Sample records for surface roughness increased

  1. Effect of surface roughness on droplet splashing

    NASA Astrophysics Data System (ADS)

    Hao, Jiguang

    2017-12-01

    It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.

  2. Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2004-01-01

    Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.

  3. Numerical simulation of electroosmotic flow in rough microchannels using the lattice Poisson-Nernst-Planck methods

    NASA Astrophysics Data System (ADS)

    Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman

    2018-05-01

    In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.

  4. Roughness evolution of metallic implant surfaces under contact loading and nanometer-scale chemical etching.

    PubMed

    Ryu, J J; Letchuman, S; Shrotriya, P

    2012-10-01

    Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Passive microwave sensing of soil moisture content - The effects of soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1983-01-01

    Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.

  6. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  7. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    NASA Astrophysics Data System (ADS)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  8. Super Water-Repellent Fractal Surfaces of a Photochromic Diarylethene Induced by UV Light

    NASA Astrophysics Data System (ADS)

    Izumi, Norikazu; Minami, Takayuki; Mayama, Hiroyuki; Takata, Atsushi; Nakamura, Shinichiro; Yokojima, Satoshi; Tsujii, Kaoru; Uchida, Kingo

    2008-09-01

    Photochromic diarylethene forms super water-repellent surfaces upon irradiation with UV light. Microfibril-like crystals grow on the solid diarylethene surface after UV irradiation, and the contact angle of water on the surface becomes larger with increasing surface roughness with time. The fractal analysis was made by the box-counting method for the rough surfaces. There are three regions in the roughness size having the fractal dimension of ca. 2.4 (size of roughness smaller than 5 µm), of ca. 2.2 (size of roughness between 5-40 µm), and of ca. 2.0 (size of roughness larger than 40 µm). The fractal dimension of ca. 2.4 was due to the fibril-like structures generated gradually by UV irradiation on diarylethene surfaces accompanied with an increase in the contact angle. The surface structure with larger fractal dimension mainly contributes to realizing the super water-repellency of the diarylethene surfaces. This mechanism of spontaneous formation of fractal surfaces is similar to that for triglyceride and alkylketene dimer waxes.

  9. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    PubMed Central

    Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk

    2014-01-01

    Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265

  10. Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee

    2016-08-07

    In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less

  12. Rock discontinuity surface roughness variation with scale

    NASA Astrophysics Data System (ADS)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.

  13. Effect of sealer coating and storage methods on the surface roughness of soft liners.

    PubMed

    Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat

    2016-03-01

    A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P<.001), and silicone-based sealer-coated soft liners exhibited a decrease in roughness, but it was not significant (2.16-2.02 μm, P>.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Surface roughness analysis of fiber post conditioning processes.

    PubMed

    Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R

    2008-02-01

    The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.

  15. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-07-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.

  16. Comparison of surface characteristics of retrieved cobalt-chromium femoral heads with and without ion implantation.

    PubMed

    McGrory, Brian J; Ruterbories, James M; Pawar, Vivek D; Thomas, Reginald K; Salehi, Abraham B

    2012-01-01

    Nitrogen ion implantation of CoCr is reported to produce increased surface hardness and a lower friction surface. Femoral heads with and without ion implantation retrieved from 1997 to 2003 were evaluated for surface roughness (average surface roughness [Ra], mean peak height [Rpm], and maximum distance from peak to valley [Rmax]), nanohardness, and the ion-treated layer thickness. The difference in average Rmax (P = .033) and average Rpm (P = .008) was statistically significant, but there was no correlation between the average or maximum roughness parameters (average surface roughness, Rmax, and Rpm) and time in vivo (P > .05). Overall, nanohardness was greater for the low-friction ion-treated heads (P < .001); and it decreased with increasing time in vivo (P = .01). Ion treatment produces an increased surface hardness, but the advantage of this increased hardness appears to dissipate over time in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  18. Numerical investigation of roughness effects in aircraft icing calculations

    NASA Astrophysics Data System (ADS)

    Matheis, Brian Daniel

    2008-10-01

    Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.

  19. Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7Al single crystal superalloy

    NASA Astrophysics Data System (ADS)

    Pei, Haiqing; Wen, Zhixun; Li, Zhenwei; Zhang, Yamin; Yue, Zhufeng

    2018-05-01

    The high-temperature oxidation dynamics and mechanisms of a Ni-based single crystal superalloy with four kinds of surface roughnesses were investigated by virtue of XRD, OM, SEM and EDS at 1000 °C. In the initial oxidation stage, outer (Ni, Co)O was mainly produced on the surfaces of the samples with Ra = 90 nm and 19 nm. Correspondingly, outer Cr2O3 and transient θ-Al2O3 were mainly formed on the surfaces with Ra = 509 nm and 182 nm. After 180 min oxidation, the values of instantaneous parabolic mass gain coefficients (kp) of the samples with all surface roughnesses were gradually consistent with the data of the growth parabolic coefficient of α-Al2O3. The oxidation mechanisms of Ni-based superalloy with different surface roughnesses were discussed by a model. The external diffusion flux of Al (DAl) increases with the increases of surface roughness. Thus, the required Al concentration decreases with the increases of surface roughness when the selective oxidation of Al occurrs to form a protective single α-Al2O3 film.

  20. Influence of Nitrogen Flow Rate on Friction Coefficient and Surface Roughness of TiN Coatings Deposited on Tool Steel Using Arc Method

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor

    In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

  1. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    NASA Astrophysics Data System (ADS)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  2. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Yang; Zhang, Guojing; Gullikson, Eric M.; Goldberg, Ken A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  3. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain.

    PubMed

    He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan

    2014-01-01

    This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (p<0.05). Sandblasting zirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.

  4. Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing

    NASA Astrophysics Data System (ADS)

    Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean

    2014-11-01

    We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.

  5. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.

  6. The evolution of fracture surface roughness and its dependence on slip

    NASA Astrophysics Data System (ADS)

    Wells, Olivia L.

    Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.

  7. Diffusion of Drag-Reducing Polymers within a High-Reynolds-Number, Rough-Wall Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Perlin, Marc; Dowling, David; Solomon, Michael; Ceccio, Steven

    2008-11-01

    Two experiments were conducted to investigate polymer drag reduction (PDR) within high Reynolds number (to 200 million based on downstream distance), rough-wall turbulent boundary layers. The first experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate at speeds to 20 m/s with the surface hydraulically smooth and fully rough. Local skin-friction measurements on the smooth and rough surfaces had maximum PDR levels of 65 and 75 percent, respectively. However, PDR decreased with increasing downstream distance and flow speed more rapidly on the rough surface, and at the top speed no measureable level of PDR was observed. The roughness-induced increased diffusion was quantified with near-wall concentration measurements and the second experiment, which measured concentration profiles on a 0.94 m long flat-plate with three surface conditions: smooth, 240-grit, and 60-grit sandpaper. The increased diffusion does not fully explain the smooth-rough PDR differences observed in the first experiment. Rheological analysis of drawn samples from the first experiment indicates that polymer degradation (chain scission) could be responsible for the remaining loss of rough-wall PDR. These results have implications for the cost effectiveness of PDR for surface ships.

  8. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

    NASA Astrophysics Data System (ADS)

    Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin

    2013-12-01

    Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  9. Reflective properties of randomly rough surfaces under large incidence angles.

    PubMed

    Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J

    2014-06-01

    The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.

  10. Gloss measurements and rugometric inspection in dental biomaterials

    NASA Astrophysics Data System (ADS)

    Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Yebra, Ana; Rubiño, Manuel; Pérez, María. M.

    2013-11-01

    In dental applications, optimizing appearance is desirable and increasingly demanded by patients. The specular gloss is among the major appearance properties of dental biomaterials, and its relationship with surface roughness has been reported. Roughness and gloss are key surface aspects that complement each other. We have experimentally analyzed the specular gloss and surface roughness of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We have studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental resin. Gloss measurements were performed with a standardized reflectometer and the corresponding gloss percentages were calculated. All the samples were submitted to rugometric non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to determine meaningful statistical parameters such as the average roughness (Ra) and the root-mean-square deviation (Rq). For a comparison of the different biomaterials, the uncertainties associated to the measure of the surface gloss and roughness were also determined. The differences between the two shades of both kinds of composites proved significant in the case of the roughness parameters but not for the specular gloss. The surface treatment applied to the dental-resin composites increased the average roughness but the changes in the specular gloss were significant only for the A2 enamel nano-composite. For the zirconia ceramic the sintered process resulted in an increase in the surface roughness with a decrease of the specular gloss, corroborating that the relationship between the gloss and the roughness shows the expected behavior.

  11. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.

    PubMed

    Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R

    2004-09-01

    Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.

  12. The Effect of Surface Irregularities on Wing Drag. 3; Roughness

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the N.A.C.A. 8-foot high-speed wind tunnel of the drag caused by roughness on the surface of an airfoil of N.A.C.A. 23012 section and 5-foot chord. The tests were made at speeds from 80 t o 500 miles per hour at lift coefficients from 0 to 0.30. For conditions corresponding to high-speed flight, the increase in the drag was 30 percent of the profile drag of the smooth airfoil for the roughness produced by spray painting and 63 percent for the roughness produced. by 0.0037-inch carborundum grains. About one-half the drag increase was caused by the roughness on the forward one-fourth of the airfoil. Sandpapering the painted surface with No. 400 sandpaper made it sufficiently smooth that the drag was no greater than when the surface was polished. In the lower part of the range investigated the drag due to roughness increased rapidly with Reynolds Number.

  13. Experimental study of surface integrity and fatigue life in the face milling of inconel 718

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu; Huang, Chuanzhen; Zou, Bin; Liu, Guoliang; Zhu, Hongtao; Wang, Jun

    2018-06-01

    The Inconel 718 alloy is widely used in the aerospace and power industries. The machining-induced surface integrity and fatigue life of this material are important factors for consideration due to high reliability and safety requirements. In this work, the milling of Inconel 718 was conducted at different cutting speeds and feed rates. Surface integrity and fatigue life were measured directly. The effects of cutting speed and feed rate on surface integrity and their further influences on fatigue life were analyzed. Within the chosen parameter range, the cutting speed barely affected the surface roughness, whereas the feed rate increased the surface roughness through the ideal residual height. The surface hardness increased as the cutting speed and feed rate increased. Tensile residual stress was observed on the machined surface, which showed improvement with the increasing feed rate. The cutting speed was not an influencing factor on fatigue life, but the feed rate affected fatigue life through the surface roughness. The high surface roughness resulting from the high feed rate could result in a high stress concentration factor and lead to a low fatigue life.

  14. Graphene thickness dependent adhesion force and its correlation to surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112

    2014-04-28

    In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less

  15. Quantitative characterization of material surface — Application to Ni + Mo electrolytic composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubisztal, J., E-mail: julian.kubisztal@us.edu.pl

    A new approach to numerical analysis of maps of material surface has been proposed and discussed in detail. It was concluded that the roughness factor RF and the root mean square roughness S{sub q} show a saturation effect with increasing size of the analysed maps what allows determining the optimal map dimension representative of the examined material. A quantitative method of determining predominant direction of the surface texture based on the power spectral density function is also proposed and discussed. The elaborated method was applied in surface analysis of Ni + Mo composite coatings. It was shown that co-deposition ofmore » molybdenum particles in nickel matrix leads to an increase in surface roughness. In addition, a decrease in size of the embedded Mo particles in Ni matrix causes an increase of both the surface roughness and the surface texture. It was also stated that the relation between the roughness factor and the double layer capacitance C{sub dl} of the studied coatings is linear and allows determining the double layer capacitance of the smooth nickel electrode. - Highlights: •Optimization of the procedure for the scanning of the material surface •Quantitative determination of the surface roughness and texture intensity •Proposition of the parameter describing privileged direction of the surface texture •Determination of the double layer capacitance of the smooth electrode.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanah, Lilik, E-mail: lilikhasanah@upi.edu; Suhendi, Endi; Tayubi, Yuyu Rahmat

    In this work we discuss the surface roughness of Si interface impact to the tunneling current of the Si/Si{sub 1-x}Ge{sub x}/Si heterojunction bipolar transistor. The Si interface surface roughness can be analyzed from electrical characteristics through the transversal electron velocity obtained as fitting parameter factor. The results showed that surface roughness increase as Ge content of virtual substrate increase This model can be used to investigate the effect of Ge content of the virtual substrate to the interface surface condition through current-voltage characteristic.

  17. Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials

    NASA Astrophysics Data System (ADS)

    Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju

    2017-01-01

    In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.

  18. Simple model of surface roughness for binary collision sputtering simulations

    NASA Astrophysics Data System (ADS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  19. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  20. Effect of Shot Peening in Different Shot Distance and Shot Angle on Surface Morphology, Surface Roughness and Surface Hardness of 316L Biomaterial

    NASA Astrophysics Data System (ADS)

    Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri

    2018-01-01

    Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.

  1. Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.

    PubMed

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja

    2018-06-26

    nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  2. Influence of surface roughness on cetyltrimethylammonium bromide adsorption from aqueous solution.

    PubMed

    Wu, Shuqing; Shi, Liu; Garfield, Lucas B; Tabor, Rico F; Striolo, Alberto; Grady, Brian P

    2011-05-17

    The influence of surface roughness on surfactant adsorption was studied using a quartz crystal microbalance with dissipation (QCM-D). The sensors employed had root-mean-square (R) roughness values of 2.3, 3.1, and 5.8 nm, corresponding to fractal-calculated surface area ratios (actual/nominal) of 1.13, 1.73, and 2.53, respectively. Adsorption isotherms measured at 25 °C showed that adsorbed mass of cetyltrimethylammonium bromide per unit of actual surface area below 0.8 cmc, or above 1.2 cmc, decreases as the surface roughness increases. At the cmc, both the measured adsorbed amount and the measured dissipation increased dramatically on the rougher surfaces. These results are consistent with the presence of impurities, suggesting that roughness exacerbates well-known phenomena reported in the literature of peak impurity-related adsorption at the cmc. The magnitude of the increase, especially in dissipation, suggests that changes in adsorbed amount may not be the only reason for the observed results, as aggregates at the cmc on rougher surfaces are more flexible and likely contain larger amounts of solvent. Differences in adsorption kinetics were also found as a function of surface roughness, with data showing a second, slower adsorption rate after rapid initial adsorption. A two-rate Langmuir model was used to further examine this effect. Although adsorption completes faster on the smoother surfaces, initial adsorption at zero surface coverage is faster on the rougher surfaces, suggesting the presence of more high-energy sites on the rougher surfaces.

  3. Hip Dislocation Increases Roughness of Oxidized Zirconium Femoral Heads in Total Hip Arthroplasty: An Analysis of 59 Retrievals

    PubMed Central

    Moussa, Mohamed E.; Esposito, Christina I.; Elpers, Marcella E.; Wright, Timothy M.; Padgett, Douglas E.

    2014-01-01

    The aims of this study were to assess damage on the surface of retrieved oxidized zirconium metal (OxZr) femoral heads, to measure surface roughness of scratches, and to evaluate the extent of surface effacement using scanning electron microscopy (SEM). Ceramic zirconia-toughened alumina (ZTA) heads were analyzed for comparison. OxZr femoral heads explanted for recurrent dislocation had the most severe damage (p<0.001). The median surface roughness of damaged OxZr femoral heads was 1.49μm, compared to 0.084μm for damaged ZTA heads and 0.052μm for undamaged OxZr (p<0.001). This may be of clinical concern because increased surface roughness has the potential to increase the wear of polyethylene liners articulating against these OxZr heads in THA. PMID:25443362

  4. Effect of engraving speeds of CO₂ laser irradiation on In-Ceram Alumina roughness: a pilot study.

    PubMed

    Ersu, Bahadır; Ersoy, Orkun; Yuzugullu, Bulem; Canay, Senay

    2015-05-01

    The aim of the study was to determine the effect of CO₂ laser on surface roughness of In-Ceram-Alumina-ceramic. Four aluminum-oxide ceramic disc specimens were prepared of In-Ceram Alumina. Discs received CO₂ laser irradiation with different engraving speeds (100, 400, 600 and 800 mm/min) as a surface treatment. The roughness of the surfaces was measured on digital elevation models reconstructed from stereoscopic images acquired by scanning-electron-microscope. Surface roughness data were analyzed with One-Way-Analysis-of-Variance at a significance level of p<0.05. There was no significant difference between the roughness values (p=0.82). Due to higher laser durations, partial melting signs were observed on the surfaces. Tearing, smearing and swelling occurred on melted surfaces. Swelling accompanying melting increased the surface roughness, while laser power was fixed and different laser engraving speeds were applied. Although different laser irradiation speeds did not affect the roughness of ceramic surfaces, swelling was observed which led to changes on surfaces.

  5. Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces.

    PubMed

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; Song, Hwangjun

    2010-11-01

    This study investigated the surface characteristics and in vitro osteoconductivity of a titanium (Ti) surface incorporated with the magnesium ions (Mg) produced by hydrothermal treatment for future application as an endosseous implant surface. Mg-incorporated Ti oxide surfaces were produced by hydrothermal treatment using Mg-containing solution on two different microstructured surfaces--abraded minimally rough (Ma) or grit-blasted moderately rough (RBM) samples. The surface characteristics were evaluated using scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). MC3T3-E1 pre-osteoblast cell attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Ma, RBM, Mg-incorporated Ma (Mg), and Mg-incorporated grit-blasted (RBM/Mg) Ti surfaces were evaluated. Hydrothermal treatment produced an Mg-incorporated Ti oxide layer with nanoporous surface structures. Mg-incorporated surfaces showed surface morphologies and surface roughness values almost identical to those of untreated smooth or micro-rough surfaces at the micron scale. ICP-AES analysis showed Mg ions released from treated surfaces into the solution. Mg incorporation significantly increased cellular attachment (P=0 at 0.5 h, P=0.01 at 1 h) on smooth surfaces, but no differences were found on micro-rough surfaces. Mg incorporation further increased ALP activity in cells grown on both smooth and micro-rough surfaces at 7 and 14 days of culture (P=0). Real-time polymerase chain reaction analysis showed higher mRNA expressions of the osteoblast transcription factor gene (Dlx5), various integrins, and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on micro-rough (RBM) and Mg-incorporated (Mg and RBM/Mg) surfaces than those on Ma surfaces. Mg incorporation further increased the mRNA expressions of key osteoblast genes and integrins (α1, α2, α5, and β1) in cells grown on both the smooth and the micro-rough surfaces. These results indicate that an Mg-incorporated nanoporous Ti oxide surface produced by hydrothermal treatment may improve implant bone healing by enhancing the attachment and differentiation of osteoblastic cells. © 2010 John Wiley & Sons A/S.

  6. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite

    PubMed Central

    Deng, Yi; Liu, Xiaochen; Xu, Anxiu; Wang, Lixin; Luo, Zuyuan; Zheng, Yunfei; Deng, Feng; Wei, Jie; Tang, Zhihui; Wei, Shicheng

    2015-01-01

    As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK–nanohydroxyapatite ternary composites (PEEK/n-HA/CF) with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation) and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment/proliferation and promotes the production of alkaline phosphatase (ALP) activity and calcium nodule formation compared with the other groups. More importantly, the PEEK/n-HA/CF implant with appropriate surface roughness exhibits remarkably enhanced bioactivity and osseointegration in vivo in the animal experiment. These findings will provide critical guidance for the design of CFRPEEK-based implants with optimal roughness to regulate cellular behaviors, and to enhance biocompability and osseointegration. Meanwhile, the PEEK/n-HA/CF ternary composite with optimal surface roughness might hold great potential as bioactive biomaterial for bone grafting and tissue engineering applications. PMID:25733834

  7. Effects of Surface Roughness on Conical Squeeze Film Bearings with Micropolar fluid

    NASA Astrophysics Data System (ADS)

    Rajani, C. B.; Hanumagowda, B. N.; Shigehalli, Vijayalaxmi S.

    2018-04-01

    In the current paper, a hypothetical analysis of the impact of surface roughness on squeeze film lubrication of rough conical bearing using Micropolar fluid is examined using Eringen’sMicropolar fluid model. The generalized averaged Reynolds type equation for roughness has been determined analytically using the Christensen’s stochastic theory of roughness effects and the closed form expressions are obtained for the fluid film pressure, load carrying capacity and squeezing time. Further, the impacts of surface roughness using micropolar fluids on the squeeze film lubrication of rough conical bearings has been discussed and according to the outcomes arrived, pressure, load carrying capacity and squeezing time increases for azimuthal roughness pattern and decreases for radial roughness patterns comparatively to the smooth case.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL maskmore » blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.« less

  9. Contribution of Nano- to Microscale Roughness to Heterogeneity: Closing the Gap between Unfavorable and Favorable Colloid Attachment Conditions.

    PubMed

    Rasmuson, Anna; Pazmino, Eddy; Assemi, Shoeleh; Johnson, William P

    2017-02-21

    Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively. Surface roughness decreased, or even eliminated, the gap between favorable and unfavorable attachment and did so by two mechanisms: (1) under favorable conditions attachment decreased via increased hydrodynamic slip length and reduced attraction and (2) under unfavorable conditions attachment increased via reduced colloid-collector repulsion (reduced radius of curvature) and increased attraction (multiple points of contact, and possibly increased surface charge heterogeneity). Absence of a gap where these forces most strongly operate for smaller (<200 nm) and larger (>2 μm) colloids was observed and discussed. These observations elucidate the role of roughness in colloid attachment under both favorable and unfavorable conditions.

  10. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.

    PubMed

    Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina

    2014-08-12

    It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.

  11. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.

    We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less

  12. Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates

    NASA Astrophysics Data System (ADS)

    Amirzada, Muhammad Rizwan; Tatzel, Andreas; Viereck, Volker; Hillmer, Hartmut

    2016-02-01

    This study compares surface roughness of SiO2 thin layers which are deposited by three different processes (plasma-enhanced chemical vapor deposition, physical vapor deposition and ion beam deposition) on three different substrates (glass, Si and polyethylene naphthalate). Plasma-enhanced chemical vapor deposition (PECVD) processes using a wide range of deposition temperatures from 80 to 300 °C have been applied and compared. It was observed that the nature of the substrate does not influence the surface roughness of the grown layers very much. It is also perceived that the value of the surface roughness keeps on increasing as the deposition temperature of the PECVD process increases. This is due to the increase in the surface diffusion length with the rise in substrate temperature. The layers which have been deposited on Si wafer by ion beam deposition (IBD) process are found to be smoother as compared to the other two techniques. The layers which have been deposited on the glass substrates using PECVD reveal the highest surface roughness values in comparison with the other substrate materials and techniques. Different existing models describing the dynamics of clusters on surfaces are compared and discussed.

  13. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    NASA Astrophysics Data System (ADS)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich

    2015-06-01

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest.

  14. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  15. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    PubMed Central

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  16. Electrochemical machining process for forming surface roughness elements on a gas turbine shroud

    DOEpatents

    Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang

    2002-01-01

    The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

  17. Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Qiu, J.; Liu, L. H.

    2015-07-01

    Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.

  18. Titanium Surface Roughing Treatments contribute to Higher Interaction with Salivary Proteins MG2 and Lactoferrin.

    PubMed

    Cavalcanti, Yuri Wanderley; Soare, Rodrigo Villamarim; Leite Assis, Marina Araújo; Zenóbio, Elton Gonçalves; Girundi, Francisco Mauro da Silva

    2015-02-01

    Some surface treatments performed on titanium can alter the composition of salivary pellicle formed on this abiotic surface. Such treatments modify the titanium's surface properties and can promote higher adsorption of proteins, which allow better integration of titanium to the biotic system. This study aimed to evaluate the interactions between salivary proteins and titanium disks with different surface treatments. Machined titanium disks (n = 48) were divided into four experimental groups (n = 12), according to their surface treatments: surface polishing (SP); acid etching (A); spot-blasting plus acid etching (SB-A); spot-blasting followed by acid etching and nano-functionalization (SB-A-NF). Titanium surfaces were characterized by surface roughness and scanning electron microscopy (SEM). Specimens were incubated with human saliva extracted from submandibular and sublingual glands. Total salivary protein adsorbed to titanium was quantified and samples were submitted to western blotting for mucin glycoprotein 2 (MG2) and lactoferrin identification. Surface roughness was statistically higher for SB-A and SB-A-NF groups. Scanning electron microscopy images confirmed that titanium surface treatments increased surface roughness with higher number of porous and scratches for SB-A and SB-A-NF groups. Total protein adsorption was significantly higher for SB-A and SB-A-NF groups (p < 0.05), which also presented higher interactions with MG2 and lactoferrin proteins. The roughing of titanium surface by spot-blasting plus acid etching treatments contribute to higher interaction with salivary proteins, such as MG2 and lactoferrin. Titanium surface roughing increases the interactions of the substratum with salivary proteins, which can influence the integration of dental implants and their components to the oral environment. However, those treatments should be used carefully intraorally, avoiding increase biofilm formation.

