NASA Astrophysics Data System (ADS)
Forooghi, Pourya; Stroh, Alexander; Schlatter, Philipp; Frohnapfel, Bettina
2018-04-01
Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Δ defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Δ =0 ). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045 h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.
Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces
NASA Astrophysics Data System (ADS)
Thakkar, Manan; Busse, Angela; Sandham, Neil
2017-02-01
Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.
Characteristics of surface roughness associated with leading edge ice accretion
NASA Technical Reports Server (NTRS)
Shin, Jaiwon
1994-01-01
Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.
Role of rough surface topography on gas slip flow in microchannels.
Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng
2012-07-01
We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
NASA Astrophysics Data System (ADS)
Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman
2018-05-01
In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.
Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows
NASA Astrophysics Data System (ADS)
Blanchard, Danny; Ligrani, Phil
2007-06-01
Accommodation coefficients are determined from experimental results and analysis based on the Navier-Stokes equations for rotation-induced flows in C-shaped fluid chamber passages formed between a rotating disk and a stationary surface. A first-order boundary condition is used to model the slip flow. The fluid chamber passage height ranges from 6.85to29.2μm to give Knudsen numbers from 0.0025 to 0.031 for air and helium. In all cases, roughness size is large compared to molecular mean free path. The unique method presented for deducing tangential momentum accommodation coefficients gives values with less uncertainty compared to procedures that rely on flows in stationary tubes and channels. When channel height is defined at the tops of the roughness elements, slip velocity magnitudes and associated accommodation coefficients are a result of rarefaction at solid-gas interfaces and shear at the gas-gas interfaces. With this arrangement, tangential accommodation coefficients obtained with this approach decrease, and slip velocity magnitudes increase, at a particular value of Knudsen number, as the level of surface roughness increases. At values of the mean roughness height greater than 500nm, accommodation coefficients then appear to be lower in air flows than in helium flows, when compared for a particular roughness configuration. When channel height is defined midway between the crests and troughs of the roughness elements, nondimensional pressure rise data show little or no dependence on the level of disk surface roughness and working fluid. With this arrangement, slip is largely independent of surface roughness magnitude and mostly due to rarefaction, provided the appropriate channel height is chosen to define the roughness height.
Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach
NASA Astrophysics Data System (ADS)
Wong, Colman Ching Chi; Liu, Chun-Ho
2013-04-01
Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient estimates are related to the friction factor in the way similar to that of uniform street canyons, i.e. they are linear functions of friction factor when the roughness is small and become insensitive to friction factor thereafter over very rough surfaces. It is thus suggested that aerodynamic resistance is the key factor affecting the air quality in urban areas. Moreover, the friction factor could be used to parameterize the dispersion coefficients over different roughness elements.
2016-12-01
roughness that is an input variable. For the FP2 site in Kansas, we searched for the climatological surface roughness height used in the Navy’s...COAMPS model for the latitude and longitude of FP2 and in the month of June/July. The climatological roughness height was found to be 0.25m. This is the...mean surface roughness for an area of 1 km on the side near FP2 as the climatological data has a horizontal grid resolution of 1 km. This roughness
A note on ``critical roughness height'' and ``transitional roughness''
NASA Astrophysics Data System (ADS)
Bradshaw, P.
2000-06-01
An unrigorous but plausible analysis suggests that the concept of a critical roughness height, below which roughness does not affect a turbulent wall flow, is erroneous. The Oseen approximation implies that the effect of roughness on the additive constant in the logarithmic law of the wall should vary as the square of the roughness Reynolds number (specifically the roughness height in "wall units"). This is an important point in determining whether surfaces used in experiments at high unit Reynolds number can be regarded as hydraulically smooth. Attention is also called to the qualitative difference between Nikuradse's measurements of friction factor in pipe flow with uniform-size sand-grain roughness in the "transitional" range of Reynolds number and the data correlation in the Moody chart of 1944; the latter was derived from tests on miscellaneous real-life rough surfaces in the 1930s. Nearly all textbooks on elementary fluid dynamics present, but practically none discuss, this difference. Nikuradse's monodisperse roughness is a very rare case with untypical behavior in the transitional range.
Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel
NASA Astrophysics Data System (ADS)
Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich
2015-06-01
In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest.
NASA Astrophysics Data System (ADS)
June, Tania; Meijide, Ana; Stiegler, Christian; Purba Kusuma, Alan; Knohl, Alexander
2018-05-01
Oil palm plantations are expanding vastly in Jambi, resulted in altered surface roughness and turbulence characteristics, which may influence exchange of heat and mass. Micrometeorological measurements above oil palm canopy were conducted for the period 2013–2015. The oil palms were 12.5 years old, canopy height 13 meters and 1.5 years old canopy height 2.5 m. We analyzed the influence of surface roughness and turbulence strenght on heat (sensible and latent) fluxes by investigating the profiles and gradient of wind speed, and temperature, surface roughness (roughness length, zo, and zero plane displacement, d), and friction velocity u*. Fluxes of heat were calculated using profile similarity methods taking into account atmospheric stability calculated using Richardson number Ri and the generalized stability factor ζ. We found that roughness parameters (zo, d, and u*) directly affect turbulence in oil palm canopy and hence heat fluxes; they are affected by canopy height, wind speed and atmospheric stability. There is a negative trend of d towards air temperature above the oil palm canopy, indicating the effect of plant volume and height in lowering air temperature. We propose studying the relation between zero plane displacement d with a remote sensing vegetation index for scaling up this point based analysis.
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.
2016-12-01
The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the assumption is applicable for the current case, i.e., high relative roughness, is a question. Two other roughness heights, i.e., the vertical roughness scale based on structure functions and viscous sublayer thickness determined from the wall boundary layer are also calculated and compared with the equivalent roughness height.
Studies of the 3D surface roughness height
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris
2013-12-16
Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. Onemore » such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.« less
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.
Lava flow topographic measurements for radar data interpretation
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Garvin, James B.
1993-01-01
Topographic profiles at 25- and 5-cm horizontal resolution for three sites along a lava flow on Kilauea Volcano are presented, and these data are used to illustrate techniques for surface roughness analysis. Height and slope distributions and the height autocorrelation function are evaluated as a function of varying lowpass filter wavelength for the 25-cm data. Rms slopes are found to increase rapidly with decreasing topographic scale and are typically much higher than those found by modeling of Magellan altimeter data for Venus. A more robust description of the surface roughness appears to be the ratio of rms height to surface height correlation length. For all three sites this parameter falls within the range of values typically found from model fits to Magellan altimeter waveforms. The 5-cm profile data are used to estimate the effect of small-scale roughness on quasi-specular scattering.
Effect of root planing on surface topography: an in-vivo randomized experimental trial.
Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F
2015-04-01
The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p < 0.05). Absolute height was lower in the VOU group than in the untreated ( p = 0.0026) and PU (p = 0.045) groups. Surface morphology was similar after the three treatments and was less irregular than in the untreated group. Values for the remaining roughness parameters were similar among all treatment groups ( p > 0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces
NASA Astrophysics Data System (ADS)
Mutta, Geeta Rani; Carapezzi, Stefania
2018-07-01
The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.
Simplified Approach to Predicting Rough Surface Transition
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Stripf, Matthias
2009-01-01
Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.
Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength
NASA Astrophysics Data System (ADS)
Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.
2017-09-01
Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
NASA Astrophysics Data System (ADS)
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Distributed Roughness Effects on Blunt-Body Transition and Turbulent Heating
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2014-01-01
An experimental program has been conducted to obtain data on the effects of surface roughness on blunt bodies at laminar, transitional, and turbulent conditions. Wind tunnel models with distributed surface roughness heights from 0.06 mm to 1.75 mm were tested and heating data were obtained using global surface thermography. Heating rates of up to 85% higher than predicted, smooth-surface turbulent levels were measured.
NASA Astrophysics Data System (ADS)
Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.
2016-09-01
In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.
Fractal characterization and wettability of ion treated silicon surfaces
NASA Astrophysics Data System (ADS)
Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.
2017-02-01
Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.
NASA Technical Reports Server (NTRS)
Blumberg, Dan G.; Greeley, Ronald
1992-01-01
The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.
Wall roughness effect on gas dynamics in supersonic ejector
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Brezgin, D. V.
2016-10-01
The paper presents the numerical simulations results in order to figure out the influence of the wall surface roughness on gas-dynamic processes inside the supersonic ejector. For these purposes two commercial CFD-solvers (Star-CCM+ and Fluent) were used. A detailed comparative study of the built-in tools and approaches in both CFD-packages for evaluation of surface roughness effects on the logarithmic law velocity distribution inside the boundary layer is carried out. Influence of ejector surface roughness is compared with the influence of the backpressure. It is found out that either increasing the backpressure behind the ejector or increasing the surface roughness height, the appearance section of a pressure shock is displaced upstream (closer to the primary nozzle). The numerical simulations results of the ejector with rough walls in both CFD-solvers are well quantitative agreed between each other in terms of the mass flow rates and are well qualitative consistent in terms of the local flow parameters distribution. It is found out that in case of exceeding the "critical roughness height" for the given geometry and boundary conditions, the ejector switches to the "off-design" mode and its performance is significantly reduced.
Surface roughness effects on turbulent Couette flow
NASA Astrophysics Data System (ADS)
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
NASA Astrophysics Data System (ADS)
Castellví, F.; Snyder, R. L.
2009-09-01
SummaryHigh-frequency temperature data were recorded at one height and they were used in Surface Renewal (SR) analysis to estimate sensible heat flux during the full growing season of two rice fields located north-northeast of Colusa, CA (in the Sacramento Valley). One of the fields was seeded into a flooded paddy and the other was drill seeded before flooding. To minimize fetch requirements, the measurement height was selected to be close to the maximum expected canopy height. The roughness sub-layer depth was estimated to discriminate if the temperature data came from the inertial or roughness sub-layer. The equation to estimate the roughness sub-layer depth was derived by combining simple mixing-length theory, mixing-layer analogy, equations to account for stable atmospheric surface layer conditions, and semi-empirical canopy-architecture relationships. The potential for SR analysis as a method that operates in the full surface boundary layer was tested using data collected over growing vegetation at a site influenced by regional advection of sensible heat flux. The inputs used to estimate the sensible heat fluxes included air temperature sampled at 10 Hz, the mean and variance of the horizontal wind speed, the canopy height, and the plant area index for a given intermediate height of the canopy. Regardless of the stability conditions and measurement height above the canopy, sensible heat flux estimates using SR analysis gave results that were similar to those measured with the eddy covariance method. Under unstable cases, it was shown that the performance was sensitive to estimation of the roughness sub-layer depth. However, an expression was provided to select the crucial scale required for its estimation.
Helicopter rotor noise investigation during ice accretion
NASA Astrophysics Data System (ADS)
Cheng, Baofeng
An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.
Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V
2018-05-29
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.
Gas flow through rough microchannels in the transition flow regime.
Deng, Zilong; Chen, Yongping; Shao, Chenxi
2016-01-01
A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height.
Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes
NASA Astrophysics Data System (ADS)
Tobin, Nicolas; Chamorro, Leonardo P.
2017-11-01
Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.
Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer
NASA Technical Reports Server (NTRS)
Gillies, John A.; Nickling, William G.; King, James
2007-01-01
Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.
NASA Astrophysics Data System (ADS)
Borri, Claudia; Paggi, Marco
2015-02-01
The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what was expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted for by fractal modeling.
NASA Astrophysics Data System (ADS)
Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.
2012-07-01
Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
NASA Astrophysics Data System (ADS)
Roshchin, B. S.; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E.
2017-03-01
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.
2017-03-15
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface betweenmore » two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.« less
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2017-01-01
An experimental investigation of the effects of distributed surface roughness on boundary-layer transition and turbulent heating has been conducted. Hypersonic wind tunnel testing was performed using hemispherical models with surface roughness patterns simulating those produced by heat shield ablation. Global aeroheating and transition onset data were obtained using phosphor thermography at Mach 6 and Mach 10 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional and turbulent flow. Upstream movement of the transition onset location and increasing heating augmentation over predicted smooth-wall levels were observed with both increasing roughness heights and increasing free stream Reynolds numbers. The experimental heating data are presented herein, as are comparisons to smooth-wall heat transfer distributions from computational flow-field simulations. The transition onset data are also tabulated, and correlations of these data are presented.
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
Plastic strain and grain size effects in the surface roughening of a model aluminum alloy
NASA Astrophysics Data System (ADS)
Moore, Eric Joseph
To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta< 4°, the surface height discontinuity DeltazH characterizes the response of adjacent grains in which one or more are large (˜1000-2000 mum), making a 3-12° rotation of the grain highly unlikely. This can be understood by postulating that the energy associated with rotating large grains would exceed the energy to shear along the boundary. Slip and grain boundary shearing are the active mechanisms in these instances.
Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials
NASA Astrophysics Data System (ADS)
Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.
2017-12-01
Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical manifestation of a scale-dependent yield stress.
Analysis of Surface Roughness at Overlapping Laser Shock Peening
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.
2016-02-01
The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.
NASA Astrophysics Data System (ADS)
Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María. M.
2013-11-01
Surface properties are essential for a complete characterization of biomaterials. In restorative dentistry, the study of the surface properties of materials meant to replace dental tissues in an irreversibly diseased tooth is important to avoid harmful changes in future treatments. We have experimentally analyzed the surface characterization parameters of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental-resin. All the samples were submitted to rugometric and microtopographic non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to gather meaningful statistical parameters such as the average roughness (Ra), the root-mean-square deviation (Rq), the skewness (Rsk), and the kurtosis of the surface height distribution (Rku). For a comparison of the different biomaterials, the uncertainties associated to the surface parameters were also determined. With respect to Ra and Rq, significant differences between the composite shades were found. Among the dental resins, the nanocomposite presented the highest values and, for the zirconia ceramics, the pre-sintered sample registered the lowest ones. The composite performance may have been due to cluster-formation variations. Except for the composites with the surface treatment, the sample surfaces had approximately a normal distribution of heights. The surface treatment applied to the composites increased the average roughness and moved the height distribution farther away from the normal distribution. The zirconia-sintering process resulted in higher average roughness without affecting the height distribution.
The surface roughness effect on the performance of supersonic ejectors
NASA Astrophysics Data System (ADS)
Brezgin, D. V.; Aronson, K. E.; Mazzelli, F.; Milazzo, A.
2017-07-01
The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the "critical roughness height" for the given boundary conditions and ejector's geometry, the ejector switches to the "off-design" mode and its performance decreases considerably.
Irregular wall roughness in turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard
2017-11-01
Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.
Wind-tunnel Modelling of Dispersion from a Scalar Area Source in Urban-Like Roughness
NASA Astrophysics Data System (ADS)
Pascheke, Frauke; Barlow, Janet F.; Robins, Alan
2008-01-01
A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T / U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness.
Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows
NASA Technical Reports Server (NTRS)
Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy
2015-01-01
To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.
Height extrapolation of wind data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhail, A.S.
1982-11-01
Hourly average data for a period of 1 year from three tall meteorological towers - the Erie tower in Colorado, the Goodnoe Hills tower in Washington and the WKY-TV tower in Oklahoma - were used to analyze the wind shear exponent variabiilty with various parameters such as thermal stability, anemometer level wind speed, projection height and surface roughness. Different proposed models for prediction of height variability of short-term average wind speeds were discussed. Other models that predict the height dependence of Weilbull distribution parameters were tested. The observed power law exponent for all three towers showed strong dependence on themore » anemometer level wind speed and stability (nighttime and daytime). It also exhibited a high degree of dependence on extrapolation height with respect to anemometer height. These dependences became less severe as the anemometer level wind speeds were increased due to the turbulent mixing of the atmospheric boundary layer. The three models used for Weibull distribution parameter extrapolation were he velocity-dependent power law model (Justus), the velocity, surface roughness, and height-dependent model (Mikhail) and the velocity and surface roughness-dependent model (NASA). The models projected the scale parameter C fairly accurately for the Goodnoe Hills and WKY-TV towers and were less accurate for the Erie tower. However, all models overestimated the C value. The maximum error for the Mikhail model was less than 2% for Goodnoe Hills, 6% for WKY-TV and 28% for Erie. The error associated with the prediction of the shape factor (K) was similar for the NASA, Mikhail and Justus models. It ranged from 20 to 25%. The effect of the misestimation of hub-height distribution parameters (C and K) on average power output is briefly discussed.« less
NASA Astrophysics Data System (ADS)
Marzahn, P.; Ludwig, R.
2016-06-01
In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.
Influence of Surface Roughness on Polymer Drag Reduction
2007-11-30
paint (High Build Semi-Gloss 97-130, Aquapon ) with glass bead grit. The particles were tightly packed producing a sand grain type roughness. Based on the... Aquapon High Build Semi-Gloss Epoxy 97-130) with glass bead grit blown into the epoxy. The particles were tightly packed giving an average roughness height
Surface roughness effects on bidirectional reflectance
NASA Technical Reports Server (NTRS)
Smith, T. F.; Hering, R. G.
1972-01-01
An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.
Electromagnetic wave scattering from rough terrain
NASA Astrophysics Data System (ADS)
Papa, R. J.; Lennon, J. F.; Taylor, R. L.
1980-09-01
This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.
Optical scattering from rough-rolled aluminum surfaces.
Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E
2001-05-01
Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.
Surface roughness scattering of electrons in bulk mosfets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuverink, Amanda Renee
2015-11-01
Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less
Separating local topography from snow effects on momentum roughness in mountain regions
NASA Astrophysics Data System (ADS)
Diebold, M.; Katul, G. G.; Calaf, M.; Lehning, M.; Parlange, M. B.
2013-12-01
Parametrization of momentum surface roughness length in mountainous regions continues to be an active research topic given its application to improved weather forecasting and sub-grid scale representation of mountainous regions in climate models. A field campaign was conducted in the Val Ferret watershed (Swiss Alps) to assess the role of topographic variability and snow cover on momentum roughness. To this end, turbulence measurements in a mountainous region with and without snow cover have been analyzed. A meteorological mast with four sonic anemometers together with temperature and humidity sensors was installed at an elevation of 2500 m and data were obtained from October 2011 until May 2012. Because of the long-term nature of these experiments, natural variability in mean wind direction allowed a wide range of terrain slopes and snow depths to be sampled. A theoretical framework that accounted only for topographically induced pressure perturbations in the mean momentum balance was used to diagnose the role of topography on the effective momentum roughness height as inferred from the log-law. Surface roughness depended systematically on wind direction but was not significantly influenced by the presence of snow depth variation. Moreover, the wind direction and so the surface roughness influenced the normalized turbulent kinetic energy, which in theory should not depend on these factors in the near-neutral atmospheric surface layer. The implications of those findings to modeling momentum roughness heights and turbulent kinetic energy (e.g. in conventional K-epsilon closure) in complex terrain are briefly discussed.
Effects of titanium surface topography on bone integration: a systematic review.
Wennerberg, Ann; Albrektsson, Tomas
2009-09-01
To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a)<0.5 microm) and minimally rough (S(a) 0.5-1 mum) surfaces showed less strong bone responses than rougher surfaces. Moderately rough (S(a)>1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
Calculations of microwave brightness temperature of rough soil surfaces: Bare field
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Wang, J. R.
1985-01-01
A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.
Three-tier rough superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun
2015-08-01
A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s-1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s-1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.
Three-tier rough superhydrophobic surfaces.
Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun
2015-08-07
A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.
An intermittency model for predicting roughness induced transition
NASA Astrophysics Data System (ADS)
Ge, Xuan; Durbin, Paul
2014-11-01
An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.
NASA Astrophysics Data System (ADS)
Langel, Christopher Michael
A computational investigation has been performed to better understand the impact of surface roughness on the flow over a contaminated surface. This thesis highlights the implementation and development of the roughness amplification model in the flow solver OVERFLOW-2. The model, originally proposed by Dassler, Kozulovic, and Fiala, introduces an additional scalar field roughness amplification quantity. This value is explicitly set at rough wall boundaries using surface roughness parameters and local flow quantities. This additional transport equation allows non-local effects of surface roughness to be accounted for downstream of rough sections. This roughness amplification variable is coupled with the Langtry-Menter model and used to modify the criteria for transition. Results from flat plate test cases show good agreement with experimental transition behavior on the flow over varying sand grain roughness heights. Additional validation studies were performed on a NACA 0012 airfoil with leading edge roughness. The computationally predicted boundary layer development demonstrates good agreement with experimental results. New tests using varying roughness configurations are being carried out at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel to provide further calibration of the roughness amplification method. An overview and preliminary results are provided of this concurrent experimental investigation.
NASA Astrophysics Data System (ADS)
Barros, Julio; Flack, Karen; Schultz, Michael
2017-11-01
Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).
NASA Astrophysics Data System (ADS)
Ghanadi, Farzin; Emes, Matthew; Yu, Jeremy; Arjomandi, Maziar; Kelso, Richard
2017-06-01
Dynamic amplification and gust effects from turbulence can increase wind loads significantly over and above the static wind loads that have been used for heliostat design. This paper presents the results of analyzing the relationship between gust factor and turbulence intensity within the atmospheric boundary layer (ABL) based on the high fidelity measurements of wind velocity at the SLTEST facility in the Utah desert. Results showed that there are distinct characteristics of a low roughness ABL that deviate from semi-empirical relationships derived for open country and urban terrains with larger surface roughness heights. The analysis also indicated that gust factor is increased by 2.4% when lowering the gust period from 3s to 1s in the low roughness field experiment ABL, compared to a 3.6% increase in a suburban terrain at a 10m height. Although 3s gust periods are recommended in AS/NZS 1170.2 [1], comparison of gust factor data with a 1s gust period is recommended particularly in high roughness ABLs such as in urban areas, to ensure that buildings are adequately designed to withstand higher frequency gusts. This research proved the strength of the correlation between gust factor and turbulence intensity is dependent on the surface roughness height of the terrain. It is recommended that the coefficient in the previous semi-empirical equation must be adjusted to be fitted to the low roughness desert terrain in the field experiment ABL.
Morphologic Quality of DSMs Based on Optical and Radar Space Imagery
NASA Astrophysics Data System (ADS)
Sefercik, U. G.; Bayik, C.; Karakis, S.; Jacobsen, K.
2011-09-01
Digital Surface Models (DSMs) are representing the visible surface of the earth by the height corresponding to its X-, Y-location and height value Z. The quality of a DSM can be described by the accuracy and the morphologic details. Both depend upon the used input information, the used technique and the roughness of the terrain. The influence of the topographic details to the DSM quality is shown for the test fields Istanbul and Zonguldak. Zonguldak has a rough mountainous character with heights from sea level up to 1640m, while Istanbul is dominated by rolling hills going up to an elevation of 435m. DSMs from SPOT-5, the SRTM C-band height models and ASTER GDEM have been investigated. The DSMs have been verified with height models from large scale aerial photos being more accurate and including morphologic details. It was necessary to determine and respect shifts of the height models caused by datum problems and orientation of the height models. The DSM quality is analyzed depending upon the terrain inclination. The DSM quality differs for both test fields. The morphologic quality depends upon the point spacing of the analyzed DSMs and the terrain characteristics.
Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing
NASA Astrophysics Data System (ADS)
Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean
2014-11-01
We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.
McGrory, Brian J; Ruterbories, James M; Pawar, Vivek D; Thomas, Reginald K; Salehi, Abraham B
2012-01-01
Nitrogen ion implantation of CoCr is reported to produce increased surface hardness and a lower friction surface. Femoral heads with and without ion implantation retrieved from 1997 to 2003 were evaluated for surface roughness (average surface roughness [Ra], mean peak height [Rpm], and maximum distance from peak to valley [Rmax]), nanohardness, and the ion-treated layer thickness. The difference in average Rmax (P = .033) and average Rpm (P = .008) was statistically significant, but there was no correlation between the average or maximum roughness parameters (average surface roughness, Rmax, and Rpm) and time in vivo (P > .05). Overall, nanohardness was greater for the low-friction ion-treated heads (P < .001); and it decreased with increasing time in vivo (P = .01). Ion treatment produces an increased surface hardness, but the advantage of this increased hardness appears to dissipate over time in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.
Comparative Study of Lunar Roughness from Multi - Source Data
NASA Astrophysics Data System (ADS)
Lou, Y.; Kang, Z.
2017-07-01
The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.
NASA Astrophysics Data System (ADS)
Ling, Hangjian; Katz, Joseph; Srinivasan, Siddarth; McKinley, Gareth; Golovin, Kevin; Tuteja, Anish; Pillutla, Venkata; Abhijeet, Abhijeet; Choi, Wonjae
2016-11-01
Digital holographic microscopy is used for measuring the mean velocity and stress in the inner part of turbulent boundary layers over sprayed or etched super-hydrophobic surfaces (SHSs). The slip velocity and wall friction are calculated directly from the mean velocity and its gradient along with the Reynolds shear stress at the top of SHSs "roughness". Effects of the normalized rms roughness height krms+, facility pressure p and streamwise distance x from the beginning of SHSs on mean flow are examined. For krms+<1 and pkrms / σ <1 (σ is surface tension), the SHSs show 10-28% wall friction reduction, 15-30% slip velocity and λ+ = 3-10 slip length. Increasing Reynolds number and/or krms to establish krms+>1, and increasing p to achieve pkrms / σ >1 suppress the drag reduction, as roughness effects and associated near wall Reynolds stress increase. When the roughness effect is not dominant, the measurements agree with previous theoretical predictions of the relationships between drag reduction and slip velocity. The significance of spanwise slip relative to streamwise slip varies with the SHSs texture. Transitions from a smooth wall to a SHS involve overshoot of Reynolds stress and undershoot of viscous stress, trends that diminish with x. Sponsored by ONR.
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.;
2012-01-01
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.
Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone.
Senna, Plinio; Antoninha Del Bel Cury, Altair; Kates, Stephen; Meirelles, Luiz
2015-08-01
Modern dental implants present surface features of distinct dimensions that can be damaged during the insertion procedure into bone. The aims of this study were (1) to quantify by means of roughness parameters the surface damage caused by the insertion procedure of dental implants and (2) to investigate the presence of loose particles at the interface. Three groups of dental implants representing different surface topographies were inserted in fresh cow rib bone blocks. The surface roughness was characterized by interferometry on the same area before and after the insertion. Scanning electron microscopy (SEM)-back-scattered electron detector (BSD) analysis was used to identify loose particles at the interface. The amplitude and hybrid roughness parameters of all three groups were lower after insertion. The surface presenting predominance of peaks (Ssk [skewness] > 0) associated to higher structures (height parameters) presented higher damage associated to more pronounced reduction of material volume. SEM-BSD images revealed loose titanium and aluminum particles at the interface mainly at the crestal cortical bone level. Shearing forces during the insertion procedure alters the surface of dental implants. Loose metal particles can be generated at bone-implant interface especially around surfaces composed mainly by peaks and with increased height parameters. © 2013 Wiley Periodicals, Inc.
Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone
Senna, Plinio; Del Bel Cury, Altair Antoninha; Kates, Stephen; Meirelles, Luiz
2015-01-01
Background Modern dental implants present surface features of distinct dimensions that can be damaged during the insertion procedure into bone. Purpose The aims of this study were (1) to quantify by means of roughness parameters the surface damage caused by the insertion procedure of dental implants and (2) to investigate the presence of loose particles at the interface. Materials and Methods Three groups of dental implants representing different surface topographies were inserted in fresh cow rib bone blocks. The surface roughness was characterized by interferometry on the same area before and after the insertion. SEM-BSD analysis was used to identify loose particles at the interface. Results The amplitude and hybrid roughness parameters of all three groups were lower after insertion. The surface presenting predominance of peaks (Ssk>0) associated to higher structures (height parameters) presented higher damage associated to more pronounced reduction of material volume. SEM-BSD images revealed loose titanium and aluminum particles at the interface mainly at the crestal cortical bone level. Conclusions Shearing forces during the insertion procedure alters the surface of dental implants. Loose metal particles can be generated at bone-implant interface especially around surfaces composed mainly by peaks and with increased height parameters. PMID:24283455
Influence of full-contour zirconia surface roughness on wear of glass-ceramics.
Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C
2014-04-01
The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p < 0.0001). SEM revealed differences on wear characteristics between the glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.
Results of the Imager for Mars Pathfinder windsock experiment
Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.
2000-01-01
The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Jain, A. (Inventor)
1978-01-01
Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.
Field theoretic approach to roughness corrections
NASA Astrophysics Data System (ADS)
Wu, Hua Yao; Schaden, Martin
2012-02-01
We develop a systematic field theoretic description of roughness corrections to the Casimir free energy of a massless scalar field in the presence of parallel plates with mean separation a. Roughness is modeled by specifying a generating functional for correlation functions of the height profile. The two-point correlation function being characterized by its variance, σ2, and correlation length, ℓ. We obtain the partition function of a massless scalar quantum field interacting with the height profile of the surface via a δ-function potential. The partition function is given by a holographic reduction of this model to three coupled scalar fields on a two-dimensional plane. The original three-dimensional space with a flat parallel plate at a distance a from the rough plate is encoded in the nonlocal propagators of the surface fields on its boundary. Feynman rules for this equivalent 2+1-dimensional model are derived and its counterterms constructed. The two-loop contribution to the free energy of this model gives the leading roughness correction. The effective separation, aeff, to a rough plate is measured to a plane that is displaced a distance ρ∝σ2/ℓ from the mean of its profile. This definition of the separation eliminates corrections to the free energy of order 1/a4 and results in unitary scattering matrices. We obtain an effective low-energy model in the limit ℓ≪a. It determines the scattering matrix and equivalent planar scattering surface of a very rough plate in terms of the single length scale ρ. The Casimir force on a rough plate is found to always weaken with decreasing correlation length ℓ. The two-loop approximation to the free energy interpolates between the free energy of the effective low-energy model and that of the proximity force approximation - the force on a very rough plate with σ≳0.5ℓ being weaker than on a planar Dirichlet surface at any separation.
Taneda, Haruhiko; Watanabe-Taneda, Ayako; Chhetry, Rita; Ikeda, Hiroshi
2015-01-01
Background and Aims The epidermal surface of a flower petal is composed of convex cells covered with a structured cuticle, and the roughness of the surface is related to the wettability of the petal. If the surface remains wet for an excessive amount of time the attractiveness of the petal to floral visitors may be impaired, and adhesion of pathogens may be promoted. However, it remains unclear how the epidermal cells and structured cuticle contribute to surface wettability of a petal. Methods By considering the additive effects of the epidermal cells and structured cuticle on petal wettability, a thermodynamic model was developed to predict the wetting mode and contact angle of a water droplet at a minimum free energy. Quantitative relationships between petal wettability and the geometries of the epidermal cells and the structured cuticle were then estimated. Measurements of contact angles and anatomical traits of petals were made on seven herbaceous species commonly found in alpine habitats in eastern Nepal, and the measured wettability values were compared with those predicted by the model using the measured geometries of the epidermal cells and structured cuticles. Key Results The model indicated that surface wettability depends on the height and interval between cuticular steps, and on a height-to-width ratio for epidermal cells if a thick hydrophobic cuticle layer covers the surface. For a petal epidermis consisting of lenticular cells, a repellent surface results when the cuticular step height is greater than 0·85 µm and the height-to-width ratio of the epidermal cells is greater than 0·3. For an epidermis consisting of papillate cells, a height-to-width ratio of greater than 1·1 produces a repellent surface. In contrast, if the surface is covered with a thin cuticle layer, the petal is highly wettable (hydrophilic) irrespective of the roughness of the surface. These predictions were supported by the measurements of petal wettability made on flowers of alpine species. Conclusions The results indicate that surface roughness caused by epidermal cells and a structured cuticle produces a wide range of petal wettability, and that this can be successfully modelled using a thermodynamic approach. PMID:25851137
NASA Astrophysics Data System (ADS)
Keiffer, Richard; Novarini, Jorge; Scharstein, Robert
2002-11-01
In the standard development of the small wave-height approximation (SWHA) perturbation theory for scattering from moving rough surfaces [e.g., E. Y. Harper and F. M. Labianca, J. Acoust. Soc. Am. 58, 349-364 (1975)] the necessity for any sort of frozen surface approximation is avoided by the replacement of the rough boundary by a flat (and static) boundary. In this paper, this seemingly fortuitous byproduct of the small wave-height approximation is examined and found to fail to fully agree with an analysis based on the kinematics of the problem. Specifically, the first-order correction term from standard perturbation approach predicts a scattered amplitude that depends on the source frequency, whereas the kinematics of the problem point to a scattered amplitude that depends on the scattered frequency. It is shown that a perturbation approach in which an explicit frozen surface approximation is made before the SWHA is invoked predicts (first-order) scattered amplitudes that are in agreement with the kinematic analysis. [Work supported by ONR/NRL (PE 61153N-32) and by grants of computer time DoD HPC Shared Resource Center at Stennis Space Center, MS.
Yadav, Anil Singh; Bhagoria, J. L.
2013-01-01
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement. PMID:24222752
Yadav, Anil Singh; Bhagoria, J L
2013-01-01
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.
Rough surface reconstruction for ultrasonic NDE simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.
2014-02-18
The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors.more » This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.« less
Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Rodriquez, Ernesto
1998-01-01
In this paper, we investigate the feasibility of estimating aerodynamic roughness parameter from interferometric SAR (INSAR) measurements. The relation between the interferometric correlation and the rms height of the surface is presented analytically. Model simulations performed over realistic canopy parameters obtained from field measurements in boreal forest environment demonstrate the capability of the INSAR measurements for estimating and mapping surface roughness lengths over forests and/or other vegetation types. The procedure for estimating this parameter over boreal forests using the INSAR data is discussed and the possibility of extending the methodology over tropical forests is examined.
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2010-06-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Furthermore, retrieval of soil moisture using AIEM-like models is a classic example of the underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to directly obtain surface roughness information along with soil moisture from multi-angular ASAR images. The method first used a semi-empirical relationship that connects the roughness slope (Zs) and the difference in backscattering coefficient (Δσ) from ASAR data in different incidence angles, in combination with an optimal calibration form consisting of two roughness parameters (the standard deviation of surface height and the correlation length), to estimate the roughness parameters. The deduced surface roughness was then used in the AIEM model for the retrieval of soil moisture. An evaluation of the proposed method was performed in a grassland site in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It has demonstrated that the method is feasible to achieve reliable estimation of soil water content. The key challenge to surface soil moisture retrieval is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
Effect of Blade Roughness on Transition and Wind Turbine Performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrmann, Robert S.; White, E. B.
The real-world effect of accumulated surface roughness on wind-turbine power production is not well understood. To isolate specific blade roughness features and test their effect, field measurements of turbine-blade roughness were made and simulated on a NACA 633-418 airfoil in a wind tunnel. Insect roughness, paint chips, and erosion were characterized then manufactured. In the tests, these roughness configurations were recreated as distributed roughness, a forward-facing step, and an eroded leading edge. Distributed roughness was tested in three heights and five densities. Chord Reynolds number was varied between 0:8 to 4:8 × 10 6. Measurements included lift, drag, pitching moment,more » and boundary-layer transition location. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, the lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, natural transition is replaced by bypass transition. The critical roughness Reynolds number varies between 178 to 318, within the historical range. At a chord Reynolds number of 3:2 × 10 6, the maximum lift-to-drag ratio decreases 40% for 140 μm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss of an in-service wind turbine.« less
The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer
NASA Astrophysics Data System (ADS)
Christen, Andreas; Rotach, Mathias W.; Vogt, Roland
2009-05-01
Full-scale observations from two urban sites in Basel, Switzerland were analysed to identify the magnitude of different processes that create, relocate, and dissipate turbulent kinetic energy (TKE) in the urban atmosphere. Two towers equipped with a profile of six ultrasonic anemometers each sampled the flow in the urban roughness sublayer, i.e. from street canyon base up to roughly 2.5 times the mean building height. This observational study suggests a conceptual division of the urban roughness sublayer into three layers: (1) the layer above the highest roofs, where local buoyancy production and local shear production of TKE are counterbalanced by local viscous dissipation rate and scaled turbulence statistics are close to to surface-layer values; (2) the layer around mean building height with a distinct inflexional mean wind profile, a strong shear and wake production of TKE, a more efficient turbulent exchange of momentum, and a notable export of TKE by transport processes; (3) the lower street canyon with imported TKE by transport processes and negligible local production. Averaged integral velocity variances vary significantly with height in the urban roughness sublayer and reflect the driving processes that create or relocate TKE at a particular height. The observed profiles of the terms of the TKE budget and the velocity variances show many similarities to observations within and above vegetation canopies.
Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography
NASA Astrophysics Data System (ADS)
Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.
2005-02-01
Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.
The evolution of fracture surface roughness and its dependence on slip
NASA Astrophysics Data System (ADS)
Wells, Olivia L.
Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.
