NASA Astrophysics Data System (ADS)
Feng, Yongliang; Chen, Yanzhen; Wang, Jing; Gong, Yufeng; Liu, Xigang; Mu, Gang; Tian, Hua
2016-11-01
At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological eff ects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals (As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refine ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index (PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single eff ects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefly, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved significantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.
Risk-Assessment for Equipment Operating on the Lunar Surface
NASA Technical Reports Server (NTRS)
Richmond, R. C.; Kusiak, A.; Ramachandran, N.
2008-01-01
Particle-size distribution of lunar dust simulant is evaluated using scanning electron spectroscopy in order to consider approaches to evaluating risk to individual mechanical components operating on the lunar surface. Assessing component risk and risk-mitigation during actual operations will require noninvasive continuous data gathering on numerous parameters. Those data sets would best be evaluated using data-mining algorithms to assess risk, and recovery from risk, of individual mechanical components in real-time.
Assessment of the risks associated with the use of carbon fibers in surface transportation
DOT National Transportation Integrated Search
1980-06-01
This report presents the results of an assessment of the potential risks associated with the use of carbon-fiber composites in the surface transportation system and the development of a data base on the vulnerability of the surface transportation sys...
Chaudhry, Rabia M; Hamilton, Kerry A; Haas, Charles N; Nelson, Kara L
2017-06-13
Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium , and Salmonella . Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10 -4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10 -4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.
Chaudhry, Rabia M.; Hamilton, Kerry A.; Haas, Charles N.; Nelson, Kara L.
2017-01-01
Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0–100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0–100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10−4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10−4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR. PMID:28608808
Pressure ulcer risk assessment and prevention: a systematic comparative effectiveness review.
Chou, Roger; Dana, Tracy; Bougatsos, Christina; Blazina, Ian; Starmer, Amy J; Reitel, Katie; Buckley, David I
2013-07-02
Pressure ulcers are associated with substantial health burdens but may be preventable. To review the clinical utility of pressure ulcer risk assessment instruments and the comparative effectiveness of preventive interventions in persons at higher risk. MEDLINE (1946 through November 2012), CINAHL, the Cochrane Library, grant databases, clinical trial registries, and reference lists. Randomized trials and observational studies on effects of using risk assessment on clinical outcomes and randomized trials of preventive interventions on clinical outcomes. Multiple investigators abstracted and checked study details and quality using predefined criteria. One good-quality trial found no evidence that use of a pressure ulcer risk assessment instrument, with or without a protocolized intervention strategy based on assessed risk, reduces risk for incident pressure ulcers compared with less standardized risk assessment based on nurses' clinical judgment. In higher-risk populations, 1 good-quality and 4 fair-quality randomized trials found that more advanced static support surfaces were associated with lower risk for pressure ulcers compared with standard mattresses (relative risk range, 0.20 to 0.60). Evidence on the effectiveness of low-air-loss and alternating-air mattresses was limited, with some trials showing no clear differences from advanced static support surfaces. Evidence on the effectiveness of nutritional supplementation, repositioning, and skin care interventions versus usual care was limited and had methodological shortcomings, precluding strong conclusions. Only English-language articles were included, publication bias could not be formally assessed, and most studies had methodological shortcomings. More advanced static support surfaces are more effective than standard mattresses for preventing ulcers in higher-risk populations. The effectiveness of formal risk assessment instruments and associated intervention protocols compared with less standardized assessment methods and the effectiveness of other preventive interventions compared with usual care have not been clearly established.
NASA Astrophysics Data System (ADS)
Matuszewska, Ewa; Orwat, Justyna
2016-06-01
In this article were shown the identification of threats and the assessment of occupational risk for the surface surveyor by using the Five Steps method and taking into account the health state of workers.
Risk Assessment of Carbon Fiber Composite in Surface Transportation
NASA Technical Reports Server (NTRS)
Hathaway, W. T.; Hergenrother, K. M.
1980-01-01
The vulnerability of surface transportation to airborne carbon fibers and the national risk associated with the potential use of carbon fibers in the surface transportation system were evaluated. Results show airborne carbon fibers may cause failure rates in surface transportation of less than one per year by 1995. The national risk resulting from the use of carbon fibers in the surface transportation system is discussed.
An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters
Straub, Jürg Oliver
2013-01-01
An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured environmental concentrations (MECs) from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs) were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC) and risk graphs, there is no significant risk to surface waters. PMID:27029296
Pesticide authorization in the EU-environment unprotected?
Stehle, Sebastian; Schulz, Ralf
2015-12-01
Pesticides constitute an integral part of high-intensity European agriculture. Prior to their authorization, a highly elaborated environmental risk assessment is mandatory according to EU pesticide legislation, i.e., Regulation (EC) No. 1107/2009. However, no field data-based evaluation of the risk assessment outcome, i.e., the regulatory acceptable concentrations (RACs), and therefore of the overall protectiveness of EU pesticide regulations exists. We conducted here a comprehensive meta-analysis using peer-reviewed literature on agricultural insecticide concentrations in EU surface waters and evaluated associated risks using the RACs derived from official European pesticide registration documents. As a result, 44.7 % of the 1566 cases of measured insecticide concentrations (MICs) in EU surface waters exceeded their respective RACs. It follows that current EU pesticide regulations do not protect the aquatic environment and that insecticides threaten aquatic biodiversity. RAC exceedances were significantly higher for insecticides authorized using conservative tier-I RACs and for more recently developed insecticide classes, i.e., pyrethroids. In addition, we identified higher risks, e.g., for smaller surface waters that are specifically considered in the regulatory risk assessment schemes. We illustrate the shortcomings of the EU regulatory risk assessment using two case studies that contextualize the respective risk assessment outcomes to field exposure. Overall, our meta-analysis challenges the field relevance and protectiveness of the regulatory environmental risk assessment conducted for pesticide authorization in the EU and indicates that critical revisions of related pesticide regulations and effective mitigation measures are urgently needed to substantially reduce the environmental risks arising from agricultural insecticide use.
Risk assessing study for Bio-CCS technology
NASA Astrophysics Data System (ADS)
Tanaka, A.; Sakamoto, Y.; Kano, Y.; Higashino, H.; Suzumura, M.; Tosha, T.; Nakao, S.; Komai, T.
2013-12-01
We have started a new R&D project titled 'Energy resources creation by geo-microbes and CCS'. It is new concept of a technology which cultivate methanogenic geo-microbes in reservoirs of geological CCS conditions to produce methane gas effectively and safely. As one of feasibility studies, we are evaluating risks around its new Bio-CCS technology. Our consideration involves risk scenarios about Bio-CCS in geological strata, marine environment, surface facilities, ambient air and injection sites. To cover risk scenarios in these areas, we are carrying out a sub-project with five sub-themes. Four sub-themes out of five are researches for identifying risk scenarios: A) Underground strata and injection well, B) Ambient air, C) Surface facilities and D) Seabed. We are developing risk assessment tool,named GERAS-CO2GS (Geo-environmental Risk Assessment System,CO2 Geological Storage Risk Assessment System. We are going to combine identified risk scenarios into GERAS-CO2GS accordingly. It is expected that new GERAS-CO2GS will contribute to risk assessment and management for not only Bio-CCS but also individual injection sites, and facilitate under standing of risks among legislators and concerned peoples around injection site.
Cai, Yi-min; Chen, Wei-ping; Peng, Chi; Wang, Tie-yu; Xiao, Rong-bo
2016-05-15
Environmental quality of soils and sediments around water source area can influence the safety of potable water of rivers. In order to study the pollution characteristics, the sources and ecological risks of heavy metals Zn, Cr, Pb, Cu, Ni and Cd in water source area, surface soils around the waterway and sediments in the estuary of main tributaries were collected in Shunde, and ecological risks of heavy metals were assessed by two methods of potential ecological risk assessment. The mean contents of Zn, Cr, Pb, Cu, Ni and Cd in the surface soils were 186.80, 65.88, 54.56, 32.47, 22.65 and 0.86 mg · kg⁻¹ respectively, and they were higher than their soil background values except those of Cu and Ni. The mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in the sediments were 312.11, 111.41, 97.87, 92.32, 29.89 and 1.72 mg · kg⁻¹ respectively, and they were higher than their soil background values except that of Ni. The results of principal component analysis illustrated that the main source of Cr and Ni in soils was soil parent materials, and Zn, Pb, Cu and Cd in soils mainly came from wastewater discharge of local manufacturing industry. The six heavy metals in sediments mainly originated from industry emissions around the Shunde waterway. The results of potential ecological risk assessment integrating environmental bioavailability of heavy metals showed that Zn, Cu, Pb and Ni had a slight potential ecological risk. Cd had a slight potential ecological risk in surface soils, but a moderate potential ecological risk in surfaces sediments. Because the potential ecological risk assessment integrating environmental bioavailability of heavy metals took the soil properties and heavy metal forms into account, its results of risks were lower than those of Hakanson methods, and it could avoid overestimating the potential risks of heavy metals.
Skinner, Daniel J C; Rocks, Sophie A; Pollard, Simon J T
2016-12-01
A reliable characterisation of uncertainties can aid uncertainty identification during environmental risk assessments (ERAs). However, typologies can be implemented inconsistently, causing uncertainties to go unidentified. We present an approach based on nine structured elicitations, in which subject-matter experts, for pesticide risks to surface water organisms, validate and assess three dimensions of uncertainty: its level (the severity of uncertainty, ranging from determinism to ignorance); nature (whether the uncertainty is epistemic or aleatory); and location (the data source or area in which the uncertainty arises). Risk characterisation contains the highest median levels of uncertainty, associated with estimating, aggregating and evaluating the magnitude of risks. Regarding the locations in which uncertainty is manifest, data uncertainty is dominant in problem formulation, exposure assessment and effects assessment. The comprehensive description of uncertainty described will enable risk analysts to prioritise the required phases, groups of tasks, or individual tasks within a risk analysis according to the highest levels of uncertainty, the potential for uncertainty to be reduced or quantified, or the types of location-based uncertainty, thus aiding uncertainty prioritisation during environmental risk assessments. In turn, it is expected to inform investment in uncertainty reduction or targeted risk management action. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Our trial to develop a risk assessment tool for CO2 geological storage (GERAS-CO2GS)
NASA Astrophysics Data System (ADS)
Tanaka, A.; Sakamoto, Y.; Komai, T.
2012-12-01
We will introduce our researches about to develop a risk assessment tool named 'GERAS-CO2GS' (Geo-environmental Risk Assessment System, CO2 Geological Storage Risk Assessment System) for 'Carbon Dioxide Geological Storage (Geological CCS)'. It aims to facilitate understanding of size of impact of risks related with upper migration of injected CO2. For gaining public recognition about feasibility of Geological CCS, quantitative estimation of risks is essential, to let public knows the level of the risk: whether it is negligible or not. Generally, in preliminary hazard analysis procedure, potential hazards could be identified within Geological CCS's various facilities such as: reservoir, cap rock, upper layers, CO2 injection well, CO2 injection plant and CO2 transport facilities. Among them, hazard of leakage of injected C02 is crucial, because it is the clue to estimate risks around a specific injection plan in terms of safety, environmental protection effect and economy. Our risk assessment tool named GERAS-CO2GS evaluates volume and rate of retention and leakage of injected CO2 in relation with fractures and/or faults, and then it estimates impact of seepages on the surface of the earth. GERAS-CO2GS has four major processing segments: (a) calculation of CO2 retention and leakage volume and rate, (b) data processing of CO2 dispersion on the surface and ambient air, (c) risk data definition and (d) evaluation of risk. Concerning to the injection site, we defined a model, which is consisted from an injection well and a geological strata model: which involves a reservoir, a cap rock, an upper layer, faults, seabed, sea, the surface of the earth and the surface of the sea. For retention rate of each element of CO2 injection site model, we use results of our experimental and numerical studies on CO2 migration within reservoirs and faults with specific lithological conditions. For given CO2 injection rate, GERAS-CO2GS calculates CO2 retention and leakage of each segment of injection site model. It also evaluates dispersion of CO2 on the surface of the earth and ambient air, and displays evaluated risk level on Goole earth contour of risk levels with color classification. As regard with numerical estimation of CO2's surface dispersion, we use ADMER 2.5 (Atmospheric Dispersion Model for Exposure and Risk Assessment, AIST), which assesses ambient dispersion of materials using real observed atmospheric data such as wind direction and temperatures by meteorological observatory. As far as our simulations, it is obvious that cause of Lake Nyos type accident is owes its maar topography of the lake and the volume and duration of the CO2 outburst (about 1 km3). It's unlikely to cause similar happenings in geological CCS site, because there are significant difference amount of CO2 and topography. At this moment, GERAS-CO2GS is prototype system. We are going to extend GERAS-CO2GS functions and evaluate risks of further risk scenarios. Concerning to the route of seabed to sea and the surface of the sea, we hope to implement outer research findings into our logics. In the course of further research, we are going to develop GERAS-CO2GS will be able to estimate broader risks, and to contribute to the efforts for legislations and standards of CO2 Geological storage.
Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C
1999-01-01
A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions.
U.S. EPA Superfund Program's Policy for Risk and Dose Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Stuart
2008-01-15
The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) has primary responsibility for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on risk and dose assessment policies and tools for addressing radioactively contaminated sites by the Superfund program. EPA has almost completedmore » two risk assessment tools that are particularly relevant to decommissioning activities conducted under CERCLA authority. These are the: 1. Building Preliminary Remediation Goals for Radionuclides (BPRG) electronic calculator, and 2. Radionuclide Outdoor Surfaces Preliminary Remediation Goals (SPRG) electronic calculator. EPA developed the BPRG calculator to help standardize the evaluation and cleanup of radiologically contaminated buildings at which risk is being assessed for occupancy. BPRGs are radionuclide concentrations in dust, air and building materials that correspond to a specified level of human cancer risk. The intent of SPRG calculator is to address hard outside surfaces such as building slabs, outside building walls, sidewalks and roads. SPRGs are radionuclide concentrations in dust and hard outside surface materials. EPA is also developing the 'Radionuclide Ecological Benchmark' calculator. This calculator provides biota concentration guides (BCGs), also known as ecological screening benchmarks, for use in ecological risk assessments at CERCLA sites. This calculator is intended to develop ecological benchmarks as part of the EPA guidance 'Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments'. The calculator develops ecological benchmarks for ionizing radiation based on cell death only.« less
Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C
1999-01-01
A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions. Images Figure 1 Figure 2 Figure 3 PMID:9872714
SIMULATING INTEGRATED MULTIMEDIA CHEMICAL FATE AND TRANSPORT FOR NATIONAL RISK ASSESSMENTS
The site-based multimedia, multipathway and multireceptor risk assessment (3MRA) approach is comprised of source, fate and transport, exposure and risk modules. The main interconnected multimedia fate and transport modules are: watershed, air, surface water, vadose zone and sat...
Penningroth, Stephen M; Yarrow, Matthew M; Figueroa, Abner X; Bowen, Rebecca J; Delgado, Soraya
2013-01-01
The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking.
Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.
Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger
2014-01-01
This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.
Evaluation of Environmental Risk Due to Metro System Construction in Jinan, China
Wang, Guo-Fu; Lyu, Hai-Min; Lu, Lin-Hai; Li, Gang; Arulrajah, Arul
2017-01-01
Jinan is a famous spring city in China. Construction of underground metro system may block groundwater seepage, inducing the depletion risk of springs. This paper presents an assessment of the risk due to metro line construction to groundwater in Jinan City using Analytic Hierarchy Process (AHP) and Geographic International System (GIS). Based on the characteristics of hydrogeology and engineering geology, the assessment model is established from the perspectives of surface index and underground index. The assessment results show that the high and very high risk levels of surface index exceed 98% in the north region; and high and very high risk levels of underground index exceed 56% in urban center and southern region. The assessment result also shows that about 14% of the urban area belongs to very high risk level; regions of high risk are 20% in urban area, 9% in Changqing County and 43% in Pingyin County. In the high risk region, metro lines R1 to R3, which are under construction, and metro lines L1 to L5, which are planned, have very high and high risk. Therefore, risk control measures are proposed to protect the groundwater seepage path to spring. PMID:28946709
Evaluation of Environmental Risk Due to Metro System Construction in Jinan, China.
Wang, Guo-Fu; Lyu, Hai-Min; Shen, Jack Shuilong; Lu, Lin-Hai; Li, Gang; Arulrajah, Arul
2017-09-25
Jinan is a famous spring city in China. Construction of underground metro system may block groundwater seepage, inducing the depletion risk of springs. This paper presents an assessment of the risk due to metro line construction to groundwater in Jinan City using Analytic Hierarchy Process (AHP) and Geographic International System (GIS). Based on the characteristics of hydrogeology and engineering geology, the assessment model is established from the perspectives of surface index and underground index. The assessment results show that the high and very high risk levels of surface index exceed 98% in the north region; and high and very high risk levels of underground index exceed 56% in urban center and southern region. The assessment result also shows that about 14% of the urban area belongs to very high risk level; regions of high risk are 20% in urban area, 9% in Changqing County and 43% in Pingyin County. In the high risk region, metro lines R1 to R3, which are under construction, and metro lines L1 to L5, which are planned, have very high and high risk. Therefore, risk control measures are proposed to protect the groundwater seepage path to spring.
The role of integrative, whole organism testing in monitoring applications: Back to the future
The biological effects of chemicals released to surface waters continue to be an area of uncertainty in risk assessment and risk management. Based on conventional risk assessment considerations, adequate exposure and effects information are required to reach a scientifically soun...
Frequent Questions about the Delisting Risk Assessment Software (DRAS)
Frequent technical questions such Surface Impoundment Requires Corrections, How Do I Assess Toxicity Characteristic Leaching Procedure (TCLP) or Leachability in a Liquid Waste Sample?, Aggregate Hazard Index and Cancer Risk Output Table Correction.
A method for examining temporal changes in cyanobacterial ...
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here
Zhang, Daolai; Liu, Jinqing; Jiang, Xuejun; Cao, Ke; Yin, Ping; Zhang, Xunhua
2016-01-15
The distribution, sources and risk assessment of 16 polycyclic aromatic hydrocarbons (PAHs) of surface sediments in the Luan River Estuary, China, have been investigated in the research. The results indicated that the total concentrations of 16 PAHs in surface sediments of the Luan River Estuary ranged from 5.1 to 545.1 ng g(-1)dw with a mean value of 120.8 ng g(-1)dw, which is relatively low in comparison with other estuaries around the world. The PAHs in the study area were mainly originated from pyrogenic sources. Besides, PAHs may be contaminated by petrogenic PAHs as indicated by the selected ratios of PAHs, the 2-tailed Pearson correlation analysis and principal components analysis at different sites. The result of the ecological risk assessment shows little negative effect for most individual PAHs in surface sediments of the Luan River Estuary, China. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lunar Surface Habitat Configuration Assessment: Methodology and Observations
NASA Technical Reports Server (NTRS)
Carpenter, Amanda
2008-01-01
The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.
Razmus, Ivy; Bergquist-Beringer, Sandra
2017-01-01
Little is known about pressure ulcer prevention practice among pediatric patients. To describe the frequency of pressure ulcer risk assessment in pediatric patients and pressure ulcer prevention intervention use overall and by hospital unit type, a descriptive secondary analysis was performed of data submitted to the National Database for Nursing Quality Indicators® (NDNQI®) for at least 3 of the 4 quarters in 2012. Relevant data on pressure ulcer risk from 271 hospitals across the United States extracted from the NDNQI database included patient skin and pressure ulcer risk assessment on admission, time since the last pressure ulcer risk assessment, method used to assess pressure ulcer risk, and risk status. Extracted data on pressure ulcer prevention included skin assessment, pressure-redistribution surface use, routine repositioning, nutritional support, and moisture management. These data were organized by unit type and merged with data on hospital characteristics for the analysis. The sample included 39 984 patients ages 1 day to 18 years on 678 pediatric acute care units (general pediatrics, pediatric critical care units, neonatal intensive care units, pediatric step-down units, and pediatric rehabilitation units). Descriptive statistics were used to analyze study data. Most of the pediatric patients (33 644; 89.2%) were assessed for pressure ulcer risk within 24 hours of admission. The Braden Q Scale was frequently used to assess risk on general pediatrics units (75.4%), pediatric step-down units (85.5%), pediatric critical care units (81.3%), and pediatric rehabilitation units (56.1%). In the neonatal intensive care units, another scale or method was used more often (55% to 60%) to assess pressure ulcer risk. Of the 11 203 pediatric patients (39%) determined to be at risk for pressure ulcers, the majority (10 741, 95.8%) received some kind of pressure ulcer prevention intervention during the 24 hours preceding the NDNQI pressure ulcer survey. The frequency of prevention intervention use among those at risk ranged from 99.2% for skin assessment to 70.7% for redistribution surface use. Most pediatric patients are being assessed for pressure ulcer risk, but the implementation of interventions to prevent pressure ulcers among children needs to be improved. Future qualitative research should be conducted to determine how and when clinical judgment is used to assess pressure ulcer risk and the type of pressure-redistribution surfaces used among younger pediatric patients.
Praveena, Sarva Mangala; Shaifuddin, Siti Norashikin Mohamad; Sukiman, Syazwani; Nasir, Fauzan Adzima Mohd; Hanafi, Zanjabila; Kamarudin, Norizah; Ismail, Tengku Hanidza Tengku; Aris, Ahmad Zaharin
2018-06-11
This study investigated the occurrence of nine pharmaceuticals (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and to evaluate potential risks (human health and ecotoxicological) in Lui, Gombak and Selangor (Malaysia) rivers using commercial competitive Enzyme-Linked Immunosorbent Assay (ELISA) kit assays. Physicochemical properties of these rivers showed the surface samples belong to Class II of Malaysian National Water Quality Standards which requires conventional treatment before consumption. All the pharmaceuticals were detected in all three rivers except for triclosan, dexamethasone and diclofenac which were not detected in few of sampling locations in these three rivers. Highest pharmaceutical concentrations were detected in Gombak river in line of being as one of the most polluted rivers in Malaysia. Ciprofloxacin concentrations were detected in all the sampling locations with the highest at 299.88 ng/L. While triclosan, dexamethasone and diclofenac concentrations were not detected in a few of sampling locations in these three rivers. All these nine pharmaceuticals were within the levels reported previously in literature. Pharmaceutical production, wastewater treatment technologies and treated sewage effluent were found as the potential sources which can be related with pharmaceuticals occurrence in surface water samples. Potential human risk assessment showed low health risk except for ciprofloxacin and dexamethasone. Instead, ecotoxicological risk assessment indicated moderate risks were present for these rivers. Nevertheless, results confirmation using instrumental techniques is needed for higher degree of specificity. It is crucial to continuously monitor the surface water bodies for pharmaceuticals using a cost-effective prioritisation approach to assess sensitive sub-populations risk. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of triclosan in Minnesota lakes and rivers: Part I - ecological risk assessment.
Lyndall, Jennifer; Barber, Timothy; Mahaney, Wendy; Bock, Michael; Capdevielle, Marie
2017-08-01
Triclosan, an antimicrobial compound found in consumer products, may be introduced into the aquatic environment via residual concentrations in municipal wastewater treatment effluent. We conducted an aquatic risk assessment that incorporated the available measured triclosan data from Minnesota lakes and rivers. Although only data reported from Minnesota were considered in the risk assessment, the developed toxicity benchmarks can be applied to other environments. The data were evaluated using a series of environmental fate models to ensure the data were internally consistent and to fill any data gaps. Triclosan was not detected in over 75% of the 567 surface water and sediment samples. Measured environmental data were used to model the predicted environmental exposures to triclosan in surface water, surface sediment, and biota tissues. Toxicity benchmarks based on fatty acid synthesis inhibition and narcosis were determined for aquatic organisms based, in part, on a species sensitivity distribution of chronic toxicity thresholds from the available literature. Predicted and measured environmental concentrations for surface water, sediment, and tissue were below the effects benchmarks, indicating that exposure to triclosan in Minnesota lakes and rivers would not pose an unacceptable risk to aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Niu, Zhiguang; Li, Xiaonan; Zhang, Ying
2017-04-15
To characterize the spatiotemporal distribution and potential ecological risk for trihalomethanes (THMs) in the surface water of a river estuary, surface water samples were collected over five consecutive months (from March to July 2016) from four sites in the Haihe River estuary of Bohai Bay. The potential ecological risks of THMs were evaluated quantitatively based on a species sensitivity distribution (SSD) model. The results demonstrate that trichloromethane (TCM) was the predominant THM in surface water of the Haihe River estuary (2.93±1.98μg/L) followed by tribromomethane (TBM) (0.42±0.33μg/L), bromodichloromethane (BDCM) (0.14±0.06μg/L) and dibromochloromethane (DBCM) (0.09±0.10μg/L). The concentration of TCM was higher in summer than that in spring, while TBM displayed the opposite trend. The TCM concentration decreased from the estuary to the adjacent sea. However, the levels of TBM and DBCM in the adjacent sea were higher than those in the estuary. The ecological risks of THMs in surface water of Haihe River were notably low, and the ecological risks of THMs in freshwater were generally higher than those in seawater. Compared with other contaminants in water and surface sediment from rivers and coastal areas, the ecological risk levels of THMs in surface water can be considered low. This study is a contribution to the progress of ecological risk assessment of THMs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Broffitt, Barbara; Levy, Steven M.; Warren, John; Cavanaugh, Joseph E.
2017-01-01
Objective Since dental caries can progress throughout a person’s lifetime, understanding caries risk factors unique to specific life phases is important. This study aims to assess caries incidence and risk factors for young adolescents. Methods Participants in the longitudinal Iowa Fluoride Study were assessed for dental caries at approximately age 9 and again at age 13. These participants also filled out questionnaires concerning water sources, oral health habits, beverage intakes, parent education and family income. Caries progression (D2+F) was analyzed at the surface level. Mixed effects logistic regression was used to assess associations between surface-specific first molar occlusal caries incidence and risk factors. Results Caries incidence was quite low except on the first molar occlusal surfaces. In initial models of specific risk factors, incidence was positively associated with the surface having a D1 lesion at baseline, low family income, having untreated decay or fillings on other teeth at baseline, lower home water fluoride level, and higher soda pop consumption. In the final multiple variable model, significant interactions were found between tooth brushing frequency and initial D1 status, and also between family income and home tap water fluoride level. Conclusions D2+F incidence on first molar occlusal surfaces in these young adolescents was associated with prior caries experience on other teeth as well as prior evidence of a D1 lesion on the occlusal surface. More frequent tooth brushing was protective of sound surfaces, and fluoride in home tap water was also protective, but significantly more so for adolescents in low income families. PMID:23889610
Assessment of the Risks of Mixtures of Major Use Veterinary Antibiotics in European Surface Waters.
Guo, Jiahua; Selby, Katherine; Boxall, Alistair B A
2016-08-02
Effects of single veterinary antibiotics on a range of aquatic organisms have been explored in many studies. In reality, surface waters will be exposed to mixtures of these substances. In this study, we present an approach for establishing risks of antibiotic mixtures to surface waters and illustrate this by assessing risks of mixtures of three major use antibiotics (trimethoprim, tylosin, and lincomycin) to algal and cyanobacterial species in European surface waters. Ecotoxicity tests were initially performed to assess the combined effects of the antibiotics to the cyanobacteria Anabaena flos-aquae. The results were used to evaluate two mixture prediction models: concentration addition (CA) and independent action (IA). The CA model performed best at predicting the toxicity of the mixture with the experimental 96 h EC50 for the antibiotic mixture being 0.248 μmol/L compared to the CA predicted EC50 of 0.21 μmol/L. The CA model was therefore used alongside predictions of exposure for different European scenarios and estimations of hazards obtained from species sensitivity distributions to estimate risks of mixtures of the three antibiotics. Risk quotients for the different scenarios ranged from 0.066 to 385 indicating that the combination of three substances could be causing adverse impacts on algal communities in European surface waters. This could have important implications for primary production and nutrient cycling. Tylosin contributed most to the risk followed by lincomycin and trimethoprim. While we have explored only three antibiotics, the combined experimental and modeling approach could readily be applied to the wider range of antibiotics that are in use.
Guo, Lei; Li, Zhengyan; Gao, Pei; Hu, Hong; Gibson, Mark
2015-11-01
Bisphenol A (BPA) occurs widely in natural waters with both traditional and reproductive toxicity to various aquatic species. The water quality criteria (WQC), however, have not been established in China, which hinders the ecological risk assessment for the pollutant. This study therefore aims to derive the water quality criteria for BPA based on both acute and chronic toxicity endpoints and to assess the ecological risk in surface waters of China. A total of 15 acute toxicity values tested with aquatic species resident in China were found in published literature, which were simulated with the species sensitivity distribution (SSD) model for the derivation of criterion maximum concentration (CMC). 18 chronic toxicity values with traditional endpoints were simulated for the derivation of traditional criterion continuous concentration (CCC) and 12 chronic toxicity values with reproductive endpoints were for reproductive CCC. Based on the derived WQC, the ecological risk of BPA in surface waters of China was assessed with risk quotient (RQ) method. The results showed that the CMC, traditional CCC and reproductive CCC were 1518μgL(-1), 2.19μgL(-1) and 0.86μgL(-1), respectively. The acute risk of BPA was negligible with RQ values much lower than 0.1. The chronic risk was however much higher with RQ values of between 0.01-3.76 and 0.03-9.57 based on traditional and reproductive CCC, respectively. The chronic RQ values on reproductive endpoints were about threefold as high as those on traditional endpoints, indicating that ecological risk assessment based on traditional effects may not guarantee the safety of aquatic biota. Copyright © 2015 Elsevier Ltd. All rights reserved.
Probabilistic modeling of the flows and environmental risks of nano-silica.
Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd
2016-03-01
Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053-3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg · y in the EU (0.19-12 mg/kg · y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. Copyright © 2015 Elsevier B.V. All rights reserved.
Van Abel, Nicole; Mans, Janet; Taylor, Maureen B
2017-10-01
This study assessed the risks posed by noroviruses (NoVs) in surface water used for drinking, domestic, and recreational purposes in South Africa (SA), using a quantitative microbial risk assessment (QMRA) methodology that took a probabilistic approach coupling an exposure assessment with four dose-response models to account for uncertainty. Water samples from three rivers were found to be contaminated with NoV GI (80-1,900 gc/L) and GII (420-9,760 gc/L) leading to risk estimates that were lower for GI than GII. The volume of water consumed and the probabilities of infection were lower for domestic (2.91 × 10 -8 to 5.19 × 10 -1 ) than drinking water exposures (1.04 × 10 -5 to 7.24 × 10 -1 ). The annual probabilities of illness varied depending on the type of recreational water exposure with boating (3.91 × 10 -6 to 5.43 × 10 -1 ) and swimming (6.20 × 10 -6 to 6.42 × 10 -1 ) being slightly greater than playing next to/in the river (5.30 × 10 -7 to 5.48 × 10 -1 ). The QMRA was sensitive to the choice of dose-response model. The risk of NoV infection or illness from contaminated surface water is extremely high in SA, especially for lower socioeconomic individuals, but is similar to reported risks from limited international studies.
Risk assessment associated to possible concrete degradation of a near surface disposal facility
NASA Astrophysics Data System (ADS)
Capra, B.; Billard, Y.; Wacquier, W.; Gens, R.
2013-07-01
This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste - short-lived low and intermediate level waste - in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years), which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.
NASA Technical Reports Server (NTRS)
Zelkin, Natalie; Henriksen, Stephen
2011-01-01
This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.
There is a growing need to develop analytical methods and tools that can be applied to assess the environmental risks associated with charged, polar, and ionisable organic chemicals, such as those used as active pharmaceutical ingredients, biocides, and surface active chemicals. ...
NASA Astrophysics Data System (ADS)
Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter
2015-04-01
One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B., Cranston, M., Tavendale, A., Ghimire, S., and Dhondia, J. (2015) Developing surface water flood forecasting capabilities in Scotland: an operational pilot for the 2014 Commonwealth Games in Glasgow. Journal of Flood Risk Management, In Press.
An information diffusion technique to assess integrated hazard risks.
Huang, Chongfu; Huang, Yundong
2018-02-01
An integrated risk is a scene in the future associated with some adverse incident caused by multiple hazards. An integrated probability risk is the expected value of disaster. Due to the difficulty of assessing an integrated probability risk with a small sample, weighting methods and copulas are employed to avoid this obstacle. To resolve the problem, in this paper, we develop the information diffusion technique to construct a joint probability distribution and a vulnerability surface. Then, an integrated risk can be directly assessed by using a small sample. A case of an integrated risk caused by flood and earthquake is given to show how the suggested technique is used to assess the integrated risk of annual property loss. Copyright © 2017 Elsevier Inc. All rights reserved.
APPLICATION OF EXAMS AS THE SURFACE WATER MODULE IN THE HWIR MULTIMEDIA RISK ASSESSMENT SYSTEM
Multimedia, multipathway risk assessment software has been developed for implementing the Hazardous Waste Identification Rule (HWIR). This regulation is intended to determine whether a waste should be considered hazardous, and confined to Subtitle D facilities, or safely release...
Assessment of environments for Mars Science Laboratory entry, descent, and surface operations
Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.
2012-01-01
The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.
This ECO Update builds on the standard approach to ERA (U.S. EPA 1997), by providing a framework for incorporating groundwater/surface-water (GW/SW) interactions into existing ERAs (see U.S. EPA 1997 and 2001a for an introduction to ecological risk....
Methodology for back-contamination risk assessment for a Mars sample return mission
NASA Technical Reports Server (NTRS)
Merkhofer, M. W.; Quinn, D. J.
1977-01-01
The risk of back-contamination from Mars Surface Sample Return (MSSR) missions is assessed. The methodology is designed to provide an assessment of the probability that a given mission design and strategy will result in accidental release of Martian organisms acquired as a result of MSSR. This is accomplished through the construction of risk models describing the mission risk elements and their impact on back-contamination probability. A conceptual framework is presented for using the risk model to evaluate mission design decisions that require a trade-off between science and planetary protection considerations.
Jenkins, K; Surminski, S; Hall, J; Crick, F
2017-10-01
Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.
DEVELOPMENT OF RISK ASSESSMENT METHODOLOGY FOR SURFACE DISPOSAL OF MUNICIPAL SLUDGE
This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. he sludge management practices addressed by this series include distribution and marketing programs, landfi...
Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi
2017-09-04
Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10 -5 to 10 -4 ). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10-S13, S15, and S18 were of relatively low credibility (50-60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent.
Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi
2017-01-01
Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10−5 to 10−4). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10–S13, S15, and S18 were of relatively low credibility (50–60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent. PMID:28869576
Liu, Dan; Liu, Jining; Guo, Min; Xu, Huaizhou; Zhang, Shenghu; Shi, Lili; Yao, Cheng
2016-11-15
The occurrence and distribution of nine selected compounds were investigated in surface water, suspended particulate matter (SPM), and sediment in Taihu Lake and its tributaries. With the exception of 4-Butylphenol, all compounds were detected in at least two phases, and nonylphenol (NP) and 4-tert-Octylphenol (4-OP) were the predominant alkylphenols (APs) in the lake. A significant correlation was observed between NP and 4-OP, indicating that they may share the same source. Moreover, surface water phase was the dominant sink of Bisphenol A (BPA) in the aquatic environment. The concentrations of BPA between the surface water and SPM phases were closely related to each other. In addition, Tetrabromobisphenol A (TBBPA) exhibited relatively higher concentrations and detection frequencies in the SPM. Risk assessment revealed greater risk associated with the surface water than the sediment, indicating that the discharge of industrial wastewater and domestic sewage poses a serious threat to aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Presence and risk assessment of pharmaceuticals in surface water and drinking water.
Sanderson, Hans
2011-01-01
Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low--but the public and decision-makers are concerned and would like the matter investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water. The aim of this paper is to summarize the state-of-the-science and the ongoing international debate on the topic.
Risk assessment for adult butterflies exposed to the mosquito control pesticide naled
Bargar, Timothy A.
2012-01-01
A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed.
Gordan, Valeria V; Bader, James D; Garvan, Cynthia W; Richman, Joshua S; Qvist, Vibeke; Fellows, Jeffrey L; Rindal, D. Brad; Gilbert, Gregg H
2010-01-01
Objectives (1) Quantify at which carious lesion depths dentists intervene surgically for cases of varying caries penetration and caries risk; (2) Identify characteristics that are associated with surgical intervention. Methods Dentists in a practice-based research network who reported doing at least some restorative dentistry were surveyed. Dentists were asked to indicate whether they would surgically intervene in a series of cases depicting occlusal caries. Each case included a photograph of an occlusal surface displaying typical characteristics of caries penetration, and a written description of a patient at a specific level of caries risk. Using logistic regression, we analyzed associations of surgical treatment with dentist and practice characteristics, and patient caries risk levels. Results 519 DPBRN practitioner-investigators responded, of whom 63% indicated that they would surgically restore lesions located on inner enamel surfaces, and 90% of lesions located in outer dentin surfaces in a low caries risk individual. Regarding individuals at high caries risk, 77% reported that they would surgically restore inner enamel lesions and 94% reported restoring lesions located on the outer dentin surface. Dentists who did not assess caries risk were more likely to intervene on dentin lesions (p=.004). Practitioner-investigators who were in private practice were significantly more likely to intervene surgically on enamel lesions, compared to dentists from large group practices (p<.001). Conclusion Most dentists chose to provide some treatment to lesions that were within the enamel surface. Decisions to intervene surgically in the caries process differ by caries lesion depth, patient caries risk, assessment of caries risk, type of practice model, and percent of patients who self-pay. PMID:20123876
The potential for agricultural land use change to reduce flood risk in a large watershed
USDA-ARS?s Scientific Manuscript database
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...
Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak
2017-02-01
A holistic risk assessment of surface water (SW) contamination due to lead-210 (Pb-210) in oil produced water (PW) from the Bakken Shale in North Dakota (ND) was conducted. Pb-210 is a relatively long-lived radionuclide and very mobile in water. Because of limited data on Pb-210, a simulation model was developed to determine its concentration based on its parent radium-226 and historical total dissolved solids levels in PW. Scenarios where PW spills could reach SW were analyzed by applying the four steps of the risk assessment process. These scenarios are: (1) storage tank overflow, (2) leakage in equipment, and (3) spills related to trucks used to transport PW. Furthermore, a survey was conducted in ND to quantify the risk perception of PW from different stakeholders. Findings from the study include a low probability of a PW spill reaching SW and simulated concentration of Pb-210 in drinking water higher than the recommended value established by the World Health Organization. Also, after including the results from the risk perception survey, the assessment indicates that the risk of contamination of the three scenarios evaluated is between medium-high to high. Copyright © 2016 Elsevier Ltd. All rights reserved.
Urquhart, Erin A; Schaeffer, Blake A; Stumpf, Richard P; Loftin, Keith A; Werdell, P Jeremy
2017-07-01
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization's (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Urquhart, Erin A.; Schaeffer, Blake A.; Stumpf, Richard P.; Loftin, Keith A.; Werdell, P. Jeremy
2017-01-01
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions.
Tebbutt, G; Bell, V; Aislabie, J
2007-04-01
The aim of this study was to determine whether or not the assessment of surface cleanliness could make a contribution to visual inspections of food premises. Forty-five premises were studied with both rapid (ATP) and traditional microbiological swabbing being used to test surfaces that either come into direct contact with prepared foods or were likely to be touched by hands during food preparation. A significant link was found between aerobic colony counts and ATP measurements. In most cases, the visual appearance of surfaces could not be used to accurately predict either microbial or ATP results. This study suggests that ATP testing is a useful indicator of surface cleanliness and could be helpful to local authority officers as part of risk assessment inspections. This study provides further evidence that visual inspection alone may not always be adequate to assess surface cleanliness. In high-risk premises, ATP could, if appropriately targeted, help identify potential problem areas. The results are available at the time of the inspection and can be used as an on-the-spot teaching aid.
Zhang, Fen; Yang, Chang-Ming; Pan, Rui-Jie
2013-09-01
A total of 8 representative surface sediment sampling sites were collected from the Qingshan Reservoir in Lin'an City of Zhejiang Province to investigate the differences in the total concentrations of As, Cr, Cu, Ni, Mn, Pb, and Zn among the sampling sites. The different forms of the heavy metals, i. e., acid soluble, easily reducible, easily oxidizable, and residual, were determined by BCR sequential extraction method, and the pollution degrees and potential ecological risk, of the heavy metals in the surface sediments at different sampling sites of the Reservoir were assessed by using geo-accumulation index (I(geo)) and Hakanson potential ecological risk index. There existed obvious spatial differences in the total concentrations of the heavy metals in the surface sediments of the Reservoir. The sampling sites nearby the estuaries of the tributaries flowing through downtowns and heavy industrial parks to the Reservoir had obviously higher heavy metals concentrations in surface sediments, as compared to the other sampling sites. In the sediments, Mn was mainly in acid extractable form, Cu and Pb were mainly in reducible form, and As was mainly in residual form. The surface sediments at the sampling sites nearby the estuaries of the tributaries flowing through downtowns to the Reservoir had higher proportions of acid extractable and reducibles forms of the heavy metals, which would have definite potential toxic risk to aquatic organisms. Among the 7 heavy metals in the surface sediments, As showed the highest pollution degree, followed by Cu, Ni, Mn, Pb, and Zn, which were at moderate pollution degree, while Cr was at non-pollution degree, with relatively low potential ecological risk. Through the comparison of the sampling sites, it was observed that the surface sediments at the sites nearby the estuaries of Jinxi River and Hengxi River flowing through downtowns and heavy industrial parks to the Reservoir showed obviously higher heavy metals pollution degree and potential ecological risk.
Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd
2016-12-01
Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.
Surface water risk assessment of pesticides in Ethiopia.
Teklu, Berhan M; Adriaanse, Paulien I; Ter Horst, Mechteld M S; Deneer, John W; Van den Brink, Paul J
2015-03-01
Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small stream and for two types of small ponds. Seven selected pesticides were selected since they were estimated to bear the highest risk to humans on the basis of volume of use, application rate and acute and chronic human toxicity, assuming exposure as a result of the consumption of surface water. Potential ecotoxicological risks were not considered as a selection criterion at this stage. Estimates of exposure concentrations in surface water were established using modelling software also applied in the EU registration procedure (PRZM and TOXSWA). Input variables included physico-chemical properties, and data such as crop calendars, irrigation schedules, meteorological information and detailed application data which were specifically tailored to the Ethiopian situation. The results indicate that for all the pesticides investigated the acute human risk resulting from the consumption of surface water is low to negligible, whereas agricultural use of chlorothalonil, deltamethrin, endosulfan and malathion in some crops may result in medium to high risk to aquatic species. The predicted environmental concentration estimates are based on procedures similar to procedures used at the EU level and in the USA. Addition of aquatic macrophytes as an ecotoxicological endpoint may constitute a welcome future addition to the risk assessment procedure. Implementation of the methods used for risk characterization constitutes a good step forward in the pesticide registration procedure in Ethiopia. Copyright © 2014 Elsevier B.V. All rights reserved.
RISK ASSESSMENT FOR THE DYE AND PIGMENT ...
This risk assessment calculates the maximum loadings of constituents found in dyes and pigment industries waste streams which can be disposed in different types of waste management units without causing health benchmarks to be exceeded at plausible receptor locations. The assessment focuses on potential risks from volatilization and leaching to groundwater of constituents disposed in surface impoundments and landfills with either clay liners or composite liners. This product will be used by EPA decision makers to assist in determining whether certain waste streams generated by the dyes and pigments industries should be designated as hazardous.
Risk perception and communication: lessons for the food and food packaging industry.
Renn, O
2005-10-01
Health risks are front-page news. Be it bovine spongiform encephalitis (BSE), surface ozone, or radiation from transmitter stations or mobile phones, the popular press puts out a constant stream of risk warnings and sensational reports about potential health threats. This paper examines how the general public perceives and assesses such information when it comes to food and food packaging risks. In the first part, the basic components of food risks are discussed and then compared with the perceptions of these risks. The main emphasis is on the risks from food packaging. The term 'perception' as used in cognitive psychology applies to the mental processes through which a person takes in, deals with and assesses information from the environment (physical and communicative) via the senses. The last part of the paper deals with the consequences of risk assessment and risk perception for risk management and risk communication.
Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei
2015-03-01
This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Boivin, Arnaud; Poulsen, Véronique
2017-03-01
Pesticide risk assessment in the European regulatory framework is mandatory performed for active substances (pesticides) and the plant protection products they are constituents of. The aim is to guarantee that safe use can be achieved for the intended use of the product. This paper provides a feedback on the regulatory environmental risk assessment performed for pesticide registration at the EU and member state levels. The different steps of pesticide registration are addressed considering both exposure and hazard. In this paper, we focus on the environmental fate and behaviour in surface water together with the aquatic ecotoxicity of the substances to illustrate pesticide regulatory risk assessment performed for aquatic organisms. Current methodologies are presented along with highlights on potential improvements. For instance, as regards exposure aspects, moving from field based to landscape risk assessments is promising. Regarding ecotoxicology, ecological models may be valuable tools when applied to chemical risk assessment. In addition, interest and further developments to better take into account mitigation measures in risk assessment and management are also presented.
El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla
2015-12-30
In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Risk assessment for adult butterflies exposed to the mosquito control pesticide naled.
Bargar, Timothy A
2012-04-01
A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed. Copyright © 2012 SETAC.
Inman, K J; Dymock, K; Fysh, N; Robbins, B; Rutledge, F S; Sibbald, W J
1999-03-01
To compare the clinical utility, in terms of incidence of pressure ulcer (PU) development, and economic impact of 2 programs of patient surface assignment for PU prevention. Randomized controlled clinical trial with economic evaluation. 30-bed multidisciplinary intensive care unit (ICU), serving as the regional trauma center. 144 consecutive eligible patients at risk for the development of PUs. PU risk was assessed on admission using the Skin Ulcer Risk Evaluation (SURE) Score, and patients were randomized to either the experimental (purchase) or control group (purchase/rent). Based on their SURE Score, patients were assigned a specialty surface if needed. Patients received head-to-toe skin assessments twice weekly, new PUs were documented, a new SURE Score was calculated, and specialty surfaces were upgraded or downgraded as necessary. The incidence of PUs by site and severity, and cost. Multivariate logistic regression and decision modeling. No significant differences were detected between groups with respect to baseline population characteristics, nor in the development of PUs. Predictors of PU development were ICU length of stay and SURE Score. The experimental (purchase) group was the less costly strategy. Under baseline assumptions, surface costs per at-risk patient were $76 CDN and $171 CDN in the experimental and control groups, respectively. The savings of $95 CDN per at-risk patient translates into conservative annual savings of $47,500 CDN. Using an objective, risk-based method of patient surface assignment, the authors compared the clinical and economic outcomes of 2 programs of PU prevention. In a direct comparison of alternatives, the strategy that emphasized purchased rather than rented products proved to be the more economical. Finally, this approach illustrates how by prospectively capturing data on both the costs and consequences of competing alternatives, a more objective and informed decision-making process can result.
Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T
2003-01-01
A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment.
ISSUES IN MANAGING THE RISKS ASSOCIATED WITH PERCHLORATE IN DRINKING WATER
Perchlorate (ClO4-) contamination of ground and surface waters has placed drinking water supplies at risk in communities throughout the US, especially in the West. Several major assessment studies of that risk in terms of health and environmental impact are ...
Moisseiev, Elad; Sela, Tzahi; Minkev, Liza; Varssano, David
2013-01-01
Purpose To evaluate the trends in corneal refractive procedure selection for the correction of myopia, focusing on the relative proportions of laser in situ keratomileusis (LASIK) and surface ablation procedures. Methods Only eyes that underwent LASIK or surface ablation for the correction of myopia between 2008–2011 were included in this retrospective study. Additional recorded parameters included patient age, preoperative manifest refraction, corneal thickness, and calculated residual corneal bed thickness. A risk score was given to each eye, based on these parameters, according to the Ectasia Risk Factor Score System (ERFSS), without the preoperative corneal topography. Results This study included 16,163 eyes, of which 38.4% underwent LASIK and 61.6% underwent surface ablation. The risk score correlated with procedure selection, with LASIK being preferred in eyes with a score of 0 and surface ablation in eyes with a score of 2 or higher. When controlling for age, preoperative manifest refraction, corneal thickness, and all parameters, the relative proportion of surface ablation compared with LASIK was found to have grown significantly during the study period. Conclusions Our results indicate that with time, surface ablation tended to be performed more often than LASIK for the correction of myopia in our cohort. Increased awareness of risk factors and preoperative risk assessment tools, such as the ERFSS, have shifted the current practice of refractive surgery from LASIK towards surface ablation despite the former’s advantages, especially in cases in which the risk for ectasia is more than minimal (risk score 2 and higher). PMID:23345963
Worldwide Emerging Environmental Issues Affecting the U.S. Military. September 2009
2009-09-01
regional informative workshops on potential applications and risks associated with nanotechnologies and nanomaterials, as well as capacity assessment...quantity and quality, assessment of risks, and addressing vulnerability and adaptation strategies in the UNECE region and beyond. The draft Guidance...Department of Water Resources and the University of Idaho, offers specific measurements of the water consumed across a region . Using surface
Phillips, A M B; Depaola, A; Bowers, J; Ladner, S; Grimes, D J
2007-04-01
The U.S. Food and Drug Administration recently published a Vibrio parahaemolyticus risk assessment for consumption of raw oysters that predicts V. parahaemolyticus densities at harvest based on water temperature. We retrospectively compared archived remotely sensed measurements (sea surface temperature, chlorophyll, and turbidity) with previously published data from an environmental study of V. parahaemolyticus in Alabama oysters to assess the utility of the former data for predicting V. parahaemolyticus densities in oysters. Remotely sensed sea surface temperature correlated well with previous in situ measurements (R(2) = 0.86) of bottom water temperature, supporting the notion that remotely sensed sea surface temperature data are a sufficiently accurate substitute for direct measurement. Turbidity and chlorophyll levels were not determined in the previous study, but in comparison with the V. parahaemolyticus data, remotely sensed values for these parameters may explain some of the variation in V. parahaemolyticus levels. More accurate determination of these effects and the temporal and spatial variability of these parameters may further improve the accuracy of prediction models. To illustrate the utility of remotely sensed data as a basis for risk management, predictions based on the U.S. Food and Drug Administration V. parahaemolyticus risk assessment model were integrated with remotely sensed sea surface temperature data to display graphically variations in V. parahaemolyticus density in oysters associated with spatial variations in water temperature. We believe images such as these could be posted in near real time, and that the availability of such information in a user-friendly format could be the basis for timely and informed risk management decisions.
Yan, Zhengyu; Liu, Yanhua; Yan, Kun; Wu, Shengmin; Han, Zhihua; Guo, Ruixin; Chen, Meihong; Yang, Qiulian; Zhang, Shenghu; Chen, Jianqiu
2017-10-01
Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQ t < 1.0, and EEQ t < 1.0 ng E 2 /L). Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Youyuan; Dong, Bingbing; Xin, Jia
2017-06-01
This study investigated the chromium (Cr) occurrence and distribution along the Loushan River adjacent to a chromium slag heap. The speciation and chemical fractionation of Cr in different environmental media were determined. The potential ecological risks for the surrounding environment were assessed on the basis of both potential ecological risk index (RI) and risk assessment code (RAC). The results show that the surface soil experienced severe Cr contamination with Cr(T) and Cr(VI) values of 3220 ± 6266 and 64 ± 94 mg/kg, respectively, even though the chromium slag heap had already been removed. The chromium slag enhanced the Cr concentration level in the surface soil, water, and sediment samples more than the background level to different extents, which indicates that Cr released from the chromium slag actually affects the surrounding environment. The spatial distribution variety of Cr implies that their transport might have been affected by soil leaking, atmospheric transport, and fluvial hydraulics. The chemical fractionation results demonstrate that the residual fraction was the dominant form, accounting for 54.6 and 66.1% Cr(T) in surface soil and sediment samples, respectively. The content of bioavailable exchangeable Cr fraction correlated with the organic matter (OM), cation exchange capacity (CEC), and pH value. The ecological risk assessment suggests no considerable ecological risk toward the biota despite a relatively high Cr(T) level. Nevertheless, attention should be paid to the potential long-term risks owing to the slow release of oxidizable and residual fractions.
Occurrence and environmental risk assessment of PAEs in Weihe River near Xi'an City, China.
Guo, Xiaofeng; Wang, Lei; Wang, Xudong; Liu, Hanli
2013-01-01
The occurrence and distribution of phthalate acid esters (PAEs) in surface water of the Weihe River basin (eight mainstream sampling points and 15 tributary sampling points) in the Shaanxi section were investigated during the dry season, level period (spring), wet season and level period (autumn). The PAEs tested for were diethyl phthalate (DEP), di-n-butyl phthalate (DBP), dicyclohexyl phthalate (DCHP) and di-(2-ethylhexyl) phthalate (DEHP). The testing proceeded by millipore filtration, then solid phase extraction and then gas chromatography-mass spectrometry determination for all examined PAEs. The monitoring results indicated that, in terms of seasonal changes, concentration of the PAEs in the mainstream is: Dry season > Level period (spring) > Wet season ≈ Level period (autumn). An environmental risk assessment was then performed on PAE pollution levels of the Weihe River basin. This paper employed a risk assessment methodology to evaluate the potential adverse health effects of the individual PAE compounds according to their carcinogenicities. For DEP, DBP and DEHP, a low Risk Index (all of them were lower than the specified level of 1.0) reveals that small non-carcinogenic risks exist resulting from the presence of trace concentrations in the surface water of the Weihe River basin.
Ecological Screening Values for Surface Water, Sediment, and Soil: 2005 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, G. P.
2005-07-18
One of the principal components of the environmental remediation program at the Savannah River Site (SRS) is the assessment of ecological risk. Used to support CERCLA, RCRA, and DOE orders, the ecological risk assessment (ERA) can identify environmental hazards and evaluate remedial action alternatives. Ecological risk assessment is also an essential means for achieving DOE's risk based end state vision for the disposition of nuclear material and waste hazards, the decommissioning of facilities, and the remediation of inactive waste units at SRS. The complexity of an ERA ranges from a screening level ERA (SLERA) to a full baseline ERA. Amore » screening level ecological risk assessments, although abbreviated from a baseline risk assessment, is nonetheless considered a complete risk assessment (EPA, 2001a). One of the initial tasks of any ERA is to identify constituents that potentially or adversely affect the environment. Typically, this is accomplished by comparing a constituent's maximum concentration in surface water, sediment, or soil with an ecological screening value (ESV). The screening process can eliminate many constituents from further consideration in the risk assessment, but it also identifies those that require additional evaluation. This document is an update of a previous compilation (Friday, 1998) and provides a comprehensive listing of ecological screening values for surface water, sediment, and soil. It describes how the screening values were derived and recommends benchmarks that can be used for ecological risk assessment. The sources of these updated benchmarks include the U.S. Environmental Protection Agency (EPA), U.S. Fish and Wildlife Service (USFWS), U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), Oak Ridge National Laboratory (ORNL), the State of Florida, the Canadian Council of Ministers of the Environment (CCME), the Dutch Ministry of the Environment (RIVM), and the scientific literature. It should be noted that ESV's are continuously revised by the various issuing agencies. The references in this report provide the citations of each source and, where applicable, the internet address where they can be accessed. Although radiological screening values are not included herein due to space limitations, these have been recently derived by a technical working committee sponsored by the U.S. Department of Energy (DOE 2002, 2004). The recommended ecological screening values represent the most conservative concentrations of the cited sources, and are to be used for screening purposes only. They do not represent remedial action cleanup levels. Their use at locations other than SRS should take into account environmental variables such as water quality, soil chemistry, flora and fauna, and other ecological attributes specific to the ecosystem potentially at risk.« less
Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D
2016-01-01
Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.
OPP Guidance for Submission of State and Tribal Water Quality Monitoring Data
This guidance describes the process to submit state and tribal surface and groundwater monitoring data for consideration in exposure characterizations for ecological and and human health risk assessments and in risk management decisions for pesticides.
Risk Assessment of Carbon Sequestration into A Naturally Fractured Reservoir at Kevin Dome, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Minh; Onishi, Tsubasa; Carey, James William
In this report, we describe risk assessment work done using the National Risk Assessment Partnership (NRAP) applied to CO 2 storage at Kevin Dome, Montana. Geologic CO 2 sequestration in saline aquifers poses certain risks including CO 2/brine leakage through wells or non-sealing faults into groundwater or to the land surface. These risks are difficult to quantify due to data availability and uncertainty. One solution is to explore the consequences of these limitations by running large numbers of numerical simulations on the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to assess leakage risks and uncertainties. However, a largemore » number of full-physics simulations is usually too computationally expensive. The NRAP integrated assessment model (NRAP-IAM) uses reduced order models (ROMs) developed from full-physics simulations to address this issue. A powerful stochastic framework allows NRAPIAM to explore complex interactions among many uncertain variables and evaluate the likely performance of potential sequestration sites.« less
Zhang, Nai-Sheng; Liu, You-sheng; Van den Brink, Paul J; Price, Oliver R; Ying, Guang-Guo
2015-12-01
Home and personal care products (HPCPs) including biocides, benzotriazoles (BTs) and ultraviolet (UV) filters are widely used in our daily life. After use, they are discharged with domestic wastewater into the receiving environment. This study investigated the occurrence of 29 representative HPCPs, including biocides, BTs and UV filters, in the riverine environment of a rural region of South China where no wastewater treatment plants were present, and assessed their potential ecological risks to aquatic organisms. The results showed the detection of 11 biocides and 4 BTs in surface water, and 9 biocides, 3 BTs and 4 UV filters in sediment. In surface water, methylparaben (MeP), triclocarban (TCC), and triclosan (TCS) were detected at all sites with median concentrations of 9.23 ng/L, 2.64 ng/L and 5.39 ng/L, respectively. However, the highest median concentrations were found for clotrimazole (CLOT), 5-methyl-1H-benzotriazole (MBT) and carbendazim (CARB) at 55.6 ng/L, 33.7 ng/L and 13.8 ng/L, respectively. In sediment, TCC, TCS, and UV-326 were detected with their maximum concentrations up to 353 ng/g, 155 ng/g, and 133 ng/g, respectively. The concentrations for those detected HPCPs in surface water and sediment were generally lower in the upper reach (rural area) of Sha River than in the lower reach of Sha River with close proximity to Dongjiang River (Pt-test<0.05), indicating other input sources of HPCPs in the lower reach. Biocides showed significantly higher levels in surface water in the wet season than in the dry and intermediate seasons. Preliminary risk assessment demonstrated that the majority of HPCPs monitored represented low risk in surface waters. There are potentially greater risks to aquatic organisms from the use of TCS and TCC in the wet season than in dry and intermediate seasons in surface waters. This preliminary assessment also indicates potential concerns associated with TCC, TCS, DEET, CARB, and CLOT in sediments, although additional data should be generated to assess this fully. Thus future research is needed to investigate ecological effects of these HPCPs on benthic organisms in sediment of rural rivers receiving untreated wastewater discharge. Copyright © 2015 Elsevier Inc. All rights reserved.