  19. An Automated Road Roughness Detection from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Angelats, E.

    2017-05-01

    Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.

  20. Wetting properties of molecularly rough surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less

  1. Characteristics of surface roughness associated with leading edge ice accretion

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    1994-01-01

    Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.

  2. Correlation between substratum roughness and wettability, cell adhesion, and cell migration.

    PubMed

    Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F

    1997-07-01

    Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.

  3. Shear Behaviour and Acoustic Emission Characteristics of Bolted Rock Joints with Different Roughnesses

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Yongzheng; Jiang, Yujing; Liu, Peixun; Guo, Yanshuang; Liu, Jiankang; Ma, Ming; Wang, Ke; Wang, Shugang

    2018-06-01

    To study shear failure, acoustic emission counts and characteristics of bolted jointed rock-like specimens are evaluated under compressive shear loading. Model joint surfaces with different roughnesses are made of rock-like material (i.e. cement). The jointed rock masses are anchored with bolts with different elongation rates. The characteristics of the shear mechanical properties, the failure mechanism, and the acoustic emission parameters of the anchored joints are studied under different surface roughnesses and anchorage conditions. The shear strength and residual strength increase with the roughness of the anchored joint surface. With an increase in bolt elongation, the shear strength of the anchored joint surface gradually decreases. When the anchored structural plane is sheared, the ideal cumulative impact curve can be divided into four stages: initial emission, critical instability, cumulative energy, and failure. With an increase in the roughness of the anchored joint surface, the peak energy rate and the cumulative number of events will also increase during macro-scale shear failure. With an increase in the bolt elongation, the energy rate and the event number increase during the shearing process. Furthermore, the peak energy rate, peak number of events and cumulative energy will all increase with the bolt elongation. The results of this study can provide guidance for the use of the acoustic emission technique in monitoring and predicting the static shear failure of anchored rock masses.

  4. Estimating small-scale roughness of a rock joint using TLS data

    NASA Astrophysics Data System (ADS)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2016-04-01

    Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface) is approximately normal. Standard deviation of differences on average slightly increases with the noise level, but is strongly dependent on the analysis direction. As proved by different researches within the field of signal, image and also TLS data processing, noise can be, to a certain extent, removed by a post-processing step called denoising. In this research, four denoising methods, namely discrete WT (DWT) and stationary WT (SWT), and classic NLM (NLM) and probabilistic NLM (PNLM), were used on noisy ATOS data. Results were compared based on the (i) height and (ii) roughness differences between denoised surfaces and reference ATOS surface, (iii) the peak signal-to-noise ratio (PSNR) and (iv) the visual check of denoised surface. Increased PSNRs and reduced roughness differences prove the importance of the TLS data denoising procedure. In case of SWT, NLM and PNLM the surface is mostly over smoothed, whereas in case of DWT some noise remains. References: - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Sturzenegger, M. and D. Stead (2009). "Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts." Engineering Geology 106(3-4): 163-182.

  5. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Coulon, J. F.; Tournerie, N.; Maillard, H.

    2013-10-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic Csbnd O and Cdbnd O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  6. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  7. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Flack, Karen; Schultz, Michael

    2017-11-01

    Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).

  8. The effect of brushing with toothpaste containing nano calcium carbonate upon nanofill composite resin surface roughness

    NASA Astrophysics Data System (ADS)

    Ramadhani, A. M.; Herda, E.; Triaminingsih, S.

    2017-08-01

    This study aims to determine the effect of brushing with toothpaste containing nanocalcium carbonate on the roughness of nanofill composite resin surface. Brushing was conducted with 3 types of materials for 3 consecutive brushing periods of 10 minutes each. Surface roughness was measured using a surface-roughness tester and the results were analyzed using the repeated ANOVA and the one-way ANOVA test. The surface morphology was observed using SEM after 3 months’ worth of brushing with the 3 materials. It was found that the nanofill composite resin surface-roughness value increased significantly (p<0.005) after brushing with toothpaste containing nano calcium carbonate for 3 months, but the value was not as high as that obtained when brushing with other types of toothpaste.

  9. Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.

    PubMed

    Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E

    2008-06-25

    Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.

  10. Modelling of surface roughness effects on impurity erosion and deposition in TEXTOR with a code package SURO/ERO/SDPIC

    NASA Astrophysics Data System (ADS)

    Dai, Shuyu; Kirschner, A.; Sun, Jizhong; Tskhakaya, D.; Wang, Dezhen

    2014-12-01

    The roughness-induced uneven erosion-deposition behaviour is widely observed on plasma-wetted surfaces in tokamaks. The three-dimensional (3D) angular distribution of background plasma and impurities is expected to have an impact on the local erosion-deposition characteristic on rough surfaces. The investigations of 13C deposition on rough surfaces in TEXTOR experiments have been re-visited by 3D treatment of surface morphology to evaluate the effect of 3D angular distribution and its connection with surface topography by the code package SURO/ERO/SDPIC. The simulation results show that the erosion/deposition patterns and evolution of surface topography are strongly affected by the azimuthal direction of incident flux. A reduced aspect ratio of rough surface leads to an increase in 13C deposition due to the enhanced trapping ability at surface recessions. The shadowing effect of rough surface has been revealed based on the relationship between 3D incident direction and surface topography properties. The more realistic surface structures used by 3D SURO can well reproduce the experimental results of the increase in the 13C deposition efficiency by a factor of 3-5 on a rough surface compared with a smooth one. The influence of sheath electric field on the local impact angle and resulting 13C deposition has been studied, which indicates that the difference in 13C deposition caused by sheath electric field can be alleviated by the use of more realistic surface structures. The difference in 13C deposition on smooth graphite and tungsten substrates has been specified by consideration of effects of kinetic reflection, enhanced physical sputtering and nucleation.

  11. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.

    PubMed

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M

    2017-09-01

    We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.

  12. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing.

    PubMed

    Yoon, Hyung-In; Noh, Hyo-Mi; Park, Eun-Jin

    2017-06-01

    This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, P <.05). The zirconia showed the most increase in roughness after scaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, P <.05). Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.

  13. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing

    PubMed Central

    Noh, Hyo-Mi

    2017-01-01

    PURPOSE This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, P<.05). The zirconia showed the most increase in roughness after scaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, P<.05). CONCLUSION Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate. PMID:28680550

  14. Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer

    NASA Technical Reports Server (NTRS)

    Gillies, John A.; Nickling, William G.; King, James

    2007-01-01

    Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.

  15. Surface roughness of polyvinyl siloxane impression materials following chemical disinfection, autoclave and microwave sterilization.

    PubMed

    Al Kheraif, Abdulaziz Abdullah

    2013-05-01

    Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does not eliminate all disease-causing microorganisms and microwave sterilization leads to a rougher impression surface.

  16. [Influence of different surface roughness of opaque porcelain on reflectance and L* value of porcelain fused to metal].

    PubMed

    Wang, Hui; Xiong, Fang; Yu, Hai-yang; Luo, Zhen-hua

    2009-08-01

    The purpose of this study was to investigate how different surface roughness of opaque porcelain influence reflectance and CIE L* value of porcelain fused to metal (PFM) restorations. 48 casted Ni-Cr alloy metal specimens (12.0 mm x 1.0 mm) were fabricated with ShoFu Vintage Halo porcelain and divided into six groups, eight pieces for each group. The specimens in the first group without polishing were used as control. Other groups were polished against 200-, 400-, 600-, 800-, and 1000-grit sandpaper after sintered, respectively. Surface roughness and color parameters of the specimens were measured with a Surface Roughometer EX2154-13 and a spectrocolorimeter, respectively. Ra (arithmetical mean deviation of the profile) was the main standard value to describe the surface roughness of many kinds of meatal or porcelain materials, and here we used it to express surface roughness of opaque porcelain. The data were statistically analyzed by one-way analysis of variance (alpha = 0.05) in SPSS 13.0. The reflectance value increased from 72.386 +/- 3.953 to 78.671 +/- 3.408, and CIE L* value from 90.189 +/- 1.200 to 93.496 +/- 1.070 with the increasing of surface roughness (Ra) of opaque porcelain from (0.226 +/- 0.069) microm to (0.706 +/- 0.082) microm. The same magnitude were also observed after body porcelain and enamel porcelain were sintered on with reflectance increased from 76.301 +/- 3.097 to 81.529 +/- 4.028, and CIE L* value from 80.694 +/- 1.564 to 84.604 +/- 2.964. The surface roughness of opaque porcelain had effects on the reflectance and value of PFM restorations. Within the limitation of this study, the recommended Ra range of opaque porcelain was 0.23-0.50 microm.

  17. Determining Surface Roughness in Urban Areas Using Lidar Data

    NASA Technical Reports Server (NTRS)

    Holland, Donald

    2009-01-01

    An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.

  18. Why do rough surfaces appear glossy?

    PubMed

    Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu

    2014-05-01

    The majority of work on the perception of gloss has been performed using smooth surfaces (e.g., spheres). Previous studies that have employed more complex surfaces reported that increasing mesoscale roughness increases perceived gloss [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010), Curr. Biol.22, 1909 (2012)]. We show that the use of realistic rendering conditions is important and that, in contrast to [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010)], after a certain point increasing roughness further actually reduces glossiness. We investigate five image statistics of estimated highlights and show that for our stimuli, one in particular, which we term "percentage of highlight area," is highly correlated with perceived gloss. We investigate a simple model that explains the unimodal, nonmonotonic relationship between mesoscale roughness and percentage highlight area.

  19. Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy

    Treesearch

    Rebecca Snell; Leslie H. Groom; Timothy G. Rials

    2001-01-01

    Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...

  20. Effect of polymerization technique and glass fiber addition on the surface roughness and hardness of PMMA denture base material.

    PubMed

    Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M

    2018-06-20

    The current study evaluated the effects of autoclave polymerization both with and without glass fiber (GF) reinforcement on the surface roughness and hardness of acrylic denture base material. Ninety disc specimens (30×2.5 mm) were prepared from Vertex resin and divided according to polymerization techniques into a water bath, short and long autoclave polymerization groups. Tested groups were divided into three subgroups according to the GF concentration (0, 2.5, and 5 wt%). Profilometer and Vickers hardness tests were performed to measure surface roughness and hardness. ANOVA and Tukey-Kramer multiple comparison tests analyzed the results, and p≤0.05 was considered statistically significant. Autoclave polymerization significantly decreased the surface roughness and increased the hardness of acrylic resin without GF reinforcement (p<0.05). However, 5 wt% GF addition significantly increased surface roughness and decreased hardness of the autoclave polymerized denture base resin (p<0.05). Surface properties of Polymethyl methacrylate (PMMA) denture base material improved with autoclave polymerization and negatively affected with GFs addition.

  1. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    NASA Astrophysics Data System (ADS)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  2. Monitoring of Surface Roughness in Aluminium Turning Process

    NASA Astrophysics Data System (ADS)

    Chaijareenont, Atitaya; Tangjitsitcharoen, Somkiat

    2018-01-01

    As the turning process is one of the most necessary process. The surface roughness has been considered for the quality of workpiece. There are many factors which affect the surface roughness. Hence, the objective of this research is to monitor the relation between the surface roughness and the cutting forces in aluminium turning process with a wide range of cutting conditions. The coated carbide tool and aluminium alloy (Al 6063) are used for this experiment. The cutting parameters are investigated to analyze the effects of them on the surface roughness which are the cutting speed, the feed rate, the tool nose radius and the depth of cut. In the case of this research, the dynamometer is installed in the turret of CNC turning machine to generate a signal while turning. The relation between dynamic cutting forces and the surface roughness profile is examined by applying the Fast Fourier Transform (FFT). The experimentally obtained results showed that the cutting force depends on the cutting condition. The surface roughness can be improved when increasing the cutting speed and the tool nose radius in contrast to the feed rate and the depth of cut. The relation between the cutting parameters and the surface roughness can be explained by the in-process cutting forces. It is understood that the in-process cutting forces are able to predict the surface roughness in the further research.

  3. Surface wettability of silicon substrates enhanced by laser ablation

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Chen, Ming-Fei; Huang, Kuo-Cheng; Hsiao, Sheng-Yi; Lin, Yung-Sheng; Chou, Chang-Pin

    2010-11-01

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.

  4. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Zhi; Yuan, Wu-Zhi

    2018-04-01

    The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.

  5. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    PubMed

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (P< 0.05). In the ROT group, brushing promoted a significantly greater wear of white spot lesion compared with sound enamel, and this group differed significantly from the ST1 group (P< 0.05). None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  6. Dynamic evolution of interface roughness during friction and wear processes.

    PubMed

    Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L

    2014-01-01

    Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.

  7. Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams.

    PubMed

    Türkan, Uğur; Güden, Mustafa; Sudağıdan, Mert

    2016-06-01

    The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.

  8. Effect of multiple autoclave cycles on the surface roughness of HyFlex CM and HyFlex EDM files: an atomic force microscopy study.

    PubMed

    Yılmaz, K; Uslu, G; Özyürek, T

    2018-02-13

    To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P < 0.05). The highest Ra and RMS values were observed in the HyFlex CM and HyFlex EDM files that were subjected to 10 cycles of autoclave sterilization (P < 0.05). The surface roughness values of the HyFlex CM group showed a significant increase after ten autoclave cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P < 0.05). Although the initial surface roughness values of the HyFlex EDM files were lower than those of the HyFlex CM files, the surface roughness values of the EDM files showed a statistically significant increase after 5 cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.

  9. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    NASA Astrophysics Data System (ADS)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  10. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.

    PubMed

    Qiu, J; Ran, D F; Liu, Y B; Liu, L H

    2016-07-10

    Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.

  11. Compressor cascade performance deterioration caused by sand ingestion

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    Airfoil cascade erosion and performance deterioration was investigated in a gas particle cascade tunnel. The cascade blades were made of 2024 aluminum alloy and the solid particles used were quartz sand. The results of the experimental measurements are presented to show the change in the blade surface erosion, pressure distribution and the total loss coefficient with erosion. The surface quality of the blades exposed to particulate flows are changing the material surfaces. With time, the surface roughness increases and leads to a decrease in engine performance. It was found that the surface roughness values increase asymptotically to a maximum value with increased erosion. The experimental results indicate that the roughness parameters correlate well against the mass of particles impacting unit area of the surface. Such a correlation is useful in aerodynamics and performance computations in turbomachinery.

  12. Effects of tooth-brushing force with a desensitising dentifrice on dentine tubule patency and surface roughness.

    PubMed

    Mullan, F; Paraskar, S; Bartlett, D W; Olley, R C

    2017-05-01

    To investigate the effects of a 5% NovaMin containing dentifrice on dentine tubule patency and surface roughness at 100g and 400g tooth brush abrasion forces. 75 polished human dentine samples were prepared and randomly allocated into one of five groups; control (1), Na 2 PFO 3 100g abrasion force (2), NovaMin 100g (3), Na 2 PFO 3 400g (4) and NovaMin 400g (5). The control group underwent two 2-min cycles of artificial saliva (AS), one 2-min erosion cycle; the rest underwent two toothbrush abrasion cycles in an AS/dentifrice slurry and one 2-min erosion cycle. All samples were imaged at baseline and post intervention using Tandem Scanning Microscopy and Profilometry to analyse tubule patency and roughness. Mean tubule patency increased significantly between baseline and post intervention in groups 1,2 and 4 and decreased significantly post intervention in groups 3 and 5 (p<0.01). Post intervention, there were statistically significant differences in mean patent tubules between NovaMin and the Na 2 PFO 3 and control groups (p<0.001). Surface roughness increased for all groups between baseline and post interventions (P<0.001); mean (SD) roughness increases for groups 1, 2, 3, 4 and 5 were 0.14 (0.05) μm, 0.18 (0.04) μm, 0.16 (0.06) μm, 0.19 (0.07) μm and 0.21 (0.02) μm respectively. Differences between group 1 and 5 were significant (p<0.01). Brushing with NovaMin resulted in significant dentine tubule occlusion at 100g and 400g, but brushing with Na 2 PFO 3 resulted in increased tubule patency. Surface roughness increased significantly at 400g brushing with NovaMin. There was no correlation between tubule patency and surface roughness. A NovaMin desensitising dentifrice resulted in tubule occlusion even at high brushing forces. There was minimal increase in surface roughness at the lower (100g) brushing force. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    PubMed Central

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  14. Surface changes of enamel after brushing with charcoal toothpaste

    NASA Astrophysics Data System (ADS)

    Pertiwi, U. I.; Eriwati, Y. K.; Irawan, B.

    2017-08-01

    The aim of this study was to determine the surface roughness changes of tooth enamel after brushing with charcoal toothpaste. Thirty specimens were brushed using distilled water (the first group), Strong® Formula toothpaste (the second group), and Charcoal® Formula toothpaste for four minutes and 40 seconds (equivalent to one month) and for 14 minutes (equivalent to three months) using a soft fleece toothbrush with a mass of 150 gr. The roughness was measured using a surface roughness tester, and the results were tested with repeated ANOVA test and one-way ANOVA. The value of the surface roughness of tooth enamel was significantly different (p<0.05) after brushing for an equivalent of one month and an equivalent of three months. Using toothpaste containing charcoal can increase the surface roughness of tooth enamel.

  15. Surface roughness measurement on a wing aircraft by speckle correlation.

    PubMed

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  16. Wall roughness effect on gas dynamics in supersonic ejector

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Brezgin, D. V.

    2016-10-01

    The paper presents the numerical simulations results in order to figure out the influence of the wall surface roughness on gas-dynamic processes inside the supersonic ejector. For these purposes two commercial CFD-solvers (Star-CCM+ and Fluent) were used. A detailed comparative study of the built-in tools and approaches in both CFD-packages for evaluation of surface roughness effects on the logarithmic law velocity distribution inside the boundary layer is carried out. Influence of ejector surface roughness is compared with the influence of the backpressure. It is found out that either increasing the backpressure behind the ejector or increasing the surface roughness height, the appearance section of a pressure shock is displaced upstream (closer to the primary nozzle). The numerical simulations results of the ejector with rough walls in both CFD-solvers are well quantitative agreed between each other in terms of the mass flow rates and are well qualitative consistent in terms of the local flow parameters distribution. It is found out that in case of exceeding the "critical roughness height" for the given geometry and boundary conditions, the ejector switches to the "off-design" mode and its performance is significantly reduced.

  17. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.

    PubMed

    Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur

    2014-01-01

    Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.

  18. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  19. Influence of Additional Leading-Edge Surface Roughness on Performances in Highly Loaded Compressor Cascade

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Xu, Hao; Sun, Shijun; Zhang, Longxin; Wang, Songtao

    2015-05-01

    Experimental research has been carried out at low speed to investigate the effect of additional leading-edge surface roughness on a highly-loaded axial compressor cascade. A 5-hole aerodynamic probe has been traversed across one pitch to obtain the distribution of total pressure loss coefficient, secondary flow vector, flow angles and other aerodynamic parameters at the exit section. Meanwhile, ink-trace flow visualization has been used to measure the flow fields on the walls of cascades and a detailed topology structure of the flow on the walls has been obtained. Aerodynamic parameters and flow characteristics are compared by arranging different levels of roughness on various parts of the leading edge. The results show that adding surface roughness at the leading edge and on the suction side obviously influences cascade performance. Aggravated 3-D flow separation significantly increases the loss in cascades, and the loss increases till 60% when the level of emery paper is 80 mm. Even there is the potential to improve cascade performance in local area of cascade passage. The influence of the length of surface roughness on cascade performance is not always adverse, and which depends on the position of surface roughness.

  20. Combined Effect of Surface Roughness and Wake Splitter Plate on the Aerodynamic Characteristics of a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Saisanthosh, Iyer; Arunkumar, K.; Ajithkumar, R.; Srikrishnan, A. R.

    2017-09-01

    This paper is focussed on numerical investigation of flow around a stationary circular cylinder (diameter, D) with selectively applied surface roughness (roughness strips with thickness ‘k’) in the presence of a wake splitter plate (length, L). The plate leading edge is at a distance of ‘G’ from the cylinder base. For this study, the commercial software ANSYS Fluent is used. Fluid considered is water. Study was conducted the following cases (a) plain cylinder (b) cylinder with surface roughness (without splitter plate) (c) Cylinder with splitter plate (without surface roughness) and (d) cylinder with both roughness and splitter plate employed. The study Reynolds number (based on D) is 17,000 and k/δ = 1.25 (in all cases). Results indicate that, for cylinder with splitter plate (no roughness), lift coefficient gradually drops till G/D=1.5 further to which it sharply increases. Whereas, drag coefficient and Strouhal number undergoes slight reduction till G/D=1.0 and thereafter, gradually increase. Circumferential location of strip (α) does not influence the aerodynamic parameters significantly. With roughness alone, drag is magnified by about 1.5 times and lift, by about 2.7 times that of the respective values of the smooth cylinder. With splitter plate, for roughness applied at all ‘α’ values, drag and lift undergoes substantial reduction with the lowest value attained at G/D=1.0.

  1. Fabrication of transparent superhydrophobic polytetrafluoroethylene coating

    NASA Astrophysics Data System (ADS)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Biris, Alexandru S.

    2018-06-01

    Polytetrafluoroethylene (PTFE) thin films were successfully deposited on glass substrates using pulsed laser deposition, with deposition times ranging from 30 to 120 minutes (min). The surface roughness of the films increased as deposition time increased, with micro/nanoscale roughness developing when deposition time increased over 60 min. This roughness made the surface superhydrophobic, having a contact angle of about 151.6°±1. UV-vis spectroscopic analysis of the PTFE films revealed that they were highly transparent, up to ∼90% in visible and near-infrared ranges. Furthermore, when the deposition time was increased-which increased the films' thickness-the films were able to absorb 80-90% of ultraviolet light in the wavelength range <300 nm. The researchers used an x-ray photoelectron spectrometer to find the chemical and elemental composition of the films' surfaces. Atomic force microscopy was used to determine the effect of surface roughness on the films' hydrophobicity. The fabricated superhydrophobic films have many potential practical uses, from self-cleaning materials to solar cell panel coatings. Additionally, the low dielectric properties of PTFE make the films' ideal for communication antenna coatings and similar applications.

  2. Role of surface energy and nano-roughness in the removal efficiency of bacterial contamination by nonwoven wipes from frequently touched surfaces

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.

    2017-12-01

    Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.

  3. Early osteoblast responses to orthopedic implants: Synergy of surface roughness and chemistry of bioactive ceramic coating.

    PubMed

    Aniket; Reid, Robert; Hall, Benika; Marriott, Ian; El-Ghannam, Ahmed

    2015-06-01

    Pro-osteogenic stimulation of bone cells by bioactive ceramic-coated orthopedic implants is influenced by both surface roughness and material chemistry; however, their concomitant impact on osteoblast behavior is not well understood. The aim of this study is to investigate the effects of nano-scale roughness and chemistry of bioactive silica-calcium phosphate nanocomposite (SCPC50) coated Ti-6Al-4V on modulating early bone cell responses. Cell attachment was higher on SCPC50-coated substrates compared to the uncoated controls; however, cells on the uncoated substrate exhibited greater spreading and superior quality of F-actin filaments than cells on the SCPC50-coated substrates. The poor F-actin filament organization on SCPC50-coated substrates is thought to be due to the enhanced calcium uptake by the ceramic surface. Dissolution analyses showed that an increase in surface roughness was accompanied by increased calcium uptake, and increased phosphorous and silicon release, all of which appear to interfere with F-actin assembly and osteoblast morphology. Moreover, cell attachment onto the SCPC50-coated substrates correlated with the known adsorption of fibronectin, and was independent of surface roughness. High-throughput genome sequencing showed enhanced expression of extracellular matrix and cell differentiation related genes. These results demonstrate a synergistic relationship between bioactive ceramic coating roughness and material chemistry resulting in a phenotype that leads to early osteoblast differentiation. © 2014 Wiley Periodicals, Inc.

  4. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials.