Analysis of turbulent heat and momentum transfer in a transitionally rough turbulent boundary layer
NASA Astrophysics Data System (ADS)
Doosttalab, Ali; Dharmarathne, Suranga; Tutkun, Murat; Adrian, Ronald; Castillo, Luciano
2016-11-01
A zero-pressure-gradient (ZPG) turbulent boundary layer over a transitionally rough surface is studied using direct numerical simulation (DNS). The rough surface is modeled as 24-grit sandpaper which corresponds to k+ 11 , where k+ is roughness height. Reynolds number based on momentum thickness is approximately 2400. The walls are isothermal and turbulent flow Prandtl number is 0.71. We simulate temperature as passive scalar. We compute the inner product of net turbulent force (d (u1ui) / dxi) and net turbulent heat flux (d (ui θ / dxi)) in order to investigate (i) the correlation between these vectorial quantities, (II) size of the projection of these fields on each other and (IIi) alignment of momentum and hear flux. The inner product in rough case results in larger projection and better alignment. In addition, our study on the vortices shows that surface roughness promotes production of vortical structures which affects the thermal transport near the wall.
On the modeling of wave-enhanced turbulence nearshore
NASA Astrophysics Data System (ADS)
Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth
2016-07-01
A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.
The radio power reflected from rough and undulating ionospheric surfaces
NASA Astrophysics Data System (ADS)
Whitehead, J. D.; From, W. R.; Smith, L. G.
1984-08-01
It is shown for both rough and undulating surfaces that the mean radio power reflected by the ionosphere averaged over a sufficiently long time is exactly the same as for a smooth flat surface at the same height provided the sounder is equally sensitive for echoes from all directions. When making radio wave absorption measurements under spread conditions the total integrated power over the whole time the direct echoes are being received must be used but the distance attenuation factor must be calculated from the time of arrival of the first echo.
Experimental study of surface integrity and fatigue life in the face milling of inconel 718
NASA Astrophysics Data System (ADS)
Wang, Xiangyu; Huang, Chuanzhen; Zou, Bin; Liu, Guoliang; Zhu, Hongtao; Wang, Jun
2018-06-01
The Inconel 718 alloy is widely used in the aerospace and power industries. The machining-induced surface integrity and fatigue life of this material are important factors for consideration due to high reliability and safety requirements. In this work, the milling of Inconel 718 was conducted at different cutting speeds and feed rates. Surface integrity and fatigue life were measured directly. The effects of cutting speed and feed rate on surface integrity and their further influences on fatigue life were analyzed. Within the chosen parameter range, the cutting speed barely affected the surface roughness, whereas the feed rate increased the surface roughness through the ideal residual height. The surface hardness increased as the cutting speed and feed rate increased. Tensile residual stress was observed on the machined surface, which showed improvement with the increasing feed rate. The cutting speed was not an influencing factor on fatigue life, but the feed rate affected fatigue life through the surface roughness. The high surface roughness resulting from the high feed rate could result in a high stress concentration factor and lead to a low fatigue life.
Backscattering from a Gaussian distributed, perfectly conducting, rough surface
NASA Technical Reports Server (NTRS)
Brown, G. S.
1977-01-01
The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.
Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, B. J.; Lundquist, J. K.
2013-12-01
The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.
Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights
NASA Astrophysics Data System (ADS)
Rasmuson, J. A.; Johnson, W. P.
2017-12-01
A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector surfaces with the greatest RMS roughness had the highest sensitivity to the placement of the contact surface. These findings highlight the need for accurate and representative AFM measurements and have important implications for future transport models.
Cassini/VIMS observes rough surfaces on Titan's Punga Mare in specular reflection.
Barnes, Jason W; Sotin, Christophe; Soderblom, Jason M; Brown, Robert H; Hayes, Alexander G; Donelan, Mark; Rodriguez, Sebastien; Mouélic, Stéphane Le; Baines, Kevin H; McCord, Thomas B
Cassini /VIMS high-phase specular observations of Titan's north pole during the T85 flyby show evidence for isolated patches of rough liquid surface within the boundaries of the sea Punga Mare. The roughness shows typical slopes of 6°±1°. These rough areas could be either wet mudflats or a wavy sea. Because of their large areal extent, patchy geographic distribution, and uniform appearance at low phase, we prefer a waves interpretation. Applying theoretical wave calculations based on Titan conditions our slope determination allows us to infer winds of 0.76±0.09 m/s and significant wave heights of [Formula: see text] cm at the time and locations of the observation. If correct, these would represent the first waves seen on Titan's seas, and also the first extraterrestrial sea-surface waves in general.
NASA Technical Reports Server (NTRS)
Wang, J. R.; Shiue, J. C.; Engman, E. T.; Rusek, M.; Steinmeier, C.
1986-01-01
An experiment was conducted from an L-band SAR aboard Space Shuttle Challenger in October 1984 to study the microwave backscatter dependence on soil moisture, surface roughness, and vegetation cover. The results based on the analyses of an image obtained at 21-deg incidence angle show a positive correlatlion between scattering coefficient and soil moisture content, with a sensitivity comparable to that derived from the ground radar measurements reported by Ulaby et al. (1978). The surface roughness strongly affects the microwave backscatter. A factor of two change in the standard deviation of surface roughness height gives a corresponding change of about 8 dB in the scattering coefficient. The microwave backscatter also depends on the vegetation types. Under the dry soil conditions, the scattering coefficient is observed to change from about -24 dB for an alfalfa or lettuce field to about -17 dB for a mature corn field. These results suggest that observations with a SAR system of multiple frequencies and polarizations are required to unravel the effects of soil moisture, surface roughness, and vegetation cover.
NASA Astrophysics Data System (ADS)
Yurchenko, I.; Karakotin, I.; Kudinov, A.
2011-05-01
Minimization of head fairing heat protection shield weight during spacecraft injecting in atmosphere dense layers is a complicated task. The identification of heat transfer coefficient on heat protection shield surface during injection can be considered as a primary task to be solved with certain accuracy in order to minimize heat shield weight as well as meet reliability requirements. The height of the roughness around sound point on the head fairing spherical nose tip has a great influence on the heat transfer coefficient calculation. As it has found out during flight tests the height of the roughness makes possible to create boundary layer transition criterion on the head fairing in flight. Therefore the second task is an assessment how height of the roughness influences on the total incoming heat flux to the head fairing. And finally the third task is associated with correct implementation of the first task results, as there are changing boundary conditions during a flight such as bubbles within heat shield surface paint and thermal protection ablation for instance. In the article we have considered results of flight tests carried out using launch vehicles which allowed us to measure heat fluxes in flight and to estimate dispersions of heat transfer coefficient. The experimental-analytical procedure of defining heat fluxes on the LV head fairings has been presented. The procedure includes: - calculation of general-purpose dimensionless heat transfer coefficient - Nusselt number Nueff - based on the proposed effective temperature Teff method. The method allows calculate the Nusselt number values for cylindrical surfaces as well as dispersions of heat transfer coefficient; - universal criterion of turbulent-laminar transition for blunted head fairings - Reynolds number Reek = [ρеUеk/μе]TR = const , which gives the best correlation of all dates of flight experiment carried out per Reda procedure to define turbulent-laminar transition in boundary layer. The criterion allows defining time margins when turbulent flux on space head surfaces exists. It was defined that in conditions when high background disturbances of free stream flux while main LV engines operating join with integrated roughness influence the critical value of Reynolds number is an order-diminished value compared to values obtained in wind tunnels and in free flight. Influence of minimization of height of surface roughness near sound point on head fairing nose has been estimated. It has been found that the criterion of turbulent-laminar transition for smooth head fairings elements - Reynolds number - reaches the limit value which is equal to 200. This value is obtained from momentum thickness Reynolds number when roughness height is close to zero. So the turbulent- laminar flux transition occurs earlier with decreased duration of effect of high turbulent heat fluxes to the heat shield. This will allow decreasing head shield thickness up to 30%
Ultra-low roughness magneto-rheological finishing for EUV mask substrates
NASA Astrophysics Data System (ADS)
Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath
2013-09-01
EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.
Micro PIV measurements of turbulent flow over 2D structured roughness
NASA Astrophysics Data System (ADS)
Hartenberger, Joel; Perlin, Marc
2015-11-01
We investigate the turbulent boundary layer over surfaces with 2D spanwise square and triangular protrusions having nominal heights of 100 - 300 microns for Reynolds numbers ranging from Reτ ~ 1500 through Reτ ~ 4500 using a high speed, high magnification imaging system. Micro PIV analysis gives finely resolved velocity fields of the flow (on the order of 10 microns between vectors) enabling a detailed look at the inner region as well as the flow in the immediate vicinity of the roughness elements. Additionally, planar PIV with lower resolution is performed to capture the remainder of the boundary layer to the freestream flow. Varying the streamwise distance between individual roughness elements from one to ten times the nominal heights allows investigation of k-type and d-type roughness in both the transitionally rough and fully rough regimes. Preliminary results show a shift in the mean velocity profile similar to the results of previous studies. Turbulent statistics will be presented also. The authors would like to acknowledge the support of NAVSEA which funded this project through the Naval Engineering Education Center (NEEC).
Yang, Ben; Qian, Yun; Berg, Larry K.; ...
2016-07-21
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Qian, Yun; Berg, Larry K.
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
NASA Astrophysics Data System (ADS)
Durand, Michael; Neal, Jeff; Rodriguez, Ernesto
2013-09-01
The Surface Water and Ocean Topography (SWOT) satellite is a swath-mapping radar interferometer that will provide water elevations over inland water bodies and over the ocean. Here we present a Bayesian algorithm that calculates a best estimate of river bathymetry, roughness coefficient, and discharge based on measurements of river height and slope. On the River Severn, UK, we use gage estimates of height and slope during an in-bank flow event to illustrate algorithm functionality. We validate our estimates of river bathymetry and discharge using in situ measurements. We first assumed that the lateral inflows from smaller tributaries were known. In this case, an accurate inverse to bathymetry and roughness was obtained giving a discharge RMSE of 10 %. We then allowed the lateral inflows to be unknown; accuracy in the bathymetry estimates dropped in this case, giving a discharge RMSE of 36 %. Finally, we explored the case where bathymetry in one reach was known; in this case, discharge RMSE was 15.6 %.
Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.
Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo
2013-09-03
Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.
The contact sport of rough surfaces
NASA Astrophysics Data System (ADS)
Carpick, Robert W.
2018-01-01
Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.
NASA Astrophysics Data System (ADS)
Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.
2016-08-01
Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.
Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors
NASA Astrophysics Data System (ADS)
Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin
2018-05-01
Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.
Korkut, Derya Sevim; Guller, Bilgin
2008-05-01
Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.
A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2017-10-01
Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.
Uppal, Mudit; Ganesh, Arathi; Balagopal, Suresh; Kaur, Gurleen
2013-07-01
To evaluate the effect of three polishing protocols that could be implemented at recall on the surface roughness of two direct esthetic restorative materials. Specimens (n = 40) measuring 8 mm (length) × 5 mm (width) × 4 mm (height) were fabricated in an acrylic mold using two light-cured resin-based materials (microfilled composite and microhybrid composite). After photopolymerization, all specimens were finished and polished with one of three polishing protocols (Enhance, One Gloss, and Sof-Lex polishing systems). The average surface roughness of each treated specimen was determined using 3D optical profilometer. Next all specimens were brushed 60,000 times with nylon bristles at 7200 rpm using crosshead brushing device with equal parts of toothpaste and water used as abrasive medium. The surface roughness of each specimen was measured after brushing followed by repolishing with one of three polishing protocols, and then, the final surface roughness values were determined. The data were analyzed using one-way and two-factor analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD). Significant difference (P < 0.05) in surface roughness was observed. Simulated brushing following initial polishing procedure significantly roughened the surface of restorative material (P < 0.05). Polishing protocols can be used to restore a smooth surface on esthetic restorative materials following simulated tooth brushing.
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Reda, Daniel C.; Prabhu, Dinesh K.
2015-01-01
Blunt-body geometries were flown through carbon dioxide in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to investigate the influence of distributed surface roughness on transition to turbulence in CO2-dominated atmospheres, such as those of Mars and Venus. Tests were also performed in air for direct comparison with archival results. Models of hemispherical and spherically-blunted large-angle conical geometries were flown at speeds between 2.8 km/s and 5.1 km/s and freestream pressures between 50 Torr and 228 Torr. Transition fronts were determined from global surface heat flux distributions measured using thermal imaging techniques. Distributed surface roughness was produced by grit-blasting the model surfaces. Real-gas Navier-Stokes solutions were used to calculate non-dimensional correlating parameters at the measured transition onset locations. Transition-onset locations correlated well with a constant roughness Reynolds number based on the mean roughness element height. The critical roughness Reynolds number for transition onset determined for flight in CO2 was 223 +/- 25%. This mean value is lower than the critical value of 250 +/- 20% previously-established from tests conducted in air, but within the bounds of the expected measurement uncertainty.
Effects of surface topography on magnetization reversal of magnetic thin films.
Girgis, E; Pogossian, S P; Benkhedar, M L
2006-04-01
The influence of the created surface roughness on the coercivity of magnetic thin films has been investigated. The magnetic thin films (CoFe and alternatively NiFe) are sputtered on top of smooth substrates that were previously covered with an array of considerably rougher lines with one of these materials Pt, Cu, CoFe, and NiFe. The lines have been patterned using optical lithography into arrays that are deposited with different thicknesses varying between 5 nm-15 nm. The lines have been designed to have a very rough edge and seated in two different angles relative to the wafer edge (zero and 45 degrees). Magneto-optic Kerr effect (MOKE) measurements showed two distinct switching fields in the hysteresis loops that are due to magnetic domain wall trapping created by the surface roughness. The magnetization reversal showed a strong dependence on the height, the orientation angle, and the material's type of the created surface roughness (the lines).
NASA Astrophysics Data System (ADS)
Chu, H.; Baldocchi, D. D.
2017-12-01
FLUXNET - the global network of eddy covariance tower sites provides valuable datasets of the direct and in situ measurements of fluxes and ancillary variables that are used across different disciplines and applications. Aerodynamic roughness (i.e., roughness length, zero plane displacement height) are one of the potential parameters that can be derived from flux-tower data and are crucial for the applications of land surface models and flux footprint models. As aerodynamic roughness are tightly associated with canopy structures (e.g., canopy height, leaf area), such parameters could potentially serve as an alternative metric for detecting the change of canopy structure (e.g., change of leaf areas in deciduous ecosystems). This study proposes a simple approach for deriving aerodynamic roughness from flux-tower data, and tests their suitability and robustness in detecting the seasonality of canopy structure. We run tests across a broad range of deciduous forests, and compare the seasonality derived from aerodynamic roughness (i.e., starting and ending dates of leaf-on period and peak-foliage period) against those obtained from remote sensing or in situ leaf area measurements. Our findings show aerodynamic roughness generally captures the timing of changes of leaf areas in deciduous forests. Yet, caution needs to be exercised while interpreting the absolute values of the roughness estimates.
Surface wettability of silicon substrates enhanced by laser ablation
NASA Astrophysics Data System (ADS)
Tseng, Shih-Feng; Hsiao, Wen-Tse; Chen, Ming-Fei; Huang, Kuo-Cheng; Hsiao, Sheng-Yi; Lin, Yung-Sheng; Chou, Chang-Pin
2010-11-01
Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.
Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.
Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi
2012-06-01
The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.
Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer
NASA Astrophysics Data System (ADS)
Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.
2010-04-01
The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.
Effect of Macrogeometry on the Surface Topography of Dental Implants.
Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian
2015-01-01
Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.
Surface Roughness of the Moon Derived from Multi-frequency Radar Data
NASA Astrophysics Data System (ADS)
Fa, W.
2011-12-01
Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.
A contact mechanics model for ankle implants with inclusion of surface roughness effects
NASA Astrophysics Data System (ADS)
Hodaei, M.; Farhang, K.; Maani, N.
2014-02-01
Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Meneveau, Charles
2016-01-01
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.
2004-01-01
The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such as the southwestern United States, where surface roughness has large spatial and temporal variations. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Parrin, J.; Garrison, J. L.
2006-12-01
A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines, intersecting near the location of a research buoy. These flight lines were separated by 15 deg. increments in heading. It is intended to use the results of this experiment to evaluate empirical and model-derived values of the wave number cut-off, for the filter assumed in the interpretation of the slope PDF sensed by the bistatic GNSS waveform. Long wavelength ocean height spectra were also computed from the frequency spectra recorded by accelerometers on the buoy. These were compared to the long wavelength portion of the height spectra measured with the laser (for wavenumbers less than 0.6 rad/m). The noise in the laser height measurements is strongly correlated at high wavenumbers, a result of a spot size much larger than the separation between samples. The power in this noise makes a substantial contribution to the measured spectrum, and flat-surface measurements made over land and water were collected, in an attempt to separate the contribution of the laser range statistics from the ocean height statistics. Preliminary spectra, obtained on one day with calm seas, and another day with moderately rough seas, will be presented. The effect of the correlated noise in the laser range measurement will also be discussed.
Surface roughness of denture bases after immersion in fishcake vinegar solution
NASA Astrophysics Data System (ADS)
Kodir, K.; Tanti, I.; Odang, R. W.
2017-08-01
Fishcake is a common food in Palembang city and is usually eaten with fishcake vinegar sauce. Fishcake vinegar solution contains acetic acid and chloride and fluoride ions, all of which cause surface roughness on the denture base material. The objective of this study was to analyze the effect of fishcake vinegar solution on the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy denture bases. This laboratory-based experimental study was performed on heat-cured acrylic resins, thermoplastic nylon specimen plates formed in 15 × 10 × 1 mm shapes, and cobalt-chromium alloy specimens in cylinder forms with a 7.7 mm diameter and 17.5-mm height. Each group consisted of 10 pieces. Each specimen was immersed in a fishcake vinegar solution at 37 °C for 4 days. The surface roughness was measured using a profilometer before and after immersion. Statistical analyses showed significant (p < 0.05) changes in heat-cured acrylic resin, thermoplastic nylon, and the cobalt chromium alloy plates after immersion in a fishcake vinegar solution for 4 days. Fishcake vinegar solution affects the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy plates after a 4-day immersion period. The greatest surface roughness change occurred in the thermoplastic nylon plate, while the lowest change occurred in the cobalt-chromium alloy.
Świetlicka, Izabela; Muszyński, Siemowit; Tomaszewska, Ewa; Dobrowolski, Piotr; Kwaśniewska, Anita; Świetlicki, Michał; Skic, Anna; Gołacki, Krzysztof
2016-10-01
The aim of this research was to check the effect of the prenatally administered β-hydroxy β-methylbutyrate (HMB) on the development of enamel surface of the spiny mice offspring. The spiny mice dams were randomly assigned into three groups: control group (not supplemented with HMB) and two experimental groups in which powdered HMB was given at the daily dosage of 0.2g/kg of body weight (group I) and 0.02g/kg of body weight (group II) during the last period of gestation. Newborn pups were euthanized by CO 2 inhalation. The morphology of incisor teeth was analysed using atomic force microscopy (AFM) in semi-contact mode in the height, magnitude and phase domains. Height images became a basis for determination of surface roughness parameters. Conducted study indicated that maternal HMB administration markedly influences enamel development. Enamel of offspring's teeth in both experimental groups was characterized by significantly smaller values of indices describing surface roughness and profile. HMB supplementation influenced the calculated parameters regardless of the diet type and offspring sex, however higher dose of HMB caused stronger changes in enamel surface's physical properties and could be observed in higher intensity in the male group. HMB administration caused reduction in the irregularities of enamel surface, thereby possibly reducing the probability of bacteria adhesion and caries development. These observations may serve to improve nutrition and supplementation of animals and could be a lead for further research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diffuse reflection from a stochastically bounded, semi-infinite medium
NASA Technical Reports Server (NTRS)
Lumme, K.; Peltoniemi, J. I.; Irvine, W. M.
1990-01-01
In order to determine the diffuse reflection from a medium bounded by a rough surface, the problem of radiative transfer in a boundary layer characterized by a statistical distribution of heights is considered. For the case that the surface is defined by a multivariate normal probability density, the propagation probability for rays traversing the boundary layer is derived and, from that probability, a corresponding radiative transfer equation. A solution of the Eddington (two stream) type is found explicitly, and examples are given. The results should be applicable to reflection from the regoliths of solar system bodies, as well as from a rough ocean surface.
Blood drop size in passive dripping from weapons.
Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E
2013-05-10
Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The role of fire on soil mounds and surface roughness in the Mojave Desert
Soulard, Christopher E.; Esque, Todd C.; Bedford, David R.; Bond, Sandra
2013-01-01
A fundamental question in arid land management centers on understanding the long-term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground-based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high-resolution vegetation structure and bare-earth surface models for six sample plots in the Grand Canyon-Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil-surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire-induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes.
Distributed-Roughness Effects on Stability and Transition In Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Carrillo, Ruben B., Jr.; Reibert, Mark S.; Saric, William S.
1997-01-01
Boundary-layer stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure distribution and test conditions are designed to suppress Tollmien-Schlichting disturbances and provide crossflow-dominated transition. The surface of the airfoil is finely polished to a near mirror finish. Under these conditions, submicron surface irregularities cause the naturally occurring stationary crossflow waves to grow to nonuniform amplitudes. Spanwise-uniform stationary crossflow disturbances are generated through careful control of the initial conditions with full-span arrays of micron-high roughness elements near the attachment line. Detailed hot-wire measurements are taken to document the stationary crossflow structure and determine growth rates for the total and individual-mode disturbances. Naphthalene flow visualization provides transition location information. Roughness spacing and roughness height are varied to examine the effects on transition location and all amplified wavelengths. The measurements show that roughness spacings that do not contain harmonics equal to the most unstable wavelength as computed by linear stability theory effectively suppress the most unstable mode. Under certain conditions, subcritical roughness spacing delays transition past that of the corresponding smooth surface.
NASA Astrophysics Data System (ADS)
Physick, W. L.; Garratt, J. R.
1995-04-01
For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.
Antibacterial Au nanostructured surfaces
NASA Astrophysics Data System (ADS)
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-01-01
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a
Zhao, Wenguang; Qualls, Russell J; Berliner, Pedro R
2008-11-01
A two-concentric-loop iterative (TCLI) method is proposed to estimate the displacement height and roughness length for momentum and sensible heat by using the measurements of wind speed and air temperature at two heights, sensible heat flux above the crop canopy, and the surface temperature of the canopy. This method is deduced theoretically from existing formulae and equations. The main advantage of this method is that data measured not only under near neutral conditions, but also under unstable and slightly stable conditions can be used to calculate the scaling parameters. Based on the data measured above an Acacia Saligna agroforestry system, the displacement height (d0) calculated by the TCLI method and by a conventional method are compared. Under strict neutral conditions, the two methods give almost the same results. Under unstable conditions, d0 values calculated by the conventional method are systematically lower than those calculated by the TCLI method, with the latter exhibiting only slightly lower values than those seen under strictly neutral conditions. Computation of the average values of the scaling parameters for the agroforestry system showed that the displacement height and roughness length for momentum are 68% and 9.4% of the average height of the tree canopy, respectively, which are similar to percentages found in the literature. The calculated roughness length for sensible heat is 6.4% of the average height of the tree canopy, a little higher than the percentages documented in the literature. When wind direction was aligned within 5 degrees of the row direction of the trees, the average displacement height calculated was about 0.6 m lower than when the wind blew across the row direction. This difference was statistically significant at the 0.0005 probability level. This implies that when the wind blows parallel to the row direction, the logarithmic profile of wind speed is shifted lower to the ground, so that, at a given height, the wind speeds are faster than when the wind blows perpendicular to the row direction.
Measurements of Form and Frictional Drags over a Rough Topographic Bank
2014-09-01
processes, Topographic effects Unclassified Unclassified Unclassified UU 24 Hemantha Wijesekera (228) 688-4845 Reset I PAI!fElNTATION RELEASE...sea surface height associated with the sea surface slope resulting from rota- tional effects . Here barotropic pressure gradients associ- ated with...surface elevation are balanced by the Coriolis force; hTi(x, y, t) is the surface elevation resulting from accelerations/decelerations of flow over the
NASA Astrophysics Data System (ADS)
Brasseur, James; Paes, Paulo; Chamecki, Marcelo
2017-11-01
Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Qian, Yun; Berg, Larry K.
We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulencemore » length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.« less
NASA Technical Reports Server (NTRS)
Otterman, J.; Mccumber, M.
1986-01-01
Spectral albedo, A sub n, for the direct solar beam is defined as A sub n (r sub i,s, theta sub 0) = r sub i exp(-s tan theta sub 0)1-I(s) where I(s) is the integral over all reflection angles describing the interception by the absorbing plants of the flux reflected from the soil, r sub i soil reflectance, assumed Lambertian, S the projection on a vertical plane of plants per unit surface area, and theta sub 0 is the solar zenith angle. Hemispheric reflectance for the direct solar beam equals 1-I(s) times the reflectance to the zenith. The values of s of 0.1, 0.2, and 0.3 respectively quantify sparse, moderately dense, and very dense desert scrub. Thin plants are assumed to be of negligible thermal inertia, and thus directly yield the absorbed insolation to the atmosphere. Surface thermal inertia is therefore effectively reduced. The ratio of surface roughness height to plant height is parameterized for sparse, moderately dense, and very dense desert-scrub as a function of s based on data expressing the dependence of this ratio on plant silhouette.
Factors controlling threshold friction velocity in semiarid and arid areas of the United States
Marticorena, Beatrice; Bergametti, G.; Belnap, Jayne
1997-01-01
A physical model was developed to explain threshold friction velocities u*t for particles of the size 60a??120 I?m lying on a rough surface in loose soils for semiarid and arid parts of the United States. The model corrected for the effect of momentum absorption by the nonerodible roughness. For loose or disturbed soils the most important parameter that controls u*t is the aerodynamic roughness height z 0. For physical crusts damaged by wind the size of erodible crust pieces is important along with the roughness. The presence of cyanobacteriallichen soil crusts roughens the surface, and the biological fibrous growth aggregates soil particles. Only undisturbed sandy soils and disturbed soils of all types would be expected to be erodible in normal wind storms. Therefore disturbance of soils by both cattle and humans is very important in predicting wind erosion as confirmed by our measurements.
Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2003-01-01
The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.
Role of roughness parameters on the tribology of randomly nano-textured silicon surface.
Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S
2011-10-01
This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.
Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels
NASA Astrophysics Data System (ADS)
Kandlikar, Satish G.; Schmitt, Derek; Carrano, Andres L.; Taylor, James B.
2005-10-01
Roughness features on the walls of a channel wall affect the pressure drop of a fluid flowing through that channel. This roughness effect can be described by (i) flow area constriction and (ii) increase in the wall shear stress. Replotting the Moody's friction factor chart with the constricted flow diameter results in a simplified plot and yields a single asymptotic value of friction factor for relative roughness values of ɛ /D>0.03 in the fully developed turbulent region. After reviewing the literature, three new roughness parameters are proposed (maximum profile peak height Rp, mean spacing of profile irregularities RSm, and floor distance to mean line Fp). Three additional parameters are presented to consider the localized hydraulic diameter variation (maximum, minimum, and average) in future work. The roughness ɛ is then defined as Rp+Fp. This definition yields the same value of roughness as obtained from the sand-grain roughness [H. Darcy, Recherches Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux (Mallet-Bachelier, Paris, France, 1857); J. T. Fanning, A Practical Treatise on Hydraulic and Water Supply Engineering (Van Nostrand, New York, 1877, revised ed. 1886); J. Nikuradse, "Laws of flow in rough pipes" ["Stromungsgesetze in Rauen Rohren," VDI-Forschungsheft 361 (1933)]; Beilage zu "Forschung auf dem Gebiete des Ingenieurwesens," Ausgabe B Band 4, English translation NACA Tech. Mem. 1292 (1937)]. Specific experiments are conducted using parallel sawtooth ridge elements, placed normal to the flow direction, in aligned and offset configurations in a 10.03mm wide rectangular channel with variable gap (resulting hydraulic diameters of 325μm-1819μm with Reynolds numbers ranging from 200 to 7200 for air and 200 to 5700 for water). The use of constricted flow diameter extends the applicability of the laminar friction factor equations to relative roughness values (sawtooth height) up to 14%. In the turbulent region, the aligned and offset roughness arrangements yield different results indicating a need to further characterize the surface features. The laminar to turbulent transition is also seen to occur at lower Reynolds numbers with an increase in the relative roughness.
NASA Astrophysics Data System (ADS)
Placidi, M.; Ganapathisubramani, B.
2018-04-01
Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.
Radar topography of domes on planetary surfaces
Neish, Catherine D.; Lorenz, R.D.; Kirk, R.L.
2008-01-01
We investigate the possibility of measuring the heights and morphology of viscously emplaced domes using radar imagery. We accurately reproduce the known height and shape of a terrestrial salt dome, and estimate the heights of several venusian pancake domes to within a factor of two. The terrestrial salt dome is consistent with a Bingham flow, while the much larger venusian pancake domes are consistent with a Newtonian flow. Applying the same techniques to Ganesa Macula, a potential cryovolcanic dome on Titan, we estimate a height between 2.0-4.9 km. Additional factors such as variable roughness and composition might account for some of the discrepancies observed. ?? 2008 Elsevier Inc.
Implementation of spaceborne lidar-retrieved canopy height in the WRF model
NASA Astrophysics Data System (ADS)
Lee, Junhong; Hong, Jinkyu
2016-06-01
Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.
A sensitivity analysis of a surface energy balance model to LAI (Leaf Area Index)
NASA Astrophysics Data System (ADS)
Maltese, A.; Cannarozzo, M.; Capodici, F.; La Loggia, G.; Santangelo, T.
2008-10-01
The LAI is a key parameter in hydrological processes, especially in the physically based distribution models. It is a critical ecosystem attribute since physiological processes such as photosynthesis, transpiration and evaporation depend on it. The diffusion of water vapor, momentum, heat and light through the canopy is regulated by the distribution and density of the leaves, branches, twigs and stems. The LAI influences the sensible heat flux H in the surface energy balance single source models through the calculation of the roughness length and of the displacement height. The aerodynamic resistance between the soil and within-canopy source height is a function of the LAI through the roughness length. This research carried out a sensitivity analysis of some of the most important parameters of surface energy balance models to the LAI time variation, in order to take into account the effects of the LAI variation with the phenological period. Finally empirical retrieved relationships between field spectroradiometric data and the field LAI measured via a light-sensitive instrument are presented for a cereal field.
Numerical Model Sensitivity to Heterogeneous Satellite Derived Vegetation Roughness
NASA Technical Reports Server (NTRS)
Jasinski, Michael; Eastman, Joseph; Borak, Jordan
2011-01-01
The sensitivity of a mesoscale weather prediction model to a 1 km satellite-based vegetation roughness initialization is investigated for a domain within the south central United States. Three different roughness databases are employed: i) a control or standard lookup table roughness that is a function only of land cover type, ii) a spatially heterogeneous roughness database, specific to the domain, that was previously derived using a physically based procedure and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, and iii) a MODIS climatologic roughness database that like (i) is a function only of land cover type, but possesses domain specific mean values from (ii). The model used is the Weather Research and Forecast Model (WRF) coupled to the Community Land Model within the Land Information System (LIS). For each simulation, a statistical comparison is made between modeled results and ground observations within a domain including Oklahoma, Eastern Arkansas, and Northwest Louisiana during a 4-day period within IHOP 2002. Sensitivity analysis compares the impact the three roughness initializations on time-series temperature, precipitation probability of detection (POD), average wind speed, boundary layer height, and turbulent kinetic energy (TKE). Overall, the results indicate that, for the current investigation, replacement of the standard look-up table values with the satellite-derived values statistically improves model performance for most observed variables. Such natural roughness heterogeneity enhances the surface wind speed, PBL height and TKE production up to 10 percent, with a lesser effect over grassland, and greater effect over mixed land cover domains.
Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang
2017-01-01
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479
Effect of surface roughness on contact line dynamics of a thin droplet
NASA Astrophysics Data System (ADS)
Bhattacharjee, Debanik; Soltannia, Babak; Nazaripoor, Hadi; Sadrzadeh, Mohtada
2017-11-01
Any surface possesses inherent roughness. Droplet spreading on a surface is an example of a contact line problem. The tri-phase contact line is prone to stress singularity which can be relieved by using precursor film assumption and disjoining pressure. In this study, an axisymmetric, incompressible, Newtonian droplet spreading on a surface was investigated. An evolution equation which tracks the droplet height over time was obtained considering the lubrication approximation. The nonlinear PDE of evolution equation was solved using finite difference scheme. A simplified Gaussian model was used as a starting point to assess the role of roughness in the dynamics of contact line. The preliminary results revealed that, for both impermeable and permeable surfaces, the apparent contact angle increased in the presence of defects whereas the equilibrium stage remained unaffected. The apparent contact angle, however, was more strongly dependent on the nature and density of defects for impermeable surfaces due to the longer droplet lifetime. Furthermore, random self-affine and non-Gaussian models are employed. The mathematical model results are finally compared with theoretical models like the Cassie-Baxter, Wenzel, and Penetration modes. NSERC.
Contact angle of a nanodrop on a nanorough solid surface.
Berim, Gersh O; Ruckenstein, Eli
2015-02-21
The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Gong, Yadong; Wang, Jinsheng
2013-11-01
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
Faraday instability on patterned surfaces
NASA Astrophysics Data System (ADS)
Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard
2013-11-01
We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2011-05-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl) along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl) and the difference in backscattering coefficient (Δσ) from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
Evaluation of the surface roughness of zirconia ceramics after different surface treatments.
Kirmali, Omer; Akin, Hakan; Kapdan, Alper
2014-08-01
This study aimed to investigate the effects of different mechanical surface treatments of pre-sintered zirconium oxide (ZrO2) in an attempt to improve its bonding potential. One hundred and twenty IPS e-max ZirCAD (Ivoclar Vivadent) pre-sintered zirconia blocks (7 mm diameter, 3 mm height) received six different surface treatments (n = 20): Group C was untreated (control); Group E was Er:YAG laser irradiated; Group N was Nd:YAG laser irradiated; Group SB was sandblasted, Group SN was sandblasted and Nd:YAG laser irradiated; and Group SE was sandblasted and Er:YAG laser irradiated. After the surface treatments, the average surface roughness (Ra, µm) of each specimen was determined with a profilometer, then all the specimens were sintered. The surface roughness values were analysed through one-way ANOVA and Tukey's test. Changes in the morphological characteristics of ZrO2 were examined through scanning electron microscopy (SEM). Sintered sandblasted, Er:YAG laser treatment, sandblasted + Er:YAG laser and sandblasted + Nd:YAG laser irradiation resulted in a rougher surface than the other treatments. Nd:YAG laser irradiation alone was not effective in altering the zirconia surface morphology.
A unified perturbation expansion for surface scattering
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto; Kim, Yunjin
1992-01-01
Starting with the extinction theorem, a perturbation expansion which, to first and second orders, converges over a wider domain than the small perturbation expansion and the momentum transfer expansion is presented. It is shown that, in the appropriate limits, both of these theories, as well as the two-scale expansion, are recovered. There is no adjustable parameter, such as a spectral split, in the theory. This theory is applied to random rough surfaces and derive analytic expressions for the coherent field and the bistatic cross section. Finally, a numerical test of the theory against method of moments results for Gaussian random rough surfaces with a power law spectrum is given. These results show that the expansion is ramarkably accurate over a large range of surface heights and slopes for both horizontal and vertical polarization.
Impact of implementation of spaceborne lidar-retrieved canopy height in the WRF model
NASA Astrophysics Data System (ADS)
Lee, Junhong; Hong, Jinkyu
2017-04-01
Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This presentation reports impacts of using realistic forest canopy height, retrieved from spaceborne LiDAR, on regional climate simulation in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin and East Asia during summer season. Over these regions, the LiDAR-retrieved canopy heights were higher than the default values used in the WRF,which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when LiDAR-retrieved canopy height was used over the Amazon Basin.
NASA Technical Reports Server (NTRS)
Von Doenhoff, Albert E; Horton, Elmer A
1958-01-01
An investigation was made in the Langley low-turbulence pressure tunnel to determine the effect of size and location of a sandpaper type of roughness on the Reynolds number for transition. Transition was observed by means of a hot-wire anemometer located at various chordwise stations for each position of the roughness. These observations indicated that when the roughness is sufficiently submerged in the boundary layer to provide a substantially linear variation of boundary-layer velocity with distance from the surface up to the top of the roughness, turbulent "spots" begin to appear immediately behind the roughness when the Reynolds number based on the velocity at the top of the roughness height exceeds a value of approximately 600. At Reynolds numbers even slightly below the critical value (value for transition), the sandpaper type of roughness introduced no measurable disturbances into the laminar layer downstream of the roughness. The extent of the roughness area does not appear to have an important effect on the critical value of the roughness Reynolds number.
NASA Astrophysics Data System (ADS)
Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba
2018-03-01
Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.
Jayne, Bruce C; Newman, Steven J; Zentkovich, Michele M; Berns, H Matthew
2015-12-01
Depending on animal size, shape, body plan and behaviour, variation in surface structure can affect the speed and ease of locomotion. The slope of branches and the roughness of bark both vary considerably, but their combined effects on the locomotion of arboreal animals are poorly understood. We used artificial branches with five inclines and five peg heights (≤40 mm) to test for interactive effects on the locomotion of three snake species with different body shapes. Unlike boa constrictors (Boa constrictor), corn snakes (Pantherophis guttatus) and brown tree snakes (Boiga irregularis) can both form ventrolateral keels, which are most pronounced in B. irregularis. Increasing peg height up to 10 mm elicited more of the lateral undulatory behaviour (sliding contact without gripping) rather than the concertina behaviour (periodic static gripping) and increased the speed of lateral undulation. Increased incline: (1) elicited more concertina locomotion, (2) decreased speed and (3) increased the threshold peg height that elicited lateral undulation. Boiga irregularis was the fastest species, and it used lateral undulation on the most surfaces, including a vertical cylinder with pegs only 1 mm high. Overall, B. constrictor was the slowest and used the most concertina locomotion, but this species climbed steep, smooth surfaces faster than P. guttatus. Our results illustrate how morphology and two different aspects of habitat structure can have interactive effects on organismal performance and behaviour. Notably, a sharper keel facilitated exploiting shorter protrusions to prevent slipping and provide propulsion, which became increasingly important as surface steepness increased. © 2015. Published by The Company of Biologists Ltd.