Sterk, Ankie; de Man, Heleen; Schijven, Jack F; de Nijs, Ton; de Roda Husman, Ana Maria
2016-11-15
Climate change is expected to influence infection risks while bathing downstream of sewage emissions from combined sewage overflows (CSOs) or waste water treatment plants (WWTPs) due to changes in pathogen influx, rising temperatures and changing flow rates of the receiving waters. In this study, climate change impacts on the surface water concentrations of Campylobacter, Cryptosporidium and norovirus originating from sewage were modelled. Quantitative microbial risk assessment (QMRA) was used to assess changes in risks of infection. In general, infection risks downstream of WWTPs are higher than downstream CSOs. Even though model outputs show an increase in CSO influxes, in combination with changes in pathogen survival, dilution within the sewage system and bathing behaviour, the effects on the infection risks are limited. However, a decrease in dilution capacity of surface waters could have significant impact on the infection risks of relatively stable pathogens like Cryptosporidium and norovirus. Overall, average risks are found to be higher downstream WWTPs compared to CSOs. Especially with regard to decreased flow rates, adaptation measures on treatment at WWTPs may be more beneficial for human health than decreasing CSO events. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhang, Chun Peng; Li, Fu Xiang
2016-09-01
Kriging interpolation analysis was conducted with ArcGIS to find out the distribution characteristics of heavy metals concentrations in the surface sediments of the coastal wetland mudflat on the Yalu River estuary, environmental risk index and Hakanson potential ecological risk index were used to assess their extents of pollution in this area.The concentrations of heavy metals in the surface sediments of the study area were at a relatively high level compared with the typical estuarine wetland. The concentration of heavy metals in the east was higher than that in the west, and in the human activity area, the concentration was higher. Cu was found to contribute the most to the pollution status based on environmental risk index method, while Hg and Cd produced the greatest potential ecological harm according to Hankanson Potential ecological risk index method. The average potential ecological risk index (RI) of the Yalu River estuary wetland was 189.30 (ranged from 93.65-507.20), suggesting a moderate ecological risk. However, the potential ecological risk was highest in the east and should be treated as the major heavy metal pollution prevention area in the future.
Shi, Yajuan; Wang, Ruoshi; Lu, Yonglong; Song, Shuai; Johnson, Andrew C; Sweetman, Andrew; Jones, Kevin
2016-09-01
Ecological risk assessment (ERA) has been widely applied in characterizing the risk of chemicals to organisms and ecosystems. The paucity of toxicity data on local biota living in the different compartments of an ecosystem and the absence of a suitable methodology for multi-compartment spatial risk assessment at the regional scale has held back this field. The major objective of this study was to develop a methodology to quantify and distinguish the spatial distribution of risk to ecosystems at a regional scale. A framework for regional multi-compartment probabilistic ecological risk assessment (RMPERA) was constructed and corroborated using a bioassay of a local species. The risks from cadmium (Cd) pollution in river water, river sediment, coastal water, coastal surface sediment and soil in northern Bohai Rim were examined. The results indicated that the local organisms in soil, river, coastal water, and coastal sediment were affected by Cd. The greatest impacts from Cd were identified in the Tianjin and Huludao areas. The overall multi-compartment risk was 31.4% in the region. The methodology provides a new approach for regional multi-compartment ecological risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Systems Architectures for a Tactical Naval Command and Control System
2009-03-01
Supplement TST Time-sensitive Targeting TTP Tactics, Techniques, and Procedures WTP Weapons-target pairing xix GLOSSARY Analysis...target pairings ( WTPs ) and are presented to OTC [a]. 24. OTC conducts risk assessment of engagement options [a]. 25. OTC orders confirmed surface...engagement options are generated through weapon- target pairings ( WTPs ) and are presented to OTC [a]. 24. OTC conducts risk assessment of engagement
Assessing values of air quality and visibility at risk from wildland fires.
Sue A. Ferguson; Steven J. McKay; David E. Nagel; Trent Piepho; Miriam L. Rorig; Casey Anderson; Lara Kellogg
2003-01-01
To assess values of air quality and visibility at risk from wildland fire in the United States, we generated a 40-year database that includes twice daily values of wind, mixing height, and a ventilation index that is the product of windspeed and mixing height. The database provides the first nationally consistent map of surface wind and ventilation index. In addition,...
Assessment of roadway surface conditions using vehicle-intrinsic sensors, phase II.
DOT National Transportation Integrated Search
2016-06-28
Using onboard vehicle sensors to provide real-time identification of hazardous road surface conditions, such as the presence of ice, will allow drivers to receive warnings to proceed with caution on compromised road sections, thus reducing crash risk...
Uncertainty in surface water flood risk modelling
NASA Astrophysics Data System (ADS)
Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.
2009-04-01
Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.
Faber, Ann-Hélène; Annevelink, Mark; Gilissen, Herman Kasper; Schot, Paul; van Rijswick, Marleen; de Voogt, Pim; van Wezel, Annemarie
2017-12-27
We identify uncertainties and knowledge gaps of chemical risk assessment related to unconventional drillings and propose adaptations. We discuss how chemical risk assessment in the context of unconventional oil and gas (UO&G) activities differs from conventional chemical risk assessment and the implications for existing legislation. A UO&G suspect list of 1,386 chemicals that might be expected in the UO&G water samples was prepared which can be used for LC-HRMS suspect screening. We actualize information on reported concentrations in UO&G-related water. Most information relates to shale gas operations, followed by coal-bed methane, while only little is available for tight gas and conventional gas. The limited research on conventional oil and gas recovery hampers comparison whether risks related to unconventional activities are in fact higher than those related to conventional activities. No study analyzed the whole cycle from fracturing fluid, flowback and produced water, and surface water and groundwater. Generally target screening has been used, probably missing contaminants of concern. Almost half of the organic compounds analyzed in surface water and groundwater exceed TTC values, so further risk assessment is needed, and risks cannot be waived. No specific exposure scenarios toward groundwater aquifers exist for UO&G-related activities. Human errors in various stages of the life cycle of UO&G production play an important role in the exposure. Neither at the international level nor at the US federal and the EU levels, specific regulations for UO&G-related activities are in place to protect environmental and human health. UO&G activities are mostly regulated through general environmental, spatial planning, and mining legislation.
Malara, Natalia; Coluccio, Maria Laura; Limongi, Tania; Asande, Monica; Trunzo, Valentina; Cojoc, Gheorghe; Raso, Cinzia; Candeloro, Patrizio; Perozziello, Gerardo; Raimondo, Raffaella; De Vitis, Stefania; Roveda, Laura; Renne, Maria; Prati, Ubaldo; Mollace, Vincenzo; Di Fabrizio, Enzo
2014-11-12
Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio-functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of oil slick hazard and risk at vulnerable coastal sites.
Melaku Canu, Donata; Solidoro, Cosimo; Bandelj, Vinko; Quattrocchi, Giovanni; Sorgente, Roberto; Olita, Antonio; Fazioli, Leopoldo; Cucco, Andrea
2015-05-15
This work gives an assessment of the hazard faced by Sicily coasts regarding potential offshore surface oil spill events and provides a risk assessment for Sites of Community Importance (SCI) and Special Protection Areas (SPA). A lagrangian module, coupled with a high resolution finite element three dimensional hydrodynamic model, was used to track the ensemble of a large number of surface trajectories followed by particles released over 6 selected areas located inside the Sicily Channel. The analysis was carried out under multiple scenarios of meteorological conditions. Oil evaporation, oil weathering, and shore stranding are also considered. Seasonal hazard maps for different stranding times and seasonal risk maps were then produced for the whole Sicilian coastline. The results highlight that depending on the meteo-marine conditions, particles can reach different areas of the Sicily coast, including its northern side, and illustrate how impacts can be greatly reduced through prompt implementation of mitigation strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preston, Todd M.; Chesley-Preston, Tara
2015-01-01
Our goal was to improve the Sheridan County assessment (SCA) and evaluate the use of this new Williston Basin assessment (WBA) across 31 counties mantled by glacial drift in the Williston Basin. To determine if the WBA model improved the SCA model, results from both assessments were compared to CI values from 37 surface and groundwater samples collected to evaluate the SCA. The WBA (R2 = 0.65) outperformed the SCA (R2 = 0.52) indicating improved model performance. Applicability across the Williston Basin was evaluated by comparing WBA results to CI values from 123 surface water samples collected from 97 sections. Based on the WBA, the majority (83.5%) of sections lacked an oil well and had minimal risk. Sections with one or more oil wells comprised low (8.4%), moderate (6.5%), or high (1.7%) risk areas. The percentage of contaminated water samples, percentage of sections with at least one contaminated sample, and the average CI value of contaminated samples increased from low to high risk indicating applicability across the Williston Basin. Furthermore, the WBA performed better compared to only the contaminated samples (R2 = 0.62) versus all samples (R2 = 0.38). This demonstrates that the WBA was successful at identifying sections, but not individual aquatic resources, with an increased risk of contamination; therefore, WBA results can prioritize future sampling within areas of increased risk.
Yan, Caixia; Yang, Yi; Zhou, Junliang; Liu, Min; Nie, Minghua; Shi, Hao; Gu, Lijun
2013-04-01
The occurrence and distribution of five groups of antibiotics were investigated in the surface water of Yangtze Estuary over four seasons. Of the 20 antibiotics, only sulfamerazine was not detected at all sampling sites, indicating widespread occurrence of antibiotic residues in the study area. Detection frequencies and concentrations of antibiotics were generally higher in January, indicating that low flow conditions and low temperature might enhance the persistence of antibiotics in water. Antibiotic levels varied with location, with the highest concentrations being observed around river discharge and sewage outfall. Furthermore, a positive correlation between total antibiotic and DOC concentrations revealed the significant role played by DOC. Risk assessment based on single compound exposure showed that sulfapyridine and sulfamethoxazole could cause medium risk to daphnid in the Yangtze Estuary. Copyright © 2012 Elsevier Ltd. All rights reserved.
PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE
This report presents metal partition coefficients for the surface water pathway and for the source model used in the Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment (3MRA) technology under development by the U.S. Environmental Protection Agency. Partition ...
NASA Astrophysics Data System (ADS)
Shepard, Michele N.
Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations. Chemical mechanical planarization (CMP) processes with engineered nanoparticle abrasives are used for research and commercial manufacturing applications in the semiconductor and related industries. Despite growing use, no published studies addressed occupational exposures to nanoparticles associated with CMP or risk assessment and management practices for these scenarios. Additional studies are needed to evaluate potential sources of workplace exposure or emission, as well as to help test and refine assessment methods. This research was conducted to: identify the lifecycle stages and potential exposure sources for ENMs in CMP processes; characterize worker exposure; determine recommended engineering controls and compare risk assessment models. The study included workplace air and surface sampling and an evaluation of qualitative risk banding approaches. Exposure assessment results indicated the potential for worker contact with ENMs on workplace surfaces but did not identify nanoparticles readily dispersed in air during work tasks. Some increases in respirable particle concentrations were identified, but not consistently. Measured aerosol concentrations by number and mass were well below current reference values for poorly soluble low toxicity nanoparticles. From application and evaluation of qualitative risk assessment approaches, differences in control banding models and results were identified, although output generally agreed with conclusions from air sampling as to whether an upgrade in site engineering controls was recommended. This research helped to improve understanding of potential worker exposures to ENMs in CMP processes, as well as the methods for risk assessment and management of metal oxide nanoparticles in occupational environments.
Embedding climate change risk assessment within a governance context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L
Climate change adaptation is increasingly being framed in the context of climate risk management. This has contributed to the proliferation of climate change vulnerability and/or risk assessments as means of supporting institutional decision-making regarding adaptation policies and measures. To date, however, little consideration has been given to how such assessment projects and programs interact with governance systems to facilitate or hinder the implementation of adaptive responses. An examination of recent case studies involving Australian local governments reveals two key linkages between risk assessment and the governance of adaptation. First, governance systems influence how risk assessment processes are conducted, by whommore » they are conducted, and whom they are meant to inform. Australia s governance system emphasizes evidence-based decision-making that reinforces a knowledge deficit model of decision support. Assessments are often carried out by external experts on behalf of local government, with limited participation by relevant stakeholders and/or civil society. Second, governance systems influence the extent to which the outputs from risk assessment activities are translated into adaptive responses and outcomes. Technical information regarding risk is often stranded by institutional barriers to adaptation including poor uptake of information, competition on the policy agenda, and lack of sufficient entitlements. Yet, risk assessments can assist in bringing such barriers to the surface, where they can be debated and resolved. In fact, well-designed risk assessments can contribute to multi-loop learning by institutions, and that reflexive problem orientation may be one of the more valuable benefits of assessment.« less
Poquet, Yannick; Bodin, Laurent; Tchamitchian, Marc; Fusellier, Marion; Giroud, Barbara; Lafay, Florent; Buleté, Audrey; Tchamitchian, Sylvie; Cousin, Marianne; Pélissier, Michel; Brunet, Jean-Luc; Belzunces, Luc P.
2014-01-01
Plant protection spray treatments may expose non-target organisms to pesticides. In the pesticide registration procedure, the honey bee represents one of the non-target model species for which the risk posed by pesticides must be assessed on the basis of the hazard quotient (HQ). The HQ is defined as the ratio between environmental exposure and toxicity. For the honey bee, the HQ calculation is not consistent because it corresponds to the ratio between the pesticide field rate (in mass of pesticide/ha) and LD50 (in mass of pesticide/bee). Thus, in contrast to all other species, the HQ can only be interpreted empirically because it corresponds to a number of bees/ha. This type of HQ calculation is due to the difficulty in transforming pesticide field rates into doses to which bees are exposed. In this study, we used a pragmatic approach to determine the apparent exposure surface area of honey bees submitted to pesticide treatments by spraying with a Potter-type tower. The doses received by the bees were quantified by very efficient chemical analyses, which enabled us to determine an apparent surface area of 1.05 cm2/bee. The apparent surface area was used to calculate the exposure levels of bees submitted to pesticide sprays and then to revisit the HQ ratios with a calculation mode similar to that used for all other living species. X-tomography was used to assess the physical surface area of a bee, which was 3.27 cm2/bee, and showed that the apparent exposure surface was not overestimated. The control experiments showed that the toxicity induced by doses calculated with the exposure surface area was similar to that induced by treatments according to the European testing procedure. This new approach to measure risk is more accurate and could become a tool to aid the decision-making process in the risk assessment of pesticides. PMID:25412103
Vallotton, Nathalie; Price, Paul S
2016-05-17
This paper uses the maximum cumulative ratio (MCR) as part of a tiered approach to evaluate and prioritize the risk of acute ecological effects from combined exposures to the plant protection products (PPPs) measured in 3 099 surface water samples taken from across the United States. Assessments of the reported mixtures performed on a substance-by-substance approach and using a Tier One cumulative assessment based on the lowest acute ecotoxicity benchmark gave the same findings for 92.3% of the mixtures. These mixtures either did not indicate a potential risk for acute effects or included one or more individual PPPs that had concentrations in excess of their benchmarks. A Tier Two assessment using a trophic level approach was applied to evaluate the remaining 7.7% of the mixtures. This assessment reduced the number of mixtures of concern by eliminating the combination of endpoint from multiple trophic levels, identified invertebrates and nonvascular plants as the most susceptible nontarget organisms, and indicated that a only a very limited number of PPPs drove the potential concerns. The combination of the measures of cumulative risk and the MCR enabled the identification of a small subset of mixtures where a potential risk would be missed in substance-by-substance assessments.
Guo, Guang-Hui; Wu, Feng-Chang; He, Hong-Ping; Feng, Cheng-Lian; Zhang, Rui-Qing; Li, Hui-Xian
2012-04-01
Probabilistic approaches, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS), and non-probabilistic approaches, such as interval analysis, fuzzy set theory and variance propagation, were used to characterize uncertainties associated with risk assessment of sigma PAH8 in surface water of Taihu Lake. The results from MCS and LHS were represented by probability distributions of hazard quotients of sigma PAH8 in surface waters of Taihu Lake. The probabilistic distribution of hazard quotient were obtained from the results of MCS and LHS based on probabilistic theory, which indicated that the confidence intervals of hazard quotient at 90% confidence level were in the range of 0.000 18-0.89 and 0.000 17-0.92, with the mean of 0.37 and 0.35, respectively. In addition, the probabilities that the hazard quotients from MCS and LHS exceed the threshold of 1 were 9.71% and 9.68%, respectively. The sensitivity analysis suggested the toxicity data contributed the most to the resulting distribution of quotients. The hazard quotient of sigma PAH8 to aquatic organisms ranged from 0.000 17 to 0.99 using interval analysis. The confidence interval was (0.001 5, 0.016 3) at the 90% confidence level calculated using fuzzy set theory, and the confidence interval was (0.000 16, 0.88) at the 90% confidence level based on the variance propagation. These results indicated that the ecological risk of sigma PAH8 to aquatic organisms were low. Each method has its own set of advantages and limitations, which was based on different theory; therefore, the appropriate method should be selected on a case-by-case to quantify the effects of uncertainties on the ecological risk assessment. Approach based on the probabilistic theory was selected as the most appropriate method to assess the risk of sigma PAH8 in surface water of Taihu Lake, which provided an important scientific foundation of risk management and control for organic pollutants in water.
Indoor air quality investigation and health risk assessment at correctional institutions.
Ofungwu, Joseph
2005-04-01
A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmi, S.
1996-03-18
This document contains the baseline human health risk assessment and the ecological risk assessment (ERA) for the Bullen Point Distant Early Warning (DEW) Line radar installation. Five sites at the Bullen Point radar installation underwent remedial investigations (RIs) during the summer of 1993. The presence of chemical contamination in the soil, sediments, and surface water at the installation was evaluated and reported in the Bullen Point Remedial Investigation/Feasibility Study (RI/FS) (U.S. Air Force 1996). The analytical data reported in the RI/FS form the basis for the human health and ecological risk assessments. The primary chemicals of concern (COCs) at themore » five sites are diesel and gasoline from past spills and/or leaks.« less
Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh
2015-01-01
Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.
ASSESSING THE MOBILITY OF ARSENIC IN CONTAMINATED SEDIMENTS
The mobility of arsenic is controlled, in part, by partitioning to mineral surfaces in soils and sediments. Determination of the risk posed to human or ecosystem health by arsenic and identification of remediation technologies that could be employed to eliminate or reduce risk i...
Zhu, Zongmin; Xue, Junhui; Deng, Yuzhen; Chen, Lin; Liu, Jiangfeng
2016-04-15
Based on geochemical and magnetic approaches, the distribution, sources, and health risk of trace metals in surface sediments from a seashore tourist city were investigated. A significant correlation was found between magnetic susceptibility (χ) and trace metals, which suggested that levels of trace metals in the sediments can be effectively depicted by the magnetic approach. The spatial distribution of χ and trace metals matched well with the city layout with relatively higher values being found in the port and busy tourist areas. This result, together with enrichment factors (EFs) and Tomlinson pollution load index (PLI) of metals, suggested that the influence of human activities on the coastal environment was noticeable. Principal component analysis (PCA) indicated that trace metals in the sediments were derived from both anthropogenic and natural sources. Noncarcinogenic risk assessment showed that there was no potential health risk of exposure to metals by means of ingestion or inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China.
Li, Wenhui; Gao, Lihong; Shi, Yali; Liu, Jiemin; Cai, Yaqi
2015-09-01
The occurrence and distribution of 22 antibiotics, including eight fluoroquinolones, nine sulfonamides and five macrolides, were investigated in the urban surface waters in Beijing, China. A total of 360 surface water samples were collected from the main rivers and lakes in the urban area of Beijing monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that antibiotics were widely used and extensively distributed in the surface water of Beijing, and sulfonamides and fluoroquinolones were the predominant antibiotics with the average concentrations of 136 and 132 ng L(-1), respectively. A significant difference of antibiotic concentrations from different sampling sites was observed, and the southern and eastern regions of Beijing showed higher concentrations of antibiotics. Seasonal variation of the antibiotics in the urban surface water was also studied, and the highest level of antibiotics was found in November, which may be due to the low temperature and flow of the rivers during the period of cold weather. Risk assessment showed that several antibiotics might pose high ecological risks to aquatic organisms (algae and plants) in surface water, and more attention should be paid to the risk of antibiotics to the aquatic environment in Beijing.
Hunt, James; Birch, Gavin; Warne, Michael St J
2010-05-01
Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.
Saleem, Muhammad; Iqbal, Javed; Shah, Munir H.
2014-01-01
The present study is carried out for the assessment of water quality parameters and selected metals levels in surface water from Mangla Lake, Pakistan. The metal levels (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were determined by flame atomic absorption spectrophotometry. Average levels of Cd, Co, Cr, Ni, and Pb were higher than the allowable concentrations set by national and international agencies. Principal component analysis indicated significant anthropogenic contributions of Cd, Co, Cr, Ni, and Pb in the water reservoir. Noncarcinogenic risk assessment was then evaluated using Hazard Quotient (HQing/derm) and Hazard Index (HIing/derm) following USEPA methodology. For adults and children, Cd, Co, Cr, and Pb (HQing > 1) emerged as the most important pollutants leading to noncarcinogenic concerns via ingestion route, whereas there was no risk via dermal contact of surface water. This study helps in establishing pollutant loading reduction goal and the total maximum daily loads, and consequently contributes to preserve public health and develop water conservation strategy. PMID:24744690
Background: Surface waters provide invaluable ecosystem services, including drinking water, food, waste water disposal, and recreation. The nature and frequency of recreational contact with surface waters is a critical consideration in evaluating benefits to human well-being (e.g...
Brett Davis; Jan van Wagtendonk; Jen Beck; Kent van Wagtendonk
2009-01-01
Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite...
Saravanan, P; Krishnakumar, S; Silva, Judith D; Pradhap, D; Vidyasakar, A; Radhakrishnan, K; Godson, Prince S; Arumugam, K; Magesh, N S
2018-03-01
Thirty three surface sediments were collected for the present study to assess the elemental concentration and its associated ecological risk in the reef associated surface sediments, Appa Island, Gulf of Mannar Biosphere Reserve, South east coast of India. The distribution of calcium carbonate in the reef sediments is controlled by coral debris and shell fragments whereas the Organic matter (OM) content are chiefly derived from mangroves and sea grasses. The circulation of trace elements and Fe, Mn are controlled by the fluvial process and re-suspended sediments. The concentration of Pb was primarily controlled by migration of pollutants through long shore sediment transport process. The main source of Pb in the study area is from coal incinerating power plants and coal handling operations from harbors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ding, Huijun; Wu, Yixiao; Zhang, Weihao; Zhong, Jiayou; Lou, Qian; Yang, Ping; Fang, Yuanyuan
2017-10-01
SPE-UPLC-MS/MS was used to investigate the occurrence of 18 target antibiotics in the surface water of Poyang Lake over different seasons of 2014-2015. The maximum concentrations of sulfadiazine, oxytetracycline, and doxycycline were 56.2, 48.7, and 39.7 ng/L, respectively. Compared with those in the other lakes or surface waters, the surface water of Poyang Lake contained moderate or below-average levels of antibiotics. The significantly lower concentrations (P < 0.01) of roxithromycin in June 2015 likely resulted from the dilution effect of water flow during the flood season. Antibiotic concentrations were higher in site P3-1 than in other sites (P < 0.01), whereas those in other sites (P1-1, P2-1, P5-1, P6-1, P7-1, P13-1, P16-1, P17-1, P18-1) were not significantly different (P > 0.05). Given that tetracyclines and sulfonamides are common veterinary medicines, the high concentrations of oxytetracycline, doxycycline, and sulfadiazine in site P3-1 might be closely related to agricultural production in the surrounding areas. The risk assessment of the main antibiotic contaminants revealed that the majority of the risk quotients of the target antibiotics were below 0.01, thereby indicating the minimal risk of these antibiotics to organisms at three different trophic levels. Sulfadimidine and sulfadiazine were identified as the main antibiotics that contribute to ecological risk in Poyang Lake, and that the daphnid is the main model organism exposed to these risks. This study provides important data for antibiotic pollution control and environmental protection in the study area and enriches environmental monitoring data on a global scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2011-01-01
Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.
Probabilistic Risk Model for Organ Doses and Acute Health Effects of Astronauts on Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2009-01-01
Exposure to large solar particle events (SPEs) is a major concern during EVAs on the lunar surface and in Earth-to-Lunar transit. 15% of crew times may be on EVA with minimal radiation shielding. Therefore, an accurate assessment of SPE occurrence probability is required for the mission planning by NASA. We apply probabilistic risk assessment (PRA) for radiation protection of crews and optimization of lunar mission planning.
Distribution and Risk Assessment of Antibiotics in a Typical River in North China Plain.
Li, Qingzhao; Gao, Junxia; Zhang, Qiuling; Liang, Lizhen; Tao, He
2017-04-01
We evaluated the occurrence and distribution of 12 antibiotics from the sulfonamide (SAs), fluoroquinolone (FQs) and tetracycline (TCs) groups in the Weihe River, North China. The total antibiotic concentrations in surface water, pore water, and sediment samples ranged from 11.1 to 173.1 ng/L, 5.8 to 103.9 ng/L, and 9.5 to 153.4 μg/kg, respectively. The values of the sediment-water partitioning coefficient in the Weihe River varied widely, from not detected to 943, 2213, and 2405 L/kg for SAs, FQs, and TCs, respectively. The values of the partitioning coefficients between sediment and surface water were generally lower than those between sediment and pore water, which indicated ongoing inputs to the water. The risk assessment showed that there were relatively high ecological risks to aquatic algae in this area from sulfamethoxazole, norfloxacin, tetracycline, ofloxacin, and ciprofloxacin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Projectmore » at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.« less
Gao, Xueping; Liu, Yinzhu; Sun, Bowen
2018-06-05
The risk of water shortage caused by uncertainties, such as frequent drought, varied precipitation, multiple water resources, and different water demands, brings new challenges to the water transfer projects. Uncertainties exist for transferring water and local surface water; therefore, the relationship between them should be thoroughly studied to prevent water shortage. For more effective water management, an uncertainty-based water shortage risk assessment model (UWSRAM) is developed to study the combined effect of multiple water resources and analyze the shortage degree under uncertainty. The UWSRAM combines copula-based Monte Carlo stochastic simulation and the chance-constrained programming-stochastic multiobjective optimization model, using the Lunan water-receiving area in China as an example. Statistical copula functions are employed to estimate the joint probability of available transferring water and local surface water and sampling from the multivariate probability distribution, which are used as inputs for the optimization model. The approach reveals the distribution of water shortage and is able to emphasize the importance of improving and updating transferring water and local surface water management, and examine their combined influence on water shortage risk assessment. The possible available water and shortages can be calculated applying the UWSRAM, also with the corresponding allocation measures under different water availability levels and violating probabilities. The UWSRAM is valuable for mastering the overall multi-water resource and water shortage degree, adapting to the uncertainty surrounding water resources, establishing effective water resource planning policies for managers and achieving sustainable development.
PEER REVIEW SUPPORTING THE STANDARDS FOR THE MANAGEMENT OF COAL COMBUSTION WASTES PART 1 AND 2
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and b...
Assessing the effects of noise abatement measures on health risks: A case study in Istanbul
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr; Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr
In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed inmore » the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.« less
Gao, Jun-Min; Wu, Lei; Chen, You-Peng; Zhou, Bin; Guo, Jin-Song; Zhang, Ke; Ouyang, Wen-Juan
2017-03-01
The water quality security of the Three Gorges Reservoir during different operating periods has been a subject of recent concern. This study is the first to report the spatiotemporal variability of organotins (OTs) in surface water under dynamic water level conditions in the Three Gorges Reservoir Region (TGRR). TGRR surface water was collected during three monitoring campaigns to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry system. Our results showed that TGRR surface water was polluted by BTs and PTs, with mono-OTs being the dominant species. A wide range of BTs and PTs concentrations was observed across the study area, but tributyltin (TBT) displayed extensive spatial distribution, and the highest concentrations consistently occurred in the downstream region of the TGRR study area, with a maximum of 393.35 ng Sn/L in Zigui (S27). The total OTs contamination level decreased over time. The diphenyltin concentration exhibited significant seasonal variation, while other OTs showed seasonal changes only during two monitoring campaigns, with the exception of dibutyltin. An ecological risk assessment indicated that both TBT and triphenyltin posed risks to aquatic organisms in TGRR surface water. We urgently recommend continuous monitoring and further measures to prevent and control OTs pollution in the TGRR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lau, Winifred Ka Yan; Liang, Peng; Man, Yu Bon; Chung, Shan Shan; Wong, Ming Hung
2014-03-01
This study investigated health risks exerted on electronic waste (e-waste) recycling workers exposed to cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), and zinc (Zn) in Hong Kong. E-waste recycling workshops were classified into eight working areas: 1 = office, 2 = repair, 3 = dismantling, 4 = storage, 5 = desoldering, 6 = loading, 7 = cable shredding, and 8 = chemical waste. The aforementioned metal concentrations were analyzed in suspended air particulates, surface dust and floor dust collected from the above study areas in five workshops. Elevated Pb levels were measured in dismantling and desoldering areas (582 and 486 μg/100 cm(2) in surface and 3,610 and 19,172 mg/kg in floor dust, respectively). Blood lead levels of 10 and 39.5 μg/dl were estimated using United States Environmental Protection Agency's Adult Lead Model as a result of exposure to the floor dust from these two areas. Human health risk assessments were conducted to evaluate cancer and noncancer risks resulting from exposure to floor dust through the combined pathways of ingestion, dermal contact, and inhalation. Findings indicated that workers may be exposed to cancer risks above the acceptable range at 147 in a million at the 95th percentile in the dismantling area. Workers should be informed of associated risks to safeguard their health.
Spreadsheet Assessment Tool v. 2.4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, David J.; Martinez, Ruben
2016-03-03
The Spreadsheet Assessment Tool (SAT) is an easy to use, blast assessment tool that is intended to estimate the potential risk due to an explosive attack on a blood irradiator. The estimation of risk is based on the methodology, assumptions, and results of a detailed blast effects assessment study that is summarized in Sandia National Laboratories Technical Report SAND2015-6166. Risk as defined in the report and as used in the SAT is: "The potential risk of creating an air blast-induced vent opening at a buildings envelope surface". Vent openings can be created at a buildings envelope through the failure ofmore » an exterior building component—like a wall, window, or door—due to an explosive sabotage of an irradiator within the building. To estimate risk, the tool requires that users obtain and input information pertaining to the building's characteristics and the irradiator location. The tool also suggests several prescriptive mitigation strategies that can be considered to reduce risk. Given the variability in civilian building construction practices, the input parameters used by this tool may not apply to all buildings being assessed. The tool should not be used as a substitute for engineering judgment. The tool is intended for assessment purposes only.« less
Pereira, André M P T; Silva, Liliana J G; Lino, Celeste M; Meisel, Leonor M; Pena, Angelina
2016-02-01
In line with the Directive 2013/39/EU the most representative surface waters, regarding pharmaceuticals contamination, were selected based on a Portuguese nationwide monitoring exercise. To meet this purpose, and given that wastewater treatment plants (WWTPs) are regarded as the major point sources of pharmaceuticals environmental contamination, the occurrence, fate and environmental risk assessment (ERA) of eleven of the most consumed pharmaceuticals, belonging to several therapeutic classes were assessed in 15 WWTPs (influents (WWIs) and effluents (WWEs)), from five different regions during one year (4 sampling campaigns). Results showed that all samples were contaminated with at least 1, and up to 8 from the 11 targeted pharmaceuticals. The highest concentrations observed were 150 and 33 μg L(-1) for WWI and WWE, respectively. Regarding temporal and spacial influence, winter, Alentejo, Algarve and Center regions presented higher mass loads. The ERA posed by 7 of the selected pharmaceuticals presented a risk quotient higher than 1 to the three trophic levels. Our findings highlighted that the rivers Mondego, Tagus, Ave, Trancão, Fervença and Xarrama should be selected as surface water monitoring stations. This study gives a good overview on pharmaceuticals contamination in WWTPs and its impact on surface waters in Portugal. Thus, a more integrative approach to rank and prioritize pharmaceuticals, based on an integrated assessment of ERA and exposure of surface water, was provided to support the future selection of the 6 most representative monitoring stations in Portugal, as required by the above mentioned directive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger
2013-02-01
Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.
To evaluate the vulnerability of the Brachyura crabs (<200 m) to projected increases in sea surface temperature (SST), we developed an approach that evaluates risk within each of the ten Marine Ecoregions of the World (MEOW) ranging from Southern California to the Beaufort Sea...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmi, S.
1996-04-15
This document contains the baseline human health risk assessment and the ecological risk assessment (ERA) for the Oliktok Point Distant Early Warning (DEW) Line radar installation. Eight sites at the Oliktok Point radar installation underwent remedial investigations (RIs) during the summer of 1993. The presence of chemical contamination in the soil, sediments, and surface water at the installation was evaluated and reported in the Oliktok Point Remedial Investigation/Feasibility Study (RI/FS) (U.S. Air Force 1996). The analytical data reported in the RI/FS form the basis for the human health and ecological risk assessments. The primary chemicals of concern (COCs) at themore » eight sites are diesel and gasoline from past spills and/or leaks, chlorinated solvents, metals, and polychlorinated biphenyls (PCBs).« less
Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif
2017-01-01
Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Support surfaces for pressure ulcer prevention: A network meta-analysis
Dumville, Jo C.; Cullum, Nicky
2018-01-01
Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties. PMID:29474359
Support surfaces for pressure ulcer prevention: A network meta-analysis.
Shi, Chunhu; Dumville, Jo C; Cullum, Nicky
2018-01-01
Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties.
Surface sediment quality relative to port activities: A contaminant-spectrum assessment.
Yu, Shen; Hong, Bing; Ma, Jun; Chen, Yongshan; Xi, Xiuping; Gao, Jingbo; Hu, Xiuqin; Xu, Xiangrong; Sun, Yuxin
2017-10-15
Ports are facing increasing environmental concerns with their importance to the global economy. Numerous studies indicated sediment quality deterioration in ports; however, the deterioration is not discriminated for each port activity. This study investigated a spectrum of contaminants (metals and organic pollutants) in surface sediments at 20 sampling points in Port Ningbo, China, one of the top five world ports by volume. The spectrum of contaminants (metals and organic pollutants) was quantified following marine sediment quality guidelines of China and USA and surface sediment quality was assessed according to thresholds of the two guidelines. Coupling a categorical matrix of port activities with the matrix of sedimentary contaminants revealed that contaminants were highly associated with the port operations. Ship repair posed a severe chemical risk to sediment. Operations of crude oil and coal loadings were two top activities related to organic pollutants in sediments while port operations of ore and container loadings discharged metals. Among the 20 sampling points, Cu, Zn, Pb, and DDT and its metabolites were the priority contaminants influencing sediment quality. Overall, surface sediments in Port Ningbo had relatively low environmental risks but ship repair is an environmental concern that must be addressed. This study provides a practical approach for port activity-related quality assessment of surface sediments in ports that could be applicable in many world sites. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmi, S.
1996-04-01
This document contains the baseline human health risk assessment and the ecological risk assessment (ERA) for the Point Lonely Distant Early Warning (DEW) Line radar installation. Twelve sites at the Point Lonely radar installation underwent remedial investigations (RIs) during the summer of 1993. The Vehicle Storage Area (SS14) was combined with the Inactive Landfill because the two sites were essentially co-located and were sampled during the RI as a single unit. Therefore, 11 sites are discussed in this risk assessment. The presence of chemical contamination in the soil, sediments, and surface water at the installation was evaluated and reported inmore » the Point Lonely Remedial Investigation/Feasibility Study (RI/FS). The analytical data reported in the RI/FS form the basis for the human health and ecological risk assessments. The primary chemicals of concern (COCs) at the 11 sites are diesel and gasoline from past spills and/or leaks, chlorinated solvents, and manganese. The 11 sites investigated and the types of samples collected at each site are presented.« less
The Food Quality Protection Act (FQPA) demands that exposure of infants and children to pesticide residues from non-dietary sources be included in EPA's aggregate risk assessment. Ideally, the informed assessment would aggregate exposures from all reasonable sources, primarily ...
USDA-ARS?s Scientific Manuscript database
This study presents a sensitive analytical method using high performance liquid chromatography tandem mass spectrometry for the simultaneous monitoring of five estrogen conjugates, six estrogens and two progestagens in surface water of the Santa Ana River. Samples at ten representative sites along t...
Zhang, Liangmao; Wei, Caidi; Zhang, Hui; Song, Mingwei
2017-10-01
The typical environmental endocrine disruptor nonylphenol is becoming an increasingly common pollutant in both fresh and salt water; it compromises the growth and development of many aquatic organisms. As yet, water quality criteria with respect to nonylphenol pollution have not been established in China. Here, the predicted "no effect concentration" of nonylphenol was derived from an analysis of species sensitivity distribution covering a range of species mainly native to China, as a means of quantifying the ecological risk of nonylphenol in surface fresh water. The resulting model, based on the log-logistic distribution, proved to be robust; the minimum sample sizes required for generating a stable estimate of HC 5 were 12 for acute toxicity and 13 for chronic toxicity. The criteria maximum concentration and criteria continuous concentration were, respectively 18.49 μg L -1 and 1.85 μg L -1 . Among the 24 sites surveyed, two were associated with a high ecological risk (risk quotient >1) and 12 with a moderate ecological risk (risk quotient >0.1). The potentially affected fraction ranged from 0.008% to 24.600%. The analysis provides a theoretical basis for both short- and long-term risk assessments with respect to nonylphenol, and also a means to quantify the risk to aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing the health risks of natural CO2 seeps in Italy
Roberts, Jennifer J.; Wood, Rachel A.; Haszeldine, R. Stuart
2011-01-01
Industrialized societies which continue to use fossil fuel energy sources are considering adoption of Carbon Capture and Storage (CCS) technology to meet carbon emission reduction targets. Deep geological storage of CO2 onshore faces opposition regarding potential health effects of CO2 leakage from storage sites. There is no experience of commercial scale CCS with which to verify predicted risks of engineered storage failure. Studying risk from natural CO2 seeps can guide assessment of potential health risks from leaking onshore CO2 stores. Italy and Sicily are regions of intense natural CO2 degassing from surface seeps. These seeps exhibit a variety of expressions, characteristics (e.g., temperature/flux), and location environments. Here we quantify historical fatalities from CO2 poisoning using a database of 286 natural CO2 seeps in Italy and Sicily. We find that risk of human death is strongly influenced by seep surface expression, local conditions (e.g., topography and wind speed), CO2 flux, and human behavior. Risk of accidental human death from these CO2 seeps is calculated to be 10-8 year-1 to the exposed population. This value is significantly lower than that of many socially accepted risks. Seepage from future storage sites is modeled to be less that Italian natural flux rates. With appropriate hazard management, health risks from unplanned seepage at onshore storage sites can be adequately minimized. PMID:21911398
77 FR 58804 - Testing of Product Samples for Listeria monocytogenes: Changes in Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
... risk-based program designed to detect L. monocytogenes contamination from three types of samples: Food.... An IVT, similar to a RLm, is designed to analyze three types of samples: food-contact surfaces..., Pouillot R, et al. A comparative risk assessment for Listeria monocytogenes in prepackaged versus retail...
A multi-year study in the C-111 canal and associated sites in Florida Bay was undertaken in order to determine the potential contaminant risk that exists in South Florida. After examining extensive surface water data, as well as sediment, tissue, and semi-permeable membrane devic...
Begum, Shaheen; Shah, Mohammad Tahir; Muhammad, Said; Khan, Sardar
2015-12-01
This study investigates the drinking water (groundwater and surface water) quality and potential risk assessment along mafic and ultramafic rocks in the Swat district of Khyber Pakhtunkhwa Provence, Pakistan. For this purpose, 82 groundwater and 33 surface water samples were collected and analyzed for physico-chemical parameters. Results showed that the majority of the physico-chemical parameters were found to be within the drinking water guidelines set by the World Health Organization. However, major cationic metals such as magnesium (Mg), and trace metals (TM) including iron (Fe), manganese (Mn), nickel (Ni), chromium (Cr) and cobalt (Co) showed exceeded concentrations in 13%, 4%, 2%, 20%, 20% and 55% of water samples, respectively. Health risk assessment revealed that the non-carcinogenic effects or hazard quotient values through the oral ingestion pathway of water consumption for the TM (viz., Fe, Cr and Mn) were found to be greater than 1, could result in chronic risk to the exposed population. Results of statistical analyses revealed that mafic and ultramafic rocks are the main sources of metal contamination in drinking water, especially Ni and Cr. Both Ni and Cr have toxic health effects and therefore this study suggests that contaminated sites should be avoided or treated for drinking and domestic purposes.
Dornic, N; Ficheux, A S; Bernard, A; Roudot, A C
2017-08-01
The notes of guidance for the testing of cosmetic ingredients and their safety evaluation by the Scientific Committee on Consumer Safety (SCCS) is a document dedicated to ensuring the safety of European consumers. This contains useful data for risk assessment such as default values for Skin Surface Area (SSA). A more in-depth study of anthropometric data across Europe reveals considerable variations. The default SSA value was derived from a study on the Dutch population, which is known to be one of the tallest nations in the World. This value could be inadequate for shorter populations of Europe. Data were collected in a survey on cosmetic consumption in France. Probabilistic treatment of these data and analysis of the case of methylisothiazolinone, a sensitizer recently evaluated by a deterministic approach submitted to SCCS, suggest that the default value for SSA used in the quantitative risk assessment might not be relevant for a significant share of the French female population. Others female populations of Southern Europe may also be excluded. This is of importance given that some studies show an increasing risk of developping skin sensitization among women. The disparities in anthropometric data across Europe should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W.
2018-01-01
Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were more finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution.
Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment.
Sun, Rui; Wu, Minghong; Tang, Liang; Li, Jiajun; Qian, Zhaoqiu; Han, Tao; Xu, Gang
2018-03-01
17 perfluorinated compounds (PFCs) were systematically investigated in the surface water from principal watersheds of Shanghai, China. 10 PFCs were above the detection limit (0.08-0.28ng/L) in 39 surface water samples. The perfluorooctanoic acid (PFOA) and perfluorobutanesulfonate (PFBS) were the two dominant compounds with a median concentration 50.67ng/L and 29.84ng/L, respectively. Concentrations of perfluorooctanesulfonate (PFOS) were generally less than PFBS, which might result from the global phase-out of PFOS production and the use of PFBS as a substitute for PFOS-based products. There were three major polluted areas of PFOA along the Huangpu River. The PFOA concentration in groundwater samples collected from one of the three areas indicated that chemical industry might be the possible source. The perfluoroalkane sulfonates (PFSAs) level had a spatial trend that indicated northwest had higher concentrations than the southeast. The distribution of PFCs was not much affected by atmospheric deposition. Mass loading analysis in the surface water revealed that the Huangpu River exhibited relatively large mass loading of total PFCs of 1742.43kg/year to Yangtze River Estuary. The predominant of the PFC species was PFOA with 652.65kg/year. The current concentrations of PFOA and PFOS were at middle level comparing to other studies in China and worldwide. Risk assessment of 6 PFCs showed that there is no risk to the aquatic organisms in Shanghai. PFOS and PFBS had low risk to the avian. Furthermore, the adults living in Shanghai were at low risk to exposure to PFCs through water consumption. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsui, Mirabelle M P; Leung, H W; Wai, Tak-Cheung; Yamashita, Nobuyoshi; Taniyasu, Sachi; Liu, Wenhua; Lam, Paul K S; Murphy, Margaret B
2014-12-15
Organic UV filters are common ingredients of personal care products (PCPs), but little is known about their distribution in and potential impacts to the marine environment. This study reports the occurrence and risk assessment of twelve widely used organic UV filters in surface water collected in eight cities in four countries (China, the United States, Japan, and Thailand) and the North American Arctic. The number of compounds detected, Hong Kong (12), Tokyo (9), Bangkok (9), New York (8), Los Angeles (8), Arctic (6), Shantou (5) and Chaozhou (5), generally increased with population density. Median concentrations of all detectable UV filters were <250 ng/L. The presence of these compounds in the Arctic is likely due to a combination of inadequate wastewater treatment and long-range oceanic transport. Principal component analysis (PCA) and two-way analysis of variance (ANOVA) were conducted to explore spatiotemporal patterns and difference in organic UV filter levels in Hong Kong. In general, spatial patterns varied with sampling month and all compounds showed higher concentrations in the wet season except benzophenone-4 (BP-4). Probabilistic risk assessment showed that 4-methylbenzylidene camphor (4-MBC) posed greater risk to algae, while benzophenone-3 (BP-3) and ethylhexyl methoxycinnamate (EHMC) were more likely to pose a risk to fishes and also posed high risk of bleaching in hard corals in aquatic recreational areas in Hong Kong. This study is the first to report the occurrence of organic UV filters in the Arctic and provides a wider assessment of their potential negative impacts in the marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marine pollution in the Libyan coastal area: Environmental and risk assessment.
Bonsignore, Maria; Salvagio Manta, Daniela; Al-Tayeb Sharif, Ehab A; D'Agostino, Fabio; Traina, Anna; Quinci, Enza Maria; Giaramita, Luigi; Monastero, Calogera; Benothman, Mohamed; Sprovieri, Mario
2018-03-01
A comprehensive assessment of the potential adverse effects on environment and human health generated by the inputs of chemicals from the most important Libyan petrochemical plant is presented. Ecotoxicological risk associated with the presence of As, Hg, Ni, Zn and PAHs in marine sediments is low or moderate, with a probability of toxicity for ecosystem <9% and <20% for heavy metals and PAHs respectively. However, surface sediments result strongly enriched in Hg and As of anthropogenic origin. Investigation of metals in fish allowed to assess potential risks for human populations via fish intake. Target hazard quotients values indicate potential risk associated to toxic metals exposure by fish consumption and lifetime cancer risk (TR) values highlight a potential carcinogen risk associated to As intake. Noteworthy, the presented results provide an unprecedented environmental dataset in an area where the availability of field data is very scant, for a better understanding of anthropogenic impacts at Mediterranean scale. Copyright © 2018 Elsevier Ltd. All rights reserved.
PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.
Socioeconomic indicators of heat-related health risk supplemented with remotely sensed data
Johnson, Daniel P; Wilson, Jeffrey S; Luber, George C
2009-01-01
Background Extreme heat events are the number one cause of weather-related fatalities in the United States. The current system of alert for extreme heat events does not take into account intra-urban spatial variation in risk. The purpose of this study is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature derived from thermal remote sensing data. Results Comparison of logistic regression models indicates that supplementing known sociodemographic risk factors with remote sensing estimates of land surface temperature improves the delineation of intra-urban variations in risk from extreme heat events. Conclusion Thermal remote sensing data can be utilized to improve understanding of intra-urban variations in risk from extreme heat. The refinement of current risk assessment systems could increase the likelihood of survival during extreme heat events and assist emergency personnel in the delivery of vital resources during such disasters. PMID:19835578
Grieger, Khara D; Hansen, Steffen F; Sørensen, Peter B; Baun, Anders
2011-09-01
Conducting environmental risk assessment of engineered nanomaterials has been an extremely challenging endeavor thus far. Moreover, recent findings from the nano-risk scientific community indicate that it is unlikely that many of these challenges will be easily resolved in the near future, especially given the vast variety and complexity of nanomaterials and their applications. As an approach to help optimize environmental risk assessments of nanomaterials, we apply the Worst-Case Definition (WCD) model to identify best estimates for worst-case conditions of environmental risks of two case studies which use engineered nanoparticles, namely nZVI in soil and groundwater remediation and C(60) in an engine oil lubricant. Results generated from this analysis may ultimately help prioritize research areas for environmental risk assessments of nZVI and C(60) in these applications as well as demonstrate the use of worst-case conditions to optimize future research efforts for other nanomaterials. Through the application of the WCD model, we find that the most probable worst-case conditions for both case studies include i) active uptake mechanisms, ii) accumulation in organisms, iii) ecotoxicological response mechanisms such as reactive oxygen species (ROS) production and cell membrane damage or disruption, iv) surface properties of nZVI and C(60), and v) acute exposure tolerance of organisms. Additional estimates of worst-case conditions for C(60) also include the physical location of C(60) in the environment from surface run-off, cellular exposure routes for heterotrophic organisms, and the presence of light to amplify adverse effects. Based on results of this analysis, we recommend the prioritization of research for the selected applications within the following areas: organism active uptake ability of nZVI and C(60) and ecotoxicological response end-points and response mechanisms including ROS production and cell membrane damage, full nanomaterial characterization taking into account detailed information on nanomaterial surface properties, and investigations of dose-response relationships for a variety of organisms. Copyright © 2011 Elsevier B.V. All rights reserved.
Distribution and assessment of heavy metals in the surface sediment of Yellow River, China.
Yan, Nan; Liu, Wenbin; Xie, Huiting; Gao, Lirong; Han, Ying; Wang, Mengjing; Li, Haifeng
2016-01-01
Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study, fourteen surface sediment samples were taken in the middle reach of the Yellow River. Contents of Zn, Pb, Ni, Cu, Cr, Cd, As were measured, and the pollution status was assessed using three widely used pollution assessment methods, including the single factor index method, Nemerow pollution index method and potential ecological risk index. The concentrations of the studied heavy metals followed the order: Zn>Cr>Cu>Ni>Pb>As>Cd. Nearly 50% of sites had Cu and Cr accumulation. The concentration of Cu at the Yiluo River exceeded the secondary standard value of the Environmental quality standard for soils. Comparison of heavy metal concentrations between this study and other selected rivers indicated that Cu and Cr may be the major pollutants in our case. The single factor index indicated that many samples were at high levels of pollution for Cu and Cd; the Nemerow pollution index indicated that the Yihe River, Luohe River, Yiluo River and Huayuankou were polluted. According to the results of potential ecological risk assessment, Cd in the tributaries of Luo River, Yihe River, and Yiluo River showed high risk toward the ecosystem and human health, Cd in Huanyuankou and Cu in Yiluo River showed a middle level of risk and other samples were at a low level of risk. Copyright © 2015. Published by Elsevier B.V.
Biohazards Assessment in Large-Scale Zonal Centrifugation
Baldwin, C. L.; Lemp, J. F.; Barbeito, M. S.
1975-01-01
A study was conducted to determine the biohazards associated with use of the large-scale zonal centrifuge for purification of moderate risk oncogenic viruses. To safely and conveniently assess the hazard, coliphage T3 was substituted for the virus in a typical processing procedure performed in a National Cancer Institute contract laboratory. Risk of personnel exposure was found to be minimal during optimal operation but definite potential for virus release from a number of centrifuge components during mechanical malfunction was shown by assay of surface, liquid, and air samples collected during the processing. High concentration of phage was detected in the turbine air exhaust and the seal coolant system when faulty seals were employed. The simulant virus was also found on both centrifuge chamber interior and rotor surfaces. Images PMID:1124921
Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale
MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah
2000-01-01
Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.
Genetic Susceptibility to Dental Caries on Pit and Fissure and Smooth Surfaces
Shaffer, J.R.; Wang, X.; DeSensi, R.S.; Wendell, S.; Weyant, R.J.; Cuenco, K.T.; Crout, R.; McNeil, D.W.; Marazita, M.L.
2012-01-01
Carious lesions are distributed nonuniformly across tooth surfaces of the complete dentition, suggesting that the effects of risk factors may be surface-specific. Whether genes differentially affect caries risk across tooth surfaces is unknown. We investigated the role of genetics on two classes of tooth surfaces, pit and fissure surfaces (PFS) and smooth surfaces (SMS), in more than 2,600 subjects from 740 families. Participants were examined for surface-level evidence of dental caries, and caries scores for permanent and/or primary teeth were generated separately for PFS and SMS. Heritability estimates (h2, i.e. the proportion of trait variation due to genes) of PFS and SMS caries scores were obtained using likelihood methods. The genetic correlations between PFS and SMS caries scores were calculated to assess the degree to which traits covary due to common genetic effects. Overall, the heritability of caries scores was similar for PFS (h2 = 19–53%; p < 0.001) and SMS (h2 = 17–42%; p < 0.001). Heritability of caries scores for both PFS and SMS in the primary dentition was greater than in the permanent dentition and total dentition. With one exception, the genetic correlation between PFS and SMS caries scores was not significantly different from 100%, indicating that (mostly) common genes are involved in the risk of caries for both surface types. Genetic correlation for the primary dentition dfs (decay + filled surfaces) was significantly less than 100% (p < 0.001), indicating that genetic factors may exert differential effects on caries risk in PFS versus SMS in the primary dentition. PMID:22286298
Yao, Linlin; Wang, Yanxin; Tong, Lei; Deng, Yamin; Li, Yonggang; Gan, Yiqun; Guo, Wei; Dong, Chuangju; Duan, Yanhua; Zhao, Ke
2017-01-01
The occurrence of 14 antibiotics (fluoroquinolones, tetracyclines, macrolides and sulfonamides) in groundwater and surface water at Jianghan Plain was investigated during three seasons. The total concentrations of target compounds in the water samples were higher in spring than those in summer and winter. Erythromycin was the predominant antibiotic in surface water samples with an average value of 1.60μg/L, 0.772μg/L and 0.546μg/L respectively in spring, summer and winter. In groundwater samples, fluoroquinolones and tetracyclines accounted for the dominant proportion of total antibiotic residues. The vertical distributions of total antibiotics in groundwater samples from three different depths boreholes (10m, 25m, and 50m) exhibited irregular fluctuations. Consistently decreasing of antibiotic residues with increasing of depth was observed in four (G01, G02, G03 and G05) groundwater sampling sites over three seasons. However, at the sampling sites G07 and G08, the pronounced high concentrations of total antibiotic residues were detected in water samples from 50m deep boreholes instead of those at upper aquifer in winter sampling campaign, with the total concentrations of 0.201μg/L and 0.100μg/L respectively. The environmental risks posed by the 14 antibiotics were assessed by using the methods of risk quotient and mixture risk quotient for algae, daphnids and fish in surface water and groundwater. The results suggested that algae might be the aquatic organism most sensitive to the antibiotics, with the highest risk levels posed by erythromycin in surface water and by ciprofloxacin in groundwater among the 14 antibiotics. In addition, the comparison between detected antibiotics in groundwater samples and the reported effective concentrations of antibiotics on denitrification by denitrifying bacteria, indicating this biogeochemical process driven by microorganisms won't be inhibitory influenced by the antibiotic residues in groundwater. Copyright © 2016. Published by Elsevier Inc.
Evidence-Based Practice Guideline: Fall Prevention for Older Adults.
Kruschke, Cheryl; Butcher, Howard K
2017-11-01
Falls are a major cause of injury and death annually for millions of individuals 65 and older. Older adults are at risk for falls for a variety of reasons regardless of where they live. Falls are defined as any sudden drop from one surface to a lower surface. The purpose of this fall prevention evidence-based practice guideline is to describe strategies that can identify individuals at risk for falls. A 10-step protocol including screening for falls, comprehensive fall assessment, gait and balance screening when necessary, and an individualized fall intervention program addressing specific fall risks is presented. Reassessing fall risk and fall prevention programs will ensure a proactive approach to reducing falls in the aging population. [Journal of Gerontological Nursing, 43(11), 15-21.]. Copyright 2017, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Metcalfe, C.; Bennett, E.; Chappell, M.; Steevens, J.; Depledge, M.; Goss, G.; Goudey, S.; Kaczmar, S.; O'Brien, N.; Picado, A.; Ramadan, A. B.
Traditional risk assessment procedures are inadequate for predicting the ecological risks associated with the release of nanomaterials (NM) into the environment. The root of the problem lies in an inadequate application of solid phase chemical principles (e.g. particle size, shape, functionality) for the risk assessment of NMs. Thus, the "solubility" paradigm used to evaluate the risks associated with other classes of contaminants must be replaced by a "dispersivity" paradigm for evaluating the risks associated with NM. The pace of development of NM will exceed the capacity to conduct adequate risk assessments using current methods and approaches. Each NM product will be available in a variety of size classes and with different surface functionalizations; probably requiring multiple risk assessments for each NM. The "SMARTEN" approach to risk assessment involves having risk assessors play a more proactive role in evaluating all aspects of the NM life cycle and in making decisions to develop lower risk NM products. Improved problem formulation could come from considering the chemical, physical and biological properties of NMs. New effects assessment techniques are needed to evaluate cellular binding and uptake potential, such as biological assays for binding to macromolecules or organelles, phagocytic activity, and active/passive uptake processes. Tests should be developed to evaluate biological effects with multiple species across a range of trophic levels. Despite our best efforts to assess the risks associated with NM, previous experience indicates that some NM products will enter the environment and cause biological effects. Therefore, risk assessors should support programs for reconnaissance and surveillance to detect the impacts of NM before irreversible damage occurs. New analytical tools are needed for surveillance, including sensors for detecting NMs, passive sampling systems, and improved methods for separation and characterization of NMs in environmental matrices, as well as biomarker techniques to evaluate exposure to NMs. Risk assessors should use this information to refine data quality, determine future risk assessment objectives and to communicate interim conclusions to a wide group of stakeholders.1
French-McCay, Deborah; Crowley, Deborah; Rowe, Jill J; Bock, Michael; Robinson, Hilary; Wenning, Richard; Walker, Ann Hayward; Joeckel, John; Nedwed, Tim J; Parkerton, Thomas F
2018-06-01
Oil spill model simulations of a deepwater blowout in the Gulf of Mexico De Soto Canyon, assuming no intervention and various response options (i.e., subsea dispersant injection SSDI, in addition to mechanical recovery, in-situ burning, and surface dispersant application) were compared. Predicted oil fate, amount and area of surfaced oil, and exposure concentrations in the water column above potential effects thresholds were used as inputs to a Comparative Risk Assessment to identify response strategies that minimize long-term impacts. SSDI reduced human and wildlife exposure to volatile organic compounds; dispersed oil into a large water volume at depth; enhanced biodegradation; and reduced surface water, nearshore and shoreline exposure to floating oil and entrained/dissolved oil in the upper water column. Tradeoffs included increased oil exposures at depth. However, since organisms are less abundant below 200 m, results indicate that overall exposure of valued ecosystem components was minimized by use of SSDI. Copyright © 2018 Elsevier Ltd. All rights reserved.
The fate and risk assessment of psychiatric pharmaceuticals from psychiatric hospital effluent.
Xiang, Jiajia; Wu, Minghong; Lei, Jianqiu; Fu, Chao; Gu, Jianzhong; Xu, Gang
2018-04-15
Psychiatric pharmaceuticals are gaining public attention because of increasing reports of their occurrence in environment and their potential impact on ecosystems and human health. This work studied the occurrence and fate of 15 selected psychiatric pharmaceuticals from 3 psychiatric hospitals effluent in Shanghai and investigated the effect of hospitals effluent on surface water, groundwater, soil and plant. Amitriptyline (83.57ng) and lorazepam (22.26ng) showed the highest concentration and were found frequently in hospital effluent. Lorazepam (8.27ng), carbamazepine (83.80ng) and diazepam (79.33ng) showed higher values in surface water. The concentration of lorazepam (46.83ng) in groundwater was higher than other reports. Only six target compounds were detected in all three soil points in accordance with very low concentration. Alkaline pharmaceuticals were more easily adsorbed by soil. Carbamazepine (1.29ng) and lorazepam (2.95ngg -1 ) were frequently determined in plant tissues. The correlation analyses (Spearman correlations > 0.5) showed the main source of psychiatric pharmaceuticals pollutants might be hospital effluents (from effluent to surface water; from surface water to groundwater). However, hospital effluents were not the only pollution sources from the perspective of the dilution factor analysis. Although the risk assessment indicated that the risk was low to aquatic organism, the continuous discharge of pollution might cause potential environment problem. Copyright © 2017 Elsevier Inc. All rights reserved.
