteristics of material removal in the proposed MRF process are studied. The model of the material removal function for the proposed MRF process is established based on the three-dimensional hydrodynamics analysis and Preston's equation. The shear stress on the workpiece surface is calculated by means of resolving the presented mathematical model using a numerical solution method. The analysis result reveals that the material removal in the proposed MRF process shows a positive dependence on shear stress. Experimental research is conducted to investigate the effect of processing parameters on the material removal rate and improve the surface accuracy of a typical rotational symmetrical optical component. The experimental results show that the surface accuracy of the finished component of K9 glass material has been improved to 0.14 μm (PV) from the initial 0.8 μm (PV), and the finished surface roughness Ra is 0.0024 μm. It indicates that the proposed MRF process can be used to achieve the deterministic removal of surface material and perform the nanofinishing of small curvature radius concave surfaces.

  13. The global distribution of Martian permafrost

    NASA Technical Reports Server (NTRS)

    Paige, David A.

    1991-01-01

    Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.

  14. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key factors to consider in order to satisfy the degradation requirements for next-generation biodegradable implants and devices. PMID:23799028

  15. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    NASA Astrophysics Data System (ADS)

    Vets, Robert

    An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant to the class of fixed wing, Tier-1, Unmanned Aerial Vehicles (UAV).

  16. Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process

    NASA Astrophysics Data System (ADS)

    Li, Jie; Li, Cheng-Xin; Chen, Qing-Yu; Gao, Jiu-Tao; Wang, Jun; Yang, Guan-Jun; Li, Chang-Jiu

    2017-02-01

    Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.

  17. Rapid fabrication of a silicon modification layer on silicon carbide substrate.

    PubMed

    Bai, Yang; Li, Longxiang; Xue, Donglin; Zhang, Xuejun

    2016-08-01

    We develop a kind of magnetorheological (MR) polishing fluid for the fabrication of a silicon modification layer on a silicon carbide substrate based on chemical theory and actual polishing requirements. The effect of abrasive concentration in MR polishing fluid on material removal rate and removal function shape is investigated. We conclude that material removal rate will increase and tends to peak value as the abrasive concentration increases to 0.3 vol. %, and the removal function profile will become steep, which is a disadvantage to surface frequency error removal at the same time. The removal function stability is also studied and the results show that the prepared MR polishing fluid can satisfy actual fabrication requirements. An aspheric reflective mirror of silicon carbide modified by silicon is well polished by combining magnetorheological finishing (MRF) using two types of MR polishing fluid and computer controlled optical surfacing (CCOS) processes. The surface accuracy root mean square (RMS) is improved from 0.087λ(λ=632.8  nm) initially to 0.020λ(λ=632.8  nm) in 5.5 h total and the tool marks resulting from MRF are negligible. The PSD analysis results also shows that the final surface is uniformly polished.

  18. Research of polishing process to control the iron contamination on the magnetorheological finished KDP crystal surface.

    PubMed

    Chen, Shaoshan; Li, Shengyi; Peng, Xiaoqiang; Hu, Hao; Tie, Guipeng

    2015-02-20

    A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing a KDP crystal. MRF polishing is easy to result in the embedding of carbonyl iron (CI) powders; meanwhile, Fe contamination on the KDP crystal surface will affect the laser induced damage threshold seriously. This paper puts forward an appropriate MRF polishing process to avoid the embedding. Polishing results show that the embedding of CI powders can be avoided by controlling the polishing parameters. Furthermore, on the KDP crystal surface, magnetorheological fluids residua inevitably exist after polishing and in which the Fe contamination cannot be removed completely by initial ultrasonic cleaning. To solve this problem, a kind of ion beam figuring (IBF) polishing is introduced to remove the impurity layer. Then the content of Fe element contamination and the depth of impurity elements are measured by time of flight secondary ion mass spectrometry. The measurement results show that there are no CI powders embedding in the MRF polished surface and no Fe contamination after the IBF polishing process, respectively. That verifies the feasibility of MRF polishing-IBF polishing (cleaning) for processing a KDP crystal.

  19. Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences

    NASA Astrophysics Data System (ADS)

    Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki

    The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.

  20. A monitoring of chemical contaminants in waters used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool.

    PubMed

    De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo

    2014-03-01

    In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.

Top