A fundamental approach to the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Eiss, N. S., Jr.; Wightman, J. P.
1983-01-01
The sticking of insect residues to aircraft wings is investigated. The major topics of this review are: Experimentally tested methods, testing techniques, the effect of surface roughness height on aerodynamic drag, materials tested and, the adhesive properties of insect body fluids are reviewed.
NASA Astrophysics Data System (ADS)
Li, Guo; Su, Hang; Kuhn, Uwe; Meusel, Hannah; Ammann, Markus; Shao, Min; Pöschl, Ulrich; Cheng, Yafang
2018-02-01
Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney-Kim-Davis (CKD)/Knopf-Pöschl-Shiraiwa (KPS) methods), which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ). We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT) to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method) or γKPS (derived with the KPS method) can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ) and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg / R0). On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity), to ensure not only unaffected laminar flow patterns but also other specific requirements for an individual flow tube experiment. We use coating thickness values from previous coated-wall flow tube studies to assess potential roughness effects using the δc criterion. In most studies, the coating thickness was sufficiently small to avoid complications, but some may have been influenced by surface roughness and local turbulence effects.
NASA Astrophysics Data System (ADS)
Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.
2014-11-01
The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.
NASA Astrophysics Data System (ADS)
Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar
2017-10-01
This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.
Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.
D'Antò, Vincenzo; Rongo, Roberto; Ametrano, Gianluca; Spagnuolo, Gianrico; Manzo, Paolo; Martina, Roberto; Paduano, Sergio; Valletta, Rosa
2012-09-01
To compare the surface roughness of different orthodontic archwires. Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test (P < .05). The Ra, Rms, and Mh values were expressed as the mean ± standard deviation. Among as-received archwires, the Stainless Steel (Ra = 36.6 ± 5.8; Rms = 48 ± 7.7; Mh = 328.1 ± 64) archwire was less rough than the others (ANOVA, P < .05). The Sentalloy High Aesthetic was the roughest (Ra = 133.5 ± 10.8; Rms = 165.8 ± 9.8; Mh = 949.6 ± 192.1) of the archwires. The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.
A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media
USDA-ARS?s Scientific Manuscript database
A balance of applied hydrodynamic (TH) and resisting adhesive (TA) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height hr to determine the fraction of the solid surface area that contributes to colloid immobilization (Sf*) under unfavorable a...
Scale resolving computation of submerged wall jets on flat wall with different roughness heights
NASA Astrophysics Data System (ADS)
Paik, Joongcheol; Bombardelli, Fabian
2014-11-01
Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.
NASA Technical Reports Server (NTRS)
Wang, L.; Shin, R. T.; Kong, J. A.; Yueh, S. H.
1993-01-01
This paper investigates the potential application of neural network to inversion of soil moisture using polarimetric remote sensing data. The neural network used for the inversion of soil parameters is multi-layer perceptron trained with the back-propagation algorithm. The training data include the polarimetric backscattering coefficients obtained from theoretical surface scattering models together with an assumed nominal range of soil parameters which are comprised of the soil permittivity and surface roughness parameters. Soil permittivity is calculated from the soil moisture and the assumed soil texture based on an empirical formula at C-, L-, and P-bands. The rough surface parameters for the soil surface, which is described by the Gaussian random process, are the root-mean-square (rms) height and correlation length. For the rough surface scattering, small perturbation method is used for the L-band frequency, and Kirchhoff approximation is used for the C-band frequency to obtain the corresponding backscattering coefficients. During the training, the backscattering coefficients are the inputs to the neural net and the output from the net are compared with the desired soil parameters to adjust the interconnecting weights. The process is repeated for each input-output data entry and then for the entire training data until convergence is reached. After training, the backscattering coefficients are applied to the trained neural net to retrieve the soil parameters which are compared with the desired soil parameters to verify the effectiveness of this technique. Several cases are examined. First, for simplicity, the correlation length and rms height of the soil surface are fixed while soil moisture is varied. Soil moisture obtained using the neural networks with either L-band or C-band backscattering coefficients for the HH and VV polarizations as inputs is in good agreement with the desired soil moisture. The neural net output matches the desired output for the soil moisture range of 16 to 60 percent for the C-band case. The next case investigated is to vary both soil moisture and rms height while keeping the correlation length fixed. For this case, C-band backscattering coefficients are not sufficient for retrieving two parameters because the Kirchhoff approximation gives the same HH and VV backscattering coefficients. Therefore, the backscattering coefficients at two different frequency bands are necessary to find both the soil moisture and rms height. Finally, the neural nets are also applied to simultaneously invert soil moisture, rms height, and correlation length. Overall, the soil moisture retrieved from the neural network agrees very well with the desired soil moisture. This suggests that the neural network shows potential for retrieval of soil parameters from remote sensing data.
Bourlier, Christophe; Kubické, Gildas; Déchamps, Nicolas
2008-04-01
A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)] have recently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in which two impedance matrices of each interface and two coupling matrices are involved), this method allows one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the inverses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral acceleration (FB-SA) approach of complexity O(N) (N is the number of unknowns on the interface) proposed by Chou and Johnson [Radio Sci.33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying a Gaussian process with Gaussian and exponential height autocorrelation functions.
NASA Astrophysics Data System (ADS)
Wheatcroft, Robert A.
1994-08-01
Time-lapse stereophotographs were taken over a 90-day period from mid-November 1990 to late-February 1991 at a 90-m silt-bottom site on the central California shelf as part of the STRESS (Sediment Transport Events on Shelves and Slopes) project. Five distinct bed configurations were observed, in order of decreasing abundance, these are: (1) bioturbated bed; (2) smoothed bed; (3) current-rippled bed; (4) scour-pitted bed; and (5) wave-rippled bed. Concurrent measurements of the flow field implicate along-shelf currents, rather than waves, as the primary agent forming the physical bed configurations. The presence of a wave-induced cross-shelf gradient in near-bottom suspended sediment during storm events and the redistribution of this sediment by upwelling or downwelling currents is postulated to control the appearance of depositional current-ripples (northwest poleward flow, downwelling) and erosional scour-pits (southeast equatorward flow, upwelling). All physical bed forms are destroyed by bioturbation processes in periods of hours to days. Analytical photogrammetric techniques were used to extract high-resolution sea floor height data from the stereophotographs. Results indicate maximal relief over a 0.25-m 2 area at this site never exceeded 5 cm. Root-mean-square (rms) height varied by a factor of 3 (3.2-9.2 mm) and is a weak function of bed configuration. Current ripples have the largest rms-height, smoothed and scour-pitted beds the smallest. Rms-heights of bioturbated beds are variable and appear to depend on the previously produced physical bed configuration. Changes in rms-height can be abrupt with factor of 2 changes observed over a 12-h period. Horizontal descriptors of roughness such as peak spacing or peak width cannot separate bed configurations. Results from surface slope distributions are broadly coherent with the rms-height data, in that surfaces with large rms-heights have broad slope distributions and vice versa. Slope distribution data also indicate that all bed configurations except the current-rippled bed are isotropic. These preliminary data suggest that time series information is needed to adequately resolve both the micro-scale roughness of the sea floor on continental shelves and the presence of short lived, but potentially flow-diagnostic bed configurations.
Hydraulic resistance of submerged flexible vegetation
NASA Astrophysics Data System (ADS)
Stephan, Ursula; Gutknecht, Dieter
2002-12-01
The main research objective consisted in analysing the influence of roughness caused by aquatic vegetation (av), in particular submerged macrophytes, on the overall flow field. These plants are highly flexible and behave differently depending on the flow situation. They also react substantially to the flow field and thus, the roughness becomes variable and dynamic. Conventional flow formulas, such as the Manning or the Strickler formula, are one-dimensional and based on integral flow parameters. They are not suitable for quantifying the roughness of av, because the flow is complex and more dimensional due to the variable behaviour of the plants. Therefore, the present investigation concentrates on the definition of a characteristic hydraulic roughness parameter to quantify the resistance of av. Within this investigation laboratory experiments were carried out with three different types of av, chosen with respect to varying plant structures as well as stem lengths. Velocity measurements above these plants were conducted to determine the relationship between the hydraulic roughness and the deflected plant height. The deflected plant height is used as the geometric roughness parameter, whereas the equivalent sand roughness based on the universal logarithmic law modified by Nikuradse was used as hydraulic roughness parameter. The influence of relative submergence on the hydraulic roughness was also analysed. The analysis of the velocity measurements illustrates that equivalent sand roughness and zero plane displacement of the logarithmic law are correlated to the deflected plant height and are equally to this height.
Effect of H2O2 and nonionic surfactant in alkaline copper slurry
NASA Astrophysics Data System (ADS)
Haobo, Yuan; Yuling, Liu; Mengting, Jiang; Guodong, Chen; Weijuan, Liu; Shengli, Wang
2015-01-01
For improving the polishing performance, in this article, the roles of a nonionic surfactant (Fatty alcohol polyoxyethylene ether) and H2O2 were investigated in the chemical mechanical planarization process, respectively. Firstly, the effects of the nonionic surfactant on the within-wafer non-uniformity (WIWNU) and the surface roughness were mainly analyzed. In addition, the passivation ability of the slurry, which had no addition of BTA, was also discussed from the viewpoint of the static etch rate, electrochemical curve and residual step height under different concentrations of H2O2. The experimental results distinctly revealed that the nonionic surfactant introduced in the slurry improved the WIWNU and surface roughness, and that a 2 vol% was considered as an appropriate concentration relatively. When the concentration of H2O2 surpasses 3 vol%, the slurry will possess a relatively preferable passivation ability, which can effectively decrease the step height and contribute to acquiring a flat and smooth surface. Hence, based on the result of these experiments, the influences of the nonionic surfactant and H2O2 are further understood, which means the properties of slurry can be improved.
Substrate texture affects female cricket walking response to male calling song
NASA Astrophysics Data System (ADS)
Sarmiento-Ponce, E. J.; Sutcliffe, M. P. F.; Hedwig, B.
2018-03-01
Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.
Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, Brian; Lundquist, Julie K.
2016-03-01
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.
Could crop height affect the wind resource at agriculturally productive wind farm sites?
Vanderwende, Brian; Lundquist, Julie K.
2015-11-07
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less
Could crop height affect the wind resource at agriculturally productive wind farm sites?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderwende, Brian; Lundquist, Julie K.
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less
NASA Astrophysics Data System (ADS)
Tobin, Nicolas; Chamorro, Leonardo P.
2018-03-01
The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.
Analysis and characterization of the vertical wind profile in UAE
NASA Astrophysics Data System (ADS)
Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.
2011-12-01
In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have low values during summer and high values during winter. This variation is mainly explained by the direct effect of air temperature on atmospheric stability. When the surface temperature becomes high, air is mixed well in atmospheric boundary layer. This phenomenon leads to vertically low wind speed change indicating low wind profile parameter. On the contrary, cold surface temperature prevents air from being mixed well in the boundary layer. This analysis is applied to different regions to see the spatial characteristics of wind in UAE. As a next step, a mesoscale model coupled with UAE roughness maps will be used to predict elevated wind speed. A micro-scale modeling approach will be also used to capture small-scale wind speed variability. This data will be combined with the NCMS data and tailored to the UAE by modeling the effects due to local changes in terrain elevation and local surface roughness changes and obstacles.
Water entry of cylindrical bodies with various aspect ratios
NASA Astrophysics Data System (ADS)
Kim, Nayoung; Park, Hyungmin
2017-11-01
We experimentally investigate the water entry of cylindrical bodies with different aspect ratio (1.0-8.0), focusing on the deformation of free surface and resulting phenomena over and under the surface. The experiment is performed using a high-speed imaging (upto 10000 fps) and PIV. The head and tail of bodies are hemispherical and the nose part is additionally roughened with a sandpaper to see the effect of roughness as well. The release height is also adjusted to change the impact velocity at the free surface (Reynolds number is order of 105). For smooth surface (without cavity formation), a thin liquid film rises up the body after impacting, gathers at the pole and forms a jet over the free surfaces. The jet is created in the form of a thick and thin jet. The thin jet is produced by a water film riding up the surface of an object, and a thick jet is produced by rising water from underwater as the object sinks. However, as the aspect ratio increases, the liquid film does not fully ride up the body and cannot close, so there is an empty space below the free surface. With roughness (with cavity), the liquid film is detached from the body and splash/dome is formed above the free surface. The splash height and its collapsing time decrease with increasing the aspect ratio. Supported by Grants (MPSS-CG-2016-02, NRF-2017R1A4A1015523) of the Korea government.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Antibacterial Au nanostructured surfaces.
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-02-07
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.
Estimating small-scale roughness of a rock joint using TLS data
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2016-04-01
Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface) is approximately normal. Standard deviation of differences on average slightly increases with the noise level, but is strongly dependent on the analysis direction. As proved by different researches within the field of signal, image and also TLS data processing, noise can be, to a certain extent, removed by a post-processing step called denoising. In this research, four denoising methods, namely discrete WT (DWT) and stationary WT (SWT), and classic NLM (NLM) and probabilistic NLM (PNLM), were used on noisy ATOS data. Results were compared based on the (i) height and (ii) roughness differences between denoised surfaces and reference ATOS surface, (iii) the peak signal-to-noise ratio (PSNR) and (iv) the visual check of denoised surface. Increased PSNRs and reduced roughness differences prove the importance of the TLS data denoising procedure. In case of SWT, NLM and PNLM the surface is mostly over smoothed, whereas in case of DWT some noise remains. References: - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Sturzenegger, M. and D. Stead (2009). "Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts." Engineering Geology 106(3-4): 163-182.
Fabrication of a novel biosensor for macromolecules detection through molecular imprinting technique
NASA Astrophysics Data System (ADS)
Yu, Yingjie
There is an increasing need for precise molecular detection as a diagnostic tool for early identification of diseases, pathogens, and abnormal protein levels in the body. Typical chemical analytical methods are generally costly, unstable, and time-consuming. Molecular imprinting (MI) technique, based on the "lock and key model", could be a simple method to overcome those shortcomings. In this study, a self-assembled monolayer (SAM) was employed as a platform to fabricate MI biosensor for detection of macromolecules. I demonstrated that, when the monolayer was formed on a rough surface, this method was in fact templating molecules in three dimensions, and hence was not limited by the height of the monolayer, but rather by the height of the roughness. This hypothesis was tested on biomolecules of multiple length scales. The SAM is assembled on the walls of the niche, forming a 3D pattern of the analyte uniquely molded to its contour. The surfaces with multi-scale roughness were prepared by evaporation of gold onto electropolished (smooth) and unpolished (rough) Si wafers, where the native roughness was found to have a normal distribution centered around 5 and 90 nm respectively. Our studies, using molecules, such as proteins, i.e., hemoglobin, ranging from a few nanometers, to viruses (i.e. polio, adenovirus), ranging from several tens of nanometers, and protein complexes ranging from several hundred nanometers, showed that when the size of the analyte matched the roughness of the gold surface, this method was very effective and could detect even small changes in the configuration, such as those induced by changes in the pH of the system. The detection method was further quantified by applying it to the detection of CEA in pancreatic cyst fluid obtained from 18 patients under IRB 95867-6. The results of the MI biosensor were directly compared with those obtained using ELISA in the hospital pathology laboratory with excellent agreement, except that the MI biosensor used only 1% of the volume of the ELISA test and produced results in less than 5 minutes, as compared to at least 10 hours.
X-33 Hypersonic Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II
1999-01-01
Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.
Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter
2014-01-01
Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces. PMID:24990289
Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter
2014-09-06
Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces.
Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls
NASA Astrophysics Data System (ADS)
Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew
2017-11-01
The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.
Determination of surface layer parameters at the edge of a suburban area
NASA Astrophysics Data System (ADS)
Likso, T.; Pandžić, K.
2012-05-01
Vertical wind and air temperature profile related parameters in the surface layer at the edge of suburban area of Zagreb (Croatia) have been considered. For that purpose, adopted Monin-Obukhov similarity theory and a set of observations of wind and air temperature at 2 and 10 m above ground, recorded in 2005, have been used. The root mean square differences (errors) principle has been used as a tool to estimate the effective roughness length as well as standard deviations of wind speed and wind gusts. The results of estimation are effective roughness lengths dependent on eight wind direction sectors unknown before. Gratefully to that achievement, representativeness of wind data at standard 10-m height can be clarified more deeply for an area of at least about 1 km in upwind direction from the observation site. Extrapolation of wind data for lower or higher levels from standard 10-m height are thus properly representative for a wider inhomogeneous suburban area and can be used as such in numerical models, flux and wind energy estimation, civil engineering, air pollution and climatological applications.
Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil
2014-10-01
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.
Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil
2014-01-01
Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737
Acoustic Receptivity of a Blasius Boundary Layer with 2-D and Oblique Surface Waviness
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Breuer, Kenneth S.
2000-01-01
An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional (2-D) and oblique (3-D) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well defined wavenumber spectrum with fundamental wavenumber k (sub w). A planar downstream traveling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to k (sub ts) = k (sub w). The range of acoustic forcing levels, epsilon, and roughness heights, DELTA h, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination epsilon dot DELTA h resulted in subsequent nonlinear development of the Tollmien-Schlichting (T-S) wave. This study provided the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the 2-D and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber a,, and measuring the T-S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.
Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation
NASA Astrophysics Data System (ADS)
Shao, X.; Cao, C.
2014-12-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.
Effects of vegetation canopy on the radar backscattering coefficient
NASA Technical Reports Server (NTRS)
Mo, T.; Blanchard, B. J.; Schmugge, T. J.
1983-01-01
Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.
Some considerations in the evaluation of Seasat-A scatterometer /SASS/ measurements
NASA Technical Reports Server (NTRS)
Halberstam, I.
1980-01-01
A study is presented of the geophysical algorithms relating the Seasat-A scatterometer (SASS) backscatter measurements with a wind parameter. Although these measurements are closely related to surface features, an identification with surface layer parameters such as friction velocity or the roughness length is difficult. It is shown how surface truth in the form of wind speeds and coincident stability can be used to derive friction velocity or the equivalent neutral wind at an arbitrary height; it is also shown that the derived friction velocity values are sensitive to contested formulations relating friction velocity to the roughness length, while the derived values of the equivalent neutral wind are not. Examples of geophysical verification are demonstrated using values obtained from the Gulf of Alaska Seasat Experiment; these results show very little sensitivity to the type of wind parameter employed, suggesting that this insensitivity is mainly due to a large scatter in the SASS and surface truth data.
Kournetas, N; Spintzyk, S; Schweizer, E; Sawada, T; Said, F; Schmid, P; Geis-Gerstorfer, J; Eliades, G; Rupp, F
2017-08-01
Comparability of topographical data of implant surfaces in literature is low and their clinical relevance often equivocal. The aim of this study was to investigate the ability of scanning electron microscopy and optical interferometry to assess statistically similar 3-dimensional roughness parameter results and to evaluate these data based on predefined criteria regarded relevant for a favorable biological response. Four different commercial dental screw-type implants (NanoTite Certain Prevail, TiUnite Brånemark Mk III, XiVE S Plus and SLA Standard Plus) were analyzed by stereo scanning electron microscopy and white light interferometry. Surface height, spatial and hybrid roughness parameters (Sa, Sz, Ssk, Sku, Sal, Str, Sdr) were assessed from raw and filtered data (Gaussian 50μm and 5μm cut-off-filters), respectively. Data were statistically compared by one-way ANOVA and Tukey-Kramer post-hoc test. For a clinically relevant interpretation, a categorizing evaluation approach was used based on predefined threshold criteria for each roughness parameter. The two methods exhibited predominantly statistical differences. Dependent on roughness parameters and filter settings, both methods showed variations in rankings of the implant surfaces and differed in their ability to discriminate the different topographies. Overall, the analyses revealed scale-dependent roughness data. Compared to the pure statistical approach, the categorizing evaluation resulted in much more similarities between the two methods. This study suggests to reconsider current approaches for the topographical evaluation of implant surfaces and to further seek after proper experimental settings. Furthermore, the specific role of different roughness parameters for the bioresponse has to be studied in detail in order to better define clinically relevant, scale-dependent and parameter-specific thresholds and ranges. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Corrosion of Nickel-Titanium Orthodontic Archwires in Saliva and Oral Probiotic Supplements
Turco, Gianluca; Contardo, Luca; Serdarević, Nikolina Leona; Otmačić, Helena; Ćurković; Špalj, Stjepan
2017-01-01
Objectives The aim of the study was to examine how probiotic supplements affect the corrosion stability of orthodontic archwires made of nickel-titanium alloy (NiTi). Materials and Methods NiTi archwires (0.508x0.508 and having the length of 2.5 cm) were tested. The archwires (composition Ni=50.4%, Ti=49.6%) were uncoated, nitrified and rhodium coated. Surface microgeometry was observed by using scanning electron microscope and surface roughness was measured by profilometer through these variables: roughness average, maximum height and maximum roughness depth. Corrosion was examined by electrochemical method of cyclic polarisation. Results Rhodium coated alloy in saliva has significantly higher general corrosion in saliva than nitrified alloy and uncoated alloy, with large effect size (p=0.027; η2=0.700). In the presence of probiotics, the result was even more pronounced (p<0.001; η2=0.936). Probiotic supplement increases general and localised corrosion of rhodium coated archwire and slightly decreases general corrosion and increases localised corrosion in uncoated archwire, while in the case of nitrified archwire the probability of corrosion is very low. The differences in surface roughness between NiTi wires before corrosion are not significant. Exposure to saliva decreases roughness average in rhodium coated wire (p=0.015; η2=0.501). Media do not significantly influence surface microgeometry in nitrified and uncoated wires. Conclusion Probiotic supplement affects corrosion depending on the type of coating of the NiTi archwire. It increases general corrosion of rhodium coated wire and causes localised corrosion of uncoated and rhodium coated archwire. Probiotic supplement does not have greater influence on surface roughness compared to that of saliva. PMID:29872237
Heat Transfer Measurements on Surfaces with Natural Ice Castings and Modeled Roughness
NASA Technical Reports Server (NTRS)
Breuer, Kenneth S.; Torres, Benjamin E.; Orr, D. J.; Hansman, R. John
1997-01-01
An experimental method is described to measure and compare the convective heat transfer coefficient of natural and simulated ice accretion roughness and to provide a rational means for determining accretion-related enhanced heat transfer coefficients. The natural ice accretion roughness was a sample casting made from accretions at the NASA Lewis Icing Research Tunnel (IRT). One of these castings was modeled using a Spectral Estimation Technique (SET) to produce three roughness elements patterns that simulate the actual accretion. All four samples were tested in a flat-plate boundary layer at angle of attack in a "dry" wind tunnel test. The convective heat transfer coefficient was measured using infrared thermography. It is shown that, dispite some problems in the current data set, the method does show considerable promise in determining roughness-induced heat transfer coefficients, and that, in addition to the roughness height and spacing in the flow direction, the concentration and spacing of elements in the spanwise direction are important parameters.
NASA Astrophysics Data System (ADS)
Elbing, Brian; Dowling, David; Solomon, Michael; Bian, Sherry; Ceccio, Steven
2007-11-01
A recent experiment at the U.S. Navy's Large Cavitation Channel (LCC) investigated the effect of wall roughness on wall-injection polymer drag reduction (PDR) within a high-Reynolds-number (10^7 to 2x10^8 based on downstream distance) turbulent boundary layer (TBL). Testing was performed in two parts: 1) PDR experiment on a 12.9 m long, 3.05 m wide hydro-dynamically smooth flat plate and 2) PDR experiment on the same model with the entire surface roughened. The roughness was produced by blowing glass beads into epoxy paint that was applied to the entire model. The roughened model had an average roughness height ranging between 307 and 1154 μm. Drag reduction was determined using six, stream-wise located integrated skin-friction balances. In addition to skin-friction measurements, sampling was performed at three stream-wise located ports. The sampling ports were used to determine the amount of degradation, if any, caused by the turbulent flow on the polymer. Both the skin-friction measurements and sampling analysis indicates that wall roughness in a turbulent boundary layer significantly increases degradation of the polymer solution.
Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.A.E.; Beijerinck, H.C.W.
2005-01-01
Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less
Kocaagaoglu, H; Aslan, T; Gürbulak, A; Albayrak, H; Taşdemir, Z; Gumus, H
2017-05-01
Different polishing kits may have different effects on the composite resin surfaces. The aim of this study was to evaluate the surface roughness and color stability of four different composites which was applied different polishing technique. Thirty specimens were made for each composite resin group (nanohybrid, GrandioSo-GS; nanohybrid, Clearfil Majesty Esthetic-CME; hybrid, Valux Plus-VP; micro-hybrid, Ruby Comp-RC; [15 mm in diameter and 2 mm height]), with the different monomer composition and particle size from a total of 120 specimens. Each composite group was divided into three subgroups (n = 10). The first subgroup of the each composite subgroups served as control (C) and had no surface treatment. The second subgroup of the each composite resin groups was polished with finishing discs (Bisco Finishing Discs; Bisco Inc., Schaumburg, IL, USA). The third subgroup of the each composite resin was polished with polishing wheel (Enhance and PoGo, Dentsply, Konstanz, Germany). The surface roughness and the color differences measurement of the specimens were made and recorded. The data were compared using Kruskal-Wallis test, and regression analysis was used in order to examine the correlation between surface roughness and color differences of the specimens (α = 0.05). The Kruskal-Wallis test indicated significant difference among the composite resins in terms of ΔE (P < 0.05), and there was no statistically significant difference among composite resins in terms of surface roughness (P > 0.05). Result of the regression analysis indicated statistically significant correlation between Ra and ΔE values (P < 0.05, r2 = 0.74). The findings of the present study have clinical relevance in the choice of polishing kits used.
The use of Rz roughness parameter for evaluation of materials behavior to cavitation erosion
NASA Astrophysics Data System (ADS)
Bordeasu, I.; Popoviciu, M. O.; Ghera, C.; Micu, L. M.; Pirvulescu, L. D.; Bena, T.
2018-01-01
It is well known that the cavitation eroded surfaces have a porous appearance with a pronounced roughness. The cause is the pitting resulted from the impact with the micro jets as well as the shock waves both determined by the implosion of cavitation bubbles. The height and the shape of roughness is undoubtedly an expression of the resistance of the surface to the cavitation stresses. The paper put into evidence the possibility of using the roughness parameter Rz for estimating the material resistance to cavitation phenomena. For this purpose, the mean depth erosion penetration (MDE-parameter, recommended by the ASTM G32-2010 Standard) was compared with the roughness of three different materials (an annealed bronze, the same bronze subjected to quenching and an annealed alloyed steel), both measured at four cavitation erosion exposure (30, 75, 120 and 165 minutes). The roughness measurements were made in 18 different zones, disposed after two perpendicular diameters, along a measuring lengths of 4 mm. The results confirm the possibility of using the parameter Rz for estimating the cavitation erosion resistance of a material. The differences between the measured values of Rz and those of the characteristic parameter MDE are of the same order of magnitude as those obtained for MDE determination, using more samples of the same material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polster, S.; Jank, M. P. M.; Frey, L.
2016-01-14
The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussedmore » with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.« less
Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian
2016-09-29
In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.
Retrieval of Soil Moisture and Roughness from the Polarimetric Radar Response
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Ulaby, Fawwaz T.
1997-01-01
The main objective of this investigation was the characterization of soil moisture using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces was considered and a hybrid model that relates the radar backscattering coefficient to soil moisture and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave frequencies over a wide range of moisture conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of soil moisture content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the soil moisture content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough soil surface was considered. A general scattering model for grass-blades of arbitrary cross section was developed and incorporated in a first order random media model. The vegetation model and the bare-soil model are combined and the accuracy of the combined model is evaluated against experimental observations from a wheat field over the entire growing season. A complete set of ground-truth data and polarimetric backscatter data were collected. Also an inversion algorithm for estimating soil moisture and surface roughness from multi-polarized multi-frequency observations of vegetation-covered ground is developed.
Lithography-free glass surface modification by self-masking during dry etching
NASA Astrophysics Data System (ADS)
Hein, Eric; Fox, Dennis; Fouckhardt, Henning
2011-01-01
Glass surface morphologies with defined shapes and roughness are realized by a two-step lithography-free process: deposition of an ~10-nm-thin lithographically unstructured metallic layer onto the surface and reactive ion etching in an Ar/CF4 high-density plasma. Because of nucleation or coalescence, the metallic layer is laterally structured during its deposition. Its morphology exhibits islands with dimensions of several tens of nanometers. These metal spots cause a locally varying etch velocity of the glass substrate, which results in surface structuring. The glass surface gets increasingly rougher with further etching. The mechanism of self-masking results in the formation of surface structures with typical heights and lateral dimensions of several hundred nanometers. Several metals, such as Ag, Al, Au, Cu, In, and Ni, can be employed as the sacrificial layer in this technology. Choice of the process parameters allows for a multitude of different glass roughness morphologies with individual defined and dosed optical scattering.
Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates
NASA Astrophysics Data System (ADS)
Afferrante, L.; Carbone, G.
2018-01-01
In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid-solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid-solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie-Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.
Impact of wave mixing on the sea ice cover
NASA Astrophysics Data System (ADS)
Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel
2017-04-01
As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible positive feedback mechanism.
Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.
Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo
2014-01-01
The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.
Characterization of technical surfaces by structure function analysis
NASA Astrophysics Data System (ADS)
Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.
2018-03-01
The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.
NASA Technical Reports Server (NTRS)
Sams, E. W.
1952-01-01
An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well as those of other investigators, were used to isolate the influence of ratios of thread height to width, thread spacing to width, and the conventional roughness ratio on the friction coefficient. A fair correlation of the friction data was obtained for each tube with heat addition when the friction coefficient and Reynolds number were defined on the basis of film properties; however, the data for each tube retained the curve characteristic of that particular roughness. The friction data for all the rough tubes could be represented by a single line for the complete turbulence region by incorporating a roughness parameter in the film correlation. No correlation was obtained for the region of incomplete turbulence.
Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues
NASA Astrophysics Data System (ADS)
Krishnan, K. Ghokulla; Milionis, Athanasios; Loth, Eric; Farrell, Thomas E.; Crouch, Jeffrey D.; Berry, Douglas H.
2017-01-01
Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircrafts with laminar-flow surfaces. This study investigates the effectiveness of various hydrophobic and superhydrophobic surfaces in reducing residue of insects on an aerodynamic surface at relatively high impact speeds (about 45 m/s). An experimental setup consisting of a wind tunnel and a method to inject live flightless fruit flies was used to test the effectiveness of various surfaces against insect fouling. Insect fouling was analyzed based on residue area and height from multiple impacts. In general most of the residue area was due to the hemolymph spreading while most of the residue height was due to adhesion of exoskeleton parts. Hydrophobic and especially superhydrophobic surfaces performed better than a hydrophilic aluminum surface in terms of minimizing the residue area of various insect components (exoskeleton, hemolymph, and red fluid). Surfaces with reduced wettability and short lateral length scales tended to have the smallest residue area. Residue height was not as strongly influenced by surface wettability since even a single exoskeleton adhered to the surface upon impact was enough to produce a residue height of the order of one mm. In general, the results indicate that hemolymph spread needs to be avoided (e.g. by having reduced wettability and short lateral correlation lengths) in order to minimize the residue area, while exoskeleton adherence needs to be avoided (e.g. by having oleophobic properties and micro/nano roughness) in order to minimize the residue height. In particular, two of the superhydrophobic coatings produced substantial reduction in residue height and area, relative to the baseline surface of aluminum. However, the surfaces also showed poor mechanical durability on the high-speed insect impact location. This suggests that although low wettability materials show great insect anti-fouling behavior, their durability needs to be substantially improved in order to withstand harsh aerospace conditions.
Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness
NASA Astrophysics Data System (ADS)
Wong, Colman C. C.; Liu, Chun-Ho
2013-05-01
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.
NASA Astrophysics Data System (ADS)
Gutzweiler, Ludwig; Stumpf, Fabian; Tanguy, Laurent; Roth, Guenter; Koltay, Peter; Zengerle, Roland; Riegger, Lutz
2016-04-01
Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (R a = 24 nm, R RMS = 28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
Aims: To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. Materials and Methods: The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. Results: The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. Conclusions: The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse. PMID:26069408
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse.
NASA Technical Reports Server (NTRS)
Li, C. J.; Devries, W. R.; Ludema, K. C.
1983-01-01
Measurements made with a stylus surface tracer which provides a digitized representation of a surface profile are discussed. Parameters are defined to characterize the height (e.g., RMS roughness, skewness, and kurtosis) and length (e.g., autocorrelation) of the surface topography. These are applied to the characterization of crank shaft journals which were manufactured by different grinding and lopping procedures known to give significant differences in crank shaft bearing life. It was found that three parameters (RMS roughness, skewness, and kurtosis) are necessary to adequately distinguish the character of these surfaces. Every surface specimen has a set of values for these three parameters. They can be regarded as a set coordinate in a space constituted by three characteristics axes. The various journal surfaces can be classified along with the determination of a proper wavelength cutoff (0.25 mm) by using a method of separated subspace. The finite radius of the stylus used for profile tracing gives an inherent measurement error as it passes over the fine structure of the surface. A mathematical model is derived to compensate for this error.
NASA Technical Reports Server (NTRS)
Joseph, A.T.; Lang, R.; O'Neill, P.E.; van der Velde, R.; Gish, T.
2008-01-01
A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval uncertainty depending on the sensing configuration. The effects of surface roughness variations are found to be smallest for observations acquired at a view angle of 55 degrees and HH polarization. A possible explanation for this result is that at 55 degrees and HH polarization the effect of vertical surface height changes on the observed radar response are limited because the microwaves travel parallel to the incident plane and as a result will not interact directly with vertically oriented soil structures.
Reducing the open porosity of pyroboroncarbon articles
NASA Astrophysics Data System (ADS)
Martyushov, G. G.; Zakharevich, A. M.; Pichkhidze, S. Ya.; Koshuro, V. A.
2016-02-01
It is established that a decrease in the open porosity of pyroboroncarbon, a pyrolytic glassy composite material of interest for manufacturing prosthetic heart valves (PHVs), can be achieved via impregnation of articles with an alcohol solution of 3-aminopropyltriethoxysilane and subsequent thermal treatment. The maximum roughness height and linear size of open pores on the surface of PHV parts made of pyroboroncarbon can additionally be reduced by final mechanical processing of a silicon oxide film formed on the surface.
Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment
NASA Technical Reports Server (NTRS)
Tilley, David G.
1991-01-01
Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.
a Comparison of Uav and Tls Data for Soil Roughness Assessment
NASA Astrophysics Data System (ADS)
Milenković, M.; Karel, W.; Ressl, C.; Pfeifer, N.
2016-06-01
Soil roughness represents fine-scale surface geometry which figures in many geophysical models. While static photogrammetric techniques (terrestrial images and laser scanning) have been recently proposed as a new source for deriving roughness heights, there is still need to overcome acquisition scale and viewing geometry issues. By contrast to the static techniques, images taken from unmanned aerial vehicles (UAV) can maintain near-nadir looking geometry over scales of several agricultural fields. This paper presents a pilot study on high-resolution, soil roughness reconstruction and assessment from UAV images over an agricultural plot. As a reference method, terrestrial laser scanning (TLS) was applied on a 10 m x 1.5 m subplot. The UAV images were self-calibrated and oriented within a bundle adjustment, and processed further up to a dense-matched digital surface model (DSM). The analysis of the UAV- and TLS-DSMs were performed in the spatial domain based on the surface autocorrelation function and the correlation length, and in the frequency domain based on the roughness spectrum and the surface fractal dimension (spectral slope). The TLS- and UAV-DSM differences were found to be under ±1 cm, while the UAV DSM showed a systematic pattern below this scale, which was explained by weakly tied sub-blocks of the bundle block. The results also confirmed that the existing TLS methods leads to roughness assessment up to 5 mm resolution. However, for our UAV data, this was not possible to achieve, though it was shown that for spatial scales of 12 cm and larger, both methods appear to be usable. Additionally, this paper suggests a method to propagate measurement errors to the correlation length.
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures
NASA Technical Reports Server (NTRS)
Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)
2000-01-01
We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.
Effects of Suction on Swept-Wing Transition
NASA Technical Reports Server (NTRS)
Saric, William S.