Occurrence and Risk Assessment of PAHs in Surface Sediments from Western Arctic and Subarctic Oceans
Lin, Yan; Cai, Minggang; Zhang, Jingjing; Zhang, Yuanbiao; Kuang, Weiming; Liu, Lin; Huang, Peng; Ke, Hongwei
2018-01-01
In the fourth Chinese National Arctic Research Expedition (from July to September, 2010), 14 surface sediment samples were collected from the Bering Sea, Chukchi Sea, and Canadian Basin to examine the spatial distributions, potential sources, as well as ecological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs). The ∑PAH (refers to the sum of 16 priority PAHs) concentration range from 27.66 ng/g to 167.48 ng/g (dry weight, d.w.). Additionally, the concentrations of ∑PAH were highest in the margin edges of the Canadian Basin, which may originate from coal combustion with an accumulation of Canadian point sources and river runoff due to the surface ocean currents. The lowest levels occurred in the northern of Canadian Basin, and the levels of ∑PAH in the Chukchi Sea were slightly higher than those in the Being Sea. Three isomer ratios of PAHs (Phenanthrene/Anthracene, BaA/(BaA+Chy), and LMW/HMW) were used to investigate the potential sources of PAHs, which showed the main source of combustion combined with weaker petroleum contribution. Compared with four sediment quality guidelines, the concentrations of PAH are much lower, indicating a low potential ecological risk. All TEQPAH also showed a low risk to human health. Our study revealed the important role of the ocean current on the redistribution of PAHs in the Arctic. PMID:29649142
Seismic Hazard Assessment for the Baku City and Absheron Peninsula, Azerbaijan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babayev, Gulam R.
2006-03-23
This paper deals with the seismic hazard assessment for Baku and the Absheron peninsula. The assessment is based on the information on the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect. I analyze active faults, seismicity, soil and rock properties, geological cross-sections, the borehole data of measured shear-wave velocity, lithology, amplification factor of each geological unit, geomorphology, topography, and basic rock and surface ground motions. To estimate peak ground acceleration (PGA) at the surface, PGA at the basic rock is multiplied by the amplification parameter of each surface layers. Quaternary soft deposits, representing a highmore » risk due to increasing PGA values at surface, are studied in detail. For a near-zone target earthquake PGA values are compared to intensity at MSK-64 scale for the Absheron peninsula. The amplification factor for the Baku city is assessed and provides estimations for a level of a seismic motion and seismic intensity of the studied area.« less
Assmuth, Timo; Simola, Antti; Pitkänen, Tarja; Lyytimäki, Jari; Huttula, Timo
2016-01-01
Integrated assessment and management of water resources for the supply of potable water is increasingly important in light of projected water scarcity in many parts of the world. This article develops frameworks for regional-level waterborne human health risk assessment of chemical and microbiological contamination to aid water management, incorporating economic aspects of health risks. Managed aquifer recharge with surface water from a river in Southern Finland is used as an illustrative case. With a starting point in watershed governance, stakeholder concerns, and value-at-risk concepts, we merge common methods for integrative health risk analysis of contaminants to describe risks and impacts dynamically and broadly. This involves structuring analyses along the risk chain: sources-releases-environmental transport and fate-exposures-health effects-socio-economic impacts-management responses. Risks attributed to contaminants are embedded in other risks, such as contaminants from other sources, and related to benefits from improved water quality. A set of models along this risk chain in the case is presented. Fundamental issues in the assessment are identified, including 1) framing of risks, scenarios, and choices; 2) interaction of models and empirical information; 3) time dimension; 4) distributions of risks and benefits; and 5) uncertainties about risks and controls. We find that all these combine objective and subjective aspects, and involve value judgments and policy choices. We conclude with proposals for overcoming conceptual and functional divides and lock-ins to improve modeling, assessment, and management of complex water supply schemes, especially by reflective solution-oriented interdisciplinary and multi-actor deliberation. © 2015 SETAC.
Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves
2015-03-01
Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs.
Sato, Maria Ines Z; Galvani, Ana Tereza; Padula, Jose Antonio; Nardocci, Adelaide Cassia; Lauretto, Marcelo de Souza; Razzolini, Maria Tereza Pepe; Hachich, Elayse Maria
2013-01-01
A survey of Giardia and Cryptosporidium was conducted in surface water used as drinking water sources by public water systems in four densely urbanized regions of Sao Paulo State, Brazil. A Quantitative Microbial Risk Assessment, based on protozoa concentrations, was performed to estimate the probability of protozoa infection associated with drinking water ingestion. A total of 206 source water samples were analyzed over a 24 month period using the USEPA Method 1623. The risk of infection was estimated using an exponential dose response model, children and adults exposure and a gamma distribution for (oo)cyst concentrations with three scenarios for treating censored data. Giardia was detected in 102 of the samples, and 19 of them were also positive for Cryptosporidium, with maximum concentrations of 97.0 cysts/L and 6.0 oocysts/L, respectively. Risk distributions were similar for the three scenarios. In the four regions, the estimated risk of Giardia infection per year, for adults and children, ranged from 0.29% to 2.47% and from 0.08% to 0.70%, respectively. Cryptosporidium risk infection varied from 0.15% to 0.29% for adults and from 0.04% to 0.08% for children. In both cases, the calculated risk surpassed the risk of infection of 10(-4) (1:10,000) defined as tolerable by USEPA for a yearly exposure. The probability of Giardia infection was very close to the rates of acute diarrheic disease for adults (1% to 3%) but lower for children (2% to 7%). The daily consumption of drinking water was an important contributing factor for these differences. The Microbiological Risk Assessment carried out in this study provides an indication of infection risks by Giardia and Cryptosporidium in the population served by these source waters. Strategies for source water protection and performance targets for the water treatment should be established to achieve the required level of public health risk. Copyright © 2012 Elsevier B.V. All rights reserved.
Rehman, Inayat Ur; Ishaq, Muhammad; Ali, Liaqat; Khan, Sardar; Ahmad, Imtiaz; Din, Imran Ud; Ullah, Hameed
2018-06-15
This study focuses on enrichment, spatial distribution, potential ecological risk index (PERI) and human health risk of various toxic metals taken via soil and surface water in the vicinity of Sewakht mines, Pakistan. The samples of soils (n = 54) of different fields and surface water (n = 38) were analyzed for toxic metals including cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), nickel (Ni), zinc (Zn) and molybdenum (Mo). Soil pollution level was evaluated using pollution indices including geo-accumulation index (Igeo), contamination factor (CF), degree of contamination (CD), enrichment factor (EF) and PERI. CF showed moderate contamination of soil with Cd, Co, Fe and Mo, while Igeo values indicated moderate accumulation of Cu. For Cd, EF> 1.5 was found in agricultural soils of the study area. PERI findings presented a very high ecological risk (PERI > 380) at two sites (4%), considerable ecological risk at four sites (7.4%). Non-carcinogenic risk from exposure to Fe in soil was higher than limit (HI > 1) for both children and adults. Moreover, carcinogenic risk postured by soil contaminants i.e. Cd, Cr, Co and Ni in children was higher than their limits (except Pb), while in adults only Co posed higher risk of cancer than the limit (10 -4 ) through soil exposure. Non-carcinogenic risks in children due to Cd, Co, Mo via surface water intake were higher than their safe limits (HQ > 1), while in adults the risk order was Cr > Cd > Cu > Pb > Co > Mo. Moreover, carcinogenic risk exposure due to Co > Cd > Cr > Ni from surface water (except Pb) was higher than the tolerable limit (1 × 10 -4 ) both for children and adults. However, Pb concentrations in both soil and surface water exposure were not likely to cause cancer risk in the local population. Copyright © 2018 Elsevier Inc. All rights reserved.
This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explor...
A Risk-Based Framework for Assessing the Effectiveness of Stratospheric Aerosol Geoengineering
Ferraro, Angus J.; Charlton-Perez, Andrew J.; Highwood, Eleanor J.
2014-01-01
Geoengineering by stratospheric aerosol injection has been proposed as a policy response to warming from human emissions of greenhouse gases, but it may produce unequal regional impacts. We present a simple, intuitive risk-based framework for classifying these impacts according to whether geoengineering increases or decreases the risk of substantial climate change, with further classification by the level of existing risk from climate change from increasing carbon dioxide concentrations. This framework is applied to two climate model simulations of geoengineering counterbalancing the surface warming produced by a quadrupling of carbon dioxide concentrations, with one using a layer of sulphate aerosol in the lower stratosphere, and the other a reduction in total solar irradiance. The solar dimming model simulation shows less regional inequality of impacts compared with the aerosol geoengineering simulation. In the solar dimming simulation, 10% of the Earth's surface area, containing 10% of its population and 11% of its gross domestic product, experiences greater risk of substantial precipitation changes under geoengineering than under enhanced carbon dioxide concentrations. In the aerosol geoengineering simulation the increased risk of substantial precipitation change is experienced by 42% of Earth's surface area, containing 36% of its population and 60% of its gross domestic product. PMID:24533155
Tebbutt, G. M.
1991-01-01
The relationship between visual inspections carried out by environmental health officers and microbiological examination was studied in 89 restaurants. Using 30 variables a standardized inspection procedure was developed and each of the premises was assessed in six main areas-structure and design, cleaning and cleanliness, personal hygiene, risk of contamination, temperature control, and training and knowledge about food hygiene. Selected foods and specimens from hands, surfaces, and wiping cloths were examined. There were significant associations between all six areas of the inspections. The structure and design were significantly related to the combined score from all the other areas (P less than 0.001). There were no highly significant associations between microbiological examination and visual assessments. The microbial contamination of wiping cloths, however, was related to the cleaning and cleanliness (P = 0.005). Microbial sampling provided additional information to inspections and was a valuable aid. Further development of this risk-assessment approach could provide an effective system for monitoring potential health risks in high-risk food premises. PMID:1936161
Benefits of Using a Mars Forward Strategy for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne
2009-01-01
This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.
Health risks from large-scale water pollution: trends in Central Asia.
Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor
2011-02-01
Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Amoueyan, Erfaneh; Ahmad, Sajjad; Eisenberg, Joseph N S; Pecson, Brian; Gerrity, Daniel
2017-08-01
This study evaluated the reliability and equivalency of three different potable reuse paradigms: (1) surface water augmentation via de facto reuse with conventional wastewater treatment; (2) surface water augmentation via planned indirect potable reuse (IPR) with ultrafiltration, pre-ozone, biological activated carbon (BAC), and post-ozone; and (3) direct potable reuse (DPR) with ultrafiltration, ozone, BAC, and UV disinfection. A quantitative microbial risk assessment (QMRA) was performed to (1) quantify the risk of infection from Cryptosporidium oocysts; (2) compare the risks associated with different potable reuse systems under optimal and sub-optimal conditions; and (3) identify critical model/operational parameters based on sensitivity analyses. The annual risks of infection associated with the de facto and planned IPR systems were generally consistent with those of conventional drinking water systems [mean of (9.4 ± 0.3) × 10 -5 to (4.5 ± 0.1) × 10 -4 ], while DPR was clearly superior [mean of (6.1 ± 67) × 10 -9 during sub-optimal operation]. Because the advanced treatment train in the planned IPR system was highly effective in reducing Cryptosporidium concentrations, the associated risks were generally dominated by the pathogen loading already present in the surface water. As a result, risks generally decreased with higher recycled water contributions (RWCs). Advanced treatment failures were generally inconsequential either due to the robustness of the advanced treatment train (i.e., DPR) or resiliency provided by the environmental buffer (i.e., planned IPR). Storage time in the environmental buffer was important for the de facto reuse system, and the model indicated a critical storage time of approximately 105 days. Storage times shorter than the critical value resulted in significant increases in risk. The conclusions from this study can be used to inform regulatory decision making and aid in the development of design or operational criteria for IPR and DPR systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perez, Angela L; Liong, Monty; Plotkin, Kevin; Rickabaugh, Keith P; Paustenbach, Dennis J
2017-01-01
This study provides an exposure and risk assessment of diundecyl phthalate (DUP), a high molecular weight phthalate plasticizer present in automobile interiors. Total daily intake of DUP was calculated from DUP measured in wipe samples from vehicle seats from six automobiles. Four of the vehicles exhibited atypical visible surface residue on the seats. Two vehicles with no visible surface residue were sampled as a comparison. DUP was the predominant organic compound identified in each of the wipes from all seats. A risk assessment of DUP via oral, dermal, and inhalation routes resulting from contact with automobile seats was conducted. The mean, standard deviation, and maximum DUP concentrations on the seats with visible surface residue were 6983 ± 7823 μg/100 cm 2 and 38300 μg/100 cm 2 , respectively. The mean and 95th percentile of the mean for daily cumulative dose of DUP for all exposure routes for the seats with no visible surface residue ranged from 7 × 10 -4 to 4 × 10 -3 mg/kg-day and from 8 × 10 -4 to 5 × 10 -3 mg/kg-day, respectively. For seats with visible surface residue, cumulative doses ranged from 2 × 10 -3 to 2 × 10 -2 mg/kg-day and from 4 × 10 -3 to 2 × 10 -2 mg/kg-day, respectively. The estimated daily intake (contact or absorbed dose) of DUP from automobile seats were far lower than the NOAELs reported in and derived from animal studies, and are well below the reported Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Derived No Effect Levels (DNELs) for the general population. Based on this analysis, using virtually any benchmark for evaluating safety, exposure to DUP via automobile seat covers did not pose a measureable increased health-risk in any population under any reasonably plausible exposure scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.
Venkatramanan, S; Chung, S Y; Ramkumar, T; Selvam, S
2015-08-01
The combined studies on grain size distribution, organic matter contents of sediments, sequential extraction and bulk concentration of heavy metals, statistical analysis, and ecological risk assessments were carried out to investigate the contamination sources and ecological risks of surface sediments at Coleroon River Estuary in Tamil Nadu, India. The sequential extraction of metals showed that a larger portion of the metals was associated with the residual phase and also in other fractions. The low concentrations of heavy metals were found in exchangeable and carbonate bounds (bioavailable phases). It revealed that sediments of Coleroon River Estuary were relatively unpolluted and were influenced mainly by natural sources. The observed order of bulk concentrations of heavy metals in the sediments was as follows: Fe > Mn > Zn > Cu > Pb > Cr > Ni > Co. Factor analyses represented that the enrichment of heavy metals was mostly resulted from lithogenic origins associated with anthropogenic sources. These sources were reconfirmed by cluster analysis. Risk assessment code (RAC) suggested that all metals were not harmful in monsoon season. However, Fe was in medium risk, and Mn and Cu were in low risk in summer. According to pollution load index (PLI) of sediments, all heavy metals were toxic. Cu might be related with adverse biological effects on the basis of sediment quality guidelines (SQG) in both seasons. These integrated approaches were very useful to identify the contamination sources and ecological risks of sediments in estuarine environment. It is expected that this research can give a useful information for the remediation of heavy metals in sediments.
Pan, Libo; Ma, Jin; Hu, Yu; Su, Benying; Fang, Guangling; Wang, Yue; Wang, Zhanshan; Wang, Lei; Xiang, Bao
2016-10-01
A total of 128 surface soil samples were collected, and eight heavy metals, including As, Cd, Cr, Cu, Pb, Ni, Zn, and Hg, were analyzed for their concentrations, potential ecological risks, and human health risks. The mean concentrations of these eight metals were lower than the soil environmental quality standards in China, while they were slightly higher than the background values in Shanxi Province. The enrichment factor, coefficient variation, and potential ecological risk index were used to assess the pollution and eco-risk level of heavy metals, among which, Cd and Hg showed higher pollution levels and potential risks than the others in the studied area. Moreover, multivariate geostatistical analysis suggested that Hg originated mainly from point sources such as industrial emissions, while agricultural activity is the predominant factor for Cd. The human health risk assessment indicated that non-carcinogenic values were below the threshold values. The total carcinogenic risks due to As, Cr, and Ni were within the acceptable range for adults, while for children, they were higher than the threshold value (1.0E-04), indicating that children are facing higher threat to heavy metals in soils. These results provide basic information on heavy metal pollution control and human health risk assessment management in the study regions.
NASA Astrophysics Data System (ADS)
Fitzgerald, S. S.; Walker, K. A.; Courtright, A. B.; Young, I. J.
2017-12-01
The United States Affiliated Pacific Islands (USAPI) are home to a population of low-lying coral atolls which are extremely vulnerable to sea level rise. Coastal infrastructure like groundwater reservoirs, harbor operations, and sewage systems, as well as natural coastal features such as reefs and beach ecosystems, are most vulnerable during inundation events. These Pacific Islanders face increasing hazards as coastal flooding infiltrates freshwater resources and may even lead to displacement. The two main components of inundation include tidal fluctuations and sea level anomalies; however, low-lying atolls are also vulnerable to the additional influence of waves. This study created a climatology of significant wave height in the Republic of the Marshall Islands (RMI), and incorporated this dataset with tides and sea level anomalies to create a novel approach to assessing inundation flood risk in the RMI. The risk metric was applied to the RMI as a study site with the goal of assessing wider-scale applicability across the rest of the USAPI. The inclusion of wave height and wave direction as a crucial component of the risk metric will better inform USAPI coastal-managers for future inundation events and disaster preparedness. In addition to the risk metric, a wave-rose atlas was created for decision-makers in the RMI. This study highlights the often-overlooked region of the Pacific and demonstrates the application of the risk metric to specific examples in the RMI.
The effect of blurred plot coordinates on interpolating forest biomass: a case study
J. W. Coulston
2004-01-01
Interpolated surfaces of forest attributes are important analytical tools and have been used in risk assessments, forest inventories, and forest health assessments. The USDA Forest Service Forest Inventory and Analysis program (FIA) annually collects information on forest attributes in a consistent fashion nation-wide. Users of these data typically perform...
Tracking acid mine-drainage in Southeast Arizona using GIS and sediment delivery models
Norman, L.M.; Gray, F.; Guertin, D.P.; Wissler, C.; Bliss, J.D.
2008-01-01
This study investigates the application of models traditionally used to estimate erosion and sediment deposition to assess the potential risk of water quality impairment resulting from metal-bearing materials related to mining and mineralization. An integrated watershed analysis using Geographic Information Systems (GIS) based tools was undertaken to examine erosion and sediment transport characteristics within the watersheds. Estimates of stream deposits of sediment from mine tailings were related to the chemistry of surface water to assess the effectiveness of the methodology to assess the risk of acid mine-drainage being dispersed downstream of abandoned tailings and waste rock piles. A watershed analysis was preformed in the Patagonia Mountains in southeastern Arizona which has seen substantial mining and where recent water quality samples have reported acidic surface waters. This research demonstrates an improvement of the ability to predict streams that are likely to have severely degraded water quality as a result of past mining activities. ?? Springer Science+Business Media B.V. 2007.
Pradhan, Jatindra Kumar; Kumar, Sudhir
2014-01-01
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.
Li, Ying-jie; Zhang, Lie-yu; Wu, Yi-wen; Li, Cao-le; Yang, Tian-xue; Tang, Jun
2016-04-15
To understand pollution of heavy metals in surface sediments of shallow lakes, surface sediments samples of 11 lakes in Jiangsu province were collected to determine the content of six heavy metals including As, Cr, Cu, Pb, Zn and Ni. GIS was used to analyze the spatial distribution of heavy metals, and geological accumulation index (Igeo), modified contamination index (mCd) pollution load index (PLI) and potential ecological risk index (RI) were used to evaluate heavy metal contamination in the sediments. The results showed that: in the lakes' surface sediments, the average content of As, Cu, Zn, Cr, Pb, Ni in multiples of soil background of Jiangsu province were 1.74-3.85, 0.65-2.66, 0.48-3.56, 0.43-1.52, 0.02-1.49 and 0.12-1.42. According to the evaluation results of Igeo and RI, As, which had high degree of enrichment and great potential ecological risk, was the main pollutant, followed by Cu, and pollution of the rest of heavy metals was relatively light. Combining the results of several evaluation methods, in surface sediments of Sanjiu Lake, Gaoyou Lake and Shaobo Lake, these heavy metals had the most serious pollution, the maximum pollution loading and moderate potential ecological risk; in surface sediments of Gehu Lake, Baima Lake and Hongze Lake, some regions were polluted by certain metals, the overall trend of pollution was aggravating, the pollution loading was large, and the potential ecological risk reached moderate; in the other 5 lakes, the risk of sediments polluted by heavy metals, as well as the pollution loading, was small, and the overall was not polluted.
Ritter, Len; Solomon, Keith; Sibley, Paul; Hall, Ken; Keen, Patricia; Mattu, Gevan; Linton, Beth
2002-01-11
On a global scale, pathogenic contamination of drinking water poses the most significant health risk to humans, and there have been countless numbers of disease outbreaks and poisonings throughout history resulting from exposure to untreated or poorly treated drinking water. However, significant risks to human health may also result from exposure to nonpathogenic, toxic contaminants that are often globally ubiquitous in waters from which drinking water is derived. With this latter point in mind, the objective of this commission paper is to discuss the primary sources of toxic contaminants in surface waters and groundwater, the pathways through which they move in aquatic environments, factors that affect their concentration and structure along the many transport flow paths, and the relative risks that these contaminants pose to human and environmental health. In assessing the relative risk of toxic contaminants in drinking water to humans, we have organized our discussion to follow the classical risk assessment paradigm, with emphasis placed on risk characterization. In doing so, we have focused predominantly on toxic contaminants that have had a demonstrated or potential effect on human health via exposure through drinking water. In the risk assessment process, understanding the sources and pathways for contaminants in the environment is a crucial step in addressing (and reducing) uncertainty associated with estimating the likelihood of exposure to contaminants in drinking water. More importantly, understanding the sources and pathways of contaminants strengthens our ability to quantify effects through accurate measurement and testing, or to predict the likelihood of effects based on empirical models. Understanding the sources, fate, and concentrations of chemicals in water, in conjunction with assessment of effects, not only forms the basis of risk characterization, but also provides critical information required to render decisions regarding regulatory initiatives, remediation, monitoring, and management. Our discussion is divided into two primary themes. First we discuss the major sources of contaminants from anthropogenic activities to aquatic surface and groundwater and the pathways along which these contaminants move to become incorporated into drinking water supplies. Second, we assess the health significance of the contaminants reported and identify uncertainties associated with exposures and potential effects. Loading of contaminants to surface waters, groundwater, sediments, and drinking water occurs via two primary routes: (1) point-source pollution and (2) non-point-source pollution. Point-source pollution originates from discrete sources whose inputs into aquatic systems can often be defined in a spatially explicit manner. Examples of point-source pollution include industrial effluents (pulp and paper mills, steel plants, food processing plants), municipal sewage treatment plants and combined sewage-storm-water overflows, resource extraction (mining), and land disposal sites (landfill sites, industrial impoundments). Non-point-source pollution, in contrast, originates from poorly defined, diffuse sources that typically occur over broad geographical scales. Examples of non-point-source pollution include agricultural runoff (pesticides, pathogens, and fertilizers), storm-water and urban runoff, and atmospheric deposition (wet and dry deposition of persistent organic pollutants such as polychlorinated biphenyls [PCBs] and mercury). Within each source, we identify the most important contaminants that have either been demonstrated to pose significant risks to human health and/or aquatic ecosystem integrity, or which are suspected of posing such risks. Examples include nutrients, metals, pesticides, persistent organic pollutants (POPs), chlorination by-products, and pharmaceuticals. Due to the significant number of toxic contaminants in the environment, we have necessarily restricted our discussion to those chemicals that pose risks to human health via exposure through drinking water. A comprehensive and judicious consideration of the full range of contaminants that occur in surface waters, sediments, and drinking water would be a large undertaking and clearly beyond the scope of this article. However, where available, we have provided references to relevant literature to assist the reader in undertaking a detailed investigation of their own. The information collected on specific chemicals within major contaminant classes was used to determine their relative risk using the hazard quotient (HQ) approach. Hazard quotients are the most widely used method of assessing risk in which the exposure concentration of a stressor, either measured or estimated, is compared to an effect concentration (e.g., no-observed-effect concentration or NOEC). A key goal of this assessment was to develop a perspective on the relative risks associated with toxic contaminants that occur in drinking water. Data used in this assessment were collected from literature sources and from the Drinking Water Surveillance Program (DWSP) of Ontario. For many common contaminants, there was insufficient environmental exposure (concentration) information in Ontario drinking water and groundwater. Hence, our assessment was limited to specific compounds within major contaminant classes including metals, disinfection by-products, pesticides, and nitrates. For each contaminant, the HQ was estimated by expressing the maximum concentration recorded in drinking water as a function of the water quality guideline for that compound. There are limitations to using the hazard quotient approach of risk characterization. For example, HQs frequently make use of worst-case data and are thus designed to be protective of almost all possible situations that may occur. However, reduction of the probability of a type II error (false negative) through the use of very conservative application factors and assumptions can lead to the implementation of expensive measures of mitigation for stressors that may pose little threat to humans or the environment. It is important to realize that our goal was not to conduct a comprehensive, in-depth assessment of risk for each chemical; more comprehensive assessments of managing risks associated with drinking water are addressed in a separate issue paper by Krewski et al. (2001a). Rather, our goal was to provide the reader with an indication of the relative risk of major contaminant classes as a basis for understanding the risks associated with the myriad forms of toxic pollutants in aquatic systems and drinking water. For most compounds, the estimated HQs were < 1. This indicates that there is little risk associated with exposure from drinking water to the compounds tested. There were some exceptions. For example, nitrates were found to commonly yield HQ values well above 1 in- many rural areas. Further, lead, total trihalomethanes, and trichloroacetic acid yielded HQs > 1 in some treated distribution waters (water distributed to households). These latter compounds were further assessed using a probabilistic approach; these assessments indicated that the maximum allowable concentrations (MAC) or interim MACs for the respective compounds were exceeded <5% of the time. In other words, the probability of finding these compounds in drinking water at levels that pose risk to humans through ingestion of drinking water is low. Our review has been carried out in accordance with the conventional principles of risk assessment. Application of the risk assessment paradigm requires rigorous data on both exposure and toxicity in order to adequately characterize potential risks of contaminants to human health and ecological integrity. Weakness rendered by poor data, or lack of data, in either the exposure or effects stages of the risk assessment process significantly reduces the confidence that can be placed in the overall risk assessment. (ABSTRACT TRUNCATED)
Pearson, Ronald L; Logan, Perry W; Kore, Anita M; Strom, Constance M; Brosseau, Lisa M; Kingston, Richard L
2013-07-01
Previous studies have suggested a potential risk to healthcare workers applying isocyanate-containing casts, but the authors reached their conclusions based on immunological or clinical pulmonology test results alone. We designed a study to assess potential exposure to methylene diphenyl diisocyanate (MDI) among medical personnel applying orthopedic casts using two different application methods. Air, dermal, surface, and glove permeation sampling methods were combined with urinary biomonitoring to assess the overall risk of occupational asthma to workers handling these materials. No MDI was detected in any of the personal and area air samples obtained. No glove permeation of MDI was detected. A small proportion of surface (3/45) and dermal wipe (1/60) samples were positive for MDI, but were all from inexperienced technicians. Urinary metabolites of MDI [methylenedianiline (MDA)] were detected in three of six study participants prior to both a 'dry' and 'wet' application method, five of six after the dry method, and three of six after the wet method. All MDA results were below levels noted in worker or general populations. Our conclusion is that the risk of MDI exposure is small, but unquantifiable. Because there is some potential risk of dermal exposure, medical personnel are instructed to wear a minimum of 5-mil-thick (5 mil = 0.005 inches) nitrile gloves and avoid contact to unprotected skin. This could include gauntlets, long sleeves, and/or a laboratory coat.
Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M
2018-04-11
The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.
Dental caries experience and association to risk indicators of remote rural populations.
Cook, Sean L; Martinez-Mier, E Angeles; Dean, Jeffrey A; Weddell, James A; Sanders, Brian J; Eggertsson, Hafsteinn; Ofner, Susan; Yoder, Karen
2008-07-01
Dental caries continues to be the most common infectious disease of childhood; however, it is no longer pandemic, but endemic in specific sectors of populations. Therefore, it is important to identify and target patients at risk of developing caries in order to develop specific preventive measures. This study aims to test dental caries risk indicators for significant associations with caries severity. Five separate, small, isolated rural villages in Mexico with varying degrees of caries prevalence were selected for this observational study. A total of 248 children were examined. Risk indicators were assessed via questionnaire and water and salt fluoride analysis. Caries severity was measured by the International Caries Detection and Assessment System (ICDAS-I). Prevalence of caries ranged from 95% to 100% for the five villages. Mean total DMFS (decayed, missing, or filled surfaces-permanent teeth) and dmfs (decayed, missing, or filled surfaces-primary teeth) scores ranged from 2.5 to 5.0 and from 11.3 to 16.9, respectively. Multivariable models showed age and drinking soda between meals to be significantly associated with DMFS, and drinking juice and being female were significantly associated with dmfs. DMFS and dmfs were high in each village, significantly different between villages, and associated with specific risk indicators.
El-Said, Ghada F; Draz, Suzanne E O; El-Sadaawy, Manal M; Moneer, Abeer A
2014-01-01
Spatial distribution of heavy metals (Co, Cu, Ni, Cr, Mn, Zn and Fe) was studied on Lake Edku's surface sediments in relation to sedimentology and geochemistry characteristics and their contamination status on the ecological system. Lake Edku's sediments were dominated by sandy silt and silty sand textures and were enriched with carbonate content (9.83-58.46%). Iron and manganese were the most abundant heavy metals with ranges of 1.69 to 8.06 mg g(-1) and 0.88 to 3.27 mg g(-1), respectively. Cobalt and nickel showed a harmonic distribution along the studied sediments. The results were interpreted by the statistical means. The heavy metal pollution status and their ecological risk in Lake Edku was evaluated using the sediment quality guidelines and the contamination assessment methods (geoaccumulation, pollution load and potential ecological risk indices, enrichment factor, contamination degree as well as effect range median (ERM) and probable effect level (PEL) quotients). Amongst the determined heavy metals, zinc had the most ecological risk. Overall, the heavy metals in surface sediments showed ecological effect range from moderate to considerable risk, specially, in the stations in front of the seawater and in drain sources that had the highest toxic priority.
Sectoral contributions to surface water stress in the coterminous United States
K. Averyt; J. Meldrum; P. Caldwell; G. Sun; S. McNulty; A. Huber-Lee; N. Madden
2013-01-01
Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model...
Mineralogical, chemical and toxicological characterization of urban air particles.
Čupr, Pavel; Flegrová, Zuzana; Franců, Juraj; Landlová, Linda; Klánová, Jana
2013-04-01
Systematic characterization of morphological, mineralogical, chemical and toxicological properties of various size fractions of the atmospheric particulate matter was a main focus of this study together with an assessment of the human health risks they pose. Even though near-ground atmospheric aerosols have been a subject of intensive research in recent years, data integrating chemical composition of particles and health risks are still scarce and the particle size aspect has not been properly addressed yet. Filling this gap, however, is necessary for reliable risk assessment. A high volume ambient air sampler equipped with a multi-stage cascade impactor was used for size specific particle collection, and all 6 fractions were a subject of detailed characterization of chemical (PAHs) and mineralogical composition of the particles, their mass size distribution and genotoxic potential of organic extracts. Finally, the risk level for inhalation exposure associated to the carcinogenic character of the studied PAHs has been assessed. The finest fraction (<0.45 μm) exhibited the highest mass, highest active surface, highest amount of associated PAHs and also highest direct and indirect genotoxic potentials in our model air sample. Risk assessment of inhalation scenario indicates the significant cancer risk values in PM 1.5 size fraction. This presented new approach proved to be a useful tool for human health risk assessment in the areas with significant levels of air dust concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh.
Sumon, Kizar Ahmed; Rico, Andreu; Ter Horst, Mechteld M S; Van den Brink, Paul J; Haque, Mohammad Mahfujul; Rashid, Harunur
2016-10-15
The objectives of the current study were to determine the occupational health hazards posed by the application of pesticides in rice-prawn concurrent systems of south-west Bangladesh and to assess their potential risks for the aquatic ecosystems that support the culture of freshwater prawns (Macrobrachium rosenbergii). Information on pesticide use in rice-prawn farming was collected through structured interviews with 38 farm owners held between January and May of 2012. The risks of the pesticide use to human health were assessed through structured interviews. The TOXSWA model was used to calculate pesticide exposure (peak and time-weighted average concentrations) in surface waters of rice-prawn systems for different spray drift scenarios and a simple first tier risk assessment based on threshold concentrations derived from single species toxicity tests were used to assess the ecological risk in the form of risk quotients. The PERPEST model was used to refine the ecological risks when the first tier assessment indicated a possible risk. Eleven synthetic insecticides and one fungicide (sulphur) were recorded as part of this investigation. The most commonly reported pesticide was sulphur (used by 29% of the interviewed farmers), followed by thiamethoxam, chlorantraniliprole, and phenthoate (21%). A large portion of the interviewed farmers described negative health symptoms after pesticide applications, including vomiting (51%), headache (18%) and eye irritation (12%). The results of the first tier risk assessment indicated that chlorpyrifos, cypermethrin, alpha-cypermethrin, and malathion may pose a high to moderate acute and chronic risks for invertebrates and fish in all evaluated spray drift scenarios. The higher tier assessment using the PERPEST model confirmed the high risk of cypermethrin, alpha-cypermethrin, and chlorpyrifos for insects and macro- and micro-crustaceans thus indicating that these pesticides may have severe adverse consequences for the prawn production yields. Copyright © 2016 Elsevier B.V. All rights reserved.
Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W
2018-06-01
Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Haiwei; Wang, Haiyun; Zhang, Yan; Yuan, Jumin; Peng, Yaodong; Li, Xiuchun; Shi, Yi; He, Kuanxin; Zhang, Qiming
2018-06-01
The heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the surface soils of tobacco (Nicotiana tabacum L.) fields in Jiangxi Province were analyzed, and the mean heavy metal concentrations were 3.55, 0.19, 25.89, 14.96, 0.25, 10.89, 27.80, and 44.00 mg/kg, respectively. Spatial distribution analysis showed that the highest concentrations were recorded in the north-western, south-western, and mid-eastern parts of the study area. The index of geo-accumulation and pollution index indicated modest enrichment with Cd and Hg, which were the only two metals posing a potentially high ecological risk to the local agricultural environment. The health risk assessment showed no considerable non-carcinogenic or carcinogenic risks for children and adults from these elements. The principal component analysis (PCA) and cluster analysis (CA) found that the variations in the Cr and Ni concentrations were largely on account of the soil parent rocks, but the As, Cd, Cu, and Hg variations in the soil were largely owing to agricultural practices of years. However, the main factor influencing Pb and Zn was atmospheric deposition.
NASA Astrophysics Data System (ADS)
Liu, Hongxia; Hu, Ying; Qi, Shihua; Xing, Xinli; Zhang, Yuan; Yang, Dan; Qu, Chengkai
2015-06-01
Organochlorine pesticides (OCPs) found in rivers from the Sichuan Basin to Aba Prefecture profile were analyzed to assess possible health risks to adults and children who use the river as a source of drinking water. OCP concentrations in surface water ranged between 22.29-274.28 ng·L-1. Compared with other published data around the world, OCP levels in this study were moderate. Among all OCPs, hexachlorobenzene (HCB) and hexachlorocyclohexanes (HCHs) were the predominant compounds. Higher concentrations of OCPs were attributed close to the agricultural fields of the Sichuan Basin, current OCPs inputs, and long-range atmospheric transport from abroad. Various spatial patterns of OCPs in the profile might be affected by the usage and physicochemical properties of the pesticides, in addition to the adjacent geographical environment. The health risk assessment indicated that most OCPs had little impact on human health according to the acceptable risk level for carcinogens (10-6) recommended by the US EPA. However, carcinogenic effects caused by heptachlor, Aldrin, HCB, and α-HCH might occur in drinking water. The risk of negative impacts caused by OCPs is much higher for children than for adults.
Heavy metal pollution and health risk assessment in the Wei River in China.
Yang, Xuefu; Duan, Jinming; Wang, Lei; Li, Wei; Guan, Jianling; Beecham, Simon; Mulcahy, Dennis
2015-03-01
From data collected monthly at 26 monitoring cross sections in the Wei River in the Shaanxi Region of China during the period 2008-2012, the temporal pollution characteristics of heavy metals (Hg, Cd, Cr(VI), Pb, and As) were analyzed based on a heavy metal pollution index (HPI). The monthly HPI values of the five heavy metals in the river fluctuated greatly in 2008 and then declined gradually with time. This general trend of reduction in HPI appears not to have a seasonal variation and most likely resulted from the continued improvement in heavy metal pollution control strategies implemented by local environmental agencies combined with a significant improvement in wastewater treatment capacities. Among the five heavy metals, Cd and Pb were below 0.1 and 3 μg L(-1), respectively, at all the sampling points in the studied areas in the year 2012. The detection rates of As, Hg, and Cr(VI) were in the order of Hg > Cr(VI) > As. Hg, Cr(VI), and As exceeded, in a month of the dry season in 2012, the standard limits for category III surface waters according to the China Environment Quality Standards for Surface Water (CEQSSW). Based on the assessment using the HPI method, the pollution status of these heavy metals in water of the Wei River in the Shaanxi Region was generally at an acceptable level, but exhibited distinctive characteristics between the main stream river and tributaries. Most of the tributaries were more seriously polluted than the main river. A health risk assessment was conducted based on the Human Health Risk Assessment (HHRA) method recommended by the United States Environmental Protection Agency (USEPA). Apart from As, the health risk for the five heavy metals in the region were at acceptable levels for drinking water sources (hazard quotient (HQ) < 1, carcinogenic risk (CR) ranged from 10(-4)-10(-6)) according to the Risk Assessment Guidance for Superfund (RAGS), USEPA. Arsenic was identified as the most important pollutant of concern among the five heavy metals; both its values of the HQ and CR indicated potentially adverse health risks for the local population.
Houtman, Corine J; Kroesbergen, Jan; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter
2014-10-15
The presence of pharmaceuticals in drinking water is a topic of concern. Previous risk assessments indicate that their low concentrations are very unlikely to pose risks to human health, however often conclusions had to be based on small datasets and mixture effects were not included. The objectives of this study were to a) investigate if pharmaceuticals in surface and polder water penetrate in drinking water, b) assess the lifelong exposure of consumers to pharmaceuticals via drinking water and c) assess the possible individual and mixture health risks associated with this exposure. To fulfill these aims, a 2-year set of 4-weekly monitoring data of pharmaceuticals was used from three drinking water production plants. The 42 pharmaceuticals that were monitored were selected according to their consumption volume, earlier detection, toxicity and representation of the most relevant therapeutic classes. Lifelong exposures were calculated from concentrations and compared with therapeutic doses. Health risks were assessed by benchmarking concentrations with provisional guideline values. Combined risks of mixtures of pharmaceuticals were estimated using the concept of Concentration Addition. The lifelong exposure to pharmaceuticals via drinking water was calculated to be extremely low, i.e. a few mg, in total corresponding to <10% of the dose a patient is administered on one day. The risk of adverse health effects appeared to be negligibly low. Application of Concentration Addition confirmed this for the mixture of pharmaceuticals simultaneously present. The investigated treatment plants appeared to reduce the (already negligible) risk up to 80%. The large available monitoring dataset enabled the performance of a realistic risk assessment. It showed that working with maximum instead of average concentrations may overestimate the risk considerably. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ben, R.; Chalaturnyk, R.; Gardner, C.; Hawkes, C.; Johnson, J.; White, D.; Whittaker, S.
2008-12-01
In July 2000, a major research project was initiated to study the geological storage of CO2 as part of a 5000 tonnes/day EOR project planned for the Weyburn Field in Saskatchewan, Canada. Major objectives of the IEA GHG Weyburn CO2 monitoring and storage project included: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone (approximately 1500 metres depth) to the surface. Over the period 2000-2004, a diverse group of 80+ researchers worked on: geological, geophysical, and hydrogeological characterizations at both the regional (100 km beyond the field) and detailed scale (10 km around the field); conducted time-lapse geophysical surveys; carried out surface and subsurface geochemical surveys; and undertook numerical reservoir simulations. Results of the characterization were used for a performance assessment that concluded the risk of CO2 movement to the biosphere was very small. By September 2007, more than 14 Mtonnes of CO2 had been injected into the Weyburn reservoir, including approximately 3 Mtonnes recycled from oil production. A "Final Phase" research project was initiated (2007- 2011) to contribute to a "Best Practices" guide for long-term CO2 storage in EOR settings. Research objectives include: improving the geoscience characterization; further detailed analysis and data collection on the role of wellbores; additional geochemical and geophysical monitoring activities; and an emphasis on quantitative risk assessments using multiple analysis techniques. In this talk a review of results from Phase I will be presented followed by plans and initial results for the Final Phase.
California Drought Recovery Assessment Using GRACE Satellite Gravimetry Information
NASA Astrophysics Data System (ADS)
Love, C. A.; Aghakouchak, A.; Madadgar, S.; Tourian, M. J.
2015-12-01
California has been experiencing its most extreme drought in recent history due to a combination of record high temperatures and exceptionally low precipitation. An estimate for when the drought can be expected to end is needed for risk mitigation and water management. A crucial component of drought recovery assessments is the estimation of terrestrial water storage (TWS) deficit. Previous studies on drought recovery have been limited to surface water hydrology (precipitation and/or runoff) for estimating changes in TWS, neglecting the contribution of groundwater deficits to the recovery time of the system. Groundwater requires more time to recover than surface water storage; therefore, the inclusion of groundwater storage in drought recovery assessments is essential for understanding the long-term vulnerability of a region. Here we assess the probability, for varying timescales, of California's current TWS deficit returning to its long-term historical mean. Our method consists of deriving the region's fluctuations in TWS from changes in the gravity field observed by NASA's Gravity Recovery and Climate Experiment (GRACE) satellites. We estimate the probability that meteorological inputs, precipitation minus evaporation and runoff, over different timespans will balance the current GRACE-derived TWS deficit (e.g. in 3, 6, 12 months). This method improves upon previous techniques as the GRACE-derived water deficit comprises all hydrologic sources, including surface water, groundwater, and snow cover. With this empirical probability assessment we expect to improve current estimates of California's drought recovery time, thereby improving risk mitigation.
The sediment-contaminant transport model SERATRA was used as an integral part of the Chemical Migration and Risk Assessment (CMRA) Methodology, which simulates migration and fate of a contaminant over the land surface and in receiving streams, to assess potential short- and long-...
Remedial Investigation of Hanford Site Releases to the Columbia River - 13603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerch, J.A.; Hulstrom, L.C.; Sands, J.P.
2013-07-01
In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previouslymore » investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation/feasibility study (RI/FS) reports developed for upland areas, riparian areas, and groundwater in the Hanford Site River Corridor. The RI/FS reports will evaluate the impacts to soil, groundwater, and river sediments and lead to proposed cleanup actions and records of decision to address releases from the Hanford Site reactor operations. (authors)« less
Downs, T J; Cifuentes-García, E; Suffet, I M
1999-07-01
Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective.
Downs, T J; Cifuentes-García, E; Suffet, I M
1999-01-01
Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective. Images Figure 1 PMID:10398590
Wu, Lei; Liu, Guijian; Zhou, Chuncai; Liu, Rongqiong; Xi, Shanshan; Da, Chunnian; Liu, Fei
2018-01-01
The concentrations, spatial distribution, fractionation characteristics, and potential ecological risks of trace elements (Cu, Pb, Zn, Cr, Ni, and Co) in the surface sediment samples collected from 32 sites in Chaohu Lake were investigated. The improved BCR sequential extraction procedure was applied to analyze the chemical forms of trace elements in sediments. The enrichment factor (EF), sediment quality guidelines (SQGs), potential ecological risk index (PERI), and risk assessment code (RAC) were employed to evaluate the pollution levels and the potential ecological risks. The results found that the concentrations of Cu, Pb, Zn, Cr, Ni, and Co in the surface sediments were 78.59, 36.91, 161.84, 98.87, 38.92, and 10.09 mg kg -1 , respectively. The lower concentrations of Cu, Pb, Zn, Cr, and Ni were almost found in the middle part of the lake, while Co increased from the western toward the eastern parts of the lake. Cr, Ni, Co, and Zn predominantly existed in the residual fractions, with the average values of 76.35, 59.22, 45.60, and 44.30%, respectively. Cu and Pb were mainly combined with Fe/Mn oxides in reducible fraction, with the average values of 66.4 and 69.1%, respectively. The pollution levels were different among the selected elements. Cu had the highest potential ecological risk, while Cr had the lowest potential ecological risk.
Zhang, Hua; Jiang, Yinghui; Wang, Min; Wang, Peng; Shi, Guangxun; Ding, Mingjun
2017-01-01
Surface water samples were collected from 20 sampling sites throughout the Ganjiang River during pre-monsoon, monsoon, and post-monsoon seasons, and the concentrations of dissolved trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS) for the spatial and seasonal variations, risk assessment, source identification, and categorization for risk area. The result demonstrated that concentrations of the elements exhibited significant seasonality. The high total element concentrations were detected at sites close to the intensive mining and urban activities. The concentrations of the elements were under the permissible limits as prescribed by related standards with a few exceptions. The most of heavy metal pollution index (HPI) values were lower than the critical index limit, indicating the basically clean water used as habitat for aquatic life. As was identified as the priority pollutant of non-carcinogenic and carcinogenic concerns, and the inhabitants ingesting the surface water at particular site might be subjected to the integrated health risks for exposure to the mixed trace elements. Multivariate statistical analyses confirmed that Zn, As, Cd, and Tl were derived from mining and urban activities; V, Cd, and Pb exhibited mixed origin; and Co, Ni, and Cu mainly resulted from natural processes. Three categorized risk areas corresponded to high, moderate, and low risks, respectively. As a whole, the upstream of the Ganjiang River was identified as the high-risk area relatively.
Zhuang, Wen; Gao, Xuelu
2014-01-01
The total concentrations and chemical forms of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in the surface sediments of the Laizhou Bay and the surrounding marine area of the Zhangzi Island (hereafter referred to as Zhangzi Island for short) were obtained and multiple indices and guidelines were applied to assess their contamination and ecological risks. The sedimentary conditions were fine in both of the two studied areas according to the marine sediment quality of China. Whereas the probable effects level guideline suggested that Ni might cause adverse biological effects to occur frequently in some sites. All indices used suggested that Cd posed the highest environmental risk in both the Laizhou Bay and the Zhangzi Island, though Cd may unlikely be harmful to human and ecological health due to the very low total concentrations. The enrichment factor (EF) showed that a substantial portion of Cr was delivered from anthropogenic sources, whereas the risk assessment code (RAC) indicated that most Cr was in an inactive state that it may not have any adverse effect either. Moreover, the results of EF and geoaccumulation index were consistent with the trend of the total metal concentrations except for Cd, while the results of RAC and potential ecological risk factor did not follow the same trend of their corresponding total metal concentrations. We also evaluated the effects of using different indices to assess the environmental impact of these heavy metals. PMID:24709993
Xing, Liqun; Zhang, Qin; Sun, Xu; Zhu, Hongxia; Zhang, Shenghu; Xu, Huaizhou
2018-04-30
Organophosphate esters (OPEs) are ubiquitous in the environment and pose a potential threat to ecosystem and human health. This study investigated the concentrations, distributions and risk of 12 OPEs in surface water and sediment from Luoma Lake, Fangting River and Yi River. Solid-phase extraction (SPE) method were used to extract OPEs from water samples, ultrasonic process and SPE method were used to extract OPEs from sediment samples, and the extracts were finally analyzed using the HPLC-MS/MS. The results revealed that the median and maximum concentrations of ΣOPEs were 73.9 and 1066 ng/L in surface water, and were 28.7 and 35.9 ng/g in sediment, respectively. Tris(2-chloroethyl) phosphate (TCEP) and trimethyl phosphate (TMP) were the most abundant OPEs in the surface water with median concentrations of 24.3 and 16.4 ng/L in Luoma Lake, respectively. Triethyl phosphate (TEP) was the most abundant OPE in the sediment with a median concentrations of 28.9 ng/g. However, tricresyl phosphate (TCrP) and ethylhexyl diphenyl phosphate (EHDPP) predominantly contributed to the ecological risk with respective median risk quotients 0.07 and 0.01 for surface water in Luoma Lake. TEP and TCrP were the most significant contributors to the ecological risk with respective median risk quotients of 6.4 × 10 -4 and 5.6 × 10 -4 for sediment. It was also found that inflowing Fangting River could be the major pollution source to Luoma Lake. The no-cancer and carcinogenic risks of OPEs were lower than the theoretical threshold of risk. The study found that the ecological and human health risks due to the exposure to OPEs were currently acceptable. In other words, the Luoma Lake was relatively safer to use as a drinking water source in urban areas in the context of OPEs pollution. Copyright © 2018 Elsevier B.V. All rights reserved.
Morrison, S; Rynders, C A; Sosnoff, J J
2016-09-01
A major health concern faced by individuals with Multiple Sclerosis (MS) is the heightened risk of falling. Reasons for this increased risk can often be traced back to declines in neurophysiological mechanisms underlying balance control and/or muscular strength. The aim of this study was to assess differences between persons with MS and age-matched healthy adults in regards to their falls risk, strength, reactions and directional control of balance. Twenty-two persons with multiple sclerosis (mean age 56.3±8.9 years) and 22 age-matched healthy adults (mean age 59.1±7.1 years) participated in the study. Assessments of falls risk, balance, fear of falling, lower limb strength, and reaction time were performed. Balance control was assessed under four conditions where the combined effects of vision (eyes open/closed) and standing surface (firm/pliable surface) were evaluated. Results demonstrated that, in comparison to healthy older adults, persons with MS had a significantly higher falls risk, slower reaction times, and weaker lower- limb strength. For balance, persons with MS exhibited greater overall COP motion in both the medio-lateral (ML) and anterior-posterior (AP) directions compared to older adults. Additionally, during more challenging balance conditions, persons from the MS group exhibited greater ML motion compared to sway in the AP direction. Overall, the results confirm that persons with MS are often at a heightened risk of falling, due to the multitude of neuromuscular changes brought about by this disease process. However, the increased ML sway for the MS group could reflect a decreased ability to control side-to-side motion in comparison to controlling AP sway. Copyright © 2016 Elsevier B.V. All rights reserved.
Chiou, Ren-Jie
2008-07-01
The reuse of treated municipal wastewater should be one of the new water resource target areas. The suitability of the reuse of wastewater for agricultural irrigation has to consider health risk, soil contamination and the influence of the reclaimed water on crop growth. In this work the aim is to use quantitative risk analysis to assess the health effects related to reclaimed water quality and to calculate the loading capacity of reclaimed wastewater in terms of the heavy metal accumulation. The results of chemical risk assessment show there would be slightly significant health risk and what risk there is can be limited within an acceptable level. The following exposure pathway: reclaimed water-->surface water-->fish (shellfish)-->human, and arsenic risks are of more concern. In terms of reuse impact in soil contamination, the most possible heavy metal caused accumulation is arsenic. The irrigative quantity has to reach 13,300 m(3)/ha to cause arsenic accumulation. However, only 12,000 m(3)/ha is essential for rice paddy cropland. The high total nitrogen of reclaimed water from secondary treatment makes it unfavorable for crop growth. The recommended dilution ratio is 50% during the growth period and 25% during the maturity period.
Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A
2012-12-01
Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant outcomes from the described RRA application highlighted that potential climate change impacts will occur with different extension and magnitude in the case study area. Particularly, qualitative and quantitative impacts on groundwater will occur with more severe consequences in the wettest and in the driest scenario (respectively). Moreover, such impacts will likely have little direct effects on related ecosystems - croplands, forests and natural environments - lying along the spring area (about 12% of croplands and 2% of natural environments at risk) while more severe consequences will indirectly occur on natural and anthropic systems through the reduction in quality and quantity of water availability for agricultural and other uses (about 80% of agricultural areas and 27% of groundwater bodies at risk). Copyright © 2012 Elsevier B.V. All rights reserved.
NANOSILVER MOVEMENT THROUGH BIOLOGICAL BARRIERS RELATES TO PHYSICOCHEMICAL PROPERTIES
Linking the physicochemical (PC) properties of engineered nanomaterials (NM) to their biological activity is critical for identifying their (toxic) mode of action, and developing appropriate and effective risk assessment guidelines. Particle surface charge (zeta potential), surfa...
An assessment of gas emanation hazard using a geographic information system and geostatistics.
Astorri, F; Beaubien, S E; Ciotoli, G; Lombardi, S
2002-03-01
This paper describes the use of geostatistical analysis and GIS techniques to assess gas emanation hazards. The Mt. Vulsini volcanic district was selected for this study because of the wide range of natural phenomena locally present that affect gas migration in the near surface. In addition, soil gas samples that were collected in this area should allow for a calibration between the generated risk/hazard models and the measured distribution of toxic gas species at surface. The approach used during this study consisted of three general stages. First data were digitally organized into thematic layers, then software functions in the GIS program "ArcView" were used to compare and correlate these various layers, and then finally the produced "potential-risk" map was compared with radon soil gas data in order to validate the model and/or to select zones for further, more-detailed soil gas investigations.
NASA Astrophysics Data System (ADS)
Wang, Li; Luo, Xianxiang; Fan, Yuqing
2018-03-01
In this paper, the monitoring results of four heavy metals Cu, Pb, Zn and Hg at 10 sampling stations in Xiaoqing river estuary and its adjacent sea of Laizhou Bay in November 2008 were analyzed and evaluated. The results showed that the concentrations of heavy metals in the steam channel and estuary are higher than those in the adjacent sea, and the metal concentrations were below the standard for I class of marine sediment quality, excepting the station 2 in the steam channel and station 5 in the estuary. The assessment of the single-factor pollution index showed that the overall pollution level of the study area was relatively low, but there was serious pollution phenomenon in individual station. The potential ecological risk of heavy metals in the surface sediments was generally at a low level, and Hg had the highest potential risk.
Kaidonis, J A
2012-08-01
Non-carious tooth surface loss or tooth wear is becoming an increasingly significant factor affecting the long-term health of the dentition. The adverse effects of tooth wear are becoming increasingly apparent both in young persons and, as more people retain their teeth, into old age. This situation challenges the preventive and restorative skills of dental practitioners.
2001-12-01
Explosive Test Site Program Definition and Risk Reduction Permissible Exposure Limit Program Executive Office Propellants, Explosives, and...each test vehicle is flown in the captive mode and critical systems are functioned to further remove risk of failure due to the flight environment...of other inferior missiles would require a larger number of missiles, at increased procurement costs and risk to aircraft and crew, in order to
Mars Design Reference Architecture 5.0 Study: Executive Summary
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2008-01-01
The NASA Mars Design Reference Architecture 5.0 Study seeks to update its long term goals and objective for human exploration missions; flight and surface systems for human missions and supporting infrastructure; operational concept for human and robotic exploration of Mars; key challenges including risk and cost drivers; and, its development schedule options. It additionally seeks to assess strategic linkages between lunar and Mars strategies and develop and understanding of methods for reducing the cost/risk of human Mars missions through investment in research, technology development, and synergy with other exploration plans. Recommendations are made regarding conjunction class (long-stay) missions which are seen as providing the best balance of cost, risk, and performance. Additionally, this study reviews entry, descent, and landing challenges; in-space transportation systems; launch vehicle and Orion assessments; risk and risk mitigation; key driving requirements and challenges; and, lunar linkages.
Han, Wei; Gao, Guanghai; Geng, Jinyao; Li, Yao; Wang, Yingying
2018-04-01
Ziya Circular Economy Park is the biggest e-waste recycle park in North China before 2011, its function was then transformed in response to regulations and rules. In this paper, investigation was conducted to research the residual concentrations of 14 analytes (12 heavy metals and 2 non-metals) in the surface soil of Ziya Circular Economy Park and surrounding area. Both ecological and health assessments were evaluated using GI (geo-accumulation index) and NPI (Nemerow pollution index), and associated health risk was assessed by using USEPA model. According to the ecological risk assessment, Cu, Sb, Cd, Zn and Co were seriously enriched in the soil of the studied area. The health risk assessment proposed by USEPA indicated no significant health risks to the population. Soil properties, such as pH and organic matter, were found to correlate with the enrichment of heavy metals. Arsenic concentrations in the soil were found positively correlated to dead bacteria concentrations. Spatial distribution of heavy metals revealed that Ziya Circular Economy Park was the dominant pollution source in the studied area. Findings in this study suggest that enough attention should be payed to the heavy metal pollution in Ziya Circular Economy Park. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pintar, K D M; Fazil, A; Pollari, F; Waltner-Toews, D; Charron, D F; McEwen, S A; Walton, T
2012-07-01
Through the use of case-control analyses and quantitative microbial risk assessment (QMRA), relative risks of transmission of cryptosporidiosis have been evaluated (recreational water exposure vs. drinking water consumption) for a Canadian community with higher than national rates of cryptosporidiosis. A QMRA was developed to assess the risk of Cryptosporidium infection through the consumption of municipally treated drinking water. Simulations were based on site-specific surface water contamination levels and drinking water treatment log₁₀ reduction capacity for Cryptosporidium. Results suggested that the risk of Cryptosporidium infection via drinking water in the study community, assuming routine operation of the water treatment plant, was negligible (6 infections per 10¹³ persons per day--5th percentile: 2 infections per 10¹⁵ persons per day; 95th percentile: 3 infections per 10¹² persons per day). The risk is essentially nonexistent during optimized, routine treatment operations. The study community achieves between 7 and 9 log₁₀ Cryptosporidium oocyst reduction through routine water treatment processes. Although these results do not preclude the need for constant vigilance by both water treatment and public health professionals in this community, they suggest that the cause of higher rates of cryptosporidiosis are more likely due to recreational water contact, or perhaps direct animal contact. QMRA can be successfully applied at the community level to identify data gaps, rank relative public health risks, and forecast future risk scenarios. It is most useful when performed in a collaborative way with local stakeholders, from beginning to end of the risk analysis paradigm. © 2011 Society for Risk Analysis.
Monitoring and risk assessment of pesticides in irrigation systems in Debra Zeit, Ethiopia.
Teklu, Berhan M; Adriaanse, Paulien I; Van den Brink, Paul J
2016-10-01
Since Ethiopia is going through a rapid transformation of its agricultural sector, we assessed the human health and environmental risks due to the past use of organochlorine pesticides (OCPs) as well as the risks of the current pesticide use by farmers. A monitoring programme and risk assessment was carried out for the Wedecha-Belbela irrigation system in the Debra Zeit area. The Wedecha and Belbela rivers and adjacent temporary ponds were sampled and examined for the presence of OCPs between August and October 2014, while data on the current pesticide use by small- and large-scale farmers was collected by interviews. The usage patterns were evaluated for risks of using the river or temporary ponds as source of drinking water and for risks for the aquatic ecosystems in the river and ponds with the aid of the PRIMET_Registration_Ethiopa_1.1 model. The samples were collected in five sampling periods, and results indicate that most of the 18 target OCPs were not detected above the detection limit, while g-chlordane may pose chronic risks when surface water is used as drinking water. Endosulfan and heptachlor pose risks to aquatic organisms at second-tier level, while for heptachlor-epoxide B, g-chlordane and b-BHC only risks could be determined at the first tier due to a lack of data. For all nine pesticides used by small-scale farmers the calculated acute risks to humans were low. Second tier risk assessment for the aquatic ecosystem indicated that lambda-cyhalothrin, endosulfan, profenofos, and diazinon may pose high risks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Van der Merwe, Deon; Price, Kevin P
2015-03-27
Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r(2)-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.