    PubMed

    Checketts, Matthew R; Turkyilmaz, Ilser; Asar, Neset Volkan

    2014-11-01

    Bacterial plaque must be routinely removed from teeth, adjacent structures, and prostheses. However, the removal of this plaque can inadvertently increase the risk of future bacterial adhesion. The purpose of this investigation was to assess the change in the surface roughness of 3 different surfaces after dental prophylactic instrumentation and how this influenced bacterial adhesion. Forty specimens each of Type III gold alloy, lithium disilicate, and zirconia were fabricated in the same dimensions. The specimens were divided into 4 groups: ultrasonic scaler, stainless steel curette, prophylaxis cup, and control. Pretreatment surface roughness measurements were made with a profilometer. Surface treatments in each group were performed with a custom mechanical scaler. Posttreatment surface roughness values were measured. In turn, the specimens were inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces viscosus. Bacterial adhesion was assessed by rinsing the specimens with sterile saline to remove unattached cells. The specimens were then placed in sterile tubes with 1 mL of sterile saline. The solution was plated and quantified. Scanning electron microscopy was performed. The statistical analysis of surface roughness was completed by using repeated-measures single-factor ANOVA with a Bonferroni correction. The surface roughness values for gold alloy specimens increased as a result of prophylaxis cup treatment (0.221 to 0.346 Ra) (P<.01) and stainless steel curette treatment (0.264 to 1.835 Ra) (P<.01). The results for bacterial adhesion to gold alloy proved inconclusive. A quantitative comparison indicated no statistically significant differences in pretreatment and posttreatment surface roughness values for lithium disilicate and zirconia specimens. In spite of these similarities, the overall bacterial adherence values for lithium disilicate were significantly greater than those recorded for gold alloy or zirconia (P<.05). Instrumentation of the lithium disilicate and zirconia with the stainless steel curette significantly increased bacterial adhesion compared with the control (P<.05). The results of this investigation indicate that Type III gold alloy exhibited increased surface roughness values after stainless steel curette and prophylaxis cup treatments. Zirconia was less susceptible to bacterial adhesion than lithium disilicate, and greater bacterial adhesion was found for the stainless steel curette than the other instrumentation methods. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Response Ant Colony Optimization of End Milling Surface Roughness

    PubMed Central

    Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  6. Rheological State Diagrams for Rough Colloids in Shear Flow.

    PubMed

    Hsiao, Lilian C; Jamali, Safa; Glynos, Emmanouil; Green, Peter F; Larson, Ronald G; Solomon, Michael J

    2017-10-13

    To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.

  7. Rheological State Diagrams for Rough Colloids in Shear Flow

    NASA Astrophysics Data System (ADS)

    Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.

    2017-10-01

    To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.

  8. Effect of hydrodynamics and surface roughness on the electrochemical behaviour of carbon steel in CSG produced water

    NASA Astrophysics Data System (ADS)

    Eyu, Gaius Debi; Will, Geoffrey; Dekkers, Willem; MacLeod, Jennifer

    2015-12-01

    The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β-FeO(OH) and goethite α-FeO(OH) corrosion scale at the electrode surface. The corrosion rate was lowest at 0 rpm. The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

  9. Wear mechanisms and improvements of wear resistance in cobalt-chromium alloy femoral components in artificial total knee joints

    NASA Astrophysics Data System (ADS)

    Que, Like

    Wear is one of the major causes of artificial total knee arthroplasty (TKA) failure. Wear debris can cause adverse reactions to the surrounding tissue which can ultimately lead to loosening of the prosthesis. The wear behavior of UHMWPE tibial components have been studied extensively, but relatively little attention has been paid to the CoCrMo femoral component. The goal of the present study was to investigate the wear mechanisms of CoCrMo femoral components, to study the effect of CoCrMo alloy surface roughness on the wear of UHMWPE, and to determine the effect of heat treatments on the wear resistance of the CoCrMo implant alloys. The surface roughness of twenty-seven retrieved CoCrMo femoral components was analyzed. A multiple station wear testing machine and a wear fixture attached to an MTS 858 bionix system were built and used for in vitro wear studies of the CoCrMo/UHMWPE bearing couple. Solution and aging treatments were applied to the CoCrMo alloys. A white light interference surface profilometer (WLISP) and a scanning electron microscope (SEM) were used to measure the surface roughness and to study wear mechanisms of CoCrMo alloy. An optical microscope was used for alloy microstructure study. X-ray diffraction tests were performed to identify alloy phase transformation after aging. The micro-structure, hardness, and wear resistance of the alloys were studied. Surface roughness was used to quantify alloy wear, and the minimum number of surface roughness measurements required to obtain a reliable and repeatable characterization of surface roughness for a worn alloy surface was determined. The surfaces of the retrieved CoCrMo femoral components appeared to be damaged by metal particles embedded in the UHMWPE tibial component and metal-on-metal wear due to UHMWPE tibial component through-wear. Surface roughness of the femoral components was not correlated with patient age, weight, sex, or length of implantation. In vitro wear tests showed that when the CoCrMo alloy surface roughness was higher than 0.022 mum Ra (surface roughness average), UHMWPE wear increased with increasing CoCrMo alloy surface roughness. Bone and poly(methyl methacrylate) (PMMA) bone cement abrasive particles created scratches on the alloy via a ploughing mechanism, and resulted in significantly rougher surfaces than controls without particles (P < 0.01). Solution treatments at 1230sp°C and 1245sp°C reduced the hardness and wear resistance of the as-cast F75 CoCrMo alloy. Aging at 700sp°C caused recrystallization of the forged F799 alloy and improved wear resistance. Thermo-mechanical treatments have the potential to increase the lifetime of artificial joints by increasing the wear resistance of CoCrMo components.

  10. The effect of various dentifrices on surface roughness and gloss of resin composites.

    PubMed

    da Costa, Juliana; Adams-Belusko, Anne; Riley, Kelly; Ferracane, Jack L

    2010-01-01

    The purpose of this study was to evaluate the effect of different levels of abrasiveness (RDA) of dentifrices on the gloss and surface roughness of resin composites after toothbrushing. Sixty disk-shaped composite specimens (D=10.0mm, 2-mm thick, n=15 per material) were made of: microfill (Durafill), nanofill (Filtek Supreme), minifill hybrid (Filtek 250), and nanohybrid (Premise). One side of each specimen was finished with a carbide bur and polished with Enhance and Pogo. Five specimens of each composite were randomly assigned to one of the dentifrices, Colgate Total (CT; RDA 70), Colgate baking soda & peroxide whitening (CBS; RDA 145), and Colgate tartar control & whitening (CTW; RDA 200). Surface gloss was measured with a glossmeter and surface roughness with a profilometer before and after toothbrushing with a 1:2 slurry (dentifrice/deionised water) at 5760 strokes in a brushing machine (approximately 1Hz). Results were analyzed by three-way ANOVA/Tukey's (p<0.05). There was a significant reduction in gloss and increase in surface roughness after brushing with all dentifrices. There was no significant difference in gloss when Durafill was brushed with any dentifrice; the other composites showed less gloss reduction when brushed with CT. Durafill, Supreme and Premise did not show significantly different surface roughness results and CBS and CTW did not produce significantly different results. Dentifrices of lower abrasivity promote less reduction in gloss and surface roughness for composites of different particle sizes after brushing. Composites containing smaller average fillers showed less reduction in gloss and less increase in surface roughness than ones with larger fillers. Published by Elsevier Ltd.

  11. Effects of toothbrush hardness on in vitro wear and roughness of composite resins.

    PubMed

    Kyoizumi, Hideaki; Yamada, Junji; Suzuki, Toshimitsu; Kanehira, Masafumi; Finger, Werner J; Sasaki, Keiichi

    2013-11-01

    To investigate and compare the effects of toothbrushes with different hardness on abrasion and surface roughness of composite resins. Toothbrushes (DENT. EX Slimhead II 33, Lion Dental Products Co. Ltd., Tokyo, Japan) marked as soft, medium and hard, were used to brush 10 beam-shaped specimens of each of three composites resins (Venus [VEN], Venus Diamond [VED] and Venus Pearl [VEP]; HeraeusKulzer) with standardized calcium carbonate slurry in a multistation testing machine (2N load, 60 Hz). After each of five cycles with 10k brushing strokes the wear depth and surface roughness of the specimens were determined. After completion of 50k strokes representative samples were inspected by SEM. Data were treated with ANOVA and regression analyses (p < 0.05). Abrasion of the composite resins increased linearly with increasing number of brushing cycles (r² > 0.9). Highest wear was recorded for VEN, lowest for VED. Hard brushes produced significantly higher wear on VEN and VEP, whereas no difference in wear by toothbrush type was detected for VED. Significantly highest surface roughness was found on VED specimens (Ra > 1.5 µm), the lowest one on VEN (Ra < 0.3 µm). VEN specimens showed increased numbers of pinhole defects when brushed with hard toothbrushes, surfaces of VEP were uniformly abraded without level differences between the prepolymerized fillers and the glass filler-loaded matrix, VED showed large glass fillers protruding over the main filler-loaded matrix portion under each condition. Abrasion and surface roughness of composite resins produced by toothbrushing with dentifrice depend mainly on the type of restorative resin. Hardness grades of toothbrushes have minor effects only on abrasion and surface roughness of composite resins. No relationship was found between abrasion and surface roughness. The grade of the toothbrush used has minor effect on wear, texture and roughness of the composite resin.

  12. Evaluation of modified titanium surfaces physical and chemical characteristics

    NASA Astrophysics Data System (ADS)

    Lukaszewska-Kuska, Magdalena; Leda, Bartosz; Gajdus, Przemyslaw; Hedzelek, Wieslaw

    2017-11-01

    Development of dental implantology is focused, among other things, on devising active surface of the implant, conditioning acceleration of the implant's integration with the bone. Increased roughness, characteristic for group of implants with developed surface, altered topography and chemically modified implant's surface determines increased implants stability. In this study four different titanium surfaces modifications: turned (TS); aluminium oxide-blasted (Al2O3); resorbable material blasted (RBM); sandblast and then etched with a mixture of acids (SAE), were evaluated in terms of surfaces topography and chemical composition prior to in vivo analysis. Topography analysis revealed two groups: one with smooth, anisotropic, undeveloped TS surface and the second group with remaining surfaces presenting rough, isotropic, developed surfaces with added during blasting procedure aluminium for Al2O3 and calcium and phosphorus for RBM. Physical and chemical modifications of titanium surface change its microstructure (typical for SAE) and increase its roughness (highest for Al2O3-blasted and RBM surfaces). The introduced modifications develop titanium surface - 10 times for SAE surfaces, 16 times for Al2O3-blasted surfaces, and 20 times for RBM surfaces.

  13. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    NASA Astrophysics Data System (ADS)

    Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.

    2015-03-01

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.

  14. Accelerated aging effects on surface hardness and roughness of lingual retainer adhesives.

    PubMed

    Ramoglu, Sabri Ilhan; Usumez, Serdar; Buyukyilmaz, Tamer

    2008-01-01

    To test the null hypothesis that accelerated aging has no effect on the surface microhardness and roughness of two light-cured lingual retainer adhesives. Ten samples of light-cured materials, Transbond Lingual Retainer (3M Unitek) and Light Cure Retainer (Reliance) were cured with a halogen light for 40 seconds. Vickers hardness and surface roughness were measured before and after accelerated aging of 300 hours in a weathering tester. Differences between mean values were analyzed for statistical significance using a t-test. The level of statistical significance was set at P < .05. The mean Vickers hardness of Transbond Lingual Retainer was 62.8 +/- 3.5 and 79.6 +/- 4.9 before and after aging, respectively. The mean Vickers hardness of Light Cure Retainer was 40.3 +/- 2.6 and 58.3 +/- 4.3 before and after aging, respectively. Differences in both groups were statistically significant (P < .001). Following aging, mean surface roughness was changed from 0.039 microm to 0.121 microm and from 0.021 microm to 0.031 microm for Transbond Lingual Retainer and Light Cure Retainer, respectively. The roughening of Transbond Lingual Retainer with aging was statistically significant (P < .05), while the change in the surface roughness of Light Cure Retainer was not (P > .05). Accelerated aging significantly increased the surface microhardness of both light-cured retainer adhesives tested. It also significantly increased the surface roughness of the Transbond Lingual Retainer.

  15. Role of Integrin Subunits in Mesenchymal Stem Cell Differentiation and Osteoblast Maturation on Graphitic Carbon-coated Microstructured Surfaces

    PubMed Central

    Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999

  16. Etidronate from Medicine to Endodontics: effects of different irrigation regimes on root dentin roughness

    PubMed Central

    TARTARI, Talita; DUARTE JUNIOR, Anivaldo Pereira; SILVA JÚNIOR, José Otávio Carrera; KLAUTAU, Eliza Burlamaqui; SILVA E SOUZA JUNIOR, Mario Honorato; SILVA E SOUZA, Patrícia de Almeida Rodrigues

    2013-01-01

    An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics. Objectives To evaluate the effects of sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), etidronic (HEBP), and citric acid (CA) associated with different irrigation regimens on root dentin roughness. Material and Methods Forty-five root halves of anterior teeth were used. The root parts were sectioned in thirds, embedded in acrylic resin and polished to a standard surface roughness. Initially, the samples of each third were randomly assigned into 3 groups and treated as follows: G1 - saline solution (control); G2 - 5% NaOCl+18% HEBP mixed in equal parts; and G3 - 2.5% NaOCl. After initial measuments, the G3 samples were distributed into subgroups G4, G5 and G6, which were subjected to 17% EDTA, 10% CA and 9% HEBP, respectively. Following the new measuments, these groups received a final flush with 2.5% NaOCl, producing G7, G8 and G9. The dentin surface roughness (Ra) was determined before and after treatments using a profilometer. The Wilcoxon test (α<0.05) was used to compare the values before and after treatments, and the Friedman test (α<0.05) to detect any differences among root thirds. Results (i) NaOCl did not affect the surface roughness; (ii) there was a significant increase in roughness after the use of chelating agents (P<0.01); and (iii) only the G3 group showed a difference in surface roughness between apical third and other thirds of the teeth (P<0.0043). Conclusion Only the irrigation regimens that used chelating agents altered the roughness of root dentin. PMID:24212986

  17. Etidronate from medicine to endodontics: effects of different irrigation regimes on root dentin roughness.

    PubMed

    Tartari, Talita; Duarte Junior, Anivaldo Pereira; Silva Júnior, José Otávio Carrera; Klautau, Eliza Burlamaqui; Silva E Souza Junior, Mario Honorato; Silva E Souza Junior, Patrícia de Almeida Rodrigues

    2013-01-01

    An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics. To evaluate the effects of sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), etidronic (HEBP), and citric acid (CA) associated with different irrigation regimens on root dentin roughness. Forty-five root halves of anterior teeth were used. The root parts were sectioned in thirds, embedded in acrylic resin and polished to a standard surface roughness. Initially, the samples of each third were randomly assigned into 3 groups and treated as follows: G1 - saline solution (control); G2 - 5% NaOCl+18% HEBP mixed in equal parts; and G3 - 2.5% NaOCl. After initial measuments, the G3 samples were distributed into subgroups G4, G5 and G6, which were subjected to 17% EDTA, 10% CA and 9% HEBP, respectively. Following the new measuments, these groups received a final flush with 2.5% NaOCl, producing G7, G8 and G9. The dentin surface roughness (Ra) was determined before and after treatments using a profilometer. The Wilcoxon test (α<0.05) was used to compare the values before and after treatments, and the Friedman test (α<0.05) to detect any differences among root thirds. (i) NaOCl did not affect the surface roughness; (ii) there was a significant increase in roughness after the use of chelating agents (P<0.01); and (iii) only the G3 group showed a difference in surface roughness between apical third and other thirds of the teeth (P<0.0043). Only the irrigation regimens that used chelating agents altered the roughness of root dentin.

  18. Spin Hall effect originated from fractal surface

    NASA Astrophysics Data System (ADS)

    Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.

    2018-05-01

    The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H  =  1 to H  =  0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.

  19. Effects of random aspects of cutting tool wear on surface roughness and tool life

    NASA Astrophysics Data System (ADS)

    Nabil, Ben Fredj; Mabrouk, Mohamed

    2006-10-01

    The effects of random aspects of cutting tool flank wear on surface roughness and on tool lifetime, when turning the AISI 1045 carbon steel, were studied in this investigation. It was found that standard deviations corresponding to tool flank wear and to the surface roughness increase exponentially with cutting time. Under cutting conditions that correspond to finishing operations, no significant differences were found between the calculated values of the capability index C p at the steady-state region of the tool flank wear, using the best-fit method or the Box-Cox transformation, or by making the assumption that the surface roughness data are normally distributed. Hence, a method to establish cutting tool lifetime could be established that simultaneously respects the desired average of surface roughness and the required capability index.

  20. Nucleate pool boiling heat transfer characteristics of TiO{sub 2}-water nanofluids at very low concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriyawong, Adirek; Wongwises, Somchai

    2010-11-15

    A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration ofmore » 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)« less

  1. An In Vitro Evaluation of Alumina, Zirconia, and Lithium Disilicate Surface Roughness Caused by Two Scaling Instruments.

    PubMed

    Vigolo, Paolo; Buzzo, Ottavia; Buzzo, Maurizio; Mutinelli, Sabrina

    2017-02-01

    Plaque control is crucial for the prevention of inflammatory periodontal disease. Hand scaling instruments have been shown to be efficient for the removal of plaque; however, routine periodontal prophylactic procedures may modify the surface profile of restorative materials. The purpose of this study was to assess in vitro the changes in roughness of alumina, zirconia, and lithium disilicate surfaces treated by two hand scaling instruments. Forty-eight alumina specimens, 48 zirconia specimens, and 48 lithium disilicate specimens, were selected. All specimens were divided into three groups of 16 each; one group for each material was considered the control group and no scaling procedures were performed; the second group of each material was exposed to scaling with steel curettes simulating standard clinical conditions; the third group of each material was exposed to scaling with titanium curettes. After scaling, the surface roughness of the specimens was evaluated with a profilometer. First, a statistical test was carried out to evaluate the difference in surface roughness before the scaling procedure of the three materials was effected (Kruskal-Wallis test). Subsequently, the effect of curette material (steel and titanium) on roughness difference and roughness ratio was analyzed throughout the entire sample and within each material group, and a nonparametric test for dependent values was conducted (Wilcoxon signed-rank test). Finally, the roughness ratios of the three material groups were compared by means of a Kruskal-Wallis test and a Wilcoxon signed-rank test. Upon completion of profilometric evaluation, representative specimens from each group were prepared for SEM evaluation to evaluate the effects of the two scaling systems on the different surfaces qualitatively. After scaling procedure, the roughness profile value increased in all disks. Classifying the full sample according to curette used, the roughness of the disks treated with a steel curette reached a higher median value than that of the titanium group. Zirconia demonstrated the least significant increase in surface roughness. The result was 3.9 times of the initial value as compared to 4.3 times for alumina and 4.6 times for lithium disilicate. Comparison of profilometer readings before and after instrumentation, carried out with different hand scaling instruments, highlighted both a statistically and clinically relevant increase in material roughness. © 2015 by the American College of Prosthodontists.

  2. Effect of Acidic Agents on Surface Roughness of Dental Ceramics

    PubMed Central

    Kukiattrakoon, Boonlert; Hengtrakool, Chanothai; Kedjarune-Leggat, Ureporn

    2011-01-01

    Background: An increase in surface roughness of ceramics may decrease strength and affect the clinical success of ceramic restorations. However, little is known about the effect of acidic agents on ceramic restorations. The aim of this study was to evaluate the surface roughness of dental ceramics after being immersed in acidic agents. Methods: Eighty-three ceramic disk specimens (12.0 mm in diameter and 2.0 mm in thickness) were made from four types of ceramics (VMK 95, Vitadur Alpha, IPS Empress Esthetic, and IPS e.max Ceram). Baseline data of surface roughness were recorded by profilometer. The specimens were then immersed in acidic agents (citrate buffer solution, pineapple juice and green mango juice) and deionized water (control) at 37°C for 168 hours. One group was immersed in 4% acetic acid at 80°C for 168 hours. After immersion, surface roughness was evaluated by a profilometer at intervals of 24, 96, and 168 hours. Surface characteristics of specimens were studied using scanning electron microscopy (SEM). Data were analyzed using two-way repeated ANOVA and Tukey's multiple comparisons (α = 0.05). Results: For all studied ceramics, all surface roughness parameters were significantly increased after 168 hours immersion in all acidic agents (P < 0.05). After 168 hours in 4% acetic acid, there were significant differences for all roughness parameters from other acidic agents of all evaluated ceramics. Among all studied ceramics, Vitadur Alpha showed significantly the greatest values of all surface roughness parameters after immersion in 4% acetic acid (P < 0.001). SEM photomicrographs also presented surface destruction of ceramics in varying degrees. Conclusion: Acidic agents used in this study negatively affected the surface of ceramic materials. This should be considered when restoring the eroded tooth with ceramic restorations in patients who have a high risk of erosive conditions. PMID:22132009

  3. Growth of rough-surface p-GaN layers on InGaN/GaN multiple-quantum-well structures by metalorganic chemical vapor deposition and their application to GaN-based solar cells

    NASA Astrophysics Data System (ADS)

    Mori, Takuma; Egawa, Takashi; Miyoshi, Makoto

    2017-08-01

    We conducted the study on the growth of rough-surface p-GaN layers on InGaN/GaN multiple-quantum-well (MQW) structures by metalorganic chemical vapor deposition (MOCVD). It was found that the sum of InGaN well thickness t well_total was a predominant factor to form the rough surface, in addition to the growth temperature as low as 800 °C for the p-GaN layers. Microstructure analyses revealed that the rough surfaces consisted of a certain number of hexagonal V-shaped pits starting from dislocations propagated through an under layer and they increased with the increased t well_total. It was confirmed that the light absorption was enlarged for MQW structure samples with rough-surface p-GaN layers on the top, owing to not only the thickness effect in MQWs but also their reduced light reflection on the surfaces. It was also confirmed that these optical properties contributed to the performance improvement in InGaN/GaN MQW solar cells.

  4. Velopharyngeal mucosal surface topography in healthy subjects and subjects with obstructive sleep apnea.

    PubMed

    Lambeth, Christopher; Amatoury, Jason; Wang, Ziyu; Foster, Sheryl; Amis, Terence; Kairaitis, Kristina

    2017-03-01

    Macroscopic pharyngeal anatomical abnormalities are thought to contribute to the pathogenesis of upper airway (UA) obstruction in obstructive sleep apnea (OSA). Microscopic changes in the UA mucosal lining of OSA subjects are reported; however, the impact of these changes on UA mucosal surface topography is unknown. This study aimed to 1 ) develop methodology to measure UA mucosal surface topography, and 2 ) compare findings from healthy and OSA subjects. Ten healthy and eleven OSA subjects were studied. Awake, gated (end expiration), head and neck position controlled magnetic resonance images (MRIs) of the velopharynx (VP) were obtained. VP mucosal surfaces were segmented from axial images, and three-dimensional VP mucosal surface models were constructed. Curvature analysis of the models was used to study the VP mucosal surface topography. Principal, mean, and Gaussian curvatures were used to define surface shape composition and surface roughness of the VP mucosal surface models. Significant differences were found in the surface shape composition, with more saddle/spherical and less flat/cylindrical shapes in OSA than healthy VP mucosal surface models ( P < 0.01). OSA VP mucosal surface models were also found to have more mucosal surface roughness ( P < 0.0001) than healthy VP mucosal surface models. Our novel methodology was utilized to model the VP mucosal surface of OSA and healthy subjects. OSA subjects were found to have different VP mucosal surface topography, composed of increased irregular shapes and increased roughness. We speculate increased irregularity in VP mucosal surface may increase pharyngeal collapsibility as a consequence of friction-related pressure loss. NEW & NOTEWORTHY A new methodology was used to model the upper airway mucosal surface topography from magnetic resonance images of patients with obstructive sleep apnea and healthy adults. Curvature analysis was used to analyze the topography of the models, and a new metric was derived to describe the mucosal surface roughness. Increased roughness was found in the obstructive sleep apnea vs. healthy group, but further research is required to determine the functional effects of the measured difference on upper airway airflow mechanics. Copyright © 2017 the American Physiological Society.

  5. Ripple formation on atomically flat cleaved Si surface with roughness of 0.038 nm rms by low-energy Ar{sup 1+} ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.

    The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less

  6. A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.

    PubMed

    Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk

    2010-10-01

    In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.

  7. Amplification of intrinsic emittance due to rough metal cathodes: Formulation of a parameterization model

    NASA Astrophysics Data System (ADS)

    Charles, T. K.; Paganin, D. M.; Dowd, R. T.