1998-01-01
Stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure gradient is designed to provide purely crossflow-dominated transition; that is, the boundary layer is subcritical to Tollmien-Schlichting disturbances. The airfoil surface is hand polished to a 0.25 microns rms finish. Under these conditions, stationary crossflow disturbances grow to nonuniform amplitude due to submicron surface irregularities near the leading edge. Uniform stationary crossflow waves are produced by controlling the initial conditions with spanwise arrays of micron-sized roughness elements near the attachment line. Hot-wire measurements provide detailed maps of the crossflow wave structure, and accurate spectral decompositions isolate individual-mode growth rates for the fundamental and harmonic disturbances. Roughness spacing, roughness height, and Reynolds number are varied to investigate the growth of all amplified wavelengths. The measurements show early nonlinear mode interaction causing amplitude saturation well before transition. Comparisons with nonlinear parabolized stability equations calculations show excellent agreement in both the disturbance amplitude and the mode-shape profiles.
Drag penalty due to the asperities in the substrate of super-hydrophobic and liquid infused surfaces
NASA Astrophysics Data System (ADS)
Garcia Cartagena, Edgardo J.; Arenas, Isnardo; Leonardi, Stefano
2017-11-01
Direct numerical simulations of two superposed fluids in a turbulent channel with a textured surface made of pinnacles of random height have been performed. The viscosity ratio between the two fluids are N =μo /μi = 50 (μo and μi are the viscosities of outer and inner fluid respectively) mimicking a super-hydrophobic surface (water over air) and N=2.5 (water over heptane) resembling a liquid infused surface. Two set of simulations have been performed varying the Reynolds number, Reτ = 180 and Reτ = 390 . The interface between the two fluids is flat simulating infinite surface tension. The position of the interface between the two fluids has been varied in the vertical direction from the base of the substrate (what would be a rough wall) to the highest point of the roughness. Drag reduction is very sensitive to the position of the interface between the two fluids. Asperities above the interface induce a large form drag and diminish considerably the drag reduction. When the mean height of the surface measured from the interface in the outer fluid is greater than one wall unit, k+ > 1 , the drag increases with respect to a smooth wall. Present results provide a guideline to the accuracy required in manufacturing super-hydrophobic and liquid infused surfaces. This work was supported under ONR MURI Grants N00014-12-0875 and N00014-12- 1-0962, Program Manager Dr. Ki-Han Kim. Numerical simulations were performed on the Texas Advanced Computer Center.
Study of role of meniscus and viscous forces during liquid-mediated contacts separation
NASA Astrophysics Data System (ADS)
Dhital, Prabin
Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.
Aluminum Surface Texturing by Means of Laser Interference Metallurgy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.
2015-01-01
The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.
The physical basis for estimating wave energy spectra from SAR imagery
NASA Technical Reports Server (NTRS)
Lyzenga, David R.
1987-01-01
Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.
Clouds and Ice of the Lambert-Amery System, East Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
These views from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate ice surface textures and cloud-top heights over the Amery Ice Shelf/Lambert Glacier system in East Antarctica on October 25, 2002.The left-hand panel is a natural-color view from MISR's downward-looking (nadir) camera. The center panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60o forward-viewing, nadir and 60o backward-viewing cameras are displayed as red, green and blue, respectively. With this display technique, surfaces which predominantly exhibit backward-scattering (generally rough surfaces) appear red/orange, while surfaces which predominantly exhibit forward-scattering (generally smooth surfaces) appear blue. Textural variation for both the grounded and sea ice are apparent. The red/orange pixels in the lower portion of the image correspond with a rough and crevassed region near the grounding zone, that is, the area where the Lambert and four other smaller glaciers merge and the ice starts to float as it forms the Amery Ice Shelf. In the natural-color view, this rough ice is spectrally blue in color.Clouds exhibit both forward and backward-scattering properties in the middle panel and thus appear purple, in distinct contrast with the underlying ice and snow. An additional multi-angular technique for differentiating clouds from ice is shown in the right-hand panel, which is a stereoscopically derived height field retrieved using automated pattern recognition involving data from multiple MISR cameras. Areas exhibiting insufficient spatial contrast for stereoscopic retrieval are shown in dark gray. Clouds are apparent as a result of their heights above the surface terrain. Polar clouds are an important factor in weather and climate. Inadequate characterization of cloud properties is currently responsible for large uncertainties in climate prediction models. Identification of polar clouds, mapping of their distributions, and retrieval of their heights provide information that will help to reduce this uncertainty.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 15171. The panels cover an area of 380 kilometers x 984 kilometers, and utilize data from blocks 145 to 151 within World Reference System-2 path 127.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks
Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Colombo, Marco; Scribante, Andrea
2012-01-01
Aim: The aim of this study is to evaluate the surface roughness of four flowable resin composites following exposure to acidic and alcoholic drinks. Materials and Methods: SureFil SDR flow, TetricEvoFlow, Esthet-X Flow and Amaris Flow HT samples were immersed in artificial saliva, Coca Cola and Chivas Regal Whisky. Each specimen was examined using a Leica DCM 3D microscope: Arithmetical mean height of the surface profiles was measured (Sa). Results: Kruskal-Wallis test showed significant differences among various groups (P<0,001). Mann Whitney test was applied and control groups showed significantly lower Sa values than other groups (P=0,008). Coca Cola groups showed highest Sa values (P<0,021). No significant differences (P=0,14) in surface texture were found among the specimens of the different materials. No significant differences were found among TetricEvoFlow, Esthet-X Flow and Amaris Flow under control conditions nor after Coca Cola application. Under control condition and after Coca Cola application SureFil SDR flow showed significantly higher Sa values. Moreover, after whisky application Amaris Flow showed significantly lower Sa values then the other three groups that showed no significant differences among them. Conclusions: Acidic and alcoholic drinks eroded the surface roughness of all evaluated flowable resin composites. PMID:22557811
Influence of roughness bottom on the dynamics of a buoyant cloud : application to a powder avalanche
NASA Astrophysics Data System (ADS)
Brossard, D.; Naaim-Bouvet, F.; Naaim, M.; Caccamo, P.
2009-04-01
A powder avalanche is referred to as a turbulent flow of snow particles in air. In the past such avalanches have been modelled by buoyant cloud in a watertank: buoyant clouds flow along an inclined plane from a small immersed tank with a release gate (injection is of short duration). The powder avalanches are simulated by a heavy fluid (salt water + colorant or kaolin) which is dispersing in a lighter one. Such experiments allow studies for the influence of roughness bottoms on the dynamics of a buoyant clouds. The authors studied the flows of buoyant clouds on an uniform slope of 20° with different roughness: smooth PVC, abrasive paper, bottom covered with glued particles of PMMA or with glued glass beads of different sizes arranged in a compact way. The released volume varies between 2 to 4 liters and the density of salted water is 1.2. Two cameras are used to obtain the height together with the front velocity. Inside the study area the front velocity is approximately constant and the height of the clouds varies linearly with the distance from the released gate as usually observed in previous experiments. So for each roughness a front velocity and height growth can be defined. It was shown from the experiments that: As the bottom increases in roughness, the front speed increases and the height growth decreases. Nevertheless the height of glued elements does not seem to be the most appropriate parameter to characterize the roughness.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S. (Principal Investigator); Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S.; Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.
Wear resistance and compression strength of ceramics tested in fluoride environments.
Theodoro, Guilherme Teixeira; Fiorin, Lívia; Moris, Izabela Cristina Maurício; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; Faria, Adriana Cláudia Lapria
2017-01-01
Dental ceramics have been widely used because of aesthetic, but wear is still questioned. There are relates that ceramic surface is prone to degradation by acidulated fluoride, that can increase wear rates. The aim of this study was to evaluate the effect of neutral and acidulated fluoride gel, used as preventive agents for professional use, at wear and compression strength of dental ceramics IPS e.max ZirPress (ZIR), IPS Empress Esthetic (EMP) e IPS Inline POM (POM). For this, 30 crowns and 30 disks were obtained by heat-pressing. Crowns and disks were submitted to two-body wear test at machine of mechanical loading, simulating occlusion, lateral movement and disocclusion. It was performed 300,000 cycles at 1Hz frequency under 20N load, to simulate 1 year of mastication. Samples were totally immersed during the test and were divided into three groups according to the gel used for immersion (n=10): control, neutral (sodium fluoride 2%) and acidulated (acidulated phosphate fluoride 1.23%). Samples (crowns and disks) were analyzed for vertical height loss after the test using, respectively, profile projector and stereomicroscope. Roughness of worn surface of crowns and disks was evaluated by laser confocal microscopy. Data of height loss and roughness were evaluated by two-way ANOVA and Bonferroni's test. A crown/disk of each group was analyzed by scanning electronic microscopy. After wear resistance tests, crowns were cemented to their abutments and submitted to compressive load at 30° angulation and 1mm/min speed. Type of failures was compared by qui-square test. Ceramic EMP worn less while ZIR worn more. Control gel worn more at crowns while acidulated gel worn more at disks. Surface roughness of samples tested at acidulated gel was significantly lower. Type of failures found at compression resistance tests was affected by ceramic type, but not by gel used. The results suggest that ceramic and fluoride gel affect wear and roughness of worn surface while type of failure is only affected by ceramic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of relief printing
NASA Astrophysics Data System (ADS)
Liu, Xing; Chen, Lin; Ortiz-Segovia, Maria-Valezzka; Ferwerda, James; Allebach, Jan
2014-03-01
Relief printing technology developed by Océ allows the superposition of several layers of colorant on different types of media which creates a variation of the surface height defined by the input to the printer. Evaluating the reproduction accuracy of distinct surface characteristics is of great importance to the application of the relief printing system. Therefore, it is necessary to develop quality metrics to evaluate the relief process. In this paper, we focus on the third dimension of relief printing, i.e. height information. To achieve this goal, we define metrics and develop models that aim to evaluate relief prints in two aspects: overall fidelity and surface finish. To characterize the overall fidelity, three metrics are calculated: Modulation Transfer Function (MTF), difference and root-mean-squared error (RMSE) between the input height map and scanned height map, and print surface angle accuracy. For the surface finish property, we measure the surface roughness, generate surface normal maps and develop a light reflection model that serves as a simulation of the differences between ideal prints and real prints that may be perceived by human observers. Three sets of test targets are designed and printed by the Océ relief printer prototypes for the calculation of the above metrics: (i) twisted target, (ii) sinusoidal wave target, and (iii) ramp target. The results provide quantitative evaluations of the printing quality in the third dimension, and demonstrate that the height of relief prints is reproduced accurately with respect to the input design. The factors that affect the printing quality include: printing direction, frequency and amplitude of the input signal, shape of relief prints. Besides the above factors, there are two additional aspects that influence the viewing experience of relief prints: lighting condition and viewing angle.
Hämmerle, C H; Brägger, U; Bürgin, W; Lang, N P
1996-06-01
In order to achieve esthetically more satisfying results, it has been proposed to place ITI implants with their border between the rough and smooth surfaces below the level of the alveolar crest, thereby obtaining a submucosally located implant shoulder following healing. The aim of the present experimental study was to clinically and radiographically evaluate the tissue response to the placement of one-stage transmucosal implants with the border between the rough and the smooth surfaces sunk by 1 mm into a subcrestal location. 11 patients underwent comprehensive dental care including the placement of 2 implants of the ITI Dental Implant System in the same quadrant (test and control). Randomly assigned control implants were placed according to the manufacturer's instructions, i.e. the border between the rough titanium plasma-sprayed and the smooth polished surfaces precisely at the alveolar crest. At the test implant the apical border of the polished surface was placed approximately 1 mm below the alveolar crest. Probing bone levels were assessed at implant placement (baseline), 4 and 12 months later. Modified plaque and modified gingival indices were recorded at 1, 2, 3, 4 and 12 months. Clinical probing depth and "attachment" levels were measured at 4 and 12 months. All parameters were assessed at 6 sites around each implant. The mean for each implant was calculated and used for analysis. The Wilcoxon matched pairs signed rank test and the Student t-test were applied to detect differences over time and between the test and control implants. At baseline, a mean difference in probing bone level of -0.86 mm (SD 0.43 mm, p < 0.05) was found between test and control implants with the test implants being placed more deeply. Both test and control implants lost a significant amount of clinical bone height during the first 4 months (test 1.16 mm, p < 0.05; control 0.58 mm, p < 0.05). However, only the test implants significantly lost clinical bone height from 4-12 months (test 1.04 mm, p < 0.05; control 0.45 mm, p = 0.08). Overall, the test implants lost 2.26 mm and the control implants 1.02 mm of bone height during the first year of service. On the average, the test implants demonstrated a bone level of 0.38 mm lower than the controls at 12 months. Except for the modified gingival index at 4 months (mean difference 0.21, SD 0.19, p < 0.05), no clinical parameters yielded significant differences between test and control implants at any time. It is concluded that in addition to the crestal bone resorption occurring at implants placed under standard conditions, the bone adjacent to the polished surface of more deeply placed ITI implants is also lost over time. From a biological point of view, the placement of the border between the rough and the smooth surfaces into a subcrestal location should not be recommended.
Collins, Dannie L.; Flynn, Kathleen M.
1979-01-01
This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)
NASA Astrophysics Data System (ADS)
Hancock, G. S.; Huettenmoser, J.; Shobe, C. M.; Eppes, M. C.
2016-12-01
Rock erodibility in channels is a primary control on the stresses required to erode bedrock (e.g., Sklar and Dietrich, 2001). Erodibility tends to be treated as a uniform and fixed variable at the scale of channel cross-sections, particularly in models of channel profile evolution. Here we present field data supporting the hypothesis (Hancock et al., 2011) that erodibility is a dynamic variable, driven by the interplay between erosion rate and weathering processes within cross-sections. We hypothesize that rock weathering varies in cross-sections from virtually unweathered in the thalweg, where frequent stripping removes weathered rock, to a degree of weathering determined by the frequency of erosive events higher on the channel margin. We test this hypothesis on three tributaries to the Potomac River underlain by similar bedrock but with varying erosion rates ( 0.01 to 0.8 m/ky). At multiple heights within three cross-sections on three tributaries, we measured compressive strength with a Schmidt hammer, surface roughness with a contour gage, and density and length of visible cracks. Compressive strength decreased with height in all nine cross-sections by 10% to 50%, and surface roughness increased with height in seven cross-sections by 25% - 45%, with the remaining two showing minimal change. Crack density increased with height in the three cross-sections measured. Taken together these data demonstrate increases in weathering intensity, and presumably, rock erodibility, with height. The y-intercept of the relation between height and the three measured variables were nearly identical, suggesting that thalweg erodibility was similar on each channel, as predicted, even though erodibility higher in the cross-section were markedly different. The rate at which the three variables changed with height in each cross-section is strongly related to stream power. Assuming stream power is a reasonable surrogate for erosion rate, this result implies that erosion rate can be a primary influence on the distribution of erodibility within channel cross-sections. We conclude that the interplay between rates of erosion and weathering produces spatial as well as temporal variability in erodibility which, in turn, influences channel form and gradient.
Near Wall measurement in Turbulent Flow over Rough Wall using microscopic HPIV
NASA Astrophysics Data System (ADS)
Talapatra, Siddharth; Hong, Jiarong; Katz, Joseph
2009-11-01
Using holographic PIV, 3D velocity measurements are being performed in a turbulent rough wall channel flow. Our objective is to examine the contribution of coherent structures to the flow dynamics, momentum and energy fluxes in the roughness sublayer. The 0.45mm high, pyramid-shaped roughness is uniformly distributed on the top and bottom surfaces of a 5X20cm rectangular channel flow, where the Reτ is 3400. To facilitate recording of holograms through a rough plate, the working fluid is a concentrated solution of NaI in water, whose optical refractive index is matched with that of the acrylic rough plates. The test section is illuminated by a collimated laser beam from the top, and the sample volume extends from the bottom wall up to 7 roughness heights. After passing through the sample volume, the in-line hologram is magnified and recorded on a 4864X3248 pixels camera at a resolution of 0.74μm/pixel. The flow is locally seeded with 2μm particles. Reconstruction, spatial filtering and particle tracking provide the 3D velocity field. This approach has been successfully implemented recently, as preliminary data demonstrate.
Stopping dynamics of a steady uniform granular flow over a rough incline
NASA Astrophysics Data System (ADS)
Deboeuf, Stéphanie; Saingier, Guillaume; Thiruvalluvar, Nitharshini; Lagrée, Pierre-Yves; Popinet, Stéphane; Staron, Lydie
2017-06-01
Granular material flowing on complex topographies are ubiquitous in industrial and geophysical situations. Even model granular flows are difficult to understand and predict. Recently, the frictional rheology μ(I) -describing the ratio of the shear stress to the normal stress as a function of the inertial number I, that compares inertial and confinement effects- allows unifying different configurations of granular flows. However it does not succeed in describing some phenomenologies, such as creep flow, deposit height, … Is it attributable to the rheology, to non-local effects, ...? Here, we consider a thin layer of grains flowing steadily and uniformly on a rough incline, when the input mass flow rate is suddenly stopped. We focus on the arrest dynamics by using both experimental and numerical approaches. We measure the height and surface velocities of the granular layer during the long-time stopping dynamics and we compare our experimental results with computations of depthaveraged equations for a fluid of rheology μ(I).
2015-04-16
This image from NASA MESSENGER spacecraft provides a perspective view of the center portion of Carnegie Rupes, a large tectonic landform, which cuts through Duccio crater. The image shows the terrain (variations in topography) as measured by the MLA instrument and surface mapped by the MDIS instrument. The image was color-coded to highlight the variations in topography (red = high standing terrain, blue = low lying terrain). Tectonic landforms such as Carnegie Rupes form on Mercury as a response to interior planetary cooling, resulting in the overall shrinking of the planet. To make this graphic, 48 individual MDIS images were used as part of the mosaic. Instruments: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Latitude: 57.1° Longitude: 304.0° E Scale: Duccio crater has a diameter of roughly 105 kilometers (65 miles) Height: Portions of Carnegie Rupes are nearly 2 kilometers (1.2 miles) in height Orientation: North is roughly to the left of the image http://photojournal.jpl.nasa.gov/catalog/PIA19422
Hydrophobic properties of a wavy rough substrate.
Carbone, G; Mangialardi, L
2005-01-01
The wetting/non-wetting properties of a liquid drop in contact with a chemically hydrophobic rough surface (thermodynamic contact angle theta(e)>pi/2) are studied for the case of an extremely idealized rough profile: the liquid drop is considered to lie on a simple sinusoidal profile. Depending on surface geometry and pressure values, it is found that the Cassie and Wenzel states can coexist. But if the amplitude h of the substrate is sufficiently large the only possible stable state is the Cassie one, whereas if h is below a certain critical value hcr a transition to the Wenzel state occurs. Since in many potential applications of such super-hydrophobic surfaces, liquid drops often collide with the substrate (e.g. vehicle windscreens), in the paper the critical drop pressure pW is calculated at which the Cassie state is no longer stable and the liquid jumps into full contact with the substrate (Wenzel state). By analyzing the asymptotic behavior of the systems in the limiting case of a large substrate corrugation, a simple criterion is also proposed to calculate the minimum height asperity h necessary to prevent the Wenzel state from being formed, to preserve the super-hydrophobic properties of the substrate, and, hence, to design a robust super-hydrophobic surface.
Gil, Francisco Javier; Aparicio, Conrado; Manero, Jose M; Padros, Alejandro
2009-01-01
This study evaluated the effect of external hexagon height and commonly applied surface treatments on the fatigue life of titanium dental implants. Electropolished commercially pure titanium dental implants (seven implants per group) with three different external hexagon heights (0.6, 1.2, and 1.8 mm) and implants with the highest external hexagon height (1.8 mm) and different surface treatments (electropolishing, grit blasting with aluminium oxide, and acid etching with sulfuric acid) were tested to evaluate their mechanical fatigue life. To do so, 10-Hz triangular flexural load cycles were applied at 37 degrees C in artificial saliva, and the number of load cycles until implant fracture was determined. Tolerances of the hexagon/abutment fit and implant surface roughness were analyzed by scanning electron microscopy and light interferometry. Transmission electron microscopy and electron diffraction analyses of titanium hydrides were performed. First, the fatigue life of implants with the highest hexagon (8,683 +/- 978 load cycles) was more than double that of the implants with the shortest hexagons (3,654 +/- 789 load cycles) (P < .02). Second, the grit-blasted implants had the longest fatigue life of the tested materials (21,393 +/- 2,356 load cycles), which was significantly greater than that of the other surfaces (P < .001). The compressive surface residual stresses induced when blasting titanium are responsible for this superior mechanical response. Third, precipitation of titanium hydrides in grain boundaries of titanium caused by hydrogen adsorption from the acid solution deteriorates the fatigue life of acid-etched titanium dental implants. These implants had the shortest fatigue life (P < .05). The fatigue life of threaded root-form dental implants varies with the height of the external hexagon and/or the surface treatment of the implant. An external hexagon height of 1.8 mm and/or a blasting treatment appear to significantly increase fatigue life of dental implants.
The effect of artificial rain on backscattered acoustic signal: first measurements
NASA Astrophysics Data System (ADS)
Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir
The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented. The estimates of roughness parameters variability during precipitation are obtained. The first measurements of rain influencing on cross section and Doppler spectrum of backscattered acoustic signal was carried out. The obtained results were compared with calculations based on the theoretical model. Acknowledgments. The reported study was supported by RFBR, research project No. 14-05-31517 mol_a. References 1. Bliven Larry, Branger Hubert, Sobieski Piotr, Giovanangeli Jean-Paul, An analysis of scatterometer returns from a water surface agitated by artificial rain : evidence that ring-waves are the mean feature, Intl. Jl. of Remote Sensing, Vol. 14, n 12, 1993, pp. 2315-2329, 1993 2. Sobieski Piotr, Craeye Christophe, Bliven Larry, A Relationship Between Rain Radar Reflectivity and Height Elevation Variance of Ringwaves due to the Impact of Rain on the Sea Surface, Radio Science, AGU, 44, RS3005, 1-20, 2009 3. Weissman, D. E., and M. A. Bourassa, Measurements of the Effect of Rain-induced Sea Surface Roughness on the Satellite Scatterometer Radar Cross Section, IEEE Trans. Geosci. Remote Sens., 46, 2882-2894, 2008 4. B. Brumley, La Jolla, E.Terray, B.String, «System and method for measuring wave directional spectrum and wave height», USA Patent N US 2004/0184350 A1,23 September 2004 5. James H. Churchill, Albert J. Plueddemann, Stephen M. Faluotico, «Extracting Wind Sea and Swell from Directional Wave Spectra derived from a bottom-mounted ADCP», Woods Hole Oceanographic Institution, Technical Report WHOI-2006-13 6. V. Yu. Karaev, M. B. Kanevsky, E. M. Meshkov, Measuring the parameters of sea-surface roughness by underwater acoustic systems: discussion of the device concept, Radiophysics and Quantum Electronics, V. 53, I. 9-10. pp. 569-579, 2011
Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack
2013-01-01
Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.
NASA Astrophysics Data System (ADS)
Nzoghe-Mendome, L.; Aloufy, A.; Ebothé, J.; El Messiry, M.; Hui, D.
2009-02-01
The surface growth and roughening of nano-crystallised Ni electrodeposits prepared at the same conditions have been studied on Cu, Au and ITO substrates. The Ni films obtained are characterised by the same face-centred cubic structure with a texture affected by the substrate chemical nature. Practically, the same small-sized grains of 83 nm mean height depicting a statistical mono-mode feature grow on Cu. A three-modal feature corresponding to the biggest and compact crystallites of 335, 368 and 400 nm mean height is obtained with Au. Two typical modes, respectively, linked to isolated big crystallites of 343 nm mean height and large zones of small grains of 170 nm height, result from the ITO effect. The surface transport properties of Ni ad-atoms on each substrate have been studied from the theoretical approach including the film global roughness measured by AFM. It is shown that the ad-atom diffusion coefficients ( D s) ranged in the interval 10 -10-10 -9 cm 2 s -1 are greatly affected by the non-equilibrium conditions of the film formation. Cu and ITO, respectively, lead to Λ s=11.92 and 14.30 nm, while the higher D s value and diffusion length Λ s=37.32 nm are obtained with Au substrate.
Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd
2011-01-01
Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available from aerosol scattering.
Effect of vital tooth bleaching on solubility and roughness of dental cements.
Londono, Jimmy; Abreu, Amara; Nelson, Steve; Hernandez, Jorge; Torres, Carlos; Mettenburg, Donald; Looney, Stephen; Rueggeberg, Frederick
2009-09-01
Vital tooth bleaching may affect properties of dental cements used for fixed prostheses. The purpose of this study was to examine the effect of a combined in-office and at-home bleaching regimen on changes in surface roughness and depth loss of a variety of commercially available dental cements. Five cement classifications were tested: glass ionomer, resin-modified glass ionomer, resin,self-adhesive resin cement, and zinc phosphate. Cements were placed in multiple wells in plastic blocks. After setting,the surface profile of each block was determined, and average roughness and vertical height of cement surface from the specimen holder were recorded. Blocks were water stored (control) or subjected to in-office and at-home bleaching(n=12). Surfaces were rescanned and pre- and posttest parameter changes were calculated. Statistical analysis consisted of Mann-Whitney-Wilcoxon Rank Sum and Student t tests applied to control and bleaching parameterc hanges within the same cements. A family-wise alpha of .05 was maintained by using a Bonferroni-adjusted level of significance preset to .01 per test. Zinc phosphate showed the only significant depth increase (P=.004) from bleaching: 0.9 +/- 0.7 microm deeper than the water-control group. Only resin-modified glass ionomer showed a significant (P=.004) increase in roughness from bleaching; values increased by 0.05 +/- 0.03 microm over the water-control group. In-office and at-home bleaching significantly increased depth loss of zinc phosphate and increased resinmodified glass ionomer roughness. However, the absolute values of differences observed, as compared to the wateronly control, were considered to be clinically insignificant. (J Prosthet Dent 2009;102:148-154)
Effect of wall roughness on liquid oscillations damping in rectangular tanks
NASA Technical Reports Server (NTRS)
Bugg, F. M.
1970-01-01
Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness.
NASA Astrophysics Data System (ADS)
Sagy, A.; Tesei, T.; Collettini, C.
2016-12-01
Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously during shear. The wavy ridged zone is the surface expression of penetrative cracking and fragmentation which widen the shear zone, while the smooth zones reflect localized flow and plastic deformation of the wear material. The similarity in topography of shear structures between experimental and natural faults suggests similar mechanical processes.
Topographic modelling of haptic properties of tissue products
NASA Astrophysics Data System (ADS)
Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.
2014-03-01
The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).
NASA Technical Reports Server (NTRS)
Tieleman, H. W.; Derrington, D. B., Jr.
1977-01-01
Turbulent flow, resembling an on-shore flow from the ocean crossing the beach at an oblique angle, is investigated. Measurements of this flow have been taken at high sample rates and include measurements at various heights, high enough to describe the portion of the mean wind and temperature profiles and fluxes that are of interest for the solution of practical engineering problems. These problems could include air pollution (fumigation and plume trapping), operation of low flying aircraft, crop-spraying and crop-dusting operations.
NASA Astrophysics Data System (ADS)
Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.
2018-04-01
Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.
Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I
2016-04-01
Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.
NASA Astrophysics Data System (ADS)
Weston, Michael; Chaouch, Naira; Valappil, Vineeth; Temimi, Marouane; Ek, Michael; Zheng, Weizhong
2018-06-01
Atmospheric models are known to underestimate land surface temperature and, by association, 2 m air temperature over dry arid regions during the day due to the treatment of the thermal roughness length also known as roughness length of heat. The thermal roughness length can be controlled by the Zilitinkevich parameter, known as Czil, which is a tunable parameter within the models. Three different scenarios with the WRF model are run to test the impact of the Czil parameter on the simulations using two land surface models: the Noah and Noah-MP models. In this study, a modified version of the Noah-MP model is tested, in which the Czil parameter, and, therefore, the thermal roughness length varies depending on the land cover and vegetation height. The model domain is over the United Arab Emirates (UAE) where the major land cover type is desert. The following configurations are tested: the Noah model with Czil = 0.1, Noah model with Czil = 0.5 and the Noah-MP model with Czil = 0.5 over desert. Results of 2 m air temperature are verified against three stations in the UAE. Mean gross error of the diurnal 2 m temperature was reduced by up to 1.48 and 1.54 °C in the 24 and 48 h forecasts, respectively. This reduced the cold bias in the model. This improvement in air temperature showed to improve the diurnal cycle of relative humidity at the three monitoring stations as well as the duration of the sea breeze in some cases.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
Characterizing overwater roughness Reynolds number during hurricanes
NASA Astrophysics Data System (ADS)
Hsu, S. A.; Shen, Hui; He, Yijun
2017-11-01
The Reynolds number, which is the dimensionless ratio of the inertial force to the viscous force, is of great importance in the theory of hydrodynamic stability and the origin of turbulence. To investigate aerodynamically rough flow over a wind sea, pertinent measurements of wind and wave parameters from three data buoys during Hurricanes Kate, Lili, Ivan, Katrina, Rita, and Wilma are analyzed. It is demonstrated that wind seas prevail when the wind speed at 10 m and the wave steepness exceed 9 m s-1 and 0.020, respectively. It is found that using a power law the roughness Reynolds number is statistically significantly related to the significant wave height instead of the wind speed as used in the literature. The reason for this characterization is to avoid any self-correlation between Reynolds number and the wind speed. It is found that although most values of R_{*} were below 500, they could reach to approximately 1000 near the radius of maximum wind. It is shown that, when the significant wave height exceeds approximately 2 m in a wind sea, the air flow over that wind sea is already under the fully rough condition. Further analysis of simultaneous measurements of wind and wave parameters using the logarithmic law indicates that the estimated overwater friction velocity is consistent with other methods including the direct (eddy-covariance flux) measurements, the atmospheric vorticity approach, and the sea-surface current measurements during four slow moving super typhoons with wind speed up to 70 m s-1.
Maiti, Raman; Gerhardt, Lutz-Christian; Lee, Zing S; Byers, Robert A; Woods, Daniel; Sanz-Herrera, José A; Franklin, Steve E; Lewis, Roger; Matcher, Stephen J; Carré, Matthew J
2016-09-01
Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cornuault, Pierre-Henri; Carpentier, Luc; Bueno, Marie-Ange; Cote, Jean-Marc; Monteil, Guy
2015-01-01
This study investigates how the fingerpad hydrolipid film, shape, roughness and rigidity influence the friction when it rubs surfaces situated in the slippery psychophysical dimension. The studied counterparts comprised two ‘real’ (physical) surfaces and two ‘virtual’ surfaces. The latter were simulated with a tactile stimulator named STIMTAC. Thirteen women and 13 men rubbed their right forefingers against the different surfaces as their arms were displaced by a DC motor providing constant velocity and sliding distance. Tangential and normal forces were measured with a specific tribometer. The fingerpad hydrolipid film was characterized by Fourier transform infrared spectroscopy. The shape and roughness of fingers were extrapolated from replicas. Indentation measurements were carried out to determine fingerpad effective elastic modulus. A clear difference was observed between women and men in terms of friction behaviour. The concept of tactile frictional contrast (TFC) which was introduced quantifies an individual's propensity to distinguish two surfaces frictionally. The lipids/water ratio and water amount on the finger skin significantly influenced the TFC. A correlation was observed between the TFC and fingerpad roughness, i.e. the height of the fingerpad ridges. This is essentially owing to gender differences. A significant difference between men's and women's finger topography was also noted, because our results suggested that men have rougher fingers than women. The friction measurements did not correlate with the fingerpad curvature nor with the epidermal ridges' spatial period. PMID:26269232
Magellan: Radar performance and data products
Pettengill, G.H.; Ford, P.G.; Johnson, W.T.K.; Raney, R.K.; Soderblom, L.A.
1991-01-01
The Magellan Venus orbiter carries only one scientific instrument: a 12.6-centimeter-wavelength radar system shared among three data-taking modes. The syntheticaperture mode images radar echoes from the Venus surface at a resolution of between 120 and 300 meters, depending on spacecraft altitude. In the altimetric mode, relative height measurement accuracies may approach 5 meters, depending on the terrain's roughness, although orbital uncertainties place a floor of about 50 meters on the absolute uncertainty. In areas of extremely rough topography, accuracy is limited by the inherent line-of-sight radar resolution of about 88 meters. The maximum elevation observed to date, corresponding to a planetary radius of 6062 kilometers, lies within Maxwell Mons. When used as a thermal emission radiometer, the system can determine surface emissivities to an absolute accuracy of about 0.02. Mosaicked and archival digital data products will be released in compact disk (CDROM) format.
Impact of surface roughness on L-band emissivity of the sea ice
NASA Astrophysics Data System (ADS)
Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.
2015-12-01
In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.
Extended vertical range roughness measurements in non-ideal environments
NASA Astrophysics Data System (ADS)
Creath, Katherine
2011-09-01
This paper describes recent research into developing an extended range dynamic interferometry technique where the range is extended vertically to enhance surface roughness measurements made in non-ideal environments. Utilizing short pulses from two sources on either side of a frame transfer in a CCD sensor, data can be taken fast enough in noisy shop environments to make measurements in the presence of vibration, and air turbulence. A key application of this technique is monitoring of surface roughness of large optics during the polishing process by making in situ measurements from fine grind through to the final polish. It is anticipated that this monitoring can help speed up what is now a very lengthy process. This same technique is applicable to many other types of measurements including MEMS devices, as it is not affected by dispersion in windows covering devices, and for measuring features on flat panel display glass or semiconductor wafers. This paper describes the technique, and presents results of a variety of sample measurements including: bare glass in various states of polish from fine grind to final polish, scratches and pits in a roughened semiconductor wafer, a DMD MEMS device, and various calibration standards. Performance in terms of repeatabilitity of step heights and roughness for this proof of concept is in the +/-2% range.
The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity
NASA Technical Reports Server (NTRS)
Tillman, James E.
1994-01-01
This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.
Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga
2006-04-01
Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.
Silicon Micromachined Microlens Array for THz Antennas
NASA Technical Reports Server (NTRS)
Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria
2013-01-01
5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a smooth curvature. The measured height of the silicon microlens is about 280 microns. In this case, the original height of the photoresist was 210 microns. The change was due to the etching selectivity of 1.33 between photoresist and silicon. The measured surface roughness of the silicon microlens shows the peak-to-peak surface roughness of less than 0.5 microns, which is adequate in THz frequency. For example, the surface roughness should be less than 7 microns at 600 GHz range. The SEM (scanning electron microscope) image of the microlens confirms the smooth surface. The beam pattern at 550 GHz shows good directivity.
NASA Astrophysics Data System (ADS)
Johnson, Sylvester, IV
A CAE (Computer Aided Engineering) tool called SEEL (Simulation of Electron Energy Loss) is described in detail. SEEL simulates in any material the energy loss and trajectories of electrons in the complex, multilayered nanostructures typical of ULSI, at beam energies from 1 to 50 keV. Structures and materials are defined in the input file rather than in the source code of the program, for which flowcharts are included in addition to an explanation of the algorithms implemented. Satisfactory comparisons of simulated with experimental results are made of both secondary electron (SE) and backscattered electron (BSE) linescans across an array of MOS gate structures capped by rough oxide. Many other comparisons are made. The effects of varying line edge slopes on SE linescan peak shape are simulated and analyzed. A data library containing the simulated variation of the FWHM, peak height, and peak location with slope for different materials, line heights or trench depths, widths, beam energies, and nominal diameters could be used to find the edge location relative to the peak for improvement of the accuracy of linewidth measurement algorithms. An investigation indicates that the use of such a library would be complicated by the effect of surface roughness on the SE signal at the edge of a feature. SEEL can be used as the first module in a series of programs that simulate energy deposition in resist structures and correct the exposure of a circuit pattern. Pixel by pixel convolution for prediction of the proximity effect is time-consuming. Another method of proximity effect prediction based on the reciprocity of the RED is described. Such programs could be used to reduce the number of iterations in the lab required to optimize resist structures and exposure parameters. For both smooth and rough interfaces between a bottom layer of PMMA in a multilayer resist structure and a W film, the simulated exposure contrast declines from that with an oxide film beneath the structure. A comparison of Auger peak to background ratios resulting from simulation of smooth and rough surfaces indicates that roughening of an Al surface on a small scale could result in a smaller ratio.
Coherence of simulated atmospheric boundary-layer turbulence
NASA Astrophysics Data System (ADS)
Jiadong, Zeng; Zhiguo, Li; Mingshui, Li
2017-12-01
The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.
NASA Astrophysics Data System (ADS)
Nakamura, Daisuke; Kimura, Taishi; Narita, Tetsuo; Suzumura, Akitoshi; Kimoto, Tsunenobu; Nakashima, Kenji
2017-11-01
A novel sintered tantalum carbide coating (SinTaC) prepared via a wet ceramic process is proposed as an approach to reducing the production cost and improving the crystal quality of bulk-grown crystals and epitaxially grown films of wide-bandgap semiconductors. Here, we verify the applicability of the SinTaC components as susceptors for chemical vapor deposition (CVD)-SiC and metal-organic chemical vapor deposition (MOCVD)-GaN epitaxial growth in terms of impurity incorporation from the SinTaC layers and also clarify the surface-roughness controllability of SinTaC layers and its advantage in CVD applications. The residual impurity elements in the SinTaC layers were confirmed to not severely incorporate into the CVD-SiC and MOCVD-GaN epilayers grown using the SinTaC susceptors. The quality of the epilayers was also confirmed to be equivalent to that of epilayers grown using conventional susceptors. Furthermore, the surface roughness of the SinTaC components was controllable over a wide range of average roughness (0.4 ≤ Ra ≤ 5 μm) and maximum height roughness (3 ≤ Rz ≤ 36 μm) through simple additional surface treatment procedures, and the surface-roughened SinTaC susceptor fabricated using these procedures was predicted to effectively reduce thermal stress on epi-wafers. These results confirm that SinTaC susceptors are applicable to epitaxial growth processes and are advantageous over conventional susceptor materials for reducing the epi-cost and improving the quality of epi-wafers.