Van der Merwe, Deon; Price, Kevin P.
2015-01-01
Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055
Distance education course on spatial multi-hazard risk assessment, using Open Source software
NASA Astrophysics Data System (ADS)
van Westen, C. J.; Frigerio, S.
2009-04-01
As part of the capacity building activities of the United Nations University - ITC School on Disaster Geo-Information Management (UNU-ITC DGIM) the International Institute for Geoinformation Science and Earth Observation (ITC) has developed a distance education course on the application of Geographic Information Systems for multi-hazard risk assessment. This course is designed for academic staff, as well as for professionals working in (non-) governmental organizations where knowledge of disaster risk management is essential. The course guides the participants through the entire process of risk assessment, on the basis of a case study of a city exposed to multiple hazards, in a developing country. The courses consists of eight modules, each with a guide book explaining the theoretical background, and guiding the participants through spatial data requirements for risk assessment, hazard assessment procedures, generation of elements at risk databases, vulnerability assessment, qualitative and quantitative risk assessment methods, risk evaluation and risk reduction. Linked to the theory is a large set of exercises, with exercise descriptions, answer sheets, demos and GIS data. The exercises deal with four different types of hazards: earthquakes, flooding, technological hazards, and landslides. One important consideration in designing the course is that people from developing countries should not be restricted in using it due to financial burdens for software acquisition. Therefore the aim was to use Open Source software as a basis. The GIS exercises are written for the ILWIS software. All exercises have also been integrated into a WebGIS, using the Open source software CartoWeb (based on GNU License). It is modular and customizable thanks to its object-oriented architecture and based on a hierarchical structure (to manage and organize every package of information of every step required in risk assessment). Different switches for every component of the risk assessment course have been defined and through various menus the user can define the options for every exercise. For every layer of information tools for querying, printing, searching and surface analysis are implemented, allowing the option to compare maps at different scale and for on-line interpretations.
Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng
2014-10-01
Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.
Thompson, Angela K; Bertocci, Gina; Pierce, Mary Clyde
2009-04-01
Short distance falls are a common false history provided in cases of child abuse. Falls are also a common occurrence in ambulating young children. The purpose of this study was to determine the risk of head injury in short distance feet-first free falls for a 12-month-old child. Feet-first free falls were simulated using an anthropomorphic test device. Three fall heights and five surfaces were tested to determine whether changing fall environment characteristics leads to differences in head injury risk outcomes. Linear head accelerations were measured and angular head accelerations in the anterior-posterior direction were determined. Head injury criteria values and impact durations were also determined for each fall. The mean peak linear head acceleration across all trials was 52.2g. HIC15 values were all below the injury assessment reference value. The mean peak angular head acceleration across all trials was 4,246 rad/s2. Impact durations ranged from 12.1 milliseconds to 27.8 milliseconds. In general, head accelerations were greater and impact durations were lower for surfaces with lower coefficients of restitution (a measure of resiliency). In falls onto wood and linoleum over concrete, the ground-based fall was associated with greater accelerations than the two higher fall heights. Results show that fall dynamics play an important role in head injury outcome measures. Different fall heights and impact surfaces led to differences in head injury risk, but the risk of severe head injury across all tested scenarios was low for a 12-month-old child in feet-first free falls.
NASA Astrophysics Data System (ADS)
Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.; Msilimba, Golden
2016-04-01
Wetlands are major sources of various ecological goods and services including storage and distribution of water in space and time which help in ensuring the availability of surface and groundwater throughout the year. However, there still remains a poor understanding of the range of values of water quality parameters that occur in wetlands either in its impacted state or under natural conditions. It was thus imperative to determine the health of Lunyangwa wetland in Mzuzu City in Malawi in order to classify and determine its state. This study used the Escom's Wetland Classification and Risk Assessment Index Field Guide to determine the overall characteristics of Lunyangwa wetland and to calculate its combined Wetland Index Score. Data on site information, field measurements (i.e. EC, pH, temperature and DO) and physical characteristics of Lunyangwa wetland were collected from March, 2013 to February, 2014. Results indicate that Lunyangwa wetland is a largely open water zone which is dominated by free-floating plants on the water surface, beneath surface and emergent in substrate. Furthermore, the wetland can be classified as of a C ecological category (score = 60-80%), which has been moderately modified with moderate risks of the losses and changes occurring in the natural habitat and biota in the wetland. It was observed that the moderate modification and risk were largely because of industrial, agricultural, urban/social catchment stressors on the wetland. This study recommends an integrated and sustainable management approach coupled with continuous monitoring and evaluation of the health of the wetland for all stakeholders in Mzuzu City. This would help to maintain the health of Lunyangwa wetland which is currently at risk of being further modified due to the identified catchment stressors.
Salice, Christopher J; Anderson, Todd A; Anderson, Richard H; Olson, Adric D
2018-04-25
Per- and polyfluoroalkyl substances (PFASs) continue to receive significant attention with particular concern for PFASs such as perfluorooctane sulfonate (PFOS) which was a constituent of Aqueous Film-Forming Foam used widely as a fire suppressant for aircraft since the 1970 s. We were interested in the potential for risk to ecological receptors inhabiting Cooper Bayou which is adjacent to two former fire-training areas (FTAs) at Barksdale Air Force Base, LA. Previous research showed higher PFOS concentrations in surface water and biota from Cooper Bayou compared to reference sites. To estimate risk, we compared surface water concentrations from multiple sites within Cooper Bayou to several PFOS chronic toxicity benchmarks for freshwater aquatic organisms (∼0.4-5.1 µg PFOS/L), and showed probility of exceedances from 0.04 to 0.5 suggesting a potential for adverse effects in the most contaminated habitats. A tissue residue assessment similarly showed some exceedance of benchmarks but with with a lower probability (max = 0.17). Both FTAs have been inactive for more than a decade so exposures (and, thus, risks) are expected to decline. Several uncertainties limit confidence in our risk estimates and include, highly dynamic surface water concentrations and limited chronic toxicity data for relevant species. Also, we have little data concerning organisms higher in the food chain which may receive higher lifetime exposures given the potential for PFOS to bioaccumulate and the longevity of many of these organisms. Overall, this study suggests PFOS can occur at concentrations that may cause adverse effects to ecological receptors although additional, focused research is needed to reduce uncertainties. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
W. Matt Jolly; Patrick H. Freeborn
2017-01-01
Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better...
Gerba, Charles P.; Tamimi, Akrum H.; Kitajima, Masaaki; Maxwell, Sheri L.; Rose, Joan B.
2013-01-01
Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm2 of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (<6.8%) under low relative humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms. PMID:23851098
Pearson, Ronald L.; Logan, Perry W.; Kore, Anita M.; Strom, Constance M.; Brosseau, Lisa M.; Kingston, Richard L.
2013-01-01
Previous studies have suggested a potential risk to healthcare workers applying isocyanate-containing casts, but the authors reached their conclusions based on immunological or clinical pulmonology test results alone. We designed a study to assess potential exposure to methylene diphenyl diisocyanate (MDI) among medical personnel applying orthopedic casts using two different application methods. Air, dermal, surface, and glove permeation sampling methods were combined with urinary biomonitoring to assess the overall risk of occupational asthma to workers handling these materials. No MDI was detected in any of the personal and area air samples obtained. No glove permeation of MDI was detected. A small proportion of surface (3/45) and dermal wipe (1/60) samples were positive for MDI, but were all from inexperienced technicians. Urinary metabolites of MDI [methylenedianiline (MDA)] were detected in three of six study participants prior to both a ‘dry’ and ‘wet’ application method, five of six after the dry method, and three of six after the wet method. All MDA results were below levels noted in worker or general populations. Our conclusion is that the risk of MDI exposure is small, but unquantifiable. Because there is some potential risk of dermal exposure, medical personnel are instructed to wear a minimum of 5-mil-thick (5 mil = 0.005 inches) nitrile gloves and avoid contact to unprotected skin. This could include gauntlets, long sleeves, and/or a laboratory coat. PMID:23680587
Groundwater and Air Contamination: Risk, Toxicity, Exposure Assessment, Policy, and Regulation
NASA Astrophysics Data System (ADS)
Watts, R. J.; Teel, A. L.
2003-12-01
The improper disposal of hazardous wastes and subsequent contamination of surface and groundwaters has exposed the public and ecosystems to toxic chemicals that have detrimental consequences. The cost of cleaning up the thousands of hazardous waste sites throughout the world is daunting, and the effort to do so is economically impractical. As a result, some level of contamination will always remain, both locally and globally. The presence of a residual level of contamination carries with it the probability of negative impacts on the world's population; e.g., enhanced risk of cancer or the onset of neurological disorders. Risk is the probability of such events. Risk assessments are routinely performed at contaminated sites and in areas of widespread environmental contamination, such as an entire aquifer, as a means of quantifying the potential threats to public health and to ecosystems.
Assessment of Inhalation Risk to Public Health in the Southern Ural
NASA Astrophysics Data System (ADS)
Ulrikh, D. V.; Ivanova, S. V.; Riabchikova, I. A.
2017-11-01
A large number of iron and steel companies in the Southern Ural cause severe air pollution in the towns of Karabash (Chelyabinsk region), Sibay (Republic of Bashkortostan), Gai (Orenburg region). The article aims to assess the inhalation effects of hazardous substances on the Southern Ural population. The analysis focused on cancer and non-cancer risks to public health that arise from the surface air pollution caused by the metallurgical industry emissions. The assessment was carried out on the basis of methodological guidelines R 2.1.10.1920-04 using modern sanitary and hygienic standards. We analysed the level of ambient air pollution in the impact area of the metallurgical industry of Karabash, Sibay and Gai over the past eleven years. We established that the ambient air of all the studied towns contain carcinogenic substances that cause unacceptable cancer risks. Formaldehyde has the main share in this risk. We calculated the hazard quotients HQ for the identified priority pollutants and the total hazard indices HI. It is shown that the non-cancer inhalation risk to the Southern Ural population exceeds the safe level manyfold. Sulfur dioxide has the main share in this risk. The conducted assessment showed that in 2006-2016, there was a continuous inhalation exposure of the population to hazardous substances. Sanitary and technological solutions that will allow a reduction of risk to acceptable values are required.
Meng, Qingmin
2015-05-15
Hydraulic fracturing, also known as fracking, has been increasing exponentially across the United States, which holds the largest known shale gas reserves in the world. Studies have found that the high-volume horizontal hydraulic fracturing process (HVHFP) threatens water resources, harms air quality, changes landscapes, and damages ecosystems. However, there is minimal research focusing on the spatial study of environmental and human risks of HVHFP, which is necessary for state and federal governments to administer, regulate, and assess fracking. Integrating GIS and spatial kernel functions, we study the presently operating fracking wells across the state of Pennsylvania (PA), which is the main part of the current hottest Marcellus Shale in US. We geographically process the location data of hydraulic fracturing wells, 2010 census block data, urbanized region data, railway data, local road data, open water data, river data, and wetland data for the state of PA. From this we develop a distance based risk assessment in order to understand the environmental and urban risks. We generate the surface data of fracking well intensity and population intensity by integrating spatial dependence, semivariogram modeling, and a quadratic kernel function. The surface data of population risk generated by the division of fracking well intensity and population intensity provide a novel insight into the local and regional regulation of hydraulic fracturing activities in terms of environmental and health related risks due to the proximity of fracking wells. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessment of Surface Ship Maintenance Requirements
2015-01-01
specifically Operational Availability (Ao) and Expected Service Life ( ESL ). Second, it requested NDRI to develop a maintenance requirement concept for each...ship class that supports ESL but allows for some risk within the maintenance strategy. It also asked researchers to define the risks to Ao and ESL ...to minimize negative effects to Ao and ESL and maintain the largest, most capable fleet possible. Note that the tasking did not request a complete
Wu, Chenxi; Huang, Xiaolong; Witter, Jason D; Spongberg, Alison L; Wang, Kexiong; Wang, Ding; Liu, Jiantong
2014-08-01
Pharmaceutical and personal care products (PPCPs) residues are being highlighted around the world as of emerging concern in surface waters. Here the occurrence of PPCPs in the central and lower Yangtze River, along with four large freshwater lakes within the river basin (Dongting, Poyang, Tai, and Chao) was reported. Fifteen out of twenty selected PPCPs were detected in the collected surface water samples. Caffeine, paraxanthine, sulfamethazine, and clindamycin were detected with 100 percent frequency in the Yangtze River. In the river, the highest average concentration was observed for erythromycin (296 ng L(-1)), followed by caffeine (142 ng L(-1)) and paraxanthine (41 ng L(-1)). In the four lakes, total PPCP concentrations were much higher in the Chao (1547 ng L(-1)) and Tai (1087 ng L(-1)) lakes compared to the Poyang (108 ng L(-1)) and Dongting (137 ng L(-1)) lakes. Lincomycin and clindamycin were most abundant in the lakes, especially in the Tai Lake. Environmental risk assessment for the worst case scenario was assessed using calculated risk quotients, and indicates a high environmental risk of erythromycin and clarithromycin in the Yangtze River, clarithromycin in the Chao Lake, and clindamycin in the Tai Lake. Copyright © 2014 Elsevier Inc. All rights reserved.
Bach, Martin; Diesner, Mirjam; Großmann, Dietlinde; Guerniche, Djamal; Hommen, Udo; Klein, Michael; Kubiak, Roland; Müller, Alexandra; Priegnitz, Jan; Reichenberger, Stefan; Thomas, Kai; Trapp, Matthias
2016-07-01
In 2001, the European Commission introduced a risk assessment project known as FOCUS (FOrum for the Coordination of pesticide fate models and their USe) for the surface water risk assessment of active substances in the European Union. Even for the national authorisation of plant protection products (PPPs), the vast majority of EU member states still refer to the four runoff and six drainage scenarios selected by the FOCUS Surface Water Workgroup. However, our study, as well as the European Food Safety Authority (EFSA), has stated the need for various improvements. Current developments in pesticide exposure assessment mainly relate to two processes. Firstly, predicted environmental concentrations (PECs) of pesticides are calculated by introducing model input variables such as weather conditions, soil properties and substance fate parameters that have a probabilistic nature. Secondly, spatially distributed PECs for soil-climate scenarios are derived on the basis of an analysis of geodata. Such approaches facilitate the calculation of a spatiotemporal cumulative distribution function (CDF) of PECs for a given area of interest and are subsequently used to determine an exposure concentration endpoint as a given percentile of the CDF. For national PPP authorisation, we propose that, in the future, exposure endpoints should be determined from the overall known statistical PEC population for an area of interest, and derived for soil and climate conditions specific to the particular member state. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
CHILDREN'S EXPOSURES TO ENDOCRINE DISRUPTING CHEMICALS
EPA is committed to protecting children's health by identifying, assessing, and reducing the risks from chemicals present in the air they breathe, food they eat, water they drink, and surfaces they touch. The Agency is committed to understanding the extent of children's exposure...
[Surface water quality assessment in Miyun reservoir watershed, Beijing in the period 1980-2003].
Zhang, Wei-wei; Sun, Dan-feng; Li, Hong; Zhou, Lian-di
2010-07-01
Single factor water quality identification index was adopted to assess the surface water quality of Miyun reservoir watershed in Beijing using nearly 20 years monitoring data of 4 sites, also the surface water quality pollution sources were analyzed. The results indicated TP had the largest temporal variation at every monitoring site, coefficients of variation were 93.86%, 86.08%, 50.56% and 139.47%, respectively. The following element was Hg, the coefficients of its variation were 86.08%, 25.75%, 56.52% and 47.01%, respectively. While TN, permanganate index, BOD5, Pb and Cr were relatively stable with small coefficient of temporal variation. The permanganate index, BOD5, Pb and Cr did not exceed to the Chinese surface drinking water standard limit in the study period, while Hg had high pollution risk in several years, such as monitoring sites S1 and S3 in 1992, monitoring sites S4 in 1996. The major pollutants of Miyun reservoir watershed in Beijing were TN and TP, and TN had larger pollution risk compared with TP in most years. Comparing to that before the 1990s, the decade average fertilizer, pesticide and agricultural plastic mulch inputs after the 1990s had increased by 46%, 173% and 359%, respectively. The husbandry proportion in agriculture rose from 24.4% to 39.8%, and the average gross industrial production by 424%. The upstream of Miyun reservoir had larger pollution risk than its downstream. In addition, Chaohe watershed contributed more TN and TP to the reservoir than Baihe watershed.
Differences Between Gait on Stairs and Flat Surfaces in Relation to Fall Risk and Future Falls.
Wang, Kejia; Delbaere, Kim; Brodie, Matthew A D; Lovell, Nigel H; Kark, Lauren; Lord, Stephen R; Redmond, Stephen J
2017-11-01
We used body-worn inertial sensors to quantify differences in semi-free-living gait between stairs and on normal flat ground in older adults, and investigated the utility of assessing gait on these terrains for predicting the occurrence of multiple falls. Eighty-two community-dwelling older adults wore two inertial sensors, on the lower back and the right ankle, during several bouts of walking on flat surfaces and up and down stairs, in between rests and activities of daily living. Derived from the vertical acceleration at the lower back, step rate was calculated from the signal's fundamental frequency. Step rate variability was the width of this fundamental frequency peak from the signal's power spectral density. Movement vigor was calculated at both body locations from the signal variance. Partial Spearman correlations between gait parameters and physiological fall risk factors (components from the Physiological Profile Assessment) were calculated while controlling for age and gender. Overall, anteroposterior vigor at the lower back in stair descent was lower in subjects with longer reaction times. Older adults walked more slowly on stairs, but they were not significantly slower on flat surfaces. Using logistic regression, faster step rate in stair descent was associated with multiple prospective falls over 12 months. No significant associations were shown from gait parameters derived during walking upstairs or on flat surfaces. These results suggest that stair descent gait may provide more insight into fall risk than regular walking and stair ascent, and that further sensor-based investigation into unsupervised gait on different terrains would be valuable.
Longitudinal associations between children’s dental caries and risk factors
Chankanka, Oitip; Cavanaugh, Joseph E.; Levy, Steven M.; Marshall, Teresa A.; Warren, John J; Broffitt, Barbara; Kolker, Justine L.
2015-01-01
Dental caries is a common disease in children of all ages. It is desirable to know whether children with primary, mixed and permanent dentitions share risk factors for cavitated and non-cavitated caries. Objective To assess the longitudinal associations between caries outcomes and modifiable risk factors. Methods One hundred and fifty-six children in the Iowa Fluoride Study met inclusion criteria of three dental examinations and caries-related risk factor assessments preceding each examination. Surface-specific counts of new non-cavitated caries and cavitated caries at the primary (Exam 1: age 5), mixed (Exam 2: age 9) and permanent (Exam 3: age 13) dentition examinations were outcome variables. Explanatory variables were caries-related factors, including averaged beverage exposure frequencies, toothbrushing frequencies, and composite water fluoride levels collected from 3–5, 6–8, and 11–13 years, dentition category, socioeconomic status and gender. Generalized linear mixed models (GLMMs) were used to explore the relationships between new non-cavitated or cavitated caries and caries-related variables. Results Greater frequency of 100% juice exposure was significantly associated with fewer non-cavitated and cavitated caries surfaces. Greater toothbrushing frequency and high SES were significantly associated with fewer new non-cavitated caries. Children had significantly more new cavitated caries surfaces at the mixed dentition examination than at the primary and permanent dentition examinations. Conclusions There were common caries-related factors for more new non-cavitated caries across the three exams, including less frequent 100% juice exposure, lower toothbrushing frequency and lower socioeconomic status. Less frequent 100% juice exposures might be associated with higher exposures to several other cariogenic beverages. PMID:22320287
Hoque, M A; Scheelbeek, P F D; Vineis, P; Khan, A E; Ahmed, K M; Butler, A P
Drinking water in much of Asia, particularly in coastal and rural settings, is provided by a variety of sources, which are widely distributed and frequently managed at an individual or local community level. Coastal and near-inland drinking water sources in South and South East (SSE) Asia are vulnerable to contamination by seawater, most dramatically from tropical cyclone induced storm surges. This paper assesses spatial vulnerabilities to salinisation of drinking water sources due to meteorological variability and climate change along the (ca. 6000 km) coastline of SSE Asia. The risks of increasing climatic stresses are first considered, and then maps of relative vulnerability along the entire coastline are developed, using data from global scale land surface models, along with an overall vulnerability index. The results show that surface and near-surface drinking water in the coastal areas of the mega-deltas in Vietnam and Bangladesh-India are most vulnerable, putting more than 25 million people at risk of drinking 'saline' water. Climate change is likely to exacerbate this problem, with adverse consequences for health, such as prevalence of hypertension and cardiovascular diseases. There is a need for identifying locations that are most at risk of salinisation in order for policy makers and local officials to implement strategies for reducing these health impacts. To counter the risks associated with these vulnerabilities, possible adaptation measures are also outlined. We conclude that detailed and fine scale vulnerability assessments may become crucial for planning targeted adaptation programmes along these coasts.
NASA Astrophysics Data System (ADS)
Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark
2017-04-01
Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.
Belluck, D A; Benjamin, S L; Baveye, P; Sampson, J; Johnson, B
2003-01-01
A critical review finds government agencies allow, permit, license, or ignore arsenic releases to surface soils. Release rates are controlled or evaluated using risk-based soil contaminant numerical limits employing standardized risk algorithms, chemical-specific and default input values. United States arsenic residential soil limits, approximately 0.4- approximately 40 ppm, generally correspond to a one-in-one-million to a one-in-ten-thousand incremental cancer risk range via ingestion of or direct contact with contaminated residential soils. Background arsenic surface soil levels often exceed applicable limits. Arsenic releases to surface soils (via, e.g., air emissions, waste recycling, soil amendments, direct pesticide application, and chromated copper arsenic (CCA)-treated wood) can result in greatly elevated arsenic levels, sometimes one to two orders of magnitude greater than applicable numerical limits. CCA-treated wood, a heavily used infrastructure material at residences and public spaces, can release sufficient arsenic to result in surface soil concentrations that exceed numerical limits by one or two orders of magnitude. Although significant exceedence of arsenic surface soil numerical limits would normally result in regulatory actions at industrial or hazardous waste sites, no such pattern is seen at residential and public spaces. Given the current risk assessment paradigm, measured or expected elevated surface soil arsenic levels at residential and public spaces suggest that a regulatory health crisis of sizeable magnitude is imminent. In contrast, available literature and a survey of government agencies conducted for this paper finds no verified cases of human morbidity or mortality resulting from exposure to elevated levels of arsenic in surface soils. This concomitance of an emerging regulatory health crisis in the absence of a medical crisis is arguably partly attributable to inadequate government and private party attention to the issue.
Zhang, Dan; Wang, Yinghui; Yu, Kefu; Li, Pingyang; Zhang, Ruijie; Xu, Yiyin
2014-11-01
The Lijiang River is a typical karst river of southwestern China. Karst-aquifer systems are more vulnerable to contamination compared to other types of aquifers. The occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments from the Lijiang River were investigated to evaluate their potential ecological risks. The total concentrations of them in sediments ranged from 0.80 to 18.73 ng/g dry weight (dw) (mean 6.83 ng/g dw). The residue levels of OCPs varied in the order of HCB > HCHs > DDTs. Compositional analyses of OCPs showed that HCHs and DDTs were mainly from historical usage. The ecological risk assessment suggested that HCHs and DDTs in Lijiang River sediments may cause adverse ecological risks, particularly at sites near agricultural areas.
Bioassays for toxicological risk assessment of landfill leachate: A review.
Ghosh, Pooja; Thakur, Indu Shekhar; Kaushik, Anubha
2017-07-01
Landfilling is the most common solid waste management practice. However, there exist a potential environmental risk to the surface and ground waters due to the possible leaching of contaminants from the landfill leachates. Current municipal solid waste landfill regulatory approaches consider physicochemical characterization of the leachate and do not assess their potential toxicity. However, assessment of toxic effects of the leachates using rapid, sensitive and cost-effective biological assays is more useful in assessing the risks as they measure the overall toxicity of the chemicals in the leachate. Nevertheless, more research is needed to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants in order to evaluate leachate toxicity. There is a need for a multispecies approach using organisms representing different trophic levels so as to understand the potential impacts of leachate on different trophic organisms. The article reviews different bioassays available for assessing the hazard posed by landfill leachates. From the review it appears that there is a need for a multispecies approach to evaluate leachate toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Hänsel Petersson, Gunnel; Åkerman, Sigvard; Isberg, Per-Erik; Ericson, Dan
2016-07-07
Predicting future risk for oral diseases, treatment need and prognosis are tasks performed daily in clinical practice. A large variety of methods have been reported, ranging from clinical judgement or "gut feeling" or even patient interviewing, to complex assessments of combinations of known risk factors. In clinical practice, there is an ongoing continuous search for less complicated and more valid tools for risk assessment. There is also a lack of knowledge how different common methods relates to one another. The aim of this study was to investigate if caries risk assessment (CRA) based on clinical judgement and the Cariogram model give similar results. In addition, to assess which factors from clinical status and history agree best with the CRA based on clinical judgement and how the patient's own perception of future oral treatment need correspond with the sum of examiners risk score. Clinical examinations were performed on randomly selected individuals 20-89 years old living in Skåne, Sweden. In total, 451 individuals were examined, 51 % women. The clinical examination included caries detection, saliva samples and radiographic examination together with history and a questionnaire. The examiners made a risk classification and the authors made a second risk calculation according to the Cariogram. For those assessed as low risk using the Cariogram 69 % also were assessed as low risk based on clinical judgement. For the other risk groups the agreement was lower. Clinical variables that significantly related to CRA based on clinical judgement were DS (decayed surfaces) and combining DS and incipient lesions, DMFT (decayed, missed, filled teeth), plaque amount, history and soft drink intake. Patients' perception of future oral treatment need correlated to some extent with the sum of examiners risk score. The main finding was that CRA based on clinical judgement and the Cariogram model gave similar results for the groups that were predicted at low level of future disease, but not so well for the other groups. CRA based on clinical judgement agreed best with the number of DS plus incipient lesions.
Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong
2017-01-01
The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450
Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong
2017-03-14
The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.
Tebbutt, G. M.
1991-01-01
The performance of agar-contact plates and an alginate-swab method for sampling food surfaces before and after cleaning was compared. Contact plates were more convenient, and were at least as sensitive as the swabbing method. To assess cleaning efficiency repeated sampling was carried out in selected premises, and several cleaning methods were introduced for trial periods. Some surfaces, notably wood and polypropylene, were particularly difficult to clean. For these scrubbing with a nylon brush was the best method. Other surfaces were more easily cleaned, and generally the methods introduced as part of this study were better than the original method used in the premises. Paper proved to be unpopular, and cleaning solutions applied with it did no better than those cleaned with a multiuse cloth kept soaking in a detergent and hypochlorite solution. PMID:1850362
Spatial analysis of gastroschisis in Massachusetts and Texas
Yazdy, Mahsa M.; Werler, Martha M.; Anderka, Marlene; Langlois, Peter H.; Vieira, Veronica M.
2014-01-01
Purpose Previous research has suggested gastroschisis, a congenital malformation, may be linked to environmental or infectious factors and cases can occur in clusters. The objective of this study was to identify geographic areas of elevated gastroschisis risk. Methods Cases of gastroschisis were identified from birth defect registries in Massachusetts and Texas. Random samples of live births were selected as controls. Generalized additive models were used to create a continuous map surface of odds ratios (OR) by smoothing over latitude and longitude. Maternal age, race/ethnicity, education, cigarette smoking, and insurance status (MA only) were assessed for confounding. We used permutation tests to identify statistically significant areas of increased risk. Results An area of increased risk was identified in north-central Massachusetts, but was not significant after adjustment (p-value=0.07; OR=2.0). In Texas, two statistically significant areas of increased risk were identified after adjustment (p-value=0.02; OR=1.3 and 1.2). Texas had sufficient data to assess the combination of space and time, which identified an increased risk in 2003 and 2004. Conclusion This study suggests there were areas of elevated gastroschisis risk in Massachusetts and Texas that cannot be explained by the risk factors we assessed. Additional exploration of underlying artifactual, environmental, infectious, or behavioral factors may further our understanding of gastroschisis. PMID:25454289
A Big Data Analysis Approach for Rail Failure Risk Assessment.
Jamshidi, Ali; Faghih-Roohi, Shahrzad; Hajizadeh, Siamak; Núñez, Alfredo; Babuska, Robert; Dollevoet, Rolf; Li, Zili; De Schutter, Bart
2017-08-01
Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.
SESSION: EMERGING POLLUTANT ASSESSMENT TECHNIQUES TITLE: BACTERIAL SOURCE TRACKING
Fecal contamination of surface waters used for recreation, drinking water and aquaculture are a continuous environmental problem and pose significant human health risks. An alarming amount of the United States rivers/streams (39%), lakes (45%), and estuaries (51%) are not safe f...
USE OF SEDIMENT CORE PROFILING IN ASSESSING EFFECTIVENESS OF MONITORED NATURAL RECOVERY
The Sediment Issue summarizes two studies conducted by the National Risk Management Research Laboratory of U.S. EPA to evaluate the natural recovery of surface sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) an polychlorinated biphenyls (PCBs). Natural recove...
Surface, Water and Air Biocharacterization (SWAB)
2009-08-18
ISS020-E-031558 (18 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.
NASA Astrophysics Data System (ADS)
Effendi, Hefni; Wardiatno, Yusli; Kawaroe, Mujizat; Mursalin; Fauzia Lestari, Dea
2017-01-01
The surface sediments were identified from west part of Java Sea to evaluate spatial distribution and ecological risk potential of heavy metals (Hg, As, Cd, Cr, Cu, Pb, Zn and Ni). The samples were taken from surface sediment (<0.5 m) in 26 m up to 80 m water depth with Eikman grab. The average material composition on sediment samples were clay (9.86%), sand (8.57%) and mud sand (81.57%). The analysis showed that Pb (11.2%), Cd (49.7%), and Ni (59.5%) exceeded of Probably Effect Level (PEL). Base on ecological risk analysis, {{Cd }}≤ft( {E_r^i:300.64} \\right) and {{Cr }}≤ft( {E_r^i:0.02} \\right) were categorized to high risk and low risk criteria. The ecological risk potential sequences of this study were Cd>Hg>Pb>Ni>Cu>As>Zn>Cr. Furthermore, the result of multivariate statistical analysis shows that correlation among heavy metals (As/Ni, Cd/Ni, and Cu/Zn) and heavy metals with Risk Index (Cd/Ri and Ni/Ri) had positive correlation in significance level p<0.05. Total variance of analysis factor was 80.04% and developed into 3 factors (eigenvalues >1). On the cluster analysis, Cd, Ni, Pb were identified as fairly high contaminations level (cluster 1), Hg as moderate contamination level (cluster 2) and Cu, Zn, Cr with lower contamination level (cluster 3).
Straub, Jürg Oliver
2016-04-01
Sulfamethoxazole (SMX) is an old sulfonamide antibiotic that was launched first in combination with trimethoprim in 1969 by F.Hoffmann-La Roche. Although sales figures for SMX have been declining over the past 20 yr, the compound is still widely used; moreover, many measured environmental concentrations (MECs) are available from Europe, the United States, Asia, Australia, and Africa. To assess aquatic risks of SMX in Europe, the exposure of European surface waters was predicted based on actual sales figures from IMS Health, incorporating environmental fate data on one side, and based on collated MECs representing more than 5500 single measurements in Europe on the other. Environmental effects were assessed using chronic and subchronic ecotoxicity data for 16 groups of aquatic organisms, from periphyton communities to cyanobacteria, algae, higher plants, various invertebrates, and vertebrates. Predicted no-effect concentrations (PNECs) were derived using both deterministic and probabilistic methodology. The predicted environmental concentration (PEC)/PNEC and MEC/PNEC comparisons overall showed no appreciable risk, except in a low incidence (<0.55%) of cases in which exceptionally high MECs led to MEC/PNEC risk characterization ratios greater than 1. The PNECs derived in the present study can be used to extend aquatic environmental risk assessment for SMX to other continents. No risk appears for indirect human exposure to SMX via the environment. © 2015 SETAC.
Zhang, Ying; Liu, Yuanyuan; Niu, Zhiguang; Jin, Shaopei
2017-05-01
To estimate the ecological risk of toxic organic pollutant (formaldehyde) and heavy metals (mercury (Hg), arsenic (As), cadmium (Cd), and chromium (Cr)) in water and sediment from a landscape Lake in Tianjin City, an ecological risk assessment was performed. The risk quotient (RQ) method and the AQUATOX model were used to assess the ecological risk of formaldehyde in landscape water. Meanwhile, the RQ method and the potential ecological risk index method were used to assess the ecological risk of four heavy metals in water and sediment from the studied landscape lake, respectively. The results revealed that the maximum concentration of formaldehyde in landscape water was lower than the environmental quality standards of surface water in China. The maximum simulated concentrations of formaldehyde in phytoplankton and invertebrates were 3.15 and 22.91 μg/L, respectively, which were far less than its toxicity data values (1000 and 510 μg/L, respectively), suggesting that formaldehyde in landscape water was at a safe level for aquatic organisms. The RQ model indicated that the risks of phytoplankton and invertebrates were higher than that of fish posed by Hg and Cd in landscape water, and the risks from As and Cr were acceptable for all test organisms. Cd is the most important pollution factor among all heavy metals in sediment from studied landscape lake, and the pollution factor sequence of heavy metals was Hg > As > Cr > Cd. The values of risk index (RI) for four heavy metals in samples a and b were 43.48 and 72.66, which were much lower than the threshold value (150), suggesting that the ecological risk posed by heavy metals in sediment was negligible.
Consequence assessment of large rock slope failures in Norway
NASA Astrophysics Data System (ADS)
Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.
2014-05-01
Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of the unstable rock slope. This surface represents the possible basal sliding surface of an unstable rock slope. The elevation difference between this surface and the topographic surface estimates the volume of the unstable rock slope. A tool has been developed for the present study to adapt the curvature parameters of the computed surface to local geological and structural conditions. The obtained volume is then used to define the angle of reach of a possible rock avalanche from the unstable rock slope by using empirical derived values of angle of reach vs. volume relations. Run-out area is calculated using FlowR; the software is widely used for run-out assessment of debris flows and is adapted here for assessment of rock avalanches, including their potential to ascend opposing slopes. Under certain conditions, more sophisticated and complex numerical run-out models are also used. For rock avalanches with potential to reach a fjord or a lake the propagation and run-up area of triggered displacement waves is assessed. Empirical relations of wave run-up height as a function of rock avalanche volume and distance from impact location are derived from a national and international inventory of landslide-triggered displacement waves. These empirical relations are used in first-level hazard assessment and where necessary, followed by 2D or 3D displacement wave modelling. Finally, the population exposed in the rock avalanche run-out area and in the run-up area of a possible displacement wave is assessed taking into account different population groups: inhabitants, persons in critical infrastructure (hospitals and other emergency services), persons in schools and kindergartens, persons at work or in shops, tourists, persons on ferries and so on. Exposure levels are defined for each population group and vulnerability values are set for the rock avalanche run-out area (100%) and the run-up area of a possible displacement wave (70%). Finally, the total number of persons within the hazard area is calculated taking into account exposure and vulnerability. The method for consequence assessment is currently tested through several case studies in Norway and, thereafter, applied to all unstable rock slopes in the country to assess their risk level. Follow-up activities (detailed investigations, periodic displacement measurements or continuous monitoring and early-warning systems) can then be prioritized based on the risk level and with a standard approach for whole Norway.
Land use and surface process domains on alpine hillslopes
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias
2015-04-01
Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental quality, services and hazards.
NASA Astrophysics Data System (ADS)
Kooperman, G. J.; Hoffman, F. M.; Koven, C.; Lindsay, K. T.; Swann, A. L. S.; Randerson, J. T.
2017-12-01
Climate change is expected to increase the frequency of intense flooding events, and thus the risk of flood-related mortality, infrastructure damage, and economic loss. Assessments of future flooding from global climate models based only on precipitation intensity and temperature neglect important processes that occur within the land-surface, particularly the impacts of plant-physiological responses to rising CO2. Higher CO2 reduces stomatal conductance, leading to less water loss through transpiration and higher soil moisture. For a given precipitation rate, higher soil moisture decreases the amount of rainwater that infiltrates the surface and increases runoff. Here we assess the relative impacts of plant-physiological and radiative-greenhouse effects on changes in extreme runoff intensity over tropical continents using the Community Earth System Model. We find that extreme percentile rates increase significantly more than mean runoff in response to higher CO2. Plant-physiological effects contribute to only a small increase in precipitation intensity, but are a dominant driver of runoff intensification, contributing to one-half of the 99th percentile runoff intensity change and one-third of the 99.9th percentile change. Comprehensive assessments of future flooding risk need to account for the physiological as well as radiative impacts of CO2 in order to better inform flood prediction and mitigation practices.
A PCT-wide collaborative clinical audit selecting recall intervals for patients according to risk.
Cannell, P J
2011-03-26
This audit was carried out to assess the level to which recall intervals were individually and appropriately selected for patients attending dental practices across a primary care trust (PCT) area in Essex. A retrospective audit was carried out by reference to patient records to assess various criteria, including whether patients were categorised according to risk of oral disease, whether an appropriate recall had been selected and whether a discussion regarding a recall interval had been undertaken. An educational event highlighting the issue of recall intervals was held. Subsequent to this a prospective audit was undertaken to assess relevant criteria. Prospective audit data showed a marked increase in the use of patient risk assessments for caries, periodontal disease, oral cancer and non-carious tooth surface loss (NCTSL). Recall intervals were also more often selected based on a patient's risk status and discussed with the patient compared to that observed in the retrospective audit data. This audit was successful as a tool to bring about change in the behaviour of dentists regarding their determination of appropriate recall intervals for patients. Whether that change in behaviour is long-term or transient requires further investigation.
Tang, Jun; Shi, Taozhong; Wu, Xiangwei; Cao, Haiqun; Li, Xuede; Hua, Rimao; Tang, Feng; Yue, Yongde
2015-03-01
The distribution and seasonal variation of fifteen antibiotics belonging to three classes (sulfonamides, fluoroquinolones and tetracyclines) were investigated in Lake Chaohu, China. The concentrations of the selected antibiotics in the surface water, eight major inflowing rivers and sewage treatment plant (STP) samples were analyzed by UPLC-MS/MS. The results indicated that sulfamethoxazole and ofloxacin were the predominant antibiotics, with maximum concentrations of 95.6 and 383.4ngL(-1), respectively, in the river samples. In Lake Chaohu, the western inflowing rivers (the Nanfei and Shiwuli Rivers) were the primary import routes for the antibiotics, and the domestic effluent from four STPs were considered the primary source of the antibiotics. The level of antibiotics in Lake Chaohu clearly varied with seasonal changes, and the highest detectable frequencies and mean concentrations were found during the winter. The quality of water downstream of Lake Chaohu was influenced by the lake, and the results of risk assessment of the antibiotics on aquatic organisms suggested that sulfamethoxazole, ofloxacin, ciprofloxacin and enrofloxacin in the surface water of Lake Chaohu and inflowing rivers might pose a high risk to algae and plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Risk assessment of flood disaster and forewarning model at different spatial-temporal scales
NASA Astrophysics Data System (ADS)
Zhao, Jun; Jin, Juliang; Xu, Jinchao; Guo, Qizhong; Hang, Qingfeng; Chen, Yaqian
2018-05-01
Aiming at reducing losses from flood disaster, risk assessment of flood disaster and forewarning model is studied. The model is built upon risk indices in flood disaster system, proceeding from the whole structure and its parts at different spatial-temporal scales. In this study, on the one hand, it mainly establishes the long-term forewarning model for the surface area with three levels of prediction, evaluation, and forewarning. The method of structure-adaptive back-propagation neural network on peak identification is used to simulate indices in prediction sub-model. Set pair analysis is employed to calculate the connection degrees of a single index, comprehensive index, and systematic risk through the multivariate connection number, and the comprehensive assessment is made by assessment matrixes in evaluation sub-model. The comparison judging method is adopted to divide warning degree of flood disaster on risk assessment comprehensive index with forewarning standards in forewarning sub-model and then the long-term local conditions for proposing planning schemes. On the other hand, it mainly sets up the real-time forewarning model for the spot, which introduces the real-time correction technique of Kalman filter based on hydrological model with forewarning index, and then the real-time local conditions for presenting an emergency plan. This study takes Tunxi area, Huangshan City of China, as an example. After risk assessment and forewarning model establishment and application for flood disaster at different spatial-temporal scales between the actual and simulated data from 1989 to 2008, forewarning results show that the development trend for flood disaster risk remains a decline on the whole from 2009 to 2013, despite the rise in 2011. At the macroscopic level, project and non-project measures are advanced, while at the microcosmic level, the time, place, and method are listed. It suggests that the proposed model is feasible with theory and application, thus offering a way for assessing and forewarning flood disaster risk.
Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai
2016-01-01
Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21st century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change. PMID:26867481
An Integrated Risk Management Model for Source Water Protection Areas
Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien
2012-01-01
Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans. PMID:23202770
Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai
2016-02-12
Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.
Emmanuel, E; Perrodin, Y; Keck, G; Blanchard, J-M; Vermande, P
2005-01-14
In hospitals a large variety of substances are in use for medical purposes such as diagnostics and research. After application, diagnostic agents, disinfectants and excreted non-metabolized pharmaceuticals by patients, reach the wastewater. This form of elimination may generate risks for aquatic organisms. The aim of this study was to present: (i) the steps of an ecological risk assessment and management framework related to hospital effluents evacuating into wastewater treatment plant (WWTP) without preliminary treatment; and (ii) the results of its application on wastewater from an infectious and tropical diseases department of a hospital of a large city in southeastern France. The characterization of effects has been made under two assumptions, which were related to: (a) the effects of hospital wastewater on biological treatment process of WWTP, particularly on the community of organisms in charge of the biological decomposition of the organic matter; (b) the effects on aquatic organisms. COD and BOD5 have been measured for studying global organic pollution. Assessment of halogenated organic compounds was made using halogenated organic compounds absorbable on activated carbon (AOX) concentrations. Heavy metals (arsenic, cadmium, chrome, copper, mercury, nickel, lead and zinc) were measured. Low most probable number (MPP) for faecal coliforms has been considered as an indirect detection of antibiotics and disinfectants presence. For toxicity assessment, bioluminescence assay using Vibrio fischeri photobacteria, 72-h EC50 algae growth Pseudokirchneriella subcapitata and 24-h EC50 on Daphnia magna were used. The scenario allows to a semi-quantitative risk characterization. It needs to be improved on some aspects, particularly those linked to: long term toxicity assessment on target organisms (bioaccumulation of pollutants, genotoxicity, etc.); ecotoxicological interactions between pharmaceuticals, disinfectants used both in diagnostics and in cleaning of surfaces, and detergents used in cleaning of surfaces; the interactions into the sewage network, between the hospital effluents and the aquatic ecosystem.
NASA Astrophysics Data System (ADS)
Zaccaria, Daniele; Passarella, Giuseppe; D'Agostino, Daniela; Giordano, Raffaele; Sandoval-Solis, Samuel; Maggi, Sabino; Bruno, Delia; Foglia, Laura
2017-04-01
A research study was conducted on a coastal irrigated agricultural area of southern Italy to assess the risks of aquifer degradation likely resulting from the intensive groundwater pumping from individual farm wells and reduced aquifer recharge. Information were collected both from farmers and delivery system's operators during a survey conducted in 2012 revealing that farmers depend mainly on groundwater with the aim to achieve flexible irrigation management as opposed to the rigid rotational delivery service of surface water supply provided by the local water management agency. The study area is intensively farmed by small land-holding growers with high-value micro-irrigated horticultural crops. Our team appraised the soil and aquifer degradation hazards using a simplified procedure for environmental risk assessment that allowed identifying the risk-generating processes, evaluating the magnitude of impacts, and estimating the overall risks significance. We also collected the stakeholders' perceptions on agricultural water management and use through field interviews, whereas parallel investigations revealed significant aquifer salinity increase during the recent years. As a final step, some preliminary risk mitigation options were appraised by exploring the growers' response to possible changes of irrigation deliveries by the water management agency. The present study integrated multi-annual observations, data interpretation, and modelling efforts, which jointly enabled the analysis of complex water management scenarios and the development of informed decisions. Keywords: Environmental risk assessment, Fuzzy cognitive maps, Groundwater degradation, Seawater intrusion
Romagna, Alexander; Rachinger, Walter; Schwartz, Christoph; Mehrkens, Jan-Hinnerk; Betz, Christian; Briegel, Josef; Schnell, Oliver; Tonn, Jörg-Christian; Schichor, Christian; Thon, Niklas
2015-09-01
The 10th cranial nerve (CN X) is at risk during surgery in the lower cerebellopontine angle (CPA). To evaluate endotracheal surface electrodes for assessment of CN X motor function during CPA surgery. Twenty patients were enrolled. Electrophysiological recordings were analyzed and retrospectively correlated with clinical, imaging, and intraoperative data. Recordings from endotracheal surface electrodes were reliable and eligible for analyses in 17 patients; in 3 patients, no surface electrode compound motor action potentials (CMAPs) could be obtained. Those patients with sufficient recordings underwent surgery in the CPA for tumors in 14 patients and for nontumor pathologies in 3 patients. In 12 patients, bipolar stimulation of motor rootlets in the CPA resulted in simultaneous CMAPs recorded from both surface electrodes and needle electrodes placed in the soft palate. Coactivation was particularly seen in patients with an intricate relationship between lower cranial nerves and tumor formations (n = 9/10). Amplitudes and latencies of vocal cord CMAPs showed high interindividual but low intraindividual variability. Parameters were not well correlated with the type of surgery (tumor vs nontumor surgery) and lower CN anatomy (displaced vs undisplaced). In 2 patients, vocal cord CMAPs were lost during tumor surgery, which was associated with postoperative dysphagia and hoarseness in 1 patient. Endotracheal surface electrodes allow identification of vocal cord motor rootlets in the CPA. Worsening of CMAP parameters might indicate functional impairment. These aspects support the use of endotracheal surface electrodes in selected patients in whom the vagus nerve might be at risk during CPA surgery.
NASA Astrophysics Data System (ADS)
Burton, E. A.; Pickles, W. L.; Gouveia, F. J.; Bogen, K. T.; Rau, G. H.; Friedmann, J.
2006-12-01
Correct assessment of the potential for CO2 leakage to the atmosphere or near surface is key to managing the risk associated with CO2 storage. Catastrophic, point-source leaks, diffuse seepage, and low leakage rates all merit assessment. Smaller leaks may be early warnings of catastrophic failures, and may be sufficient to damage natural vegetation or crops. Small leaks also may lead to cumulative build-up of lethal levels of CO2 in enclosed spaces, such as basements, groundwater-well head spaces, and caverns. Working with our ZERT partners, we are integrating a variety of monitoring and modeling approaches to understand how to assess potential health, property and environmental risks across this spectrum of leakage types. Remote sensing offers a rapid technique to monitor large areas for adverse environmental effects. If it can be deployed prior to the onset of storage operations, remote sensing also can document baseline conditions against which future claims of environmental damage can be compared. LLNL has been using hyperspectral imaging to detect plant stress associated with CO2 gas leakage, and has begun investigating use of NASA's new satellite or airborne instrumentation that directly measures gas compositions in the atmosphere. While remote sensing techniques have been criticized as lacking the necessary resolution to address environmental problems, new instruments and data processing techniques are demonstrated to resolve environmental changes at the scale associated with gas-leakage scenarios. During the shallow low-flow- CO2 release field experiments planned by ZERT, for the first time, we will have the opportunity to ground- truth hyperspectral data by simultaneous measurement of changes in hyperspectral readings, soil and root zone microbiology, ambient air, soil and aquifer CO2 concentrations. When monitoring data appear to indicate a CO2 leakage event, risk assessment and mitigation of that event requires a robust and nearly real-time method for estimating its associated risk, spatially and temporally. This requires integration of subsurface, surface and atmospheric data and models. To date, we have developed techniques to map risk based on predicted atmospheric plumes and GIS/MT (meteorologic- topographic) risk-indexing tools. This methodology was derived from study of large CO2 releases from an abandoned well penetrating a natural CO2 reservoir at Crystal Geyser, Utah. This integrated approach will provide a powerful tool to screen for high-risk zones at proposed sequestration sites, to design and optimize surface networks for site monitoring and/or to guide setting science-based regulatory compliance requirements for monitoring sequestration sites, as well as to target critical areas for first responders should a catastrophic-release event occur. This work was performed under the auspices of the U.S. Dept. of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Pilot monitoring study of ibuprofen in surface waters of north of Portugal.
Paíga, Paula; Santos, Lúcia H M L M; Amorim, Célia G; Araújo, Alberto N; Montenegro, M Conceição B S M; Pena, Angelina; Delerue-Matos, Cristina
2013-04-01
Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng L(-1) in the landfill leachate, 3,868 ng L(-1) in hospital effluent, 616 ng L(-1) in WWTP effluent, and 723 ng L(-1) in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.
Rapid Semi-Quantitative Surface Mapping of Airborne-Dispersed Chemicals Using Mass Spectrometry
Chemicals can be dispersed accidentally, deliberately, or by weather-related events. Rapid mapping of contaminant distributions is necessary to assess exposure risks and to plan remediation, when needed. Ten pulverized aspirin or NoDozTM tablets containing caffeine wer...
Tier I Rice Model - Version 1.0 - Guidance for Estimating Pesticide Concentrations in Rice Paddies
Describes a Tier I Rice Model (Version 1.0) for estimating surface water exposure from the use of pesticides in rice paddies. The concentration calculated can be used for aquatic ecological risk and drinking water exposure assessments.
Nguyen, Xuan-Vy; Tran, Minh-Hue; Le, Trong-Dung; Papenbrock, Jutta
2017-12-01
Seagrasses beds are vulnerable ecosystems. Human-induced disturbances, including heavy metal pollution, cause losses in seagrass beds. Assessment of the heavy metal concentration in seagrass meadows is an urgent need in order to protect and sustain these ecosystems. The concentration of eight trace metals in the surface sediment was observed from six seagrass beds at Khanh Hoa's coast, Vietnam. Three pollution indices and statistical analysis were used to evaluate the levels of contamination with these elements. This report on heavy metals within seagrass beds in Vietnam shows that, based on enrichment factors, only one location revealed moderately severe enrichment of Cu. Geo-accumulation indices fall in the uncontaminated class at all locations whereas for the ecological risk factor, values of Cu at My Giang and of Pb at Thuy Trieu were in a moderate risk class. Hence, two of eight locations may be exposed to high Cu and Pb.
Modeling Human Exposure to Indoor Contaminants: External Source to Body Tissues.
Webster, Eva M; Qian, Hua; Mackay, Donald; Christensen, Rebecca D; Tietjen, Britta; Zaleski, Rosemary
2016-08-16
Information on human indoor exposure is necessary to assess the potential risk to individuals from many chemicals of interest. Dynamic indoor and human physicologically based pharmacokinetic (PBPK) models of the distribution of nonionizing, organic chemical concentrations in indoor environments resulting in delivered tissue doses are developed, described and tested. The Indoor model successfully reproduced independently measured, reported time-dependent air concentrations of chloroform released during showering and of 2-butyoxyethanol following use of a volatile surface cleaner. The Indoor model predictions were also comparable to those from a higher tier consumer model (ConsExpo 4.1) for the surface cleaner scenario. The PBPK model successful reproduced observed chloroform exhaled air concentrations resulting from an inhalation exposure. Fugacity based modeling provided a seamless description of the partitioning, fluxes, accumulation and release of the chemical in indoor media and tissues of the exposed subject. This has the potential to assist in health risk assessments, provided that appropriate physical/chemical property, usage characteristics, and toxicological information are available.
Pullan, S P; Whelan, M J; Rettino, J; Filby, K; Eyre, S; Holman, I P
2016-09-01
This paper describes the development and application of IMPT (Integrated Model for Pesticide Transport), a parameter-efficient tool for predicting diffuse-source pesticide concentrations in surface waters used for drinking water supply. The model was applied to a small UK headwater catchment with high frequency (8h) pesticide monitoring data and to five larger catchments (479-1653km(2)) with sampling approximately every 14days. Model performance was good for predictions of both flow (Nash Sutcliffe Efficiency generally >0.59 and PBIAS <10%) and pesticide concentrations, although low sampling frequency in the larger catchments is likely to mask the true episodic nature of exposure. The computational efficiency of the model, along with the fact that most of its parameters can be derived from existing national soil property data mean that it can be used to rapidly predict pesticide exposure in multiple surface water resources to support operational and strategic risk assessments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Chen, Qian; Ding, Mingjun; Yang, Xuchao; Hu, Kejia; Qi, Jiaguo
2018-05-25
The increase in the frequency and intensity of extreme heat events, which are potentially associated with climate change in the near future, highlights the importance of heat health risk assessment, a significant reference for heat-related death reduction and intervention. However, a spatiotemporal mismatch exists between gridded heat hazard and human exposure in risk assessment, which hinders the identification of high-risk areas at finer scales. A human settlement index integrated by nighttime light images, enhanced vegetation index, and digital elevation model data was utilized to assess the human exposure at high spatial resolution. Heat hazard and vulnerability index were generated by land surface temperature and demographic and socioeconomic census data, respectively. Spatially explicit assessment of heat health risk and its driving factors was conducted in the Yangtze River Delta (YRD), east China at 250 m pixel level. High-risk areas were mainly distributed in the urbanized areas of YRD, which were mostly driven by high human exposure and heat hazard index. In some less-urbanized cities and suburban and rural areas of mega-cities, the heat health risks are in second priority. The risks in some less-developed areas were high despite the low human exposure index because of high heat hazard and vulnerability index. This study illustrated a methodology for identifying high-risk areas by combining freely available multi-source data. Highly urbanized areas were considered hotspots of high heat health risks, which were largely driven by the increasing urban heat island effects and population density in urban areas. Repercussions of overheating were weakened due to the low social vulnerability in some central areas benefitting from the low proportion of sensitive population or the high level of socioeconomic development. By contrast, high social vulnerability intensifies heat health risks in some less-urbanized cities and suburban areas of mega-cities.
Risk assessment of the application of a plasma jet in dermatology
NASA Astrophysics Data System (ADS)
Lademann, Juergen; Richter, Heike; Alborova, Alena; Humme, Daniel; Patzelt, Alexa; Kramer, Axel; Weltmann, Klaus-Dieter; Hartmann, Bernd; Ottomann, Christian; Fluhr, Joachim W.; Hinz, Peter; Hübner, Georg; Lademann, Olaf
2009-09-01
Regardless of the fact that several highly efficient antiseptics are commercially available, the antiseptic treatment of chronic wounds remains a problem. In the past, electrical plasma discharges have been frequently used in biometrical science for disinfection and sterilization of material surfaces. Plasma systems usually have a temperature of several hundred degrees. Recently, it was reported that ``cold'' plasma can be applied onto living tissue. In in vitro studies on cell culture, it could be demonstrated that this new plasma possesses excellent antiseptic properties. We perform a risk assessment concerning the in vivo application of a ``cold'' plasma jet on patients and volunteers. Two potential risk factors, UV radiation and temperature, are evaluated. We show that the UV radiation of the plasma in the used system is an order of magnitude lower than the minimal erythema dose, necessary to produce sunburn on the skin in vivo. Additionally, thermal damage of the tissue by the plasma can be excluded. The results of the risk assessment stimulate the in vivo application of the investigated plasma jet in the treatment of chronic wounds.
Singh, Gulshan; Vajpayee, Poornima; Rani, Neetika; Amoah, Isaac Dennis; Stenström, Thor Axel; Shanker, Rishi
2016-08-15
The emergence of antimicrobial resistant bacteria is an important public health and environmental contamination issue. Antimicrobials of β-lactam group accounts for approximately two thirds, by weight, of all antimicrobials administered to humans due to high clinical efficacy and low toxicity. This study explores β-lactam resistance determinant gene (blaTEM) as emerging contaminant in Indo-Gangetic region using qPCR in molecular beacon format. Quantitative Microbial Risk Assessment (QMRA) approach was adopted to predict risk to human health associated with consumption/exposure of surface water, potable water and street foods contaminated with bacteria having blaTEM gene. It was observed that surface water and sediments of the river Ganga and Gomti showed high numbers of blaTEM gene copies and varied significantly (p<0.05) among the sampling locations. The potable water collected from drinking water facility and clinical settings exhibit significant number of blaTEM gene copies (13±0.44-10200±316 gene copies/100mL). It was observed that E.crassipes among aquatic flora encountered in both the rivers had high load of blaTEM gene copies. The information on prevalence of environmental reservoirs of blaTEM gene containing bacteria in Indo-Gangetic region and risk associated will be useful for formulating strategies to protect public from menace of clinical risks linked with antimicrobial resistant bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
Kouamé, Parfait K; Dongo, Kouassi; Nguyen-Viet, Hung; Zurbrügg, Christian; Lüthi, Christoph; Hattendorf, Jan; Utzinger, Jürg; Biémi, Jean; Bonfoh, Bassirou
2014-10-02
Poor waste management is a key driver of ill-health in urban settlements of developing countries. The current study aimed at assessing environmental and human health risks related to urban waste management in Yamoussoukro, the political capital of Côte d'Ivoire. We undertook trans-disciplinary research within an Ecohealth approach, comprised of a participatory workshop with stakeholders and mapping of exposure patterns. A total of 492 randomly selected households participated in a cross-sectional survey. Waste deposit sites were characterised and 108 wastewater samples were subjected to laboratory examinations. The physico-chemical parameters of the surface water (temperature, pH, conductivity, potential oxidise reduction, BOD5, COD, dissolved oxygen, nitrates, ammonia and total Kendal nitrogen) did not comply with World Health Organization standards of surface water quality. Questionnaire results showed that malaria was the most commonly reported disease. Diarrhoea and malaria were associated with poor sanitation. Households having dry latrines had a higher risk of diarrhoea (odds ratio (OR) = 1.8, 95% confidence interval (CI) 1.2-2.7) compared to latrines with septic tanks and also a higher risk for malaria (OR = 1.9, 95% (CI) 1.1-3.3). Our research showed that combining health and environmental assessments enables a deeper understanding of environmental threats and disease burdens linked to poor waste management. Further study should investigate the sanitation strategy aspects that could reduce the environmental and health risks in the study area.