    2016-08-01

    Intrinsic emittance is often the limiting factor for brightness in fourth generation light sources and as such, a good understanding of the factors affecting intrinsic emittance is essential in order to be able to decrease it. Here we present a parameterization model describing the proportional increase in emittance induced by cathode surface roughness. One major benefit behind the parameterization approach presented here is that it takes the complexity of a Monte Carlo model and reduces the results to a straight-forward empirical model. The resulting models describe the proportional increase in transverse momentum introduced by surface roughness, and are applicable to various metal types, photon wavelengths, applied electric fields, and cathode surface terrains. The analysis includes the increase in emittance due to changes in the electric field induced by roughness as well as the increase in transverse momentum resultant from the spatially varying surface normal. We also compare the results of the Parameterization Model to an Analytical Model which employs various approximations to produce a more compact expression with the cost of a reduction in accuracy.

  8. An in vitro evaluation of wear and surface roughness of particulate filler composite resin after tooth brushing.

    PubMed

    Al Khuraif, Abdul Aziz A

    2014-11-01

    To evaluate the influence of tooth brushing on wear and surface roughness of four different particulate filler composite resins. Six specimens (2 mm thick and 8 mm in diameter) of each tested material (Filtek Z250-Microhybrid, SpectrumTPH3-Submicron hybrid, Filtek Z350XT Nanofiller and Filtek P90- Microhybrid) were prepared according to the manufacturer's directions. A brushing sequence of 5000, 10,000 and 20,000 cycles was performed for all the samples. A non-contact profilometer was used to determine average surface roughness (Ra) and wear of the material assessed using an analytic electronic balance at baseline and each cycle interval. The data obtained were analyzed using one-way ANOVAs and post-hoc multiple comparison tests. Paired t-test was used for comparisons between cycle intervals for each material. Analyses with scanning electron microscopy (SEM) were also performed. The resin composite Filtek P 90 presented an increase in percentage weight loss after final toothbrushing cycles over the rest of the materials. Brushing significantly increased roughness (Ra) for all composites. Filtek Z250, after brushing, was significantly rougher than the other resins followed by Filtek P 90, Spectrum TPH 3 and Filtek Z350 XT. However, SEM images indicated severe change in surface topography of 'sub-micron hybrid' specimen compared to each other after tooth brushing. Wear and surface roughness increased with each cycle interval for all the materials and one composite resin demonstrated a higher increase in surface roughness than the other three tested brands of composite resins. Not much difference was observed in the weight loss between tested samples.

  9. Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.

    2010-04-01

    The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.

  10. Bacterial plaque retention on oral hard materials: effect of surface roughness, surface composition, and physisorbed polycarboxylate.

    PubMed

    McConnell, Marla D; Liu, Yu; Nowak, Andrew P; Pilch, Shira; Masters, James G; Composto, Russell J

    2010-03-15

    Bacterial adhesion to oral hard materials is dependent on various factors, for example, surface roughness and surface composition. In this study, bacteria retention on three oral hard substrates, hydroxyapatite (HAP), enamel, and polished enamel (p-enamel) were investigated. The surface morphology and roughness of the three substrates were measured by scanning probe microscopy. HAP had the roughest surface, followed by enamel and polished enamel. For each individual substrate type, the roughness was shown to increase with scan size up to 50 microm x 50 microm. For HAP and enamel, roughness decreased considerably after formation of a pellicle, while addition of polymer coating to the pellicle layer reduced roughness much less in comparison. Bacterial surface coverage was measured at 30 min, 3 h, and 24 h on both native and surface-modified substrates, which were coated with two different polycarboxylate-based polymers, Gantrez S97 and Carbopol 940. As a result, the polymer coated surfaces had reduced bacteria coverage compared with the native surfaces over all time points and substrates measured. The reduction is the combined effect of electrostatic repulsion and sequestering of Ca(2+) ions at the surface, which plays a key role in the initial adhesion of bacteria to enamel surfaces in models of plaque formation. (c) 2009 Wiley Periodicals, Inc.

  11. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  12. Roughness effects on thermal-infrared emissivities estimated from remotely sensed images

    NASA Astrophysics Data System (ADS)

    Mushkin, Amit; Danilina, Iryna; Gillespie, Alan R.; Balick, Lee K.; McCabe, Matthew F.

    2007-10-01

    Multispectral thermal-infrared images from the Mauna Loa caldera in Hawaii, USA are examined to study the effects of surface roughness on remotely retrieved emissivities. We find up to a 3% decrease in spectral contrast in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 90-m/pixel emissivities due to sub-pixel surface roughness variations on the caldera floor. A similar decrease in spectral contrast of emissivities extracted from MASTER (MODIS/ASTER Airborne Simulator) ~12.5-m/pixel data can be described as a function of increasing surface roughness, which was measured remotely from ASTER 15-m/pixel stereo images. The ratio between ASTER stereo images provides a measure of sub-pixel surface-roughness variations across the scene. These independent roughness estimates complement a radiosity model designed to quantify the unresolved effects of multiple scattering and differential solar heating due to sub-pixel roughness elements and to compensate for both sub-pixel temperature dispersion and cavity radiation on TIR measurements.

  13. Correlation of bond strength with surface roughness using a new roughness measurement technique.

    PubMed

    Winkler, M M; Moore, B K

    1994-07-01

    The correlation between shear bond strength and surface roughness was investigated using new surface measurement methods. Bonding agents and associated resin composites were applied to set amalgam after mechanically roughening its surface. Surface treatments were noe (as set against glass), 80 grit, and 600 grit abrasive paper. Surface roughness (R(a) as measured parallel and perpendicular (+) to the direction of the polishing scratches and true profile length were measured. A knife-edge was applied (rate = 2.54 mm/min) at the bonding agent/amalgam interface of each sample until failure. Coefficients of determination for mean bond strength vs either roughness (R(a), of profile length were significantly higher for measurements in parallel directions than for those measurements in (+) directions. The shear bond strength to set amalgam for a PENTA-containing adhesives system (L.D. Caulk Division) was not significantly different from that of a PENTA-free adhesive (3M Dental Products Division), even though PENTA has been reported to increase bond strength to nonprecious metals. The shear bond strength of resin composite to amalgam is correlated to surface roughness when it is measured parallel to the polishing scratches. This correlation is significantly lower when surface roughness is measured in the typical manner, perpendicular to the polishing scratches.

  14. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  15. Transition Experiments on Large Bluntness Cones with Distributed Roughness in Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Reda, Daniel. C.; Wilder, Michael C.; Prabhu, Dinesh K.

    2012-01-01

    Large bluntness cones with smooth nosetips and roughened frusta were flown in the NASA Ames hypersonic ballistic range at a Mach number of 10 through quiescent air environments. Global surface intensity (temperature) distributions were optically measured and analyzed to determine transition onset and progression over the roughened surface. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted to predict values of key dimensionless parameters used to correlate transition on such configurations in hypersonic flow. For these large bluntness cases, predicted axial distributions of the roughness Reynolds number showed (for each specified freestream pressure) that this parameter was a maximum at the physical beginning of the roughened zone and decreased with increasing run length along the roughened surface. Roughness-induced transition occurred downstream of this maximum roughness Reynolds number location, and progressed upstream towards the beginning of the roughened zone as freestream pressure was systematically increased. Roughness elements encountered at the upstream edge of the roughened frusta thus acted like a finite-extent trip array, consistent with published results concerning the tripping effectiveness of roughness bands placed on otherwise smooth surfaces.

  16. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    NASA Astrophysics Data System (ADS)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  17. Fractal characterization and wettability of ion treated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.

    2017-02-01

    Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.

  18. Influence on proliferation and adhesion of human gingival fibroblasts from different titanium surface decontamination treatments: An in vitro study.

    PubMed

    Cao, Jie; Wang, Tong; Pu, Yinfei; Tang, Zhihui; Meng, Huanxin

    2018-03-01

    To investigate the effects of different decontamination treatments on microstructure of titanium (Ti) surface as well as proliferation and adhesion of human gingival fibroblasts (HGFs). Ti discs with machined (M) and sand blasted, acid etched (SAE) surfaces were treated with five different decontamination treatments: (1) stainless steel curette (SSC), ultrasonic system with (2) straight carbon fiber tip (UCF) or (3) metal tip (UM), (4) rotating Ti brush (RTB), and (5) Er:YAG laser (30 mJ/pulse at 30 Hz). Surface roughness was analyzed under optical interferometry. HGFs were cultured on each disc. Proliferation and adhesive strength were analyzed. qRT-PCR and ELISA were performed to detect the RNA and protein expression of FAK, ITGB1, COL1A1, and FN1 respectively from different Ti surfaces. Surface roughness increased on M surface. Proliferation, adhesive strength and gene expression were higher on M surface than SAE surface. Decontamination treatments affected surface parameters significantly (P < 0.001), making M surface less smooth while SAE surface became less rough. SSC, UCF, UM and RTB decreased proliferation on M surfaces significantly (P < 0.05). UCF, RTB and laser increased proliferation on SAE surface significantly (P < 0.05). UM decreased adhesive strength on M surface significantly and laser increased adhesive strength on SAE surface significantly (P < 0.05). Gene expression increased with time and was altered by decontamination treatments significantly (P < 0.001). Decontamination treatments influence surface roughness and cell behavior of HGFs. Laser might be an optimal decontamination treatment which has the least negative effect on M surface and the most positive effect on SAE surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Formation of thin film like assembly of exfoliated C3N4 nanoflakes by solvent non-evaporative method using centrifuge

    NASA Astrophysics Data System (ADS)

    Tejasvi, Ravi; Basu, Suddhasatwa

    2017-12-01

    A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.

  20. Skin friction measurements of mathematically generated roughness in the transitionally- to fully-rough regimes

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2016-11-01

    Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.

  1. Comparison of Predicted and Measured Turbine Vane Rough Surface Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.

    2000-01-01

    The proposed paper compares predicted turbine vane heat transfer for a rough surface over a wide range of test conditions with experimental data. Predictions were made for the entire vane surface. However, measurements were made only over the suction surface of the vane, and the leading edge region of the pressure surface. Comparisons are shown for a wide range of test conditions. Inlet pressures varied between 3 and 15 psia, and exit Mach numbers ranged between 0.3 and 0.9. Thus, while a single roughened vane was used for the tests, the effective rougness,(k(sup +)), varied by more than a factor of ten. Results were obtained for freestream turbulence levels of 1 and 10%. Heat transfer predictions were obtained using the Navier-Stokes computer code RVCQ3D. Two turbulence models, suitable for rough surface analysis, are incorporated in this code. The Cebeci-Chang roughness model is part of the algebraic turbulence model. The k-omega turbulence model accounts for the effect of roughness in the application of the boundary condition. Roughness causes turbulent flow over the vane surface. Even after accounting for transition, surface roughness significantly increased heat transfer compared to a smooth surface. The k-omega results agreed better with the data than the Cebeci-Chang model. However, the low Reynolds number k-omega model did not accurately account for roughness when the freestream turbulence level was low. The high Reynolds number version of this model was more suitable when the freestream turbulence was low.

  2. Estimation of effective aerodynamic roughness with altimeter measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Ritchie, J. C.

    1992-01-01

    A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.

  3. The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled black paint

    NASA Technical Reports Server (NTRS)

    Heslin, T.; Heaney, J.; Harper, M.

    1974-01-01

    The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled, carbon-pigmented paint were studied in order to develop a diffuse-reflecting, low-total-reflectance, low-outgassing black paint. Particle sizes ranged between 20 microns and 74 microns. Surface roughness was found to increase with increasing particle size. Relative total reflectance at near-normal incidence (MgO standard) of the filled paints was less than for the unfilled paint between 230 nm and 1800 nm. Total absolute reflectance at 546 nm decreased with increasing particle size at grazing angles of incidence. Near-normal, total emittance was greater for the filled paints than for the unfilled paint. Specularity decreased with increasing particle size over the range studied.

  4. Role of roughness parameters on the tribology of randomly nano-textured silicon surface.

    PubMed

    Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S

    2011-10-01

    This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.

  5. Shear Model Development of Limestone Joints with Incorporating Variations of Basic Friction Coefficient and Roughness Components During Shearing

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2017-04-01

    In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.

  6. Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders

    NASA Astrophysics Data System (ADS)

    Kiu, K. Y.; Stappenbelt, B.; Thiagarajan, K. P.

    2011-09-01

    The present study was motivated by a desire to understand the vortex-induced vibration (VIV) of cylindrical offshore structures such as spars in strong currents. In particular, the consequences of marine growth on the surface as well as natural surface roughness that occurs with years in service are studied. Of special interest is the effect of surface roughness on the response amplitudes and the forces experienced by these structures while undergoing VIV. The experimental apparatus employed for the present study consisted of an elastically mounted rigid vertical cylinder with no end plates, towed along the length of a water tank. The cylinder was attached to a parallel linkage mechanism allowing motion in the transverse direction only. The cylinder surface was covered by sandpapers with known mean particle diameters, thus providing controlled values of roughness coefficient from 0.28×10 -3 to 1.38×10 -2. The tests covered the subcritical range of Reynolds number from 1.7×10 4 to 8.3×10 4, and a reduced velocity range from 4 to 16. It was found that as the roughness of the cylinder was increased the maximum response amplitude and the maximum mean drag coefficient decreased, levelling off to constant values. The onset of lock-in was progressively delayed for rougher cylinders, and the width of the lock-in region showed remarkable reduction at higher roughness values. The Strouhal number was found to display a modest increase with roughness. The dynamic mean drag of the rough cylinders was also found to be lower than that for a smooth cylinder. It is felt that uniform roughness such as caused in marine environments may act favorably to lower VIV incidence and effects in the range of Reynolds number tested.

  7. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.

    2015-03-31

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less

  8. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling).

    PubMed

    Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha

    2015-07-01

    Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.

  9. Experimental Investigation of Roughness Effects on Transition Onset and Turbulent Heating Augmentation on a Hemisphere at Mach 6 and Mach 10

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2017-01-01

    An experimental investigation of the effects of distributed surface roughness on boundary-layer transition and turbulent heating has been conducted. Hypersonic wind tunnel testing was performed using hemispherical models with surface roughness patterns simulating those produced by heat shield ablation. Global aeroheating and transition onset data were obtained using phosphor thermography at Mach 6 and Mach 10 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional and turbulent flow. Upstream movement of the transition onset location and increasing heating augmentation over predicted smooth-wall levels were observed with both increasing roughness heights and increasing free stream Reynolds numbers. The experimental heating data are presented herein, as are comparisons to smooth-wall heat transfer distributions from computational flow-field simulations. The transition onset data are also tabulated, and correlations of these data are presented.

  10. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin

    2017-02-01

    The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.

  11. Effects of Wet and Dry Finishing and Polishing on Surface Roughness and Microhardness of Composite Resins

    PubMed Central

    Nasoohi, Negin; Hoorizad, Maryam

    2017-01-01

    Objectives: This study aimed to assess the effect of wet and dry finishing and polishing on microhardness and roughness of microhybrid and nanohybrid composites. Materials and Methods: Thirty samples were fabricated of each of the Polofil Supra and Aelite Aesthetic All-Purpose Body microhybrid and Grandio and Aelite Aesthetic Enamel nanohybrid composite resins. Each group (n=30) was divided into three subgroups of D, W and C (n=10). Finishing and polishing were performed dry in group D and under water coolant in group W. Group C served as the control group and did not receive finishing and polishing. Surface roughness of samples was measured by a profilometer and their hardness was measured by a Vickers hardness tester. Data were analyzed using two-way ANOVA (P<0.05). Results: The smoothest surfaces with the lowest microhardness were obtained under Mylar strip without finishing/polishing for all composites (P<0.0001). The highest surface roughness was recorded for dry finishing/polishing for all composites (P<0.0001). Dry finishing/polishing increased the microhardness of all composites (P<0.0001). Conclusions: Dry finishing and polishing increases the microhardness and surface roughness of microhybrid and nanohybrid composite resins. PMID:29104597

  12. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  13. How does substrate roughness affect the service life of a superhydrophobic coating?

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Mo, Jiliang; Si, Yifan; Guo, Zhiguang

    2018-05-01

    Although the development of superhydrophobic coatings is rapidly maturing, issues related to their low mechanical durability persist. In this context, the effect of substrate roughness on the service life of superhydrophobic coatings was studied. In this study, superhydrophobic coatings were fabricated on sandpapers of different roughness and reciprocating wear tests were conducted. The wear-resistance number of the superhydrophobic coating, defined as the maximum number of friction cycles after which the superhydrophobic surface started to lose its superhydrophobicity, increased from 50 to 24,000 with an increase in the substrate roughness from 2000 CW to 240 CW (CW is defined as the number of particles arranged in an inch), while it decreased from 24,000 to 17,000 with a further increase in the substrate roughness from 240 CW to 60 CW. Observations of the surface structure and wear analyses indicated that the superhydrophobic material infiltrated the spaces between the sand grains, and the rough peaks could consequently protect the superhydrophobic material during the wear tests. However, this protection weakens when the substrate roughness increases or decreases beyond certain values. Furthermore, these phenomena and results were also verified by applying the superhydrophobic coatings to different types of common substrates.

  14. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    NASA Astrophysics Data System (ADS)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  15. The effect of different chemical agents on human enamel: an atomic force and scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela

    2010-12-01

    PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.

  16. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel.

    PubMed

    Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming

    2015-09-01

    The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p < 0.0001). Significant hardness reduction was observed in the positive control and DIY group (p < 0.0001). Mean surface roughness changes (ΔRa) were significantly different among the groups (Kruskal-Wallis test, p < 0.0001). Surface roughness increased in the OTC group (p = 0.03) and in the positive control (p < 0.0001). The four whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.

  17. Evaluation of the effect of a home-bleaching agent on the surface characteristics of indirect esthetic restorative materials: part I--roughness.

    PubMed

    Torabi, Kianoosh; Rasaeipour, Sasan; Khaledi, Amir Alireza; Vojdani, Mahroo; Ghodsi, Safoura

    2014-05-01

    Pressing esthetic demands of good looking make people undergo bleaching procedures. However, the effect of bleaching agents on esthetic restorative materials with different surface preparations has been poorly studied. The aim of this study was to examine the effect of a homebleaching agent (carbamide peroxide: CP 38%) on the surface roughness of the polished fiber reinforced composite (FRC), overglazed, autoglazed, or polished ceramic samples. Twenty standardized cylindrical specimens were made of each of the following groups: over-glazed, autoglazed, polished porcelain and also FRC. The test specimens exposed to the CP 38%, 15 minutes, twice a day for 2 weeks according to the manufacturer's recommendation. Six samples from each group were selected randomly to form negative controls. Surface roughness measurements (Ra, micrometer) for baseline, test and control specimens were performed by use of a profilometer. Paired t-test, Mann-Whitney test, and Kruskal-Wallis test were used for statistical analyses. The data showed that bleaching with CP 38% significantly increased the surface roughness of all the test samples (p < 0.05). The type of surface preparation caused significant differences between the susceptibility of porcelain subgroups to bleaching (p < 0.05). The polished porcelain specimens showed the highest changes after bleaching. CP 38% significantly increases the surface roughness of the porcelains and FRC. The type of surface condition affects the amenability of the porcelain surface to the bleaching agent. Glazed porcelains were more resistant to roughness than the polished porcelains and also the composite. Roughening of porcelain and FRC occur following bleaching procedure. No special surface preparation of indirect esthetic restorative materials can completely preserve these materials from adverse effects of bleaching agents.

  18. Bi-stage time evolution of nano-morphology on inductively coupled plasma etched fused silica surface caused by surface morphological transformation

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong

    2017-07-01

    In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.

  19. Surface roughness control by extreme ultraviolet (EUV) radiation

    NASA Astrophysics Data System (ADS)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  20. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weibing, E-mail: lwbing@qust.edu.cn; Yue, Jiguang; Hua, Fangxia

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co{sup 2+} catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP aftermore » 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l{sup −1} in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained.« less

  1. Surface roughness effects in elastohydrodynamic contacts

    NASA Technical Reports Server (NTRS)

    Tripp, J. H.; Hamrock, B. J.

    1985-01-01

    Surface roughness effects in full-film EHL contacts were studied. A flow factor modification to the Reynolds equation was applied to piezoviscous-elastic line contacts. Results for ensemble-averaged film shape, pressure distribution, and other mechanical quantities were obtained. Asperities elongated in the flow direction by a factor exceeding two decreased both film shape and pressure extrema at constant load; isotropic or transverse asperities increased these extrema. The largest effects are displayed by traction, which increased by over 5% for isotropic or transverse asperities and by slightly less for longitudinal roughness.

  2. Mars radar clutter and surface roughness characteristics from MARSIS data

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.

    2018-01-01

    Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.

  3. Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.A.E.; Beijerinck, H.C.W.

    2005-01-01

    Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less

  4. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    PubMed Central

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  5. Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach

    NASA Astrophysics Data System (ADS)

    Wong, Colman Ching Chi; Liu, Chun-Ho

    2013-04-01

    Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient estimates are related to the friction factor in the way similar to that of uniform street canyons, i.e. they are linear functions of friction factor when the roughness is small and become insensitive to friction factor thereafter over very rough surfaces. It is thus suggested that aerodynamic resistance is the key factor affecting the air quality in urban areas. Moreover, the friction factor could be used to parameterize the dispersion coefficients over different roughness elements.

  6. Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows

    NASA Astrophysics Data System (ADS)

    Blanchard, Danny; Ligrani, Phil

    2007-06-01

    Accommodation coefficients are determined from experimental results and analysis based on the Navier-Stokes equations for rotation-induced flows in C-shaped fluid chamber passages formed between a rotating disk and a stationary surface. A first-order boundary condition is used to model the slip flow. The fluid chamber passage height ranges from 6.85to29.2μm to give Knudsen numbers from 0.0025 to 0.031 for air and helium. In all cases, roughness size is large compared to molecular mean free path. The unique method presented for deducing tangential momentum accommodation coefficients gives values with less uncertainty compared to procedures that rely on flows in stationary tubes and channels. When channel height is defined at the tops of the roughness elements, slip velocity magnitudes and associated accommodation coefficients are a result of rarefaction at solid-gas interfaces and shear at the gas-gas interfaces. With this arrangement, tangential accommodation coefficients obtained with this approach decrease, and slip velocity magnitudes increase, at a particular value of Knudsen number, as the level of surface roughness increases. At values of the mean roughness height greater than 500nm, accommodation coefficients then appear to be lower in air flows than in helium flows, when compared for a particular roughness configuration. When channel height is defined midway between the crests and troughs of the roughness elements, nondimensional pressure rise data show little or no dependence on the level of disk surface roughness and working fluid. With this arrangement, slip is largely independent of surface roughness magnitude and mostly due to rarefaction, provided the appropriate channel height is chosen to define the roughness height.

  7. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  8. Novel MRF fluid for ultra-low roughness optical surfaces

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; McFee, Charles

    2014-08-01

    Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.

  9. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Turner, Neal J.; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light.

  10. Effect of whitening dentifrices on the surface roughness of commercial composites.

    PubMed

    Barbieri, Guilherme Machado; Mota, Eduardo Gonçalves; Rodrigues-Junior, Sinval Adalberto; Burnett, Luiz Henrique

    2011-10-01

    Our study aimed to test the null hypothesis that whitening and non-whitening dentifrices affect similarly the surface roughness of commercial microhybrid composites, independent of the brushing time. One hundred and ninety-two disc-shaped specimens of Filtek Z250 (3 M/ESPE, St. Paul, MN, USA) and Rok (SDI, Australia) were built up and randomly assigned to 24 groups, based on the dentifrices used (two whitening dentifrices: Colgate Max White-Colgate-Palmolive, São Bernardo do Campo, São Paulo, Brazil and Close Up Extra Whitening-Unilever, Brasil Higiene Pessoal e Limpeza Ltda, Ipojuca, Pernambuco, Brazil; and one non-whitening dentifrice: Colgate Total 12 Clean Mint-Colgate-Palmolive), and on the simulated brushing times (24 hours, 6, 12 and 24 months). The specimens were submitted to the toothbrushing regimens after which the surface roughness (Ra) was measured. Data was submitted to analysis of variance and Tukey test (α=0.05). The composite's surface roughness was significantly affected by the composites (p=0.0007), the dentifrices (p=0.0001), and the simulated brushing time (p=0.0001). Higher roughness was observed when the whitening dentifrices were used and when the brushing time increased. Filtek Z250 was more affected than Rok, especially after 24 months of simulated brushing. Whitening dentifrices produced higher surface roughness in the composites tested. The degree of surface compromising increased with brushing time and depends on the composite's microstructure and composition. © 2011 Wiley Periodicals, Inc.