NASA Technical Reports Server (NTRS)
Hideyuki, TANNO; Tomoyuki, KOMURO; Kazuo, SATO; Katsuhiro, ITOH; Lillard, Randolph P.; Olejniczak, Joseph
2013-01-01
An aeroheating measurement test campaign of an Apollo capsule model with laminar and turbulent boundary layer was performed in the free-piston shock tunnel HIEST at JAXA Kakuda Space Center. A 250mm-diameter 6.4%-scaled Apollo CM capsule model made of SUS-304 stainless steel was applied in this study. To measure heat flux distribution, the model was equipped with 88 miniature co-axial Chromel-Constantan thermocouples on the heat shield surface of the model. In order to promote boundary layer transition, a boundary layer trip insert with 13 "pizza-box" isolated roughness elements, which have 1.27mm square, were placed at 17mm below of the model geometric center. Three boundary layer trip inserts with roughness height of k=0.3mm, 0.6mm and 0.8mm were used to identify the appropriate height to induce transition. Heat flux records with or without roughness elements were obtained for model angles of attack 28º under stagnation enthalpy between H(sub 0)=3.5MJ/kg to 21MJ/kg and stagnation pressure between P(sub 0)=14MPa to 60MPa. Under the condition above, Reynolds number based on the model diameter was varied from 0.2 to 1.3 million. With roughness elements, boundary layer became fully turbulent less than H(sub 0)=9MJ/kg condition. However, boundary layer was still laminar over H(sub 0)=13MJ/kg condition even with the highest roughness elements. An additional experiment was also performed to correct unexpected heat flux augmentation observed over H(sub 0)=9MJ/kg condition.
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.
2008-07-01
Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of the soil surface microrelief.
NASA Astrophysics Data System (ADS)
Labarre, Sébastien; Jacquemoud, Stéphane; Ferrari, Cécile; Delorme, Arthur; Rupnik, Ewelina; Derrien, Allan; Pierrot-Deseilligny, Marc; Grandin, Raphaël; Jalludin, Mohamed
2017-04-01
Surface roughness is a key parameter in soil physics which controls many surface processes at a wide range of scales: microscopic and mesoscopic scales from 10 μm to 1 cm (soil particles or regolith), macroscopic scale from 1 cm to 1 m (clods, aggregates of rock or ice, micro-fractures or lava flows), and topographic scale from 1 m to several kilometers (faults, hills, craters or mountains). While it is recognized that surface roughness is strongly scale-dependent, it is often expressed as an integrated parameter (root-mean-square height, correlation length, tortuosity index), which does not address the full range of spatial features present on the surface. In particular, the Hapke roughness parameter is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the microscopic to the macroscopic scales. Yet its physical meaning is still a question at issue, as the scale at which it occurs is undefined in the model. Photogrammetry has been shown to be an inexpensive and powerful method for topography reconstruction from optical data. We took advantage of a series of 21 Pléiades-1B images (video acquisition mode) to build a global digital elevation model (DEM) over the Asal-Ghoubbet rift, Republic of Djibouti. Additionally, we acquired close range data with a quadcopter equipped with a HD camera. Topography at four scales is available: 1 m with the satellite images (694 km), 1 cm with the drone flying at medium altitude ( 100 m), 1 mm with the drone flying at low altitude ( 10 m), and <1 mm with the handheld camera ( 1.5 m). We have defined twenty-two sites, 20 × 30 m in dimension, corresponding to a wide range of volcanic and sedimentary terrains, from regolith-like structures to very rough lava flows, over which DEMs have been generated at two or more resolutions. In order to investigate the contribution of each scale to the integrated roughness and to test the ability of the Hapke model to retrieve a roughness parameter that depicts well the ground truth, we applied two multiscale methods: fractal analysis and wavelet transform. The latter allows splitting the frequency band of a signal in several sub-bands, each of which corresponding to a spatial scale. By analyzing data acquired at Piton de la Fournaise Volcano, Réunion island, we showed that wavelet transform is a very powerful tool for characterizing roughness regimes over scales and that sub-centimeter surface features mostly explain the integrated roughness for meter-sized surfaces (Labarre et al., 2017, Icarus). This has to be confirmed on Djibouti terrains, for which we have a broader range of resolutions and larger areas.
NASA Astrophysics Data System (ADS)
Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian
2018-01-01
As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.
NASA Astrophysics Data System (ADS)
Shin, H. H.; Zhao, M.; Ming, Y.; Chen, X.; Lin, S. J.
2017-12-01
Surface layer (SL) parameters in atmospheric models - such as 2-m air temperature (T2), 10-m wind speed (U10), and surface turbulent fluxes - are computed by applying the Monin-Obukhov Similarity Theory (MOST) to the lowest model level height (LMH) in the models. The underlying assumption is that LMH is within surface layer height (SLH), but most AGCMs hardly meet the condition in stable boundary layers (SBLs) over land. To assess the errors in modeled SL parameters caused by this, offline computations of the MOST are performed with different LMHs from 1 to 100 m, for an idealized SBL case with prescribed surface parameters (surface temperature, roughness length and Obukhov length), and vertical profiles of temperature and winds. The results show that when LMH is higher than SLH, T2 and U10 are underestimated by O(1 K) and O(1 m/s), respectively, and the biases increase as LMH increases. Based on this, the refined vertical resolution with an additional layer in the SL is applied to the GFDL AGCM, and it reduces the systematic cold biases in T2 and the systematic underestimation of U10.
Counterintuitive effects of substrate roughness on PDCs
NASA Astrophysics Data System (ADS)
Andrews, B. J.; Manga, M.
2012-12-01
We model dilute pyroclastic density currents (PDCs) using scaled, warm, particle-laden density currents in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. In this set of experiments, we run currents over substrates with characteristic roughness scales, hr, ranging over ~3 orders of magnitude from smooth, through 250 μm sandpaper, 0.1-, 1-, 2-, 5-, and 10 cm hemispheres. As substrate roughness increases, runout distance increases until a critical roughness height, hrc, is reached; further increases in roughness height decrease runout. The critical roughness height appears to be 0.25-0.5 htb, the thickness of the turbulent lower layer of the density currents. The dependence of runout on hr is most likely the result of increases in substrate roughness decreasing the average current velocity and converting that energy into increased turbulence intensity. Small values of hr thus result in increased runout as sedimentation is inhibited by the increased turbulence intensity. At larger values of hr current behavior is controlled by much larger decreases in average current velocity, even though sedimentation decreases. Scaling our experiments up to the size of real volcanic eruptions suggests that landscapes must have characteristic roughness hr>10 m to reduce the runout of natural PDCs, smaller roughness scales can increase runout. Comparison of relevant bulk (Reynolds number, densimetric and thermal Richardson numbers, excess buoyant thermal energy density) and turbulent (Stokes and settling numbers) between our experiments and natural dilute PDCs indicates that we are accurately modeling at least the large scale behaviors and dynamics of dilute PDCs.
Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility
NASA Astrophysics Data System (ADS)
Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John
2016-11-01
The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.
Wave optics simulation of statistically rough surface scatter
NASA Astrophysics Data System (ADS)
Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.
2017-09-01
The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.
Measuring Ocean Surface Waves using Signal Reflections from Geostationary Satellites
NASA Astrophysics Data System (ADS)
Ouellette, J. D.; Dowgiallo, D. J.; Hwang, P. A.; Toporkov, J. V.
2017-12-01
The delay-Doppler response of communications signals (such as GNSS) reflected off the ocean surface is well-known to have properties which strongly correlate with surface wind conditions and ocean surface roughness. This study extends reflectometry techniques currently applied to the GNSS constellation to include geostationary communications satellites such as XM Radio. In this study, ocean wind conditions and significant wave height will be characterized using the delay-Doppler response of XM Radio signals reflected off of ocean surface waves. Using geostationary satellites for reflectometry-based remote sensing of oceans presents two primary advantages. First, longer coherent integration times can be achieved, which boosts signal processing gain and allows for finer Doppler resolution. Second, being designed for wide-area broadcast communications, the ground-received power of these geostationary satellite signals tends to be many orders of magnitude stronger than e.g. GNSS signals. Reflections of such signals from the ocean are strong enough to be received well outside of the specular region. This flexibility of viewing geometry allows signal processing to be performed on data received from multiple incidence/reception angles, which can provide a more complete characterization of ocean surface roughness and surface wind vectors. This work will include studies of simulated and measured delay-Doppler behavior of XM Radio signals reflected from dynamic ocean surfaces. Simulation studies will include inter-comparison between a number of hydrodynamic and electromagnetic models. Results from simulations will be presented as delay-Doppler plots and will be compared with delay-Doppler behavior observed in measured data. Measured data will include field campaign results from early- to mid-2017 in which the US Naval Research Laboratory's in-house XM reflectometer-receiver was deployed near the coasts of Virginia and North Carolina to observe reflections from wind-driven ocean waves. Preliminary results from a significant wave height retrieval algorithm will also be presented.
Geometries for roughness shapes in laminar flow
NASA Technical Reports Server (NTRS)
Holmes, Bruce J. (Inventor); Martin, Glenn L. (Inventor); Domack, Christopher S. (Inventor); Obara, Clifford J. (Inventor); Hassan, Ahmed A. (Inventor)
1986-01-01
A passive interface mechanism between upper and lower skin structures, and a leading edge structure of a laminar flow airfoil is described. The interface mechanism takes many shapes. All are designed to be different than the sharp orthogonal arrangement prevalent in the prior art. The shapes of the interface structures are generally of two types: steps away from the centerline of the airfoil with a sloping surface directed toward the trailing edge and, the other design has a gap before the sloping surface. By properly shaping the step, the critical step height is increased by more than 50% over the orthogonal edged step.
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.
2003-01-01
Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.
Terraced margins of inflated lava flows on Earth and Mars
NASA Astrophysics Data System (ADS)
Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.
2011-12-01
When fluid basaltic lava flows are emplaced over a shallow regional slope (typically much less than one degree), the lava flows often display impressive characteristics of inflation. Here we describe a distinctive marginal characteristic that is often developed along the margins of endogenously inflated basaltic lava flows; discreet topographic levels of the emplaced lava that are here termed 'terraced margins'. Terraced margins were first noted at the distal end of the Carrizozo lava flow in central New Mexico, where they are particularly well expressed, but terraces have also been observed along some margins of the McCartys lava flow (NM), the distal end of the 1859 Mauna Loa lava flow (HI), and lava flows at Craters of the Moon (ID). Differential Global Positioning System surveys across several terraced margins reveal consistent topographic characteristics: the upper surface of each terrace level is at roughly one half the height of the sheet lobe from which it emerges; when a terrace becomes the source of an additional outbreak, the upper surface of the second terrace is at roughly one half the height of the source terrace; often a subtle topographic depression is present along the contact between a terrace and its source sheet lobe, suggesting that the terrace outflow starts at a level roughly one-third the height of the source lobe; the upper surfaces of both the source sheet lobe and associated terraces are level to within tens of centimeters across length scales of many tens to hundreds of meters, indicative of inflation of all components. The field observations will be used as the constraints for modeling of the inflation and terracing mechanisms, an effort that has only recently started. The multiple imaging data sets now available for Mars have revealed the presence of terraced margins on some lava flows on Mars. Although detailed topographic data are not currently available for the Martian examples identified so far, the presence of terraced margins for lava flows on both Earth and Mars indicates that the terracing mechanism is intimately associated with the lava flow inflation process. This work was supported by grants from the Planetary Geology and Geophysics program of NASA (NNX09AD88G) and the Scholarly Studies program of the Smithsonian Institution.
Micromorphological characterization of zinc/silver particle composite coatings.
Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof; Ţălu, Ştefan
2015-12-01
The aim of this study was to evaluate the three-dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df , as well as height values distribution have been determined for the 3D nanostructure surfaces. © 2015 The Authors published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Peker, Mevlut Fatih
Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate the surface topography changes during long-run micro-stamping of BPPs, and establish relationships between surface roughness--corrosion resistance and surface roughness-contact resistance characteristics of BPPs. Formability levels of formed BPPs and repeatability characteristics of the process were investigated. In addition, blank thickness changes, von-Mises stress, plastic strain levels and distributions of micro-stamping process were determined via finite element analysis (FEA). Test results revealed that the surface roughness change for the stamping dies and BPPs was unsteady (no trend) due to the continuous change of surface topography (i.e. asperity deformation). Sub-micron range local plastic deformations on stamping dies led to surface topography changes on BPP in long-run manufacturing case. As surface defects trigger corrosion, the correlation between surface roughness and corrosion resistance of BPPs was found to be direct. Increasing number of surface irregularities (asperities) lowered contact surface area that resulted in increased contact resistance. ZrN coated BPPs, on the other hand, did not change surface roughness, however; it improved the protection of BPPs against corrosion significantly. In addition, ZrN coating increased the conductivity of BPPs and reduced the contact resistance between BPP and gas diffusion layer (GDL), at certain extent. As dimensional stability and repeatability was confirmed in forming of both uncoated and coated BPPs during the long run manufacturing, different formability levels were achieved for coated and uncoated samples. Lower channel height values were obtained for coated plates because of the different surface hardness of uncoated and coated plates. In tribological size effect part of study, micro stamping experiments using three different dies with distinct channel height values at different stamping force levels were performed. It was concluded that decrease in forming die dimensions led to increase in coefficient of friction as previously reported by other researchers as one of the consequences of tribological size effect. On the other hand, coefficient of friction values were not affected by the force levels used in the experiments and simulations, whereas plastic strain, equivalent stress, and formability levels were increased with increasing stamping force, as expected. In essence, this study proposed a methodology to investigate the long-run manufacturing effects on dimensional stability and surface characteristics of micro-stamped sheets. It also correlates these parameters to fuel cell performance measures such as interfacial contact and corrosion resistance.
Bonetto, Rita Dominga; Ladaga, Juan Luis; Ponz, Ezequiel
2006-04-01
Scanning electron microscopy (SEM) is widely used in surface studies and continuous efforts are carried out in the search of estimators of different surface characteristics. By using the variogram, we developed two of these estimators that were used to characterize the surface roughness from the SEM image texture. One of the estimators is related to the crossover between fractal region at low scale and the periodic region at high scale, whereas the other estimator characterizes the periodic region. In this work, a full study of these estimators and the fractal dimension in two dimensions (2D) and three dimensions (3D) was carried out for emery papers. We show that the obtained fractal dimension with only one image is good enough to characterize the roughness surface because its behavior is similar to those obtained with 3D height data. We show also that the estimator that indicates the crossover is related to the minimum cell size in 2D and to the average particle size in 3D. The other estimator has different values for the three studied emery papers in 2D but it does not have a clear meaning, and these values are similar for those studied samples in 3D. Nevertheless, it indicates the formation tendency of compound cells. The fractal dimension values from the variogram and from an area versus step log-log graph were studied with 3D data. Both methods yield different values corresponding to different information from the samples.
NASA Astrophysics Data System (ADS)
Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis
2016-04-01
This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various parameters such as standard deviation of DTM, deviation of residual and standard deviation of prominence were calculated directly from the extracted DTM. Sophisticated statistical filters and elevation indices were developed to quantify both soil erosion and roughness. The applied methodology for monitoring both soil erosion and roughness provides an optimum way of reducing the existing gap between field scale and satellite scale. Keywords : UAV, soil, erosion, roughness, DTM
Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces
NASA Astrophysics Data System (ADS)
Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.
2017-12-01
Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for such surfaces. This analysis yielded a continuum of contact angles (real above, and imaginary below, zero degrees) that can be used to investigate relationships with properties such surface roughness and porosity. It should be noted these are preliminary, unreplicated results and further research will be needed to verify them and refine the approach.
Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei
2010-01-01
Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.
2016-12-01
Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and Antarctic sea ice in global climate models.
Li, Aihua; Zhao, Wenguang; Mitchell, Jessica J; Glenn, Nancy F.; Germino, Matthew; Sankey, Joel B.; Allen, Richard G
2017-01-01
The aerodynamic roughness length (Z0 m) serves an important role in the flux exchange between the land surface and atmosphere. In this study, airborne lidar (ALS), terrestrial lidar (TLS), and imaging spectroscopy data were integrated to develop and test two approaches to estimate Z0 m over a shrub dominated dryland study area in south-central Idaho, USA. Sensitivity of the two parameterization methods to estimate Z0 m was analyzed. The comparison of eddy covariance-derived Z0 m and remote sensing-derived Z0 m showed that the accuracy of the estimated Z0 m heavily depends on the estimation model and the representation of shrub (e.g., Artemisia tridentata subsp. wyomingensis) height in the models. The geometrical method (RA1994) led to 9 percent (~0.5 cm) and 25% (~1.1 cm) errors at site 1 and site 2, respectively, which performed better than the height variability-based method (MR1994) with bias error of 20 percent and 48 percent at site 1 and site 2, respectively. The RA1994 model resulted in a larger range of Z0 m than the MR1994 method. We also found that the mean, median and 75th percentiles of heights (H75) from ALS provides the best Z0 m estimates in the MR1994 model, while the mean, median, and MLD (Median Absolute Deviation from Median Height), as well as AAD (Mean Absolute Deviation from Mean Height) heights from ALS provides the best Z0 m estimates in the RA1994 model. In addition, the fractional cover of shrub and grass, distinguished with ALS and imaging spectroscopy data, provided the opportunity to estimate the frontal area index at the pixel-level to assess the influence of grass and shrub on Z0m estimates in the RA1994 method. Results indicate that grass had little effect on Z0 m in the RA1994 method. The Z0 m estimations were tightly coupled with vegetation height and its local variance for the shrubs. Overall, the results demonstrate that the use of height and fractional cover from remote sensing data are promising for estimating Z0 m, and thus refining land surface models at regional scales in semiarid shrublands.
NASA Astrophysics Data System (ADS)
Bedford, D.
2012-12-01
We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates are moderate. Infiltration augmentation is greatest in microtopographic depressions and flow threads. These results show that some vegetation-landform settings are efficient at trapping and concentrating the primary limiting resource, and demonstrate the importance of micro-scale soil characteristics for the ecohydrologic function of semi-arid environments. Since other essential attributes for plant ecosystems, such as nutrients, likely co-vary with water availability, further research is needed to elucidate ecosystem dynamics that may lead to self-organized behavior and determine thresholds for ecosystem stability.
An integrated optical CO2 sensor. Phase 0: Design and fabrication of critical elements
NASA Technical Reports Server (NTRS)
Murphy, Michael C.; Kelly, Kevin W.; Li, B. Q.; Ma, EN; Wang, Wanjun; Vladimirsky, Yuli; Vladimirsky, Olga
1994-01-01
Significant progress has been made toward all of the goals for the first phase of the project short of actual fabrication of a light path. Two alternative approaches to fabricating gold mirrors using the basic LIGA process were developed, one using electroplated solid gold mirrors and the second using gold plated over a nickel base. A new method of fabrication, the transfer mask process, was developed and demonstrated. Analysis of the projected surface roughness and beam divergence effects was completed. With gold surface with low surface roughness scattering losses are expected to be insignificant. Beam divergence due to diffraction will require a modification of the original design, but should be eliminated by fabricating mirrors 1000 mu m in height by 1000 mu m in width and using a source with an initial beam radius greater than 300 mu m. This may eliminate any need for focusing optics. Since the modified design does not affect the mask layout, ordering of the mask and fabrication of the test structures can begin immediately at the start of Phase 1.
NASA Astrophysics Data System (ADS)
Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki
2002-11-01
The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.
NASA Astrophysics Data System (ADS)
Bai, H. L.; Kevin, Hutchins, N.; Monty, J. P.
2018-05-01
Turbulence modifications over a rough wall with spanwise-varying roughness are investigated at a moderate Reynolds number Reτ ≈ 2000 (or Reθ ≈ 6400), using particle image velocimetry (PIV) and hotwire anemometry. The rough wall is comprised of spanwise-alternating longitudinal sandpaper strips of two different roughness heights. The ratio of high- and low-roughness heights is 8, and the ratio of high- and low-roughness strip width is 0.5. PIV measurements are conducted in a wall-parallel plane located in the logarithmic region, while hotwire measurements are made throughout the entire boundary layer in a cross-stream plane. In a time-average sense, large-scale counter-rotating roll-modes are observed in the cross-stream plane over the rough wall, with downwash and upwash common-flows displayed over the high- and low-roughness strips, respectively. Meanwhile, elevated and reduced streamwise velocities occur over the high- and low-roughness strips, respectively. Significant modifications in the distributions of mean vorticities and Reynolds stresses are observed, exhibiting features of spatial preference. Furthermore, spatial correlations and conditional average analyses are performed to examine the alterations of turbulence structures over the rough wall, revealing that the time-invariant structures observed are resultant from the time-average process of instantaneous turbulent events that occur mostly and preferentially in space.
Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph
2010-01-01
Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.
Preliminary Examination of Pulse Shapes From GLAS Ocean Returns
NASA Astrophysics Data System (ADS)
Swift, T. P.; Minster, B.
2003-12-01
We have examined GLAS data collected over the Pacific ocean during the commission phase of the ICESat mission, in an area where sea state is well documented. The data used for this preliminary analysis were acquired during two passes along track 95, on March 18 and 26 of 2003, along the stretch offshore southern California. These dates were chosen for their lack of cloud cover; large (4.0 m) and small (0.7 m) significant wave heights, respectively; and the presence of waves emanating from single distant Pacific storms. Cloud cover may be investigated using MODIS images (http://acdisx.gsfc.nasa.gov/data/dataset/MODIS/), while models of significant wave heights and wave vectors for offshore California are archived by the Coastal Data Information Program (http://cdip.ucsd.edu/cdip_htmls/models.shtml). We find that the shape of deep-ocean GLAS pulse returns is diagnostic of the state of the ocean surface. A calm surface produces near-Gaussian, single-peaked shot returns. In contrast, a rough surface produces blurred shot returns which often feature multiple peaks; these peaks are typically separated by total path lengths on the order of one meter. Gaussian curves fit to rough-water returns are therefore less reliable and lead to greater measurement error; outliers in the ocean surface elevation product are mostly the result of poorly fit low-energy shot returns. Additionally, beat patterns and aliasing artifacts may arise from the sampling of deep-ocean wave trains by GLAS footprints separated by 140m. The apparent wavelength of such patterns depends not only on the wave frequency, but also on the angle between the ICESat ground track and the azimuth of the wave crests. We present a preliminary analysis of such patterns which appears to be consistent with a simple geometrical model.
Li, Zheng; Venable, Richard M.; Rogers, Laura A.; Murray, Diana; Pastor, Richard W.
2009-01-01
Abstract Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5–0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen. PMID:19580753
NASA Astrophysics Data System (ADS)
Naaim, Florence; Picard, Ghislain; Bellot, Hervé; Arnaud, Laurent; Vionnet, Vincent
2017-04-01
Some elements of snow surface roughness, such as ripple or sastrugi, are a direct manifestation of wind erosion and in turn modify the near-surface wind field and consequently the horizontal snow mass fluxes. This leads to a negative feedback between wind strength and surface roughness that must be taken into account in numerical models. Formation of sastrugi, which are elongated metric-scale ridges of wind-packed snow whose longitudinal axis is parallel to the prevailing wind at the time of their formation, is still not well-understood. The first step to provide new information about the formation and evolution of such features is to integrate meteorological data and accurate description of geometrical properties. But the complex and dynamic surface of sastrugi cannot be easily captured by manual measurements (Bellot et al., 2014), which furthermore must be frequent as the formation of new landforms can happen very quickly. That's why the potential of a low-cost time-lapse terrestrial laserscan RLS (Picard et al., 2016) has been investigated during the winter seasons 2015-2016 and 2016-2017 at Col du Lac Blanc in the French Alps. This experimental test site, dedicated to drifting snow studies, and subject to the formation of sastrugi is well-suited for such study : accurate meteorological data, including drifting snow fluxes, are available each 10 minutes. RLS covered a surface area of around 200 m2 for a spatial horizontal resolution of nearly 2 cm and monitored successfully surface roughness once a day during the whole winter seasons. Sastrugi geometrical parameters, such as the frontal area and average height of roughness elements has been extracted from the RLS data and the sastrugi morphometry has be examined over two winter seasons in link with snow fall, drifting snow occurence and intensity and wind speed.
Structure of turbulent flow over regular arrays of cubical roughness
NASA Astrophysics Data System (ADS)
Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E.
The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.
Global statistics of microphysical properties of cloud-top ice crystals
NASA Astrophysics Data System (ADS)
van Diedenhoven, B.; Fridlind, A. M.; Cairns, B.; Ackerman, A. S.; Riedi, J.
2017-12-01
Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to "habit". We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.
Global Statistics of Microphysical Properties of Cloud-Top Ice Crystals
NASA Technical Reports Server (NTRS)
Van Diedenhoven, Bastiaan; Fridlind, Ann; Cairns, Brian; Ackerman, Andrew; Riedl, Jerome
2017-01-01
Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.
Wavelength dependence in radio-wave scattering and specular-point theory
NASA Technical Reports Server (NTRS)
Tyler, G. L.
1976-01-01
Radio-wave scattering from natural surfaces contains a strong quasispecular component that at fixed wavelengths is consistent with specular-point theory, but often has a strong wavelength dependence that is not predicted by physical optics calculations under the usual limitations of specular-point models. Wavelength dependence can be introduced by a physical approximation that preserves the specular-point assumptions with respect to the radii of curvature of a fictitious, effective scattering surface obtained by smoothing the actual surface. A uniform low-pass filter model of the scattering process yields explicit results for the effective surface roughness versus wavelength. Interpretation of experimental results from planetary surfaces indicates that the asymptotic surface height spectral densities fall at least as fast as an inverse cube of spatial frequency. Asymptotic spectral densities for Mars and portions of the lunar surface evidently decrease more rapidly.
Scintillometer measurements above the urban area of London
NASA Astrophysics Data System (ADS)
Pauscher, Lukas; Salmond, Jennifer; Grimmond, C. S. B.; Foken, Thomas
2010-05-01
The spatial heterogeneity of urban surfaces presents a particular challenge to the measurement of turbulent fluxes. This is particularly true close to the urban surface (in the roughness sub-layer (RSL)) where the mosaic of roof top and street canyon surfaces present a complex three dimensional source area. Scintillometery, which offers the ability to make path-averaged measurements of turbulent fluxes of heat and momentum, provides an alternative approach to obtaining more spatially representative data sets in the RSL. In this study three Scintec small aperture scintillometers (SLS 20) were used to measure the sensible heat flux (QH) at a densely built up site at Strand Campus, King's College London, UK. Two different surfaces (courtyard and rooftop) characteristic of the urban environment were investigated simultaneously. One of the SLS was aligned just atop a courtyard (z/zH= 0.9), while the other two were set up in two different heights (z/zH= 1 and z/zH= 1.25) above a rooftop line. Where zH is the mean building height and z is the measurement height above ground level. Special consideration was given to the estimation of the displacement height and the influence of the Monin-Obukov function used for the analysis. To estimate the contribution of the different surface types to the observed fluxes a footprint analysis was carried out for the two rooftop SLS and the eddy covariance system. Fluxes from the two SLS above the rooftop generally agreed well with each other and exhibited a pronounced diurnal cycle. They also showed similar patterns and magnitudes as those measured by an eddy covariance system located close by. In contrast, diurnal flux patterns derived from the measurements atop the courtyard showed marked differences, especially during day time when fluxes often remained smaller.
NASA Astrophysics Data System (ADS)
Vidal Vázquez, E.; Miranda, J. G. V.; Mirás-Avalos, J. M.; Díaz, M. C.; Paz-Ferreiro, J.
2009-04-01
Mathematical description of the spatial characteristics of soil surface microrelief still remains a challenge. Soil surface roughness parameters are required for modelling overland flow and erosion. The objective of this work was to evaluate the potential of multifractal for analyzing the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. In each plot soil surface microrelief was measured for times, with increasing amounts of natural rainfall using a pinmeter. The sampling scheme was a square grid with 25 x 25 mm point spacing and the plot size was 1350 x 1350 mm, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. All the investigated microrelief data sets exhibited, in general, scale properties, and the degree of multifractality showed wide differences between them. Multifractal analysis distinguishes two different patterns of soil surface microrelief, the first one has features close to monofractal spectra and the second clearly indicates multifractal behavior. Both, singularity spectra and generalized dimension spectra allow differentiating between soil tillage systems. In general, changes in values of multifractal parameters under simulated rainfall showed no or little correspondence with the evolution of the vertical microrelief component described by indices such as the standard deviation of the point height measurements. Multifractal parameters provided valuable information for chararacterizing the spatial features of soil surface microrelief as they were able to discriminate data sets with similar values for the vertical component of roughness.
The unique radar scattering properties of silicic lava flows and domes
NASA Technical Reports Server (NTRS)
Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.
1995-01-01
Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.
NASA Astrophysics Data System (ADS)
Rawat, Kishan Singh; Sehgal, Vinay Kumar; Pradhan, Sanatan; Ray, Shibendu S.
2018-03-01
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (σ o_{RH}), differences of circular vertical and horizontal σ o (σ o_{RV} {-} σ o_{RH}) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height ({RMS}_{height}). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., σ o. Near surface SM measurements were related to σ o_{RH}, σ o_{RV} {-} σ o_{RH} derived using 5.35 GHz (C-band) image of RISAT-1 and {RMS}_{height}. The roughness component derived in terms of {RMS}_{height} showed a good positive correlation with σ o_{RV} {-} σ o_{RH} (R2 = 0.65). By considering all the major influencing factors (σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}), an SEM was developed where SM (volumetric) predicted values depend on σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}. This SEM showed R2 of 0.87 and adjusted R2 of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement ({SM}_{Observed}) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash-Sutcliffe efficiency (NSE) = 0.91 ({≈ } 1), index of agreement (d) = 1, coefficient of determination (R2) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences ({S}d2) = 0.004. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on σ o. By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.
Ordered roughness effects on NACA 0026 airfoil
NASA Astrophysics Data System (ADS)
Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.
2016-10-01
The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.
Electron transport characteristics of silicon nanowires by metal-assisted chemical etching
NASA Astrophysics Data System (ADS)
Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong; Ji, An; Yang, Fuhua
2014-03-01
The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.
Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.
Villarrubia, J S; Tondare, V N; Vladár, A E
2016-01-01
The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.
NASA Astrophysics Data System (ADS)
Alekseychik, P. K.; Korrensalo, A.; Mammarella, I.; Vesala, T.; Tuittila, E.-S.
2017-06-01
Leaf area index (LAI) is an important parameter in natural ecosystems, representing the seasonal development of vegetation and photosynthetic potential. However, direct measurement techniques require labor-intensive field campaigns that are usually limited in time, while remote sensing approaches often do not yield reliable estimates. Here we propose that the bulk LAI of sedges (LAIs) can be estimated alternatively from a micrometeorological parameter, the aerodynamic roughness length for momentum (z0). z0 can be readily calculated from high-response turbulence and other meteorological data, typically measured continuously and routinely available at ecosystem research sites. The regressions of LAI versus z0 were obtained using the data from two Finnish natural sites representative of boreal fen and bog ecosystems. LAIs was found to be well correlated with z0 and sedge canopy height. Superior method performance was demonstrated in the fen ecosystem where the sedges make a bigger contribution to overall surface roughness than in bogs.
An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements
NASA Astrophysics Data System (ADS)
Kang, D.
2015-12-01
In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.
Effects of Cavities and Protuberances on Transition over Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei; Venkatachari, Balaji
2011-01-01
Surface protuberances and cavities on a hypersonic vehicle are known to cause several aerodynamic or aerothermodynamic issues. Most important of all, premature transition due to these surface irregularities can lead to a significant rise in surface heating. To help understand laminar-turbulent transition induced by protuberances or cavities on a Crew Exploration Vehicle (CEV) surface, high-fidelity numerical simulations are carried out for both types of trips on a CEV wind tunnel model. Due to the large bluntness, these surface irregularities reside in an accelerating subsonic boundary layer. For the Mach 6 wind tunnel conditions with a roughness Reynolds number Re(sub kk) of 800, it was found that a protuberance with a height to boundary layer thickness ratio of 0.73 leads to strong wake instability and spontaneous vortex shedding, while a cavity with identical geometry only causes a rather weak flow unsteadiness. The same cavity with a larger Reynolds number also leads to similar spontaneous vortex shedding and wake instability. The wake development and the formation of hairpin vortices for both protuberance and cavity were found to be qualitatively similar to that observed for an isolated hemisphere submerged in a subsonic, low speed flat-plate boundary layer. However, the shed vortices and their accompanying instability waves were found to be slightly stabilized downstream by the accelerating boundary layer along the CEV surface. Despite this stabilizing influence, it was found that the wake instability spreads substantially in both wall-normal and azimuthal directions as the flow is evolving towards a transitional state. Similarities and differences between the wake instability behind a protuberance and a cavity are investigated. Computations for the Mach 6 boundary layer over a slender cylindrical roughness element with a height to the boundary layer thickness of about 1.1 also shows spontaneous vortex shedding and strong wake instability. Comparisons of detailed flow structures associated with protuberances at subsonic and supersonic edge Mach numbers indicate distinctively different instability mechanisms.
Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.
2005-01-01
Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.
Some effects on SPM based surface measurement
NASA Astrophysics Data System (ADS)
Wenhao, Huang; Yuhang, Chen
2005-01-01
The scanning probe microscope (SPM) has been used as a powerful tool for nanotechnology, especially in surface nanometrology. However, there are a lot of false images and modifications during the SPM measurement on the surfaces. This is because of the complex interaction between the SPM tip and the surface. The origin is not only due to the tip material or shape, but also to the structure of the sample. So people are paying much attention to draw true information from the SPM images. In this paper, we present some simulation methods and reconstruction examples for the microstructures and surface roughness based on SPM measurement. For example, in AFM measurement, we consider the effects of tip shape and dimension, also the surface topography distribution in both height and space. Some simulation results are compared with other measurement methods to verify the reliability.
NASA Technical Reports Server (NTRS)
Greivenkamp, John E. (Editor); Young, Matt (Editor)
1989-01-01
Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yunker, Peter; Thomas, Jacob
Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.
Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi
NASA Astrophysics Data System (ADS)
Matthews, John Philip; Ostrovsky, Lev; Yoshikawa, Yutaka; Komori, Satoru; Tamura, Hitoshi
2017-08-01
The devastating tsunami triggered by the Tōhoku-Oki earthquake of 11 March 2011 caused a crisis at the Fukushima Daiichi nuclear power station where it overtopped the seawall defences. On retreating, the tsunami carried loose debris and wreckage seaward and marshalled buoyant material into extensive plumes. Widespread concern over the fate of these and numerous other Tōhoku tsunami depositions prompted attempts to simulate debris dispersion throughout the wider Pacific. However, the effects of locally perturbed wind and wave fields, active Langmuir circulation and current-induced attrition determine a complex and poorly understood morphology for large floating agglomerations. Here we show that the early post-tsunami evolution of marine-debris plumes near Fukushima Daiichi was also shaped by near-surface wind modifications that took place above relatively calm (lower surface roughness) waters covered by surface films derived from oil and other contaminants. High-spatial-resolution satellite tracking reveals faster-than-expected floating-debris motions and invigorated plume evolution within these regions, while numerical modelling of turbulent air flow over the low-drag, film-covered surface predicts typically metre-per-second wind strengthening at centimetric heights, sufficient to explain the observed debris-speed increases. Wind restructuring probably stimulates the dispersion of flotsam from both biological and anthropogenic sources throughout a global ocean of highly variable surface roughness.
Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples
NASA Astrophysics Data System (ADS)
Kuester, Matthew
2017-11-01
Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.
A theoretically based determination of bowen-ratio fetch requirements
Stannard, D.I.
1997-01-01
Determination of fetch requirements for accurate Bowen-ratio measurements of latent- and sensible-heat fluxes is more involved than for eddy-correlation measurements because Bowen-ratio sensors are located at two heights, rather than just one. A simple solution to the diffusion equation is used to derive an expression for Bowen-ratio fetch requirements, downwind of a step change in surface fluxes. These requirements are then compared to eddy-correlation fetch requirements based on the same diffusion equation solution. When the eddy-correlation and upper Bowen-ratio sensor heights are equal, and the available energy upwind and downwind of the step change is constant, the Bowen-ratio method requires less fetch than does eddy correlation. Differences in fetch requirements between the two methods are greatest over relatively smooth surfaces. Bowen-ratio fetch can be reduced significantly by lowering the lower sensor, as well as the upper sensor. The Bowen-ratio fetch model was tested using data from a field experiment where multiple Bowen-ratio systems were deployed simultaneously at various fetches and heights above a field of bermudagrass. Initial comparisons were poor, but improved greatly when the model was modified (and operated numerically) to account for the large roughness of the upwind cotton field.