Identification of foot and mouth disease risk areas using a multi-criteria analysis approach
Silva, Gustavo Sousa e; Weber, Eliseu José; Hasenack, Heinrich; Groff, Fernando Henrique Sautter; Todeschini, Bernardo; Borba, Mauro Riegert; Medeiros, Antonio Augusto Rosa; Leotti, Vanessa Bielefeldt; Canal, Cláudio Wageck; Corbellini, Luis Gustavo
2017-01-01
Foot and mouth disease (FMD) is a highly infectious disease that affects cloven-hoofed livestock and wildlife. FMD has been a problem for decades, which has led to various measures to control, eradicate and prevent FMD by National Veterinary Services worldwide. Currently, the identification of areas that are at risk of FMD virus incursion and spread is a priority for FMD target surveillance after FMD is eradicated from a given country or region. In our study, a knowledge-driven spatial model was built to identify risk areas for FMD occurrence and to evaluate FMD surveillance performance in Rio Grande do Sul state, Brazil. For this purpose, multi-criteria decision analysis was used as a tool to seek multiple and conflicting criteria to determine a preferred course of action. Thirteen South American experts analyzed 18 variables associated with FMD introduction and dissemination pathways in Rio Grande do Sul. As a result, FMD higher risk areas were identified at international borders and in the central region of the state. The final model was expressed as a raster surface. The predictive ability of the model assessed by comparing, for each cell of the raster surface, the computed model risk scores with a binary variable representing the presence or absence of an FMD outbreak in that cell during the period 1985 to 2015. Current FMD surveillance performance was assessed, and recommendations were made to improve surveillance activities in critical areas. PMID:28552973
Kouamé, Parfait K.; Dongo, Kouassi; Nguyen-Viet, Hung; Zurbrügg, Christian; Lüthi, Christoph; Hattendorf, Jan; Utzinger, Jürg; Biémi, Jean; Bonfoh, Bassirou
2014-01-01
Poor waste management is a key driver of ill-health in urban settlements of developing countries. The current study aimed at assessing environmental and human health risks related to urban waste management in Yamoussoukro, the political capital of Côte d’Ivoire. We undertook trans-disciplinary research within an Ecohealth approach, comprised of a participatory workshop with stakeholders and mapping of exposure patterns. A total of 492 randomly selected households participated in a cross-sectional survey. Waste deposit sites were characterised and 108 wastewater samples were subjected to laboratory examinations. The physico-chemical parameters of the surface water (temperature, pH, conductivity, potential oxidise reduction, BOD5, COD, dissolved oxygen, nitrates, ammonia and total Kendal nitrogen) did not comply with World Health Organization standards of surface water quality. Questionnaire results showed that malaria was the most commonly reported disease. Diarrhoea and malaria were associated with poor sanitation. Households having dry latrines had a higher risk of diarrhoea (odds ratio (OR) = 1.8, 95% confidence interval (CI) 1.2–2.7) compared to latrines with septic tanks and also a higher risk for malaria (OR = 1.9, 95% (CI) 1.1–3.3). Our research showed that combining health and environmental assessments enables a deeper understanding of environmental threats and disease burdens linked to poor waste management. Further study should investigate the sanitation strategy aspects that could reduce the environmental and health risks in the study area. PMID:25279545
Ranjbar Jafarabadi, Ali; Riyahi Bakhtiari, Alireza; Shadmehri Toosi, Amirhossein
2017-11-01
The concentration and spatial distribution along with ecotoxicological risk of 30 polycyclic aromatic hydrocarbons were investigated in the reef surface sediments (RSSs) and coastal seawater (CSW) of ten coral Islands from the Persian Gulf, Iran, in January 2015. For all sampling sites, assessment of ecological risk was undertaken using several approaches. Mean concentration of ∑30PAHs varied between 70 and 884ngL -l with an overall mean value of 464ngL -l in the CSW, while the RSS ranged from 274 to 1098ngg -1 dw with a total average of 619ngg -1 dw. The results showed a gradient in PAH concentration and toxicity estimates from the northern Hormoz site increasing to the eastern Kharg site. Most of the toxicity estimates were in the moderate range or less than risk values for damage to the marine environment. The calculated Dermal Hazard Quotient (HQs), the sum of HQs (HI) and other cancer risk values of most compounds were less than safety values at most sites. It means that the possibility of negative effects of PAHs via dermal absorption from sediments for children and adults is low. Some sampling sites studied have already been impacted with hazardous pollutants for an extended period of time and evidence from this investigation demonstrates that mixtures of PAHs may be carcinogenic to humans, especially in the western part of the Gulf. Copyright © 2017 Elsevier Inc. All rights reserved.
de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L
2012-06-15
Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical uncertainty and variability in time and space, and research on possible synergistic effects of low concentration mixtures of compounds belonging to similar pharmacological classes require attention. Copyright © 2012 Elsevier B.V. All rights reserved.
Faisal, Tanvir R; Luo, Yunhua
2017-10-03
Hip fracture of elderly people-suffering from osteoporosis-is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject. Quantitative Computed Tomography (QCT) scan datasets of thirty anonymous patients' left and right femora have been considered for the FE models, which have been simulated with an equal magnitude of load applied to the aforementioned configurations. The requirement of bilateral hip assessment in predicting the fracture risk has been explored in this study. Comparing the sideways fall and single-legged stance, the FRI varies by 64 to 74% at the superior aspects and by 14 to 19% at the inferior surfaces of both the femora. The results of this in vivo analysis clearly substantiate that the fracture is expected to initiate at the superior surface of femoral neck region if a patient falls from his/her standing height. The distributions of FRI between the femurs vary considerably, and the variability is significant at the superior aspects. The p value (= 0.02) obtained from paired sample t-Test yields p value ≤ 0.05, which shows the evidence of variability of the FRI distribution between left and right femurs. Moreover, the comparison of FRIs between the left and right femur of men and women shows that women are more susceptible to hip fracture than men. The results and statistical variation clearly signify a need for bilateral hip scanning in predicting hip fracture risk, which is clinically conducted, at present, based on one hip chosen randomly and may lead to inaccurate fracture prediction. This study, although preliminary, may play a crucial role in assessing the hip fractures of the geriatric population and thereby, reducing the cost of treatment by taking predictive measure.
Apitz, Sabine E; Barbanti, Andrea; Bocci, Martina; Carlin, Anna; Montobbio, Laura; Bernstein, Alberto Giulio
2007-07-01
A number of studies carried out in recent years have shown the presence of a wide range of contaminants in the Venice Lagoon. It is important to have a good understanding of the ecological quality of Venice Lagoon sediments in order to 1) define and locate areas where a threat to the environment is present and therefore an intervention is needed (i.e., in situ assessment and management); and 2) define sustainable and environmentally correct ways of managing sediments that are to be dredged for navigational purposes or in relation to other interventions (i.e., ex situ management). This study reports on a critical comparison of chemical quality of sediments in Venice Lagoon and its subregions. Data on the Venice Lagoon were compiled from several studies conducted during the past decade on surface sediment contamination; temporal variation and risks for contaminants at depth were not addressed. The comparison of observed pollutant concentrations with local and internationally used sediment quality guidelines (SQGs) was used as a tool to benchmark different sites and for a tier I (screening) ecological risk assessment. Meaning and relevance of a number of SQGs are discussed, together with the options available for carrying out the comparison with sediment data. The screening of the Venice Lagoon sediment quality is discussed from a risk-assessment perspective and appropriate values for use in an in situ-ex situ management framework are suggested. Although there were some differences depending upon which specific SQGs were applied, different SQGs provided the same general picture of screening risk in Venice Lagoon: Although there are geographic differences, median levels for several contaminants in surface sediments exceeded a number of SQGs. Many contaminants exceed threshold effects SQGs, and Hg exceeds probable effects SQGs in most sub-basins except the southern Lagoon. Venice Lagoon south has the lowest screening risk levels, Venice Lagoon central/north has the highest (and is nearest to the Porto Marghera and Venice City Canals sites). Ranges are high in all areas, therefore any remedial or disposal decision should use site-specific data.
Impact of Urban Surfaces on Precipitation Processes
NASA Technical Reports Server (NTRS)
Shepherd, J. M.
2004-01-01
The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.
Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Mehdinia, Ali; Safari, Omid
2014-01-01
Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait. PMID:24747349
Clemow, Yvonne H; Manning, Gillian E; Breton, Roger L; Winchell, Michael F; Padilla, Lauren; Rodney, Sara I; Hanzas, John P; Estes, Tammara L; Budreski, Katherine; Toth, Brent N; Hill, Katie L; Priest, Colleen D; Teed, R Scott; Knopper, Loren D; Moore, Dwayne Rj; Stone, Christopher T; Whatling, Paul
2018-03-01
The California red-legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening-level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening-level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report "Assessing Risks to Endangered and Threatened Species from Pesticides." Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst-case scenarios in California. Refined effects analyses involved developing concentration-response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface-water monitoring data, and incident reports were considered in a weight-of-evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224-239. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu
2015-12-01
In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.
Chen, Ru; Yin, Pinghe; Zhao, Ling; Yu, Qiming; Hong, Aihua; Duan, Shunshan
2014-11-01
The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in river surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQ values ranged from 3.6×10(-5) to 35 and 64% of samples gave a HQ>1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region. Copyright © 2014. Published by Elsevier B.V.
Hang, Xiao-Shuai; Wang, Huo-Yan; Zhou, Jian-Min
2008-10-01
Surface water and shallow groundwater within the flow of an electroplating factory was analyzed in order to study the resulting impact. The analysis method of ICP-AES was used to analyze content of zinc, manganese, chromium, copper and nickel in surface water and groundwater samples. The results indicate acidic pollutants of zinc, manganese, chromium, copper and nickel were discharged from the factory with concentrations of 1.34, 3.77, 28.1, 6.40 and 9.37 mg x L(-1), respectively; and pH was 2.32. They all exceeded permissible levels according to Integrated Wastewater Discharge Standard except zinc. Factory discharge is responsible for the longitudinal distribution characteristics of heavy metals in the stream water downstream from the factory. Heavy metals variations in the well water do not suggest they were affected by heavy metals in the stream, indicating that the migration rates of heavy metals in soils were relatively low. Risk assessment shows surface water quality significantly deteriorated. Nickel and manganese in the stream water exceeded the standard levels seriously, and chromium and copper in some samples were also above Grade III standard levels according to Environmental Quality Standard for Surface Water. Moreover, all studied heavy metals in 14 groundwater samples measured within drinking water standard, except manganese in 4 groundwater samples, which were Grade IV according to Quality Standard for Ground water.
Dental health assessed after interproximal enamel reduction: caries risk in posterior teeth.
Zachrisson, Björn U; Minster, Line; Ogaard, Bjørn; Birkhed, Dowen
2011-01-01
We investigated whether careful interdental enamel reduction (using extrafine diamond disks with air cooling, followed by contouring with triangular diamond burs and polishing) leads to increased caries risk in premolars and first molars. Our subjects were 43 consecutive patients from 19 to 71 years of age who had received mesiodistal enamel reduction of anterior and posterior teeth 4 to 6 years previously. Dental caries were assessed on standardized bite-wing radiographs according to a 5-grade scale and with a fine-tip explorer catch. The incidence of interproximal caries was compared between reproximated and unground contralateral surfaces in the same patient. Patients were asked about their toothbrushing habits, use of dental floss and toothpicks, and regular fluoride supplementation after the orthodontic appliances were removed. The overall clinical impression generally showed healthy dentitions with excellent occlusion. Only 7 (2.5%) new caries lesions (all grade 1) were found among 278 reproximated mesial or distal surfaces, in 3 patients. Among 84 contralateral unground reference tooth surfaces, 2 lesions (2.4%) were seen. On nonpaired premolars and molars that had not been ground, 23 surfaces had to be referred for caries treatment (grade 3 or occlusal caries). Eleven of these occurred in 1 patient. None of the 43 patients reported increased sensitivity to temperature variations. Interdental enamel reduction with this protocol did not result in increased caries risk in posterior teeth. We found no evidence that proper mesiodistal enamel reduction within recognized limits and in appropriate situations will cause harm to the teeth and supporting structures. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Erosion Resistance Index (ERI) to Assess Surface Stability in Desert Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Grippo, Mark A.
2015-11-01
A new spectral index—erosion resistance index (ERI)—was developed to assess erosion risks in desert landscapes. The index was developed by applying trigonometry to the combination of the green/red band-ratio and the red/near infrared band-ratio from very high spatial resolution imagery. The resultant ERI maps showed spatially cohesive distributions of high and low index values across the study areas. High index values were observed over areas that were resistant to erosion (such as desert pavement and dense vegetation), while low index values overlapped with areas likely dominated by loose sandy soils, such as stream beds and access roads. Although further investigationmore » is warranted, this new index, ERI, shows promise for the assessment of erosion risks in desert regions.« less
[Contamination and Ecological Risk Assessment of Mercury in Hengshuihu Wetland, Hebei Province].
Wang, Nai-shan; Zhang, Man-yin; Cui, Li-juan; Ma, Mu-yuan; Yan, Liang; Mu, Yong-lin; Qin, Peng
2016-05-15
Investigation on the concentrations and the distribution characteristics of total mercury in atmosphere, water surface and soil/ sediments of Hengshuihu wetland was carried out based on a uniform set point sampling method. The geoaccumulation index and potential ecological risk index methods were simultaneously used to assess the mercury pollution in Hengshuihu wetland ecosystem. The results showed that: the total mercury content in Hengshuihu wetland atmosphere ranged from 1.0 to 5.0 ng · m⁻³, with an average of (2.9 ± 0.85) ng · m⁻³; the total mercury content in water surface ranged from 0.010 to 0.57 µg · L⁻¹, with the average value of (0.081 ± 0.053) µg · L⁻¹; the total mercury content in soil/sediment ranged from 0.001 0 to 0.058 mg · kg⁻¹, with an average of (0.027 ± 0.013) mg · kg⁻¹. The distribution features of total mercury in Hengshuihu wetland were as follows: the total mercury concentration in surface water of the shore was significantly higher than that in the center (P < 0.05), but the total mercury concentration of sediments in the center of the lake was significantly higher than that at the shore (P < 0.05); the total mercury in the soil of shore had a consistent trend with that in the atmosphere; high concentrations of total mercury pollution were accompanied by severe human activities. The geoaccumulation index showed that mercury pollution in Hengshuihu wetland was at clean level; potential ecological risk index showed mercury contamination had a low ecological risk in Hengshuihu wetland.
Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia
2015-07-01
The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.
Stehle, Sebastian; Dabrowski, James Michael; Bangert, Uli; Schulz, Ralf
2016-03-01
Regulatory risk assessment considers vegetated buffer strips as effective risk mitigation measures for the reduction of runoff-related pesticide exposure of surface waters. However, apart from buffer strip widths, further characteristics such as vegetation density or the presence of erosion rills are generally neglected in the determination of buffer strip mitigation efficacies. This study conducted a field survey of fruit orchards (average slope 3.1-12.2%) of the Lourens River catchment, South Africa, which specifically focused on the characteristics and attributes of buffer strips separating orchard areas from tributary streams. In addition, in-stream and erosion rill water samples were collected during three runoff events and GIS-based modeling was employed to predict losses of pesticides associated with runoff. The results show that erosion rills are common in buffer strips (on average 13 to 24 m wide) of the tributaries (up to 6.5 erosion rills per km flow length) and that erosion rills represent concentrated entry pathways of pesticide runoff into the tributaries during rainfall events. Exposure modeling shows that measured pesticide surface water concentrations correlated significantly (R(2)=0.626; p<0.001) with runoff losses predicted by the modeling approach in which buffer strip width was set to zero at sites with erosion rills; in contrast, no relationship between predicted runoff losses and in-stream pesticide concentrations were detected in the modeling approach that neglected erosion rills and thus assumed efficient buffer strips. Overall, the results of our study show that erosion rills may substantially reduce buffer strip pesticide retention efficacies during runoff events and suggest that the capability of buffer strips as a risk mitigation tool for runoff is largely overestimated in current regulatory risk assessment procedures conducted for pesticide authorization. Copyright © 2015 Elsevier B.V. All rights reserved.
Environmental assessment of creosote-treated pilings in the marine environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butala, J.H.; Webb, D.A.; Jop, K.M.
1995-12-31
A comprehensive ecological risk assessment was conducted to evaluate the environmental impact of creosote-treated pilings in the marine environment at Moss Landing Harbor, Moss Landing, California. Four areas of investigation comprising the risk assessment were (1) evaluation of environmental conditions around existing creosote-treated pilings (2) investigating effects related to restoration of pilings (3) assessing creosote migration into surrounding environment, one year after pile-driving and (4) confirmation of creosote toxicity in laboratory studies. Biological and chemical evaluation of the impact of creosote-treated pilings was conducted on surface sheen, water column and sediment samples collected at Moss Landing Harbor. Water samples (surfacemore » sheen, water column and sediment pore water) were evaluated using short-term chronic exposures with Mysidopsis bahia, while bulk sediment samples were evaluated with 10-day sediment toxicity tests with Ampelisca abdita. Samples of surface, column water and sediment were analyzed for the constituents of creosote by GC mass spectrometry. In addition, a sample of neat material used to preserve treated pilings represented a reference for the polyaromatic hydrocarbons. Verification of organism response and analyses of field collected samples was performed by conducting 10-day A. abdita sediment and 7-day M. bahia elutriate exposures with creosote applied to clean sediment collected at Moss Landing, Evaluations were also performed to determine the effects of photoinduced toxicity on test organisms exposed to PAHs. The biological and analytical results of the field and laboratory exposures are being used to evaluate and determine risk of creosote-treated pilings on the marine environment.« less
NASA Astrophysics Data System (ADS)
Peng, Chi; Cai, Yimin; Wang, Tieyu; Xiao, Rongbo; Chen, Weiping
2016-11-01
In this study, we proposed a Regional Probabilistic Risk Assessment (RPRA) to estimate the health risks of exposing residents to heavy metals in different environmental media and land uses. The mean and ranges of heavy metal concentrations were measured in water, sediments, soil profiles and surface soils under four land uses along the Shunde Waterway, a drinking water supply area in China. Hazard quotients (HQs) were estimated for various exposure routes and heavy metal species. Riverbank vegetable plots and private vegetable plots had 95th percentiles of total HQs greater than 3 and 1, respectively, indicating high risks of cultivation on the flooded riverbank. Vegetable uptake and leaching to groundwater were the two transfer routes of soil metals causing high health risks. Exposure risks during outdoor recreation, farming and swimming along the Shunde Waterway are theoretically safe. Arsenic and cadmium were identified as the priority pollutants that contribute the most risk among the heavy metals. Sensitivity analysis showed that the exposure route, variations in exposure parameters, mobility of heavy metals in soil, and metal concentrations all influenced the risk estimates.
Probabilistic Anthrax Risk Assessment Tool v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert; Hubbard, Josh
PARAT is a human health risk assessment tool for quantifying the uncertainty associated with inhalational exposures to Bacillus anthracis (Ba), which is the causative agent for contracting anthrax. The tool has a unique set of aerosol transport algorithms to account for indoor-outdoor deposition, re-aerosolization, building infiltration/exfiltration, and ventilation system effects, all of which are coded to preserve mass. PARAT is currently implemented within a Microsoft Excel application along with the Crystal Ball third-party add-on software that provides a Monte Carlo simulation technique for quantifying uncertainty in model predictions. The tool predicts both air and surface concentrations, as well as themore » fraction of the population that would contract a lethal dose from exposure to Ba. The tool can be used by decision makers to support Preliminary Remediaiton Goals (PRGs) to guide sampling and decontamination decisions after a release of Ba. Currently the de facto standard for recovery from a Ba release is a sampling protocol whereby all of the surface samples sent to a laboratory have to meet the requirement of “no culturable growth” on the media. This could lead to some very costly cleanups, as was evidenced following the 2001 anthrax letter attack responses. So PARAT may provide decision makers and risk assessors the ability to negotiate risk-based endpoints for the recovery process.« less
Assessing Risk-Based Upper Limits of Melamine Migration from Food Containers.
Ling, Min-Pei; Lien, Keng-Wen; Hsieh, Dennis P H
2016-12-01
Melamine contamination of food has become a major food safety issue because of incidents of infant disease caused by exposure to this chemical. This study was aimed at establishing a safety limit in Taiwan for the degree of melamine migration from food containers. Health risk assessment was performed for three exposure groups (preschool children, individuals who dine out, and elderly residents of nursing homes). Selected values of tolerable daily intake (TDI) for melamine were used to calculate the reference migration concentration limit (RMCL) or reference specific migration limit (RSML) for melamine food containers. The only existing values of these limits for international standards today are 1.2 mg/L (0.2 mg/dm 2 ) in China and 30 mg/L (5 mg/dm 2 ) in the European Union. The factors used in the calculations included the specific surface area of food containers, daily food consumption rate, body weight, TDI, and the percentile of the population protected at a given migration concentration limit (MCL). The results indicate that children are indeed at higher risk of melamine exposure at toxic levels than are other groups and that the 95th percentile of MCL (specific surface area = 5) for children aged 1-6 years should be the RMCL (0.07 mg/dm 2 ) for protecting the sensitive and general population. © 2016 Society for Risk Analysis.
Report #10-N-0019, November 2, 2009. We closed this investigation because we found no evidence warranting additional inquiry into the rulemaking process for CCW disposal in landfills or surface impoundments.
75 FR 54033 - Thiabendazole; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... residential exposures: paint and sponges. These residential uses have been assessed and aggregated with the food and water exposures. EPA assumed that 5% of the thiabendazole on sponges is transferred to the... females and small children exposed to surfaces cleaned with treated sponges. No risks of concern were seen...
Thomas, K; McBean, E; Shantz, A; Murphy, H M
2015-03-01
Most Cambodians lack access to a safe source of drinking water. Piped distribution systems are typically limited to major urban centers in Cambodia, and the remaining population relies on a variety of surface, rain, and groundwater sources. This study examines the household water supplies available to Phnom Penh's resettled peri-urban residents through a case-study approach of two communities. A quantitative microbial risk assessment is performed to assess the level of diarrheal disease risk faced by community members due to microbial contamination of drinking water. Risk levels found in this study exceed those associated with households consuming piped water. Filtered and boiled rain and tank water stored in a kettle, bucket/cooler, bucket with spigot or a 500 mL bottle were found to provide risk levels within one order-of-magnitude to the piped water available in Phnom Penh. Two primary concerns identified are the negation of the risk reductions gained by boiling due to prevailing poor storage practices and the use of highly contaminated source water.
Wang, Jun; Du, Huihong; Xu, Ye; Chen, Kai; Liang, Junhua; Ke, Hongwei; Cheng, Sha-Yen; Liu, Mengyang; Deng, Hengxiang; He, Tong; Wang, Wenqing
2016-01-01
Zhangjiangkou Mangrove National Nature Reserve is a subtropical wetland ecosystem in southeast coast of China, which is of dense population and rapid development. The concentrations, sources, and pollution assessment of trace metals (Cu, Cd, Pb, Cr, Zn, As, and Hg) in surface sediment from 29 sites and the biota specimen were investigated for better ecological risk assessment and environmental management. The ranges of trace metals in mg/kg sediment were as follows: Cu (10.79–26.66), Cd (0.03–0.19), Pb (36.71–59.86), Cr (9.67–134.51), Zn (119.69–157.84), As (15.65–31.60), and Hg (0.00–0.08). The sequences of the bioaccumulation of studied metals are Zn > Cu > As > Cr > Pb > Cd > Hg with few exceptions. Cluster analysis and principal component analysis revealed that the trace metals in the studied area mainly derived from anthropogenic activities, such as industrial effluents, agricultural waste, and domestic sewage. Pollution load index and geoaccumulation index were calculated for trace metals in surface sediments, which indicated unpolluted status in general except Pb, Cr, and As. PMID:27795956
El Niño-based malaria epidemic warning for Oromia, Ethiopia, from August 2016 to July 2017.
Bouma, M J; Siraj, A S; Rodo, X; Pascual, M
2016-11-01
Tropical highland malaria intensifies and shifts to higher altitudes during exceptionally warm years. Above-normal temperatures associated with El Niño during boreal winter months (December-March) may intensify malaria in East African highlands. We assessed the malaria risk for Oromia, the largest region of Ethiopia with around 30 million inhabitants. Simple linear regression and spatial analyses were used to associate sea surface temperatures (SST) in the Pacific and surface temperatures in Ethiopia with annual malaria risk in Oromia, based on confirmed cases of malaria between 1982 and 2005. A strong association (R 2 = 0.6, P < 0.001) was identified between malaria and sea surface temperatures in the Pacific, anticipating a 70% increase in malaria risk for the period from August 2016 to July 2017. This forecast was quantitatively supported by elevated land surface temperatures (+1.6 °C) in December 2015. When more station data become available and mean March 2016 temperatures from meteorological stations can be taken into account, a more robust prediction can be issued. An epidemic warning is issued for Oromia, Ethiopia, between August 2016 and July 2017 and may include the pre-July short malaria season. Similar relationships reported for Madagascar point to an epidemic risk for all East African highlands with around 150 million people. Preparedness for this high risk period would include pre-emptive intradomestic spraying with insecticides, adequate stocking of antimalarials, and spatial extension of diagnostic capacity and more frequent reporting to enable a rapid public health response when and where required. © 2016 John Wiley & Sons Ltd.
Vorovencii, Iosif
2017-09-26
The desertification risk affects around 40% of the agricultural land in various regions of Romania. The purpose of this study is to analyse the risk of desertification in the south-west of Romania in the period 1984-2011 using the change vector analysis (CVA) technique and Landsat thematic mapper (TM) satellite images. CVA was applied to combinations of normalised difference vegetation index (NDVI)-albedo, NDVI-bare soil index (BI) and tasselled cap greenness (TCG)-tasselled cap brightness (TCB). The combination NDVI-albedo proved to be the best in assessing the desertification risk, with an overall accuracy of 87.67%, identifying a desertification risk on 25.16% of the studied period. The classification of the maps was performed for the following classes: desertification risk, re-growing and persistence. Four degrees of desertification risk and re-growing were used: low, medium, high and extreme. Using the combination NDVI-albedo, 0.53% of the analysed surface was assessed as having an extreme degree of desertification risk, 3.93% a high degree, 8.72% a medium degree and 11.98% a low degree. The driving forces behind the risk of desertification are both anthropogenic and climatic causes. The anthropogenic causes include the destruction of the irrigation system, deforestation, the destruction of the forest shelterbelts, the fragmentation of agricultural land and its inefficient management. Climatic causes refer to increase of temperatures, frequent and prolonged droughts and decline of the amount of precipitation.
Ruffle, Betsy; Henderson, James; Murphy-Hagan, Clare; Kirkwood, Gemma; Wolf, Frederick; Edwards, Deborah A
2018-01-01
A probabilistic risk assessment (PRA) was performed to evaluate the range of potential baseline and postremedy health risks to fish consumers at the Portland Harbor Superfund Site (the "Site"). The analysis focused on risks of consuming fish resident to the Site containing polychlorinated biphenyls (PCBs), given that this exposure scenario and contaminant are the primary basis for US Environmental Protection Agency's (USEPA's) selected remedy per the January 2017 Record of Decision (ROD). The PRA used probability distributions fit to the same data sets used in the deterministic baseline human health risk assessment (BHHRA) as well as recent sediment and fish tissue data to evaluate the range and likelihood of current baseline cancer risks and noncancer hazards for anglers. Areas of elevated PCBs in sediment were identified on the basis of a geospatial evaluation of the surface sediment data, and the ranges of risks and hazards associated with pre- and postremedy conditions were calculated. The analysis showed that less active remediation (targeted to areas with the highest concentrations) compared to the remedial alternative selected by USEPA in the ROD can achieve USEPA's interim risk management benchmarks (cancer risk of 10 -4 and noncancer hazard index [HI] of 10) immediately postremediation for the vast majority of subsistence anglers that consume smallmouth bass (SMB) fillet tissue. In addition, the same targeted remedy achieves USEPA's long-term benchmarks (10 -5 and HI of 1) for the majority of recreational anglers. Additional sediment remediation would result in negligible additional risk reduction due to the influence of background. The PRA approach applied here provides a simple but adaptive framework for analysis of risks and remedial options focused on variability in exposures. It can be updated and refined with new data to evaluate and reduce uncertainty, improve understanding of the Site and target populations, and foster informed remedial decision making. Integr Environ Assess Manag 2018;14:63-78. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
NASA Astrophysics Data System (ADS)
Bouillard, Jacques X.; Vignes, Alexis
2014-02-01
In this paper, an inhalation health and explosion safety risk assessment methodology for nanopowders is described. Since toxicological threshold limit values are still unknown for nanosized substances, detailed risk assessment on specific plants may not be carried out. A simple approach based on occupational hazard/exposure band expressed in mass concentrations is proposed for nanopowders. This approach is consolidated with an iso surface toxicological scaling method, which has the merit, although incomplete, to provide concentration threshold levels for which new metrological instruments should be developed for proper air monitoring in order to ensure safety. Whenever the processing or use of nanomaterials is introducing a risk to the worker, a specific nano pictogram is proposed to inform the worker. Examples of risk assessment of process equipment (i.e., containment valves) processing various nanomaterials are provided. Explosion risks related to very reactive nanomaterials such as aluminum nanopowders can be assessed using this new analysis methodology adapted to nanopowders. It is nevertheless found that to formalize and extend this approach, it is absolutely necessary to develop new relevant standard apparatuses and to qualify individual and collective safety barriers with respect to health and explosion risks. In spite of these uncertainties, it appears, as shown in the second paper (Part II) that health and explosion risks, evaluated for given MWCNTs and aluminum nanoparticles, remain manageable in their continuous fabrication mode, considering current individual and collective safety barriers that can be put in place. The authors would, however, underline that peculiar attention must be paid to non-continuous modes of operations, such as process equipment cleaning steps, that are often under-analyzed and are too often forgotten critical steps needing vigilance in order to minimize potential toxic and explosion risks.
Macedo, Paula A; Peterson, Robert K D; Davis, Ryan S
2007-10-01
Infectious diseases are problematic for deployed military forces throughout the world, and, historically, more military service days have been lost to insect-vectored diseases than to combat. Because of the limitations in efficacy and availability of both vaccines and therapeutic drugs, vector management often is the best tool that military personnel have against most vector-borne pathogens. However, the use of insecticides may raise concerns about the safety of their effects on the health of the military personnel exposed to them. Therefore, our objective was to use risk assessment methodologies to evaluate health risks to deployed U.S. military personnel from vector management tactics. Our conservative tier-1, quantitative risk assessment focused on acute, subchronic, and chronic exposures and cancer risks to military personnel after insecticide application and use of personal protective measures in different scenarios. Exposures were estimated for every scenario, chemical, and pathway. Acute, subchronic, and chronic risks were assessed using a margin of exposure (MOE) approach. Our MOE was the ratio of a no-observed-adverse-effect level (NOAEL) to an estimated exposure. MOEs were greater than the levels of concern (LOCs) for all surface residual and indoor space spraying exposures, except acute dermal exposure to lambda-cyhalothrin. MOEs were greater than the LOCs for all chemicals in the truck-mounted ultra-low-volume (ULV) exposure scenario. The aggregate cancer risk for permethrin exceeded 1 x 10(-6), but more realistic exposure refinements would reduce the cancer risk below that value. Overall, results indicate that health risks from exposures to insecticides and personal protective measures used by military personnel are low.
Waugh, Shirley Moore; Bergquist-Beringer, Sandra
2016-06-01
In this descriptive multi-site study, we examined inter-rater agreement on 11 National Database of Nursing Quality Indicators(®) (NDNQI(®) ) pressure ulcer (PrU) risk and prevention measures. One hundred twenty raters at 36 hospitals captured data from 1,637 patient records. At each hospital, agreement between the most experienced rater and each other team rater was calculated for each measure. In the ratings studied, 528 patients were rated as "at risk" for PrU and, therefore, were included in calculations of agreement for the prevention measures. Prevalence-adjusted kappa (PAK) was used to interpret inter-rater agreement because prevalence of single responses was high. The PAK values for eight measures indicated "substantial" to "near perfect" agreement between most experienced and other team raters: Skin assessment on admission (.977, 95% CI [.966-.989]), PrU risk assessment on admission (.978, 95% CI [.964-.993]), Time since last risk assessment (.790, 95% CI [.729-.852]), Risk assessment method (.997, 95% CI [.991-1.0]), Risk status (.877, 95% CI [.838-.917]), Any prevention (.856, 95% CI [.76-.943]), Skin assessment (.956, 95% CI [.904-1.0]), and Pressure-redistribution surface use (.839, 95% CI [.763-.916]). For three intervention measures, PAK values fell below the recommended value of ≥.610: Routine repositioning (.577, 95% CI [.494-.661]), Nutritional support (.500, 95% CI [.418-.581]), and Moisture management (.556, 95% CI [.469-.643]). Areas of disagreement were identified. Findings provide support for the reliability of 8 of the 11 measures. Further clarification of data collection procedures is needed to improve reliability for the less reliable measures. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yang, Wenrui; Wang, Rusong; Zhou, Chuanbin; Li, Feng
2009-01-01
Abstract A field survey was conducted in a contaminated industrial site of southern Beijing, China to investigate the contents and distribution of the organochlorine pesticides (alpha-, beta-, gamma-, delta-HCH, p,p'-DDT, p,p'-DDE, p,p'-DDD and o,p'-DDT) in the profiles of soil, and a health risk assessment was carried out with CalTOX multimedia exposure model. Results showed that mean concentrations of total hexachlorocyclohexane isomers (HCHs) and total dichlorodiphenyltrichloroethane isomers (DDXs) in soils were in the range of 13.20-148.71 mg/kg, and 3.02-67.43 mg/kg, respectively. Organochlorine pesticides (OCPs) content peaked in the surface and declined in soil profile with depth. The amounts of HCHs in three profiles of soil were larger than DDXs. Composition analysis indicated that there was a trend of degradation of OCPs in the site, but the mean of HCHs and DDXs concentration were over the state warning standard limit (HCHs, 0.50 mg/kg; DDXs, 0.50 mg/kg). According to current land use development, health risk assessment with CalTOX and Monte Carlo analysis showed that health risks mainly came from two exposure pathways: dermal uptake and inhalation, and the total risk values all exceeded the general acceptable health risk value (10-6). The sensitivity analysis indicated that five parameters significantly contributed to total risk.
Vorovencii, Iosif
2015-04-01
The risk of the desertification of a part of Romania is increasingly evident, constituting a serious problem for the environment and the society. This article attempts to assess and monitor the risk of desertification in Dobrogea using Landsat Thematic Mapper (TM) satellite images acquired in 1987, 1994, 2000, 2007 and 2011. In order to assess the risk of desertification, we used as indicators the Modified Soil Adjustment Vegetation Index 1 (MSAVI1), the Moving Standard Deviation Index (MSDI) and the albedo, indices relating to the vegetation conditions, the landscape pattern and micrometeorology. The decision tree classifier (DTC) was also used on the basis of pre-established rules, and maps displaying six grades of desertification risk were obtained: non, very low, low, medium, high and severe. Land surface temperature (LST) was also used for the analysis. The results indicate that, according to pre-established rules for the period of 1987-2011, there are two grades of desertification risk that have an ascending trend in Dobrogea, namely very low and medium desertification. An investigation into the causes of the desertification risk revealed that high temperature is the main factor, accompanied by the destruction of forest shelterbelts and of the irrigation system and, to a smaller extent, by the fragmentation of agricultural land and the deforestation in the study area.
Diami, Siti Merryan; Kusin, Faradiella Mohd; Madzin, Zafira
2016-10-01
The composition of heavy metals (and metalloid) in surface soils of iron ore mine-impacted areas has been evaluated of their potential ecological and human health risks. The mining areas included seven selected locations in the vicinity of active and abandoned iron ore-mining sites in Pahang, Malaysia. Heavy metals such as Fe, Mn, Cu, Zn, Co, Pb, Cr, Ni, and Cd and metalloid As were present in the mining soils of the studied area, while Cu was found exceeding the soil guideline value at all sampling locations. However, the assessment of the potential ecological risk index (RI) indicated low ecological risk (RI between 44 and 128) with respect to Cd, Pb, Cu, As, Zn, Co, and Ni in the surface soils. Contributions of potential ecological risk [Formula: see text]by metal elements to the total potential ecological RI were evident for Cd, As, Pb, and Cu. Contribution of Cu appears to be consistently greater in the abandoned mining area compared to active iron ore-mining site. For non-carcinogenic risk, no significant potential health risk was found to both children and adults as the hazard indices (HIs) were all below than 1. The lifetime cancer risk (LCR) indicated that As has greater potential carcinogenic risk compared to other metals that may induce carcinogenic effects such as Pb, Cr, and Cd, while the LCR of As for children fell within tolerable range for regulatory purposes. Irrespective of carcinogenic or non-carcinogenic risk, greater potential health risk was found among children (by an order of magnitude higher for most metals) compared to adults. The hazard quotient (HQ) and cancer risk indicated that the pathways for the risk to occur were found to be in the order of ingestion > dermal > inhalation. Overall, findings showed that some metals and metalloid were still present at comparable concentrations even long after cessation of the iron ore-mining activities.
Maternal hepatitis B screening at a private hospital.
Murnane, A; Evertson, L; Helmchen, R
1992-10-01
A prospective study was performed to determine whether the Centers for Disease Control risk factors are reliable predictors of the hepatitis B surface antigen (HBsAg) carrier state in the obstetric population at a large private hospital in Cincinnati. During the 12-month study period, 5,877 patients delivered at the hospital. The patients were screened for HBsAg either prenatally or on presentation in labor. Questionnaires were administered after arrival at the hospital to assess for historical risk factors. An overall 0.0925% incidence of HBsAg seropositivity was discovered. All patients who were HBsAg positive had identifiable risk factors.
Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins
Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford
2014-01-01
Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734
Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S
2014-01-01
The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.
A web-based tool for ranking landslide mitigation measures
NASA Astrophysics Data System (ADS)
Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.
2012-04-01
As part of the research done in the European project SafeLand "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies", a compendium of structural and non-structural mitigation measures for different landslide types in Europe was prepared, and the measures were assembled into a web-based "toolbox". Emphasis was placed on providing a rational and flexible framework applicable to existing and future mitigation measures. The purpose of web-based toolbox is to assist decision-making and to guide the user in the choice of the most appropriate mitigation measures. The mitigation measures were classified into three categories, describing whether the mitigation measures addressed the landslide hazard, the vulnerability or the elements at risk themselves. The measures considered include structural measures reducing hazard and non-structural mitigation measures, reducing either the hazard or the consequences (or vulnerability and exposure of elements at risk). The structural measures include surface protection and control of surface erosion; measures modifying the slope geometry and/or mass distribution; measures modifying surface water regime - surface drainage; measures mo¬difying groundwater regime - deep drainage; measured modifying the mechanical charac¬teristics of unstable mass; transfer of loads to more competent strata; retaining structures (to modify slope geometry and/or to transfer stress to compe¬tent layer); deviating the path of landslide debris; dissipating the energy of debris flows; and arresting and containing landslide debris or rock fall. The non-structural mitigation measures, reducing either the hazard or the consequences: early warning systems; restricting or discouraging construction activities; increasing resistance or coping capacity of elements at risk; relocation of elements at risk; sharing of risk through insurance. The measures are described in the toolbox with fact sheets providing a brief description, guidance on design, schematic details, practical examples and references for each mitigation measure. Each of the measures was given a score on its ability and applicability for different types of landslides and boundary conditions, and a decision support matrix was established. The web-based toolbox organizes the information in the compendium and provides an algorithm to rank the measures on the basis of the decision support matrix, and on the basis of the risk level estimated at the site. The toolbox includes a description of the case under study and offers a simplified option for estimating the hazard and risk levels of the slide at hand. The user selects the mitigation measures to be included in the assessment. The toolbox then ranks, with built-in assessment factors and weights and/or with user-defined ranking values and criteria, the mitigation measures included in the analysis. The toolbox includes data management, e.g. saving data half-way in an analysis, returning to an earlier case, looking up prepared examples or looking up information on mitigation measures. The toolbox also generates a report and has user-forum and help features. The presentation will give an overview of the mitigation measures considered and examples of the use of the toolbox, and will take the attendees through the application of the toolbox.
Ranjbar Jafarabadi, Ali; Riyahi Bakhtiyari, Alireza; Shadmehri Toosi, Amirhossein; Jadot, Catherine
2017-10-01
Concentrations of 13 heavy metals (Al, Fe, Mn, Zn, Cu, Cr, Co, Ni, V, As, Cd, Hg, Pb) in 360 reef surface sediments (0-5 cm) and coastal seawater samples from ten coral Islands in the Persian Gulf were analyzed to determine their spatial distribution and potential ecological risks. Different sediment quality indices were applied to assess the surface sediment quality. The mean concentrations of metals in studied sediments followed the order: Al > Fe > Ni > V > Mn > Zn > Cu > Cr > Co > As > Cd > Pb > As. Average Cd and Hg exceeded coastal background levels at most sampling sites. With the exception of As, concentrations of heavy metals decreased progressively from the west to the east of the Persian Gulf. Based on the Enrichment Factor (EF) and Potential Ecological Risk Index (RI), concentrations of V, Ni, Hg and Cd indicated moderate contamination and is of some concern. The mean values of heavy metals Toxic Units (TUs) were calculated in the following order: Hg (0.75)> Cr (0.41)> Cd (0.27)> As (0.23)> Cu (0.12)> Zn (0.05)> Pb (0.009). Furthermore, the mean contributing ratios of six heavy metals to Toxic Risk Index (TRI) values were 79% for Hg, 11.48% for Cd, 6.16% for Cr, 3.27% for Cu, 0.07% for Zn and 0.01% for Pb. Calculated values of potential ecological risk factor, revealed that the risk of the heavy metals followed the order Cd > Pb > Ni > Cr > V > Cu > Zn. The results reflected that the level of heavy metals, especially Hg and Cd, are on rise due to emerging oil exploration, industrial development, and oil refineries along the entire Gulf. Fe, Mn, Cu, Zn, V and Ni concentrations in seawater were significantly higher (p < 0.05) than the other detected dissolved heavy metals in the sampling sites. A health risk assessment using the hazard quotient index (HQ) recommended by the USEPA suggests that there is no adverse health effect through dermal exposure, and there is no carcinogenic and non-carcinogenic harm to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of groundwater under direct influence of surface water.
Nnadi, Fidelia N; Fulkerson, Mark
2002-08-01
Waterborne pathogens are known to reside in surface water systems throughout the U.S. Cryptosporidium outbreaks over recent years are the result of drinking water supplied from such sources. Contamination of aquifers has also led to several reported cases from drinking water wells. With high resistance to typical groundwater treatment procedures, aquifer infiltration by Cryptosporidium poses a serious threat. As groundwater wells are the main source of drinking water supply in the State of Florida, understanding factors that affect the presence of Cryptosporidium would prevent future outbreaks. This study examines karst geology, land use, and hydrogeology in the State of Florida as they influence the risk of groundwater contamination. Microscopic Particulate Analysis (MPA) sampling was performed on 719 wells distributed across Florida. The results of the sampling described each well as having high, moderate, or low risk to surface water influence. The results of this study indicated that the hydrogeology of an area tends to influence the MPA Risk Index (RI) of a well. Certain geologic formations were present for the majority of the high risk wells. Residential land use contained nearly half of the wells sampled. The results also suggested that areas more prone to sinkhole development are likely to contain wells with a positive RI.
Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao
2017-01-01
The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi’an, Yan’an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F−, Cl−, NO3−, HCO3−, SO42−), cations (NH4+, K+, Na+, Ca2+, Mg2+), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl−, SO42−, Na+, K+, Ca2+, Mg2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F−, NO3−, NH4+ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F−, Cl−, NO3−, SO42− were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan’an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run. PMID:28974043
Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Mielke, Howard W; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao
2017-10-02
The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi'an, Yan'an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F - , Cl - , NO₃ - ,HCO₃ - , SO₄ 2- ), cations (NH₄⁺, K⁺, Na⁺, Ca 2+ ,Mg 2+ ), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl - , SO₄ 2- , Na⁺, K⁺, Ca 2+ , Mg 2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F - , NO₃ - , NH₄⁺ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F - , Cl - , NO₃ - , SO₄ 2- were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan'an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run.
Wang, Jianlong; Zhang, Pingping; Yang, Liqiong; Huang, Tao
2016-01-01
Bioretention technology, a low-impact development stormwater management measure, was evaluated for its ability to remove heavy metals (specifically cadmium, Cd) from urban stormwater runoff. Fine sand, zeolite, sand and quartz sand were selected as composite bioretention media. The effects of these materials on the removal efficiency, chemical forms, and accumulation and migration characteristics of Cd were examined in laboratory scale bioretention columns. Heretofore, few studies have examined the removal of Cd by bioretention. A five-step sequential extraction method, a single-contamination index method, and an empirical migration equation were used in the experiments. The average Cd removal efficiency of quartz sand approached 99%, and removal by the other media all exceeded 90%. The media types markedly affected the forms of Cd found in the columns as well as its vertical migration rate. The Cd accumulated in the four media was mainly in residual form; moreover, accumulation of Cd occurred mainly in the surface layer of the bioretention column. The migration depth of Cd in the four media increased with elapsed time, in the following sequence: zeolite>quartz sand>fine sand>sand. In contrast, the migration rate decreased with elapsed time, and the migration rate of Cd was lowest in sand (0.015 m per annum over the first ten years). The comprehensive risk index analysis indicated that the risk arising from Cd discharge to surface water was "intermediate", and that the degree of risk was lowest in sand, then quartz sand, zeolite, and fine sand in sequence. These results indicate that the adsorption and accumulation of Cd in the four media are more significant than the migration of Cd. In addition, the results of Cd risk assessment for the effluent indicate that each of the four media can serve as long-term adsorption material in a bioretention facility for purifying stormwater runoff. Copyright © 2016 Elsevier B.V. All rights reserved.
Identifying and assessing highly hazardous drugs within quality risk management programs.
Sussman, Robert G; Schatz, Anthony R; Kimmel, Tracy A; Ader, Allan; Naumann, Bruce D; Weideman, Patricia A
2016-08-01
Historically, pharmaceutical industry regulatory guidelines have assigned certain active pharmaceutical ingredients (APIs) to various categories of concern, such as "cytotoxic", "hormones", and "steroids". These categories have been used to identify APIs requiring segregation or dedication in order to prevent cross-contamination and protect the quality and safety of drug products. Since these terms were never defined by regulatory authorities, and many novel pharmacological mechanisms challenge these categories, there is a recognized need to modify the historical use of these terms. The application of a risk-based approach using a health-based limit, such as an acceptable daily exposure (ADE), is more appropriate for the development of a Quality Risk Management Program (QRMP) than the use of categories of concern. The toxicological and pharmacological characteristics of these categories are discussed to help identify and prioritize compounds requiring special attention. Controlling airborne concentrations and the contamination of product contact surfaces in accordance with values derived from quantitative risk assessments can prevent adverse effects in workers and patients, regardless of specific categorical designations to which these APIs have been assigned. The authors acknowledge the movement away from placing compounds into categories and, while not yet universal, the importance of basing QRMPs on compound-specific ADEs and risk assessments. Based on the results of a risk assessment, segregation and dedication may also be required for some compounds to prevent cross contamination during manufacture of APIs. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kostyuchenko, Yuriy V.; Sztoyka, Yulia; Kopachevsky, Ivan; Artemenko, Igor; Yuschenko, Maxim
2017-10-01
Multi-model approach for remote sensing data processing and interpretation is described. The problem of satellite data utilization in multi-modeling approach for socio-ecological risks assessment is formally defined. Observation, measurement and modeling data utilization method in the framework of multi-model approach is described. Methodology and models of risk assessment in framework of decision support approach are defined and described. Method of water quality assessment using satellite observation data is described. Method is based on analysis of spectral reflectance of aquifers. Spectral signatures of freshwater bodies and offshores are analyzed. Correlations between spectral reflectance, pollutions and selected water quality parameters are analyzed and quantified. Data of MODIS, MISR, AIRS and Landsat sensors received in 2002-2014 have been utilized verified by in-field spectrometry and lab measurements. Fuzzy logic based approach for decision support in field of water quality degradation risk is discussed. Decision on water quality category is making based on fuzzy algorithm using limited set of uncertain parameters. Data from satellite observations, field measurements and modeling is utilizing in the framework of the approach proposed. It is shown that this algorithm allows estimate water quality degradation rate and pollution risks. Problems of construction of spatial and temporal distribution of calculated parameters, as well as a problem of data regularization are discussed. Using proposed approach, maps of surface water pollution risk from point and diffuse sources are calculated and discussed.
Correlative Assessment of Fecal Indicators Using Human Mitochondrial DNA as a Direct Marker
Identifying the source of surface water fecal contamination is paramount to mitigating pollution and risk to human health. Fecal bacteria such as E. coli have been staple indicator organisms for over a century, however there remains uncertainty with E. coli-based metrics since t...
ARSENIC GEOCHEMICAL BEHAVIOR DURING GROUND WATER-SURFACE WATER INTERACTIONS AT A CONTAMINATED SITE
Research results will be presented that address arsenic mobilization and cycling mechanisms at a Superfund site in eastern Massachusetts. The site is located in the headwaters of the Aberjona Watershed. In order to support assessments of the risk posed by off-site migration of ar...
Summary of Results from the Risk Management Program for the Mars Microrover Flight Experiment
NASA Technical Reports Server (NTRS)
Shishko, Robert; Matijevic, Jacob R.
2000-01-01
On 4 July 1997, the Mars Pathfinder landed on the surface of Mars carrying the first planetary rover, known as the Sojourner. Formally known as the Microrover Flight Experiment (MFEX), the Sojourner was a low cost, high-risk technology demonstration, in which new risk management techniques were tried. This paper summarizes the activities and results of the effort to conduct a low-cost, yet meaningful risk management program for the MFEX. The specific activities focused on cost, performance, schedule, and operations risks. Just as the systems engineering process was iterative and produced successive refinements of requirements, designs, etc., so was the risk management process. Qualitative risk assessments were performed first to gain some insights for refining the microrover design and operations concept. These then evolved into more quantitative analyses. Risk management lessons from the manager's perspective is presented for other low-cost, high-risk space missions.
Dry eye disease: pathophysiology, classification, and diagnosis.
Perry, Henry D
2008-04-01
Dry eye disease (DED) is a multifactorial disorder of the tear film and ocular surface that results in eye discomfort, visual disturbance, and often ocular surface damage. Although recent research has made progress in elucidating DED pathophysiology, currently there are no uniform diagnostic criteria. This article discusses the normal anatomy and physiology of the lacrimal functional unit and the tear film; the pathophysiology of DED; DED etiology, classification, and risk factors; and DED diagnosis, including symptom assessment and the roles of selected diagnostic tests.
Columbia River Component Data Gap Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Hulstrom
2007-10-23
This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.
Reeves, Howard W.; Seelbach, Paul W.; Nicholas, James R.; Hamilton, David A.; Potter, Kenneth W.; Frevert, Donald K.
2010-01-01
In 2008, the State of Michigan enacted legislation requiring that new or increased high-capacity withdrawals (greater than 100,000 gallons per day) from either surface water or groundwater be reviewed to prevent Adverse Resource Impacts (ARI). Science- based guidance was sought in defining how groundwater or surface-water withdrawals affect streamflow and in quantifying the relation between reduced streamflow and changes in stream ecology. The implementation of the legislation led to a risk-based system based on a gradient of risk, ecological response curves, and estimation of groundwater-surface water interaction. All Michigan streams are included in the legislation, and, accordingly, all Michigan streams were classified into management types defined by size of watershed, stream-water temperature, and predicted fish assemblages. Different streamflow removal percentages define risk-based thresholds allowed for each type. These removal percentages were informed by ecological response curves of characteristic fish populations and finalized through a legislative workgroup process. The assessment process includes an on-line screening tool that may be used to evaluate new or increased withdrawals against the risk-based zones and allows withdrawals that are not likely to cause an ARI to proceed to water-use registration. The system is designed to consider cumulative impacts of high-capacity withdrawals and to promote user involvement in water resource management by the establishment of water-user committees as cumulative withdrawals indicate greater potential for ARI in the watershed.
Aravinna, Piyal; Priyantha, Namal; Pitawala, Amarasooriya; Yatigammana, Sudharma K
2017-01-02
Pesticides applied on agricultural lands reach groundwater by leaching, and move to offsite water bodies by direct runoff, erosion and spray drift. Therefore, an assessment of the mobility of pesticides in water resources is important to safeguard such resources. Mobility of pesticides on agricultural lands of Mahaweli river basin in Sri Lanka has not been reported to date. In this context, the mobility potential of 32 pesticides on surface water and groundwater was assessed by widely used pesticide risk indicators, such as Attenuation Factor (AF) index and the Pesticide Impact Rating Index (PIRI) with some modifications. Four surface water bodies having greater than 20% land use of the catchment under agriculture, and shallow groundwater table at 3.0 m depth were selected for the risk assessment. According to AF, carbofuran, quinclorac and thiamethoxam are three most leachable pesticides having AF values 1.44 × 10 -2 , 1.87 × 10 -3 and 5.70 × 10 -4 , respectively. Using PIRI, offsite movement of pesticides by direct runoff was found to be greater than with the erosion of soil particles for the study area. Carbofuran and quinclorac are most mobile pesticides by direct runoff with runoff fractions of 0.01 and 0.08, respectively, at the studied area. Thiamethoxam and novaluron are the most mobile pesticides by erosion with erosion factions of 1.02 × 10 -4 and 1.05 × 10 -4 , respectively. Expected pesticide residue levels in both surface and groundwater were predicted to remain below the USEPA health advisory levels, except for carbofuran, indicating that pesticide pollution is unlikely to exceed the available health guidelines in the Mahaweli river basin in Sri Lanka.
Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays.
Bastos, A C; Prodana, M; Abrantes, N; Keizer, J J; Soares, A M V M; Loureiro, S
2014-11-01
It is vital to address potential risks to aquatic ecosystems exposed to runoff and leachates from biochar-amended soils, before large scale applications can be considered. So far, there are no established approaches for such an assessment. This study used a battery of bioassays and representative aquatic organisms for assessing the acute toxicity of water-extractable fractions of biochar-amended soil, at reported application rates (80 t ha(-1)). Biochar-amended aqueous soil extracts contained cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), lead (Pb), arsenic (As) and mercury (Hg) (Σmetals 96.3 µg l(-1)) as well as the 16 priority PAHs defined by the U.S. Environmental Protection Agency (Σ16PAHs 106 ng l(-1)) at contents in the range of current EU regulations for surface waters. Nevertheless, acute exposure to soil-biochar (SB) extracts resulted in species-specific effects and dose-response patterns. While the bioluminescent marine bacterium Vibrio fischeri was the most sensitive organism to aqueous SB extracts, there were no effects on the growth of the microalgae Pseudokirchneriella subcapitata. In contrast, up to 20 and 25% mobility impairment was obtained for the invertebrate Daphnia magna upon exposure to 50 and 100% SB extract concentrations (respectively). Results suggest that a battery of rapid and cost-effective aquatic bioassays that account for ecological representation can complement analytical characterization of biochar-amended soils and risk assessment approaches for surface and groundwater protection.
Hjorth, Rune; Coutris, Claire; Nguyen, Nhung H A; Sevcu, Alena; Gallego-Urrea, Juliàn Alberto; Baun, Anders; Joner, Erik J
2017-09-01
Nanoremediation with iron (Fe) nanomaterials opens new doors for treating contaminated soil and groundwater, but is also accompanied by new potential risks as large quantities of engineered nanomaterials are introduced into the environment. In this study, we have assessed the ecotoxicity of four engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron ® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata, Chlamydomonas sp.), crustaceans (D. magna), worms (E. fetida, L. variegatus) and plants (R. sativus, L. multiflorum). The tested materials are commercially available and include Fe oxide and nanoscale zero valent iron (nZVI), but also hybrid products with Fe loaded into a matrix. All but one material, a ball milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity, aggregation and sedimentation behavior in aqueous media. This paper provides a number of recommendations concerning future testing of Fe nanomaterials and discusses environmental risk assessment considerations related to these. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Water Risks of Hydraulic Fracturing (Fracking): Key Issues from the New California Assessment
NASA Astrophysics Data System (ADS)
Gleick, P. H.
2015-12-01
A key component of the Water-Energy Nexus is the effort over the past decade or so to quantify the volumes and form of water required for the energy fuel cycle from extraction to generation to waste disposal. The vast majority of the effort in this area has focused on the water needs of electricity generation, but other fuel-cycle components also entail significant water demands and threats to water quality. Recent work for the State of California (managed by the California Council on Science and Technology - CCST) has produced a new state-of-the-art assessment of a range of potential water risks associated with hydraulic fracturing and related oil and gas extraction, including volumetric water demands, methods of disposal of produced water, and aquifer contamination. For example, this assessment produced new information on the disposal of produced water in surface percolation pits and the potential for contamination of local groundwater (see Figure). Understanding these risks raises questions about current production and future plans to expand production, as well as tools used by state and federal agencies to manage these risks. This talk will summarize the science behind the CCST assessment and related policy recommendations for both water and energy managers.
Water Stress on U.S. Power Production at Decadal Time Horizons
NASA Astrophysics Data System (ADS)
Ganguli, P.; Kumar, D.; Yun, J.; Short, G.; Klausner, J.; Ganguly, A. R.
2014-12-01
Thermoelectric power production at risk, owing to current and projected water scarcity and rising stream temperatures, is assessed for the continental United States (US) at decadal scales. Regional water scarcity is driven by climate variability and change, as well as by multi-sector water demand. While a planning horizon of zero to about thirty years is occasionally prescribed by stakeholders, the challenges to risk assessment at these scales include the difficulty in delineating decadal climate trends from intrinsic natural or multiple model variability. Current generation global climate or earth system models are not credible at the spatial resolutions of power plants, especially for surface water quantity and stream temperatures, which further exacerbates the assessment challenge. Population changes, which are anyway difficult to project, cannot serve as adequate proxies for changes in the water demand across sectors. The hypothesis that robust assessments of power production at risks are possible, despite the uncertainties, has been examined as a proof of concept. An approach is presented for delineating water scarcity and temperature from climate models, observations and population storylines, as well as for assessing power production at risk by examining geospatial correlations of power plant locations within regions where the usable water supply for energy production happens to be scarcer and warmer. Acknowledgment: Funding provided by US DOE's ARPA-E through Award DE-AR0000374.