  11. Evaluating inner surface roughness of inline/picoliter fiber optic spectrometer fabricated by an NUV femtosecond laser drilling

    NASA Astrophysics Data System (ADS)

    Shiraishi, Masahiko; Kubodera, Shoichi; Watanabe, Kazuhiro

    2017-05-01

    We have evaluated inner surface roughness of inline/picoliter fiber optic spectrometer fabricated by an NUV femtosecond laser drilling. A microhole fabricated by the femtosecond laser without breaking off works as inline/picoliter fiber optic spectrometer. The attractive feature of the spectrometer is very small sensing volume which has several tens of picoliter. A second harmonic 400 nm femtosecond laser with 350 fs pulse duration launched onto the glass fiber optic. A high aspect ratio of the microhole was fabricated after 1000 pulse shots, but there was inner surface roughness. Although the repetition rate was changed 10 to 1000 Hz in order to control the inner surface roughness, the inner surface roughness was occurred in each case. It was confirmed that ablated fused silica particles deposited on the inner surface of microhole. The depth of microhole was deepened with 1 kHz of repetition rate and number of 1000 shots. In comparison to 10 Hz, the depth of microhole was increased by approximately 80%. It was assumed that heat accumulation effect enlarged the length of drilling. In order to minimize inner surface roughness, the best method is to use low number laser shots. After 100 pulse shots with 30 μJ of pulse energy, an optical inner surface quality of microhole was acquired. The optical inner surface quality of microhole was verified by measuring the transmittance of 94% of infrared light emission launched from superluminescent diode in the case of 100 pulse shots with 20 μJ. The transmittance decreased to 52% changing the microhole fabricated by 30 μJ with 100 laser shots because of increasing interaction area between the microhole and propagating light.

  12. Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness

    PubMed Central

    Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang

    2017-01-01

    Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479

  13. Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Moses, Jason J; Serovy, George, K

    1951-01-01

    A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.

  14. Quantitative evaluation of root canal surface roughness after filing with adaptive reciprocating and continuous rotary instruments.

    PubMed

    Sakhaei Manesh, Vahid; Giacomin, Paul; Stoll, Richard

    2017-06-01

    Obtaining clean and smooth root canal walls is the ideal clinical outcome of the cleaning and shaping stage in root canal treatment. This study compares the surface roughness of root canal surfaces instrumented with a NiTi filing system with either adaptive reciprocating (AR) or continuous rotation (CR). Root canal cleaning and shaping was carried out on the mesial canals of 24 extracted first molars roots with either AR or CR. Roots were split in half and the surface roughness of their canals was evaluated in 12 three dimensional roughness reconstructions using a scanning electron microscope. Rz (nm) values were calculated in three areas of each reconstruction and analyzed (α = 0.05). Mann-Whitney tests showed that surface roughness was significantly higher overall in the AR group (Rz = 967 ± 250 nm) compared with the CR group (Rz = 739 ± 239 nm; p = 0.044). The roughness values generally increased from apical towards the coronal third in both groups. A less aggressive finishing file or a continuous rotary system to end the cleaning and shaping stage may be beneficial to reduce roughness of the root canal surface. © 2017 Wiley Periodicals, Inc.

  15. Effects of surface inactivation, high temperature drying and preservative treatment on surface roughness and colour of alder and beech wood

    NASA Astrophysics Data System (ADS)

    Aydin, Ismail; Colakoglu, Gursel

    2005-10-01

    Although extensive research has been conducted in wood surface quality analysis, a unified approach to surface quality characterisation does not exist. Measurements of the variation in surface roughness and surface colour are used widely for the evaluation of wood surface quality. Colour is a basic visual feature for wood and wood-based products. Colour measurement is one of the quality control tests that should be carried out because the colour deviations are spotted easily by the consumers. On the other hand, a common problem faced by plywood manufacturers is panel delamination, for which a major cause is poor quality glue-bonds resulting from rough veneer. Rotary cut veneers with dimensions of 500 mm × 500 mm × 2 mm manufactured from alder ( Alnus glutinosa subsp. barbata) and beech ( Fagus orientalis Lipsky) logs were used as materials in this study. Veneer sheets were oven-dried in a veneer dryer at 110 °C (normal drying temperature) and 180 °C (high drying temperature) after peeling process. The surfaces of some veneers were then exposed at indoor laboratory conditions to obtain inactive wood surfaces for glue bonds, and some veneers were treated with borax, boric acid and ammonium acetate solutions. After these treatments, surface roughness and colour measurements were made on veneer surfaces. High temperature drying process caused a darkening on the surfaces of alder and beech veneers. Total colour change value (Δ E*) increased linear with increasing exposure time. Among the treatment solutions, ammonium acetate caused the biggest colour change while treatment with borax caused the lowest changes in Δ E* values. Considerable changes in surface roughness after preservative treatment did not occur on veneer surfaces. Generally, no clear changes were obtained or the values mean roughness profile ( Ra) decreased slightly in Ra values after the natural inactivation process.

  16. Backscattering from a randomly rough dielectric surface

    NASA Technical Reports Server (NTRS)

    Fung, Adrian K.; Li, Zongqian; Chen, K. S.

    1992-01-01

    A backscattering model for scattering from a randomly rough dielectric surface is developed based on an approximate solution of a pair of integral equations for the tangential surface fields. Both like and cross-polarized scattering coefficients are obtained. It is found that the like polarized scattering coefficients contain two types of terms: single scattering terms and multiple scattering terms. The single scattering terms in like polarized scattering are shown to reduce the first-order solutions derived from the small perturbation method when the roughness parameters satisfy the slightly rough conditions. When surface roughnesses are large but the surface slope is small, only a single scattering term corresponding to the standard Kirchhoff model is significant. If the surface slope is large, the multiple scattering term will also be significant. The cross-polarized backscattering coefficients satisfy reciprocity and contain only multiple scattering terms. The difference between vertical and horizontal scattering coefficients is found to increase with the dielectric constant and is generally smaller than that predicted by the first-order small perturbation model. Good agreements are obtained between this model and measurements from statistically known surfaces.

  17. Evaluate the Effect of Commercially Available Denture Cleansers on Surface Hardness and Roughness of Denture Liners at Various Time Intervals

    PubMed Central

    Mohammed, Hilal S.; Singh, Sumeet; Hari, Prasad A.; Amarnath, G. S.; Kundapur, Vinaya; Pasha, Naveed; Anand, M.

    2016-01-01

    Background and objective: Chemical cleansing by denture cleansers is first choice for denture plaque control. The most common problems while using denture cleansers are hardening, porosity, odor sorption, water sorption, solubility, and colour change, bacterial and fungal growth. Chemical cleansing procedures have been found to have an effect on the physical and mechanical properties of denture liners. Thus, this study was conducted to evaluate the effect of commercially available denture cleansers on surface hardness and roughness of acrylic and silicon based denture liners at various time interval. Method: Two autopolymerising denture liners Kooliner (acrylic) and GC reline soft (silicon) were tested with two commercially available denture cleansers, polident and efferdent plus. Total of 120 specimens were prepared and all the specimens were divided into six groups based on the relining materials and denture cleansers used. Surface hardness and surface roughness was tested using Shore A durometer and profilometer respectively at the end of day 1, day 7, day 30 and day 90. All the specimens were stored in artificial saliva throughout the study. Cleanser solution was prepared daily by adding Polident and Efferdent plus denture cleanser tablet into 250ml of enough very warm (not hot) water. Acrylic and silicon liner groups were cleansed in a solution of denture cleanser and water for 15 minutes daily, rinsed with water and stored in artificial saliva at room temperature. The data was analyzed with one way ANOVA and independent t-test. Result: The acrylic soft lining showed gradual hardening and increase in surface roughness after immersion in denture cleanser and also with time. Acrylic liner material showed maximum hardness and roughness with Polident followed by Efferdent plus and water (control group). Silicone lining material showed a slight difference in hardness and roughness between the test group and control group. There was a slight increase in hardness in all the groups with time. Very slight increase in mean surface roughness of all the silicon liner groups from day 1 to day 90 was observed. A statistically significant change was noted between and within the all silicon liner groups on day 7, day 30 and day 90. Conclusion: The average surface hardness and surface roughness were lower in silicon liner material than acrylic liner material. Maximum surface roughness was noted by Polident followed by Efferdent Plus and Water for both acrylic liner group and silicon liner group. PMID:28190983

  18. The Development of Surface Roughness and Implications for Cellular Attachment in Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep

    2001-01-01

    The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.

  19. Relating surface roughness and magnetic domain structure to giant magneto-impedance of Co-rich melt-extracted microwires

    DOE PAGES

    Jiang, S. D.; Eggers, T.; Thiabgoh, O.; ...

    2017-04-11

    Understanding the relationship between the surface conditions and giant magneto-impedance (GMI) in Co-rich melt-extracted microwires is key to optimizing their magnetic responses for magnetic sensor applications. The surface magnetic domain structure (SMDS) parameters of ~45 μm diameter Co 69.25Fe 4.25Si 13B 13.5-xZr x (x = 0, 1, 2, 3) microwires, including the magnetic domain period (d) and surface roughness (Rq) as extracted from the magnetic force microscopy (MFM) images, have been correlated with GMI in the range 1–1000 MHz. It was found that substitution of B with 1 at. % Zr increased d of the base alloy from 729 tomore » 740 nm while retaining Rq from ~1 nm to ~3 nm. A tremendous impact on the GMI ratio was found, increasing the ratio from ~360% to ~490% at an operating frequency of 40 MHz. Further substitution with Zr decreased the high frequency GMI ratio, which can be understood by the significant increase in surface roughness evident by force microscopy. Lastly, this study demonstrates the application of the domain period and surface roughness found by force microscopy to the interpretation of the GMI in Co-rich microwires.« less

  20. Rough surface adhesion in the presence of capillary condensation

    DOE PAGES

    DelRio, Frank W.; Dunn, Martin L.; Phinney, Leslie M.; ...

    2007-04-17

    Capillary condensation of water can have a significant effect on rough surface adhesion. Here, to explore this phenomenon between micromachined surfaces, the authors perform microcantilever experiments as a function of surface roughness and relative humidity (RH). Below a threshold RH, the adhesion is mainly due to van der Waals forces across extensive noncontacting areas. Above the threshold RH, the adhesion jumps due to capillary condensation and increases towards the upper limit of Γ=144mJ/m 2. Lastly, a detailed model based on the measured surface topography qualitatively agrees with the experimental data only when the topographic correlations between the upper and lowermore » surfaces are considered.« less

  1. Influence of storage methods on the surface roughness of tissue conditioners.

    PubMed

    Hong, Guan; Li, YingAi; Maeda, Takeshi; Mizumachi, Wataru; Sadamori, Shinsuke; Hamada, Taizo; Murata, Hiroshi

    2008-03-01

    The purpose of this study was to compare the influence of three kinds of storage methods on surface roughness of tissue conditioners. Four commercial tissue conditioners (GC Soft Liner, Softone, Fictioner, and Hydro-Cast) were used in this study. Five samples of each material were stored in distilled water, air, and a denture cleanser (Polident). Mean surface roughness (R(a)) values of dental stone casts made from the tissue conditioners were measured after 0, 1, 3, 7, and 14 days of immersion using a profilometer. Significant differences in the R(a) values of the specimens were found among the three storage methods. The values of R(a) significantly increased with increase in immersion time for each storage method, except for the materials stored in air. It was found that the materials stored in air showed the most stable and lowest values of R(a). Results obtained suggested that a tissue conditioner exhibited smooth and minimal change in surface roughness with time when stored in air than in distilled water and denture cleanser.

  2. Surface structure determines dynamic wetting.

    PubMed

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-02-16

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure.

  3. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  4. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  5. Elastic wave generated by granular impact on rough and erodible surfaces

    NASA Astrophysics Data System (ADS)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime

    2018-01-01

    The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.

  6. Secondary flows in turbulent boundary layers over longitudinal surface roughness

    NASA Astrophysics Data System (ADS)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2018-01-01

    Direct numerical simulations of turbulent boundary layers over longitudinal surface roughness are performed to investigate the impact of the surface roughness on the mean flow characteristics related to counter-rotating large-scale secondary flows. By systematically changing the two parameters of the pitch (P) and width (S) for roughness elements in the ranges of 0.57 ≤P /δ ≤2.39 and 0.15 ≤S /δ ≤1.12 , where δ is the boundary layer thickness, we find that the size of the secondary flow in each case is mostly determined by the value of P - S, i.e., the valley width, over the ridge-type roughness. However, the strength of the secondary flows on the cross-stream plane relative to the flow is increased when the value of P increases or when the value of S decreases. In addition to the secondary flows, additional tertiary and quaternary flows are observed both above the roughness crest and in the valley as the values of P and S increase further. Based on an analysis using the turbulent kinetic energy transport equation, it is shown that the secondary flow over the ridge-type roughness is both driven and sustained by the anisotropy of turbulence, consistent with previous observations of a turbulent boundary layer over strip-type roughness [Anderson et al., J. Fluid Mech. 768, 316 (2015), 10.1017/jfm.2015.91]. Careful inspection of the turbulent kinetic energy budget reveals that the opposite rotational sense of the secondary flow between the ridge- and strip-type roughness elements is primarily attributed to the local imbalance of energy budget created by the strong turbulent transport term over the ridge-type roughness. The active transport of the kinetic energy over the ridge-type roughness is closely associated with the upward deflection of spanwise motions in the valley, mostly due to the roughness edge.

  7. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com

    2016-07-06

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  8. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  9. Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication

    NASA Astrophysics Data System (ADS)

    Shirvani, Khosro A.; Mosleh, Mohsen; Smith, Sonya T.

    2016-08-01

    In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3-5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.

  10. Effects of toothbrushing with fluoride abrasive and whitening dentifrices on both unbleached and bleached human enamel surface in terms of roughness and hardness: an in vitro study.

    PubMed

    Bolay, Sukran; Cakir, Filiz Yalcin; Gurgan, Sevil

    2012-09-01

    The aim of this in vitro study was to evaluate the surface roughness and hardness of both unbleached and bleached (opalescence; 10% carbamide peroxide) human enamel brushed with water (without dentifrice), fluoride abrasive dentifrice (Colgate Total) and whitening dentifrice (Natural White). Human enamel samples were obtained from third molars and randomly divided into five groups (n = 8): G1 - Control (brushed with water without dentifrice), G2 - Colgate Total (fluoride abrasive dentifrice), G3 - Natural White (whitening dentifrice), G4 - Opalescence (10% carbamide peroxide) and then brushed with Colgate Total, G5 - Opalescence (10% carbamide peroxide) and then brushed with Natural White. Bleaching regimen was applied according to manufacturers' instructions. The brushing process was performed with a modified Nyffenegger's brushing machine. Surface roughness was analyzed with a profilometer. Microhardness testing was performed with a Brinell hardness tester. Results were statistically analyzed by Kruskal-Wallis, one-way ANOVA analysis and Mann-Whitney U, Wilcoxon matched-pairs signed-ranks tests. There were significant differences in surface roughness values for all groups, which showed an increase in roughness (p < 0.05). When the bleaching treatment combined with brushing with whitening dentifrice was performed (G5), there was a significant decrease in hardness values (p < 0.05). The other groups (G1, G2, G3, G4) showed no significant hardness differences (p > 0.05). It was concluded that toothbrushing procedures increased the enamel surface roughness, and that bleaching regimen performed with cleaning treatment, through brushing with whitening dentifrice decreased hardness values. When applied together, bleaching and cleaning treatments may alter the enamel surface roughness and hardness values.

  11. A comparison RSM and ANN surface roughness models in thin-wall machining of Ti6Al4V using vegetable oils under MQL-condition

    NASA Astrophysics Data System (ADS)

    Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree

    2017-09-01

    Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.

  12. Outcrop-scale fracture trace identification using surface roughness derived from a high-density point cloud

    NASA Astrophysics Data System (ADS)

    Okyay, U.; Glennie, C. L.; Khan, S.

    2017-12-01

    Owing to the advent of terrestrial laser scanners (TLS), high-density point cloud data has become increasingly available to the geoscience research community. Research groups have started producing their own point clouds for various applications, gradually shifting their emphasis from obtaining the data towards extracting more and meaningful information from the point clouds. Extracting fracture properties from three-dimensional data in a (semi-)automated manner has been an active area of research in geosciences. Several studies have developed various processing algorithms for extracting only planar surfaces. In comparison, (semi-)automated identification of fracture traces at the outcrop scale, which could be used for mapping fracture distribution have not been investigated frequently. Understanding the spatial distribution and configuration of natural fractures is of particular importance, as they directly influence fluid-flow through the host rock. Surface roughness, typically defined as the deviation of a natural surface from a reference datum, has become an important metric in geoscience research, especially with the increasing density and accuracy of point clouds. In the study presented herein, a surface roughness model was employed to identify fracture traces and their distribution on an ophiolite outcrop in Oman. Surface roughness calculations were performed using orthogonal distance regression over various grid intervals. The results demonstrated that surface roughness could identify outcrop-scale fracture traces from which fracture distribution and density maps can be generated. However, considering outcrop conditions and properties and the purpose of the application, the definition of an adequate grid interval for surface roughness model and selection of threshold values for distribution maps are not straightforward and require user intervention and interpretation.

  13. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  14. Surface roughness manifestations of deep-seated landslide processes

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Roering, J. J.; Lamb, M. P.

    2012-12-01

    In many mountainous drainage basins, deep-seated landslides evacuate large volumes of sediment from small surface areas, leaving behind a strong topographic signature that sets landscape roughness over a range of spatial scales. At long spatial wavelengths of hundreds to thousands of meters, landslides tend to inhibit channel incision and limit topographic relief, effectively smoothing the topography at this length scale. However, at short spatial wavelengths on the order of meters, deformation of deep-seated landslides generates surface roughness that allows expert mappers or automated algorithms to distinguish landslides from the surrounding terrain. Here, we directly connect the characteristic spatial wavelengths and amplitudes of this fine scale surface roughness to the underlying landslide deformation processes. We utilize the two-dimensional wavelet transform with high-resolution, airborne LiDAR-derived digital elevation models to systematically document the characteristic length scales and amplitudes of different kinematic units within slow moving earthflows, a common type of deep-seated landslide. In earthflow source areas, discrete slumped blocks generate high surface roughness, reflecting an extensional deformation regime. In earthflow transport zones, where material translates with minimal surface deformation, roughness decreases as other surface processes quickly smooth short wavelength features. In earthflow depositional toes, compression folds and thrust faults again increase short wavelength surface roughness. When an earthflow becomes inactive, roughness in all of these kinematic zones systematically decreases with time, allowing relative dating of earthflow deposits. We also document how each of these roughness expressions depends on earthflow velocity, using sub-pixel change detection software (COSI-Corr) and pairs of orthorectified aerial photographs to determine spatially extensive landslide surface displacements. In source areas, the wavelength of slumped blocks tends to correlate with velocity as predicted by a simple sliding block model, but the amplitude is insensitive to velocity, suggesting that landslide depth rather than velocity sets this characteristic block amplitude. In both transport zones and depositional toes, the amplitude of the surface roughness is higher where the longitudinal gradient in velocity is higher, confirming that differential movement generates and maintains this fine scale roughness.

  15. Roughness based perceptual analysis towards digital skin imaging system with haptic feedback.

    PubMed

    Kim, K

    2016-08-01

    To examine psoriasis or atopic eczema, analyzing skin roughness by palpation is essential to precisely diagnose skin diseases. However, optical sensor based skin imaging systems do not allow dermatologists to touch skin images. To solve the problem, a new haptic rendering technology that can accurately display skin roughness must be developed. In addition, the rendering algorithm must be able to filter spatial noises created during 2D to 3D image conversion without losing the original roughness on the skin image. In this study, a perceptual way to design a noise filter that will remove spatial noises and in the meantime recover maximized roughness is introduced by understanding human sensitivity on surface roughness. A visuohaptic rendering system that can provide a user with seeing and touching digital skin surface roughness has been developed including a geometric roughness estimation method from a meshed surface. In following, a psychophysical experiment was designed and conducted with 12 human subjects to measure human perception with the developed visual and haptic interfaces to examine surface roughness. From the psychophysical experiment, it was found that touch is more sensitive at lower surface roughness, and vice versa. Human perception with both senses, vision and touch, becomes less sensitive to surface distortions as roughness increases. When interact with both channels, visual and haptic interfaces, the performance to detect abnormalities on roughness is greatly improved by sensory integration with the developed visuohaptic rendering system. The result can be used as a guideline to design a noise filter that can perceptually remove spatial noises while recover maximized roughness values from a digital skin image obtained by optical sensors. In addition, the result also confirms that the developed visuohaptic rendering system can help dermatologists or skin care professionals examine skin conditions by using vision and touch at the same time. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    NASA Astrophysics Data System (ADS)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  17. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood.

    PubMed

    Korkut, Derya Sevim; Guller, Bilgin

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  18. Effect of different surface treatments on roughness of IPS Empress 2 ceramic.

    PubMed

    Kara, Haluk Baris; Dilber, Erhan; Koc, Ozlem; Ozturk, A Nilgun; Bulbul, Mehmet

    2012-03-01

    The aim of this study was to evaluate the influence of different surface treatments (air abrasion, acid etching, laser irradiation) on the surface roughness of a lithium-disilicate-based core ceramic. A total of 40 discs of lithium disilicate-based core ceramic (IPS Empress 2; Ivoclar Vivadent, Schaan, Liechtenstein) were prepared (10 mm in diameter and 1 mm in thickness) according to the manufacturer's instructions. Specimens were divided into four groups (n = 10), and the following treatments were applied: air abrasion with alumina particles (50 μm), acid etching with 5% hydrofluoric acid, Nd:YAG laser irradiation (1 mm distance, 100 mJ, 20 Hz, 2 W) and Er:YAG laser irradiation (1 mm distance, 500 mJ, 20 Hz, 10 W). Following determination of surface roughness (R(a)) by profilometry, specimens were examined with atomic force microscopy. The data were analysed by one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). One-way ANOVA indicated that surface roughness following air abrasion was significantly different from the surface roughness following laser irradiation and acid etching (P < 0.001). The Tukey HSD test indicated that the air abrasion group had a significantly higher mean value of roughness (P < 0.05) than the other groups. No significant difference was found between the acid etching and laser irradiation (both Er:YAG and Nd:YAG) groups (P > 0.05). Air abrasion increased surface roughness of lithium disilicate-based core ceramic surfaces more effectively than acid-etching and laser irradiation.

  19. Effect of professional dental prophylaxis on the surface gloss and roughness of CAD/CAM restorative materials.

    PubMed

    Sugiyama, Toshiko; Kameyama, Atsushi; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki

    2017-06-01

    This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words: CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness.

  20. Effect of professional dental prophylaxis on the surface gloss and roughness of CAD/CAM restorative materials

    PubMed Central

    Sugiyama, Toshiko; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki

    2017-01-01

    Background This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). Material and Methods After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Results Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Conclusions Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words:CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness. PMID:28638554

  1. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy

    PubMed Central

    Han, Xuesong; Zhu, Haihong; Nie, Xiaojia; Wang, Guoqing; Zeng, Xiaoyan

    2018-01-01

    AlSi10Mg inclined struts with angle of 45° were fabricated by selective laser melting (SLM) using different scanning speed and hatch spacing to gain insight into the evolution of the molten pool morphology, surface roughness, and dimensional accuracy. The results show that the average width and depth of the molten pool, the lower surface roughness and dimensional deviation decrease with the increase of scanning speed and hatch spacing. The upper surface roughness is found to be almost constant under different processing parameters. The width and depth of the molten pool on powder-supported zone are larger than that of the molten pool on the solid-supported zone, while the width changes more significantly than that of depth. However, if the scanning speed is high enough, the width and depth of the molten pool and the lower surface roughness almost keep constant as the density is still high. Therefore, high dimensional accuracy and density as well as good surface quality can be achieved simultaneously by using high scanning speed during SLMed cellular lattice strut. PMID:29518900

  2. Visual Inspection of Surfaces

    NASA Technical Reports Server (NTRS)

    Hughes, David; Perez, Xavier

    2007-01-01

    This presentation evaluates the parameters that affect visual inspection of cleanliness. Factors tested include surface reflectance, surface roughness, size of the largest particle, exposure time, inspector and distance from sample surface. It is concluded that distance predictions were not great, particularly because the distance at which contamination is seen may depend on more variables than those tested. Most parameters estimates had confidence of 95% or better, except for exposure and reflectance. Additionally, the distance at which surface is visibly contaminated decreases with increasing reflectance, roughness, and exposure. The distance at which the surface is visually contaminated increased with the largest particle size. These variables were only slightly affected the observer.

  3. Fibronectin and bovine serum albumin adsorption and conformational dynamics on inherently conducting polymers: a QCM-D study.

    PubMed

    Molino, Paul J; Higgins, Michael J; Innis, Peter C; Kapsa, Robert M I; Wallace, Gordon G

    2012-06-05

    Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.