NASA Astrophysics Data System (ADS)
Sprung, Detlev; van Eijk, Alexander M. J.; Günter, Willie; Griffith, Derek; Eisele, Christian; Sucher, Erik; Seiffer, Dirk; Stein, Karin
2017-09-01
Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 over a 1.8 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) at Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease with Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenario, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.69 km path from IMT to St. James, roughly perpendicular to the three 1.8 km paths.
Savoy, Elizabeth S; Escobedo, Fernando A
2012-11-20
When in contact with a rough solid surface, fluids with low surface tension, such as oils and alkanes, have their lowest free energy in the fully wetted state. For applications where nonwetting by these phillic fluids is desired, some barrier must be introduced to maintain the nonwetted composite state. One way to create this free-energy barrier is to fabricate roughness with reentrant geometry, but the question remains as to whether the free-energy barrier is sufficiently high to prevent wetting. Our goal is to quantify the free-energy landscape for the wetting transition of an oily fluid on a surface of nails and identify significant surface features and conditions that maximize the wetting free-energy barrier (ΔGfwd*). This is a departure from most work on wetting, which focuses on the equilibrium composite and wetted states. We use boxed molecular dynamics (BXD) (Glowacki, D. R.; Paci, E.; Shalashilin, D. V. J. Phys. Chem. B2009, 113, 16603-16611) with a modified control scheme to evaluate both the thermodynamics and kinetics of the transition over a range of surface affinities (chemistry). We find that the reentrant geometry of the nails does create a free-energy barrier to transition for phillic chemistry whereas a corresponding system on straight posts wets spontaneously and, that doubling the nail height more than doubles ΔGfwd*. For neutral to phillic chemistry, the dewetting free-energy barrier is at least an order of magnitude higher than that for wetting, indicating an essentially irreversible wetting transition. Transition rates from BXD simulations and the associated trends agree well with those in our previous study that used forward flux sampling to compute transition rates for similar systems.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard
1994-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
Does Surface Topography Play a Role in Taper Damage in Head-neck Modular Junctions?
Pourzal, Robin; Hall, Deborah J; Ha, Nguyen Q; Urban, Robert M; Levine, Brett R; Jacobs, Joshua J; Lundberg, Hannah J
2016-10-01
There are increasing reports of total hip arthroplasty failure subsequent to modular taper junction corrosion. The surfaces of tapers are machined to have circumferential machining marks, resulting in a surface topography of alternating peaks and valleys on the scale of micrometers. It is unclear if the geometry of this machined surface topography influences the degree of fretting and corrosion damage present on modular taper junctions or if there are differences between modular taper junction material couples. (1) What are the differences in damage score and surface topography between CoCr/CoCr and CoCr/Ti modular junctions? (2) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/CoCr couples? (3) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/Ti couples? Damage on stem and head tapers was evaluated with a modified Goldberg score. Differences in damage scores were determined between a group of 140 CoCr/CoCr couples and 129 CoCr/Ti couples using a chi-square test. For a subgroup of 70 retrievals, selected at random, we measured five variables, including initial stem taper machining mark height and spacing, initial head taper roughness, flexural rigidity, and taper angle mismatch. All retrievals were obtained at revision surgeries. None were retrieved as a result of metal-on-metal failures or were recalled implants. Components were chosen so there was a comparable number of each material couple and damage score. Machining marks around the circumference of the tapers were measured using white light interferometry to characterize the initial stem taper surface topography in terms of the height of and spacing between machining mark peaks as well as initial head taper roughness. The taper angle mismatch was assessed with a coordinate measuring machine. Flexural rigidity was determined based on measurements of gross taper dimensions and material properties. Differences of median or mean values of all variables between material couples were determined (Wilcoxon rank-sum tests and t-tests). The effect of all five variables along with time in situ on stem and head taper damage scores was tested with a multiple regression model. With 70 retrievals, a statistical power of 0.8 could be achieved for the model. Damage scores were different between CoCr/CoCr and CoCr/Ti modular taper junction material couples. CoCr/CoCr stem tapers were less likely to be mildly damaged (11%, p = 0.006) but more likely to be severely damaged (4%, p = 0.02) than CoCr/Ti stem tapers (28% and 1%, respectively). CoCr/CoCr couples were less likely to have moderately worn head tapers (7% versus 17%, p = 0.003). Stem taper machining mark height and spacing and head taper roughness were 11 (SD 3), 185 (SD 46), and 0.57 (SD 0.5) for CoCr/CoCr couples and 10 (SD 3), 170 (SD 56), and 0.64 (SD 0.4) for CoCr/Ti couples, respectively. There was no difference (p = 0.09, p = 0.1, p = 0.16, respectively) for either factor between material couples. Larger stem taper machining mark heights (p = 0.001) were associated with lower stem taper damage scores, and time in situ (p = 0.006) was associated with higher stem taper damage scores for CoCr/CoCr material couples. Stem taper machining marks that had higher peaks resulted in slower damage progression over time. For CoCr/Ti material couples, head taper roughness was associated with higher stem (p = 0.001) and head taper (p = 0.003) damage scores, and stem taper machining mark height, but not time in situ, was associated with lower stem taper damage scores (p = 0.007). Stem taper surface topography was related to damage scores on retrieved head-neck modular junctions; however, it affected CoCr/CoCr and CoCr/Ti couples differently. A taper topography of circumferential machining marks with higher peaks appears to enable slower damage progression and, subsequently, a reduction of the reported release of corrosion products. This may be of interest to implant designers and manufacturers in an effort to reduce the effects of metal release from modular femoral components.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
Method and Apparatus for Creating a Topography at a Surface
Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.
2008-11-11
Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.
Gliding Swifts Attain Laminar Flow over Rough Wings
Lentink, David; de Kat, Roeland
2014-01-01
Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
Microscopic description of a drop on a solid surface.
Ruckenstein, Eli; Berim, Gersh O
2010-06-14
Two approaches recently suggested for the treatment of macro- or nanodrops on smooth or rough, planar or curved, solid surfaces, based on fluid-fluid and fluid-solid interaction potentials are reviewed. The first one employs the minimization of the total potential energy of a drop by assuming that the drop has a well defined profile and a constant liquid density in its entire volume with the exception of the monolayer nearest to the surface where the density has a different value. As a result, a differential equation for the drop profile as well as the necessary boundary conditions are derived which involve the parameters of the interaction potentials and do not contain such macroscopic characteristics as the surface tensions. As a consequence, the macroscopic and microscopic contact angles which the drop profile makes with the surface can be calculated. The macroscopic angle is obtained via the extrapolation of the circular part of the drop profile valid at some distance from the surface up to the solid surface. The microscopic angle is formed at the intersection of the real profile (which is not circular near the surface) with the surface. The theory provides a relation between these two angles. The ranges of the microscopic parameters of the interaction potentials for which (i) the drop can have any height (volume), (ii) the drop can have a restricted height but unrestricted volume, and (iii) a drop cannot be formed on the surface were identified. The theory was also extended to the description of a drop on a rough surface. The second approach is based on a nonlocal density functional theory (DFT), which accounts for the inhomogeneity of the liquid density and temperature effects, features which are missing in the first approach. Although the computational difficulties restrict its application to drops of only several nanometers, the theory can be applied indirectly to macrodrops by calculating the surface tensions and using the Young equation to determine the contact angle. Employing the canonical ensemble version of the DFT, nanodrops on smooth and rough solid surfaces could be investigated and their characteristics, such as the drop profile, contact angle, as well as the fluid density distribution inside the drop can be determined as functions of the parameters of the interaction potentials and temperature. It was found that the contact angle of the drop has a simple (quasi)universal dependence on the energy parameter epsilon(fs) of the fluid-solid interaction potential and temperature. The main feature of this dependence is the existence of a fixed value theta(0) of the contact angle theta which separates the solid substrates (characterized by the energy parameter epsilon(fs) of the fluid-solid interaction potential) into two classes with respect to their temperature dependence. For theta>theta(0) the contact angle monotonously increases and for theta
Roughness Sensitivity Comparisons of Wind Turbine Blade Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Benjamin J.; White, Edward B.; Maniaci, David Charles
One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either un- representative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness onmore » an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1.6 x 10 6 and 4.0 x 10 6. Results are compared to previous tests of a NACA 63 3 -418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 63 3 -418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 63 3 -418 turbine and an NREL S814 turbine, respectively, operating with 200 μm roughness. These compare well to historical field measurements.« less
Roughness sensitivity comparisons of wind turbine blade sections
NASA Astrophysics Data System (ADS)
Wilcox, Benjamin Jacob
One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either unrepresentative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness on an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1:6 x 106 and 4:0 x 106. Results are compared to previous tests of a NACA 633-418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 633-418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 633-418 turbine and an NREL S814 turbine, respectively, operating with 200 microm roughness. These compare well to historical field measurements.
Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.
Polak, Leo; Wijngaarden, Rinke J
2016-12-01
Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vázquez-Tarrío, Daniel; Borgniet, Laurent; Liébault, Frédéric; Recking, Alain
2017-05-01
This paper explores the potential of unmanned aerial system (UAS) optical aerial imagery to characterize grain roughness and size distribution in a braided, gravel-bed river (Vénéon River, French Alps). With this aim in view, a Wolman field campaign (19 samples) and five UAS surveys were conducted over the Vénéon braided channel during summer 2015. The UAS consisted of a small quadcopter carrying a GoPro camera. Structure-from-Motion (SfM) photogrammetry was used to extract dense and accurate three-dimensional point clouds. Roughness descriptors (roughness heights, standard deviation of elevation) were computed from the SfM point clouds and were correlated with the median grain size of the Wolman samples. A strong relationship was found between UAS-SfM-derived grain roughness and Wolman grain size. The procedure employed has potential for the rapid and continuous characterization of grain size distribution in exposed bars of gravel-bed rivers. The workflow described in this paper has been successfully used to produce spatially continuous grain size information on exposed gravel bars and to explore textural changes following flow events.
Surface treatment of dental porcelain: CO2 laser as an alternative to oven glaze.
Sgura, Ricardo; Reis, Mariana Cavalcante; Hernandes, Antonio Carlos; de Abreu Fantini, Márcia Carvalho; Andreeta, Marcello Rubens Barsi; Medeiros, Igor Studart
2015-02-01
This work tested continuous CO2 laser as a surface treatment to dental porcelain and compared it to oven glaze (auto-glaze) by means of roughness and color parameters. Three commercial veneering porcelains with different crystalline content were tested: VM7, VM9, and VM13. Porcelain discs (3.5 × 2.0 mm, diameter × height) were sintered and had one side ground by a diamond bur (45 μm) simulating a chairside adjustment in a clinical office. Specimens (n = 7) were divided into the following groups: C--control (no treatment), G--auto-glaze (oven), and L--surface continuous irradiation with CO2 laser (Gem Laser, Coherent; λ = 10.6 μm). Laser was tested in three exposure times (3, 4, or 5 min) and two irradiances (45 and 50 W/cm(2)). Roughness parameters (Ra, Rz, and Rpm/Rz) were measured using a rugosimeter (Surftest 301, Mitutoyo). Color differences (ΔE) between the G and L groups were calculated (VITA Easyshade); ΔE values up to 3.3 were considered as not perceivable. A surface analysis was conducted by stereomicroscopy (Olympus SZ61) and SEM (Stereoscan 440, LEO). Crystalline content of specimens from groups C and L (50 W/cm(2), 5 min) was assessed by X-ray diffraction and then compared. Surface roughness (Ra and Rz) observed for laser-irradiated groups was similar to G for all studied porcelains. Rpm/Rz ratios were near 1.0 for all groups that indicated a sharp ridge profile for all specimens. Only one laser condition studied (50 W/cm(2), 3 min) from VM7 porcelain resulted in color difference (ΔE = 3.5) to G. Specimens irradiated with 50 W/cm(2) for 5 min presented the smoother surface observed by SEM, comparable to G. X-ray diffraction data revealed an increase in leucite crystallite size for VM9 and VM13 porcelains after laser treatment. Regarding roughness, continuous CO2 laser applied on porcelain surface was as effective as conventional oven auto-glaze.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Liu; E Garboczi; m Grigoriu
Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less
Installation and Initial Operation of DOE's 449-MHz Wind Profiling Radars on the U.S. West Coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Julia E.; Shaw, William J.; Morris, Victor R.
The U.S. Department of Energy (DOE), in collaboration with the National Oceanic and Atmospheric Administration (NOAA), has recently completed the installation of three new wind profiling radars on the Washington and Oregon coasts. These systems operate at a frequency of 449 MHz and provide mean wind profiles to a height of roughly 8 km, with the maximum measurement height depending on time-varying atmospheric conditions. This is roughly half the depth of the troposphere at these latitudes. Each system is also equipped with a radio acoustic sounding system (RASS), which provides a measure of the temperature profile to heights of approximatelymore » 2 km. Other equipment deployed alongside the radar includes a surface meteorological station and GPS for column water vapor. This project began in fiscal year 2014, starting with equipment procurements and site selection. In addition, environmental reviews, equipment assembly and testing, site access agreements, and infrastructure preparations have been performed. Finally, with equipment deployment with data collection and dissemination, the primary tasks of this project have been completed. The three new wind profiling radars have been deployed at airports near Coos Bay, OR, and Astoria, OR, and at an industrial park near Forks, WA. Data are available through the NOAA Earth Systems Research Laboratory Data Display website, and will soon be made available through the DOE Atmosphere to Electrons data archive and portal as well.« less
Creation of Woven Structures Impacting Self-cleaning Superoleophobicity
NASA Astrophysics Data System (ADS)
Lim, Jihye
For protection of human life from harmful or toxic liquids in working areas, solid surface resistance to liquid with low surface tension (e.g. oil) should be achieved in the outermost layer of protective clothing. Based on the literature review, multiscale structures were emphasized because they can increase roughness on a solid surface and create more void spaces of different sizes. The roughness and void spaces contribute to creating a liquid-vapor interface and reducing the liquid contact area to the solid surface. Woven fabric inherently consists of multiscale structures by its construction: microscale in a yarn structure and macroscale in a fabric structure. When the solid surface tension is low relative to oil, creating an appropriate structural geometry will become a critical way to obtain a superoleophobic surface for oil-resistance. Theoretical modeling and experiments with actual fabric samples were utilized to predict and prove the highest performing structural geometry in woven fabric, respectively. The theoretical geometric modeling accounted for the different weave structures, the yarn compression by the yarn flattening factor, e, and the void space by the void space ratio to the fiber or yarn diameter, T, impacting the liquid apparent contact angle on a fabric surface. The Cassie-Baxter equations were developed using Young's contact angle, thetae, thetae and e, or thetae, e, and T, to predict the liquid apparent contact angle for different geometries. In addition, to prevent a liquid's penetration into a solid structure, the ranges of the protuberance height (>> h2) and distance (< 4ℓ 2 cap) were predicted by the definition of the Laplace pressure, the capillary pressure, and the sagging phenomenon. Those predictions were in strong agreement with the results from the empirical experiment using the actual woven fabric samples. This study identified the impact of the geometries in yarn and woven fabric structures on the fabric resistance against oil through theoretical modeling and experiments. The results suggest particular weave structures, the range of the void space (or the protuberance distance) and the protuberance height in the yarn and fabric structures for the highest performing self-cleaning superoleophobic woven fabric surface.
NASA Astrophysics Data System (ADS)
Oubanas, H.; Gejadze, I.; Malaterre, P.-O.; Durand, M.; Wei, R.; Frasson, R. P. M.; Domeneghetti, A.
2018-03-01
Space-borne instruments can measure river water surface elevation, slope, and width. Remote sensing of river discharge in ungauged basins is far more challenging, however. This work investigates the estimation of river discharge from simulated observations of the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission using a variant of the classical variational data assimilation method "4D-Var." The variational assimilation scheme simultaneously estimates discharge, river bathymetry, and bed roughness in the context of a 1.5 D full Saint-Venant hydraulic model. Algorithms and procedures are developed to apply the method to fully ungauged basins. The method was tested on the Po and Sacramento Rivers. The SWOT hydrology simulator was used to produce synthetic SWOT observations at each overpass time by simulating the interaction of SWOT radar measurements with the river water surface and nearby land surface topography at a scale of approximately 1 m, thus accounting for layover, thermal noise, and other effects. SWOT data products were synthesized by vectorizing the simulated radar returns, leading to height and width estimates at 200 m increments along the river centerlines. The ingestion of simulated SWOT data generally led to local improvements on prior bathymetry and roughness estimates which allowed the prediction of river discharge at the overpass times with relative root mean squared errors of 12.1% and 11.2% for the Po and Sacramento Rivers, respectively. Nevertheless, equifinality issues that arise from the simultaneous estimation of bed elevation and roughness may prevent their use for different applications, other than discharge estimation through the presented framework.
Estimating the aerodynamic roughness of debris covered glacier ice
NASA Astrophysics Data System (ADS)
Quincey, Duncan; Smith, Mark; Rounce, David; Ross, Andrew; King, Owen; Watson, Scott
2017-04-01
Aerodynamic roughness length (z0), the height above the ground surface at which the extrapolated horizontal wind velocity profile drops to zero, is one of the most poorly parameterised elements of the glacier surface energy balance equation. Microtopographic methods for estimating z0 are becoming increasingly well used, but are rarely validated against independent measures and are yet to be comprehensively analysed for scale or data resolution dependency. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post-monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed measured over both sites enable us to derive measurements of aerodynamic roughness that reflect their observed surface characteristics (0.0184 m vs 0.0243 m). z0 at the second site also varied through time following snowfall (0.0055 m) and during its subsequent melt (0.0129 m), showing the importance of fine resolution topography for near-surface airflow. We conducted Structure from Motion Multi-View Stereo (SfM-MVS) surveys across each patch and calculated z0 using three microtopographic methods. The fully three-dimensional cloud-based approach is shown to be most stable across different scales and these z0 values are most correct in relative order when compared to the wind tower data. Popular profile-based methods perform less well providing highly variable values across different scales and when using data of differing resolution.
Hydraulic Roughness and Flow Resistance in a Subglacial Conduit
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.
2017-12-01
The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.
NASA Astrophysics Data System (ADS)
Bourlier, C.; Berginc, G.
2004-07-01
In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.
Micromorphological characterization of zinc/silver particle composite coatings
Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof
2015-01-01
ABSTRACT The aim of this study was to evaluate the three‐dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension D f, as well as height values distribution have been determined for the 3D nanostructure surfaces. Microsc. Res. Tech. 78:1082–1089, 2015. © 2015 The Authors published by Wiley Periodicals, Inc. PMID:26500164
Development of a novel nanoscratch technique for quantitative measurement of ice adhesion strength
NASA Astrophysics Data System (ADS)
Loho, T.; Dickinson, M.
2018-04-01
The mechanism for the way that ice adheres to surfaces is still not well understood. Currently there is no standard method to quantitatively measure how ice adheres to surfaces which makes ice surface studies difficult to compare. A novel quantitative lateral force adhesion measurement at the micro-nano scale for ice was created which shears micro-nano sized ice droplets (less than 3 μm in diameter and 100nm in height) using a nanoindenter. By using small ice droplets, the variables associated with bulk ice measurements were minimised which increased data repeatability compared to bulk testing. The technique provided post- testing surface scans to confirm that the ice had been removed and that measurements were of ice adhesion strength. Results show that the ice adhesion strength of a material is greatly affected by the nano-scale surface roughness of the material with rougher surfaces having higher ice adhesion strength.
NASA Technical Reports Server (NTRS)
Barrick, D. E.
1972-01-01
Using the specular point theory of scatter from a very rough surface, the average backscatter cross section per unit area per radar cell width is derived for a cell located at a given height above the mean sea surface. This result is then applied to predict the average radar cross section observed by a short-pulse altimeter as a function of time for two modes of operation: pulse-limited and beam-limited configurations. For a pulse-limited satellite altimeter, a family of curves is calculated showing the distortion of the leading edge of the receiver output signal as a function of sea state (i.e., wind speed). A signal processing scheme is discussed that permits an accurate determination of the mean surface position--even in high seas--and, as a by-product, the estimation of the significant seawave height (or wind speed above the surface). Comparison of these analytical results with experimental data for both pulse-limited and beam-limited operation lends credence to the model. Such a model should aid in the design of short-pulse altimeters for accurate determination of the geoid over the oceans, as well as for the use of such altimeters for orbital sea-state monitoring.
A scheme for computing surface layer turbulent fluxes from mean flow surface observations
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Storch, J.
1978-01-01
A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.
Describing soil surface microrelief by crossover length and fractal dimension
NASA Astrophysics Data System (ADS)
Vidal Vázquez, E.; Miranda, J. G. V.; Paz González, A.
2007-05-01
Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent self-affine models, semivariogram (SMV) and local root mean square (RMS). Both algorithms, SMV and RMS, gave equivalent results for D and l indices, irrespective of trend removal procedure, even if some bias was present which is in accordance with previous work. Treatments with two tillage operations had the greatest D values, irrespective of evolution stage under rainfall and trend removal procedure. Primary tillage had the greatest initial values of RR and l. Differences in D values between treatments with primary tillage and those with two successive tillage operations were significant for oriented but not for random conditions. The statistical index RR and the fractal indices l and D decreased with increasing cumulative rainfall following different patterns. The l and D decay from initial value was very sharp after the first 24.4 mm cumulative rainfall. For five out of six tillage treatments a significant relationship between D and l was found for the random microrelief conditions allowing a covariance analysis. It was concluded that using RR or l together with D best allow joint description of vertical and horizontal soil roughness variations.
Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651
Jomaa, Walid; Songmene, Victor; Bocher, Philippe
2014-01-01
The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534
Effect of an isolated semi-arid pine forest on the boundary layer height
NASA Astrophysics Data System (ADS)
Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias
2017-04-01
Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).
NASA Astrophysics Data System (ADS)
La Rocca, Michele; Adduce, Claudia; Sciortino, Giampiero; Pinzon, Allen Bateman
2008-10-01
The dynamics of a three-dimensional gravity current is investigated by both laboratory experiments and numerical simulations. The experiments take place in a rectangular tank, which is divided into two square reservoirs with a wall containing a sliding gate of width b. The two reservoirs are filled to the same height H, one with salt water and the other with fresh water. The gravity current starts its evolution as soon as the sliding gate is manually opened. Experiments are conducted with either smooth or rough surface on the bottom of the tank. The bottom roughness is created by gluing sediment material of different diameters to the surface. Five diameter values for the surface roughness and two salinity conditions for the fluid are investigated. The mathematical model is based on shallow-water theory together with the single-layer approximation, so that the model is strictly hyperbolic and can be put into conservative form. Consequently, a finite-volume-based numerical algorithm can be applied. The Godunov formulation is used together with Roe's approximate Riemann solver. Comparisons between the numerical and experimental results show satisfactory agreement. The behavior of the gravity current is quite unusual and cannot be interpreted using the usual model framework adopted for two-dimensional and axisymmetric gravity currents. Two main phases are apparent in the gravity current evolution; during the first phase the front velocity increases, and during the second phase the front velocity decreases and the dimensionless results, relative to the different densities, collapse onto the same curve. A systematic discrepancy is seen between the numerical and experimental results, mainly during the first phase of the gravity current evolution. This discrepancy is attributed to the limits of the mathematical formulation, in particular, the neglect of entrainment in the mathematical model. An interesting result arises from the influence of the bottom surface roughness; it both reduces the front velocity during the second phase of motion and attenuates the differences between the experimental and numerical front velocities during the first phase of motion.
1993-03-01
shape distortion. For recognitio , , however, camouflage rnr’f.ure" have to adjiist the tLugek signoawuie in more detail to the background clutter...ous trees, 4m height at ±100m range 4 ag.. _!tural field (seasonal plant growing) 5 ba~e soil (ploughed rough surface) 1) concrete -, face 7 Water...surlace (small pond, Im depth) 8 Up- and down hill slopes (bare seil and grass covered). North and South facing At regular intervals, the physical
Titan dune heights retrieval by using Cassini Radar Altimeter
NASA Astrophysics Data System (ADS)
Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.
2014-02-01
The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.
An Experimental Study of Roughness-Induced Instabilities in a Supersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Kegerise, Michael A.; King, Rudolph A.; Choudhari, Meelan; Li, Fei; Norris, Andrew
2014-01-01
Progress on an experimental study of laminar-to-turbulent transition induced by an isolated roughness element in a supersonic laminar boundary layer is reported in this paper. Here, the primary focus is on the effects of roughness planform shape on the instability and transition characteristics. Four different roughness planform shapes were considered (a diamond, a circle, a right triangle, and a 45 degree fence) and the height and width of each one was held fixed so that a consistent frontal area was presented to the oncoming boundary layer. The nominal roughness Reynolds number was 462 and the ratio of the roughness height to the boundary layer thickness was 0.48. Detailed flow- field surveys in the wake of each geometry were performed via hot-wire anemometry. High- and low-speed streaks were observed in the wake of each roughness geometry, and the modified mean flow associated with these streak structures was found to support a single dominant convective instability mode. For the symmetric planform shapes - the diamond and circular planforms - the instability characteristics (mode shapes, growth rates, and frequencies) were found to be similar. For the asymmetric planform shapes - the right-triangle and 45 degree fence planforms - the mode shapes were asymmetrically distributed about the roughness-wake centerline. The instability growth rates for the asymmetric planforms were lower than those for the symmetric planforms and therefore, transition onset was delayed relative to the symmetric planforms.
Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.
Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai
2005-10-01
A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M.
The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surfacemore » (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.« less
Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders
Zhang, Youqiang; Tian, Yu; Meng, Yonggang
2016-01-01
Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces. PMID:27156720
Effects of various debonding and adhesive clearance methods on enamel surface: an in vitro study.
Fan, Xiao-Chuan; Chen, Li; Huang, Xiao-Feng
2017-02-27
The purpose of this study was to evaluate orthodontic debonding methods by comparing the surface roughness and enamel morphology of teeth after applying two different debonding methods and three different polishing techniques. Forty eight human maxillary premolars, extracted for orthodontic reasons, were randomly divided into three groups. Brackets were bonded to teeth with RMGIC (Fuji Ortho LC, GC, Tokyo, Japan) (two groups, n = 18 each) after acid etching (30s), light cured for 40 s, exposed to thermocycling, then underwent 2 different bracket debonding methods: debonding pliers (Shinye, Hangzhou, China) or enamel chisel (Jinzhong, Shanghai, China); the third group (n = 12) comprised of untreated controls, with normal enamel surface roughness. In each debonded group, three cleanup techniques (n = 6 each) were tested, including (I) diamond bur (TC11EF, MANI, Tochigi, Japan) and One-Gloss (Midi, Shofu, Kyoto, Japan), (II) a Super-Snap disk (Shofu, Kyoto, Japan), and (III) One-Gloss polisher. The debonding methods were compared using the modified adhesive remnant index (ARI, 1-5). Cleanup efficiencies were assessed by recording operating times. Enamel surfaces were qualitatively and quantitatively evaluated with scanning electron microscopy (SEM) and surface roughness tester, respectively. Two surface roughness variables were evaluated: Ra (average roughness) and Rz (10-point height of irregularities). The ARI scores of debonded teeth were similar with debonding pliers and enamel chisel (Chi-square = 2.19, P > 0.05). There were significant differences between mean operating time in each group (F = 52.615, P < 0.01). The diamond bur + One-Gloss took the shortest operating time (37.92 ± 3.82 s), followed by the Super-Snap disk (56.67 ± 7.52 s), and the One-Gloss polisher (63.50 ± 6.99 s). SEM appearance provided by the One-Gloss polisher was the closest to the intact enamel surface, and surface roughness (Ra: 0.082 ± 0.046 μm; Rz: 0.499 ± 0.200 μm) was closest to the original enamel (Ra: 0.073 ± 0.048 μm; Rz: 0.438 ± 0.213 μm); the next best was the Super-Snap disk (Ra: 0.141 ± 0.073 μm; Rz: 1.156 ± 0.755 μm); then, the diamond bur + One-Gloss (Ra: 0.443 ± 0.172 μm; Rz: 2.202 ± 0.791 μm). Debonding pliers were safer than enamel chisels for removing brackets. Cleanup with One-Gloss polisher provided enamel surfaces closest to the intact enamel, but took more time, and Super-Snap disks provided acceptable enamel surfaces and efficiencies. The diamond bur was not suitable for removing adhesive remnant.
Effect of surface roughness on droplet splashing
NASA Astrophysics Data System (ADS)
Hao, Jiguang
2017-12-01
It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.
NASA Astrophysics Data System (ADS)
Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth
2016-11-01
Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.
Roughness Length as a Measure of the Effects of a Vegetative Windbreak
NASA Astrophysics Data System (ADS)
Kenny, W.; Maurer, K.; Bohrer, G.
2012-12-01
Vegetative windbreaks are often used as barriers to block the dispersion of particulate matter, particularly around agricultural facilities. Windbreaks and narrow forest strips alter the wind pattern and affect dispersion of particles and aerosols that are carried across. Our observations during two field campaigns, conducted near animal feeding lots where large flumes of dust are advected across edge-of-field windbreaks, suggest that sensible heat flux greatly affects the interaction between the flow and the windbreak. We used measurements at multiple heights upwind and downwind of the windbreak to calculate the background roughness length and the effective roughness length of the windbreak. While the flow is not fully adjusted at the wake of the windbreak, we use measurements at different times of the day as a sensitivity analysis to the strength of the buoyancy term within the theoretical surface similarity equation that includes the effects of the wind break. Clearly, calculated roughness length downwind of the windbreak is much greater than upwind of the windbreak, but as SHF increases, the difference in roughness length across the windbreak decreases indicating a decrease in the overall effect of the windbreak on flow. Our findings indicate that as SHF increases, windbreaks may not be able to play much of a role in affecting the dispersion of particulate matter, as the overall effects of windbreaks diminish.
Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing
NASA Astrophysics Data System (ADS)
Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon
2017-06-01
The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling SGS modeling enables substantial acceleration of the computing process. There is a visible reduction of the Ra parameter value for milled and burnished surfaces as the burnishing force rises. The tests determined an optimal burnishing force at a level of 500 N (lowest Ra = 0.24 μm). Further increase in the value of burnishing force turned out not to affect the surface roughness, which is consistent with the results obtained from experimental studies.
Lacunarity study of speckle patterns produced by rough surfaces
NASA Astrophysics Data System (ADS)
Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.
2017-11-01
In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.
Surface quality of silicon wafer improved by hydrodynamic effect polishing
NASA Astrophysics Data System (ADS)
Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi
2014-08-01
Differing from the traditional pad polishing, hydrodynamic effect polishing (HEP) is non-contact polishing with the wheel floated on the workpiece. A hydrodynamic lubricated film is established between the wheel and the workpiece when the wheel rotates at a certain speed in HEP. Nanoparticles mixed with deionized water are employed as the polishing slurry, and with action of the dynamic pressure, nanoparticles with high chemisorption due to the high specific surface area can easily reacted with the surface atoms forming a linkage with workpiece surface. The surface atoms are dragged away when nanoparticles are transported to separate by the flow shear stress. The development of grand scale integration put extremely high requirements on the surface quality on the silicon wafer with surface roughness at subnanometer and extremely low surface damage. In our experiment a silicon sample was processed by HEP, and the surface topography before and after polishing was observed by the atomic force microscopy. Experiment results show that plastic pits and bumpy structures on the initial surface have been removed away clearly with the removal depth of 140nm by HEP process. The processed surface roughness has been improved from 0.737nm RMS to 0.175nm RMS(10μm×10μm) and the section profile shows peaks of the process surface are almost at the same height. However, the machining ripples on the wheel surface will duplicate on the silicon surface under the action of the hydrodynamic effect. Fluid dynamic simulation demonstrated that the coarse surface on the wheel has greatly influence on the distribution of shear stress and dynamic pressure on the workpiece surface.
Design and characterization of textured surfaces for applications in the food industry
NASA Astrophysics Data System (ADS)
Lazzini, G.; Romoli, L.; Blunt, L.; Gemini, L.
2017-12-01
The aim of this work is to design, manufacture and characterize surface morphologies on AISI 316L stainless steel produced by a custom designed laser-texturing strategy. Surface textures were characterized at a micrometric dimension in terms of areal parameters compliant with ISO 25178, and correlations between these parameters and processing parameters (e.g. laser energy dose supplied to the material, repetition rate of the laser pulses and scanning velocity) were investigated. Preliminary efforts were devoted to the research of special requirements for surface morphology that, according to the commonly accepted research on the influence of surface roughness on cellular adhesion on surfaces, should discourage the formation of biofilms. The topographical characterization of the surfaces was performed with a coherence scanning interferometer. This approach showed that increasing doses of energy to the surfaces increased the global level of roughness as well as the surface complexity. Moreover, the behavior of the parameters S pk, S vk also indicates that, due to the ablation process, an increase in the energy dose causes an average increase in the height of the highest peaks and in the depth of the deepest dales. The study of the density of peaks S pd showed that none of the surfaces analyzed here seem to perfectly match the conditions dictated by the theories on cellular adhesion to confer anti-biofouling properties. However, this result seems to be mainly due to the limits of the resolving power of coherence scanning interferometry, which does not allow the resolution of sub-micrometric features which could be crucial in the prevention of cellular attachment.
NASA Astrophysics Data System (ADS)
Palma, J. L.; Rodrigues, C. V.; Lopes, A. S.; Carneiro, A. M. C.; Coelho, R. P. C.; Gomes, V. C.
2017-12-01
With the ever increasing accuracy required from numerical weather forecasts, there is pressure to increase the resolution and fidelity employed in computational micro-scale flow models. However, numerical studies of complex terrain flows are fundamentally bound by the digital representation of the terrain and land cover. This work assess the impact of the surface description on micro-scale simulation results at a highly complex site in Perdigão, Portugal, characterized by a twin parallel ridge topography, densely forested areas and an operating wind turbine. Although Coriolis and stratification effects cannot be ignored, the study is done under neutrally stratified atmosphere and static inflow conditions. The understanding gained here will later carry over to WRF-coupled simulations, where those conditions do not apply and the flow physics is more accurately modelled. With access to very fine digital mappings (<1m horizontal resolution) of both topography and land cover (roughness and canopy cover, both obtained through aerial LIDAR scanning of the surface) the impact of each element of the surface description on simulation results can be individualized, in order to estimate the resolution required to satisfactorily resolve them. Starting from the bare topographic description, in its coursest form, these include: a) the surface roughness mapping, b) the operating wind turbine, c) the canopy cover, as either body forces or added surface roughness (akin to meso-scale modelling), d) high resolution topography and surface cover mapping. Each of these individually will have an impact near the surface, including the rotor swept area of modern wind turbines. Combined they will considerably change flow up to boundary layer heights. Sensitivity to these elements cannot be generalized and should be assessed case-by-case. This type of in-depth study, unfeasible using WRF-coupled simulations, should provide considerable insight when spatially allocating mesh resolution for accurate resolution of complex flows.
Kinetic roughening and porosity scaling in film growth with subsurface lateral aggregation.
Reis, F D A Aarão
2015-06-01
We study surface and bulk properties of porous films produced by a model in which particles incide perpendicularly to a substrate, interact with deposited neighbors in its trajectory, and aggregate laterally with probability of order a at each position. The model generalizes ballisticlike models by allowing attachment to particles below the outer surface. For small values of a, a crossover from uncorrelated deposition (UD) to correlated growth is observed. Simulations are performed in 1+1 and 2+1 dimensions. Extrapolation of effective exponents and comparison of roughness distributions confirm Kardar-Parisi-Zhang roughening of the outer surface for a>0. A scaling approach for small a predicts crossover times as a(-2/3) and local height fluctuations as a(-1/3) at the crossover, independent of substrate dimension. These relations are different from all previously studied models with crossovers from UD to correlated growth due to subsurface aggregation, which reduces scaling exponents. The same approach predicts the porosity and average pore height scaling as a(1/3) and a(-1/3), respectively, in good agreement with simulation results in 1+1 and 2+1 dimensions. These results may be useful for modeling samples with desired porosity and long pores.
Statistical and wavelet analysis of the ATTO experiment in Amazonia rainforest
NASA Astrophysics Data System (ADS)
Bolzan, Mauricio
The study of the turbulence over a roughness surface is the most important subject in exchange of the gases between surface and atmosphere. This fact turns most important over surfaces like the Amazonia rainforest due its importance on local and regional climate. The Amazon Tall Tower Observatory - ATTO started its in February, 2012, with 10 dimensional ultrasonic anemometers bi and tri, in an 80 m tower of height. These anemometers were positioned in 78 m; 70 m; 62 m; 41 m; 57 m; 50 m; 45 m; 36 m; 30 m and 23 m of height and collected data were sampled at 1 Hz, 4 Hz and 10 Hz. The quadrant analysis and Wavelet transform were used to study the behavior of the Coherent Structure (CSs) over the Amazonia forest canopy in different atmospheric stability conditions. The results showed a fairly unique feature of the vertical wind profile near and below the inflection point. According to observations, the geometry of the canopy and terrain contributed to main influences for this aerodynamic effect of wind profile, as well as for the formation of coherent structures like "rolls" on the forest canopy in ATTO-CLAIRE site.