Liebig, Markus; Moltmann, Johann F; Knacker, Thomas
2006-03-01
In the past few years, there was an increasing awareness of the occurrence of pharmaceuticals and personal care products (PPCPs) in surface water and drinking water resources, and measurements in surface water, sediment or waste water were done for a number of PPCPs. In the regulatory context, an environmental risk assessment (ERA) has become essential for new PPCPs. Reliably predicted or measured environmental concentrations (PECs or MECs) of chemicals are essential for the exposure assessment, which is one of the two main pillars of environmental risk assessment (ERA). This paper reports on measured data of selected PPCPs in surface waters and compares the measured values with predicted environmental concentrations from exposure models. Such models have been proposed by the European Agency for the Evaluation of Medicinal Products (EMEA) and the Technical Guidance Document on Risk Assessment for New Notified and Existing Chemical Substances (TGD). Four pharmaceuticals and one personal care product were in the scope of the investigation reported here: 17alpha-ethinylestradiol, carbamazepine, sulfamethoxazole and iopromide as well as tonalide. Measured environmental concentrations in surface waters for these PPCPs were reviewed in the scientific literature. The appropriateness of these data was evaluated according to criteria for monitoring data recommended by the TGD. A total of 38 references were evaluated with emphasis on the adequacy of chemical analysis and the representativeness of sampling. Measurements of concentrations in surface water (MECsw), which were found to be adequate for use in exposure assessment according to the monitoring quality criteria, were averaged and compared with respective PECs in surface water (PECsw) derived from exposure modelling (cf. EMEA and TGD). Measured environmental concentrations adequate for use in exposure assessment were found in 20 out of 38 references. Several of the measurements from Germany could be used for a comparison with calculated PECs. Average MECs(sw) in Germany were < 0.58 ng/L for 17alpha-ethinylestradiol, 454 ng/L for carbamazepine, 126 ng/L for sulfamethoxazole, 1105 ng/L for iopromide and 311 ng/L for tonalide. In comparison to the measured concentrations, PECs calculated with the model proposed by the EMEA in 2001 were in the same range, but slightly higher than the MECs. The EMEA model from 2001 is based on a production/use volume of the PPCPs. The more recent EMEA model (2003/2005) overestimated the PECs by more than one order of magnitude for carbamazepine and sulfamethoxazole, but underestimated the concentration of 17alpha-ethinylestradiol by a factor of almost 5 compared to the MECs. This model is based on maximum daily doses and the assumption that 1% of the population is consuming the pharmaceutical (default value). Calculations with the European Union System for the Evaluation of Substances (EUSES), which is part of the TGD describing the risk assessment of chemicals and biocides, resulted for the investigated pharmaceuticals in almost the same PECs as derived by the older EMEA model (2001). For the PCP tonalide, to which the recent EMEA model (2003/ 2005) cannot be applied, the PEC was overestimated by a factor of 3 with the older EMEA model (2001), but underestimated with EUSES by a factor of 5 compared to the averaged MECsw in Germany. Conclusions. It was shown that PEC calculations with exposure models provided by EMEA and the TGD, resulted in PECs very close to the corresponding MECs in most cases. However, environmental concentrations can be underestimated by models in cases, where, e.g. due to high lipophilicity, sorption to sewage sludge is assumed which does not occur to that extent under real conditions. Thus, it appears that the exposure models do not come up to the complexity of the real environment. However, the main factor with the highest impact on predicted environmental concentrations and a high degree of uncertainty is the production volume. Recommendations and Outlook. References and their data evaluated as not adequate for use in exposure assessment were mainly rejected due to missing or insufficient specifications related to the sampling procedure and/or representativeness of the samples. Several of the evaluated studies aimed at the introduction and establishment of a new analytical methodology. A detailed description of sampling frequency and pattern, for example, was therefore neglected. Often, a more accurate description of analytical procedure, sampling pattern and statistical analysis of data would be sufficient to provide an adequate basis for exposure assessment and hence establish confidence in environmental risk assessment procedures. For new substances, an exposure assessment is solely based on estimations using environmental fate models. To avoid unacceptable risks for the environment, PECs should not underestimate actual environmental concentrations. Since it was shown that under specific conditions the models applied in this study underestimated measured environmental concentrations, further development of the calculation models appears to be necessary.
Climate change impacts on faecal indicator and waterborne pathogen concentrations and disease
NASA Astrophysics Data System (ADS)
Hofstra, Nynke; Vermeulen, Lucie C.; Wondmagegn, Berhanu Y.
2013-04-01
Changes in temperature and precipitation patterns may impact on the concentrations of the faecal indicator E. coli and waterborne pathogens, such as Cryptosporidium, in the surface water, and consequently - through drinking water, recreational water or consumption of irrigated vegetables - on the risk of waterborne disease. Although an increased temperature would generally increase the decline of pathogens and therefore decrease the surface water concentrations, increased precipitation and an increased incidence of extreme precipitation may increase surface water concentrations through increased (sub-)surface runoff and an increased risk of sewer overflows. And while the diluting effect of increased precipitation decreases the surface water concentration, decreased precipitation increases the percentage of sewage in the surface water and therefore increases the concentration. Moreover, (extreme) precipitation after drought may also increase the concentration. Changes in behaviour, such as increased recreation and irrigation with higher temperatures may impact on the disease risk. What the balance is between these positive and negative impacts of climate change on faecal indicator and waterborne pathogen concentrations and disease is not well known yet. A lack of available statistical or process-based models and suitable scenarios prevents quantitative analyses. We will present two examples of recent studies that aim to assess the impact of climate change on faecal indicator concentrations and waterborne disease. The first is a study on the relationship between climate variables and E. coli concentrations in the water of river systems in the Netherlands for the period 1985 - 2010. This study shows that each of the variables water temperature (negatively), precipitation and discharge (both positively) are significantly correlated with E. coli concentrations for most measurement locations. We will also present a linear regression model, including all of these variables. In the second example we assess the relationship between the weather variables precipitation and minimum and maximum temperature and the number of diarrhoeal cases in Ethiopia. We have digitised data from the Ethiopian health service and hospitals on the number of diarrhoeal cases for the period 2005 - 2010 and used meteorological data from their weather service. Very strong correlations can be found between the monthly weather variables and the number of diarrhoeal cases and a linear regression model including all variables explains a large part of the variability of the data. The studies indicate that climate change may increase the waterborne pathogen concentration in surface water and disease risk and should therefore not be ignored as a threat to microbial water quality.
Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan.
Aubakirova, Bakhyt; Beisenova, Raikhan; Boxall, Alistair Ba
2017-09-01
Over the last 20 years, there has been increasing interest in the occurrence, fate, effects, and risk of pharmaceuticals in the natural environment. However, we still have only limited or no data on ecotoxicological risks of many of the active pharmaceutical ingredients (APIs) currently in use. This is partly due to the fact that the environmental assessment of an API is an expensive, time-consuming, and complicated process. Prioritization methodologies, which aim to identify APIs of most concern in a particular situation, could therefore be invaluable in focusing experimental work on APIs that really matter. The majority of approaches for prioritizing APIs require annual pharmaceutical usage data. These methods cannot therefore be applied to countries, such as Kazakhstan, that have very limited data on API usage. The present paper therefore offers an approach for prioritizing APIs in surface waters in information-poor regions such as Kazakhstan. Initially data were collected on the number of products and active ingredients for different therapeutic classes in use in Kazakhstan and on the typical doses. These data were then used alongside simple exposure modeling approaches to estimate exposure indices for active ingredients (about 240 APIs) in surface waters in the country. Ecotoxicological effects data were obtained from the literature or predicted. Risk quotients were then calculated for each pharmaceutical based on the exposure and the substances were ranked in order of risk quotient. Highest exposure indices were obtained for benzylpenicillin, metronidazole, sulbactam, ceftriaxone, and sulfamethoxazole. The highest risk was estimated for amoxicillin, clarithromycin, azithromycin, ketoconazole, and benzylpenicillin. In the future, the approach could be employed in other regions where usage information is limited. Integr Environ Assess Manag 2017;13:832-839. © 2017 SETAC. © 2017 SETAC.
Stine, Scott W; Song, Inhong; Choi, Christopher Y; Gerba, Charles P
2005-05-01
Microbial contamination of the surfaces of cantaloupe, iceberg lettuce, and bell peppers via contact with irrigation water was investigated to aid in the development of irrigation water quality standards for enteric bacteria and viruses. Furrow and subsurface drip irrigation methods were evaluated with the use of nonpathogenic surrogates, coliphage PRD1, and Escherichia coli ATCC 25922. The concentrations of hepatitis A virus (HAV) and Salmonella in irrigation water necessary to achieve a 1:10,000 annual risk of infection, the acceptable level of risk used for drinking water by the U.S. Environmental Protection Agency, were calculated with a quantitative microbial risk assessment approach. These calculations were based on the transfer of the selected nonpathogenic surrogates to fresh produce via irrigation water, as well as previously determined preharvest inactivation rates of pathogenic microorganisms on the surfaces of fresh produce. The risk of infection was found to be variable depending on type of crop, irrigation method, and days between last irrigation event and harvest. The worst-case scenario, in which produce is harvested and consumed the day after the last irrigation event and maximum exposure is assumed, indicated that concentrations of 2.5 CFU/100 ml of Salmonella and 2.5 x 10(-5) most probable number per 100 ml of HAV in irrigation water would result in an annual risk of 1:10,000 when the crop was consumed. If 14 days elapsed before harvest, allowing for die-off of the pathogens, the concentrations were increased to 5.7 x 10(3) Salmonella per 100 ml and 9.9 x 10(-3) HAV per 100 ml.
Hu, Ying; Yan, Xue; Shen, Yun; Di, Mingxiao; Wang, Jun
2018-08-15
Thirteen antibiotics including sulfonamides (SAs), tetracyclines (TETs) and fluoroquinolones (FQs) were measured in Hanjiang River (HR) during two periods. The total concentrations of 13 antibiotics in surface water and sediments ranged from 3.1 to 109 ng/l and from 10 to 45 ng/g dry weight, respectively. SAs were dominant in water while the concentrations of TETs were the highest in sediments in two seasons. For their spatial distribution, total concentrations of 13 antibiotics in both matrices were significantly higher in the lower section of HR (p < 0.02, F > 5.15) due to wastewater release, agricultural activities and water transfer project. Obvious seasonal variations of sulfadiazine, sulfameter, trimethoprim and oxytetracycline in water were observed (p < 0.05, F > 4.62). Phase partition of antibiotics between water and sediments suggested a greater affinity of TETs and FQs to sediments. In addition, significantly positive relationships were found between SAs (sulfameter, sulfamethoxazole and trimethoprim) and sediment TOC (p < 0.05). Risk assessment indicated that the hazard quotients of antibiotics were higher in the sediment than those in the water. Moreover, antibiotic mixtures posed higher ecological risks to aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, andmore » sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.« less
Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment.
Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Chen, Zhi-Feng; Yang, Yuan-Yuan; Zhang, Qian-Qian; Ying, Guang-Guo
2015-05-01
Nineteen biocides were investigated in the Yangtze River to understand their spatiotemporal distribution, mass loads and ecological risks. Fourteen biocides were detected, with the highest concentrations up to 166 ng/L for DEET in surface water, and 54.3 ng/g dry weight (dw) for triclocarban in sediment. The dominant biocides were DEET and methylparaben, with their detection frequencies of 100% in both phases. An estimate of 152 t/y of 14 biocides was carried by the Yangtze River to the East China Sea. The distribution of biocides in the aquatic environments was significantly correlated to Gross Domestic Product (GDP), total phosphorus (TP) and total nitrogen (TN), suggesting dominant input sources from domestic wastewater of the cities along the river. Risk assessment showed high ecological risks posed by carbendazim in both phases and by triclosan in sediment. Therefore, proper measures should be taken to reduce the input of biocides into the river systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing
2015-02-01
In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.
NASA Astrophysics Data System (ADS)
Ghosh, Kapil; De, Sunil Kumar
2017-04-01
Successful landslide management plans and policy depends on in-depth knowledge about the hazard and associated risk. Thus, the present research is intended to present an integrated approach involving uses of geospatial technologies for landslide hazard and risk assessment at different scales (site specific to regional level). The landslide hazard map at regional scale (district level) is prepared by using weight-rating based method. To analyze landslide manifestation in the Dhalai district of Tripura different causative factor maps (lithology, road buffer, slope, relative relief, rainfall, fault buffer, landuse/landcover and drainage density) are derived. The analysis revealed that the geological structure and human interference have more influence than other considered factors on the landslide occurrences. The landslide susceptibility zonation map shows that about 1.64 and 16.68% of the total study area is falling under very high and high susceptibility zones respectively. The landslide risk assessment at district level is generated by integrating hazard scouring and resource damage potential scouring (fuzzy membership values) maps. The values of landslide risk matrix are varying within the range of 0.001 to 0.18 and the risk assessment map shows that only 0.45% (10.80 km2) of the district is under very high risk zone, whereas, about 50% pixels of existing road section are under very high to high level of landslide risk. The major part (94.06%) of the district is under very low to low risk zone. Landslide hazard and risk assessment at site specific level have been carried out through intensive field investigation in which it is found that the Ambassa landslide is located within 150 m buffer zone of fault line. Variation of geo-electrical resistivity (2.2Ωm to 31.4Ωm) indicates the complex geological character in this area. Based on the obtained geo-technical result which helps to identify the degree of risk to the existing resource, it is appropriate to implement the management plans such as construction of sub-surface drainage, extension of retaining walls, cutting/filling of slope in scientific manner. Keywords: landslide, hazard, risk, fuzzy set theory
Nasr, Samir M; Okbah, Mohamed A; El Haddad, Huda S; Soliman, Naglaa F
2015-07-01
A five-step sequential extraction technique, following Tessier's protocol, has been applied to determine the chemical association of Cd, Cu, Fe, Pb, and Zn with major sedimentary phases (exchangeable, carbonate, manganese and iron oxides, organic and residual fraction) in surface sediments from 14 stations off the Libyan Mediterranean coast. This study is a first approach of chemical fractionation of these metals in one of the most economically important area of the Libyan coastline in Mediterranean Sea. The total metal content was also determined. The total concentration of metals ranged from 5-10.5 mg/kg for Cd, 9.1-22.7 mg/kg for Cu, 141.8-1056.8 mg/kg for Fe, 18.9-56.9 mg/kg for Pb, and 11.6-30.5 mg/kg for Zn. The results of the partitioning study showed that the residual form was the dominant fraction of the selected metals among most of the studied locations. The degree of surface sediment contamination was computed for risk assessment code (RAC), individual contamination factor (ICF), and Global contamination factor (GCF). Risk assessment code classification showed that the relative amounts of easily dissolved phase of trace metals in the sediments are in the order of Pb>Zn>Cd>Cu>Fe. The results of ICF and GCF showed that Sirt and Abu Kammashand had higher GCF than other sites indicating higher environmental risk. In terms of ICF value, a decrease order in environmental risk by trace metals was Pb>Zn>Cu>Cd>Fe. Therefore, Pb had highest risk to water body.
Genetic Inventory Task Final Report. Volume 2
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; LaDuc, Myron T.; Vaishampayan, Parag
2012-01-01
Contaminant terrestrial microbiota could profoundly impact the scientific integrity of extraterrestrial life-detection experiments. It is therefore important to know what organisms persist on spacecraft surfaces so that their presence can be eliminated or discriminated from authentic extraterrestrial biosignatures. Although there is a growing understanding of the biodiversity associated with spacecraft and cleanroom surfaces, it remains challenging to assess the risk of these microbes confounding life-detection or sample-return experiments. A key challenge is to provide a comprehensive inventory of microbes present on spacecraft surfaces. To assess the phylogenetic breadth of microorganisms on spacecraft and associated surfaces, the Genetic Inventory team used three technologies: conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-encoded pyrosequencing, together with a methodology to systematically collect, process, and archive nucleic acids. These three analysis methods yielded considerably different results: Traditional approaches provided the least comprehensive assessment of microbial diversity, while PhyloChip and pyrosequencing illuminated more diverse microbial populations. The overall results stress the importance of selecting sample collection and processing approaches based on the desired target and required level of detection. The DNA archive generated in this study can be made available to future researchers as genetic-inventory-oriented technologies further mature.
López-Roldán, Ramón; Rubalcaba, Alicia; Martin-Alonso, Jordi; González, Susana; Martí, Vicenç; Cortina, Jose Luis
2016-01-01
A methodology has been developed in order to evaluate the potential risk of drinking water for the health of the consumers. The methodology used for the assessment considered systemic and carcinogenic effects caused by oral ingestion of water based on the reference data developed by the World Health Organisation (WHO) and the Risk Assessment Information System (RAIS) for chemical contaminants. The exposure includes a hypothetical dose received by drinking this water according to the analysed contaminants. An assessment of the chemical quality improvement of produced water in the Drinking Water Treatment Plant (DWTP) after integration of membrane technologies was performed. Series of concentration values covering up to 261 chemical parameters over 5 years (2008-2012) of raw and treated water in the Sant Joan Despí DWTP, at the lower part of the Llobregat River basin (NE Spain), were used. After the application of the methodology, the resulting global indexes were located below the thresholds except for carcinogenic risk in the output of DWTP, where the index was slightly above the threshold during 2008 and 2009 before the upgrade of the treatment works including membrane technologies was executed. The annual evolution of global indexes showed a reduction in the global values for all situations: HQ systemic index based on RAIS dropped from 0.64 to 0.42 for surface water and from 0.61 to 0.31 for drinking water; the R carcinogenic index based on RAIS was negligible for input water and varied between 4.2×10(-05) and 7.4×10(-06) for drinking water; the W systemic index based on the WHO data varied between 0.41 and 0.16 for surface water and between 0.61 and 0.31 for drinking water. A specific analysis for the indexes associated with trihalomethanes (THMs) showed the same pattern. Copyright © 2015 Elsevier B.V. All rights reserved.
Presence, fate and effects of the intense sweetener sucralose in the aquatic environment.
Tollefsen, Knut Erik; Nizzetto, Luca; Huggett, Duane B
2012-11-01
Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations >9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC/PNEC=0.08), thus indicating a limited risk to the environment using traditional ecological risk assessment approaches. Copyright © 2012 Elsevier B.V. All rights reserved.
Risk Assessment of Heavy Metals in Surface Sediments from the Yanghe River, China
Li, Jing
2014-01-01
The magnitude and ecological relevance of metal pollution from the upstream of water sources after emergency pollution events was investigated by applying a set of complementary sediment quality assessment methods: (1) geochemical assessment based on background value (the geoaccumulation index); (2) comparisons with sediment quality guidelines (SQGs); (3) an evaluation of the combined pollution according to the risk index (RI); and (4) investigation of the chemical patterns of target heavy metals (Cd, Zn, Cr, Pb, Ni). The geoaccumulation indices (Igeo) suggested that the magnitude of heavy metal pollution of the sediment of Yanghe River decreased in the order of Cd > Zn > Pb > Cr > Ni. Risk analysis also suggested that Cd and Zn concentrations were sufficiently elevated as to cause adverse biological effects in this study area. According to the RI values, 27% of total sampling sites showed considerable ecological risk for the water body, and 53% of total sampling sites showed very high ecological risk for the waterbody. Sediment-bound Cd was found to be predominantly associated with the exchangeable phase of the sediment (25%–68%), while Cr, Ni, Zn and Pb showed the strongest association with the residual fractions (60%–92%, 53%–67%, 24%–85% and 35%–67%, respectively). PMID:25464136
Chen, Jiajun
2018-01-01
The potential toxic elements (PTEs) pollution problems in many rural industrial wastelands have been observed to be conspicuous. Therefore, 40 top soil samples were collected from the wasteland of a typical rural metallurgy factory in Baoding, China. The total concentrations of six key PTEs were measured. The soil properties and speciation of the PTEs were also identified. Extremely high concentrations of As, Cd, Pb, and Zn were observed in the surface soils. Using the PTEs concentration in the top soils of the rural industrial wasteland, the following indices of pollution were calculated: the pollution load index (PLI), the geo-accumulation Index (Igeo), the risk assessment code (RAC), and the health risk assessment (HRA). The analysis of the PLI and Igeo indicated that site #1 was relatively clean, while sites #2 and #3 were heavily polluted. The results of the RAC showed that PTEs in top soils at sites #2 and #3 were significantly increased (p < 0.05) for Cd and Zn. The HRA indicated that both As and Pb presented non-carcinogenic risks to children and adults at sites #2 and #3. Our findings can be a reference for risk prevention of industrially abandoned land in rural China. PMID:29316642
Sun, Zheng; Chen, Jiajun
2018-01-06
The potential toxic elements (PTEs) pollution problems in many rural industrial wastelands have been observed to be conspicuous. Therefore, 40 top soil samples were collected from the wasteland of a typical rural metallurgy factory in Baoding, China. The total concentrations of six key PTEs were measured. The soil properties and speciation of the PTEs were also identified. Extremely high concentrations of As, Cd, Pb, and Zn were observed in the surface soils. Using the PTEs concentration in the top soils of the rural industrial wasteland, the following indices of pollution were calculated: the pollution load index (PLI), the geo-accumulation Index (I geo ), the risk assessment code (RAC), and the health risk assessment (HRA). The analysis of the PLI and I geo indicated that site #1 was relatively clean, while sites #2 and #3 were heavily polluted. The results of the RAC showed that PTEs in top soils at sites #2 and #3 were significantly increased ( p < 0.05) for Cd and Zn. The HRA indicated that both As and Pb presented non-carcinogenic risks to children and adults at sites #2 and #3. Our findings can be a reference for risk prevention of industrially abandoned land in rural China.
Amodio, Emanuele; Cannova, Lucia; Villafrate, Maria Rosaria; Merendino, Anna Maria; Aprea, Luigi; Calamusa, Giuseppe
2014-01-01
Contaminated hospital surfaces have been demonstrated to be an important environmental reservoir of microorganisms that can increase the risk of nosocomial infection in exposed patients. As a consequence, cleaning and disinfecting hospital environments play an important role among strategies for preventing healthcare-associated colonization and infections. The aim of the present study was to evaluate whether adenosine triphosphate (ATP) presence, measured by bioluminescence methods, can predict microbiological contamination of hospital surfaces. The study was carried out between September and December 2012 at the University Hospital "P. Giaccone" of Palermo. A total of 193 randomly selected surfaces (tables, lockers, furnishings) were sampled and analyzed in order to assess ATP levels (expressed as relative light units or RLU) and aerobic colony count (ACC) or presence of S. aureus. ACC had median values of 1.85 cfu/cm(2)(interquartile range = 4.16) whereas ATP median was 44.6 RLU/cm(2)(interquartile range = 92.3). Overall, 85 (44.0%) surfaces exceeded the established microbial benchmark: 73 (37.8%) exceeded the 2.5 cfu/cm(2)ACC standard, 5 (2.6%) surfaces were positive for S. aureus and 7 (3.6%) showed both the presence of S. aureus and an ACC of more than 2.5 cfu/cm(2). ACC and bioluminescence showed significant differences in the different surface sites (p < 0.001). A significant correlation was found between ACC and RLU values (p-value < 0.001; R(2)= 0.29) and increasing RLU values were significantly associated with a higher risk of failing the benchmark (p < 0.001). Our data suggest that bioluminescence could help in measuring hygienic quality of hospital surfaces using a quick and sensitive test that can be an useful proxy of microbial contamination; however, further analysis will be necessary to assess the cost-efficacy of this methodology before requiring incorporation in hospital procedures.
Occurrence, Distribution, and Accumulation of Pesticides in Exterior Residential Areas.
Jiang, Weiying; Conkle, Jeremy L; Luo, Yuzhou; Li, Juying; Xu, Karen; Gan, Jay
2016-12-06
Pesticides are commonly applied around residential homes, but their occurrence on exterior surfaces (e.g., pavement) has not been thoroughly evaluated. We collected 360 dust samples from curbside gutters, sidewalks, and street surfaces at 40 houses in southern California to evaluate pesticide occurrence on urban paved surfaces as well as their spatial and temporal distributions. Pesticides and select degradates were ubiquitously detected in dust, with the median concentration of total target analytes at 85 μg kg -1 . A total of 75% of samples contained at least five pesticides. As a result of recurring pesticide applications, concentrations increased throughout the summer. The pyrethroids bifenthrin and permethrin accounted for 55% of total pesticides detected in the dust. The highest concentrations in dust were found on the sidewalk and in the gutter. Relative to indoor environments, human exposure risk to pesticides on paved surfaces was estimated to be lower, with the highest potential oral and dermal exposure predicted to be 38 ng day -1 for permethrin. The ubiquitous detection of pesticides on residential outdoor surfaces and the fact that the exterior concentrations did not correlate to the indoor areas highlight the necessity to measure pesticides in both indoor and outdoor areas for complete residential pesticide risk assessment.
Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie
2017-01-01
In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources.
Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie
2017-01-01
In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources. PMID:29253896
Krishnakumar, S; Ramasamy, S; Simon Peter, T; Godson, Prince S; Chandrasekar, N; Magesh, N S
2017-12-15
Fifty two surface sediments were collected from the northern part of the Gulf of Mannar biosphere reserve to assess the geospatial risk of sediments. We found that distribution of organic matter and CaCO 3 distributions were locally controlled by the mangrove litters and fragmented coral debris. In addition, Fe and Mn concentrations in the marine sediments were probably supplied through the riverine input and natural processes. The Geo-accumulation of elements fall under the uncontaminated category except Pb. Lead show a wide range of contamination from uncontaminated-moderately contaminated to extremely contaminated category. The sediment toxicity level of the elements revealed that the majority of the sediments fall under moderately to highly polluted sediments (23.07-28.84%). The grades of potential ecological risk suggest that predominant sediments fall under low to moderate risk category (55.7-32.7%). The accumulation level of trace elements clearly suggests that the coral reef ecosystem is under low to moderate risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kristofco, Lauren A; Brooks, Bryan W
2017-08-15
Concentration of the global population is increasingly occurring in megacities and other developing regions, where access to medicines is increasing more rapidly than waste management systems are implemented. Because freshwater and coastal systems are influenced by wastewater effluent discharges of differential quality, exposures in aquatic systems must be considered. Here, we performed a global scanning assessment of antihistamines (AHs), a common class of medicines, in surface waters and effluents. Antihistamines were identified, literature occurrence and ecotoxicology data on AHs collated, therapeutic hazard values (THVs) calculated, and environmental exposure distributions (EEDs) of AHs compared to ecotoxicity thresholds and drug specific THVs to estimate hazards in surface waters and effluents. Literature searches of 62 different AHs in environmental matrices identified 111 unique occurrence publications of 24 specific AHs, largely from Asia-Pacific, Europe, and North America. However, the majority of surface water (63%) and effluent (85%) observations were from Europe and North America, which highlights relatively limited information from many regions, including developing countries and rapidly urbanizing areas in Africa, Latin America and Asia. Less than 10% of all observations were for estuarine or marine systems, though the majority of human populations reside close to coastal habitats. EED 5 th and 95 th centiles for all AHs were 2 and 212ng/L in surface water, 5 and 1308ng/L in effluent and 6 and 4287ng/L in influent, respectively. Unfortunately, global hazards and risks of AHs to non-target species remain poorly understood. However, loratadine observations in surface waters exceeded a THV without an uncertainty factor 40% of the time, indicating future research is needed to understand aquatic toxicology, hazards and risks associated with this AH. This unique global scanning study further illustrates the utility of global assessments of pharmaceuticals and other contaminants to identify chemicals requiring toxicology study and regions where environmental monitoring, assessment and management efforts appear limited and necessary. Copyright © 2017. Published by Elsevier B.V.
Dubny, Sabrina; Peluso, Fabio; Masson, Ignacio; Othax, Natalia; González Castelain, José
2018-04-01
Using the USEPA methodology we estimated the probabilistic chronic risks for calves and adult cows due to pesticide exposure through oral intake of contaminated surface and ground waters in Tres Arroyos County (Argentina). Because published data on pesticide toxicity endpoints for cows are scarce, we used threshold levels based on interspecies extrapolation methods. The studied waters showed acceptable quality for cattle production since none of the pesticides were present at high-enough concentrations to potentially affect cow health. Moreover, ground waters had better quality than surface waters, with dieldrin and deltamethrin being the pesticides associated with the highest risk values in the former and the latter water compartments, respectively. Our study presents a novel use of the USEPA risk methodology proving it is useful for water quality evaluation in terms of pesticide toxicity for cattle production. This approach represents an alternative tool for water quality management in the absence of specific cattle pesticide regulatory limits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Physics-based Entry, Descent and Landing Risk Model
NASA Technical Reports Server (NTRS)
Gee, Ken; Huynh, Loc C.; Manning, Ted
2014-01-01
A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.
Chen, Yi; Vymazal, Jan; Březinová, Tereza; Koželuh, Milan; Kule, Lumír; Huang, Jingang; Chen, Zhongbing
2016-10-01
Rural communities in central and eastern Europe usually use constructed wetlands (CWs) to treat domestic wastewater. Effluents from these systems are regularly discharged to receiving water, resulting in a potential transfer of pharmaceuticals and personal care products (PPCPs) from sewage to the aquatic environment. In this study, the seasonal occurrence, removal and risk assessment of 32 multi-class PPCPs were investigated in three CWs from the village of south Bohemia, Czech Republic. Among the PPCPs considered, 25 compounds were detected in sewage influent, and ibuprofen, caffeine and paracetamol were the most commonly detected PPCPs. The removal efficiencies of PPCPs in the rural CWs exhibited large variability with 11-100% for anti-inflammatories, 37-99% for β-blockers and 18-95% for diuretics. The statistical results revealed significant correlations between removal efficiencies of six PPCPs and conventional water quality parameters. The ecotoxicological assessment study revealed that most of the PPCPs (except ibuprofen) in the effluent yielded low aquatic risk. This study suggested that constructed wetlands could be effective for removing PPCPs and reducing environmental risk of PPCPs discharged from rural communities into surface water systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Cui, Lili; Wei, Liangfu; Wang, Jun
2017-01-01
Surface water quality closely correlating with human health suffered increasing organochlorine pesticide (OCP) pollution due to the intensive anthropogenic activities in megacities. In the present study, 112 water samples collected from 14 lakes and 11 drinking water source sites in Wuhan were detected for the residues of OCPs in November 2013 and July 2014, respectively. The ΣOCPs ranged from 5.61 to 13.62 ng L -1 in summer with the maximum value in Yezhi Lake and 3.18 to 7.73 ng L -1 in winter with the highest concentration in Yandong Lake. Except dichlorodiphenyltrichloroethanes (DDTs), OCP concentrations in summer were significantly higher than those in winter mostly due to the non-point source pollution including land runoff in summer. Source apportionment of hexachlorocyclohexanes (HCHs) and DDTs revealed the historical use of technical HCH and lindane and the new input of DDT, respectively. The spatial distribution of OCPs was not uniform in the surface water of Wuhan because of the significant influence of land development and fishery. The risk assessments showed the heptachlor, and heptachlor epoxide in most sampling sites exceeded the threshold set by the European Union, indicating the possible adverse effects for aquatic lives. Negligible non-carcinogenic risks for drinking and bathing as well as carcinogenic risks for bathing were found in the surface water. However, the total carcinogenic risks of all OCPs (∑Rs) caused by drinking in summer were higher than the safe level of 10 -7 in all sampling sites. It was implied that the surface water in Wuhan was not safe for directly drinking without effective purification.
Potential ecological risk assessment and predicting zinc accumulation in soils.
Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka
2018-02-01
The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg -1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg -1 d.m. (0.01 mol dm -3 CaCl 2 ), and between 0.03 and 71.54 mg kg -1 d.m. (1 mol dm -3 NH 4 NO 3 ). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90% of the soils there were no potentially negative effects of zinc to ecological receptors.
Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.
de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale
2015-04-01
A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Yuting; Niu, Lili; Liu, Kai; Yin, Shanshan; Liu, Weiping
2018-03-01
Arsenic (As) in the environment is of concern due to its strong toxicity and high risks to the ecosystems and humans. In this study, soil samples across China collected in 2011 and 2016 were used to determine the concentrations of arsenic in arable soils. The median concentration of arsenic in surface soils was 9.7mg/kg. The inventory of arsenic in the Chinese agricultural surface soils was estimated to be 3.7×10 6 tons. In general, arsenic contamination was found higher in South and Northeast China than in other regions, with means of 18.7 and 15.8mg/kg, respectively. Vertically, arsenic concentrations were higher in top layer (0-15cm) soils (median of 9.8mg/kg) and decreased with soil depth (medians of 8.9mg/kg at 15-30cm and 8.0mg/kg at 30-45cm). By comparing with published data, an increasing accumulation trend over the past decades was found and this enhancement was positively related with the long-term application of fertilizers in agricultural practice, especially phosphate fertilizers. Soil pH was found to affect the movement of arsenic in soil, and high-pH conditions enhanced the pool of arsenic. The ecological risk assessment revealed that arsenic in Chinese agricultural soil posed a low risk to the ecosystem. Regarding human health, the mean hazard indices (HIs) of arsenic were below 1, suggesting an absence of non-carcinogenic risks. In addition, the cancer risks of arsenic in all soil samples were within the acceptable range (below 1×10 -4 ), indicating low to very low risks to the exposed population. Findings from this study are valuable to provide effective management options for risk avoidance and to control the persistent accumulation of arsenic in the agriculture sector across the world. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing
2013-05-01
The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.
Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk.
Cizmas, Leslie; Sharma, Virender K; Gray, Cole M; McDonald, Thomas J
2015-12-01
Pharmaceuticals and personal care products (PPCP) are compounds with special physical and chemical properties that address the care of animal and human health. PPCP have been detected in surface water and wastewater in the ng/L to µg/L concentration range worldwide. PPCP ecotoxicity has been studied in a variety of organisms, and multiple methods have been used to assess the risk of PPCP in the environment to ecological health. Here we review the occurrence, effects, and risk assessment of PPCP in aquatic systems, as well as the sustainability of current methods for managing PPCP contamination in aquatic systems. The major points are the following: (1) a number of PPCP present potential concerns at environmentally relevant concentrations. PPCP mixtures may produce synergistic toxicity. (2) Various methods have been used for the ecological risk assessment of PPCP in aquatic systems. There are similarities in these methods, but no consensus has emerged regarding best practices for the ecological risk assessment of these compounds. (3) Human health risk assessments of PPCP contamination in aquatic systems have generally indicated little cause for concern. However, there is a lack of information regarding whether antibiotic contamination in wastewater and aquatic systems could lead to an increase in clinically relevant antibiotic-resistant bacteria and antibiotic-resistant genes. (4) Over the next century, the combination of increasing global population size and potential droughts may result in reduced water availability, increased need for water reuse, and increasing concentrations of PPCP in wastewaters. The current wastewater treatment methods do not remove all PPCP effectively. This, coupled with the possibility that antibiotics may promote the development of antibiotic-resistant bacteria and antibiotic-resistant genes, leads to concerns about the sustainability of global water supplies.
Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk
Sharma, Virender K.; Gray, Cole M.; McDonald, Thomas J.
2016-01-01
Pharmaceuticals and personal care products (PPCP) are compounds with special physical and chemical properties that address the care of animal and human health. PPCP have been detected in surface water and wastewater in the ng/L to µg/L concentration range worldwide. PPCP ecotoxicity has been studied in a variety of organisms, and multiple methods have been used to assess the risk of PPCP in the environment to ecological health. Here we review the occurrence, effects, and risk assessment of PPCP in aquatic systems, as well as the sustainability of current methods for managing PPCP contamination in aquatic systems. The major points are the following: (1) a number of PPCP present potential concerns at environmentally relevant concentrations. PPCP mixtures may produce synergistic toxicity. (2) Various methods have been used for the ecological risk assessment of PPCP in aquatic systems. There are similarities in these methods, but no consensus has emerged regarding best practices for the ecological risk assessment of these compounds. (3) Human health risk assessments of PPCP contamination in aquatic systems have generally indicated little cause for concern. However, there is a lack of information regarding whether antibiotic contamination in wastewater and aquatic systems could lead to an increase in clinically relevant antibiotic-resistant bacteria and antibiotic-resistant genes. (4) Over the next century, the combination of increasing global population size and potential droughts may result in reduced water availability, increased need for water reuse, and increasing concentrations of PPCP in wastewaters. The current wastewater treatment methods do not remove all PPCP effectively. This, coupled with the possibility that antibiotics may promote the development of antibiotic-resistant bacteria and antibiotic-resistant genes, leads to concerns about the sustainability of global water supplies. PMID:28592954
Prediction of Post-stroke Falls by Quantitative Assessment of Balance.
Lee, Hyun Haeng; Jung, Se Hee
2017-06-01
To evaluate characteristics of the postural instability in patients with stroke and to present a prediction model of post-stroke falls. Patients with a first-ever stroke who had been evaluated by the Balance Master (BM) at post-stroke 3 months (±1 month) between August 2011 and December 2015 were enrolled. Parameters for the postural instability, such as the weight bearing asymmetry (WBA) and postural sway velocity (PSV), were obtained. The fall events in daily lives were assessed via structured telephone interview with a fall related questionnaire. A total of 71 patients (45 men; 45 with ischemic stroke) were enrolled in this study. All subjects underwent BM evaluation at 3.03±0.40 months after stroke. The mean WBA was 17.18%±13.10% and mean PSV (measured as °/s) were noted as 0.66±0.37 (eyes-open on firm surface), 0.89±0.75 (eyes-closed on firm surface), 1.45±1.09 (eyes-open on soft surface), and 3.10±1.76 (eyes-closed on soft surface). A prediction model of post-stroke falls was drawn by multiple logistic regression analysis as follows: Risk of post-stroke falls = -2.848 + 1.878 x (PSV ECSS ) + 0.154 x (age=1 if age≥65; age=0 if age<65). The weight bearing asymmetry and postural sway were significantly increased in patients with stroke. Older age and impaired postural control increased the risk of post-stroke falls.
Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B
2018-03-26
One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.
Nocturnal Video Assessment of Infant Sleep Environments
Batra, Erich K.; Teti, Douglas M.; Schaefer, Eric W.; Neumann, Brooke A.; Meek, Elizabeth A.
2016-01-01
BACKGROUND AND OBJECTIVE: Reports describing factors associated with sleep-related infant death rely on caregiver report or postmortem findings. We sought to determine the frequency of environmental risk factors by using nocturnal sleep videos of infants. METHODS: Healthy, term newborns were recruited for a parent study examining the role of parenting in the development of nighttime infant sleep patterns. For 1 night at ages 1, 3, and 6 months, video recordings were conducted within family homes. Videos were coded for sudden infant death syndrome risk factors in post hoc secondary analyses after the parent study was completed. RESULTS: Among 160 one-month-olds, initially 21% were placed to sleep on nonrecommended sleep surfaces and 14% were placed nonsupine; 91% had loose/nonapproved items on their sleep surface, including bedding, bumper pads, pillows, stuffed animals, and sleep positioners. Among 151 three-month-olds, 10% were initially placed on a nonrecommended sleep surface, 18% were placed nonsupine, and 87% had potentially hazardous items on their sleep surface. By 6 months, 12% of the 147 infants initially slept on a nonrecommended surface, 33% were placed to bed nonsupine, and 93% had loose/nonrecommended items on their surface. At 1, 3, and 6 months, 28%, 18%, and 12% changed sleep locations overnight, respectively, with an increased likelihood of bed-sharing and nonsupine position at the second location at each time point. CONCLUSIONS: Most parents, even when aware of being recorded, placed their infants in sleep environments with established risk factors. If infants were moved overnight, the second sleep environment generally had more hazards. PMID:27527797
Recent Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer (Bove, GE, Jr et al., Int. J. Health Geogr., 6:18, 2007). Approximately 600 disinfection byproducts (DBP) have been identified. Because it would be...
Salmonella spp. in lymph nodes of fed and cull cattle: Relative assessment of risk to ground beef
USDA-ARS?s Scientific Manuscript database
Ground beef products have been implicated as the vehicle for the transmission of Salmonella in a number of outbreaks. Although carcass surface interventions have proven effective, Salmonella contamination in ground beef still occurs. Recent studies indicate that deep tissue lymph nodes (DTLNs) may b...
U.S. EPA guidance on the safety of surface waters for recreational use is currently based on epidemiological studies conducted in the 1980?s that demonstrated a strong positive correlation between bathing-associated illness rates and concentrations of culturable fecal indicator b...
Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin
2016-05-01
The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.
NASA Astrophysics Data System (ADS)
Critto, Andrea; Pasini, Sara; Torresan, Silvia; Rizzi, Jonathan; Zabeo, Alex; Marcomini, Antonio
2013-04-01
Climate change will have different impacts on water resources and water-dependent services worldwide. In particular, climate-related risks for groundwater and related ecosystems pose great concern to scientists and water authorities involved in the protection of these valuable resources. Research is needed to better understand how climate change will impact groundwater resources in specific regions and places and to develop predictive tools for their sustainable management, copying with the envisaged effects of global climate change and the key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution models simulations for the 2071-2100 period, according with IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant outcomes from the described RRA application highlighted that potential climate change impacts will occur with different extension and magnitude in the case study area. Particularly, qualitative and quantitative impacts on groundwater will occur with more severe consequences in the wettest and in the driest scenario (respectively) and on natural and anthropic systems through the reduction in quality and quantity of water availability for agricultural and other uses (about 80% of agricultural areas and 27% of groundwater bodies at risk). While, such impacts will likely have little direct effects on related ecosystems - croplands, forests and natural environments - lying along the spring area (about 12% of croplands and 2% of natural environments at risk). The major outcomes of the described RRA application are here presented and discussed.
Zeevi, Tal; Levy, Ayelet; Brauner, Neima; Gefen, Amit
2018-06-01
Scientific evidence regarding microclimate and its effects on the risk of pressure ulcers (PU) remains sparse. It is known that elevated skin temperatures and moisture may affect metabolic demand as well as the mechanical behaviour of the tissue. In this study, we incorporated these microclimate factors into a novel, 3-dimensional multi-physics coupled model of the human buttocks, which simultaneously determines the biothermal and biomechanical behaviours of the buttocks in supine lying on different support surfaces. We compared 3 simulated thermally controlled mattresses with 2 reference foam mattresses. A tissue damage score was numerically calculated in a relevant volume of the model, and the cooling effect of each 1°C decrease of tissue temperature was deduced. Damage scores of tissues were substantially lower for the non-foam mattresses compared with the foams. The percentage tissue volume at risk within the volume of interest was found to grow exponentially as the average tissue temperature increased. The resultant average sacral skin temperature was concluded to be a good predictor for an increased risk of PU/injuries. Each 1°C increase contributes approximately 14 times as much to the risk with respect to an increase of 1 mmHg of pressure. These findings highlight the advantages of using thermally controlled support surfaces as well as the need to further assess the potential damage that may be caused by uncontrolled microclimate conditions on inadequate support surfaces in at-risk patients. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
A methodology for estimating risks associated with landslides of contaminated soil into rivers.
Göransson, Gunnel; Norrman, Jenny; Larson, Magnus; Alén, Claes; Rosén, Lars
2014-02-15
Urban areas adjacent to surface water are exposed to soil movements such as erosion and slope failures (landslides). A landslide is a potential mechanism for mobilisation and spreading of pollutants. This mechanism is in general not included in environmental risk assessments for contaminated sites, and the consequences associated with contamination in the soil are typically not considered in landslide risk assessments. This study suggests a methodology to estimate the environmental risks associated with landslides in contaminated sites adjacent to rivers. The methodology is probabilistic and allows for datasets with large uncertainties and the use of expert judgements, providing quantitative estimates of probabilities for defined failures. The approach is illustrated by a case study along the river Göta Älv, Sweden, where failures are defined and probabilities for those failures are estimated. Failures are defined from a pollution perspective and in terms of exceeding environmental quality standards (EQSs) and acceptable contaminant loads. Models are then suggested to estimate probabilities of these failures. A landslide analysis is carried out to assess landslide probabilities based on data from a recent landslide risk classification study along the river Göta Älv. The suggested methodology is meant to be a supplement to either landslide risk assessment (LRA) or environmental risk assessment (ERA), providing quantitative estimates of the risks associated with landslide in contaminated sites. The proposed methodology can also act as a basis for communication and discussion, thereby contributing to intersectoral management solutions. From the case study it was found that the defined failures are governed primarily by the probability of a landslide occurring. The overall probabilities for failure are low; however, if a landslide occurs the probabilities of exceeding EQS are high and the probability of having at least a 10% increase in the contamination load within one year is also high. Copyright © 2013 Elsevier B.V. All rights reserved.
Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya
2015-05-01
Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth. Mitigation strategies for the top failure mode decreased the RPN from 288 to 72. Based on the FMEA performed in this work, the use of surface imaging for monitoring intrafraction position in Linac-based stereotactic radiosurgery (SRS) did not greatly increase the risk of the Linac-based SRS process. In some cases, SIG helped to reduce the risk of Linac-based RS. The FMEA was augmented by the use of FTA since it divided the failure modes into their fundamental components, which simplified the task of developing mitigation strategies.
Fei, Jiang-Chi; Min, Xiao-Bo; Wang, Zhen-Xing; Pang, Zhi-Hua; Liang, Yan-Jie; Ke, Yong
2017-12-01
In recent years, international research on the toxicity of the heavy metal, antimony, has gradually changed focus from early medical and pharmacological toxicology to environmental toxicology and ecotoxicology. However, little research has been conducted for sources identification and risk management of heavy metals pollution by long-term antimony mining activities. In this study, a large number of investigations were conducted on the temporal and spatial distribution of antimony and related heavy metal contaminants (lead, zinc, and arsenic), as well as on the exposure risks for the population for the Yuxi river basin in the Hunan province, China. The scope of the investigations included mine water, waste rock, tailings, agricultural soil, surface water, river sediments, and groundwater sources of drinking water. Health and ecological risks from exposure to heavy metal pollution were evaluated. The main pollution sources of heavy metals in the Yuxi River basin were analyzed. Remediation programs and risk management strategies for heavy metal pollution were consequently proposed. This article provides a scientific basis for the risk assessment and management of heavy metal pollution caused by antimony basin ore mining.
Microbial Risk Assessment of Tidal−Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam)
Huynh, Thi Thao Nguyen; Van der Steen, Peter
2017-01-01
Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., “living with floods”, in the Mekong Delta should also consider health risk issues. PMID:29189715
Microbial Risk Assessment of Tidal-Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam).
Nguyen, Hong Quan; Huynh, Thi Thao Nguyen; Pathirana, Assela; Van der Steen, Peter
2017-11-30
Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., "living with floods", in the Mekong Delta should also consider health risk issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Otto; Morris, Samuel; Cessario, Thomas R.
1979-11-01
Conclusions of a study group organized to assess the need for research and development of instrumentation for monitoring occupational exposures in the coal conversion and oil shale industries are reported. Research and development requirements for assessing potentially hazardous exposures are reviewed. Hazardous substances are classified in the following four categories: those which are immediately hazardous to life and health; high risk, but not immediately hazardous; moderate risk and not immediately hazardous; and short-term, nonroutine high hazards. Specific research recommendations are made in the following areas: personal monitors for gases; nitrogen compounds; aerosols; metals; fibers and dust; surface contamination; skin contamination;more » analytical development; industrial hygiene surveys;research; and, bioassays. (JGB)« less
NASA Astrophysics Data System (ADS)
Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.
Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related to cellular mechanisms involved in sensing, i.e., adaptation to stimuli. This should not mean that when coping with living cells, stray effects might not also corrupt the measurement itself, introducing distinct dynamics. Besides targeted/specific process, analytical platforms might exhibit additional ones due to “stray influences” that could include the effect of, e.g.: supporting matrix, nonspecific binding and temperature variation. Stray processes interfere with the desired ones and the measured data could display a non-monotonous behavior.
Garza-León, Manuel; Hernández-Quintela, Everardo; Cámara-Castillo, Héctor G; Parra-Collin, Paola de la; Covarrubias-Espinosa, Paola; Sánchez-Huerta, Valeria; Castillo-Ruiz, Alejandro Del; Rodríguez-Sixtos, Fernando; Pacheco-Patrón, Jorge; Ochoa-Tabares, Juan Carlos; Soto-Ortiz, Karina; Hernández-Olguin, Karen
2017-01-01
To determine the prevalence of symptoms of ocular surface disease (OSDI) surface disease and its relationship with associated risk factors in patients of ophthalmic practices using OSDI questionnaire. A cross-sectional survey was conducted Between September and December 2014 to assess the prevalence and risk factors for OSDI. The OSDI average value was 40.46 ± 23.62 points, with 86.4% of patients (1967) having a OSDI score higher than 12 points. Women had OSDI symptoms more frequently than men (odds ratio: 1.17; 95% confidence interval: 1.08-1.28) and higher OSDI score (42.12 ± 24.03 vs. 38.01 ± 22.81 points). Patients without disease were younger than the patients with severe disease (45.30 ± 18.32 vs. 50.62 ± 18.86). Ophthalmological patients have a prevalence of 80.4% of OSDI. Female and older age was associated with ocular surface disease. Copyright: © 2017 SecretarÍa de Salud
Gu, Yang-Guang; Gao, Yan-Peng
2018-02-01
This study focused on characterizing the oral bioaccessibilities and human health risks of eight heavy metals (Cd, Pb, Cr, Ni, Cu, Zn, Fe, and Mn) in surface-exposed lawn soils from 28 urban parks in Guangzhou. The physiologically-based extraction test (PBET) method was used to assess bioavailability (in gastric and intestinal phases) and human health risk was assessed via statistical modelling (carcinogenic risk assessment, hazard quotients and hazard indices). Mean bioaccessibilities of Cd, Pb, Cr, Ni, Cu, Zn, Fe, and Mn from all soil samples were 50.90 ± 17.67%, 5.81 ± 1.67%, 7.12 ± 3.24%, 17.91 ± 18.34%, 11.93 ± 2.88%, 34.33 ± 10.02%, 1.68 ± 0.48%, 26.71 ± 5.06%, respectively. The concentrations of most heavy metals were higher in the gastric phase, except for Cr and Ni which remained higher in the intestinal phase. Principal component analysis revealed that the bioaccessibilities of the heavy metals could be split into three groupings, based on the urban park of soil origin. The carcinogenic risk probabilities for Pb and Cr were under the acceptable level (< 1 × 10 -4 ) for both adults and children. The hazard quotient and hazard index values indicated no significant risk of non-carcinogenic effects to children or adults exposed to Guangzhou urban park soils. This research will help inform further risk assessment and management of heavy metal contaminants in urban environments. Copyright © 2017 Elsevier Inc. All rights reserved.
Levels of endocrine disrupting compounds in South China Sea.
Zhang, Li-Peng; Wang, Xin-Hong; Ya, Miao-Lei; Wu, Yu-Ling; Li, Yong-Yu; Zhang, Zu-lin
2014-08-30
The occurrence of estrogens in the aquatic environment has become a major concern worldwide because of their strong endocrine disrupting potency. In this study, concentrations of four estrogenic compounds, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), estriol (E3) were determined with liquid chromatography-tandem mass spectrometry analyses in surface water from South China Sea, and distributions and potential risks of their estrogenic activity were assessed. The estrogenic compounds E1, E2 and E3 were detected in most of the samples, with their concentrations up to 11.16, 3.71 and 21.63 ng L(-1). However, EE2 was only detected in 3 samples. Causality analysis, EEQ values from chemical analysis identified E2 as the main responsible compounds. Based on the EEQ values in the surface water, high estrogenic risks were in the coastal water, and low estrogenic risks in the open sea. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems
NASA Astrophysics Data System (ADS)
Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.
2012-12-01
Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed based on a dose-response approach, including Beta Poisson and Maximum Risk models, which take into account pathogen variation in infectivity. An example of the Multimodeling framework performance for a fragmented agriculture-forest ecosystem will be shown in the presentation.
Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2009-01-01
During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
NASA Astrophysics Data System (ADS)
Brook, Martin; Liu, Shanshan; Richards, Nick; Bevan, David; Prebble, Warwick
2017-04-01
Landslides pose significant risks to communities and infrastructure particularly in urban areas, and mitigating these risks relies on understanding landslide triggering processes that may cause reactivation. Previous work has shown that landslides are often complex, multiphase processes where gradual deterioration of shear strength within the subsurface precedes slope failure and the appearance of surface morphological features. Here, we combine a suite of remote sensing and direct invasive testing techniques to assess reactivation of the Pourewa Landslide Zone (PLZ), located in Auckland, New Zealand. The PLZ is located on the inner wall of the north-eastern flank of the Orakei volcano, 4 km east of Auckland CBD. The landslide zone occupies slopes above the east bank of the tidal Pourewa Creek, which lies within a residential area. Four landslides are located within the PLZ (from west to east): Ngapipi Road Landslide, Kepa Road Landslide, St Josephs Landslide, and Pourewa Landslide. Inward collapse of the crater walls since the initial eruption (>85 ka) has enlarged the crater to c. 1000 m diameter, with some slopes prone to ongoing mass movements. Indeed, reactivation during the 20th century led to the realignment of Kepa Road, and surface cracking of roads in the vicinity is ongoing. LiDAR imagery was used to develop high resolution geomorphological maps, and this data was compared with more recent Structure-from-Motion (SfM) photogrammetry, obtained from an unmanned aerial vehicle (UAV). The digital surface models and derived cross-sections developed from these data allow both the initial failure, and subsequent reactivations to be assessed in detail. Geophysical surveys included Electromagnetic Induction (EMI), augmented by information relating to lithological, moisture and strength variation with depth, allowing initial interpretation of zones likely to be prone to reactivation. Ongoing slope deformation includes shallow, retrogressive failure on the upper slopes, and translation and flow toward the toe. Taken together, results indicate that reactivation is strongly controlled by lithology, as well as porewater pressure. The study highlights the value of a combined geophysical and direct testing approach for landslide hazard assessment in order to mitigate risk to infrastructure.
Methodology of risk assessment of loss of water resources due to climate changes
NASA Astrophysics Data System (ADS)
Israfilov, Yusif; Israfilov, Rauf; Guliyev, Hatam; Afandiyev, Galib
2016-04-01
For sustainable development and management of rational use of water resources of Azerbaijan Republic it is actual to forecast their changes taking into account different scenarios of climate changes and assessment of possible risks of loss of sections of water resources. The major part of the Azerbaijani territory is located in the arid climate and the vast majority of water is used in the national economic production. An optimal use of conditional groundwater and surface water is of great strategic importance for economy of the country in terms of lack of common water resources. Low annual rate of sediments, high evaporation and complex natural and hydrogeological conditions prevent sustainable formation of conditioned resources of ground and surface water. In addition, reserves of fresh water resources are not equally distributed throughout the Azerbaijani territory. The lack of the common water balance creates tension in the rational use of fresh water resources in various sectors of the national economy, especially in agriculture, and as a result, in food security of the republic. However, the fresh water resources of the republic have direct proportional dependence on climatic factors. 75-85% of the resources of ground stratum-pore water of piedmont plains and fracture-vein water of mountain regions are formed by the infiltration of rainfall and condensate water. Changes of climate parameters involve changes in the hydrological cycle of the hydrosphere and as a rule, are reflected on their resources. Forecasting changes of water resources of the hydrosphere with different scenarios of climate change in regional mathematical models allowed estimating the extent of their relationship and improving the quality of decisions. At the same time, it is extremely necessary to obtain additional data for risk assessment and management to reduce water resources for a detailed analysis, forecasting the quantitative and qualitative parameters of resources, and also for optimization the use of water resources. In this regard, we have developed the methodology of risk assessment including statistical fuzzy analysis of the relationship "probability-consequences", classification of probabilities, the consequences on degree of severity and risk. The current methodology allow providing the possibility of practical use of the obtained results and giving effectual help in the sustainable development and reduction of risk degree of optimal use of water resources of the republic and, as a consequence, the national strategy of economic development.
Tong, Changlun; Zhuo, Xiajun; Guo, Yun
2011-07-13
A sensitive liquid chromatography-fluorescence detection method, combined with one-step solid-phase extraction, was established for detecting the residual levels of the four typical fluoroquinolone antibiotics (ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) in influent, effluent, and surface waters from Hangzhou, China. For the various environmental water matrices, the overall recoveries were from 76.8 to 122%, and no obvious interferences of matrix effect were observed. The limit of quantitation of this method was estimated to be 17 ng/L for ciprofloxacin and norfloxacin, 20 ng/L for ofloxacin, and 27 ng/L for enrofloxacin. All of the four typical fluoroquinolone antibiotics were found in the wastewaters and surface waters. The residual contents of the four typical fluoroquinolone antibiotics in influent, effluent, and surface water samples are 108-1405, 54-429, and 7.0-51.6 ng/L, respectively. The removal rates of the selected fluoroquinolone antibiotics were 69.5 (ofloxacin), 61.3 (norfloxacin), and 50% (enrofloxacin), indicating that activated sludge treatment is effective except for ciprofloxacin and necessary to remove these fluoroquinolone antibiotics in municipal sewage. The risk to the aquatic environment was estimated by a ratio of measured environmental concentration and predicted no-effect concentration. At the concentrations, these fluoroquinolone antibiotics were found in influent, effluent, and surface waters, and they should not pose a risk for the aquatic environment.
Xiao, Nina J; Medley, Colin D; Shieh, Ian C; Downing, Gregory; Pizarro, Shelly; Liu, Jun; Patel, Ankit R
Leachables from single-use bioprocess containers (BPCs) are a source of process-related impurities that have the potential to alter product quality of biotherapeutics and affect patient health. Leachables often exist at very low concentrations, making it difficult to detect their presence and challenging to assess their impact on protein quality. A small-scale stress model based on assessing protein stability was developed to evaluate the potential risks associated with storing biotherapeutics in disposable bags caused by the presence of leachables. Small-scale BPCs were filled with protein solution at high surface area-to-volume ratios (≥3× the surface area-to-volume ratio of manufacturing-scale BPCs) and incubated at stress temperatures (e.g., 25 °C or 30 °C for up to 12 weeks) along with an appropriate storage vessel (e.g., glass vial or stainless steel) as a control for side-by-side comparison. Changes in protein size variants measured by size exclusion chromatography, capillary electrophoresis, and particle formation for two monoclonal antibodies using both the small-scale stress model and a control revealed a detrimental effect of gamma-irradiated BPCs on protein aggregation and significant BPC difference between earlier and later batches. It was found that preincubation of the empty BPCs prior to protein storage improved protein stability, suggesting the presence of volatile or heat-sensitive leachables (heat-labile or thermally degraded). In addition, increasing the polysorbate 20 concentration lowered, but did not completely mitigate, the leachable-protein interactions, indicating the presence of a hydrophobic leachable. Overall, this model can inform the risk of BPC leachables on biotherapeutics during routine manufacturing and assist in making decisions on the selection of a suitable BPC for the manufacturing process by assessing changes in product quality. Leachables from single-use systems often exist in small quantities and are difficult to detect with existing analytical methods. The presence of relevant detrimental leachables from single-use bioprocess containers (BPCs) can be indirectly detected by studying the stability of monoclonal antibodies via changes by size exclusion chromatography, capillary electrophoresis sodium dodecyl sulfate, and visible/sub-visible particles using a small-scale stress model containing high surface area-to-volume ratio at elevated temperature alongside with an appropriate control (e.g., glass vials or stainless steel containers). These changes in protein quality attributes allowed the evaluation of potential risks associated with adopting single-use bioprocess containers for storage as well as bag quality and bag differences between earlier and later batches. These leachables appear to be generated during the bag sterilization process by gamma irradiation. Improvements in protein stability after storage in "preheated" bags indicated that these leachables may be thermally unstable or volatile. The effect of surfactant levels, storage temperatures, surface area-to-volume ratios, filtration, and buffer exchange on leachables and protein stability were also assessed. © PDA, Inc. 2016.
Tranquille, C A; Walker, V A; Hernlund, E; Egenvall, A; Roepstorff, L; Peterson, M L; Murray, R C
2015-01-01
A recent epidemiological study identified various aspects of arena surfaces and arena surface maintenance that were related to risk of injury in horses and that arena maintenance is important in reducing injury risk. However, there has been little research into how properties of arena surfaces change with harrowing. This study aimed to compare the properties of different arena surface types pre- and post-harrowing. The Orono Biomechanical Surface Tester fitted with accelerometers and a single- and a three-axis load cell was used to test 11 arenas with two different surfaces types, sand with rubber (SR) and waxed-sand with fibre (WSF). Three drop tests were carried out at 10 standardised locations on each arena. Mixed models were created to assess the effect of surface type, pre- or post-harrowing, and drop number on the properties of the surface, including maximum horizontal deceleration, maximum vertical deceleration, maximum vertical load and maximum horizontal load. Post-harrowing, none of the parameters were altered significantly on SR. On WSF, maximum vertical deceleration and maximum vertical load significantly decreased post-harrowing. The differences in the effects of superficial harrowing on SR and WSF could be attributed to the different compositions and sizes of the surface material. The results suggest that different maintenance techniques may be more suitable for different surface types and that the effects of superficial harrowing are short-lived due to the rapid re-compaction of the surface with repeated drops on WSF. Further work is required to determine the effects of other maintenance techniques, and on other surface types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assessment of Alternate Thermal Protection Systems for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Kelly, H. N.; Webb, G. L.
1982-01-01
Candidate concepts are identified. The impact on the Shuttle Orbiter performance life cycle cost, and risk was assessed and technology advances required to bring the selected TPS to operational readiness are defined. The best system is shown to be a hybrid blend of metallic and carbon-carbon TPS concepts. These alternate concepts offer significant improvements in reusability and are mass competitive with the current ceramic tile reusable surface insulation. Programmatic analysis indicates approximately five years are required to bring the concepts to operational readiness.