  4. Roughness transitions of diamond(100) induced by hydrogen-plasma treatment

    NASA Astrophysics Data System (ADS)

    Koslowski, B.; Strobel, S.; Wenig, M. J.; Ziemann, P.

    To investigate the influence of hydrogen-plasma treatment on diamond(100) surfaces, heavily boron (B)-doped HPHT diamond crystals were mechanically and chemo-mechanically polished, and exposed to a microwave-assisted hydrogen plasma on a time scale of several minutes. The resulting surface morphology was analyzed on macroscopic scales by stylus profilometry (PFM) and on microscopic scales by STM and AFM. The polished samples have a roughness of typically 100 pmrms (PFM), with no obvious anisotropic structures at the surface. After exposure of the B-doped diamond(100) to the H-plasma, the roughness increases dramatically, and pronounced anisotropic structures appear, these being closely aligned with the crystallographic axis' and planes. An exposure for 3 minutes to the plasma leads to an increase of the roughness to 2-4 nmrms (STM), and a `brick-wall' pattern appears, formed by weak cusps running along <110>. Very frequently, the cusps are replaced by `negative' pyramids that are bordered by {11X} facets. After an exposure of an additional 5 minutes, the surface roughness of the B-doped samples increases further to 20-40 nmrms (STM), and frequently exhibits a regular pattern with structures at a characteristic length scale of about 100 nm. Those structures are aligned approximately with <110> and they are faceted with faces of approximately {XX1}. These results will be discussed in terms of strain relaxation, similar to the surface roughening observed on SiGe/Si and anisotropic etching.

  5. Simplified Approach to Predicting Rough Surface Transition

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  6. Corrosion of Nickel-Titanium Orthodontic Archwires in Saliva and Oral Probiotic Supplements

    PubMed Central

    Turco, Gianluca; Contardo, Luca; Serdarević, Nikolina Leona; Otmačić, Helena; Ćurković; Špalj, Stjepan

    2017-01-01

    Objectives The aim of the study was to examine how probiotic supplements affect the corrosion stability of orthodontic archwires made of nickel-titanium alloy (NiTi). Materials and Methods NiTi archwires (0.508x0.508 and having the length of 2.5 cm) were tested. The archwires (composition Ni=50.4%, Ti=49.6%) were uncoated, nitrified and rhodium coated. Surface microgeometry was observed by using scanning electron microscope and surface roughness was measured by profilometer through these variables: roughness average, maximum height and maximum roughness depth. Corrosion was examined by electrochemical method of cyclic polarisation. Results Rhodium coated alloy in saliva has significantly higher general corrosion in saliva than nitrified alloy and uncoated alloy, with large effect size (p=0.027; η2=0.700). In the presence of probiotics, the result was even more pronounced (p<0.001; η2=0.936). Probiotic supplement increases general and localised corrosion of rhodium coated archwire and slightly decreases general corrosion and increases localised corrosion in uncoated archwire, while in the case of nitrified archwire the probability of corrosion is very low. The differences in surface roughness between NiTi wires before corrosion are not significant. Exposure to saliva decreases roughness average in rhodium coated wire (p=0.015; η2=0.501). Media do not significantly influence surface microgeometry in nitrified and uncoated wires. Conclusion Probiotic supplement affects corrosion depending on the type of coating of the NiTi archwire. It increases general corrosion of rhodium coated wire and causes localised corrosion of uncoated and rhodium coated archwire. Probiotic supplement does not have greater influence on surface roughness compared to that of saliva. PMID:29872237

  7. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    PubMed Central

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  8. Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-10-20

    Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.

  9. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  10. Influence of Mechanical and Chemical Degradation in the Surface Roughness, Gloss, and Color of Microhybrid Composites.

    PubMed

    Lemos, Cleidiel Aa; Mauro, Silvio J; Dos Santos, Paulo H; Briso, Andre Lf; Fagundes, Ticiane C

    2017-04-01

    The aim of this study was to investigate the association of different degradations on the roughness, gloss, and color changes of microhybrid composites. Ten specimens were prepared for Charisma, Amelogen Plus, Point 4, and Opallis resins. Surfaces were polished and baseline measurements of roughness, gloss, and color were recorded. Specimens were then submitted to chemical and mechanical challenges, and the specimens were reevaluated. Roughness and gloss were analyzed by Kruskal -Wallis and Dunn's test (p < 0.05). Color change (ΔE) was analyzed by one-way analysis of variance and Tukey's tests (p < 0.05). The initial and final data were compared using the Wilcoxon test (p < 0.05). Spearman test checked the correlation between the roughness and gloss (p < 0.05). Regarding surface roughness and gloss, there was no difference between composites before challenges. However, all composites showed a significant increase of roughness after challenges, with highest values for Charisma. The gloss was influenced by challenges, evidencing the best gloss for Point 4. Charisma showed the highest value of color change. There was no correlation between surface roughness and gloss for the initial analysis, and after the challenges. Composites were influenced by association of challenges, and Charisma showed the highest changes for roughness, gloss, and color. The type of composite resin influenced the properties of materials, which are surface roughness, gloss, and color change. The dentist should be aware of the performance of different brands, to choose the correct required composite resin for each type of patient or region to be restored.

  11. Effects of surface roughness and energy on ice adhesion strength

    NASA Astrophysics Data System (ADS)

    Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M. A.

    2011-02-01

    The aim of this study is to investigate the effects of surface roughness and surface energy on ice adhesion strength. Sandblasting technique was used to prepare samples with high roughness. Silicon-doped hydrocarbon and fluorinated-carbon thin films were employed to alter the surface energy of the samples. Silicon-doped hydrocarbon films were deposited by plasma-enhanced chemical vapor deposition, while fluorinated-carbon films were produced using deep reactive ion etching equipment by only activating the passivation step. Surface topographies were characterized using scanning electron microscopy and a stylus profilometer. The surface wetting properties were characterized by a video-based contact angle measurement system. The adhesion strength of ice formed from a water droplet on these surfaces was studied using a custom-built shear force test apparatus. It was found that the ice adhesion strength is correlated to the water contact angles of the samples only for surfaces with similar roughness: the ice adhesion strength decreases with the increase in water contact angle. The study also shows that smoother as-received sample surfaces have lower ice adhesion strength than the much rougher sandblasted surfaces.

  12. The influence of surface roughness and solution concentration on pool boiling process in Diethanolamine aqueous solution

    NASA Astrophysics Data System (ADS)

    Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza

    2018-04-01

    In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface roughness A heated surface area d departure ONB onset of nucleate boiling w surface wall s saturation v vapor l liquid θ groove angle (o) γ influence parameter of heating surface material σ surface tension, N/m.

  13. Surface roughness effects on turbulent Couette flow

    NASA Astrophysics Data System (ADS)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  14. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy.

    PubMed

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.

  15. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    PubMed Central

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. Results: New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Conclusion: Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles. PMID:26843874

  16. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  17. Randomized clinical study of alterations in the color and surface roughness of dental enamel brushed with whitening toothpaste.

    PubMed

    de Moraes Rego Roselino, Lourenço; Tirapelli, Camila; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2018-03-30

    This clinical study evaluated the influence of whitening toothpaste on color and surface roughness of dental enamel. Initially, the abrasiveness of the toothpastes used (Sorriso Dentes Brancos [SDB]; Colgate Luminous White and Close up White Now) was tested on 30 (n = 10) plexiglass acrylic plates that were submitted to mechanical tooth brushing totalizing 29,200 cycles. Subsequently, 30 participants were selected, and received a toothbrush and nonwhitening toothpaste (SDB). The participants used these products for 7 days and initial color readouts (Spectrophotometer) and surface roughness of one maxillary central incisors was performed after this period of time. For surface roughness readouts, one replica of the maxillary central incisor was obtained by a polyvinyl siloxane impression material (Express) and polyurethane resin. After baseline measurements, participants were separated into three groups (n = 10), according to the toothpaste used. The participants returned after 7, 30, and 90 days when new color readouts and surface roughness were recorded. The measured values were statistically analyzed (2-way-ANOVA, repeated measures, Tukey, P < .05). Whitening toothpastes did not promote significant (P > .05) color alteration and nor increased the surface roughness of the dental enamel in brushing time of the study. The abrasiveness of whitening toothpaste and the brushing trial period did not affect the surface roughness of dental enamel. However, color changes observed on enamel were above the perceptibility and acceptability thresholds reported in the literature. The over-the-counter toothpastes tested had an effect on dental enamel color above the perceptibility and acceptability thresholds but did not change the surface roughness of the teeth. © 2018 Wiley Periodicals, Inc.

  18. Effects of surface roughness, MHD and couple stress on squeeze film characteristics between curved circular plates

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Salma, A.; Nagarajappa, C. S.

    2018-04-01

    The theoretical discussion is carried out for understanding the combined study of MHD, rough surface and couple-stress in the presence of applied magnetic field between two curved circular plates is present analysis. Modified Reynolds Equations accounting for rough surface using stochastic model of Christensen are mathematically formulated. The close form derivations for pressure, load-supporting capacity and response-film time are obtained. Our results shows that, there is an significant increase (decrease) for pressure, load-supporting capacity and squeeze film time due to the effect of azimuthal (radial) roughness parameter when compared to the Hanumagowda.et.al [14] and numerical data of load supporting capacity and response time are given in Table for engineering applications.

  19. Biorobotic adhesion in water using suction cups.

    PubMed

    Bandyopadhyay, Promode R; Hrubes, J Dana; Leinhos, Henry A

    2008-03-01

    Echeneid fish, limpets and octopi use suction cups for underwater adhesion. When echeneid fish use suckers to 'hitch a ride' on sharks (which have riblet-patterned skins), the apparent absence of any pump or plumbing may be an advantage over biorobotic suction cups. An intriguing question is: How do they achieve seemingly persistent leak-free contact at low energy cost over rough surfaces? The design features of their suckers are explored in a biorobotic context of adhesion in water over rough surfaces. We have carried out experiments to compare the release force and tenacity of man-made suction cups with those reported for limpets and echeneid fish. Applied tensile and shear release forces were monotonically increased until release. The effects of cup size and type, host surface roughness, curvature and liquid surface tension have been examined. The flow of water in the sharkskin-like host surface roughness has been characterized. The average tenacity is 5.28 N cm(-2) (sigma = 0.53 N cm(-2), N = 37) in the sub-ambient pressure range of 14.6-49.0 kPa, in man-made cups for monotonically increasing applied release force. The tenacity is lower for harmonically oscillating release forces. The dynamic structural interactions between the suction cup and the oscillating applied forcing are discussed. Inspired by the matching of sharkskin riblet topology in echeneid fish suckers, it was found that biorobotic sealed contact over rough surfaces is also feasible when the suction cup makes a negative copy of the rough host surface. However, for protracted, persistent contact, the negative topology would have to be maintained by active means. Energy has to be spent to maintain the negative host roughness topology to minute detail, and protracted hitch-riding on sharks for feeding may not be free for echeneid fish. Further work is needed on the mechanism and efficiency of the densely populated tiny actuators in the fish suckers that maintain leak-proof contact with minimal energy cost and the feasibility of their biorobotic replication.

  20. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Turner, Neal; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light or by dilution of thermal phase curve steepnesses due to particle motion.

  1. Effect of leading-edge roughness on stability and transition of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kutz, Douglas; Freels, Justin; Hidore, John; White, Edward

    2011-11-01

    Over time, wind turbine blades erode due to impacts with sand and other debris. The resulting surface roughness degrades the blades' aerodynamic performance. Experimental studies conducted at the Texas A&M University Low-Speed Wind Tunnel examine roughness effects using a 2D NACA 63-418 airfoil with interchangeable leading edges of varying roughness at chord Reynolds numbers up to 3 . 0 ×106 . These data reveal decreased CL , max and increased CD , min as roughness increases. At very high roughness levels, even the lift curve slope is reduced. To better understand these findings and improve modeling of roughness effects, extensive boundary layer measurements including surface-mounted hotfilms and boundary-layer velocity profiles are used to assess how laminar-to-turbulent transition is promoted by roughness. As expected, roughness accelerates transition. Tollmien-Schlichting (TS) transition is observed only for a smooth leading edge while bypass transition is observed for the moderate and high roughness levels. Results are compared to N-factor transition predictions generated with software used by the wind industry. Predictions are successful for the smooth leading edge but even the low roughness level prevents correct transition prediction using TS-based methods. Support for this work by Vestas Technology Americas, Inc., is gratefully acknowledged as is the support of the wind-energy research group and the Low-Speed Wind Tunnel staff.

  2. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    PubMed

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  3. RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langel, Christopher M.; Chow, Raymond C.; van Dam, C. P.

    The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With thismore » motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 63 3 -418 airfoil. The refined model demonstrates favorable agreement predicting changes to the transition location, as well as drag, for a number of different leading edge roughness configurations on the NACA 63 3-418 airfoil. Additional tests were conducted on a thicker S814 airfoil, with similar roughness configurations to the NACA 63 3-418. Simulations run with the roughness model compare favorably with the results obtained in the experimental study for both airfoils.« less

  4. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study.

    PubMed

    Abraham, Kirubaharan S; Jagdish, Nithya; Kailasam, Vignesh; Padmanabhan, Sridevi

    2017-05-01

    To compare the adhesion of Streptococcus mutans to nickel titanium (NiTi) and copper-NiTi (Cu-NiTi) archwires and to correlate the adhesion to surface characteristics (surface free energy and surface roughness) of these wires. A total of 16 patients undergoing orthodontic treatment with preadjusted edgewise appliances were included in the study. 0.016" and 0.016" × 0.022" NiTi and Cu-NiTi archwires in as-received condition and after 4 weeks of intraoral use were studied for S mutans adhesion using real-time polymerase chain reaction. Surface roughness and surface free energy were studied by three-dimensional surface profilometry and dynamic contact angle analysis, respectively. S mutans adhesion was more in Cu-NiTi archwires. These wires exhibited rougher surface and higher surface free energy when compared to NiTi archwires. S mutans adhesion, surface roughness, and surface free energy were greater in Cu-NiTi than NiTi archwires. Surface roughness and surface free energy increased after 4 weeks of intraoral exposure for all of the archwires studied. A predominantly negative correlation was seen between the cycle threshold value of adherent bacteria and surface characteristics.

  5. Effect of intrinsic surface roughness on the efficiency of intermodal phase matching in silica optical nanofibers.

    PubMed

    Khudus, Muhammad I M Abdul; Lee, Timothy; Horak, Peter; Brambilla, Gilberto

    2015-04-01

    We investigate the effect of intrinsic surface roughness associated to frozen thermal oscillations from the fiber fabrication process on the efficiency of third-harmonic generation via intermodal phase matching in silica nanofibers. Already a periodic wave with roughness of 0.2 nm reduces the efficiency by roughly 50% in a 1-mm optical nanofiber, with the divergence growing quadratically with distance. The surface wave period does not exhibit a large impact on the efficiency, due to averaging effects. However, both the location of the surface waves with respect to the phase matching radius as well as the surface wave amplitude have substantial effect on the efficiency, with the former presenting the possibility of transferring the power back to the pump wavelength. Simulations with a realistic superposition of random surface waves indicate that the conversion efficiency increases only for a few mm of propagation and reaches a maximum of less than 1%.

  6. Reduction of Crosshatch Roughness and Threading Dislocation Density in Metamorphic GaInP Buffers and GaInAs Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, R. M.; Geisz, J. F.; Steiner, M. A.

    Surface crosshatch roughness typically develops during the growth of lattice-mismatched compositionally graded buffers and can limit misfit dislocation glide. In this study, the crosshatch roughness during growth of a compressive GaInP/GaAs graded buffer is reduced by increasing the phosphine partial pressure throughout the metamorphic growth. Changes in the average misfit dislocation length are qualitatively determined by characterizing the threading defect density and residual strain. The decrease of crosshatch roughness leads to an increase in the average misfit dislocation glide length, indicating that the surface roughness is limiting dislocation glide. Growth rate is also analyzed as a method to reduce surfacemore » crosshatch roughness and increase glide length, but has a more complicated relationship with glide kinetics. Using knowledge gained from these experiments, high quality inverted GaInAs 1 eV solar cells are grown on a GaInP compositionally graded buffer with reduced roughness and threading dislocation density. The open circuit voltage is only 0.38 V lower than the bandgap potential at a short circuit current density of 15 mA/cm{sup 2}, suggesting that there is very little loss due to the lattice mismatch.« less

  7. Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings

    NASA Astrophysics Data System (ADS)

    Kaboli, Shirin; McDermid, Joseph R.

    2014-08-01

    A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall, it was concluded that the fundamental mechanisms behind the microstructural development of solidified metallic zinc coatings have yet to be completely elucidated and require further investigation.

  8. Determination of refractive indices of opaque rough surfaces

    NASA Astrophysics Data System (ADS)

    Destouches, Nathalie; Deumié, Carole; Giovannini, Hugues; Amra, Claude

    2004-02-01

    The refractive indices of optical materials are usually determined from spectrophotometric andellipsometric measurements of specular beams. When the roughness of the interfaces increases, the energy in the specularly reflected and transmitted beams decreases and scattering becomes predominant. For strong roughness (compared to the incident wavelength) a surface does not exhibit specular reflection or transmission, making difficult the determination of the refractive index. We describe two techniques, based on scattering measurements, that one can use to determine the refractive indices of opaque inhomogeneous media.

  9. Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Lyons, Jed

    2006-01-01

    The effects of laser, and shot peening on the fatigue life of Friction Stir Welds (FSW) have been investigated. The surface roughness resulting from various peening techniques was assessed, and the fracture surfaces microstructure was characterized. Laser peening resulted in an increase in fatigue life approximately 60%, while shot peening resulted in 10% increase when compared to the unpeened material. The surface roughness of shot peening was significantly higher compared to the base material, while specimens processed with laser peening were relatively smooth.

  10. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    PubMed

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  11. Effects of roughness height, pressure and streamwise distance on stress profiles in the inner part of turbulent boundary layer over super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Ling, Hangjian; Katz, Joseph; Srinivasan, Siddarth; McKinley, Gareth; Golovin, Kevin; Tuteja, Anish; Pillutla, Venkata; Abhijeet, Abhijeet; Choi, Wonjae

    2016-11-01

    Digital holographic microscopy is used for measuring the mean velocity and stress in the inner part of turbulent boundary layers over sprayed or etched super-hydrophobic surfaces (SHSs). The slip velocity and wall friction are calculated directly from the mean velocity and its gradient along with the Reynolds shear stress at the top of SHSs "roughness". Effects of the normalized rms roughness height krms+, facility pressure p and streamwise distance x from the beginning of SHSs on mean flow are examined. For krms+<1 and pkrms / σ <1 (σ is surface tension), the SHSs show 10-28% wall friction reduction, 15-30% slip velocity and λ+ = 3-10 slip length. Increasing Reynolds number and/or krms to establish krms+>1, and increasing p to achieve pkrms / σ >1 suppress the drag reduction, as roughness effects and associated near wall Reynolds stress increase. When the roughness effect is not dominant, the measurements agree with previous theoretical predictions of the relationships between drag reduction and slip velocity. The significance of spanwise slip relative to streamwise slip varies with the SHSs texture. Transitions from a smooth wall to a SHS involve overshoot of Reynolds stress and undershoot of viscous stress, trends that diminish with x. Sponsored by ONR.

  12. Effects of roughness and compressibility of flooring on cow locomotion.

    PubMed

    Rushen, J; de Passillé, A M

    2006-08-01

    We examined the effects of roughness and degree of compressibility of flooring on the locomotion of dairy cows. We observed 16 cows walking down specially constructed walkways with materials that differed in surface roughness and degree of compressibility. Use of a commercially available soft rubber flooring material decreased slipping, number of strides, and time to traverse the corridor. These effects were most apparent at difficult sections of the corridor, such as at the start, at a right-angle turn, and across a gutter. Covering the walkway with a thin layer of slurry increased frequency of slipping, number of strides, and time taken to traverse the walkway. Effects of adding slurry were not overcome by increasing surface roughness or compressibility. Placing more compressible materials under a slip-resistant material reduced the time and number of steps needed to traverse the corridor but did not reduce slips, and the effects on cow locomotion varied nonlinearly with the degree of compressibility of the floor. Use of commercially available rubber floors improved cow locomotion compared with concrete floors. However, standard engineering measures of the floor properties may not predict effects of the floor on cow behavior well. Increasing compressibility of the flooring on which cows walk, independently of the roughness of the surface, can improve cow locomotion.

  13. Nanoindentation of orthodontic archwires: The effect of decontamination and clinical use on hardness, elastic modulus and surface roughness.

    PubMed

    Alcock, Joseph P; Barbour, Michele E; Sandy, Jonathan R; Ireland, Anthony J

    2009-08-01

    The purpose of this research was to investigate the effects of decontamination and clinical exposure on the elastic moduli, hardness and surface roughness of two frequently used orthodontic archwires, namely 0.020in.x0.020in. heat activated (martensitic active) nickel titanium archwires and 0.019in.x0.025in. austenitic stainless steel archwires. This study was a prospective clinical trial in which 20 consecutive patients requiring an archwire change as part of their course of orthodontic fixed appliance therapy, had either a nickel titanium or stainless steel archwire fitted as deemed clinically necessary. The effect of clinical use was determined by comparing distal end cuts of the "as received" archwires before and after decontamination, with the same retrieved archwires following clinical use and decontamination. Hardness, elastic modulus and surface roughness were determined using an atomic force microscope (AFM) coupled with a nanoindenter. The results showed that the decontamination regimen and clinical use had no statistically significant effect on the nickel titanium archwires, but did have a statistically significant effect on the steel archwires. Decontamination of the steel wires significantly increased the observed surface hardness (p=0.01) and reduced the surface roughness (p=0.02). Clinical use demonstrated a statistically significant increase in the observed elastic modulus (p<0.001) and a decrease in surface roughness (p=0.001). At present it is difficult to predict the clinical significance of these statistically significant changes in archwire properties on orthodontic tooth movement.

  14. Surface energy changes produced by ultraviolet-ozone irradiation of poly(methylmethacrylate), polycarbone and polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Ponter, A. B.; Jones, W. R., Jr.; Jansen, R. H.

    1994-01-01

    Contact angles of water and methylene iodide were measured as a function of UV/O3 treatment time for three polymers: poly(methylmethacrylate) (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE). Surface roughnesses were also measured. Surface free energies were then calculated using relationships developed by Kaelble and Neumann. The surface energy of polycarbonate was found to increase (60 percent) during UV/O3 treatment. However, calculations on PMMA were hampered by the formation of a water soluble surface product. On PTFE surfaces, the UV/O3 treatment etched the surface causing large increases in surface roughness, rendering contact angle measurements impossible. It is concluded that care must be taken in interpreting contact angle measurements and surface energy calculations on UV/O3 treated polymer surfaces.

  15. Simulation of synthetic gecko arrays shearing on rough surfaces

    PubMed Central

    Gillies, Andrew G.; Fearing, Ronald S.

    2014-01-01

    To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features. PMID:24694893

  16. Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment

    NASA Astrophysics Data System (ADS)

    Zahid, A.; Dai, B.; Hong, R.; Zhang, D.

    2017-10-01

    In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.

  17. A facile approach for reducing the working voltage of Au/TiO2/Au nanostructured memristors by enhancing the local electric field

    NASA Astrophysics Data System (ADS)

    Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.

    2018-01-01

    Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.

  18. Effect of bleaching agents and whitening dentifrices on the surface roughness of human teeth enamel.

    PubMed

    Özkan, Pelin; Kansu, Gülay; Özak, Sule Tuğba; Kurtulmuş-Yilmaz, Sevcan; Kansu, Pelin

    2013-01-01

    The aim of this in vitro study was to evaluate the surface roughness of human enamel bleached with 10% carbamide peroxide or 10% hydrogen peroxide bleaching agents at different times and also subjected to different superficial cleaning treatments. One hundred and forty flat enamel samples were divided into 14 groups, Group 1-Group 14 (G1-G14). G1-G7 were treated with 10% carbamide peroxide and different dentifrices, G8-G14 were treated with 10% hydrogen peroxide and different dentifrices (G1 and G8: not brushed as control groups; G2 and G9: brushed with Ipana® toothpaste; G3 and G10: brushed with Clinomyn® toothpaste; G4 and G11: brushed with Moos Dent® toothpaste; G5 and G12: brushed with Signal® toothpaste; G6 and G13: brushed with Colgate® toothpaste; G7 and G14: brushed without dentifrice). A profilometer was used to measure average roughness values of the initial surface roughness and at each 7-day-interval. The bleaching was performed for 6 h a day and the surface cleaning treatment was performed 3-times a day, 2 min each time, for 4 weeks. The samples were stored in distilled water during the test period. Statistical analysis revealed significant differences in surface roughness values over time for all groups except G1 and G8 (not brushed). The results of the surface roughness of all groups were nearly the same. The bleaching with 10% hydrogen peroxide and 10% carbamide peroxide did not alter the enamel surface roughness, but when the bleaching treatment was performed combined with abrasive dentifrices, a significant increase in roughness values was observed.