Sediment transport in the presence of large reef bottom roughness
Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Storlazzi, Curt; Symonds, Graham; Roelvink, Dano
2017-01-01
The presence of large bottom roughness, such as that formed by benthic organisms on coral reef flats, has important implications for the size, concentration, and transport of suspended sediment in coastal environments. A 3 week field study was conducted in approximately 1.5 m water depth on the reef flat at Ningaloo Reef, Western Australia, to quantify the cross-reef hydrodynamics and suspended sediment dynamics over the large bottom roughness (∼20–40 cm) at the site. A logarithmic mean current profile consistently developed above the height of the roughness; however, the flow was substantially reduced below the height of the roughness (canopy region). Shear velocities inferred from the logarithmic profile and Reynolds stresses measured at the top of the roughness, which are traditionally used in predictive sediment transport formulations, were similar but much larger than that required to suspend the relatively coarse sediment present at the bed. Importantly, these stresses did not represent the stresses imparted on the sediment measured in suspension and are therefore not relevant to the description of suspended sediment transport in systems with large bottom roughness. Estimates of the bed shear stresses that accounted for the reduced near-bed flow in the presence of large roughness vastly improved the relationship between the predicted and observed grain sizes that were in suspension. Thus, the impact of roughness, not only on the overlying flow but also on bed stresses, must be accounted for to accurately estimate suspended sediment transport in regions with large bottom roughness, a common feature of many shallow coastal ecosystems.
NASA Astrophysics Data System (ADS)
Zare, Maryam; Shokrollahi, Abbas; Seraji, Faramarz E.
2011-09-01
Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.
Shuttle Return To Flight Experimental Results: Protuberance Effects on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Horvath, Thomas J.
2006-01-01
The effect of isolated roughness elements on the windward boundary layer of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamic Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental effort was initiated to provide a roughness effects database for developing transition criteria to support on-orbit decisions to repair damage to the thermal protection system. Boundary layer transition results were obtained using trips of varying heights and locations along the centerline and attachment lines of 0.0075-scale models. Global heat transfer images using phosphor thermography of the Orbiter windward surface and the corresponding heating distributions were used to infer the state of the boundary layer (laminar, transitional, or turbulent). The database contained within this report will be used to formulate protuberance-induced transition correlations using predicted boundary layer edge parameters.
Organic photosensitive cells grown on rough electrode with nano-scale morphology control
Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI
2011-06-07
An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.
Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabrication
NASA Astrophysics Data System (ADS)
Zhao, Yiping; Jansen, Henri; de Boer, Meint; Berenschot, Erwin; Bouwes, Dominique; Gironès, Miriam; Huskens, Jurriaan; Tas, Niels
2010-09-01
Edge lithography in combination with fluorine-based plasma etching is employed to avoid the dependence on crystal orientation in single crystal silicon to create monolithic nanoridges with arbitrary contours. This is demonstrated by using a mask with circular structures and Si etching at cryogenic temperature with SF6+O2 plasma mixtures. Initially, the explored etch recipe was used with Cr as the masking material. Although nanoridges with perfect vertical sidewalls have been achieved, Cr causes severe sidewall roughness due to line edge roughness. Therefore, an SU-8 polymer is used instead. Although the SU-8 pattern definition needs further improvement, we demonstrate the possibility of fabricating Si nanoridges of arbitrary contours providing a width below 50 nm and a height between 25 and 500 nm with smooth surface finish. Artifacts in the ridge profile are observed and are mainly caused by the bird's beak phenomenon which is characteristic for the used LOCOS process.
NASA Astrophysics Data System (ADS)
Graf, Alexander; van de Boer, Anneke; Schüttemeyer, Dirk; Moene, Arnold; Vereecken, Harry
2013-04-01
The displacement height d and roughness length z0 are parameters of the logarithmic wind profile and as such these are characteristics of the surface, that are required in a multitude of meteorological modeling applications. Classically, both parameters are estimated from multi-level measurements of wind speed over a terrain sufficiently homogeneous to avoid footprint-induced differences between the levels. As a rule-of thumb, d of a dense, uniform crop or forest canopy is 2/3 to 3/4 of the canopy height h, and z0 about 10% of canopy height in absence of any d. However, the uncertainty of this rule-of-thumb becomes larger if the surface of interest is not "dense and uniform", in which case a site-specific determination is required again. By means of the eddy covariance method, alternative possibilities to determine z0 and d have become available. Various authors report robust results if either several levels of sonic anemometer measurements, or one such level combined with a classic wind profile is used to introduce direct knowledge on the friction velocity into the estimation procedure. At the same time, however, the eddy covariance method to measure various fluxes has superseded the profile method, leaving many current stations without a wind speed profile with enough levels sufficiently far above the canopy to enable the classic estimation of z0 and d. From single-level eddy covariance measurements at one point in time, only one parameter can be estimated, usually z0 while d is assumed to be known. Even so, results tend to scatter considerably. However, it has been pointed out, that the use of multiple points in time providing different stability conditions can enable the estimation of both parameters, if they are assumed constant over the time period regarded. These methods either rely on flux-variance similarity (Weaver 1990 and others following), or on the integrated universal function for momentum (Martano 2000 and others following). In both cases, iterations over the range of possible d values are necessary. We extended this set of methods by a non-iterative, regression based approach. Only a stability range of data is used in which the universal function is known to be approximately linear. Then, various types of multiple linear regression can be used to relate the terms of the logarithmic wind profile equation to each other, and derive z0 and d from the regression parameters. Two examples each of the two existing iterative approaches, and the new non-iterative one are compared to each other and to plausibility limits in three different agricultural crops. The study contains periods of growth as well as of constant crop height, also allowing for an examination of the relations between z0, d, and canopy height. Results indicate that estimated z0 values, even in absence of prescribed d values, are fairly robust, plausible and consistent across all methods. The largest deviations are produced by the two flux-variance similarity based methods. Estimates of d, in contrast, can be subject to implausible deviations with all methods, even after quality-filtering of input data. Again, the largest deviations occur with flux-variance similarity based methods. Ensemble averaging between all methods can reduce this problem, offering a potentially useful way of estimating d at more complex sites where the rule-of-thumb cannot be applied easily. Martano P (2000): Estimation of surface roughness length and displacement height from single-level sonic anemometer data. Journal of Applied Meteorology 39:708-715. Weaver HL (1990): Temperature and Humidity flux-variance relations determined by one-dimensional eddy correlation. Boundary-Layer Meteorology 53:77-91.
Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A
2008-12-02
A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Y.; Besant, R.W.; Chen, H.
1999-07-01
An experimental investigation of frost growth on a flat, cold surface supplied by subfreezing, turbulent, humid, parallel flow of air is presented. The operating conditions are typical of many commercial freezers. A test loop was constructed to perform the tests, and the frost height, frost mass concentration, and cold surface heat flux were measured using specially designed and calibrated instrumentation. Twenty tests were done for steady operating conditions, each starting with no initial frost accumulation, and were run for two to six hours giving 480 data samples. Measured results show that the frost characteristics differ significantly with frost growth datamore » taken previously for room temperature airflow. Depending on the temperature of the cold plate and the relative humidity of the subfreezing supply air, the frost could appear to be either smooth or rough. Smooth frost, which occurred at warmer plate temperatures and lower supply air relative humidities, gave rise to frost growth that was much thinner and denser than that for the rough, thick, low-density frost. Frost growth characteristics are correlated as a function of five independent variables (time, distance from the leading edge, cold plate temperature ratio, humidity ratio, and Reynolds number). These correlations are presented separately for the full data set, the rough frost data, and the smooth frost data.« less
Surface roughness: A review of its measurement at micro-/nano-scale
NASA Astrophysics Data System (ADS)
Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.
2018-01-01
The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.
NASA Astrophysics Data System (ADS)
Lague, M. M.; Swann, A. L. S.; Bonan, G. B.
2017-12-01
Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).
NASA Astrophysics Data System (ADS)
Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.
2015-12-01
The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.
Allowable SEM noise for unbiased LER measurement
NASA Astrophysics Data System (ADS)
Papavieros, George; Constantoudis, Vassilios; Gogolides, Evangelos
2018-03-01
Recently, a novel method for the calculation of unbiased Line Edge Roughness based on Power Spectral Density analysis has been proposed. In this paper first an alternative method is discussed and investigated, utilizing the Height-Height Correlation Function (HHCF) of edges. The HHCF-based method enables the unbiased determination of the whole triplet of LER parameters including besides rms the correlation length and roughness exponent. The key of both methods is the sensitivity of PSD and HHCF on noise at high frequencies and short distance respectively. Secondly, we elaborate a testbed of synthesized SEM images with controlled LER and noise to justify the effectiveness of the proposed unbiased methods. Our main objective is to find out the boundaries of the method in respect to noise levels and roughness characteristics, for which the method remains reliable, i.e the maximum amount of noise allowed, for which the output results cope with the controllable known inputs. At the same time, we will also set the extremes of roughness parameters for which the methods hold their accuracy.
ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land
NASA Technical Reports Server (NTRS)
Zwally, H. J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.;
2001-01-01
The Ice, Cloud and Land Elevation Satellite (ICESat) mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA's Earth Observing System (EOS) of satellites. Time-series of elevation changes will enable determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. Other scientific objectives of ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurements of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols. The accuracy of surface ranging is 10 cm, averaged over 60 m diameter laser footprints spaced at 172 m along-track. The orbital altitude will be around 600 km at an inclination of 94 deg with a 183-day repeat pattern. The onboard GPS receiver will enable radial orbit determinations to better than 5 cm, and star-trackers will enable footprints to be located to 6 m horizontally. The spacecraft attitude will be controlled to point the laser beam to within +/- 35 m of reference surface tracks at high latitudes. ICESat is designed to operate for 3 to 5 years and should be followed by successive missions to measure ice changes for at least 15 years.
Implementation of Combined Feather and Surface-Normal Ice Growth Models in LEWICE/X
NASA Technical Reports Server (NTRS)
Velazquez, M. T.; Hansman, R. J., Jr.
1995-01-01
Experimental observations have shown that discrete rime ice growths called feathers, which grow in approximately the direction of water droplet impingement, play an important role in the growth of ice on accreting surfaces for some thermodynamic conditions. An improved physical model of ice accretion has been implemented in the LEWICE 2D panel-based ice accretion code maintained by the NASA Lewis Research Center. The LEWICE/X model of ice accretion explicitly simulates regions of feather growth within the framework of the LEWICE model. Water droplets impinging on an accreting surface are withheld from the normal LEWICE mass/energy balance and handled in a separate routine; ice growth resulting from these droplets is performed with enhanced convective heat transfer approximately along droplet impingement directions. An independent underlying ice shape is grown along surface normals using the unmodified LEWICE method. The resulting dual-surface ice shape models roughness-induced feather growth observed in icing wind tunnel tests. Experiments indicate that the exact direction of feather growth is dependent on external conditions. Data is presented to support a linear variation of growth direction with temperature and cloud water content. Test runs of LEWICE/X indicate that the sizes of surface regions containing feathers are influenced by initial roughness element height. This suggests that a previous argument that feather region size is determined by boundary layer transition may be incorrect. Simulation results for two typical test cases give improved shape agreement over unmodified LEWICE.
Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.
Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert
2017-08-01
Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Xie, H.; Mäkelä, P.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Jain, R.; Awasthi, A. K.; Nitta, N. V.; Aschwanden, M. J.; Choudhary, D. P.
2013-06-01
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Xie, H.; Makela, P.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.
2013-01-01
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.
NASA Technical Reports Server (NTRS)
Berger, Karen T.; Rufer, Shann J.; Kimmel, Roger; Adamczak, David
2009-01-01
An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this report is focused on the Flight 5 configuration, one in a series of flight experiments. This report documents experimental measurements made over a range of Reynolds numbers and angles of attack on several scaled ceramic heat transfer models of the Flight 5 vehicle. The heat transfer rate was measured using global phosphor thermography and the resulting images and heat transfer rate distributions were used to infer the state of the boundary layer on the windside, leeside and side surfaces. Boundary layer trips were used to force the boundary layer turbulent, and a study was conducted to determine the effectiveness of the trips with various heights. The experimental data highlighted in this test report were used determine the allowable roughness height for both the windside and side surfaces of the vehicle as well as provide for future tunnel-to-tunnel comparisons.
Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects
NASA Technical Reports Server (NTRS)
Fung, A. K.
1983-01-01
The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.
NASA Technical Reports Server (NTRS)
Lumme, K.; Irvine, W. M.
1982-01-01
Narrowband and UBV photoelectric phase curves of the entire lunar disk and surface photometry of some craters have been interpreted using a newly developed generalized radiative transfer theory for planetary regoliths. The data are well fitted by the theory, yielding information on both macroscopic and microscopic lunar properties. Derived values for the integrated disk geometric albedo are considerably higher than quoted previously, because of the present inclusion of an accurately determined opposition effect. The mean surface roughness, defined as the ratio of the height to the radius of a typical irregularity, is found to be 0.9 + or - 0.1, or somewhat less than the mean value of 1.2 obtained for the asteroids. From the phase curves, wavelength-dependent values of the single scattering albedo and the Henyey-Greenstein asymmetry factor for the average surface particle are derived.
Time Resolved Tomographic PIV Measurements of Rough-Wall Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Miorini, Rinaldo; Zhang, Cao; Katz, Joseph
2013-11-01
Time resolved tomographic PIV is used to study flow structures in the outer region of a rough-wall turbulent boundary layer, focusing on imprints of the roughness on the outer layer. Measurements are performed in a transparent channel installed in the JHU optically index matched facility. The roughness consists of pyramids with height, k = 0.46 mm, and wavelength, λ = 3.2 mm, satisfying h/k = 55 (h = 25.4 mm is the channel half-height), k + = 64 and Re = 40000. The TPIV setup consists of four high-speed cameras operating at 3 kHz, which view the sample volume through acrylic prisms. The flow field is illuminated by an Nd:YLF laser. Following enhancement, calibration, and reconstruction, 643 voxels interrogation volumes with 0.75 overlap provide 3D velocity fields with spacing of 0.5883 mm3. Formation and transport of near-wall 3D U-shaped vortex structures, with base in front of the pyramids, and quasi-streamwise legs extending between pyramid crest lines are evident from the data. Extended streamwise regions of high wall-normal vorticity appear ``latched'' to the roughness elements close to the wall, but are transported downstream at higher elevations. Also evident are traveling streamwise low velocity streaks, which cover many roughness elements. Sponsored by NSF CBET and ONR.
Surface modification of ceramic and metallic alloy substrates by laser raster-scanning
NASA Astrophysics Data System (ADS)
Ramos Grez, Jorge Andres
This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400 microns. Above that height, dendrites appear to shift towards the [100] growth direction driven by the thermal gradient and solidification front velocity. This research demonstrated that surface modification by high speed raster-scanning a high power laser beam under controlled atmospheric conditions is a feasible and versatile technique that can accomplish diverse purposes involving metallic as well as ceramic surfaces.
Faulkner, William B; Shaw, Bryan W; Grosch, Tom
2008-10-01
As of December 2006, the American Meteorological Society/U.S. Environmental Protection Agency (EPA) Regulatory Model with Plume Rise Model Enhancements (AERMOD-PRIME; hereafter AERMOD) replaced the Industrial Source Complex Short Term Version 3 (ISCST3) as the EPA-preferred regulatory model. The change from ISCST3 to AERMOD will affect Prevention of Significant Deterioration (PSD) increment consumption as well as permit compliance in states where regulatory agencies limit property line concentrations using modeling analysis. Because of differences in model formulation and the treatment of terrain features, one cannot predict a priori whether ISCST3 or AERMOD will predict higher or lower pollutant concentrations downwind of a source. The objectives of this paper were to determine the sensitivity of AERMOD to various inputs and compare the highest downwind concentrations from a ground-level area source (GLAS) predicted by AERMOD to those predicted by ISCST3. Concentrations predicted using ISCST3 were sensitive to changes in wind speed, temperature, solar radiation (as it affects stability class), and mixing heights below 160 m. Surface roughness also affected downwind concentrations predicted by ISCST3. AERMOD was sensitive to changes in albedo, surface roughness, wind speed, temperature, and cloud cover. Bowen ratio did not affect the results from AERMOD. These results demonstrate AERMOD's sensitivity to small changes in wind speed and surface roughness. When AERMOD is used to determine property line concentrations, small changes in these variables may affect the distance within which concentration limits are exceeded by several hundred meters.
NASA Astrophysics Data System (ADS)
Parlange, M. B.; Katul, G. G.
1995-04-01
Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.
NASA Astrophysics Data System (ADS)
Zhou, Tianji; Zheng, Pengyuan; Pandey, Sumeet C.; Sundararaman, Ravishankar; Gall, Daniel
2018-04-01
The effect of the surface roughness on the electrical resistivity of metallic thin films is described by electron reflection at discrete step edges. A Landauer formalism for incoherent scattering leads to a parameter-free expression for the resistivity contribution from surface mound-valley undulations that is additive to the resistivity associated with bulk and surface scattering. In the classical limit where the electron reflection probability matches the ratio of the step height h divided by the film thickness d, the additional resistivity Δρ = √{3 /2 } /(g0d) × ω/ξ, where g0 is the specific ballistic conductance and ω/ξ is the ratio of the root-mean-square surface roughness divided by the lateral correlation length of the surface morphology. First-principles non-equilibrium Green's function density functional theory transport simulations on 1-nm-thick Cu(001) layers validate the model, confirming that the electron reflection probability is equal to h/d and that the incoherent formalism matches the coherent scattering simulations for surface step separations ≥2 nm. Experimental confirmation is done using 4.5-52 nm thick epitaxial W(001) layers, where ω = 0.25-1.07 nm and ξ = 10.5-21.9 nm are varied by in situ annealing. Electron transport measurements at 77 and 295 K indicate a linear relationship between Δρ and ω/(ξd), confirming the model predictions. The model suggests a stronger resistivity size effect than predictions of existing models by Fuchs [Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)], Sondheimer [Adv. Phys. 1, 1 (1952)], Rossnagel and Kuan [J. Vac. Sci. Technol., B 22, 240 (2004)], or Namba [Jpn. J. Appl. Phys., Part 1 9, 1326 (1970)]. It provides a quantitative explanation for the empirical parameters in these models and may explain the recently reported deviations of experimental resistivity values from these models.
NASA Astrophysics Data System (ADS)
Bhushan, Bharat; Jung, Yong Chae
2008-06-01
Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. When two hydrophilic bodies are brought into contact, any liquid present at the interface forms menisci, which increases adhesion/friction and the magnitude is dependent upon the contact angle. Certain plant leaves are known to be superhydrophobic in nature due to their roughness and the presence of a thin wax film on the leaf surface. Various leaf surfaces on the microscale and nanoscale have been characterized in order to separate out the effects of the microbumps and nanobumps and the wax on the hydrophobicity. The next logical step in realizing superhydrophobic surfaces that can be produced is to design surfaces based on understanding of the leaves. The effect of micropatterning and nanopatterning on the hydrophobicity was investigated for two different polymers with micropatterns and nanopatterns. Scale dependence on adhesion was also studied using atomic force microscope tips of various radii. Studies on silicon surfaces patterned with pillars of varying diameter, height and pitch values and deposited with a hydrophobic coating were performed to demonstrate how the contact angles vary with the pitch. The effect of droplet size on contact angle was studied by droplet evaporation and a transition criterion was developed to predict when air pockets cease to exist. Finally, an environmental scanning electron microscope study on the effect of droplet size of about 20 µm radius on the contact angle of patterned surfaces is presented. The importance of hierarchical roughness structure on destabilization of air pockets is discussed.
Gehrke, Sergio Alexandre; da Silva Neto, Ulisses Tavares
2016-06-01
The objective of the present study was to investigate the effect on bone tissue healing patterns in 1-mm area treated in the transmucosal surface of the abutment in the tibia of rabbits. Forty-six abutments were divided into two groups: control group (CG) with 14 abutments with smooth surface and experimental group (EG) with 32 abutments presenting a 1-mm area of the transmucosal surface treated through sandblasting with microparticles of titanium oxide followed by acid etching. Five samples of each group were analyzed using an optical laser profilometer for surface roughness characterization. Thirty-six Morse taper implants (3.5 mm in diameter and 7 mm in length) were inserted 1.5 mm subcrestal into the tibiae of nine rabbits. The implants were removed after 8, 10, and 12 weeks for histological analysis. The histological slides were prepared and analyzed qualitatively in relation to the new bone at the interface bone-abutment and quantitatively, in relation to bone height from the base of the implant. These data were computed and statistically compared inside the groups using analysis of variance and the U-test between groups for same time. Both groups exhibited bone growth in the direction and over the surface of the abutments, with good healing. However, the EG group showed an increased height of bone formation in the crestal direction, and highly significant differences were observed (p < .001) between these measured values. Under the limitations of the present study, histological follow-up at 8, 10, and 12 weeks showed that transmucosal 1-mm area of implant abutment with treatment of the surface facilitated the maintenance of bone height around the abutment compared with the same abutment with the totally smooth surface. © 2015 Wiley Periodicals, Inc.
Tribological changes in the articular cartilage of a human femoral head with avascular necrosis.
Seo, Eun-Min; Shrestha, Suman K; Duong, Cong-Truyen; Sharma, Ashish Ranjan; Kim, Tae-Woo; Vijayachandra, Ayyappan; Thompson, Mark S; Cho, Myung Guk; Park, Sungchan; Kim, Kwanghoon; Park, Seonghun; Lee, Sang-Soo
2015-06-29
The present study evaluated the tribological properties of the articular cartilage surface of the human femoral head with postcollapse stage avascular necrosis (AVN) using atomic force microscopy. The cartilage surface in the postcollapse stage AVN of the femoral head was reported to resemble those of disuse conditions, which suggests that the damage could be reversible and offers the possibilities of success of head-sparing surgeries. By comparing the tribological properties of articular cartilage in AVN with that of osteoarthritis, the authors intended to understand the cartilage degeneration mechanism and reversibility of AVN. Human femoral heads with AVN were explanted from the hip replacement surgery of four patients (60-83 years old). Nine cylindrical cartilage samples (diameter, 5 mm and height, 0.5 mm) were sectioned from the weight-bearing areas of the femoral head with AVN, and the cartilage surface was classified according to the Outerbridge Classification System (AVN0, normal; AVN1, softening and swelling; and AVN2, partial thickness defect and fissuring). Tribological properties including surface roughness and frictional coefficients and histochemistry including Safranin O and lubricin staining were compared among the three groups. The mean surface roughness Rq values of AVN cartilage increased significantly with increasing Outerbridge stages: Rq = 137 ± 26 nm in AVN0, Rq = 274 ± 49 nm in AVN1, and Rq = 452 ± 77 nm in AVN2. Significant differences in Rq were observed among different Outerbridge stages in all cases (p < 0.0001). The frictional coefficients (μ) also increased with increasing Outerbridge stages. The frictional coefficient values were μ = 0.115 ± 0.034 in AVN0, μ = 0.143 ± 0.025 in AVN1, and μ = 0.171 ± 0.039 in AVN2. Similarly to the statistical analysis of surface roughness, significant statistical differences were detected between different Outerbridge stages in all cases (p < 0.05). Both surface roughness and frictional coefficient of cartilage, which were linearly correlated, increased with increasing Outerbridge stages in postcollapse AVN. The underlying mechanism of these results can be related to proteoglycan loss within the articular cartilage that is also observed in osteoarthritis. With regard to the tribological properties, the cartilage degeneration mechanism in AVN was similar to that of osteoarthritis without reversibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kan; Jesse, Stephen; Wang, Shanfeng
2012-01-01
The thermal properties, morphological development, crystallization behavior, and miscibility of semicrystalline PCL and its 25, 50, and 75 wt% blends with amorphous PPF in spin-coated thin films crystallized at various crystallization temperatures (T{sub c}) from 25 to 52 C are investigated. The surface roughness of PPF/PCL ({phi}{sub PCL} = 75%) films increases with increasing T{sub c} and consequently the adsorption of serum proteins is also increased. No significant variance is found in surface hydrophilicity or in mouse MC3T3-E1 cell attachment, spreading, and proliferation on PPF/PCL ({phi}{sub PCL} = 75%) films crystallized isothermally at 25, 37, and 45 C, because ofmore » low ridge height, nonuniformity in structures, and PPF surface segregation« less
The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms
NASA Astrophysics Data System (ADS)
Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert
2018-01-01
We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.
1983-03-31
Height Analysis for 000 GMT, 22 Deec 1981 41 " 4 : "-6 ".. * °5 * d ... FORECAST EXPERIMENT 10: At 04 GMT 6 April 1982 a developing cvcont’ was moving...distribution of precipitation, Mlon. Wea. Rev., 107:5:-67. 140 Appendix C Inland Cyclogenesis Decision Assistance Procedure CI1. II II. N1 N(:Y(:lA4)(; %I~SI...cyclogenesis. 149 . .. ... . ,,. - 7 72 500 millibar heightt contours ". 500 millibar vorticity contours . L Surface Cyclone Fizue (2. N1 (’ridia i -I rough C(I
Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations
NASA Astrophysics Data System (ADS)
Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams
2011-12-01
Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available from aerosol scattering. Significant differences are seen in the retrieved vertical profiles of dust and water ice as a function of season. Dust typically extends to higher altitudes during the perihelion season. Ice aerosols are often observed to cap the dust layer during all seasons. Water vapor is observed to be deeply mixed in the perihelion season and confined near the surface in the aphelion season. The CRISM limb-geometry observations support the quantitative retrieval of aerosol and gas vertical profiles. These quantities cannot be retrieved using nadir observations, and they enable the study of important new science questions. The CRISM limbs also serve as a valuable supplement to the MRO/MCS limb profiles, enabling validation and multi-wavelength comparisons. Additional CRISM limb-geometry sets will continue to be taken approximately every two months (~30 degrees of Ls) as operations allow.
NASA Astrophysics Data System (ADS)
Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.
2016-12-01
With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.
The VHCF experimental investigation of FV520B-I with surface roughness Ry
NASA Astrophysics Data System (ADS)
Wang, J. L.; Zhang, Y. L.; Ding, M. C.; Zhao, Q. C.
2018-05-01
Different surface roughness type (Ra and Ry) has different effect on the VHCF failure and life. Ra is widely employed as the quantitative expression of the surface roughness, but there are few fatigue failure mechanism analysis and experimental study under surface roughness Ry. The VHCF experiment is conducted out using the specimen with different surface roughness values. The surface roughness Ry is employed as the major research object to investigate the relationship and distribution tendency between the Ry, fatigue life and the distance between internal inclusion and surface, and a new VHCF failure character is proposed.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.
We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less
Boundary-layer receptivity of sound with roughness
NASA Technical Reports Server (NTRS)
Saric, William S.; Hoos, Jon A.; Radeztsky, Ronald H.
1991-01-01
An experimental study of receptivity was carried out using an acoustical disturbance in the freestream. The receptivity was enhanced by using a uniform two-dimensional roughness strip (tape). The roughness strip generated the local adjustment in the flow needed to couple the long-wavelength sound wave with the short-wavelength T-S wave. The method proved to be highly sensitive, with slight changes in the forcing frequency or in the height of the 2D roughness element having a strong effect on the amplitude of the observed T-S wave.
Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2013-04-01
Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results show that the near-ground turbulence behaviour (2 to 5 times of the building height) is relatively sensitive to the changes in ARs. The wider the streets (decrease in AR), the higher the turbulence level was observed. A similar behaviour is observed on the ventilation performance in which the ACH was increased with decreasing AR. Interestingly, a peak ACH value was observed around AR = 1/10 and was slightly dropped thereafter at AR = 1/12. The observation is in line with our previous large-eddy simulation (LES) results. These findings indicate that variability of urban-like surfaces is important to the near-ground turbulent boundary layer structure. Additional measurements on the flows and dispersions over building surfaces will be undertaken on a variety of ARs and building height variations to elucidate the complex transport and pollutant dispersion mechanism in urban areas.
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xiao-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.
1999-01-01
Accurate measurements of surface heights and atmospheric backscatter have been demonstrated with the SLA, MOLA and LITE space lidar. Recent MOLA measurements of the Mars surface have 40 cm resolution and have reduced the global uncertainty in Mars topography from a few km to approx. 10 m. GLAS is a next generation lidar being developed as part of NASA's Icesat Mission for Earth orbit . The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, determine the height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. GLAS is scheduled to launch in summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will measure the vertical distance to the ice sheet from orbit with 1064 nm pulses from a Nd:Yag laser at 40 Hz. Each 5 nsec wide laser pulse is used for a single range measurement. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a I m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser, Errors in knowledge of the laser beam pointing angle can bias height measurements of sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam centroid to about 8 urad is required to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith whose measurements are combined with a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser pulse is measured with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the star camera and gyroscope permits the angular offsets of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog detector and profile the height and vertical structure of thicker clouds. Measurements at 532 nm use new highly sensitive photon counting detectors, and measure the height distributions of very thin clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
Ocean-Wave Dynamics Analysis during Hurricane Ida and Norida Using a Fully Coupled Modeling System
NASA Astrophysics Data System (ADS)
Olabarrieta, M.; Warner, J. C.; Armstrong, B. N.
2010-12-01
Extreme storms, such as hurricanes and extratropical storms play a dominant role in shaping the beaches of the East and Gulf Coasts of the United States. Future tropical depressions will be more intense than in the present climate (Assessment Report of IPCC, 2007) and therefore coastal areas are likely to become more susceptible to their effects. The major damage caused by these extreme events is associated with the duration of the storm, storm intensity, waves, and the total water levels reached during the storm. Numerical models provide a useful approach to study the spatial and temporal distribution of these parameters. However, the correct estimation of the total water levels and wind wave heights through numerical modeling requires accurate representation of the air-sea interface dynamics. These processes are highly complex due to the variable interactions between winds, ocean waves and currents near the sea surface. In the present research we use the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling system (Warner et al., 2010) to address the key role of the atmosphere-ocean-wave interactions during Hurricane Ida and its posterior evolution to NorIda, November 2009. This northeastern storm was one of the most costly in the past two decades and likely in the top five of the past century. One interesting aspect of the considered period is that it includes two very different atmospheric extreme conditions, a hurricane and a northeastern storm, developed in regions with very different oceanographic characteristics. By performing a suite of numerical runs we are able to isolate the effect of the interaction terms between the atmosphere (WRF model), the ocean (ROMS model) and the wave propagation and generation model (SWAN). Special attention is given to the role of the ocean surface roughness and high resolution SST fields on the atmospheric boundary layers dynamics and consequently these effects on the wind wave generation, surface currents and storm surge. The effects of ocean currents on wind wave generation and propagations are also analyzed. The model results are compared to different data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the NDBC and the National Tidal Database respectively. The results identified that the inclusion of the ocean roughness on the atmospheric module greatly improves the wind intensity estimation and therefore also the wind waves and the storm surge amplitude. For example, during the passage of Ida through the Gulf of Mexico the wind speeds are reduced due to the wave induced ocean roughness, resulting in better agreement with the measured winds. During NorIda, the effect of the surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. Three different ocean roughness closure models are analyzed, with the wave-age based closure model providing the best results. Ocean currents are also shown to affect wave spectral characteristics through the generation and propagation processes. Changes within 15% on the significant wave height are detected in areas affected by the main oceanic currents: the Gulf Stream and the Loop Current.
Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride.
Ccahuana, Vanessa Zulema S; Ozcan, Mutlu; Mesquita, Alfredo Mikail Melo; Nishioka, Renato Sussumo; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio
2010-01-01
This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF) gel exposure on the glassy matrix ceramics as a function of time. Disc-shaped ceramic specimens (N = 120, 10/per ceramic material) were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm) using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik), 2 for all-ceramic (Vitadur Alpha and Finesse Low Fusing) and 1 for both types of restorations (IPS d.SIGN). The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM) before (0 min) and after exposure to 1.23 % APF gel for 4 min and 60 min representing short- and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey's test (a=0.05). Significant effect of the type of the ceramics (p=0.0000, p=0.0031) and exposure time (p=0.0000) was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258). Both 4 min (0.44+/-0.1 - 0.81+/-0.2 microm) and 60 min (0.66+/-0.1 - 1.04+/-0.3 microm) APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33+/-0.2 - 0.68+/-0.2 microm) (p<0.05). There were no significant differences in percentage of mass loss between the ceramics at 4 min (p>0.05) but at 60 min exposure, IPS d.SIGN showed the highest percentage of mass loss (0.1151+/-0.11). The mean surface roughness for Vita Titankeramik (0.84+/-0.2 microm) and Finesse Low Fusing (0.74.+/-0.2 microm) was significantly higher than those of the other ceramics (0.59+/-0.1 microm - 0.49+/-0.1 microm) and Vita Titankeramik (p<0.05) regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for all ceramic materials [(r=0.518 (Vitadur Alpha), r=0.405 (Vita Omega 900), r=0.580 (Carmen), r=0.687 (IPS d.SIGN), r=0.442 (Finesse Low Fusing), r=0.572 (Vita Titankeramik), Pearson's correlation coefficient)]. The qualitative SEM analysis showed evidence of corrosive attack on all of ceramics at varying degrees. The ceramics indicated for either metal-ceramic or all-ceramic restorations were all vulnerable to surface texture changes and mass loss after short-term and long-term APF gel exposure.
Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru
2018-05-01
Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.
Intermode light diffusion in multimode optical waveguides with rough surfaces.
Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R
2005-06-01
A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.
Surface roughness measurement in the submicrometer range using laser scattering
NASA Astrophysics Data System (ADS)
Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.
2000-06-01
A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.
Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement
NASA Astrophysics Data System (ADS)
Yan, Pei-Yang; Zhang, Guojing; Gullikson, Eric M.; Goldberg, Ken A.; Benk, Markus P.
2015-03-01
Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.
Change of Martian surface height associated with polar cold spots
NASA Astrophysics Data System (ADS)
Ford, P. G.; Pettengill, G. H.
2003-12-01
For the past 30 years, orbiting microwave radiometers have observed anomalously low emission temperatures during Martian polar winters. While the physical surface temperature cannot drop significantly below 148K---the point at which CO2 starts to condense---radiometric temperatures of 110K or lower at 25μ wavelength are commonly found in isolated ``cold spots'' throughout both northern and southern polar winters. These form roughly circular patches, tens to hundreds of km in diameter, and persist for no more than a few days. Three models have been proposed to account for them: (a) an atmospheric effect that accompanies CO2 snowfall; (b) fresh surface deposits of CO2 snow; or (c) a change in the properties of CO2 slab ice. Following the success of Smith et al.1 in using the MOLA laser altimeter aboard Mars Global Surveyor to directly measure the growth of the winter polar caps, we have applied the same technique to ask whether cold spots are accompanied by a sudden change in surface height. To identify the cold spots, we first examined all polar observations made by the TES radiometer that was co-boresited with MOLA, and made gridded images of ∂ T / ∂ λ , the derivative of the brightness temperature wrt wavelength, 20μ <= λ <= 25μ , over 5o ranges in Ls. A total of 169 cold spots were readily located in the 3 winters (one northern, two southern) during which MOLA operated, and their times of first appearance were noted. We then examined the individual MOLA tracks that crossed these regions from 30 days before, to 30 days after, the cold spot appearances. Three sets of crossing points were assembled: (a) both pairs of tracks were made before the cold spot appearance, (b) both after the appearance, and (c) one before and the other after. For each crossing point, the surface height was interpolated from the 3 nearest altimeter footprints in each of the two tracks. The difference between the resulting pair of heights was averaged over all crossing points, and the RMS variance of the height differences was used as a measure of the statistical error in the measurement. Preliminary results show small height differences before the appearance of a cold spot, as expected, but no abrupt jump in surface height immediately after one appears. This suggests that the cold spots are not formed by deep (>50cm) CO2 snow deposits, but it cannot help us decide between the alternatives of CO2 snowfall or a change in slab ice properties. 1 Smith, Zuber, and Neumann, Science, {294}, 2141-2146, 2001.
Research of Surface Roughness Anisotropy
NASA Astrophysics Data System (ADS)
Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.
2017-04-01
The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M
2017-09-01
We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.
Non-linear boundary-layer receptivity due to distributed surface roughness
NASA Technical Reports Server (NTRS)
Amer, Tahani Reffet
1995-01-01
The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.
Role of urban surface roughness in road-deposited sediment build-up and wash-off
NASA Astrophysics Data System (ADS)
Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing
2018-05-01
Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.
Wang, Liancheng; Liu, Zhiqiang; Guo, Enqing; Yang, Hua; Yi, Xiaoyan; Wang, Guohong
2013-06-26
The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that of F-sample (~1.3 × 10(-6) Ω·cm(2), ~0.154 eV). Reasons accounting for this discrepancy has been detail investigated and discussed: for R-sample, wet-etching process caused surface state and spontaneous polarization variation will degraded its electrical characteristics. Metal on R-sample shows smoother morphology, however, the effect of metal deposition state on electrical characteristics is negligible. Metallization contact area for both samples has also been further considered. Electrical characteristics of metallization contact to both samples show degradation upon annealing. The VLED chip (1 mm × 1 mm), which was fabricated on the basis of a hybrid scheme, coupling the advantage of F- and R-sample, shows the lowest forward voltage (2.75 V@350 mA) and the highest light output power.
NASA Astrophysics Data System (ADS)
Burrage, D. M.; Wesson, J. C.; Wang, D. W.; Garrison, J. L.; Zhang, H.