NASA Astrophysics Data System (ADS)
Anagnostou, E. N.; Seyyedi, H.; Beighley, E., II; McCollum, J.
2014-12-01
Carbon capture and storage (CCS) has been suggested by the Intergovernmental Panel on Climate Change as a partial solution to the greenhouse gas emissions problem. As CCS has become mainstream, researchers have raised multiple risk assessment issues typical of emerging technologies. In our research, we examine issues occuring when stored carbon dioxide (CO2) migrates to the near-surface or surface. We believe that both the public misperception and the physical reality of potential environmental, health, and commercial impacts of leak events from such subsurface sites have prevented widespread adoption of CCS. This paper is presented in three parts; the first is an evaluation of the systemic risk of a CCS site CO2 leak and models indicating potential likelihood of a leakage event. As the likelihood of a CCS site leak is stochastic and nonlinear, we present several Bayesian simulations for leak events based on research done with other low-probability, high-consequence gaseous pollutant releases. Though we found a large, acute leak to be exceptionally rare, we demonstrate potential for a localized, chronic leak at a CCS site. To that end, we present the second piece of this paper. Using a combination of spatio-temporal models and reaction-path models, we demonstrate the interplay between leak migrations, material interactions, and atmospheric dispersion for leaks of various duration and volume. These leak-event scenarios have implications for human, environmental, and economic health; they also have a significant impact on implementation support. Public acceptance of CCS is essential for a national low-carbon future, and this is what we address in the final part of this paper. We demonstrate that CCS remains unknown to the general public in the United States. Despite its unknown state, we provide survey findings -analyzed in Slovic and Weber's 2002 framework - that show a high unknown, high dread risk perception of leaks from a CCS site. Secondary findings are a conflation of CCS with the more advanced, widespread technology hydraulic fracturing and corresponding strong risk associations. We conclude with suggestions on how to integrate modeling results into public conversations to improve risk awareness and we provide preliminary policy recommendations to increase public support for CCS.
NASA Astrophysics Data System (ADS)
Augustin, C. M.
2015-12-01
Carbon capture and storage (CCS) has been suggested by the Intergovernmental Panel on Climate Change as a partial solution to the greenhouse gas emissions problem. As CCS has become mainstream, researchers have raised multiple risk assessment issues typical of emerging technologies. In our research, we examine issues occuring when stored carbon dioxide (CO2) migrates to the near-surface or surface. We believe that both the public misperception and the physical reality of potential environmental, health, and commercial impacts of leak events from such subsurface sites have prevented widespread adoption of CCS. This paper is presented in three parts; the first is an evaluation of the systemic risk of a CCS site CO2 leak and models indicating potential likelihood of a leakage event. As the likelihood of a CCS site leak is stochastic and nonlinear, we present several Bayesian simulations for leak events based on research done with other low-probability, high-consequence gaseous pollutant releases. Though we found a large, acute leak to be exceptionally rare, we demonstrate potential for a localized, chronic leak at a CCS site. To that end, we present the second piece of this paper. Using a combination of spatio-temporal models and reaction-path models, we demonstrate the interplay between leak migrations, material interactions, and atmospheric dispersion for leaks of various duration and volume. These leak-event scenarios have implications for human, environmental, and economic health; they also have a significant impact on implementation support. Public acceptance of CCS is essential for a national low-carbon future, and this is what we address in the final part of this paper. We demonstrate that CCS remains unknown to the general public in the United States. Despite its unknown state, we provide survey findings -analyzed in Slovic and Weber's 2002 framework - that show a high unknown, high dread risk perception of leaks from a CCS site. Secondary findings are a conflation of CCS with the more advanced, widespread technology hydraulic fracturing and corresponding strong risk associations. We conclude with suggestions on how to integrate modeling results into public conversations to improve risk awareness and we provide preliminary policy recommendations to increase public support for CCS.
Tauste, Ana; Ronda, Elena; Baste, Valborg; Bråtveit, Magne; Moen, Bente E; Seguí Crespo, María-Del-Mar
2018-04-01
To analyze differences in the ocular surface appearance and tear film status of contact lens wearers and non-wearers in a group of visual display terminals (VDT) workers and additionally to assess differences between lens materials. Cross-sectional study of 236 office workers, of whom 92 were contact lens wearers. Workers provided information on their contact lenses (conventional hydrogel, silicone hydrogel or rigid gas permeable lenses) and exposure to VDT at work. Ocular surface and tear film status were determined by the presence of bulbar, limbal and lid redness, lid roughness and corneal staining type, and by Schirmer's and tear break-up time tests (TBUT). A generalized linear model was used to calculate the crude (cRR) and age- and sex-adjusted (aRR) relative risk to measure the association between ocular surface and tear film abnormalities and contact lens use and type. The aRR of ocular surface abnormalities was higher in contact lens wearers compared to non-wearers: bulbar redness (aRR 1.69; 95% CI 1.25-2.30), limbal redness (aRR 2.87; 1.88-4.37), lid redness (aRR 2.53; 1.35-4.73) and lid roughness (aRR 7.03; 1.31-37.82). VDT exposure > 4 h/day increased wearers' risk of limbal and lid redness. Conventional hydrogel wearers had the highest risk of ocular surface abnormalities, followed by silicone hydrogel wearers. Both contact and non-contact lens wearers had a high prevalence of altered TBUT (77.3 and 75.7% respectively) and Schirmer (51.8 and 41.3%). Regular contact lens use during VDT exposure at work increases risk of bulbar, limbal and lid redness, and lid roughness, especially in soft contact lens wearers. The high prevalence of altered TBUT and Schirmer's results in all participants suggests that VDT use greatly affects tear film characteristics.
Benchmarking analysis of three multimedia models: RESRAD, MMSOILS, and MEPAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J.J.; Faillace, E.R.; Gnanapragasam, E.K.
1995-11-01
Multimedia modelers from the United States Environmental Protection Agency (EPA) and the United States Department of Energy (DOE) collaborated to conduct a comprehensive and quantitative benchmarking analysis of three multimedia models. The three models-RESRAD (DOE), MMSOILS (EPA), and MEPAS (DOE)-represent analytically based tools that are used by the respective agencies for performing human exposure and health risk assessments. The study is performed by individuals who participate directly in the ongoing design, development, and application of the models. A list of physical/chemical/biological processes related to multimedia-based exposure and risk assessment is first presented as a basis for comparing the overall capabilitiesmore » of RESRAD, MMSOILS, and MEPAS. Model design, formulation, and function are then examined by applying the models to a series of hypothetical problems. Major components of the models (e.g., atmospheric, surface water, groundwater) are evaluated separately and then studied as part of an integrated system for the assessment of a multimedia release scenario to determine effects due to linking components of the models. Seven modeling scenarios are used in the conduct of this benchmarking study: (1) direct biosphere exposure, (2) direct release to the air, (3) direct release to the vadose zone, (4) direct release to the saturated zone, (5) direct release to surface water, (6) surface water hydrology, and (7) multimedia release. Study results show that the models differ with respect to (1) environmental processes included (i.e., model features) and (2) the mathematical formulation and assumptions related to the implementation of solutions (i.e., parameterization).« less
Chiovarou, Erica D; Siewicki, Thomas C
2008-01-15
Hundreds, if not thousands, of fish kills and kills of other aquatic organisms occur following storms in the US each year, but they are difficult to quantify, investigate, or manage due to the transient nature of major storms and the other priorities following them. Methods are needed to better understand the causes of these kills. The Pesticide Root Zone Model and the Exposure Analysis Modeling System were used to compare risk to resident biota in estuarine headwaters in two locations under various conditions. Contaminants were selected using a landuse-based preliminary risk assessment approach. Atrazine, fipronil, and imidacloprid were compared for potential impacts on important prey species, including copepods and grass shrimp, in Lake Bethel in Volusia County, Florida. Carbaryl, diquat dibromide, and fluoranthene were compared for potential impacts on salmon and other aquatic species in Johnson Creek, near Portland, Oregon. Predictions of contaminant concentrations in groundwater runoff, surface water, benthic sediments, and pelagic biota tissue were obtained based upon watershed characteristics, storm types, and contaminant chemistry and application. For all six contaminants, the simulated concentrations were highest following the 100-yr storms and lowest following the 2-yr storms. Aqueous concentrations ranged between 84 and 2100% higher in 100-yr compared to two-yr storms. Most atrazine and carbaryl concentrations were highest if applied one day before the storm while fipronil, imidacloprid, and diquat dibromide were highest if applied 16 days prior to the storm. Carbaryl and fluoranthene concentrations were highest in the forested segment of the watershed while diquat dibromide concentrations were highest in the agricultural segment. In Florida simulations, groundwater and surface water concentrations generally were highest for atrazine, followed by imidacloprid, and then fipronil. Atrazine poses the highest risk to algae and copepods due to its mobility and high allowable application rates. Fipronil and imidacloprid, though highly toxic, were not predicted to occur at high enough concentrations to pose a risk. In Oregon simulations, groundwater and surface water concentrations generally were highest for carbaryl, followed by fluoranthene, and then diquat dibromide. For salmonids, fluoranthene poses a higher risk than carbaryl, whereas it is unlikely that diquat dibromide will affect salmonids in this system. For crustaceans, carbaryl poses the greatest risk, followed by fluoranthene. Diquat dibromide was determined to pose little risk. These tests demonstrate the use of preliminary risk assessment, along with transport and fate modeling, to characterize risks to aquatic organisms without the need for in situ chemical measurements.
Bhojraj, Tejas S; Sweeney, John A; Prasad, Konasale M; Eack, Shaun; Rajarethinam, Rajaprabhakaran; Francis, Alan N; Montrose, Debra M; Keshavan, Matcheri S
2011-02-01
Schizophrenia may involve progressive alterations of structure and hemispheric lateralization of auditory association areas (AAA) within the superior temporal gyrus. These alterations may be greater in male patients. It is unclear if these deficits are state-dependent or whether they predate illness onset and reflect familial diathesis. We sought to compare AAA cortical thickness, surface area and lateralization across adolescent and young adult non-psychotic offspring of schizophrenia patients (OS) and healthy controls at baseline and one year follow-up. We also assessed the moderating effect of gender on these measures. Fifty-six OS and thirty-six control subjects were assessed at baseline and at follow-up on AAA surface area and thickness using FreeSurfer to process T1-MRI-images. We used repeated measures ANCOVAs, controlling intra cranial volume and age with assessment-time and side as within-subject factors and gender and study group as between-subject factors. Surface area deficit in OS was greater on the left than on the right, as reflected in a lower surface area laterality-index (left-right/left + right × 100) in OS compared to controls. Left, but not right surface area and surface area laterality-index showed a longitudinal decline in OS compared to controls. Male OS declined more than controls on surface area and thickness. Left AAA surface area may progressively decline in young non-psychotic offspring at familial diathesis for schizophrenia causing a continuing reversal of the leftward AAA lateralization. Progressive surface area reduction and thinning of AAA may be more prominent in young non-psychotic male offspring at risk for schizophrenia. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.
2017-12-01
There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This Decision Document presents the selected remedial action for the Tansitor Electronics, Inc. Superfund Site in Bennington, Vermont. This ROD sets forth the selected remedy for the Tansitor Electronics, Inc. Superfund Site, which includes management of migration components to obtain a comprehensive remedy. This ROD does not include any source control component because EPA`s risk assessment concluded that the surface and subsurface soils did not present an unacceptable risk either under current conditions or under a potential future residential scenario.
Orbital Debris Research in the United States
NASA Technical Reports Server (NTRS)
Stansbery, Gene
2009-01-01
The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.
Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing
2013-11-01
It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P < 0.01), which indicated that they possibly came from the same sources. Moreover, the contents of Cr, Cu, Ni and Zn in sediment also had significant correlations with the populations of sub-river basins with correlation coefficients of 0.855, 0.806, 0.867 and 0.855 (P < 0.01), respectively. The contents of Cd and Pb had smaller spatial differences in sediment from different estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0.051-0.200 mg x kg(-1). Contents of the two heavy metals had no significant correlation with the other heavy metals or with the populations of sub-river basins, indicating that Cd and Pb had little connection with the in-land polluted sources. The results of ecological risk assessment showed that estuaries of the Haihe River Basin had the potential ecological risk at lower levels (RI were 33.7-116) and the most important contaminating element was Cd with a middle-level potential ecological risk (Er(i) were 18.0-48.9).
Hossain, Anwar; Nakamichi, Shihori; Habibullah-Al-Mamun, Md; Tani, Keiichiro; Masunaga, Shigeki; Matsuda, Hiroyuki
2017-12-01
The present study for the first time reports the occurrence, distribution, ecological and resistance risks of antibiotics in the surface water of freshwater finfish and brackish water shellfish aquaculture in Bangladesh. Among the nine targets, seven antibiotics were detected in finfish aquaculture, whereas four in shellfish aquaculture. The concentrations (ranges) and overall detection frequency of sulfamethoxazole (SMX) (nd-20.02 ng L -1 and 73%), trimethoprim (TMP) (nd-41.67 ng L -1 and 60%), tylosin (TYL) (nd-39.34 ng L -1 and 60%), sulfadiazine (SDZ) (nd-17.97 ng L -1 and 53%), sulfamethazine (SMT) (nd-11.71 ng L -1 and 33%), sulfamethizole (SMZ) (nd-10.81 ng L -1 and 40%) and penicillin G (PC_G) (nd-7.83 ng L -1 , 7%) were found in finfish aquaculture. In case of shellfish aquaculture, the concentrations (ranges) and overall detection frequency were for SMX (nd-16.77 ng L -1 and 67%), TMP (nd-11.39 ng L -1 and 20%), TYL (nd-0.16 ng L -1 and 20%) and erythromycin-H 2 O (ERY-H 2 O) (nd-3.91 ng L -1 and 20%). The present findings revealed that finfish aquaculture is more contaminated with the higher numbers and concentrations of antibiotics. The preliminary ecological and resistance risks assessment showed that the calculated risk quotients (RQs) were lower than one (RQs<1) for all the detected antibiotics in both aquaculture. Preliminary ecological and resistance risks assessment revealed that there were no adverse ecological and resistance risks, however, our study suggests that it is imperative to pay due attention to monitor the antibiotics contamination in rapid growing aquaculture sector of Bangladesh for the reduction of potential risks of antibiotics on aquatic organisms as well as human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plasmodium falciparum Malaria Endemicity in Indonesia in 2010
Elyazar, Iqbal R. F.; Gething, Peter W.; Patil, Anand P.; Rogayah, Hanifah; Kusriastuti, Rita; Wismarini, Desak M.; Tarmizi, Siti N.; Baird, J. Kevin; Hay, Simon I.
2011-01-01
Background Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010. Methods Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data (PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface. Results We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas. Conclusion While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline and ultimately improve their evidence-based malaria control strategies. PMID:21738634
Wu, Binbin; Wang, Guoqiang; Wu, Jin; Fu, Qing; Liu, Changming
2014-01-01
The concentrations of heavy metals (mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu) and arsenic (As)) in surface water and sediments were investigated in two adjacent drinking water reservoirs (Hongfeng and Baihua Reservoirs) on the Yunnan-Guizhou Plateau in Southwest China. Possible pollution sources were identified by spatial and statistical analyses. For both reservoirs, Cd was most likely from industrial activities, and As was from lithogenic sources. For the Hongfeng Reservoir, Pb, Cr and Cu might have originated from mixed sources (traffic pollution and residual effect of former industrial practices), and the sources of Hg included the inflows, which were different for the North (industrial activities) and South (lithogenic origin) Lakes, and atmospheric deposition resulting from coal combustion. For the Baihua Reservoir, the Hg, Cr and Cu were primarily derived from industrial activities, and the Pb originated from traffic pollution. The Hg in the Baihua Reservoir might also have been associated with coal combustion pollution. An analysis of ecological risk using sediment quality guidelines showed that there were moderate toxicological risks for sediment-dwelling organisms in both reservoirs, mainly from Hg and Cr. Ecological risk analysis using the Hakanson index suggested that there was a potential moderate to very high ecological risk to humans from fish in both reservoirs, mainly because of elevated levels of Hg and Cd. The upstream Hongfeng Reservoir acts as a buffer, but remains an important source of Cd, Cu and Pb and a moderately important source of Cr, for the downstream Baihua Reservoir. This study provides a replicable method for assessing aquatic ecosystem health in adjacent plateau reservoirs. PMID:25010771
NASA Astrophysics Data System (ADS)
Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.
2014-12-01
Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk (under review).
ERIC Educational Resources Information Center
Dharod, Jigna Morarji; Paciello, Stefania; Bermudez-Millan, Angela; Venkitanarayanan, Kumar; Damio, Grace; Perez-Escamilla, Rafael
2009-01-01
Objective: To examine the association of microbial contamination of the meal preparer's hands with microbial status of food and kitchen/utensil surfaces during home preparation of a "Chicken and Salad" meal. Design and Setting: Observational home food safety assessment. Before starting meal preparation, participants' hands were tested to…
Assessment of the Georgia P Index on-farm at the field scale for grassland management
USDA-ARS?s Scientific Manuscript database
In order to better manage agricultural phosphorus (P), most states in the USA have adopted a “P indexing” approach which ranks fields according to potential losses of P. In Georgia, the Georgia P Index was developed to estimate the risk of bioavailable P loss from agricultural land to surface water...
This last year, broad geographic areas in Europe experienced significant levels of flooding causing extensive loss of human lives and property. In North America, the US Environmental Protection Agency has been using GIS and remotely sensed data to assess the distribution and exte...
Ultraviolet radiation (UVR) is a naturally occurring stressor to most forms of life. The sole relevant source of this stressor is the sun. The Earth's stratospheric ozone layer reduces the amount of UVR that reaches the Earth's surface. The potential for continued depletion of th...
Risk Assessment of Metals in Urban Soils from a Typical Industrial City, Suzhou, Eastern China
Wang, Gang; Liu, Hou-Qi; Gong, Yu; Wei, Yang; Miao, Ai-Jun; Yang, Liu-Yan; Zhong, Huan
2017-01-01
Risk of metals in urban soils is less studied, compared to that in other types of soils, hindering accurate assessment of human exposure to metals. In this study, the concentrations of five metals (As, Cd, Cr, Pb, and Hg) were analyzed in 167 surface soil samples collected from Suzhou city and their potential ecological and human health risks were assessed. The mean concentrations of As, Cd, Pb, and Hg except Cr, were higher than the background values in Jiangsu Province. Metal concentrations varied among districts, where sites of high contamination showed a punctate distribution. Principal components and correlation analyses revealed that As, Pb, and Cd could originate from the same sources. The geo-accumulation (Igeo) and potential ecological risk indices (RI) were calculated and the relatively low values of Igeo (<0) and RI (<150) suggested generally low ecological risk. The noncarcinogenic risks of the metals were relatively low for Suzhou residents (i.e., average hazard index or HI: 0.1199 for adults and 0.5935 for children, <1), while the total carcinogenic risks (TCR) of Cr and As were acceptable (TCR in the range of 1.0 × 10−6 to 1.0 × 10−4). Children faced a higher threat than adults. Results of Monte-Carlo simulations were lower than those obtained from models using deterministic parameters. Of all the uncertain parameters, the ingestion rate and body weight were the most sensitive for adults and children, respectively, while As was an important factor for both. The results as well as the factors controlling risks of metals could help better understand the risks of metals in urban soils of industrial cities in China. PMID:28880235
Obiri, Samuel; Yeboah, Philip O.; Osae, Shiloh; Adu-kumi, Sam; Cobbina, Samuel J.; Armah, Frederick A.; Ason, Benjamin; Antwi, Edward; Quansah, Reginald
2016-01-01
A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR—Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10−3. The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10−4 to 1 × 10−6. These findings call for case-control epidemiological studies to establish the relationship between exposure to the aforementioned toxic chemicals and diseases associated with them as identified in other studies conducted in different countries as basis for developing policy interventions to address the issue of ASGM mine workers safety in Ghana. PMID:26797625
Obiri, Samuel; Yeboah, Philip O; Osae, Shiloh; Adu-Kumi, Sam; Cobbina, Samuel J; Armah, Frederick A; Ason, Benjamin; Antwi, Edward; Quansah, Reginald
2016-01-18
A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR-Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10(-3). The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10(-4) to 1 × 10(-6). These findings call for case-control epidemiological studies to establish the relationship between exposure to the aforementioned toxic chemicals and diseases associated with them as identified in other studies conducted in different countries as basis for developing policy interventions to address the issue of ASGM mine workers safety in Ghana.
NASA Astrophysics Data System (ADS)
Glinsky, M.; Hutter, A.; Drozhko, E. G.
2001-12-01
In the early 90's international organizations showed great interest concerning the contamination problems at the PA "Mayak" territory, where liquid radioactive wastes have been stored on the surface, including Lake Karachay, reservoir "Staroye Boloto" and the Techa River cascade reservoirs. As a result of this interest, international contracts funded by DOE (USA), NRRA, EC and DGXL were instituted to study the experience of radioactive waste management accumulated at the PA "Mayak" territory, including proposed rehabilitation of the contaminated territories. However, at the initial stage of international research, the works were not coordinated and often duplicated each other, which was taken by the public and mass media as a serious divergence of opinion between the scientists on the risk assessment for the population. Many years of research resulted in elaboration of a common scientific approach to the solution of the problems of water resources contamination at the PA "Mayak" territory. A successful experience of coordinating the international projects to study radionuclide migration with surface and ground waters at the PA "Mayak" territory is demonstrated, as well as the risk assessment for the population. Substantiation for rehabilitation measures can be based on long-term predictions and modeling research that are continuing under these international projects.
Risk assessment from exposure to arsenic, antimony, and selenium in urban gardens (Madrid, Spain).
De Miguel, Eduardo; Izquierdo, Miguel; Gómez, Amaia; Mingot, Juan; Barrio-Parra, Fernando
2017-02-01
The authors discuss the geochemical behavior of arsenic (As), antimony (Sb), and selenium (Se) in urban gardens and the human health implications associated with urban agriculture. A total of 42 samples from 7 urban gardens in Madrid, Spain, were collected from the top 20 cm of soil. Concentrations of As, Sb, and Se and the main soil properties (i.e., total iron, pH, texture, calcium carbonate, and organic matter) were determined. A significant correlation was found between As and Sb and calcium carbonate, indicating the possibility of surface adsorption or ligand exchange with the carbonate group. Also, Sb seemed to form stable chelates with soil organic matter. On the other hand, Se showed a significant association with clay and iron content. The concentration of Sb in soil exceeded the recommended value for agricultural use in 70% of the urban gardens. A human health risk assessment resulted in acceptable levels of both noncarcinogenic and carcinogenic risks (although with elevated values of the latter), with As as the main risk driver and soil and food ingestion as the main exposure pathways. The numerical results of the risk assessment should be interpreted with caution given the considerable uncertainties in some exposure variables and the lack of quantitative values for the suspected carcinogenicity of Sb and Se. Environ Toxicol Chem 2017;36:544-550. © 2016 SETAC. © 2016 SETAC.
Evaluation of triclosan in Minnesota lakes and rivers: Part II - human health risk assessment.
Yost, Lisa J; Barber, Timothy R; Gentry, P Robinan; Bock, Michael J; Lyndall, Jennifer L; Capdevielle, Marie C; Slezak, Brian P
2017-08-01
Triclosan, an antimicrobial compound found in consumer products, has been detected in low concentrations in Minnesota municipal wastewater treatment plant (WWTP) effluent. This assessment evaluates potential health risks for exposure of adults and children to triclosan in Minnesota surface water, sediments, and fish. Potential exposures via fish consumption are considered for recreational or subsistence-level consumers. This assessment uses two chronic oral toxicity benchmarks, which bracket other available toxicity values. The first benchmark is a lower bound on a benchmark dose associated with a 10% risk (BMDL 10 ) of 47mg per kilogram per day (mg/kg-day) for kidney effects in hamsters. This value was identified as the most sensitive endpoint and species in a review by Rodricks et al. (2010) and is used herein to derive an estimated reference dose (RfD (Rodricks) ) of 0.47mg/kg-day. The second benchmark is a reference dose (RfD) of 0.047mg/kg-day derived from a no observed adverse effect level (NOAEL) of 10mg/kg-day for hepatic and hematopoietic effects in mice (Minnesota Department of Health [MDH] 2014). Based on conservative assumptions regarding human exposures to triclosan, calculated risk estimates are far below levels of concern. These estimates are likely to overestimate risks for potential receptors, particularly because sample locations were generally biased towards known discharges (i.e., WWTP effluent). Copyright © 2017 Elsevier Inc. All rights reserved.
Zhuang, Wen; Gao, Xuelu
2014-06-15
Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL-ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL-ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS-SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fischer, P; Pöthig, R; Gücker, B; Venohr, M
The degree of phosphorus saturation (DPS) of agricultural soils is studied worldwide for risk assessment of phosphorus (P) losses. In previous studies, DPS could be reliably estimated from water-soluble P (WSP) for European and Brazilian soils. In the present study, we correlated measured WSP and Mehlich-1 P (M1P) from soils of Minas Gerais (MG) and Pernambuco (PE) (R(2) = 0.94, n = 59) to create a DPS map from monitoring data. The resulting DPS map showed high spatial variability and low values of DPS (54 ± 22%, mean and standard deviation; n = 1,827). Measured soil DPS values amounted to 63 ± 14% and resulted in relatively low dissolved P concentrations measured in a surface runoff study in MG. However, fertilizer grains on the soil surface led to high WSP values (>30 mg/kg) indicating high risks of dissolved P losses. We suppose that small Oxisol particles with Fe and Al hydroxides sorbed most of the dissolved fertilizer P in runoff so that P was mainly exported in particulate form. In soils with lower contents of P sorption and binding partners, e.g. Entisols in PE, this effect may be less dominant. Consequently, superficial fertilizer effects have to be considered in addition to DPS in risk assessment of P losses from agricultural areas in Brazil.
Daouk, Silwan; Copin, Pierre-Jean; Rossi, Luca; Chèvre, Nathalie; Pfeifer, Hans-Rudolf
2013-09-01
The use of pesticides may lead to environmental problems, such as surface water pollution, with a risk for aquatic organisms. In the present study, a typical vineyard river of western Switzerland was first monitored to measure discharged loads, identify sources, and assess the dynamic of the herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Second, based on river concentrations, an associated environmental risk was calculated using laboratory tests and ecotoxicity data from the literature. Measured concentrations confirmed the mobility of these molecules with elevated peaks during flood events, up to 4970 ng/L. From April 2011 to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Compared with the existing literature, this load represents an important fraction (6-12%) of the estimated amount applied because of the steep vineyard slopes (∼10%). The associated risk of these compounds toward aquatic species was found to be negligible in the present study, as well as for other rivers in Switzerland. A growth stimulation was nevertheless observed for the algae Scenedesmus vacuolatus with low concentrations of glyphosate, which could indicate a risk of perturbation in aquatic ecosystems, such as eutrophication. The combination of field and ecotoxicity data allowed the performance of a realistic risk assessment for glyphosate and AMPA, which should be applied to other pesticide molecules. Copyright © 2013 SETAC.
Zheng, Lei; Zhang, Yizhang; Yan, Zhenguang; Zhang, Juan; Li, Linlin; Zhu, Yan; Zhang, Yahui; Zheng, Xin; Wu, Jiangyue; Liu, Zhengtao
2017-08-01
Atrazine (ATZ) is an herbicide most commonly used in China and other regions of the world. It is reported toxic to aquatic organisms, and frequently occurs at relatively high concentrations. Currently, ATZ has been proved to affect reproduction of aquatic species at much lower levels. So it is controversial to perform ecological risk assessment using predicted no-effect concentrations (PENCs) derived from traditional endpoints, which fail to provide adequate protection to aquatic organisms. In this study, PNECs of ATZ were derived based on six endpoints of survival, growth, behavior, biochemistry, genetics and reproduction. The PNEC derived from reproductive lesion was 0.044μg ATZ L -1 , which was obviously lower than that derived from other endpoints. In addition, a tiered ecological risk assessment was conducted in the Taizi River based on six PNECs derived from six categories of toxicity endpoints. Results of these two methods of ecological risk assessment were consistent with each other, and the risk level of ATZ to aquatic organisms reached highest as taking reproductive fitness into account. The joint probability indicated that severe ecological risk rooting in reproduction might exist 93.9% and 99.9% of surface water in the Taizi River, while 5% threshold (HC 5 ) and 1% threshold (HC 1 ) were set up to protect aquatic organisms, respectively. We hope the present work could provide valuable information to manage and control ATZ pollution. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.
2006-01-01
Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.
Ramin, Séverin; Hermida, Margaux; Millet, Ingrid; Murez, Thibault; Monnin, Valérie; Hamoui, Mazen; Capdevila, Xavier; Charbit, Jonathan
2018-06-12
The objective was to assess the predictive performance of different intravascular contrast extravasation (ICE) characteristics for need for pelvic transarterial embolization (TAE) to determine the risk factors of false-positives. A retrospective study was performed in our trauma center between 2010 and 2015. All severe trauma patients with pelvic fracture were included. Pelvic ICE characteristics on computed tomography (CT) scan were studied: arterial (aSICE), portal surface (pSICE), and extension (exSICE) anatomic relationships. The overall predictive performance of ICE surfaces for pelvic TAE was analyzed using receiver operating characteristic curves. The analysis focused on risk factors for false-positives. Among 311 severe trauma patients with pelvic ring fracture (mean age, 42 ± 19 years, mean Injury Severity Score, 27 ± 19), 94 (30%) had at least one pelvic ICE on the initial CT scan. Patients requiring pelvic TAE had significantly larger aSICE and pSICE than others (P=0.001 and P=0.035, respectively). The overall ability of ICE surfaces to predict pelvic TAE was modest (aSICE AUC, 0.76 [95% CI, 0.64-0.90]; P=0.011) or non-significant (pSICE and exSICE). The high-sensitivity threshold was defined as aSICE ≥20 mm. Using this threshold, 76% of patients were false-positives. Risk factors for false-positives were: admission systolic blood pressure ≥90 mmHg (63% versus 20%; P=0.03) and low transfusion needs (63% versus 10%; P=0.009), extravasation in contact with complex bone fracture (78% versus 30%; P=0.008) or the absence of a direct relationship between extravasation and a large retroperitoneal hematoma (100% versus 38%; P<0.001). A significant pelvic ICE during the arterial phase does not guarantee the need for pelvic TAE. Three-quarter of patients with aSICE ≥20 mm did not need pelvic TAE. Several complementary CT scan criteria will help to identify this risk of false-positives to determine adequate hemostatic pelvic procedures.This work is an original article, retrospective study Level II of evidence, Therapeutic/Critical Care management.
Development of a robust space power system decision model
NASA Astrophysics Data System (ADS)
Chew, Gilbert; Pelaccio, Dennis G.; Jacobs, Mark; Stancati, Michael; Cataldo, Robert
2001-02-01
NASA continues to evaluate power systems to support human exploration of the Moon and Mars. The system(s) would address all power needs of surface bases and on-board power for space transfer vehicles. Prior studies have examined both solar and nuclear-based alternatives with respect to individual issues such as sizing or cost. What has not been addressed is a comprehensive look at the risks and benefits of the options that could serve as the analytical framework to support a system choice that best serves the needs of the exploration program. This paper describes the SAIC developed Space Power System Decision Model, which uses a formal Two-step Analytical Hierarchy Process (TAHP) methodology that is used in the decision-making process to clearly distinguish candidate power systems in terms of benefits, safety, and risk. TAHP is a decision making process based on the Analytical Hierarchy Process, which employs a hierarchic approach of structuring decision factors by weights, and relatively ranks system design options on a consistent basis. This decision process also includes a level of data gathering and organization that produces a consistent, well-documented assessment, from which the capability of each power system option to meet top-level goals can be prioritized. The model defined on this effort focuses on the comparative assessment candidate power system options for Mars surface application(s). This paper describes the principles of this approach, the assessment criteria and weighting procedures, and the tools to capture and assess the expert knowledge associated with space power system evaluation. .
Unc, Adrian; Zurek, Ludek; Peterson, Greg; Narayanan, Sanjeev; Springthorpe, Susan V; Sattar, Syed A
2012-01-01
Potential risks associated with impaired surface water quality have commonly been evaluated by indirect description of potential sources using various fecal microbial indicators and derived source-tracking methods. These approaches are valuable for assessing and monitoring the impacts of land-use changes and changes in management practices at the source of contamination. A more detailed evaluation of putative etiologically significant genetic determinants can add value to these assessments. We evaluated the utility of using a microarray that integrates virulence genes with antibiotic and heavy metal resistance genes to describe and discriminate among spatially and seasonally distinct water samples from an agricultural watershed creek in Eastern Ontario. Because microarray signals may be analyzed as binomial distributions, the significance of ambiguous signals can be easily evaluated by using available off-the-shelf software. The FAMD software was used to evaluate uncertainties in the signal data. Analysis of multilocus fingerprinting data sets containing missing data has shown that, for the tested system, any variability in microarray signals had a marginal effect on data interpretation. For the tested watershed, results suggest that in general the wet fall season increased the downstream detection of virulence and resistance genes. Thus, the tested microarray technique has the potential to rapidly describe the quality of surface waters and thus to provide a qualitative tool to augment quantitative microbial risk assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Archana, G; Dhodapkar, Rita; Kumar, Anupama
2017-08-10
This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 μg L -1 in the surface water bodies, 12-373 μg L -1 in the influent and 11-233 μg L -1 in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be < 1 indicating no adverse effect on the targeted organism.
Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China.
Li, Nan; Zhang, Xinbo; Wu, Wei; Zhao, Xinhua
2014-09-01
The occurrence and seasonal variability of five groups (tetracycline, quinolone, chloramphenicol, macrolide and sulfonamide) of antibiotics were investigated in the surface water of four reservoirs. The dissolved concentrations of 29 antibiotics were in the ngL(-1) level. Trace levels of all target antibiotics were analyzed using solid-phase extraction followed by liquid chromatography electrospray tandem mass spectrometry. All of the antibiotics were detected at all sampling sites, indicating widespread occurrence of antibiotics in the study area. The detection of florfenicol, josamycin, kitasamycin, spiramycin and sulfameter is the first report of these compounds in reservoir samples. The results showed an association between the presence of some antibiotics at Panjiakou reservoir and cage culture of fish. Twenty-three types of antibiotics showed significant seasonal variations (p<0.001) due to human activities and flow conditions. A risk assessment showed that all antibiotics detected could cause very low risk to algae, daphnid and fish. Further health risk need to be investigated because these reservoirs are drinking water sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
General Factors of the Korean Exposure Factors Handbook
Kim, So-Yeon; Kim, Sun-Ja; Lee, Kyung-Eun; Cheong, Hae-Kwan; Kim, Eun-Hye; Choi, Kyung-Ho; Kim, Young-Hee
2014-01-01
Risk assessment considers the situations and characteristics of the exposure environment and host. Various physiological variables of the human body reflects the characteristics of the population that can directly influence risk exposure. Therefore, identification of exposure factors based on the Korean population is required for appropriate risk assessment. It is expected that a handbook about general exposure factors will be used by professionals in many fields as well as the risk assessors of the health department. The process of developing the exposure factors handbook for the Korean population will be introduced in this article, with a specific focus on the general exposure factors including life expectancy, body weight, surface area, inhalation rates, amount of water intake, and soil ingestion targeting the Korean population. The researchers used national databases including the Life Table and the 2005 Time Use Survey from the National Statistical Office. The anthropometric study of size in Korea used the resources provided by the Korean Agency for Technology and Standards. In addition, direct measurement and questionnaire surveys of representative samples were performed to calculate the inhalation rate, drinking water intake, and soil ingestion. PMID:24570802
Bach, Martin; Diesner, Mirjam; Großmann, Dietlinde; Guerniche, Djamal; Hommen, Udo; Klein, Michael; Kubiak, Roland; Müller, Alexandra; Preuss, Thomas G; Priegnitz, Jan; Reichenberger, Stefan; Thomas, Kai; Trapp, Matthias
2017-05-01
In order to assess surface water exposure to active substances of plant protection products (PPPs) in the European Union (EU), the FOCUS (FOrum for the Co-ordination of pesticide fate models and their USe) surface water workgroup introduced four run-off and six drainage scenarios for Step 3 of the tiered FOCUSsw approach. These scenarios may not necessarily represent realistic worst-case situations for the different Member States of the EU. Hence, the suitability of the scenarios for risk assessment in the national authorisation procedures is not known. Using Germany as an example, the paper illustrates how national soil-climate scenarios can be developed to model entries of active substances into surface waters from run-off and erosion (using the model PRZM) and from drainage (using the model MACRO). In the authorisation procedure for PPPs on Member State level, such soil-climate scenarios can be used to determine exposure endpoints with a defined overall percentile. The approach allows the development of national specific soil-climate scenarios and to calculate percentile-based exposure endpoints. The scenarios have been integrated into a software tool analogous to FOCUS-SWASH which can be used in the future to assess surface water exposure in authorisation procedures of PPPs in Germany. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Huang, Huan-Fang; Qi, Shi-Hua; Qu, Cheng-Kai; Li, Hui; Chen, Wen-Wen; Zhang, Li; Hu, Ting; Shi, Liao
2014-07-01
Totally 81 surface soil samples were collected from Jiufeng Mountain Range, and 8 compounds of organochlorine pesticides (OCPs) were determined by a Ni electron capture detector (GC-ECD) to investigate the distribution, composition, source and potential health risks of these compounds in the study region. The detection ratio of HCHs and DDTs' isomers ranged from 77.78% to 100.00%. Concentrations of HCHs and DDTs in surface soils ranged from 0.97 ng x g(-1) to 247.40 ng x g(-1) (mean 10.17 ng x g(-1)) and 0.01 ng x g(-1) to 384.75 ng x g(-1) (mean 18.91 ng x g(-1)), respectively. Compared with other regions, the pollution of OCPs in Jiufeng Mountain Range stayed at a low level. The residue level in different types of lands was in the order as: paddy field > vegetable land > tea land > woodland. Source analysis indicated that Lindane and dicofol might be used recently in this area. The incremental lifetime, cancer risks (ILCRs) of different age groups (children, youths, and adults) were all within the acceptable risk range of 10(-6) to 10(-4) recommended by USEPA for carcinogenic chemicals. The residue level of OCPs in soil may not cause cancer risk for local residents basically.
Wang, Wenxia; Zhou, Lijun; Gu, Xiaohong; Chen, Huihui; Zeng, Qingfei; Mao, Zhigang
2018-05-30
The objective of this study was to evaluate the occurrence, distribution, potential sources, and ecological risk of antibiotics in aqueous phase of Lake Guchenghu, China. Target antibiotics in surface water of Lake Guchenghu, adjacent streams, and crab ponds were detected seasonally. The results showed that erythromycin-H 2 O (1.60-2450 ng/L), sulfadiazine (ND-654 ng/L), and florfenicol (ND-919 ng/L) were the predominant antibiotics in Lake Guchenghu. The concentrations of antibiotics in Lake Guchenghu Basin showed obvious seasonal variation, with the highest concentration in summer. In general, the concentrations of antibiotics in crab ponds and streams were higher than those in the lake and spatial distributions of antibiotics were affected by pollution sources. The types and origins of antibiotics indicated that wastewater from ponds was the main source of antibiotics in the lake. Risk assessment suggested that as individual compound, erythromycin-H 2 O and clarithromycin posed a high risk to algae while other compounds might pose low or no risk. The mixture of antibiotics may pose a high risk to aquatic organisms in Lake Guchenghu. Overall, our study revealed the occurrence and spatiotemporal variation of antibiotics in Lake Guchenghu, which was related with crab culturing.
A sun holiday is a sunburn holiday.
Petersen, Bibi; Thieden, Elisabeth; Philipsen, Peter Alshede; Heydenreich, Jakob; Young, Antony Richard; Wulf, Hans Christian
2013-08-01
Many people take holidays in sunny locations with the express aim of sunbathing. This may result in sunburn, which is a risk factor for skin cancer. We investigated 25 Danish sun seekers during a week's holiday in the Canary Islands. The percentage of body surface area with sunburn was determined by daily skin examinations by the same observer. Erythemally effective ultraviolet radiation (UVR) exposure was assessed with time-stamped personal dosimeters worn on the wrist. Volunteers reported their clothing cover and sunscreen use in diaries, and this information was used to determine body site-specific UVR doses after adjustment for sun protection factor. Remarkably, we found that all volunteers sunburned at some point. The risk of sunburn correlated significantly with the adjusted body site-specific UVR dose. Furthermore, there was also a significant relationship between the daily UVR dose and percentage of body surface area with sunburn. Our study shows that holiday UVR exposure results in a high risk of sunburn, which potentially increases the risk of skin cancer. Possible protection by melanogenesis is insufficient to protect against sunburn during a 1-week sun holiday. Finally, our data clearly support a substantial skin cancer risk from sun holidays. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Xu, Gang; Liu, Jian; Pei, Shaofeng; Hu, Gang; Kong, Xianghuai
2015-12-01
Surface sediment grain size as well as the spatial distribution, pollution status, and source identification of heavy metals in the west Zhoushan Fishing Ground (ZFG) of the East China Sea were analyzed to study the geochemical background concentrations of heavy metals and to assess their potential ecological risk. Our results show that surface sediments in the eastern part of study area were mainly composed of sand-sized components. Spatial distributions of heavy metals were mainly controlled by grain size and terrigenous materials, and their concentrations in the coarsest grain sediments formed primarily during the Holocene transgressive period could represent the element background values of our study area. Contamination factor suggests that there was no pollution of Pb, Zn, and Cr generally in our study area and slight pollution of Cu, Cd, and As (especially Cu) at some stations. In addition, ecological harm coefficient indicates that the ecological risk of each heavy metal, except for Cd, at two stations was low as well. These results are consistent with the pollution load index and ecological risk index, which suggest both the overall level of pollution and the overall ecological risk of six studied metals in sediment were relatively low in our study area. Enrichment factor indicates that the heavy metals came mostly from the natural source. Summarily, the quality level of sediment in our study area was relatively good, and heavy metals in sediments could not exert threat to aquatic lives in the ZFG until now.
Gedamke, Jason; Gales, Nick; Frydman, Sascha
2011-01-01
The potential for seismic airgun "shots" to cause acoustic trauma in marine mammals is poorly understood. There are just two empirical measurements of temporary threshold shift (TTS) onset levels from airgun-like sounds in odontocetes. Considering these limited data, a model was developed examining the impact of individual variability and uncertainty on risk assessment of baleen whale TTS from seismic surveys. In each of 100 simulations: 10000 "whales" are assigned TTS onset levels accounting for: inter-individual variation; uncertainty over the population's mean; and uncertainty over weighting of odontocete data to obtain baleen whale onset levels. Randomly distributed whales are exposed to one seismic survey passage with cumulative exposure level calculated. In the base scenario, 29% of whales (5th/95th percentiles of 10%/62%) approached to 1-1.2 km range were exposed to levels sufficient for TTS onset. By comparison, no whales are at risk outside 0.6 km when uncertainty and variability are not considered. Potentially "exposure altering" parameters (movement, avoidance, surfacing, and effective quiet) were also simulated. Until more research refines model inputs, the results suggest a reasonable likelihood that whales at a kilometer or more from seismic surveys could potentially be susceptible to TTS and demonstrate that the large impact uncertainty and variability can have on risk assessment.
Xu, Daoquan; Wang, Yinghui; Zhang, Ruijie; Guo, Jing; Zhang, Wei; Yu, Kefu
2016-05-01
The distribution and speciation of several heavy metals, i.e., As, Cd, Cr, Cu, Hg, Pb, and Zn, in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China, were studied comparatively. The mean contents of Cd, Cu, Hg, Pb, and Zn were 1.72, 38.07, 0.18, 51.54, and 142.16 mg/kg, respectively, which were about 1.5-6 times higher than their corresponding regional sediment background values. Metal speciation obtained by the optimized BCR protocol highlighted the bioavailable threats of Cd, Cu, and Zn, which were highly associated with the exchangeable fraction (the labile phase). Hierarchical cluster analysis indicated that in sediments, As and Cr were mainly derived from natural and industrial sources, whereas fertilizer application might lead to the elevated level of Cd. Besides, Cu, Hg, Pb, and Zn were related to traffic activities. The effects-based sediment quality guidelines (SQGs) showed that Hg, Pb, and Zn could pose occasional adverse effects on sediment-dwelling organisms. However, based on the potential ecological risk assessment (PER) and risk assessment code (RAC), Cd was the most outstanding pollutant and posed the highest ecological hazard and bioavailable risk among the selected metals. Moreover, the metal partitioning between water and sediments was quantified through the calculation of the pseudo-partitioning coefficient (K P), and result implied that the sediments in this karst aquatic environment cannot be used as stable repositories for the metal pollutants.
Construction of a Risk Assessment Model for Rainfall-Induced Landslides
NASA Astrophysics Data System (ADS)
Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Lin, Wei-Chung
2013-04-01
The unstable geology and steep terrain in the mountainous regions of Taiwan make these areas vulnerable to landslides and debris flow during typhoons and heavy rains. According to the Water Resources Agency, Ministry of Economic Affairs of Taiwan, there were 500 typhoons and over one thousand storms in Taiwan between 1897 and 2011. Natural disasters caused 3.5 billion USD of damage between 1983 and 2011. Thus, the construction of risk assessment model for landslides is essential to disaster prevention. This study employed genetic adaptive neural networks (GANN) with texture analysis in the classification of high-resolution satellite images from which data related to surface conditions in mountainous areas of Taiwan were derived. Ten landslide hazard potential factors are included: slope, geology, elevation, distance from the fault, distance from water, terrain roughness, slope roughness, effective accumulated rainfall and developing situation. By using correlation test, GANN, weight analysis and dangerous value method, levels and probabilities of landslide of the research areas are presented. Then, through geographic information system the landslide potential map is plotted to distinguish high potential regions from low potential regions. Through field surveys, interviews with district officials and a review of relevant literature, the probability of a sediment disaster was estimated as well as the vulnerability of the villages concerned and the degree to which these villages were prepared, to construct a risk evaluation model. The regional risk map was plotted with the help of GIS and the landslide assessment model. The risk assessment model can be used by authorities to make provisions for high-risk areas, to reduce the number of casualties and social costs of sediment disasters.
Väänänen, Kristiina; Leppänen, Matti T; Chen, XuePing; Akkanen, Jarkko
2018-01-01
Metal contamination in freshwater ecosystems is a global issue and metal discharges to aquatic environments are monitored in order to protect aquatic life and human health. Bioavailability is an important factor determining metal toxicity. In aquatic systems, metal bioavailability depends on local water and sediment characteristics, and therefore, the risks are site-specific. Environmental quality standards (EQS) are used to manage the risks of metals in aquatic environments. In the simplest form of EQSs, total concentrations of metals in water or sediment are compared against pre-set acceptable threshold levels. Now, however, the environmental administration bodies have stated the need to incorporate metal bioavailability assessment tools into environmental regulation. Scientific advances have been made in metal bioavailability assessment, including passive samplers and computational models, such as biotic ligand models (BLM). However, the cutting-edge methods tend to be too elaborate or laborious for standard environmental monitoring. We review the commonly used metal bioavailability assessment methods and introduce the latest scientific advances that might be applied to environmental management in the future. We present the current practices in environmental management in North America, Europe and China, highlighting the good practices and the needs for improvement. Environmental management has met these new challenges with varying degrees of success: the USA has implemented site-specific environmental risk assessment for water and sediment phases, and they have already implemented metal mixture toxicity evaluation. The European Union is promoting the use of bioavailability and BLMs in ecological risk assessment (ERA), but metal mixture toxicity and sediment phase are still mostly neglected. China has regulation only for total concentrations of metals in surface water. We conclude that there is a need for (1) Advanced and up-to-date guidelines and legislation, (2) New and simple scientific methods for assessing metal bioavailability and (3) Improvement of knowledge and skills of administrators. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Prassinos, Peter G.; Stamatelatos, Michael G.; Young, Jonathan; Smith, Curtis
2010-01-01
Managed by NASA's Office of Safety and Mission Assurance, a pilot probabilistic risk analysis (PRA) of the NASA Crew Exploration Vehicle (CEV) was performed in early 2006. The PRA methods used follow the general guidance provided in the NASA PRA Procedures Guide for NASA Managers and Practitioners'. Phased-mission based event trees and fault trees are used to model a lunar sortie mission of the CEV - involving the following phases: launch of a cargo vessel and a crew vessel; rendezvous of these two vessels in low Earth orbit; transit to th$: moon; lunar surface activities; ascension &om the lunar surface; and return to Earth. The analysis is based upon assumptions, preliminary system diagrams, and failure data that may involve large uncertainties or may lack formal validation. Furthermore, some of the data used were based upon expert judgment or extrapolated from similar componentssystemsT. his paper includes a discussion of the system-level models and provides an overview of the analysis results used to identify insights into CEV risk drivers, and trade and sensitivity studies. Lastly, the PRA model was used to determine changes in risk as the system configurations or key parameters are modified.
Medical geochemistry research in Spissko-Gemerské rudohorie Mts., Slovakia.
Rapant, S; Cvecková, V; Dietzová, Z; Khun, M; Letkovicová, M
2009-02-01
This study presents an assessment of the potential impact of geological contamination of the environment on the health of the population in Spissko-Gemerské rudohorie Mts. (SGR Mts.). The concentration levels of potentially toxic elements (mainly As, Cd, Cu, Hg, Pb, Sb, and Zn) were determined in soils, groundwater, surface water, and stream sediments as well as in the food chain (locally grown vegetables). A medical study included some 30 health indicators for all 98 municipalities of the study area. The As and Sb contents in human fluids and tissues were analyzed in one municipality identified to be at the highest risk. Based on element content, environmental and health risks were calculated for respective municipalities. Out of 98 municipalities 14 were characterized with extremely high environmental risk and 10 were characterized with very high carcinogenic risk from arsenic (groundwater). Extensive statistical analysis of geochemical data (element contents in soils, groundwater, surface water, and stream sediments) and health indicators was performed. Significant correlations between element contents in the geological environment and health indicators, mainly cancer and cardiovascular diseases, were identified. Biological monitoring has confirmed the transfer of elements from the geological environment to human fluids and tissues as well as to the local food chain.
Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong
2017-11-01
This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.
How clean must our drinking water be: the importance of protective immunity.
Frost, Floyd J; Roberts, Melissa; Kunde, Twila R; Craun, Gunther; Tollestrup, Kristine; Harter, Lucy; Muller, Tim
2005-03-01
Cryptosporidium parvum is an important cause of epidemic diarrhea. Few studies have assessed whether serological evidence of prior infection in adults is related to a reduced occurrence of enteric illness. Serum samples and enteric illness event data were obtained in 2000 and 2001 from 326 people served by 1 of 2 unfiltered surface sources or 1 groundwater source. In 2001, filtration was initiated at 1 of the surface sources. Poisson regression related illness episodes with serological responses to the 15/17- and 27-kDa Cryptosporidium antigen groups. Subjects with moderately strong responses to the 15/17-kDa antigen had <65% of the risk of all 1-3-day episodes of diarrheal or gastrointestinal illness and <40% of the risk of all >/=4-day episodes, compared with subjects without a moderately strong response. Water source, change in water treatment, and very weak responses were unrelated to illness events. Endemic Cryptosporidium infections are a common cause of diarrheal and gastrointestinal illness in persons without a moderately strong response to the 15/17-kDa antigen group. Users of surface-derived drinking water are more likely to have strong serological responses to this antigen group and may be at a lower risk of endemic gastrointestinal illness caused by Cryptosporidium infection.
Predictive Modeling of Risk Associated with Temperature Extremes over Continental US
NASA Astrophysics Data System (ADS)
Kravtsov, S.; Roebber, P.; Brazauskas, V.
2016-12-01
We build an extremely statistically accurate, essentially bias-free empirical emulator of atmospheric surface temperature and apply it for meteorological risk assessment over the domain of continental US. The resulting prediction scheme achieves an order-of-magnitude or larger gain of numerical efficiency compared with the schemes based on high-resolution dynamical atmospheric models, leading to unprecedented accuracy of the estimated risk distributions. The empirical model construction methodology is based on our earlier work, but is further modified to account for the influence of large-scale, global climate change on regional US weather and climate. The resulting estimates of the time-dependent, spatially extended probability of temperature extremes over the simulation period can be used as a risk management tool by insurance companies and regulatory governmental agencies.
Modelling tsunami inundation for risk analysis at the Andaman Sea Coast of Thailand
NASA Astrophysics Data System (ADS)
Kaiser, G.; Kortenhaus, A.
2009-04-01
The mega-tsunami of Dec. 26, 2004 strongly impacted the Andaman Sea coast of Thailand and devastated coastal ecosystems as well as towns, settlements and tourism resorts. In addition to the tragic loss of many lives, the destruction or damage of life-supporting infrastructure, such as buildings, roads, water & power supply etc. caused high economic losses in the region. To mitigate future tsunami impacts there is a need to assess the tsunami hazard and vulnerability in flood prone areas at the Andaman Sea coast in order to determine the spatial distribution of risk and to develop risk management strategies. In the bilateral German-Thai project TRAIT research is performed on integrated risk assessment for the Provinces Phang Nga and Phuket in southern Thailand, including a hazard analysis, i.e. modelling tsunami propagation to the coast, tsunami wave breaking and inundation characteristics, as well as vulnerability analysis of the socio-economic and the ecological system in order to determine the scenario-based, specific risk for the region. In this presentation results of the hazard analysis and the inundation simulation are presented and discussed. Numerical modelling of tsunami propagation and inundation simulation is an inevitable tool for risk analysis, risk management and evacuation planning. While numerous investigations have been made to model tsunami wave generation and propagation in the Indian Ocean, there is still a lack in determining detailed inundation patterns, i.e. water depth and flow dynamics. However, for risk management and evacuation planning this knowledge is essential. As the accuracy of the inundation simulation is strongly depending on the available bathymetric and the topographic data, a multi-scale approach is chosen in this work. The ETOPO Global Relief Model as a bathymetric basis and the Shuttle Radar Topography Mission (SRTM90) have been widely applied in tsunami modelling approaches as these data are free and almost world-wide available. However, to model tsunami-induced inundation for risk analysis and management purposes the accuracy of these data is not sufficient as the processes in the near-shore zone cannot be modelled accurately enough and the spatial resolution of the topography is weak. Moreover, the SRTM data provide a digital surface model which includes vegetation and buildings in the surface description. To improve the data basis additional bathymetric data were used in the near shore zone of the Phang Nga and Phuket coastlines and various remote sensing techniques as well as additional GPS measurements were applied to derive a high resolution topography from satellite and airborne data. Land use classifications and filter methods were developed to correct the digital surface models to digital elevation models. Simulations were then performed with a non-linear shallow water model to model the 2004 Asian Tsunami and to simulate possible future ones. Results of water elevation near the coast were compared with field measurements and observations, and the influence of the resolution of the topography on inundation patterns like water depth, velocity, dispersion and duration of the flood were analysed. The inundation simulation provides detailed hazard maps and is considered a reliable basis for risk assessment and risk zone mapping. Results are regarded vital for estimation of tsunami induced damages and evacuation planning. Results of the aforementioned simulations will be discussed during the conference. Differences of the numerical results using topographic data of different scales and modified by different post processing techniques will be analysed and explained. Further use of the results with respect to tsunami risk analysis and management will also be demonstrated.
O'Brien, Niall Joseph; Cummins, Enda J
2011-05-01
Nanomaterials are finding application in many different environmentally relevant products and processes due to enhanced catalytic, antimicrobial, and oxidative properties of materials at this scale. As the market share of nano-functionalized products increases, so too does the potential for environmental exposure and contamination. This study presents some exposure ranking methods that consider potential metallic nanomaterial surface water exposure and fate, due to nano-functionalized products, through a number of exposure pathways. These methods take into account the limited and disparate data currently available for metallic nanomaterials and apply variability and uncertainty principles, together with qualitative risk assessment principles, to develop a scientific ranking. Three exposure scenarios with three different nanomaterials were considered to demonstrate these assessment methods: photo-catalytic exterior paint (nano-scale TiO₂), antimicrobial food packaging (nano-scale Ag), and particulate-reducing diesel fuel additives (nano-scale CeO₂). Data and hypotheses from literature relating to metallic nanomaterial aquatic behavior (including the behavior of materials that may relate to nanomaterials in aquatic environments, e.g., metals, pesticides, surfactants) were used together with commercial nanomaterial characteristics and Irish natural aquatic environment characteristics to rank the potential concentrations, transport, and persistence behaviors within subjective categories. These methods, and the applied scenarios, reveal where data critical to estimating exposure and risk are lacking. As research into the behavior of metallic nanomaterials in different environments emerges, the influence of material and environmental characteristics on nanomaterial behavior within these exposure- and risk-ranking methods may be redefined on a quantitative basis. © 2010 Society for Risk Analysis.
Assessment of the landslide and flood risks in São Paulo City, Brazil
NASA Astrophysics Data System (ADS)
Vieira, Bianca; Listo, Fabrízio
2010-05-01
In Brazilian cities, especially during summer, the landslides and floods cause disaster and economic losses. Aricanduva basin is one of the most critical in the Metropolitan Region of São Paulo (RMSP), where many types of morphodynamic processes occur. This is the largest river basin in São Paulo City. The current situation is characterized by intense urbanization, soil sealing and consequent reduction of soil infiltration, increasing the frequency of flood events in this area. Thus, the main objective of this paper is to map risk areas of landslides and floods in the sub-basin Limoeiro, located in the head of the Aricanduva basin. For mapping the risk areas, we prepared a record field to floods and landslides, based on several studies. Initially, it were identified the natural indicators (vegetation, topography, surface cover and drainage) and anthropogenic (urban pattern, soil cover, building types, occupation density, road conditions, infrastructure, drainage systems, distance between houses and slope, at the top and base, and the drainage channel). On the second step of this research, we identified the evidences of mass movements (scars, cracks, subsidence, trees, poles and inclined walls). Thus, on the basis of this analysis it was possible to define the risk probability: R1 (low or no risk), R2 (moderate), R3 (high) and, R4 (very high). Subsequently, by means of oblique photographs (taken from helicopter flight) it was possible to define risk areas in the basin. In all the sectors identified, were recorded approximately 903 urban settlements. The results showed that from the 25 sectors of risk, 14 sectors (56%) presented landslide risk and 11 (44%), flood risk. Of the sectors that showed landslide risk areas, 21% have very high probability (R4), 21% high (R3), 29% moderate (R2) and 29% low (R1). The sectors at flood risk presented 45% of very high probability (R4), 10% high (R3), 18% moderate (R2) and 27% low (R1). There is large presence of sediments from landslides, debris and remnants of buildings. The drainage systems are precarious and there is runoff on the surface and sewage pipes on soil surface. Some houses were built without keeping safe distance from the top and bottom of the slope, increasing landslide risk. Others were built very close to the stream. There are cracks in the houses and walls and trees inclined by mass movements and riverbank erosion. In general, the urban occupation, after deforesting, characterized by land fragmentation and by settlements without urban infrastructure, occurred in the terrain less favorable to the occupation, where a natural susceptibility to landslides and flood processes exists. Thus, we believe that this mapping can help the identification of the active processes (landslides and floods) and the assessment of risk areas. Therefore, these maps can be used by public administration on identifying areas more appropriate to urban occupation.
Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Myers, Jerry; Licata, Angelo
2015-01-01
Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement, the contribution of space flight quality changes is much less clear, indicating more granular assessments, such as Finite Element modeling, may be needed to further assess the risks in these scenarios.
Assessment of soil compaction properties based on surface wave techniques
NASA Astrophysics Data System (ADS)
Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan
2018-03-01
Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.
NASA Astrophysics Data System (ADS)
Macián-Cervera, Javier; Escuder-Bueno, Ignacio
2017-04-01
One of the main hazards over the water quality in the water supply systems from surface raw water is cryptosporidium, considered by World Health Organization, as the most dangerous emergent pathogen. Analitycal methods for cryptosporidium are expensive, laborious and they do not have enough precission, on the other hand, labs analyze discretal samples, while drinking water production is a continuous process. In that point, the introduction of risk models in necessary to check the ability of safety of the water produced. The advances in tools able to quantify risk applied to conventional treatment drinking water treatment plants is quite useful for the operators, able to assess about decisions in operation and in investments. The model is applied into a real facility. With the results, it's possible to conclude interesting guidelines and policies about improving plant's operation mode. The main conclusion is that conventional treatment is able to work as effective barrier against cryptosporidium, but it is necessary to assess the risk of the plant while it is operating. Taking into account limitations of knowledge, risk estimation can rise non tolerable levels. In that situation, the plant must make investments in the treatment improving the operation, to get tolerable risk levels.
Xue, Baoming; Zhang, Ruijie; Wang, Yinghui; Liu, Xiang; Li, Jun; Zhang, Gan
2013-06-01
The occurrence and distribution of ten selected antibiotics from three groups (sulfonamides, macrolides, and trimethoprim) were investigated in the Yongjiang River, which flows through Nanning City, a typical developing city in China. The study also assessed the ecological risks and the potential effects caused by discharge from tributaries and anthropogenic activities. Concentrations of most of the antibiotics were elevated along the section of the river in the urban area, highlighting the significant impact of high population density and human activities on the presence of antibiotics in the environment. The concentrations in the tributaries (ranged from not detected to 1336ngL(-1)) were generally higher than those in the main stream (ranged from not detected to 78.8ngL(-1)), but both areas contained the same predominant antibiotics, revealing the importance of tributary discharge as a source of antibiotic pollution. A risk assessment for the surface water contamination revealed that sulfamethoxazole and erythromycin posed high ecological risks to the most sensitive aquatic organisms (Synechococcus leopoliensis and Pseudokirchneriella subcapitata, respectively) in the midstream and some tributaries. Most of the selected antibiotics presented high ecological risks (risk quotients up to 95) in the sediments. Copyright © 2013 Elsevier Inc. All rights reserved.
Qiao, Min; Cai, Chao; Huang, Yizong; Liu, Yunxia; Lin, Aijun; Zheng, Yuanming
2011-01-01
Soil in metropolitan region suffers great contamination risk due to the rapid urbanization especially in developing countries. Beijing and Tianjin, together with their surrounding regions, form a mega-metropolitan region in northern China. To assess the soil environmental quality, a total of 458 surface soil samples were collected from this area. Concentrations of Cr, Cu, Pb, Zn, As, Cd, and Hg were analyzed and compared to the Chinese environmental quality standards for soil. Multivariate analysis was carried out to identify the possible sources and Geographic Information Systems techniques were applied to visualize the spatial data. It was found that the primary inputs of As were due to pedogenic sources, whereas Hg was mainly of anthropogenic source. Other elements including Cr, Cu, Pb, Zn, and Cd were from both lithogenic and anthropogenic origins. Health risk assessment based on the maximum heavy metal concentration indicated that As derived from sewage irrigation area can result in carcinogenic lifetime risk due to ingestion and/or dermal contact of soil. The potential non-carcinogenic risk for children is significant for Pb and the cumulative effect of multiple metals is of concern for children in the vicinity of mining site. The results increased our knowledge for understanding natural and anthropogenic sources as well as health risk for metals in metropolitan soil.
Duizer, Erwin; Rutjes, Saskia; de Roda Husman, Ana Maria; Schijven, Jack
2016-01-01
On 6 September 2014, the accidental release of 10(13) infectious wild poliovirus type 3 (WPV3) particles by a vaccine production plant in Belgium was reported. WPV3 was released into the sewage system and discharged directly to a wastewater treatment plant (WWTP) and subsequently into rivers that flowed to the Western Scheldt and the North Sea. No poliovirus was detected in samples from the WWTP, surface waters, mussels or sewage from the Netherlands. Quantitative microbial risk assessment (QMRA) showed that the infection risks resulting from swimming in Belgium waters were above 50% for several days and that the infection risk by consuming shellfish harvested in the eastern part of the Western Scheldt warranted a shellfish cooking advice. We conclude that the reported release of WPV3 has neither resulted in detectable levels of poliovirus in any of the samples nor in poliovirus circulation in the Netherlands. This QMRA showed that relevant data on water flows were not readily available and that prior assumptions on dilution factors were overestimated. A QMRA should have been performed by all vaccine production facilities before starting up large-scale culture of WPV to be able to implement effective interventions when an accident happens.
Eccles, Robert G; Newquist, Scott C; Schatz, Roland
2007-02-01
Regulators, industry groups, consultants, and individual companies have developed elaborate guidelines over the years for assessing and managing risks in a wide range of areas, from commodity prices to natural disasters. Yet they have all but ignored reputational risk, mostly because they aren't sure how to define or measure it. That's a big problem, say the authors. Because so much market value comes from hard-to-assess intangible assets like brand equity and intellectual capital, organizations are especially vulnerable to anything that damages their reputations. Moreover, companies with strong positive reputations attract better talent and are perceived as providing more value in their products and services, which often allows them to charge a premium. Their customers are more loyal and buy broader ranges of products and services. Since the market believes that such companies will deliver sustained earnings and future growth, they have higher price-earnings multiples and market values and lower costs of capital. Most companies, however, do an inadequate job of managing their reputations in general and the risks to their reputations in particular. They tend to focus their energies on handling the threats to their reputations that have already surfaced. That is not risk management; it is crisis management--a reactive approach aimed at limiting the damage. The authors provide a framework for actively managing reputational risk. They introduce three factors (the reputation-reality gap, changing beliefs and expectations, and weak internal coordination) that affect the level of such risks and then explore several ways to sufficiently quantify and control those factors. The process outlined in this article will help managers do a better job of assessing existing and potential threats to their companies' reputations and deciding whether to accept a particular risk or take actions to avoid or mitigate it.
Wang, Dan; Singhasemanon, Nan; Goh, Kean S
2016-11-15
Pesticides are routinely monitored in surface waters and resultant data are analyzed to assess whether their uses will damage aquatic eco-systems. However, the utility of the monitoring data is limited because of the insufficiency in the temporal and spatial sampling coverage and the inability to detect and quantify trace concentrations. This study developed a novel assessment procedure that addresses those limitations by combining 1) statistical methods capable of extracting information from concentrations below changing detection limits, 2) statistical resampling techniques that account for uncertainties rooted in the non-detects and insufficient/irregular sampling coverage, and 3) multiple lines of evidence that improve confidence in the final conclusion. This procedure was demonstrated by an assessment on chlorpyrifos monitoring data in surface waters of California's Central Valley (2005-2013). We detected a significant downward trend in the concentrations, which cannot be observed by commonly-used statistical approaches. We assessed that the aquatic risk was low using a probabilistic method that works with non-detects and has the ability to differentiate indicator groups with varying sensitivity. In addition, we showed that the frequency of exceedance over ambient aquatic life water quality criteria was affected by pesticide use, precipitation and irrigation demand in certain periods anteceding the water sampling events. Copyright © 2016 Elsevier B.V. All rights reserved.
Affum, Andrews Obeng; Acquaah, Samuel Osafo; Osae, Shiloh Dede; Kwaansa-Ansah, Edward Ebow
2018-08-15
The existence of pesticides, such as organochlorine pesticides, parathion-ethyl, methamidophos which is banned globally and some current-use non-banned pesticides of organophosphorus and synthetic pyrethroids in freshwater sources is an ecological and public health concern in many countries, including Ghana. Prompted by this concern, the exposure levels and risk assessment of these pesticides to humans and non-target organisms via groundwater and surface water sources in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana, were investigated. The individual concentrations of the banned pesticides in the surface water and groundwater samples varied from < LOD to 0.110 μg/L and < LOD to 0.055 μg/L, respectively, while the concentrations of the non-banned pesticides ranged from < LOD to 0.925 μg/L and < LOD to 2 μg/L, respectively. The mean concentrations of chlorpyrifos, cypermethrin, p,p'-DDT and pirimiphos-methyl in some water sources exceeded the EU limit of 0.1 μg/L. Some surface water sources were more contaminated with DDTs, endrin, dieldrin, methoxychlor, chlorpyrifos, and HCH isomers than were freshwater sources in river basins in some countries of the world. Chlorpyrifos, p,p'-DDT and methoxychlor were ubiquitous in both water sources. The hydrochemical and compositional profiles of the pesticides indicate that water-exchange and secondary porosities in the bedrock likely contributed to the occurrence of the pesticides in the water sources. The pesticides were of low risk to humans that consume the water, but considering the US EPA safe limit for carcinogenic effects of 10 -6 , the high levels of DDTs, β-HCH, and dieldrin in some of the surface water and groundwater sources may cause cancer in children or infants. The toxicity of pesticide mixtures to surface water non-target organisms decreased in the order of fish > Daphnia magna > algae. The pesticides in the water sources were anthropogenic in origin and recently used. DDT and HCH in the water were of technical-grade origin. Copyright © 2018 Elsevier B.V. All rights reserved.
Dean, J A; Welsh, L C; Wong, K H; Aleksic, A; Dunne, E; Islam, M R; Patel, A; Patel, P; Petkar, I; Phillips, I; Sham, J; Schick, U; Newbold, K L; Bhide, S A; Harrington, K J; Nutting, C M; Gulliford, S L
2017-04-01
A normal tissue complication probability (NTCP) model of severe acute mucositis would be highly useful to guide clinical decision making and inform radiotherapy planning. We aimed to improve upon our previous model by using a novel oral mucosal surface organ at risk (OAR) in place of an oral cavity OAR. Predictive models of severe acute mucositis were generated using radiotherapy dose to the oral cavity OAR or mucosal surface OAR and clinical data. Penalised logistic regression and random forest classification (RFC) models were generated for both OARs and compared. Internal validation was carried out with 100-iteration stratified shuffle split cross-validation, using multiple metrics to assess different aspects of model performance. Associations between treatment covariates and severe mucositis were explored using RFC feature importance. Penalised logistic regression and RFC models using the oral cavity OAR performed at least as well as the models using mucosal surface OAR. Associations between dose metrics and severe mucositis were similar between the mucosal surface and oral cavity models. The volumes of oral cavity or mucosal surface receiving intermediate and high doses were most strongly associated with severe mucositis. The simpler oral cavity OAR should be preferred over the mucosal surface OAR for NTCP modelling of severe mucositis. We recommend minimising the volume of mucosa receiving intermediate and high doses, where possible. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Viegas, Carla; Faria, Tiago; Caetano, Liliana Aranha; Carolino, Elisabete; Gomes, Anita Quintal; Viegas, Susana
2017-10-01
The genus Aspergillus is one of the most prevalent regarding fungi in several highly contaminated occupational environments. The goal of the current study was to assess the prevalence of Aspergillus spp. in different settings, focusing on those where a higher load of fungal contamination is expected according to the European Agency for Safety and Health at Work. A specific protocol to ensure a more accurate assessment of the exposure to Aspergillus spp. is proposed aimed at allowing a detailed risk characterization and management. Two wastewater treatment plants, one wastewater elevation plant, four waste treatment plants, three cork industries, five slaughter houses, four feed industries, one poultry pavilion, and two swineries, all located in the outskirts of Lisbon, were assessed. In total, 125 air samples and 125 surface samples were collected and analysed by culture-based methods. Real-time polymerase chain reaction was performed to detect fungal presence in 100 samples, targeting the Aspergillus sections Circumdati, Flavi, and Fumigati. The highest prevalence of Aspergillus spp. was found in wastewater treatment plants (69.3%; 31.1%), waste treatment plants (34.8%; 73.6%), and poultry feed industry (6.3%; 26.1%), in air and surfaces, respectively. Aspergillus spp. was also prevalent in cork industry (0.9%; 23.4%), slaughter houses (1.6%; 17.7%), and swineries (7.4%; 9.5%), in air and surfaces, respectively. The Aspergillus sections more prevalent in the air and surfaces of all the assessed settings were the Nigri section (47.46%; 44.71%, respectively), followed by Fumigati (22.28%; 27.97%, respectively) and Flavi (10.78%; 11.45%, respectively) sections. Aspergillus section Fumigati was successfully amplified by qPCR in 18 sampling sites where the presence of this fungal species had not been identified by conventional methods. It should be highlighted that the occupational exposure burden is due not only to the Aspergillus load, but also to the toxigenic potential of this genus. Based on our results, a protocol relied in the application of conventional and molecular methods in parallel is herein suggested aimed at allowing a better risk characterization and management.
USDA-ARS?s Scientific Manuscript database
Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of vector-borne diseases. We show that episodic outbreaks of Rift Valley fever are influen...
Jaakkola, J J; Oie, L; Nafstad, P; Botten, G; Samuelsen, S O; Magnus, P
1999-01-01
OBJECTIVES: This study assessed the role of polyvinyl chloride (PVC) plastics and textile materials in the home in the development of bronchial obstruction during the first 2 years of life. METHODS: The study was a matched pair case-control study based on a cohort of 3754 newborns in Oslo in 1992 and 1993 who were followed up for 2 years. The case group consisted of 251 children with bronchial obstruction; the control group was matched one-to-one for date of birth. RESULTS: In conditional logistic regression analysis, the risk of bronchial obstruction was related to the presence of PVC flooring (adjusted odds ratio [OR] = 1.89; 95% confidence interval [CI] = 1.14, 3.14) and textile wall materials (adjusted OR = 1.58; 95% CI = 0.98, 2.54). The reference category was wood or parquet flooring and painted walls and ceiling. Further analysis revealed an exposure-response relationship between the assessed amount of PVC and other plasticizer-containing surface materials and the risk of bronchial obstruction. CONCLUSIONS: This study provides new evidence of the role of PVC and textile wall materials in the development of bronchial obstruction in young children. PMID:9949747
Jaakkola, J J; Oie, L; Nafstad, P; Botten, G; Samuelsen, S O; Magnus, P
1999-02-01
This study assessed the role of polyvinyl chloride (PVC) plastics and textile materials in the home in the development of bronchial obstruction during the first 2 years of life. The study was a matched pair case-control study based on a cohort of 3754 newborns in Oslo in 1992 and 1993 who were followed up for 2 years. The case group consisted of 251 children with bronchial obstruction; the control group was matched one-to-one for date of birth. In conditional logistic regression analysis, the risk of bronchial obstruction was related to the presence of PVC flooring (adjusted odds ratio [OR] = 1.89; 95% confidence interval [CI] = 1.14, 3.14) and textile wall materials (adjusted OR = 1.58; 95% CI = 0.98, 2.54). The reference category was wood or parquet flooring and painted walls and ceiling. Further analysis revealed an exposure-response relationship between the assessed amount of PVC and other plasticizer-containing surface materials and the risk of bronchial obstruction. This study provides new evidence of the role of PVC and textile wall materials in the development of bronchial obstruction in young children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-05-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model
NASA Astrophysics Data System (ADS)
Salsabilla, A.; Kusratmoko, E.
2017-07-01
Changes in land use watershed led to environmental degradation. Estimated loss of soil erosion is often difficult due to some factors such as topography, land use, climate and human activities. This study aims to predict soil erosion hazard and sediment yield using the Soil and Water Assessment Tools (SWAT) hydrological model. The SWAT was chosen because it can simulate the model with limited data. The study area is Komering watershed (806,001 Ha) in South Sumatera Province. There are two factors land management intervention: 1) land with agriculture, and 2) land with cultivation. These factors selected in accordance with the regulations of spatial plan area. Application of the SWAT demonstrated that the model can predict surface runoff, soil erosion loss and sediment yield. The erosion risk for each watershed can be classified and predicted its changes based on the scenarios which arranged. In this paper, we also discussed the relationship between the distribution of erosion risk and watershed's characteristics in a spatial perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconom ic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
NASA Astrophysics Data System (ADS)
Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.
2014-11-01
The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.
Characterisation of nanomaterial hydrophobicity using engineered surfaces
NASA Astrophysics Data System (ADS)
Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal
2017-03-01
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.
The influence of particles on bioavailability and toxicity of pesticides in surface water.
Knauer, Katja; Homazava, Nadzeya; Junghans, Marion; Werner, Inge
2017-07-01
Environmental risk assessment is an essential part of the approval process for pesticides. Exposure concentrations are compared with ecotoxicological data obtained from standardized laboratory studies and, if available, from field studies to determine the risk of a substance or formulation for aquatic communities. Predicted concentrations in surface waters are derived using, for example, the European FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS) or the German Exposit models, which distinguish between exposure to dissolved and particle-associated pesticide concentrations, because the dissolved concentration is thought to be the best predictor of bioavailability and toxicity. Water and particle-associated concentrations are estimated based on the organic carbon-water partitioning coefficient (K OC ). This review summarizes published information on the influence of natural suspended solids on bioavailability and toxicity of pesticides to aquatic organisms (algae, invertebrates and fish), and the value of log K OC and log K OW (octanol-water coefficient) as sole predictors of the bioavailable fraction is discussed. The information showed that: 1) the quality and origin of suspended solids played an important role in influencing pesticide bioavailability and toxicity; 2) a decrease in toxicity due to the presence of suspended solids was shown only for pyrethroid insecticides with log K OW greater than 5, but the extent of this reduction depended on particle concentration and size, and potentially also on the ecotoxicological endpoint; 3) for pesticides with a log K OW less than 3 (e.g., triazines, carbamates, and organophosphates), the impact of particles on bioavailability and toxicity is small and species dependent; and 4) pesticide bioavailability is greatly influenced by the test species and their physiology (e.g., feeding behavior or digestion). We conclude that exposure of aquatic organisms to pesticides and environmental risk of many pesticides might be underestimated in prospective risk assessment, when predicted environmental concentration is estimated based on the K OC of a compound. Integr Environ Assess Manag 2017;13:585-600. © 2016 SETAC. © 2016 SETAC.
Frames, Chris; Soangra, Rahul; Lockhart, Thurmon E
2013-01-01
Fatal and nonfatal falls in the construction domain remain a significant issue in todays workforce. The roofing industry in particular, annually ranks amongst the highest in all industries. Exposure to an inclined surface, such as an inclined roof surface, has been reported to have adverse effects on postural stability. The purpose of this preliminary study was to investigate the intra-individual differences in stability parameters on both inclined and level surfaces. Postural Stability (PS) and Limit of Stability (LOS) were assessed in seven healthy subjects (aged 25-35 years) on inclined and level surfaces using embedded force plates and an Inertial Measurement Unit (IMU). Four 90-second trials were collected on the inclined surface in distinctive positions: (1) Toes raised 20o above heel; (2) Heels raised 20o above toes (3); Transverse direction with dominant foot inverted at a lower height; (4) Transverse direction with non-dominant foot inverted at a lower height. Limit of Stability was evaluated by the two measurement devices in all four directions and margin of safety was quantified for each individual on both surfaces. The results reveal significant differences in postural stability between the flat surface condition and the inclined surface condition when subject was positioned perpendicular to the surface slope with one foot descended below the other; specifically, a significant increase was identified when visual support was interrupted. The findings lend support to the literature and will assist in future research regarding early detection of postural imbalance and preventative measures to reduce fall risks in professions where workers are consistently exposed to inclined surfaces.
Frames, Chris; Soangra, Rahul; Lockhart, Thurmon E.
2013-01-01
Fatal and nonfatal falls in the construction domain remain a significant issue in today’s workforce. The roofing industry in particular, annually ranks amongst the highest in all industries. Exposure to an inclined surface, such as an inclined roof surface, has been reported to have adverse effects on postural stability. The purpose of this preliminary study was to investigate the intra-individual differences in stability parameters on both inclined and level surfaces. Postural Stability (PS) and Limit of Stability (LOS) were assessed in seven healthy subjects (aged 25-35 years) on inclined and level surfaces using embedded force plates and an Inertial Measurement Unit (IMU). Four 90-second trials were collected on the inclined surface in distinctive positions: (1) Toes raised 20° above heel; (2) Heels raised 20° above toes (3); Transverse direction with dominant foot inverted at a lower height; (4) Transverse direction with non-dominant foot inverted at a lower height. Limit of Stability was evaluated by the two measurement devices in all four directions and margin of safety was quantified for each individual on both surfaces. The results reveal significant differences in postural stability between the flat surface condition and the inclined surface condition when subject was positioned perpendicular to the surface slope with one foot descended below the other; specifically, a significant increase was identified when visual support was interrupted. The findings lend support to the literature and will assist in future research regarding early detection of postural imbalance and preventative measures to reduce fall risks in professions where workers are consistently exposed to inclined surfaces. PMID:23686205
An app for climate-based Chikungunya risk monitoring and mapping
NASA Astrophysics Data System (ADS)
Soebiyanto, R. P.; Rama, X.; Jepsen, R.; Bijoria, S.; Linthicum, K. J.; Anyamba, A.
2017-12-01
There is an increasing concern for reemergence and spread of chikungunya in the last 10 years in Africa, the Indian Ocean, and Asia, and range expansion that now reaches the Caribbean, South America and threatens North America. The outbreak of Chikungunya in 2013 and its spread throughout the Americas has so far resulted in more than 1.7 million suspected cases. This has demonstrated the importance of readiness in assessing potential risk of the emergence of vector-borne diseases. Climate and ecological conditions are now recognized as major contributors to the emergence and re-emergence of various vector-borne diseases including Chikungunya. Variations and persistence of extreme climate conditions provide suitable environment for the increase of certain disease vector populations, which then further amplify vector-borne disease transmission. This highlights the importance of climate anomaly information in assessing regions at risk for Chikungunya. In order to address such issue, we are developing a climate-based app, CHIKRISK, which will help decision makers to answer three critical questions: (i) Where has Chikungunya activity occurred; (ii) Where it is occurring now; (iii) Which regions are currently at risk for Chikungunya. We first develop a database of historical Chikungunya outbreak locations compiled from publicly available information. These records are used to map where Chikungunya activity has occurred over time. We leverage on various satellite-based climate data records - such as rainfall, land surface and near surface temperature to characterize evolving conditions prior to and during Chikungunya activity. Chikungunya outbreak data, climate and ancillary (i.e. population and elevation) data are used to develop analytics capability that will produce risk maps. The CHIKRISK app has the capability to visualize historical Chikungunya activity locations, climate anomaly conditions and Chikungunya risk maps. Currently, the focus of the development is on the Caribbean and South America regions. The capability will be expanded in phased manner to the entire world.
Pascoe, Gary A.; Blanchet, Richard J.; Linder, Greg L.; Palawski, Don; Brumbaugh, William G.; Canfield, Tim J.; Kemble, Nile E.; Ingersoll, Chris G.; Farag, Aïda M.; DalSoglio, Julie A.
1994-01-01
A comprehensive field and laboratory approach to the ecological risk assessment for the Milltown Reservoir-Clark Fork River Sediments Site, a Superfund site in the Rocky Mountains of Montana, has been described in the preceding reports of this series. The risk assessment addresses concerns over the ecological impacts of upstream releases of mining wastes to fisheries of the upper Clark Fork River (CFR) and the benthic and terrestrial habitats further downstream in Milltown Reservoir. The risk characterization component of the process integrated results from a triad of information sources: (a) chemistry studies of environmental media to identify and quantify exposures of terrestrial and aquatic organisms to site-related contaminants; (b) ecological or population studies of terrestrial vegetation, birds, benthic communities, and fish; and (c) in situ and laboratory toxicity studies with terrestrial and aquatic invertebrates and plants, small mammals, amphibians, and fish exposed to contaminated surface water, sediments, wetland soils, and food sources. Trophic transfer studies were performed on waterfowl, mammals, and predatory birds using field measurement data on metals concentrations in environmental media and lower trophic food sources. Studies with sediment exposures were incorporated into the Sediment Quality Triad approach to evaluate risks to benthic ecology. Overall results of the wetland and terrestrial studies suggested that acute adverse biological effects were largely absent from the wetland; however, adverse effects to reproductive, growth, and physiological end points of various terrestrial and aquatic species were related to metals exposures in more highly contaminated depositional areas. Feeding studies with contaminated diet collected from the upper CFR indicated that trout are at high risk from elevated metals concentrations in surface water, sediment, and aquatic invertebrates. Integration of chemical analyses with toxicological and ecological evaluations of metal effects on the wetland and fishery has provided an important foundation for environmental decisions at this site.
DNA decontamination of fingerprint brushes.
Szkuta, Bianca; Oorschot, Roland A H van; Ballantyne, Kaye N
2017-08-01
Genetic profiling of DNA collected from fingerprints that have been exposed to various enhancement techniques is routine in many forensic laboratories. As a result of direct contact with fingermark residues during treatment, there is concern around the DNA contamination risk of dusting fingermarks with fingerprint brushes. Previous studies have demonstrated the potential for cross-contamination between evidentiary items through various mechanisms, highlighting the risk of using the same fingerprint brush to powder multiple surfaces within and between crime-scenes. Experiments were performed to assess the contamination risk of reused fingerprint brushes through the transfer of dried saliva and skin deposits from and to glass surfaces with new unused squirrel hair and fiberglass brushes. Additional new unused brushes and brushes previously used in casework were also tested for their ability to contaminate samples. In addition, the ability to eradicate DNA from used squirrel hair and fiberglass fingerprint brushes was assessed using a 1% sodium hypochlorite solution and a 5% solution of a commercially available alternative, Virkon. DNA profiling results from surfaces contacted by treated and untreated brushes were compared to determine the effectiveness of the devised cleaning protocol. Brush durability was also assessed over multiple wash/rinse/dry cycles with both agents. Varying amounts of DNA-containing material were collected and transferred by squirrel hair and fiberglass brushes, with detectability on the secondary surface dependent on the biological nature of the material being transferred. The impact of DNA contamination from dirty fingerprint brushes was most apparent in simulations involving the transfer of dried saliva and brushes previously used in casework, while minimal transfer of touch DNA was observed. Alarmingly, large quantities of DNA were found to reside on new unused squirrel hair brushes, while no DNA was detected on new unused fiberglass brushes or brushes sold as DNA-free. Squirrel hair brushes were easily and effectively cleaned with both hypochlorite and Virkon, with no evidence of DNA transfer between exhibits by treated brushes. Brushes were still deemed useable after multiple cleaning cycles with either agent. In contrast, fiberglass bristles became tangled and matted when wet and could not be cleaned effectively using either method. It is recommended they are disposed of following use. Each laboratory should consider their current circumstances before adapting a cleaning method. The implementation of a program to monitor the effectiveness of the cleaning regime is also advised. Copyright © 2017 Elsevier B.V. All rights reserved.
Approach on environmental risk assessment of nanosilver released from textiles.
Voelker, Doris; Schlich, Karsten; Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute; Polleichtner, Christian; Kussatz, Carola; Hund-Rinke, Kerstin
2015-07-01
Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly introduce AgNM into the textile fiber since this will strongly minimize the release of AgNM during washing. If this is not possible due to technical limitations or other reasons, the introduction of a threshold level controlling the release of AgNM from textiles is suggested. It has to be noted that this study is a case study which is only valid for the investigated NM-300K and its potential application in textiles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Chapman, Joshua A; Roberts, W Eugene; Eckert, George J; Kula, Katherine S; González-Cabezas, Carlos
2010-08-01
The development of incipient caries, or white spot lesions (WSLs), is a significant clinical problem in orthodontics. The purpose of this study was to retrospectively determine the incidence and severity of WSLs by examining pretreatment and posttreatment digital photographs. A total of 332 consecutive finished patients from a university graduate orthodontic clinic were evaluated. Initial and final digital images were compared to assess WSLs. The facial surfaces of the anterior 8 maxillary teeth were analyzed. The percentage area of WSL per total facial tooth surface was calculated to control for magnification differences. Reliability of the method was assessed by comparison with direct clinical examination data. Patient and operator factors, and treatment complexity and outcomes were evaluated as predictors of WSL incidence and severity. Agreement between direct clinical examination and digital photo data was excellent, with an intraclass correlation coefficient 0.88 and a 0.3% average difference between methods. The incidence of at least 1 WSL on the labial surface of the anterior 8 maxillary teeth was 36%. The order of incidence was lateral incisor (34%), canine (31%), premolar (28%), and central incisor (17%). Risk factors for the development of incipient caries during orthodontic treatment were young age (preadolescent) at the start of treatment, number of poor hygiene citations during treatment, unfavorable clinical outcome score, white ethnic group, and inadequate oral hygiene at the initial pretreatment examination. The use of computer software to evaluate digital photos retrospectively is a valid method for assessing the incidence and severity of WSLs on the maxillary anterior incisors, canines, and premolars. Copyright (c) 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Najamuddin; Surahman
2017-10-01
Surface sediments were collected from seventeen stations in Jeneberang waters (riverine, estuarine, and marine). Lead (Pb) and zinc (Zn) concentrations were determined by atomic absorption spectrometry, and the speciation of metals was obtained by a sequential extraction procedure. Dispersion of Pb and Zn were found higher in the riverine and marine samples than the estuarine samples. Following speciation, the metals were found similar composition of fraction in the riverine and estuarine samples but any different in the marine samples. The results indicated that there is a change of dispersion pattern and speciation composition of metals due to the presence of the dam that lies at the boundary between the estuary and the river. The toxicity unit was indicated low toxicity level; pollution level was in weakly to moderately polluted while the aquatic environment risk attributed were no risky to light risk.
Potential risk factors for dental caries in Type 2 diabetic patients.
Almusawi, M A; Gosadi, I; Abidia, R; Almasawi, M; Khan, H A
2018-05-11
Diabetic patients are known to be at higher risk for dental caries. However, the role of potential risk factors such as blood glucose, salivary glucose and glycaemic control in the occurrence of dental caries in type 2 diabetes (T2D) is not clearly understood so far, and therefore, it was evaluated in this study. This cross-sectional study was conducted on 100 T2D patients from Saudi Arabia. The caries risk assessment was evaluated using the guidelines of Caries Management by Risk Assessment (CAMBRA). Cariogenic bacteria load in saliva was determined by a chair-side test kit. The levels of fasting blood glucose (FBG), salivary glucose and HbA1c were analysed. Majority of the patients had dental caries (84%), exposed root surfaces (92%) and heavy plaque (73%), whereas 66% of patients suffered from xerostomia. The frequency of patients with high counts of Streptococcus mutans and Lactobacilli (LB) were 78% and 42%, respectively. There were significant associations between dental caries risk and FBG, HbA1c and salivary glucose. After categorizing the patients into 3 categories of glycaemic control, we observed a significant association between glycaemic control and dental caries risk. Type 2 diabetes patients are at high risk for dental caries, which is directly associated with FBG, HbA1c and salivary glucose. This is the first study measuring dental caries and its risk factors in T2D patients from Saudi Arabia. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit
NASA Technical Reports Server (NTRS)
Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.
2016-01-01
Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.
Fan, Ming; Liu, Zhengtao; Dyer, Scott; Xia, Pu; Zhang, Xiaowei
2017-12-01
An environmental risk assessment (ERA) framework was recently developed for consumer product chemicals in China using a tiered approach, applying an existing Chinese regulatory qualitative method in Tier Zero and, then, utilizing deterministic and probabilistic methods for Tiers One and Two. The exposure assessment methodology in the framework applied conditions specific to China including physical setting, infrastructure, and consumers' habits and practices. Furthermore, two scenarios were identified for quantitatively assessing environmental exposure: (1) Urban with wastewater treatment, and; (2) Rural without wastewater treatment (i.e., direct-discharge of wastewater). Upon a brief discussion on the framework methodology, this paper primarily presented a case study conducted using this new approach for assessing two fragrance chemicals, the polycyclic musks HHCB (Galaxolide, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[gamma]-2-benzopyran) and AHTN (Tonalide, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene). Both HHCB and AHTN are widely used as fragrances in a variety of consumer products in China, and occurrences of both compounds have been reported in wastewater influents, effluents, and sludge, in addition to surface water and sediments across several major metropolitan regions throughout China. This case study illustrated the very conservative nature of Tier Zero, which indicated a high risk potential of the fragrances to receiving water aquatic communities due to the fragrance's non-ready biodegradability and eco-toxicity profiles. However, the higher-tiered assessments (including deterministic and site-specific probabilistic) demonstrated greater environmental realism with the conclusion of HHCB and AHTN posing minimal risk, consistent with local monitoring data as well as a recent similar study conducted in the United States. Copyright © 2017 Elsevier B.V. All rights reserved.
Qu, Liyin; Huang, Hong; Xia, Fang; Liu, Yuanyuan; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun
2018-06-01
Heavy metal pollution is a major concern in China because of its serious effects on human health. To assess potential human health and ecological risks of heavy metal pollution, concentration data for seven heavy metals (As, Pb, Cd, Cr, Hg, Cu, Zn) from 14 sites spanning the rural-urban interface of the Wen-Rui Tang River watershed in southeast China were collected from 2000 to 2010. The heavy metal pollution index (HPI), hazard index (HI) and carcinogenic risk (CR) metrics were used to assess potential heavy metal risks. Further, we evaluated the uncertainty associated with the risk assessment indices using Monte Carlo analysis. Results indicated that all HPI values were lower than the critical level of 100 suggesting that heavy metal levels posed acceptable ecological risks; however, one site having an industrial point-source input reached levels of 80-97 on several occasions. Heavy metal concentrations fluctuated over time, and the decrease after 2007 is due to increased wastewater collection. The HI suggested low non-carcinogenic risk throughout the study period (HI < 1); however, nine sites showed CR values above the acceptable level of 10 -4 for potential cancer risk from arsenic in the early 2000s. Uncertainty analysis revealed an exposure risk for As at all sites because some CR values exceeded the 10 -4 level of concern; levels of Cd near an old industrial area also exceeded the Cd exposure standard (2.6% of CR values > 10 -4 ). While most metrics for human health risk did not exceed critical values for heavy metals, there is still a potential human health risk from chronic exposure to low heavy metal concentrations due to long-term exposure and potential metal interactions. Results of this study inform water pollution remediation and management efforts designed to protect public health in polluted urban area waterways common in rapidly developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Paton, Susan; Thompson, Katy-Anne; Parks, Simon R; Bennett, Allan M
2015-08-01
The aim of this study was to quantify reaerosolization of microorganisms caused by walking on contaminated flooring to assess the risk to individuals accessing areas contaminated with pathogenic organisms, for example, spores of Bacillus anthracis. Industrial carpet and polyvinyl chloride (PVC) floor coverings were contaminated with aerosolized spores of Bacillus atrophaeus by using an artist airbrush to produce deposition of ∼10(3) to 10(4) CFU · cm(-2). Microbiological air samplers were used to quantify the particle size distribution of the aerosol generated when a person walked over the floorings in an environmental chamber. Results were expressed as reaerosolization factors (percent per square centimeter per liter), to represent the ratio of air concentration to surface concentration generated. Walking on carpet generated a statistically significantly higher reaerosolization factor value than did walking on PVC (t = 20.42; P < 0.001). Heavier walking produced a statistically significantly higher reaerosolization factor value than did lighter walking (t = 12.421; P < 0.001). Height also had a statistically significant effect on the reaerosolization factor, with higher rates of recovery of B. atrophaeus at lower levels, demonstrating a height-dependent gradient of particle reaerosolization. Particles in the respirable size range were recovered in all sampling scenarios (mass mean diameters ranged from 2.6 to 4.1 μm). The results of this study can be used to produce a risk assessment of the potential aerosol exposure of a person accessing areas with contaminated flooring in order to inform the choice of appropriate respiratory protective equipment and may aid in the selection of the most suitable flooring types for use in health care environments, to reduce aerosol transmission in the event of contamination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Thompson, Katy-Anne; Parks, Simon R.; Bennett, Allan M.
2015-01-01
The aim of this study was to quantify reaerosolization of microorganisms caused by walking on contaminated flooring to assess the risk to individuals accessing areas contaminated with pathogenic organisms, for example, spores of Bacillus anthracis. Industrial carpet and polyvinyl chloride (PVC) floor coverings were contaminated with aerosolized spores of Bacillus atrophaeus by using an artist airbrush to produce deposition of ∼103 to 104 CFU · cm−2. Microbiological air samplers were used to quantify the particle size distribution of the aerosol generated when a person walked over the floorings in an environmental chamber. Results were expressed as reaerosolization factors (percent per square centimeter per liter), to represent the ratio of air concentration to surface concentration generated. Walking on carpet generated a statistically significantly higher reaerosolization factor value than did walking on PVC (t = 20.42; P < 0.001). Heavier walking produced a statistically significantly higher reaerosolization factor value than did lighter walking (t = 12.421; P < 0.001). Height also had a statistically significant effect on the reaerosolization factor, with higher rates of recovery of B. atrophaeus at lower levels, demonstrating a height-dependent gradient of particle reaerosolization. Particles in the respirable size range were recovered in all sampling scenarios (mass mean diameters ranged from 2.6 to 4.1 μm). The results of this study can be used to produce a risk assessment of the potential aerosol exposure of a person accessing areas with contaminated flooring in order to inform the choice of appropriate respiratory protective equipment and may aid in the selection of the most suitable flooring types for use in health care environments, to reduce aerosol transmission in the event of contamination. PMID:25979883
Carpenter, Kent E; Abrar, Muhammad; Aeby, Greta; Aronson, Richard B; Banks, Stuart; Bruckner, Andrew; Chiriboga, Angel; Cortés, Jorge; Delbeek, J Charles; Devantier, Lyndon; Edgar, Graham J; Edwards, Alasdair J; Fenner, Douglas; Guzmán, Héctor M; Hoeksema, Bert W; Hodgson, Gregor; Johan, Ofri; Licuanan, Wilfredo Y; Livingstone, Suzanne R; Lovell, Edward R; Moore, Jennifer A; Obura, David O; Ochavillo, Domingo; Polidoro, Beth A; Precht, William F; Quibilan, Miledel C; Reboton, Clarissa; Richards, Zoe T; Rogers, Alex D; Sanciangco, Jonnell; Sheppard, Anne; Sheppard, Charles; Smith, Jennifer; Stuart, Simon; Turak, Emre; Veron, John E N; Wallace, Carden; Weil, Ernesto; Wood, Elizabeth
2008-07-25
The conservation status of 845 zooxanthellate reef-building coral species was assessed by using International Union for Conservation of Nature Red List Criteria. Of the 704 species that could be assigned conservation status, 32.8% are in categories with elevated risk of extinction. Declines in abundance are associated with bleaching and diseases driven by elevated sea surface temperatures, with extinction risk further exacerbated by local-scale anthropogenic disturbances. The proportion of corals threatened with extinction has increased dramatically in recent decades and exceeds that of most terrestrial groups. The Caribbean has the largest proportion of corals in high extinction risk categories, whereas the Coral Triangle (western Pacific) has the highest proportion of species in all categories of elevated extinction risk. Our results emphasize the widespread plight of coral reefs and the urgent need to enact conservation measures.
O'Neill, Antonia; Gupta, Bhaskar Sen; Phillips, Debra H
2014-06-01
The use of seaweed fertilisers in sports green maintenance has become a common practice across the globe due to its image as an "eco-friendly" alternative to chemical fertilisers. The aim of this study was to characterise the risk of human exposure to arsenic (As), via dermal absorption, from golfing activities on a private golf course in the UK, where As contaminated seaweed fertiliser (~100mg/kg d.wt.) is applied. This was fulfilled by, 1) determining As concentrations in shallow soils with GIS geo-statistical analysis, 2) measuring As concentrations from an on-site borehole groundwater well, and (3) developing a risk assessment calculation for golfing activities based on field and questionnaire data. Total As concentrations in shallow soils were less than the UK threshold for domestic soils, however, frequent and sustained dermal contact between site-users and surface soil attributed to a maximum carcinogenic risk value of 2.75×10(-4), which is in the upper limit of the acceptable risk range. Arsenic concentrations in underlying groundwater exceeded the WHO's permissible drinking water standard, demonstrating the risk of groundwater contamination following the application of seaweed fertiliser to golf course soils. This is the first risk study on dermal As absorption via the application of a seaweed fertiliser. Copyright © 2014 Elsevier B.V. All rights reserved.
Paramasivam, K; Ramasamy, V; Suresh, G
2015-02-25
The distributions of the metals (Al, Fe, Mg, Cd, Cr, Cu, Ni, Pb and Zn) were measured for the surface sediments of the Vaigai river, Tamilnadu, India. These values are compared with different standard values to assess the level of toxicity of the heavy metals in the sediments. Risk indices (CF, PLI and PER) are also calculated to understand the level of toxicity of the metals. Multivariate statistical analyses (Pearson's correlation analysis, cluster analysis and factor analysis) are carried out to know the inter-relationship between sediment characteristics and the heavy metals. From this analysis, it is confirmed that the contents of clay and organic matter play an important role to raise the level of heavy metal contents as well as PLI and PER (level of toxicity). Heavy metal concentrations of the samples (after removing silt and clay fractions from bulk samples) show decrease in their concentrations and risk indices compared to the level of bulk samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Robotic Recon for Human Exploration
NASA Technical Reports Server (NTRS)
Deans, Matthew; Fong, Terry; Ford, Ken; Heldmann, Jennifer; Helper, Mark; Hodges, Kip; Landis, Rob; Lee, Pascal; Schaber, Gerald; Schmitt, Harrison H.
2009-01-01
Robotic reconnaissance has the potential to significantly improve scientific and technical return from lunar surface exploration. In particular, robotic recon may increase crew productivity and reduce operational risk for exploration. However, additional research, development and field-testing is needed to mature robot and ground control systems, refine operational protocols, and specify detailed requirements. When the new lunar surface campaign begins around 2020, and before permanent outposts are established, humans will initially be on the Moon less than 10% of the time. During the 90% of time between crew visits, robots will be available to perform surface operations under ground control. Understanding how robotic systems can best address surface science needs, therefore, becomes a central issue Prior to surface missions, lunar orbiters (LRO, Kaguya, Chandrayyan-1, etc.) will map the Moon. These orbital missions will provide numerous types of maps: visible photography, topographic, mineralogical and geochemical distributions, etc. However, remote sensing data will not be of sufficient resolution, lighting, nor view angle, to fully optimize pre-human exploration planning, e.g., crew traverses for field geology and geophysics. Thus, it is important to acquire supplemental and complementary surface data. Robotic recon can obtain such data, using robot-mounted instruments to scout the surface and subsurface at resolutions and at viewpoints not achievable from orbit. This data can then be used to select locations for detailed field activity and prioritize targets to improve crew productivity. Surface data can also help identify and assess terrain hazards, and evaluate alternate routes to reduce operational risk. Robotic recon could be done months in advance, or be part of a continuing planning process during human missions.
Gut, Ian M; Bartlett, Ryan A; Yeager, John J; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul; Karaolis, David K R
2016-05-01
Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies,Yersinia pestis persistence as a function of surface type at 21 °C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul
2016-01-01
ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis. The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. PMID:26944839
Levi, Yves
2009-06-01
Analytical laboratories can now identify and quantify an impressive number of "new" pollutants present at very low concentrations in water. Nanotechnology products are a new cause for concern. " Emerging " pollutants are defined as substances that were not previously sought or detected (plasticizers, drugs, chlorination byproducts, persistant organic pollutants, ...) and that are now being identified in many continental water resources. The biological actions of these substances, alone and in combination with other more " classical "pollutants, include such effects as endocrine disruption. Contaminants may be present in surface and groundwater resources, may be generated during treatment, and are found in drinking water distribution networks. In industrialized countries, the main source of emerging pollutants for humans is not water, but rather food, cosmetics and air. Urgent measures are needed to protect biodiversity and human health, including quantitative risk assessment, toxicologic studies of xenobiotic mixtures and chronic effects, strategies to protect water resources, technological advances in wastewater treatment, reliable potable water production, and new inert materials for transport and storage. Good sanitation and safe tap water are major contributors to human health and well-being Major efforts and investments are needed, based on rigorous, objective assessments of risks for the environment and public health.
Wallin-Carlquist, Nina; Thorup Cohn, Marianne; Lindqvist, Roland; Barker, Gary C; Rådström, Peter
2011-01-01
The recent finding that the formation of staphylococcal enterotoxins in food is very different from that in cultures of pure Staphylococcus aureus sheds new light on, and brings into question, traditional microbial risk assessment methods based on planktonic liquid cultures. In fact, most bacteria in food appear to be associated with surfaces or tissues in various ways, and interaction with other bacteria through molecular signaling is prevalent. Nowadays it is well established that there are significant differences in the behavior of bacteria in the planktonic state and immobilized bacteria found in multicellular communities. Thus, in order to improve the production of high-quality, microbiologically safe food for human consumption, in situ data on enterotoxin formation in food environments are required to complement existing knowledge on the growth and survivability of S. aureus. This review focuses on enterotoxigenic S. aureus and describes recent findings related to enterotoxin formation in food environments, and ways in which risk assessment can take into account virulence behavior. An improved understanding of how environmental factors affect the expression of enterotoxins in foods will enable us to formulate new strategies for improved food safety. PMID:22030860
Caldwell, Daniel J; Mastrocco, Frank; Margiotta-Casaluci, Luigi; Brooks, Bryan W
2014-11-01
Numerous active pharmaceutical ingredients (APIs), approved prior to enactment of detailed environmental risk assessment (ERA) guidance in the EU in 2006, have been detected in surface waters as a result of advancements in analytical technologies. Without adequate knowledge of the potential hazards these APIs may pose, assessing their environmental risk is challenging. As it would be impractical to commence hazard characterization and ERA en masse, several approaches to prioritizing substances for further attention have been published. Here, through the combination of three presentations given at a recent conference, "Pharmaceuticals in the Environment, Is there a problem?" (Nîmes, France, June 2013) we review several of these approaches, identify salient components, and present available techniques and tools that could facilitate a pragmatic, scientifically sound approach to prioritizing APIs for advanced study or ERA and, where warranted, fill critical data gaps through targeted, intelligent testing. We further present a modest proposal to facilitate future prioritization efforts and advanced research studies that incorporates mammalian pharmacology data (e.g., adverse outcomes pathways and the fish plasma model) and modeled exposure data based on pharmaceutical use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry
2018-02-02
Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss-adsorption onto the glass surface of the storage jars-was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.
Schelin, Jenny; Wallin-Carlquist, Nina; Cohn, Marianne Thorup; Lindqvist, Roland; Barker, Gary C; Rådström, Peter
2011-01-01
The recent finding that the formation of staphylococcal enterotoxins in food is very different from that in cultures of pure Staphylococcus aureus sheds new light on, and brings into question, traditional microbial risk assessment methods based on planktonic liquid cultures. In fact, most bacteria in food appear to be associated with surfaces or tissues in various ways, and interaction with other bacteria through molecular signaling is prevalent. Nowadays it is well established that there are significant differences in the behavior of bacteria in the planktonic state and immobilized bacteria found in multicellular communities. Thus, in order to improve the production of high-quality, microbiologically safe food for human consumption, in situ data on enterotoxin formation in food environments are required to complement existing knowledge on the growth and survivability of S. aureus. This review focuses on enterotoxigenic S. aureus and describes recent findings related to enterotoxin formation in food environments, and ways in which risk assessment can take into account virulence behavior. An improved understanding of how environmental factors affect the expression of enterotoxins in foods will enable us to formulate new strategies for improved food safety.
Panuwet, Parinya; Hunter, Ronald E.; Barr, Dana Boyd; Ryan, P. Barry
2018-01-01
Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss—adsorption onto the glass surface of the storage jars—was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk. PMID:29393904
Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.
Schvartzman, M Sol; Gonzalez-Barron, Ursula; Butler, Francis; Jordan, Kieran
2014-01-01
Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw) of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model, and the Logistic model) and three secondary (the Cardinal model, the Ratowski model, and the Presser model) mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modeled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax) were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.
NASA Astrophysics Data System (ADS)
Abdalla, Fathy; Khalil, Ramadan
2018-05-01
The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.
Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources
NASA Technical Reports Server (NTRS)
Spruce, Joe; Berglund, Judith; Davis, Bruce
2006-01-01
This viewgraph presentation regards one element of a larger project on the integration of NASA science models and data into the Hazards U.S. Multi-Hazard (HAZUS-MH) Hurricane module for hurricane damage and loss risk assessment. HAZUS-MH is a decision support tool being developed by the National Institute of Building Sciences for the Federal Emergency Management Agency (FEMA). It includes the Hurricane Module, which employs surface roughness maps made from National Land Cover Data (NLCD) maps to estimate coastal hurricane wind damage and loss. NLCD maps are produced and distributed by the U.S. Geological Survey. This presentation discusses an effort to improve upon current HAZUS surface roughness maps by employing ASTER multispectral classifications with QuickBird "ground reference" imagery.
Assessment of coastal flood risk in a changing climate along the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Bilskie, M. V.; Hagen, S. C.; Passeri, D. L.; Alizad, K.
2014-12-01
Coastal regions around the world are susceptible to a variety of natural disasters causing extreme inundation. It is anticipated that the vulnerability of coastal cities will increase due to the effects of climate change, and in particular sea level rise (SLR). We have developed a novel framework to construct a physics-based storm surge model that includes projections of coastal floodplain dynamics under climate change scenarios. Numerous experiments were conducted and it was concluded that a number of influencing factors, other than SLR, should be included in future assessments of coastal flooding under climate change; e.g., shoreline changes, barrier island morphology, salt marsh migration, and population dynamics. These factors can significantly affect the path, pattern, and magnitude of flooding depths and inundation along the coastline (Bilskie et al., 2014; Passeri et al., 2014). Using these factors, a storm surge model of the northern Gulf of Mexico (NGOM) representing present day conditions is modified to characterize the future outlook of the landscape. This adapted model is then used to assess flood risk in terms of the 100-year floodplain surface under SLR scenarios. A suite of hundreds of synthetic storms, derived by JPM-OS (Joint Probability Method - Optimum Sampling), are filtered to obtain the storms necessary to represent the statistically determined 100-year floodplain. The NGOM storm surge model is applied to simulate the synthetic storms and determine, for each storm, the flooding surface and depth, for four SLR scenarios for the year 2100 as prescribed by Parris et al. (2012). The collection of results facilitate the estimation of water surface elevation vs. frequency curves across the floodplain and the statistically defined 100-year floodplain is extracted. This novel method to assess coastal flooding under climate change can be performed across any coastal region worldwide, and results provide awareness of regions vulnerable to extreme flooding in the future.
Wang, Bo; Zhao, Shuang; Xia, Dun-sheng; Yu, Ye; Tian, Shi-li; Jia, Jia; Jiang, Xiao-rong
2011-05-01
The contents of As, Co, Cr, Cu, Ni, Pb, V and Zn in the surface sediments from 8 rivers in urban area in Lanzhou were monitored by ecological risk which was assessed by the potential ecological Håkanson index, and the index of geoaccumulation (Igeo), sediment enrichment factor (R), and environmental magnetism. The results showed that: (1) the potential ecological risk of heavy metals of As, Co, Ni, V in surface sediments from 8 rivers were low, which belonged to low ecological risk. But the risk of heave metals Cr, Pb, Zn in surface sediments from Yuer river was high, which belonged to middle ecological risk, and in downstream of Yuer river, the element of Cu belonged to high ecological risk. (2) The rivers in Lanzhou could be divided into four groups according to the heavy mental pollution degree: first type, such as Paihong river, Shier river, Yuer river and Shuimo river, called downstream concentrate type; second type, such as Qili river, called upstream concentrate type; third type, such as Luoguo river and Dasha river, called less affected type; fourth type, Lanni river, which polluted heavily in up and downstream; (3) The correlation analysis between magnetic parameters and element contents show that the parameters which mainly reflect the concentration of the magnetic minerals (X, SIRM, Ms) have close association with Cr, Ni, Pb, Zn, Cu, So we can infer that the magnetic minerals in deposits samples mainly came from electroplating effluent, motor vehicle emission, and domestic sewage. SIRM/X shows a strong correlation with Cr, Ni, Pb, Zn, indicating the distribution of anthropogenic particulates. (4) The magnetic minerals(X, SIRM, Ms) have a strong correlation with the geoaccumulation (Igeo) than potential ecological risk index and enrichment factor (R). These results suggest a possible approach for source identification of magnetic material in pollution studies and the validity of using magnetic measurements to mapping the polluted area.
Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea.
Jiang, Xin; Teng, Ankang; Xu, Wenzhe; Liu, Xiaoshou
2014-06-15
Heavy metal concentrations in surface sediments at 56 stations during two cruises in the Yellow Sea in summer and winter, 2011 were analyzed by inductively coupled plasma-mass spectrometry. The pollution status was assessed via the Geoaccumulation index and Hankanson potential ecological risk index. Higher concentrations of heavy metals (except for Mn) were found in the central Southern Yellow Sea and the western Northern Yellow Sea. The higher contents of Mn were much closer to Shandong Peninsula. Correlation analyses indicated that Pb, Cu, Fe, Ni, Zn and Co probably had the same origin and were controlled by grain size and total organic carbon. Pollution assessment showed that most areas of the Yellow Sea were not or lowly contaminated with the exception of the northwest and south parts of the Southern Yellow Sea showing Cd-contamination. The pollution status of the Yellow Sea in summer was worse than that in winter. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, W.; Nashold, B.; Meshkov, N.K.
1990-07-01
The proposed eight-acre building site for the Walter Reed Army Institute of Research (WRAIR) facility is a former uncontrolled landfill. As a prerequisite to foundation design and to formulation of an excavation plan, it was necessary to characterize the landfill materials and to conduct a qualitative human risk assessment. Chemical analysis of surface-water, groundwater, and landfill soils followed the analytical protocol promulgated under the US Environmental Protection Agency's (EPA's) Contract Laboratory Program for its Target Compound List of contaminants. This protocol was used to determine concentrations of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) polychlorinated biphenyls (PCBs)/pesticides, inorganic compounds,more » radioactive materials, asbestos, and many of the metals analyzed. 49 refs., 19 figs., 24 tabs.« less
Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying
2013-09-01
The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.
A new technique for fire risk estimation in the wildland urban interface
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Qu, J. J.; Hao, X.
A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface The physical basis lends meaning a site and season independent applicability possibilities for computing spread rates and ignition probabilities features contemporary fire risk indices usually lack The method requires estimates of grass moisture content and temperature A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval while MODIS land surface temperature emissivity products are used for retrieving grass temperature Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER
New approach to the ecotoxicological risk assessment of artificial outdoor sporting grounds.
Krüger, O; Kalbe, U; Richter, E; Egeler, P; Römbke, J; Berger, W
2013-04-01
Artificial surfaces for outdoor sporting grounds may pose environmental and health hazards that are difficult to assess due to their complex chemical composition. Ecotoxicity tests can indicate general hazardous impacts. We conducted growth inhibition (Pseudokirchneriella subcapitata) and acute toxicity tests (Daphnia magna) with leachates obtained from batch tests of granular infill material and column tests of complete sporting ground assemblies. Ethylene propylene diene monomer rubber (EPDM) leachate showed the highest effect on Daphnia magna (EC(50) < 0.4% leachate) and the leachate of scrap tires made of styrene butadiene rubber (SBR) had the highest effect on P. subcapitata (EC(10) = 4.2% leachate; EC(50) = 15.6% leachate). We found no correlations between ecotoxicity potential of leachates and zinc and PAH concentrations. Leachates obtained from column tests revealed lower ecotoxicological potential. Leachates of column tests of complete assemblies may be used for a reliable risk assessment of artificial sporting grounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kördel, Werner; Bernhardt, Cornelia; Derz, Kerstin; Hund-Rinke, Kerstin; Harmsen, Joop; Peijnenburg, Willie; Comans, Rob; Terytze, Konstantin
2013-10-15
Nearly all publications dealing with availability or bioavailability of soil pollutants start with the following statement: the determination of total pollutant content will lead to an over-estimation of risk. However, an assessment of contaminated sites should be based on the determination of mobile fractions of pollutants, and the fractions with potential for mobilisation that threaten groundwater and surface water, and the actual and potential fractions available for uptake by plants, soil microflora and soil organisms. After reviewing the literature for method proposals concerning the determination of available/bioavailable fractions of contaminants with respect to leaching, plants, microorganisms (biodegradation) and soil organisms, we propose a testing and assessment scheme for contaminated sites. The proposal includes (i) already accepted and used methods, (ii) methods which are under standardisation, and (iii) methods for which development has just started in order to promote urgently needed research. Copyright © 2013 Elsevier B.V. All rights reserved.
Spatial interpolation of pesticide drift from hand-held knapsack sprayers used in potato production
NASA Astrophysics Data System (ADS)
Garcia-Santos, Glenda; Pleschberger, Martin; Scheiber, Michael; Pilz, Jürgen
2017-04-01
Tropical mountainous regions in developing countries are often neglected in research and policy but represent key areas to be considered if sustainable agricultural and rural development is to be promoted. One example is the lack of information of pesticide drift soil deposition, which can support pesticide risk assessment for soil, surface water, bystanders and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, were obtained within one of the highest potato producing regions in Colombia. Based on the empirical data, different spatial interpolation techniques i.e. Thiessen, inverse distance squared weighting, co-kriging, pair-copulas and drift curves depending on distance and wind speed were tested and optimized. Results of the best performing spatial interpolation methods, suitable curves to assess mean relative drift and implications on risk assessment studies will be presented.
Liu, Zhaoyang; Lu, Yonglong; Wang, Tieyu; Wang, Pei; Li, Qifeng; Johnson, Andrew C; Sarvajayakesavalu, Suriyanarayanan; Sweetman, Andrew J
2016-05-01
Perfluoroalkyl acids (PFAAs) can be released to water bodies during manufacturing and application of PFAA-containing products. In this study, the contamination pattern, attenuation dynamics, sources, pathways, and risk zoning of PFAAs in surface and ground water was examined within a 10km radius from a mega-fluorochemical industrial park (FIP). Among 12 detected PFAAs, perfluorooctanoic acid (PFOA) dominated, followed by shorter-chained perfluoroalkyl carboxylic acids (PFCAs). PFAA-containing waste was discharged from the FIP, with levels reaching 1.86mg/L in the nearby rivers flowing to the Bohai sea together with up to 273μg/L in the local groundwater in the catchment. These levels constitute a human health risks for PFOA and other shorter-chained PFCAs within this location. The concentrations of ∑PFAAs in surface water strongly correlated with the local groundwater. The dominant pollution pathways of PFAAs included (i) discharge into surface water then to groundwater through seepage, and (ii) atmospheric deposition from the FIP, followed by infiltration to groundwater. As the distance increased from the source, PFAAs levels in groundwater showed a sharp initial decrease followed by a gentle decline. The contamination signal from the FIP site on PFAAs in groundwater existed within a radius of 4km, and at least 3km from the polluted Dongzhulong River. The major controlling factor in PFAA attenuation processes was likely to be dilution together with dispersion and adsorption to aquifer solids. The relative abundance of PFOA (C8) declined while those of shorter-chained PFCAs (C4-C6) increased during surface water seepage and further dispersion in groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.