  19. Superhydrophobic perfluoropolymer/polystyrene blend films induced by nonsolvent

    NASA Astrophysics Data System (ADS)

    Gengec, Nevin Atalay; Cengiz, Ugur; Erbil, H. Yildirim

    2016-10-01

    Statistical copolymers of perfluoroalkyl ethyl acrylate (Zonyl-TAN) and methyl methacrylate (MMA) were synthesized in a CO2 polymerization system where a CO2-expanded monomer mixture was formed at 13 MPa, and 80 °C by using AIBN as initiator. Flat and superhydrophobic surfaces were subsequently prepared on glass slides by applying a phase separation process where the synthesized p(TAN-co-MMA) copolymer and polystyrene (PS) were dissolved in THF solvent. Ethanol was added as the non-solvent to introduce superhydrophobicity during film formation. Water contact angle on the flat p(TAN-co-MMA) copolymer was 118° and increased up to 170° with the formation of surface roughness. The ratio of the ethanol non-solvent in the blend solution has an important effect on the magnitude of surface roughness during the phase separation process. Both pits and protrusions of 1-10 μm in size were formed on the surface when non-solvent was used. Surface roughness increased with the increase in the ethanol ratio and the PS content of the blend solution.

  20. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    PubMed

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com; Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailedmore » surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface roughness.« less

  2. Structure zone diagram and particle incorporation of nickel brush plated composite coatings

    PubMed Central

    Isern, L.; Impey, S.; Almond, H.; Clouser, S. J.; Endrino, J. L.

    2017-01-01

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%. PMID:28300159

  3. Structure zone diagram and particle incorporation of nickel brush plated composite coatings

    NASA Astrophysics Data System (ADS)

    Isern, L.; Impey, S.; Almond, H.; Clouser, S. J.; Endrino, J. L.

    2017-03-01

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%.

  4. Structure zone diagram and particle incorporation of nickel brush plated composite coatings.

    PubMed

    Isern, L; Impey, S; Almond, H; Clouser, S J; Endrino, J L

    2017-03-16

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%.

  5. The effect of milling and postmilling procedures on the surface roughness of CAD/CAM materials.

    PubMed

    Mota, Eduardo Gonçalves; Smidt, Laura Nunes; Fracasso, Lisiane Martins; Burnett, Luiz Henrique; Spohr, Ana Maria

    2017-11-12

    The aim of this study was to evaluate the surface roughness and analyze the surface topography of five different CAD/CAM ceramics and one CAD/CAM composite resin for CEREC after milling and postmilling procedures. Blocks of the ceramics Mark II, IPS Empress CAD, IPS e.max CAD, Suprinity and Enamic, and blocks of the composite resin Lava Ultimate were milled at CEREC MCXL. Ten flat samples of each material were obtained. The surface roughness (Ra) test was performed before and after milling, crystallization, polishing, and glaze when indicated, followed by SEM and AFM analysis. Data were submitted to one-way ANOVA with repeated measures and the Tukey HSD test (α = 0.05). The milling step significantly increased the roughness of all the tested materials (P < .05). Lithium-based ceramics (IPS e.max CAD and Suprinity) were more suitable to roughness than the other tested materials (P < .05). The polishing methods were able to reduce roughness to baseline values, except for lithium-based ceramics. Glaze reduced significantly the roughness of lithium-based ceramics without a difference from the baseline. SEM and AFM images revealed that glazed surfaces are smoother than polished surfaces. All hard-milling CAD/CAM materials, that is, fully sintered, should be only hand polished. The glaze step can be suppressed resulting in time saving. However, the glaze step in soft-milling lithium disilicate is imperative. © 2017 Wiley Periodicals, Inc.

  6. An evaluation of surface properties and frictional forces generated from Al-Mo-Ni coating on piston ring

    NASA Astrophysics Data System (ADS)

    Karamış, M. B.; Yıldızlı, K.; Çakırer, H.

    2004-05-01

    Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.

  7. Optimization of Machining Process Parameters for Surface Roughness of Al-Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2013-10-01

    Metal matrix composites (MMCs) have become a leading material among the various types of composite materials for different applications due to their excellent engineering properties. Among the various types of composites materials, aluminum MMCs have received considerable attention in automobile and aerospace applications. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like silicon carbide particles. In the present investigation Al-SiC composite was produced by stir casting process. The Brinell hardness of the alloy after SiC addition had increased from 74 ± 2 to 95 ± 5 respectively. The composite was machined using CNC turning center under different machining parameters such as cutting speed (S), feed rate (F), depth of cut (D) and nose radius (R). The effect of machining parameters on surface roughness (Ra) was studied using response surface methodology. Face centered composite design with three levels of each factor was used for surface roughness study of the developed composite. A response surface model for surface roughness was developed in terms of main factors (S, F, D and R) and their significant interactions (SD, SR, FD and FR). The developed model was validated by conducting experiments under different conditions. Further the model was optimized for minimum surface roughness. An error of 3-7 % was observed in the modeled and experimental results. Further, it was fond that the surface roughness of Al-alloy at optimum conditions is lower than that of Al-SiC composite.

  8. Surface roughness of orthodontic band cements with different compositions

    PubMed Central

    van de SANDE, Françoise Hélène; da SILVA, Adriana Fernandes; MICHELON, Douver; PIVA, Evandro; CENCI, Maximiliano Sérgio; DEMARCO, Flávio Fernando

    2011-01-01

    Objectives The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. Material and Methods eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP), compomer (C), resin-modified glass ionomer cement (RMGIC) and resin cement (RC). Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0) or 0.1 M lactic acid solution (pH 4.0) for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200) before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions) or paired t-test (comparison before and after the storage period) at 5% significance level. Results The values for average surface roughness were statistically different (p<0.001) among cements at both baseline and after storage. The roughness values of cements in a decreasing order were ZP>RMGIC>C>R (p<0.001). After 15 days, immersion in lactic acid solution resulted in the highest surface roughness for all cements (p<0.05), except for the RC group (p>0.05). Compared to the current threshold (0.2 µm) related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. Conclusions Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions. PMID:21625737

  9. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing

    2016-03-01

    The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.

  10. Effect of vital tooth bleaching on solubility and roughness of dental cements.

    PubMed

    Londono, Jimmy; Abreu, Amara; Nelson, Steve; Hernandez, Jorge; Torres, Carlos; Mettenburg, Donald; Looney, Stephen; Rueggeberg, Frederick

    2009-09-01

    Vital tooth bleaching may affect properties of dental cements used for fixed prostheses. The purpose of this study was to examine the effect of a combined in-office and at-home bleaching regimen on changes in surface roughness and depth loss of a variety of commercially available dental cements. Five cement classifications were tested: glass ionomer, resin-modified glass ionomer, resin,self-adhesive resin cement, and zinc phosphate. Cements were placed in multiple wells in plastic blocks. After setting,the surface profile of each block was determined, and average roughness and vertical height of cement surface from the specimen holder were recorded. Blocks were water stored (control) or subjected to in-office and at-home bleaching(n=12). Surfaces were rescanned and pre- and posttest parameter changes were calculated. Statistical analysis consisted of Mann-Whitney-Wilcoxon Rank Sum and Student t tests applied to control and bleaching parameterc hanges within the same cements. A family-wise alpha of .05 was maintained by using a Bonferroni-adjusted level of significance preset to .01 per test. Zinc phosphate showed the only significant depth increase (P=.004) from bleaching: 0.9 +/- 0.7 microm deeper than the water-control group. Only resin-modified glass ionomer showed a significant (P=.004) increase in roughness from bleaching; values increased by 0.05 +/- 0.03 microm over the water-control group. In-office and at-home bleaching significantly increased depth loss of zinc phosphate and increased resinmodified glass ionomer roughness. However, the absolute values of differences observed, as compared to the wateronly control, were considered to be clinically insignificant. (J Prosthet Dent 2009;102:148-154)

  11. Characterizing the SWOT discharge error budget on the Sacramento River, CA

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.

  12. Comparison of the effect of plasma treatment and gamma ray irradiation on PS-Cu nanocomposite films surface

    NASA Astrophysics Data System (ADS)

    Farag, O. F.

    2018-06-01

    Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.

  13. Effect of multipath laser shock processing on microhardness, surface roughness, and wear resistance of 2024-T3 Al alloy.

    PubMed

    Kadhim, Abdulhadi; Salim, Evan T; Fayadh, Saeed M; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2014-01-01

    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.

  14. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  15. Nanotextured PDMS Substrates for Enhanced Roughness and Aptamer Immobilization for Cancer Cell Capture

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir

    2014-03-01

    Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.

  16. Lacunarity study of speckle patterns produced by rough surfaces

    NASA Astrophysics Data System (ADS)

    Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.

    2017-11-01

    In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.

  17. Influence of surface sealing on color stability and roughness of composite submitted to ultraviolet-accelerated aging.

    PubMed

    Catelan, Anderson; Suzuki, Thaís Yumi Umeda; Becker, Francisco; Briso, André Luiz Fraga; Dos Santos, Paulo Henrique

    2017-05-01

    In the present study, we evaluated the influence of surface sealing on color stability and surface roughness of a composite resin after accelerated artificial aging. Thirty-two specimens of a composite were prepared. After 24 h, the specimens were polished and divided into four groups (n = 8), according to the surface sealant used, including the control, which had no sealant application. Baseline color was measured according to the CIELab system using a reflection spectrophotometer. Surface roughness was determined using a profilometer with a cut-off of 0.25 mm. After these tests, specimens were aged for 252 h in an ultraviolet (UV)-accelerated aging chamber. Color stability was determined by difference between coordinates obtained before and after the aging procedure. Data of color change and roughness were evaluated by anova and Fisher's exact test (α = 0.05). The results showed that the unsealed group had the highest color change compared to other groups (P = 0.0289), and there was no significant difference between groups sealed with surface sealant (P > 0.05). The artificial aging caused an increase in roughness values independent of the experimental group studied (P = 0.0015). The sealed composites showed lower color change after UV aging, but all groups showed clinically-acceptable color change, and only liquid polish decreased roughness. © 2016 John Wiley & Sons Australia, Ltd.

  18. Evaluating the Biostability of Yellow and Clear Intraocular Lenses with a System Simulating Natural Intraocular Environment

    PubMed Central

    Hayashi, Rijo; Hayashi, Shimmin; Arai, Kiyomi; Yoshida, Shinichirou; Chikuda, Makoto; Machida, Shigeki

    2016-01-01

    Purpose Blue light–filtering intraocular lenses (IOLs) are thought to protect the retina from blue light damage after cataract surgery, and the implantation of yellow-tinted IOLs has been commonly used in cataract surgery. To our knowledge, this is the first investigation measuring the long-term biostability of yellow-tinted IOLs using an in vitro system simulating natural intraocular environment. Methods Six hydrophobic acrylic IOLs, three clear IOLs, and three yellow-tinted IOLs were included in the study. Each yellow-tinted IOL was a matching counterpart of a clear IOL, with the only difference being the lens color. The IOLs were kept in conditions replicating the intraocular environment using a perfusion culture system for 7 months. Resolution, light transmittance rate, and the modulation transfer function (MTF) were measured before and after culturing. Surface roughness of the anterior and posterior surfaces was also measured. Results After culturing for 7 months, there were no changes in the resolution, the light transmittance rate, and MTF. The surface roughness of the anterior and posterior surfaces increased after culturing; however, this increase was clinically insignificant. There were no differences in surface roughness between the clear and yellow-tinted IOLs, either before or after culturing. Conclusions A novel in vitro system replicating intraocular environment was used to investigate the biostability of yellow-tinted IOLs. The surface roughness showed no clinically significant increase after culturing for 7 months. Translational Relevance This system is useful for evaluating the biostability of IOLs. PMID:27933221

  19. Stick-slip friction and wear of articular joints

    PubMed Central

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  20. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces

    NASA Astrophysics Data System (ADS)

    Thakkar, Manan; Busse, Angela; Sandham, Neil

    2017-02-01

    Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.

  1. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  2. Influence of adhesive rough surface contact on microswitches

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Rochus, V.; Noels, L.; Golinval, J. C.

    2009-12-01

    Stiction is a major failure mode in microelectromechanical systems (MEMS). Undesirable stiction, which results from contact between surfaces, threatens the reliability of MEMS severely as it breaks the actuation function of MEMS switches, for example. Although it may be possible to avoid stiction by increasing restoring forces using high spring constants, it follows that the actuation voltage has also to be increased significantly, which reduces the efficiency. In our research, an electrostatic-structural analysis is performed to estimate the proper design range of the equivalent spring constant, which is the main factor of restoring force in MEMS switches. The upper limit of equivalent spring constant is evaluated based on the initial gap width, the dielectric thickness, and the expected actuation voltage. The lower limit is assessed on the value of adhesive forces between the two contacting rough surfaces. The MEMS devices studied here are assumed to work in a dry environment. In these operating conditions only the van der Waals forces have to be considered for adhesion. A statistical model is used to simulate the rough surface, and the Maugis's model is combined with Kim's expansion to calculate adhesive forces. In the resulting model, the critical value of the spring stiffness depends on the material and surface properties, such as the elastic modulus, surface energy, and surface roughness. The aim of this research is to propose simple rules for design purposes.

  3. Surface characterization of current composites after toothbrush abrasion.

    PubMed

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (p<0.05). Simple regression analysis showed that there was not an association between the surface roughness and the gloss (R(2)=0.191, p<0.001).

  4. Adhesion and proliferation of fibroblasts on RF plasma-deposited nanostructured fluorocarbon coatings: evidence of FAK activation.

    PubMed

    Rosso, Francesco; Marino, Gerardo; Muscariello, Livio; Cafiero, Gennaro; Favia, Pietro; D'Aloia, Erica; d'Agostino, Riccardo; Barbarisi, Alfonso

    2006-06-01

    We used combined plasma-deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures. Changes in cytoskeletal organization and phospho FAK (tyr 397) localization were evident after 60 min on cells adhering to ROUGH surfaces. This change was characterized by the formation of actin stress fibers along lamellar membrane protrusion instead of usual focal contacts. Also the morphology of the adhering fibroblasts (60 min) adhering on ROUGH surfaces was found quite different compared to cells adhering on smooth ones. Copyright 2006 Wiley-Liss, Inc.

  5. Effect of cutting parameters on surface finish and machinability of graphite reinforced Al-8011 matrix composite

    NASA Astrophysics Data System (ADS)

    Anil, K. C.; Vikas, M. G.; Shanmukha Teja, B.; Sreenivas Rao, K. V.

    2017-04-01

    Many materials such as alloys, composites find their applications on the basis of machinability, cost and availability. In the present work, graphite (Grp) reinforced Aluminium 8011 is synthesized by convention stir casting process and Surface finish & machinability of prepared composite is examined by using lathe tool dynamometer attached with BANKA Lathe by varying the machining parameters like spindle speed, Depth of cut and Feed rate in 3 levels. Also, Roughness Average (Ra) of machined surfaces is measured by using Surface Roughness Tester (Mitutoyo SJ201). From the studies it is cleared that mechanical properties of a composites increases with addition of Grp and The cutting force were decreased with the reinforcement percentage and thus increases the machinability of composites and also results in increased surface finish.

  6. Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants

    PubMed Central

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A. G.; Meyerov, Robin; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration. PMID:25767803

  7. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications.

    PubMed

    Braem, Annabel; Van Mellaert, Lieve; Mattheys, Tina; Hofmans, Dorien; De Waelheyns, Evelien; Geris, Liesbet; Anné, Jozef; Schrooten, Jan; Vleugels, Jef

    2014-01-01

    Implant-related infections are a serious complication in prosthetic surgery, substantially jeopardizing implant fixation. As porous coatings for improved osseointegration typically present an increased surface roughness, their resulting large surface area (sometimes increasing with over 700% compared to an ideal plane) renders the implant extremely susceptible to bacterial colonization and subsequent biofilm formation. Therefore, there is particular interest in orthopaedic implantology to engineer surfaces that combine both the ability to improve osseointegration and at the same time reduce the infection risk. As part of this orthopaedic coating development, the interest of in vitro studies on the interaction between implant surfaces and bacteria/biofilms is growing. In this study, the in vitro staphylococcal adhesion and biofilm formation on newly developed porous pure Ti coatings with 50% porosity and pore sizes up to 50 μm is compared to various dense and porous Ti or Ti-6Al-4V reference surfaces. Multiple linear regression analysis indicates that surface roughness and hydrophobicity are the main determinants for bacterial adherence. Accordingly, the novel coatings display a significant reduction of up to five times less bacterial surface colonization when compared to a commercial state-of-the-art vacuum plasma sprayed coating. However, the results also show that a further expansion of the porosity with over 15% and/or the pore size up to 150 μm is correlated to a significant increase in the roughness parameters resulting in an ascent of bacterial attachment. Chemically modifying the Ti surface in order to improve its hydrophilicity, while preserving the average roughness, is found to strongly decrease bacteria quantities, indicating the importance of surface functionalization to reduce the infection risk of porous coatings. Copyright © 2013 Wiley Periodicals, Inc.

  8. Light scattering techniques for the characterization of optical components

    NASA Astrophysics Data System (ADS)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  9. The effects of brushing on human enamel surface roughness after NaF gel and theobromine gel exposure

    NASA Astrophysics Data System (ADS)

    Mahardhika, A.; Noerdin, A.; Eriwati, Y. K.

    2017-08-01

    This study aimed to determine the effects of brushing on human enamel surface roughness after different exposure times of 200 mg/L theobromine gel (8, 16, and 32 minutes) and 2% NaF gel (16 minutes). Twenty-four human upper premolars were used and divided into four groups. Group 1 was exposed to 2% NaF gel for 16 minutes. In contrast, groups 2, 3, and 4 were exposed to 200 mg/L theobromine gel for 8 minutes, 16 minutes, and 32 minutes, and each group was then brushed for 9 minutes and 20 seconds. After the treatment, samples were tested using a surface roughness tester (Mitutoyo SJ 301, Japan). The Wilcoxon test showed significant changes (p < 0.05) in roughness values after exposure to the theobromine gel or NaF gel and after brushing for 9 minutes and 20 seconds. It can be concluded that exposure to 200 mg/L theobromine gel or 2% NaF gel can soften the enamel surface and then increase roughness after brushing.

  10. In situ surface roughness measurement using a laser scattering method

    NASA Astrophysics Data System (ADS)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  11. Subjective and objective perceptions of specular gloss and surface roughness of esthetic resin composites before and after artificial aging.

    PubMed

    Barucci-Pfister, Nadine; Göhring, Till N

    2009-04-01

    To correlate measurements of specular gloss and surface roughness of resin composite materials with subjective perception of luster before and after artificial aging. Polished specimens of eight composites were compared with human enamel (HE): microfilled SR Adoro (SR); microhybrid Artemis (AR), Enamel HFO (EHFO), Miris (MI), Tetric Ceram (TC), Venus (VE); and nanohybrid CeramX (CX) and nanofilled Filtek Supreme (FS). Before, during and after artificial aging (6000 thermal changes between 5 degrees C and 50 degrees C in an artificial oral environment, 240 hours storage in a container with ethanol, 300 minutes of toothbrushing), specular gloss and surface roughness were measured. Initial and endpoint gloss results were correlated with subjective luster rankings of 10 individuals. Artificial aging resulted in minor (EHFO, CX, FS), moderate (SR, MI, TC, VE) to high (AR) increases in surface roughness. Specular gloss decreased linearly for SR and FS, but decreased after an initial increase for all other materials. Subjectively, AR and FS were rated more and TC, VE and CX less lustrous than HE at baseline. After aging, luster of EHFO and FS was ranked higher and AR, TC, and VE lower than HE. Surface roughness was consistent with subjective perceptions (correlation coefficient: initial r = 0.913; endpoint r = 0.944, P < or = 0.0006), whereas specular gloss was consistent with subjective perceptions only after artificial aging (initial r = 0.616, P = 0.1084; endpoint r = 0.834, P = 0.0072).

  12. The In vitro Evaluation of the effect of xyliwhite, probiotic, and the conventional toothpastes on the enamel roughness and microhardness.

    PubMed

    Maden, E Arat; Altun, C; Polat, G Guven; Basak, F

    2018-03-01

    The aim of this study was to evaluate the effect of fluoride, Xylitol, Probiotic, and Whitening toothpastes on the permanent teeth enamel roughness and microhardness. One hundred and twenty teeth were randomly divided into 2 groups, each group having 60 samples. G1: The group in which enamel roughness was examined (n = 60). G2: The group in which enamel microhardness was examined (n = 60). Then, these groups were randomly divided into 4 groups among themselves (n = 15). Each group was brushed using four different toothpastes for 1 week with a battery-powered toothbrush in the morning and evening for 2 min. Vicker's hardness tester was used to measure the changes in microhardness, and the profilometer was used to measure the changes in surface roughness. No statistically significant differences were found on surface roughness and microhardness values measured after tooth brushing process in group brushed with Colgate MaxFresh toothpaste (P > 0.01). Statistically significant decrease was observed on Vicker's hardness values measured after tooth brushing process in groups brushed with Ipana White Power Carbonate toothpaste, Xyliwhite Toothpaste Gel, and Periobiotic Probiotic Toothpaste (P < 0.01). Statistically significant increase was observed on surface roughness values in groups brushed with Ipana White Power Carbonate toothpaste, Xyliwhite Toothpaste Gel, Periobiotic Probiotic Toothpaste (P < 0.01). As a result, Colgate MaxFresh abrasive-free toothpaste with fluoride has no effect on permanent tooth enamel surface roughness and microhardness. Xyliwhite, Periobiotic, and Ipana White Power Carbonate-containing abrasive toothpastes led to changes negatively on permanent tooth enamel surface roughness and microhardness.

  13. The influence of interfacial slip on two-phase flow in rough pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng

    The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less

  14. The influence of interfacial slip on two-phase flow in rough pores

    DOE PAGES

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...

    2017-08-01

    The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less

  15. The influence of interfacial slip on two-phase flow in rough pores

    NASA Astrophysics Data System (ADS)

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.

    2017-08-01

    The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.

  16. Surface roughness: A review of its measurement at micro-/nano-scale

    NASA Astrophysics Data System (ADS)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  17. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope

    NASA Astrophysics Data System (ADS)

    Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo

    2017-06-01

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  18. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  19. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion

    PubMed Central

    Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.

    2016-01-01

    Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875

  20. Contact angle of a nanodrop on a nanorough solid surface.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2015-02-21

    The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.

  1. Electro and Magneto-Electropolished Surface Micro-Patterning on Binary and Ternary Nitinol

    PubMed Central

    Munroe, Norman; McGoron, Anthony

    2012-01-01

    In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS), Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 × 800 nm) to (115 × 115μm), and (800 × 800 nm) to (40 × 40 μm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 × 115 μm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns. PMID:22754200

  2. An experimental study on the effects of rough hydrophobic surfaces on the flow around a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin

    2015-08-01

    The present study investigates the effect that rough hydrophobic (or superhydrophobic) surfaces have on the flow separation and subsequent vortex structures in a turbulent wake behind a circular cylinder. The velocity fields were measured using two-dimensional particle image velocimetry in a water tunnel with Reynolds numbers of 0.7-2.3 × 104. The spray-coating of hydrophobic nanoparticles and roughened Teflon was used to produce the rough hydrophobic surfaces, and sandpapers with two different grit sizes were used to sand the Teflon into streamwise and spanwise directions, respectively, in order to examine the effect of the slip direction. The rough hydrophobic surface was found to enhance the turbulence in the flows above the circular cylinder and along the separating shear layers, resulting in a delay of the flow separation and early vortex roll-up in the wake. As a result, the size of the recirculation bubble in the wake was reduced by up to 40%, while the drag reduction of less than 10% is estimated from a wake survey. However, these effects are reversed as the Reynolds number increases. The surface texture normal to the flow direction (spanwise slip) was found to be more effective than that aligned to the flow (streamwise slip), supporting the suggested mechanism. In addition, the superhydrophobic surface is locally applied by varying the installation angle and that applied around the separation point is most effective, indicating that the rough hydrophobic surface directly affects the boundary layer at flow separation. In order to control the flow around a circular cylinder using rough hydrophobic surfaces, it is suggested to have a smaller roughness width, which can stably retain air pockets. In addition, a higher gas fraction and a more uniform distribution of the roughness size are helpful to enhance the performance such as the separation delay and drag reduction.