2017-12-01
The launch of the Cyclone Global Navigation Satellite System (CYGNSS) constellation of 8 microsats carrying GPS L-band reflectometers on 15 Dec., 2016, and continued operation of the L-band radiometer on the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite, allow these complementary technologies to coincidentally retrieve Ocean surface roughness (Mean Square Slope, MSS), Surface Wind speed (WSP), and Sea Surface Salinity (SSS). The Carolina Offshore (Caro) airborne experiment was conducted jointly by NRL SSC and Purdue University from 7-11 May, 2017 with the goal of under-flying CYGNSS and SMOS and overflying NOAA buoys, to obtain high-resolution reflectometer and radiometer data for combined retrieval of MSS, SSS and WSP on the continental shelf. Airborne instruments included NRL's Salinity Temperature and Roughness Remote Scanner (STARRS) L-, C- and IR-band radiometer system, and a 4-channel dual-pol L-band (GPS) and S-band (XM radio) reflectometer, built by Purdue University. Flights either crossed NOAA buoys on various headings, or intersected with specular point ground tracks at predicted CYGNSS overpass times. Prevailing winds during Caro were light to moderate (1-8 m/s), so specular returns dominated the reflectometer Delay Doppler Maps (DDMs), and MSS was generally low. In contrast, stronger winds (1-12 m/s) and rougher seas (wave heights 1-5 m) were experienced during the preceding Maine Offshore (Maineo) experiment in March, 2016. Several DDM observables were used to retrieve MSS and WSP, and radiometer brightness temperatures produced Sea Surface Temperature (SST), SSS and also WSP estimates. The complementary relationship of Kirchoff's formula e+r=1, between radiometric emissivity, e, and reflectivity, r, was exploited to seek consistent estimates of MSS, and use it to correct the SSS retrievals for sea surface roughness effects. The relative performance and utility of the various airborne and satellite retrieval algorithms were assessed, and the coincident buoy, aircraft and satellite retrievals of MSS, WSP and SSS were compared. During Caro WSP from the different instruments generally agreed. Some anomalously high wind retrievals found here and elsewhere in current CYGNSS Level 2 data may yield to the science team's recent L1 calibration revision.
Mazur, Rafał; Polakowski, Cezary; Bieganowski, Andrzej
2017-01-01
Splash is the first stage of a negative phenomenon–soil erosion. The aim of this work was to describe the crown formation quantitatively (as part of the splash erosion) and compare the course of this phenomenon on the thin water film formed on a smooth glass surface and on the surface of saturated soil. The height of the falling water drop was 1.5 m. The observation of the crowns was carried out by high-speed cameras. The static and dynamic parameters of crown formation were analysed. It was found that the crowns formed on the water film covering the saturated soil surface were smaller and the time intervals of their existence were shorter. In addition, the shapes of the crowns were different from those created on the water layer covering the glass surface. These differences can be explained by the slightly different values of surface tension and viscosity of the soil solution, the greater roughness of the soil surface and the lower thickness of the water film on the soil surface. PMID:28750072
Beczek, Michał; Ryżak, Magdalena; Sochan, Agata; Mazur, Rafał; Polakowski, Cezary; Bieganowski, Andrzej
2017-01-01
Splash is the first stage of a negative phenomenon-soil erosion. The aim of this work was to describe the crown formation quantitatively (as part of the splash erosion) and compare the course of this phenomenon on the thin water film formed on a smooth glass surface and on the surface of saturated soil. The height of the falling water drop was 1.5 m. The observation of the crowns was carried out by high-speed cameras. The static and dynamic parameters of crown formation were analysed. It was found that the crowns formed on the water film covering the saturated soil surface were smaller and the time intervals of their existence were shorter. In addition, the shapes of the crowns were different from those created on the water layer covering the glass surface. These differences can be explained by the slightly different values of surface tension and viscosity of the soil solution, the greater roughness of the soil surface and the lower thickness of the water film on the soil surface.
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media.
Bradford, Scott A; Torkzaban, Saeed; Shapiro, Alexander
2013-06-11
A balance of applied hydrodynamic (T(H)) and resisting adhesive (T(A)) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height h(r) to determine the fraction of the solid surface area that contributes to colloid immobilization (S(f)*) under unfavorable attachment conditions. This model considers resistance due to deformation and the horizontal component of the adhesive force (F(AT)), spatial variations in the pore scale velocity distribution, and the influence of hr on lever arms for T(H) and T(A). Values of S(f)* were calculated for a wide range of physicochemical properties to gain insight into mechanisms and factors influencing colloid immobilization. Colloid attachment processes were demonstrated to depend on solution ionic strength (IS), the colloid radius (r(c)), the Young's modulus (K), the amount of chemical heterogeneity (P+), and the Darcy velocity (q). Colloid immobilization was also demonstrated to occur on a rough surface in the absence of attachment. In this case, S(f)* depended on IS, r(c), the roughness fraction (f0), h(r), and q. Roughness tended to enhance T(A) and diminish T(H). Consequently, the effect of IS on S(f)* was enhanced by h(r) relative to attachment. In contrast, the effects of r(c) and q on S(f)* were diminished by hr in comparison to attachment. Colloid immobilization adjacent to macroscopic roughness locations shares many similarities to grain-grain contact points and may be viewed as a type of straining process. In general, attachment was more important for higher IS and variance in the secondary minimum, and for smaller r(c), q, and K, but diffusion decreased these values. Conversely, straining was dominant for the opposite conditions. Discrepancies in the literature on mechanisms of colloid retention are likely due to a lack of consideration of all of these factors.
Analogies to Demonstrate the Effect of Roughness on Surface Wettability
ERIC Educational Resources Information Center
Yolcu, Hasan
2017-01-01
This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…
Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.
Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J
2012-11-30
This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
High wear resistance of femoral components coated with titanium nitride: a retrieval analysis.
Fabry, Christian; Zietz, Carmen; Baumann, Axel; Ehall, Reinhard; Bader, Rainer
2017-05-20
The objective of this study was to evaluate the in vivo wear resistance of cobalt-chromium femoral components coated with titanium nitride (TiN). Our null hypothesis was that the surface damage and the thickness of the TiN coating do not correlate with the time in vivo. Twenty-five TiN-coated bicondylar femoral retrievals with a mean implantation period of 30.7 ± 11.7 months were subjected to an objective surface damage analysis with a semi-quantitative assessment method. A visual examination of scratches, indentations, notches and coating breakthroughs of the surfaces was performed. The roughness and the coating thickness of the TiN coating were evaluated in the main articulation regions. Narrow scratches and indentations in the range of low flexion angles on the retrieval surfaces were the most common modes of damage. There was no evidence of delamination on the articulation surface but rather at the bottom of isolated severe indentations or notches. An analysis of three retrievals revealed a coating breakthrough in the patellofemoral joint region, resulting from patella maltracking and a dislocation. The arithmetical mean roughness of the TiN surface slightly increased with the implantation period. In contrast, the maximum peak height of the roughness profile was reduced at the condyles of the retrieved components in comparison with new, unused surfaces. No significant association between the coating thickness and implantation period was determined. Moreover, the measured values were retained in the range of the initial coating thickness even after several years of in vivo service. As was demonstrated by the results of this study, the surface damage to the TiN coating did not deteriorate with the implantation period. The calculated damage scores and the measured coating thickness in particular both confirmed that the TiN coating provides low wear rates. Our findings support the use of wear-resistant TiN-coated components in total knee arthroplasty with the objective of reducing the risk of aseptic loosening. However, in terms of TiN-coated femoral components, particular attention should be paid to a correct patellar tracking in order to avoid wear propagation at the implant.
Smoothed Two-Dimensional Edges for Laminar Flow
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.
NASA Astrophysics Data System (ADS)
Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter
2017-06-01
Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve. Nevertheless, these models are used to study the characteristics of the measured signals occurring at edges of different step height compared to signals occurring at plateaus. Moreover, a special calibration sample with continuous step height variation was developed to reduce the impact of unknown sample properties. We analyzed the signals in both, the spatial and the spatial frequency domain, and found systematic signal changes that will be discussed. As a consequence, these simulations will help to interpret measurement results appropriately and to improve them by proper parameter settings and calibration and finally to increase the edge detection accuracy.
Shaping drops with textured surfaces
NASA Astrophysics Data System (ADS)
Ehlinger, Quentin; Biance, Anne-Laure; Ybert, Christophe
2017-11-01
When a drop impacts a substrate, it can behave differently depending on the nature of the surface and of the liquid (spreading, bouncing, resting, splashing ...). Understanding these behaviors is crucial to predict the drop morphology during and after impact. Whereas surface wettability has extensively been studied, the effect of surface roughness remains hardly explored. In this work, we consider the impact of a drop in a pure non-wetting situation by using superheated substrates i.e. in the Leidenfrost regime. The surface texture consists of a well-controlled microscopic defect shaped with photolithography on a smooth silicon wafer. Different regimes are observed, depending on the distance between the defect and the impact point and the defect size. Comparing the lamella thickness versus the defect height proves relevant as the transition criteria between regimes. Others characteristics of the drop behavior (direction of satellite droplet ejection, lamella rupture) are also well captured by inertial/capillary models. Drop impacts on multiple defects are also investigated and drop shape well predicted considering the interactions between the local flow and the defects.
Specification for a surface-search radar-detection-range model
NASA Astrophysics Data System (ADS)
Hattan, Claude P.
1990-09-01
A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.
Surface study of irradiated sapphires from Phrae Province, Thailand using AFM
NASA Astrophysics Data System (ADS)
Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.
2017-09-01
The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.
2016-08-01
Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.
Numerical analysis of the bucket surface roughness effects in Pelton turbine
NASA Astrophysics Data System (ADS)
Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.
2013-12-01
The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.
Wetting properties of molecularly rough surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.
2015-09-14
We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less
Aerodynamic Parameters of a UK City Derived from Morphological Data
NASA Astrophysics Data System (ADS)
Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.
2013-03-01
Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.
NASA Astrophysics Data System (ADS)
Basirin, Hammadi bin Mohd; Nawi, Ismail bin Haji Mohd
2017-04-01
This research is an approach to improve the surface roughness for acrylic door panel by using polishing process. The polishing process involve is sanding process by 3 types of sand paper. The sanding process used to improve the surface roughness by using the different grit sizes of sand paper. The experiment was done by using two types of material s, that is plywood and medium density board (MDF). These two materials are the main materials in producing the arcrylic door panel. The surface roughness of these two materials affects the qualities and quantities of the acrylic door panel. The surface structure was measured by using Optical Microscope and Scanning Electron Microscope (SEM) and the surface roughness was measured by using Mitutoyo surfest SJ 400 Tester. Results indicates that using the different types of grit are influence the surface roughness of the material. When the higher types of grit sizes had been used, the average roughness of the surface are decrease. In summary, a good surface roughness condition produced when using the higher types of grit sizes sand paper.
Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity
NASA Technical Reports Server (NTRS)
Olsen, Lola M.
2004-01-01
Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.
Engineered plant biomass feedstock particles
Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA
2011-10-11
A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.
Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface
NASA Astrophysics Data System (ADS)
Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung
2018-04-01
We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.
Effect of barnacle fouling on ship resistance and powering.
Demirel, Yigit Kemal; Uzun, Dogancan; Zhang, Yansheng; Fang, Ho-Chun; Day, Alexander H; Turan, Osman
2017-11-01
Predictions of added resistance and the effective power of ships were made for varying barnacle fouling conditions. A series of towing tests was carried out using flat plates covered with artificial barnacles. The tests were designed to allow the examination of the effects of barnacle height and percentage coverage on the resistance and effective power of ships. The drag coefficients and roughness function values were evaluated for the flat plates. The roughness effects of the fouling conditions on the ships' frictional resistances were predicted. Added resistance diagrams were then plotted using these predictions, and powering penalties for these ships were calculated using the diagrams generated. The results indicate that the effect of barnacle size is significant, since a 10% coverage of barnacles each 5 mm in height caused a similar level of added power requirements to a 50% coverage of barnacles each 1.25 mm in height.
NASA Astrophysics Data System (ADS)
Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.
2008-12-01
The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.
Long-Wavelength Elastic Wave Propagation Across Naturally Fractured Rock Masses
NASA Astrophysics Data System (ADS)
Mohd-Nordin, Mohd Mustaqim; Song, Ki-Il; Cho, Gye-Chun; Mohamed, Zainab
2014-03-01
Geophysical site investigation techniques based on elastic waves have been widely used to characterize rock masses. However, characterizing jointed rock masses by using such techniques remains challenging because of a lack of knowledge about elastic wave propagation in multi-jointed rock masses. In this paper, the roughness of naturally fractured rock joint surfaces is estimated by using a three-dimensional (3D) image-processing technique. The classification of the joint roughness coefficient (JRC) is enhanced by introducing the scan line technique. The peak-to-valley height is selected as a key indicator for JRC classification. Long-wavelength P-wave and torsional S-wave propagation across rock masses containing naturally fractured joints are simulated through the quasi-static resonant column (QSRC) test. In general, as the JRC increases, the S-wave velocity increases within the range of stress levels considered in this paper, whereas the P-wave velocity and the damping ratio of the shear wave decrease. In particular, the two-dimensional joint specimen underestimates the S-wave velocity while overestimating the P-wave velocity. This suggests that 3D joint surfaces should be implicated to obtain the reliable elastic wave velocity in jointed rock masses. The contact characteristic and degree of roughness and waviness of the joint surface are identified as a factor influencing P-wave and S-wave propagation in multi-jointed rock masses. The results indicate a need for a better understanding of the sensitivity of contact area alterations to the elastic wave velocity induced by changes in normal stress. This paper's framework can be a reference for future research on elastic wave propagation in naturally multi-jointed rock masses.
Effect of engraving speeds of CO₂ laser irradiation on In-Ceram Alumina roughness: a pilot study.
Ersu, Bahadır; Ersoy, Orkun; Yuzugullu, Bulem; Canay, Senay
2015-05-01
The aim of the study was to determine the effect of CO₂ laser on surface roughness of In-Ceram-Alumina-ceramic. Four aluminum-oxide ceramic disc specimens were prepared of In-Ceram Alumina. Discs received CO₂ laser irradiation with different engraving speeds (100, 400, 600 and 800 mm/min) as a surface treatment. The roughness of the surfaces was measured on digital elevation models reconstructed from stereoscopic images acquired by scanning-electron-microscope. Surface roughness data were analyzed with One-Way-Analysis-of-Variance at a significance level of p<0.05. There was no significant difference between the roughness values (p=0.82). Due to higher laser durations, partial melting signs were observed on the surfaces. Tearing, smearing and swelling occurred on melted surfaces. Swelling accompanying melting increased the surface roughness, while laser power was fixed and different laser engraving speeds were applied. Although different laser irradiation speeds did not affect the roughness of ceramic surfaces, swelling was observed which led to changes on surfaces.
Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor
NASA Astrophysics Data System (ADS)
Komatsu, K.
2009-12-01
Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall’s (1978) empirical formula and Naess’s (1985) distribution for a narrow-band Gaussian sea. Fig.1. Time series of the ratio of the significant wave height to the maximum wave height in 20 minutes sampling period observed by a drifting buoy with a GPS sensor
Rock discontinuity surface roughness variation with scale
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2017-04-01
ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.
2017-05-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.
Improved Estimates of Temporally Coherent Internal Tides and Energy Fluxes from Satellite Altimetry
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)
2002-01-01
Satellite altimetry has opened a surprising new avenue to observing internal tides in the open ocean. The tidal surface signatures are very small, a few cm at most, but in many areas they are robust, owing to averaging over many years. By employing a simplified two dimensional wave fitting to the surface elevations in combination with climatological hydrography to define the relation between the surface height and the current and pressure at depth, we may obtain rough estimates of internal tide energy fluxes. Initial results near Hawaii with Topex/Poseidon (T/P) data show good agreement with detailed 3D (three dimensional) numerical models, but the altimeter picture is somewhat blurred owing to the widely spaced T/P tracks. The resolution may be enhanced somewhat by using data from the ERS-1 (ESA (European Space Agency) Remote Sensing) and ERS-2 satellite altimeters. The ERS satellite tracks are much more closely spaced (0.72 deg longitude vs. 2.83 deg for T/P), but the tidal estimates are less accurate than those for T/P. All altimeter estimates are also severely affected by noise in regions of high mesoscale variability, and we have obtained some success in reducing this contamination by employing a prior correction for mesoscale variability based on ten day detailed sea surface height maps developed by Le Traon and colleagues. These improvements allow us to more clearly define the internal tide surface field and the corresponding energy fluxes. Results from throughout the global ocean will be presented.
Determining Surface Roughness in Urban Areas Using Lidar Data
NASA Technical Reports Server (NTRS)
Holland, Donald
2009-01-01
An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
A new fiber optic sensor for inner surface roughness measurement
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Liu, Shoubin; Hu, Hong
2009-11-01
In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Towards predictive models for transitionally rough surfaces
NASA Astrophysics Data System (ADS)
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
NASA Technical Reports Server (NTRS)
Massman, William
1987-01-01
A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.
Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
Qiu, J; Ran, D F; Liu, Y B; Liu, L H
2016-07-10
Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Haijian; Huang, Hanchen; Wang, Jian
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces
Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk
2014-01-01
Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265
Chezar, H.; Lee, J.
1985-01-01
A deep-towed photographic system with completely self-contained recording instrumentation and power can obtain color-video and still-photographic transects along rough terrane without need for a long electrically conducting cable. Both the video- and still-camera systems utilize relatively inexpensive and proven off-the-shelf hardware adapted for deep-water environments. The small instrument frame makes the towed sled an ideal photographic tool for use on ship or small-boat operations. The system includes a temperature probe and altimeter that relay data acoustically from the sled to the surface ship. This relay enables the operator to monitor simultaneously water temperature and the precise height off the bottom. ?? 1985.
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
2012-12-01
a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3
First and Higher Order Effects on Zero Order Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Neelam, M.; Mohanty, B.
2014-12-01
Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.
Kim, Sun Jai; Shim, June Sung
2017-01-01
PURPOSE The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated. PMID:28435615
Winds at the Phoenix Landing Site
NASA Astrophysics Data System (ADS)
Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.
2008-12-01
Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.
NASA Astrophysics Data System (ADS)
Bitenc, M.; Kieffer, D. S.; Khoshelham, K.
2015-08-01
The precision of Terrestrial Laser Scanning (TLS) data depends mainly on the inherent random range error, which hinders extraction of small details from TLS measurements. New post processing algorithms have been developed that reduce or eliminate the noise and therefore enable modelling details at a smaller scale than one would traditionally expect. The aim of this research is to find the optimum denoising method such that the corrected TLS data provides a reliable estimation of small-scale rock joint roughness. Two wavelet-based denoising methods are considered, namely Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), in combination with different thresholding procedures. The question is, which technique provides a more accurate roughness estimates considering (i) wavelet transform (SWT or DWT), (ii) thresholding method (fixed-form or penalised low) and (iii) thresholding mode (soft or hard). The performance of denoising methods is tested by two analyses, namely method noise and method sensitivity to noise. The reference data are precise Advanced TOpometric Sensor (ATOS) measurements obtained on 20 × 30 cm rock joint sample, which are for the second analysis corrupted by different levels of noise. With such a controlled noise level experiments it is possible to evaluate the methods' performance for different amounts of noise, which might be present in TLS data. Qualitative visual checks of denoised surfaces and quantitative parameters such as grid height and roughness are considered in a comparative analysis of denoising methods. Results indicate that the preferred method for realistic roughness estimation is DWT with penalised low hard thresholding.
Mars Science Laboratory Heatshield Aerothermodynamics: Design and Reconstruction
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Hollis, Brian R.; Johnston, Christopher O.; Bose, Deepak; White, Todd R.; Mahzari, Milad
2013-01-01
The Mars Science Laboratory heatshield was designed to withstand a fully turbulent heat pulse based on test results and computational analysis on a pre-flight design trajectory. Instrumentation on the flight heatshield measured in-depth temperatures in the thermal protection system. The data indicate that boundary layer transition occurred at 5 of 7 thermocouple locations prior to peak heating. Data oscillations at 3 pressure measurement locations may also indicate transition. This paper presents the heatshield temperature and pressure data, possible explanations for the timing of boundary layer transition, and a qualitative comparison of reconstructed and computational heating on the as-flown trajectory. Boundary layer Reynolds numbers that are typically used to predict transition are compared to observed transition at various heatshield locations. A uniform smooth-wall transition Reynolds number does not explain the timing of boundary layer transition observed during flight. A roughness-based Reynolds number supports the possibility of transition due to discrete or distributed roughness elements on the heatshield. However, the distributed roughness height would have needed to be larger than the pre-flight assumption. The instrumentation confirmed the predicted location of maximum turbulent heat flux near the leeside shoulder. The reconstructed heat flux at that location is bounded by smooth-wall turbulent calculations on the reconstructed trajectory, indicating that augmentation due to surface roughness probably did not occur. Turbulent heating on the downstream side of the heatshield nose exceeded smooth-wall computations, indicating that roughness may have augmented heating. The stagnation region also experienced heating that exceeded computational levels, but shock layer radiation does not fully explain the differences.
Cheap and fast measuring roughness on big surfaces with an imprint method
NASA Astrophysics Data System (ADS)
Schopf, C.; Liebl, J.; Rascher, R.
2017-10-01
Roughness, shape and structure of a surface offer information on the state, shape and surface characteristics of a component. Particularly the roughness of the surface dictates the subsequent polishing of the optical surface. The roughness is usually measured by a white light interferometer, which is limited by the size of the components. Using a moulding method of surfaces that are difficult to reach, an imprint is taken and analysed regarding to roughness and structure. This moulding compound method is successfully used in dental technology. In optical production, the moulding compound method is advantageous in roughness determination in inaccessible spots or on large components (astrological optics). The "replica method" has been around in metal analysis and processing. Film is used in order to take an impression of a surface. Then, it is analysed for structures. In optical production, compound moulding seems advantageous in roughness determination in inaccessible spots or on large components (astrological optics). In preliminary trials, different glass samples with different roughness levels were manufactured. Imprints were taken from these samples (based on DIN 54150 "Abdruckverfahren für die Oberflächenprüfung"). The objective of these feasibility tests was to determine the limits of this method (smallest roughness determinable / highest roughness). The roughness of the imprint was compared with the roughness of the glass samples. By comparing the results, the uncertainty of the measuring method was determined. The spectrum for the trials ranged from rough grind (0.8 μm rms), over finishing grind (0.6 μm rms) to polishing (0.1 μm rms).
Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump
NASA Astrophysics Data System (ADS)
Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus
2017-11-01
Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
Mundo, Rosa Di; Palumbo, Fabio; d'Agostino, Riccardo
2008-05-06
In this work plasma etching processes have been studied to roughen and fluorinate polystyrene surface as an easy method to achieve a superhydrophobic slippery character. Radiofrequency discharges have been fed with CF(4)/O(2) mixtures and the effect of the O(2):CF(4) ratio, the input power, and the treatment duration have been investigated in terms of wettability, with focus on sliding performances. For this purpose, surface morphological variations, evaluated by means of scanning electron microscopy and atomic force microscopy, together with the chemical assessment by X-ray photoelectron spectroscopy, have been correlated with water contact angle hysteresis and volume resolved sliding angle measurements. Results indicate that by increasing the height and decreasing the density of the structures formed by etching, within a tailored range, a transition from sticky to slippery superhydrophobicity occurs. A short treatment time (5 min) is sufficient to obtain such an effect, provided that a high power input is utilized. Optimized surfaces show a unaltered transparency to visible light according to the low roughness produced.
Characterization of Ice Roughness From Simulated Icing Encounters
NASA Technical Reports Server (NTRS)
Anderson, David N.; Shin, Jaiwon
1997-01-01
Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Wave attenuation in the shallows of San Francisco Bay
Lacy, Jessica R.; MacVean, Lissa J.
2016-01-01
Waves propagating over broad, gently-sloped shallows decrease in height due to frictional dissipation at the bed. We quantified wave-height evolution across 7 km of mudflat in San Pablo Bay (northern San Francisco Bay), an environment where tidal mixing prevents the formation of fluid mud. Wave height was measured along a cross shore transect (elevation range−2mto+0.45mMLLW) in winter 2011 and summer 2012. Wave height decreased more than 50% across the transect. The exponential decay coefficient λ was inversely related to depth squared (λ=6×10−4h−2). The physical roughness length scale kb, estimated from near-bed turbulence measurements, was 3.5×10−3 m in winter and 1.1×10−2 m in summer. Estimated wave friction factor fw determined from wave-height data suggests that bottom friction dominates dissipation at high Rew but not at low Rew. Predictions of near-shore wave height based on offshore wave height and a rough formulation for fw were quite accurate, with errors about half as great as those based on the smooth formulation for fw. Researchers often assume that the wave boundary layer is smooth for settings with fine-grained sediments. At this site, use of a smooth fw results in an underestimate of wave shear stress by a factor of 2 for typical waves and as much as 5 for more energetic waves. It also inadequately captures the effectiveness of the mudflats in protecting the shoreline through wave attenuation.
Optimum surface roughness prediction for titanium alloy by adopting response surface methodology
NASA Astrophysics Data System (ADS)
Yang, Aimin; Han, Yang; Pan, Yuhang; Xing, Hongwei; Li, Jinze
Titanium alloy has been widely applied in industrial engineering products due to its advantages of great corrosion resistance and high specific strength. This paper investigated the processing parameters for finish turning of titanium alloy TC11. Firstly, a three-factor central composite design of experiment, considering the cutting speed, feed rate and depth of cut, are conducted in titanium alloy TC11 and the corresponding surface roughness are obtained. Then a mathematic model is constructed by the response surface methodology to fit the relationship between the process parameters and the surface roughness. The prediction accuracy was verified by the one-way ANOVA. Finally, the contour line of the surface roughness under different combination of process parameters are obtained and used for the optimum surface roughness prediction. Verification experimental results demonstrated that material removal rate (MRR) at the obtained optimum can be significantly improved without sacrificing the surface roughness.
NASA Astrophysics Data System (ADS)
Shiou, Fang-Jung; Lai, Yao-Zih; Tsai, Min-Long
2011-12-01
Due to the volumetric shrinkage of the resin and the induced residual stress during the curing process, the reflection on the gel-coating layer surface will be imperfect if twists and wrinkles exist on the gel-coating surface. This phenomenon is denoted as print-through phenomenon (PTP). Currently, the detection of PTP for most of the yacht industry using the composite materials is performed mainly by visual inspection, and its quality is needed to be quantified to determine their grades. Therefore, there is a need to develop a lightweight portable optical measurement system that can be applied quickly to inspect different levels of PTP for the fiber-reinforced plastics (FRP) of the yacht body. The measurement system was developed based on the scattering principle of a reflected laser fringe projected on to the workpiece surface. Two indexes, namely the profile peak-valley height and wave-height of the Fast-Fourier Transform based on the centerline of the extracted image profile, were proposed to quantify the PTP of a test specimen. The mean line width of the extracted image was applied to evaluate the surface roughness of the test specimen, based on the scattering theorem. A set of software programmed with Borland C++ Builder language was developed to calculate the proposed indexes and the mean line width. The developed measurement system has been taken to some yacht factories to do the on-site measurements. The measurement results were, in general, consistent with the surface conditions of the polished surfaces.
Monitoring of Surface Roughness in Aluminium Turning Process
NASA Astrophysics Data System (ADS)
Chaijareenont, Atitaya; Tangjitsitcharoen, Somkiat
2018-01-01
As the turning process is one of the most necessary process. The surface roughness has been considered for the quality of workpiece. There are many factors which affect the surface roughness. Hence, the objective of this research is to monitor the relation between the surface roughness and the cutting forces in aluminium turning process with a wide range of cutting conditions. The coated carbide tool and aluminium alloy (Al 6063) are used for this experiment. The cutting parameters are investigated to analyze the effects of them on the surface roughness which are the cutting speed, the feed rate, the tool nose radius and the depth of cut. In the case of this research, the dynamometer is installed in the turret of CNC turning machine to generate a signal while turning. The relation between dynamic cutting forces and the surface roughness profile is examined by applying the Fast Fourier Transform (FFT). The experimentally obtained results showed that the cutting force depends on the cutting condition. The surface roughness can be improved when increasing the cutting speed and the tool nose radius in contrast to the feed rate and the depth of cut. The relation between the cutting parameters and the surface roughness can be explained by the in-process cutting forces. It is understood that the in-process cutting forces are able to predict the surface roughness in the further research.
Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride
CCAHUANA, Vanessa Zulema S.; ÖZCAN, Mutlu; MESQUITA, Alfredo Mikail Melo; NISHIOKA, Renato Sussumo; KIMPARA, Estevão Tomomitsu; BOTTINO, Marco Antonio
2010-01-01
Objective This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF) gel exposure on the glassy matrix ceramics as a function of time. Material and methods Disc-shaped ceramic specimens (N = 120, 10/per ceramic material) were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm) using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik), 2 for all-ceramic (Vitadur Alpha and Finesse® Low Fusing) and 1 for both types of restorations (IPS d.SIGN). The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM) before (0 min) and after exposure to 1.23 % APF gel for 4 min and 60 min representing short- and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey`s test (α=0.05). Results Significant effect of the type of the ceramics (p=0.0000, p=0.0031) and exposure time (p=0.0000) was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258). Both 4 min (0.44±0.1 - 0.81±0.2 µm) and 60 min (0.66±0.1 - 1.04±0.3 µm) APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33±0.2 - 0.68±0.2 µm) (p<0.05). There were no significant differences in percentage of mass loss between the ceramics at 4 min (p>0.05) but at 60 min exposure, IPS d.SIGN showed the highest percentage of mass loss (0.1151±0.11). The mean surface roughness for Vita Titankeramik (0.84±0.2 µm) and Finesse® Low Fusing (0.74.±0.2 µm) was significantly higher than those of the other ceramics (0.59±0.1 µm - 0.49±0.1 µm) and Vita Titankeramik (p<0.05) regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for all ceramic materials [(r=0.518 (Vitadur Alpha), r=0.405 (Vita Omega 900), r=0.580 (Carmen), r=0.687 (IPS d.SIGN), r=0.442 (Finesse® Low Fusing), r=0.572 (Vita Titankeramik), Pearson`s correlation coefficient)]. The qualitative SEM analysis showed evidence of corrosive attack on all of ceramics at varying degrees. Conclusions The ceramics indicated for either metal-ceramic or all-ceramic restorations were all vulnerable to surface texture changes and mass loss after short-term and long-term APF gel exposure. PMID:20485927
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)
2000-01-01
The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when over sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid to about 8 urad is needed to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the orientation of the star camera and gyroscope permits the precise pointing angle of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring the vertical profile of laser energy backscattered by the atmosphere at both 1064 and 532 nm. The 1064 nm measurements use the Si APD detector and profile the height and vertical structure of thicker clouds. The measurements at 532 nm use new highly sensitive photon counting, detectors, and measure the height distributions of very thin Clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
Super Water-Repellent Fractal Surfaces of a Photochromic Diarylethene Induced by UV Light
NASA Astrophysics Data System (ADS)
Izumi, Norikazu; Minami, Takayuki; Mayama, Hiroyuki; Takata, Atsushi; Nakamura, Shinichiro; Yokojima, Satoshi; Tsujii, Kaoru; Uchida, Kingo
2008-09-01
Photochromic diarylethene forms super water-repellent surfaces upon irradiation with UV light. Microfibril-like crystals grow on the solid diarylethene surface after UV irradiation, and the contact angle of water on the surface becomes larger with increasing surface roughness with time. The fractal analysis was made by the box-counting method for the rough surfaces. There are three regions in the roughness size having the fractal dimension of ca. 2.4 (size of roughness smaller than 5 µm), of ca. 2.2 (size of roughness between 5-40 µm), and of ca. 2.0 (size of roughness larger than 40 µm). The fractal dimension of ca. 2.4 was due to the fibril-like structures generated gradually by UV irradiation on diarylethene surfaces accompanied with an increase in the contact angle. The surface structure with larger fractal dimension mainly contributes to realizing the super water-repellency of the diarylethene surfaces. This mechanism of spontaneous formation of fractal surfaces is similar to that for triglyceride and alkylketene dimer waxes.
Measuring skew in average surface roughness as a function of surface preparation
NASA Astrophysics Data System (ADS)
Stahl, Mark T.
2015-08-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness
NASA Technical Reports Server (NTRS)
Wang, J. R.
1982-01-01
Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.
NASA Technical Reports Server (NTRS)
Wang, J. R.
1983-01-01
Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.
Surface roughness retrieval by inversion of the Hapke model: A multiscale approach
NASA Astrophysics Data System (ADS)
Labarre, S.; Ferrari, C.; Jacquemoud, S.
2017-07-01
Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
NASA Technical Reports Server (NTRS)
Stalmach, C. J., Jr.
1975-01-01
Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.
CRISM Limb Observations of Aerosols and Water Vapor
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.
2009-01-01
Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.
Incorporating Skew into RMS Surface Roughness Probability Distribution
NASA Technical Reports Server (NTRS)
Stahl, Mark T.; Stahl, H. Philip.
2013-01-01
The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.
Soil roughness, slope and surface storage relationship for impervious areas
NASA Astrophysics Data System (ADS)
Borselli, Lorenzo; Torri, Dino
2010-11-01
SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V.; Khimchenko, L. N.
Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40more » μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.« less
Warm and Humid Air Blowing over Cold Water - Grand Banks Fog
NASA Astrophysics Data System (ADS)
Taylor, P.; Weng, W.
2016-12-01
The condensation of water vapour into droplets and the formation of fog in the Earth's atmospheric boundary layer involves a complex balance between horizontal advection and vertical turbulent mixing of heat and water vapour, cloud microphysical processes and radiative transfers of heat, plus the impact of water droplets, and sometimes ice crystals, on visibility. It is a phenomenon which has been studied for many years in a variety of contexts. On land, surface cooling of the ground via long wave radiation at night is often the trigger and a number of 1-D (height and time dependent) radiative fog models have been developed. Over the waters offshore from Newfoundland a key factor is the advection of moist air from over warm gulf stream waters to colder Labrador current water - an internal boundary-layer problem. Some basic properties can be learned from a steady state 2-D (x-z) model.The WTS (Weng, Taylor and Salmon, 2010, J. Wind Eng. Ind. Aerodyn. 98, 121-132 ) model of flow above changes in surface conditions has been used to investigate planetary boundary-layer flow over water with spatial changes in temperature, and to investigate situations leading to saturation and fog formation. Our turbulence closure includes the turbulent kinetic energy equation but we prefer to specify a height, surface roughness, Rossby number and local stability dependent, "master" length scale instead of a somewhat empirical dissipation or similar equation. Results show that fog can develop and extent to heights of order 100m in some conditions, depending on upstream profiles of wind, temperature and mixing ratio, and on solar radiation and the horizontal variations in water surface temperature.Next steps will involve validation against data being collected (by AMEC-Foster Wheeler in the Hibernia Management and Development Company Metocean project) over the Grand Banks and an interface with WRF and high resolution sea surface temperature data for forecasting fog conditions over the Grand Banks.
Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R
2004-09-01
Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.
NASA Astrophysics Data System (ADS)
Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir
2018-03-01
Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.
1991-01-01
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.
Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL maskmore » blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.« less
NASA Astrophysics Data System (ADS)
De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.
2018-02-01
In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.
NASA Astrophysics Data System (ADS)
Maslenikov, I.; Useinov, A.; Birykov, A.; Reshetov, V.
2017-10-01
The instrumented indentation method requires the sample surface to be flat and smooth; thus, hardness and elastic modulus values are affected by the roughness. A model that accounts for the isotropic surface roughness and can be used to correct the data in two limiting cases is proposed. Suggested approach requires the surface roughness parameters to be known.
NASA Astrophysics Data System (ADS)
Komatsu, Kosei
Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall's (1978) empirical formula and Naess's (1985) distribution for a narrow-band Gaussian sea.
Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.
2015-01-01
Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999
The Geoscience Laser Altimetry/Ranging System (GLARS)
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.
1986-01-01
The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.
Lei, Yu; Zhang, Xianyun; Xu, Dingding; Yu, Minfeng; Yi, Zhiran; Li, Zhixiang; Sun, Aihua; Xu, Gaojie; Cui, Ping; Guo, Jianjun
2018-05-03
Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 10 4 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.
Effects of Surface Roughness on Conical Squeeze Film Bearings with Micropolar fluid
NASA Astrophysics Data System (ADS)
Rajani, C. B.; Hanumagowda, B. N.; Shigehalli, Vijayalaxmi S.
2018-04-01
In the current paper, a hypothetical analysis of the impact of surface roughness on squeeze film lubrication of rough conical bearing using Micropolar fluid is examined using Eringen’sMicropolar fluid model. The generalized averaged Reynolds type equation for roughness has been determined analytically using the Christensen’s stochastic theory of roughness effects and the closed form expressions are obtained for the fluid film pressure, load carrying capacity and squeezing time. Further, the impacts of surface roughness using micropolar fluids on the squeeze film lubrication of rough conical bearings has been discussed and according to the outcomes arrived, pressure, load carrying capacity and squeezing time increases for azimuthal roughness pattern and decreases for radial roughness patterns comparatively to the smooth case.