  3. Pt thermal atomic layer deposition for silicon x-ray micropore optics.

    PubMed

    Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa

    2018-04-20

    We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10  nm and Pt ∼20  nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2  nm rms to 2.2±0.2  nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

  4. Figure correction of a metallic ellipsoidal neutron focusing mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiang, E-mail: jiang.guo@riken.jp; Yamagata, Yutaka; Morita, Shin-ya

    2015-06-15

    An increasing number of neutron focusing mirrors is being adopted in neutron scattering experiments in order to provide high fluxes at sample positions, reduce measurement time, and/or increase statistical reliability. To realize a small focusing spot and high beam intensity, mirrors with both high form accuracy and low surface roughness are required. To achieve this, we propose a new figure correction technique to fabricate a two-dimensional neutron focusing mirror made with electroless nickel-phosphorus (NiP) by effectively combining ultraprecision shaper cutting and fine polishing. An arc envelope shaper cutting method is introduced to generate high form accuracy, while a fine polishingmore » method, in which the material is removed effectively without losing profile accuracy, is developed to reduce the surface roughness of the mirror. High form accuracy in the minor-axis and the major-axis is obtained through tool profile error compensation and corrective polishing, respectively, and low surface roughness is acquired under a low polishing load. As a result, an ellipsoidal neutron focusing mirror is successfully fabricated with high form accuracy of 0.5 μm peak-to-valley and low surface roughness of 0.2 nm root-mean-square.« less

  5. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation.

    PubMed

    Khung, Y L; Ngalim, S H; Scaccabarozi, A; Narducci, D

    2015-06-12

    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1-3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes.

  6. Tactile Perception of Roughness and Hardness to Discriminate Materials by Friction-Induced Vibration

    PubMed Central

    Zhao, Xuezeng

    2017-01-01

    The human fingertip is an exquisitely powerful bio-tactile sensor in perceiving different materials based on various highly-sensitive mechanoreceptors distributed all over the skin. The tactile perception of surface roughness and material hardness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead of being maintained in a static position. Moreover, reciprocating sliding with increasing velocities and pressures are two common behaviors in humans to discriminate different materials, but the question remains as to what the correlation of the sliding velocity and normal load on the tactile perceptions of surface roughness and hardness is for material discrimination. In order to investigate this correlation, a finger-inspired crossed-I beam structure tactile tester has been designed to mimic the anthropic tactile discrimination behaviors. A novel method of characterizing the fast Fourier transform integral (FFT) slope of the vibration acceleration signal generated from fingertip rubbing on surfaces at increasing sliding velocity and normal load, respectively, are defined as kv and kw, and is proposed to discriminate the surface roughness and hardness of different materials. Over eight types of materials were tested, and they proved the capability and advantages of this high tactile-discriminating method. Our study may find applications in investigating humanoid robot perceptual abilities. PMID:29182538

  7. Helicopter rotor noise investigation during ice accretion

    NASA Astrophysics Data System (ADS)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.

  8. Comparison of surface abrasion produced on the enamel surface by a standard dentifrice using three different toothbrush bristle designs: A profilometric in vitro study

    PubMed Central

    Kumar, Sandeep; Kumari, Minal; Acharya, Shashidhar; Prasad, Ram

    2014-01-01

    Aim: The aim was to assess, in vitro, the effect on surface abrasivity of enamel surface caused by three different types (flat trim, zig-zag, bi-level) of toothbrush bristle design. Materials and Methods: Twenty-four freshly extracted, sound, human incisor teeth were collected for this study. The enamel slab was prepared, which were mounted, on separate acrylic bases followed by subjected to profilometric analysis. The surface roughness was measured using the profilometer. The specimen were divided into three groups, each group containing eight mounted specimens, wherein, Group 1 specimens were brushed with flat trim toothbrush; Group 2 brushed with zig-zag and Group 3 with bi-level bristle design. A commercially available dentifrice was used throughout the study. A single specimen was brushed for 2 times daily for 2 min period for 1 week using a customized brushing apparatus. The pre- and post-roughness value change were analyzed and recorded. Statistical test: Kruskal–Wallis test and Mann–Whitney U-test. Result: The results showed that surface abrasion was produced on each specimen, in all the three groups, which were subjected to brushing cycle. However, the bi-level bristle design (350% increase in roughness, P = 0.021) and zig-zag bristle design (160% increase in roughness, P = 0.050) showed significantly higher surface abrasion when compared with flat trim bristle design toothbrush. Conclusion: Flat trim toothbrush bristle produces least surface abrasion and is relatively safe for use. PMID:25125852

  9. Impact of humidity on functionality of on-paper printed electronics.

    PubMed

    Bollström, Roger; Pettersson, Fredrik; Dolietis, Peter; Preston, Janet; Osterbacka, Ronald; Toivakka, Martti

    2014-03-07

    A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.

  10. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    NASA Astrophysics Data System (ADS)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  11. The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Hayne, P. O.; Paige, D. A.

    2017-12-01

    The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.

  12. Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Prass, Sebastian; Hasanpour, Sadegh; Sow, Pradeep Kumar; Phillion, André B.; Mérida, Walter

    2016-07-01

    The interfacial morphology between the catalyst layer (CL) and micro porous layer (MPL) influences the performance of proton exchange membrane fuel cells (PEMFCs). Here we report a direct method to investigate the CL-MPL interfacial morphology of stacked and compressed gas diffusion layer (GDL with MPL)-catalyst coated membrane (CCM) assemblies. The area, origin and dimensions of interfacial gaps are studied with high-resolution X-ray micro computed tomography (X-μCT). The projected gap area (fraction of the CL-MPL interface separated by gaps) is higher for GDL-CCM assemblies with large differences in the surface roughness between CL and MPL but reduces with increasing compression and similarity in roughness. Relatively large continuous gaps are found in proximity to cracks in the MPL. These are hypothesized to form due to the presence of large pores on the surface of the GDL. Smaller gaps are induced by the surface roughness features throughout the CL-MPL interface. By modification of the pore sizes on the GDL surface serving as substrate for the MPL, the number and dimension of MPL crack induced gaps can be manipulated. Moreover, adjusting the CL and MPL surface roughness parameters to achieve similar orders of roughness can improve the surface mating characteristics of these two components.

  13. Improvement of MRR and surface roughness during electrical discharge machining (EDM) using aluminum oxide powder mixed dielectric fluid

    NASA Astrophysics Data System (ADS)

    Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.

    2018-01-01

    This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.

  14. Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone.

    PubMed

    Yoon, Byung Jo Victor; Xavier, Fred; Walker, Brendon R; Grinberg, Samuel; Cammisa, Frank P; Abjornson, Celeste

    2016-10-01

    Titanium plasma spray coating on polyetheretherketone (PEEK) is a recent innovation to interbody spacer technology. The inherent hydrophobic properties of standard, uncoated PEEK implants can hamper cell attachment and bone healing during fusion. The addition of titanium coating not only offers initial stability due to increased surface roughness but also long-term stability due to bony ongrowth created from osteoconductive microenvironment on the device surface. The previously established hydrophilic and osteophilic properties of commercially pure titanium (CPTi) can potentially provide an ideal environment promoting cell attachment and bony ongrowth when applied at the end plate level of the fusion site. Because the surface material composition and topography is what seems to directly affect cell adhesion, it is important to determine the ideal titanium coating for the highest effectiveness. The purpose of the study is to determine whether there is an optimal surface roughness for the titanium coatings and whether different polishing methods have a greater effect than roughness or topography in mediating cell adhesion to the surface. The study was divided into two phases. In Phase 1, the effects of varying surface roughnesses on identical polishing method were compared. In Phase 2, the effect of varying polishing methods was compared on identical surface roughnesses. Coating thickness, porosity, and surface roughness were characterized using an optical microscope as per ASTM F 1854 standards. For both phases, PEEK coupons with plasma-sprayed CPTi were used, and human mesenchymal stem cells (hMSCs) at an initial density of 25,000 cells/cm 2 were seeded and cultured for 24 hours before fixation in 10% formalin. The cultured hMSCs were visualized by 4',6-diamidino-2-phenylindole (DAPI) staining, a fluorescent stain that binds to the DNA of living cells. Samples were imaged using an environmental scanning electron microscope (eSEM) (Carl Zeiss Microscopy, Thornwood, NY, USA) using a backscattered detector. Image analysis of the CPTi coatings showed uniform and rough surfaces. For Phase 1, roughness was evaluated as fine, medium, and coarse. The eSEM image analysis and cell counting by DAPI demonstrated that hMSCs have a tendency to form stronger adhesion and greater pseudopodia extensions on fine roughness surfaces. Individual hMSCs were seen forming cytoplasmic processes extending across the width of a pore. There was a 4- and 20-fold reduction in adhered hMSCs with an increase to medium and coarse roughnesses, respectively. For Phase 2, studied groups are (1) medium CPTi coating with zirconia polishing, (2) medium CPTi coating with CPTi polishing, and (3) fine CPTi coating with CPTi polishing. The eSEM image analysis and cell counting by DAPI demonstrated that hMSCs have a tendency to form stronger adhesion and greater pseudopodia extensions on Group 3 over the other two groups. There was a twofold reduction in adhered hMSCs on medium roughness relative to fine. No difference in cell adhesion was found between Groups 1 and 2. Individual hMSCs were seen forming cytoplasmic processes extending across the width of a pore. Previously, it was accepted without much scrutiny that surface coatings were beneficial. This study begins to discover that surface topography directly affects the potential for cells to adhere and proliferate and lead to greater surgical efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Quantitative assessment of interfacial interactions with rough membrane surface and its implications for membrane selection and fabrication in a MBR.

    PubMed

    Chen, Jianrong; Mei, Rongwu; Shen, Liguo; Ding, Linxian; He, Yiming; Lin, Hongjun; Hong, Huachang

    2015-03-01

    The interfacial interactions between a foulant particle and rough membrane surface in a submerged membrane bioreactor (MBR) were quantitatively assessed by using a new-developed method. It was found that the profile of total interaction versus separation distance was complicated. There were an energy barrier and two negative energy ranges in the profile. Further analysis showed that roughness scale significantly affected the strength and properties of interfacial interactions. It was revealed that there existed a critical range of roughness scale within which the total energy in the separation distance ranged from 0 to several nanometers was continually repulsive. Decrease in foulant size would increase the strength of specific interaction energy, but did not change the existence of a critical roughness scale range. These findings suggested the possibility to "tailor" membrane surface morphology for membrane fouling mitigation, and thus gave significant implications for membrane selection and fabrication in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of the surface roughness effect on suspended particle deposition near unpaved roads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Dongzi; Gillies, J. A.; Etyemezian, V.

    2015-11-11

    The downwind transport and deposition of suspended dust raised by a vehicle driving on unpaved roads was studied for four differently vegetated surfaces in the USA states of Kansas and Washington, and one barren surface in Nevada. A 10 m high tower adjacent to the source (z10 m downwind) and an array of multi-channel optical particle counters at three positions downwind of the source measured the flux of particles and the particle size distribution in the advecting dust plumes in the horizontal and vertical directions. Aerodynamic parameters such as friction velocity (u*) and surface roughness length (z0) were calculated frommore » wind speed measurements made on the tower. Particle number concentration, PM10 mass exhibited an exponential decay along the direction of transport. Coarse particles accounted for z95% of the PM10 mass, at least to a downwind distance of 200 m from the source. PM10 removed by deposition was found to increase with increasing particle size and increasing surface roughness under similar moderate wind speed conditions. The surface of dense, long grass (1.2 m high and complete surface cover) had the greatest reduction of PM10 among the five surfaces tested due to deposition induced by turbulence effects created by the rougher surface and by enhanced particle impaction/ interception effects to the grass blades.« less

  17. Influence of the initial surface texture on the resulting surface roughness and waviness for micro-machining with ultra-short laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat

    2017-03-01

    The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.

  18. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    PubMed Central

    Cai, Yang; Wang, Xiaosong; Yuan, Shijian

    2017-01-01

    Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD) to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening. PMID:28772658

  19. Wind-Tunnel Study of Scalar Transfer Phenomena for Surfaces of Block Arrays and Smooth Walls with Dry Patches

    NASA Astrophysics Data System (ADS)

    Chung, Juyeon; Hagishima, Aya; Ikegaya, Naoki; Tanimoto, Jun

    2015-11-01

    We report the result of a wind-tunnel experiment to measure the scalar transfer efficiency of three types of surfaces, wet street surfaces of cube arrays, wet smooth surfaces with dry patches, and fully wet smooth surfaces, to examine the effects of roughness topography and scalar source allocation. Scalar transfer coefficients defined by the source area {C}_{E wet} for an underlying wet street surface of dry block arrays show a convex trend against the block density λ _p. Comparison with past data, and results for wet smooth surfaces including dry patches, reveal that the positive peak of {C}_{E wet} with increasing λ _p is caused by reduced horizontal advection due to block roughness and enhanced evaporation due to a heterogeneous scalar source distribution. In contrast, scalar transfer coefficients defined by a lot-area including wet and dry areas {C}_{E lot} for smooth surfaces with dry patches indicate enhanced evaporation compared to the fully wet smooth surface (the oasis effect) for all three conditions of dry plan-area ratio up to 31 %. Relationships between the local Sherwood and Reynolds numbers derived from experimental data suggest that attenuation of {C}_{E wet} for a wet street of cube arrays against streamwise distance is weaker than for a wet smooth surface because of canopy flow around the blocks. Relevant parameters of ratio of roughness length for momentum to scalar {B}^{-1} were calculated from observational data. The result implies that {B}^{-1} possibly increases with block roughness, and decreases with the partitioning of the scalar boundary layer because of dry patches.

  20. Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis

    PubMed Central

    Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon

    2016-01-01

    Summary Background/Objectives: This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Material and Methods: Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200g nickel–titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P <0.05. Results: The mean values of Sa and Sq were significantly higher in the laser-treated group compared with the machined group (P <0.05). There were no significant differences in fracture resistance and BIC between the two groups. Limitation: animal study Conclusions/Implications: Laser treatment increased surface roughness without compromising fracture resistance. Despite increasing surface roughness, laser treatment did not improve BIC. Overall, it appears that medical grade SS has the potential to be substituted for titanium alloy MSIs. PMID:25908868

  1. Different Effects of Roughness (Granularity) and Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil; McHale, Glen; Hamlett, Christopher; Newton, Michael

    2010-05-01

    With thanks to Stefan Doerr and Jorge Mataix-Solera for their invitation Superhydrophobicity is an interesting effect that appears to be simple on the outset; increased surface area from roughness increases interfacial area and therefore energy loss or gain. More extreme roughness prevents total wetting, resulting in gas pockets present at the surface and a drastic change in the properties of the system. Increases in complexity of the system, by adding porosity (granularity), allowing the structures to move, varying the shape of the roughness or the composition of the liquid used often has unexpected effects. Here we will consider a few of these related to complex topography. Overhanging features are commonly used in test samples as they perform better in some tests than simple roughness. It has been shown to be a prerequisite for superoleophobic surfaces as it allows liquids to be suspended for contact angles considerably below 90°. It also allows trapping of gas in lower layers even if the first layer is flooded. This is important in soils as a fixed bed of granules behaves just like a surface with overhanging roughness. Using simple geometry it is possible to predict at what contact angle penetration will occur. Plants have some structured superhydrophobic surfaces and we have shown that some use them in conjunction with other structured surfaces to control water flows. This allows some plants to survive in difficult environments and shows us how subtly different structures interact completely differently with water. Long fibres can either cause water droplets to roll over a plant surface or halt it in its tracks. Implications of this in soils include predicting when particles will adhere more strongly to water drops and why organic fibrous material may play a greater role in the behaviour of water in soils than may be expected from the amount present. The garden snail uses a biosurfactant that is very effective at wetting surfaces and can crawl over most superhydrophobic surfaces. There are some, however, that defeat even the snail's complex slime. Looking at these surfaces in more detail reveals that some superhydrophobic surfaces are much more resistant to the effects of surfactants than others. As mentioned above, overhanging structures, such as those found in granular materials are particularly effective at suspending liquids. This does not, however, always translate to them being more effective against surfactants, unfortunately, however, surfactants are not always as effective as we would like them to be, although drops do not skate across superhydrophobic surfaces they often do not penetrate into them fully either.

  2. Effect of whitening dentifrices on the surface roughness of a nanohybrid composite resin

    PubMed Central

    da Rosa, Gabriela Migliorin; da Silva, Luciana Mendonça; de Menezes, Márcio; do Vale, Hugo Felipe; Regalado, Diego Ferreira; Pontes, Danielson Guedes

    2016-01-01

    Objectives: The present study verified the influence of whitening dentifrices on the surface roughness of a nanohybrid composite resin. Materials and Methods: Thirty-two specimens were prepared with Filtek™ Z350 XT (3M/ESPE) and randomly divided into four groups (n = 08) that were subjected to brushing simulation equivalent to the period of 1 month. The groups assessed were a control group with distilled water (G1), Colgate Total 12 Professional Clean (G2), Sensodyne Extra Whitener Extra Fresh (G3), and Colgate Luminous White (G4). A sequence of 90 cycles was performed for all the samples. The initial roughness of each group was analyzed by the Surface Roughness Tester (TR 200-TIME Group Inc., CA, USA). After the brushing period, the final roughness was measured, and the results were statistically analyzed using nonparametric Kruskal–Wallis and Dunn tests for intergroup roughness comparison in the time factor. For intragroup and “Δ Final − Initial” comparisons, the Wilcoxon test and (one-way) ANOVA were, respectively, performed (α = 0.05). Results: The roughness mean values before and after brushing showed no statistically significant difference when the different dentifrices were used. None of the dentifrices analyzed increased significantly the nanohybrid composite resin surface roughness in a 1 month of tooth brushing simulation. Conclusions: These results suggest that no hazardous effect on the roughness of nanohybrid composite resin can be expected when whitening dentifrices are used for a short period. Similar studies should be conducted to analyze other esthetic composite materials. PMID:27095891

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S. D.; Eggers, T.; Thiabgoh, O.

    Understanding the relationship between the surface conditions and giant magneto-impedance (GMI) in Co-rich melt-extracted microwires is key to optimizing their magnetic responses for magnetic sensor applications. The surface magnetic domain structure (SMDS) parameters of ~45 μm diameter Co 69.25Fe 4.25Si 13B 13.5-xZr x (x = 0, 1, 2, 3) microwires, including the magnetic domain period (d) and surface roughness (Rq) as extracted from the magnetic force microscopy (MFM) images, have been correlated with GMI in the range 1–1000 MHz. It was found that substitution of B with 1 at. % Zr increased d of the base alloy from 729 tomore » 740 nm while retaining Rq from ~1 nm to ~3 nm. A tremendous impact on the GMI ratio was found, increasing the ratio from ~360% to ~490% at an operating frequency of 40 MHz. Further substitution with Zr decreased the high frequency GMI ratio, which can be understood by the significant increase in surface roughness evident by force microscopy. Lastly, this study demonstrates the application of the domain period and surface roughness found by force microscopy to the interpretation of the GMI in Co-rich microwires.« less

  4. Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. L.; Jo, H.; Tirawat, R.

    Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughenedmore » via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.« less

  5. The surface roughness effect on the performance of supersonic ejectors

    NASA Astrophysics Data System (ADS)

    Brezgin, D. V.; Aronson, K. E.; Mazzelli, F.; Milazzo, A.

    2017-07-01

    The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the "critical roughness height" for the given boundary conditions and ejector's geometry, the ejector switches to the "off-design" mode and its performance decreases considerably.

  6. Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven

    2009-11-01

    An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).

  7. Polishing and toothbrushing alters the surface roughness and gloss of composite resins.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu; Kanehira, Masafumi; Finger, Werner J

    2014-01-01

    This study aimed to investigate the surface roughness and gloss of composite resins after using two polishing systems and toothbrushing. Six composite resins (Durafill VS, Filtek Z250, Filtek Z350 XT, Kalore, Venus Diamond, and Venus Pearl) were evaluated after polishing with two polishing systems (Sof-Lex, Venus Supra) and after toothbrushing up to 40,000 cycles. Surface roughness (Ra) and gloss were determined for each composite resin group (n=6) after silicon carbide paper grinding, polishing, and toothbrushing. Two-way ANOVA indicated significant differences in both Ra and gloss between measuring stages for the composite resins tested, except Venus Pearl, which showed significant differences only in gloss. After polishing, the Filtek Z350 XT, Kalore, and Venus Diamond showed significant increases in Ra, while all composite resin groups except the Filtek Z350 XT and Durafill VS with Sof-Lex showed increases in gloss. After toothbrushing, all composite resin demonstrated increases in Ra and decreases in gloss.

  8. Cleanliness evaluation of rough surfaces with diffuse IR reflectance

    NASA Technical Reports Server (NTRS)

    Pearson, L. H.

    1995-01-01

    Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.

  9. Corroded surface roughness of copper analyzed by Fourier transform infrared mapping microscopy and optical profilometric study.

    PubMed

    Kasperek, J; Lefez, B; Beucher, E

    2004-02-01

    This study shows the effects of roughness on infrared spectra shapes of thin corrosion products on metallic substrates. The calculated spectra show that the baseline is mainly affected by increasing roughness and that such effects do not shift the position of the absorption bands. The model obtained has been used to extract data of artificial patina on a copper surface. Surface defects of copper substrates can be distinguished on the whole surface, from the morphological and chemical points of view, using optical profilometry and infrared microspectroscopy. An homogeneous layer of cuprite covers the surface except in the linear defects. Fourier transform infrared (FT-IR) analysis indicates that a mixture of atacamite and clinoatacamite is mainly located in these scratches. The width of these particular areas is in good agreement with profilometric observations.

  10. Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Hirsch, Dietmar; Fechner, Renate; Hong, Yilin; Fu, Shaojun; Frost, Frank; Rauschenbach, Bernd

    2018-01-01

    The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO2). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar+ IBS with Al co-deposition was investigated on smooth SiO2, pre-rippled SiO2, and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO2, respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasi-blazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlOxFy compounds originating mainly from the Al source.

  11. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique

    NASA Astrophysics Data System (ADS)

    Ahmad Kamal, Shafarina Azlinda; Ritikos, Richard; Abdul Rahman, Saadah

    2015-02-01

    Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films' structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films' surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of Cdbnd N to Cdbnd C and Nsbnd H to Osbnd H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films' characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface roughness and bonding properties of the films.

  12. Long-term effects of seven cleaning methods on light transmittance, surface roughness, and flexural modulus of polyurethane retainer material.

    PubMed

    Agarwal, Manika; Wible, Emily; Ramir, Tyler; Altun, Sibel; Viana, Grace; Evans, Carla; Lukic, Henry; Megremis, Spiro; Atsawasuwan, Phimon

    2018-05-01

    To evaluate the long-term effects of seven different cleaning methods on light transmittance, surface roughness, and flexural modulus of a polyurethane retainer material. Polyurethane retainer specimens (Vivera®, Align Technology Inc) (70 specimens, n = 10 per method, 50.8 mm × 12.7 mm × 1.0 mm) were exposed to seven cleaning methods twice a week for 6 months. Before treatment and after 6 months, light transmittance, surface roughness, and flexural modulus of the specimens were quantified. Qualitative assessment of randomly selected specimens from each solution was performed at baseline and after 6 months using a scanning electron microscope. Statistical analyses were performed at the .05 significance level. Of the three test variables, light transmittance through the specimens was the only one that changed significantly from baseline to 6 months for all cleaning solutions, with all of them causing a decrease. However, except for 0.6% sodium hypochlorite showing a change in surface roughness values and 2.5% vinegar and toothbrushing showing an increase in flexural modulus, none of the other four cleaning methods resulted in significant changes in surface roughness or flexural modulus values for the polyurethane specimens between baseline and after 6 months. Of the seven cleaning methods, Invisalign® cleaning crystals, Polident®, and Listerine® showed the least amount of change in light transmittance values for the polyurethane specimens over 6 months, and they had no effect on surface roughness and flexural modulus values.

  13. Effect of Reduced Phosphoric Acid Pre-etching Times 
on Enamel Surface Characteristics and Shear Fatigue Strength Using Universal Adhesives.

    PubMed

    Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi

    2017-01-01

    To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.

  14. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.

    PubMed

    Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei

    2017-09-12

    Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

  15. Linking playa surface dust emission potential to feedbacks between surface moisture and salt crust expansion through high resolution terrestrial laser scanning measurements

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Wiggs, G.

    2012-12-01

    The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.

  16. The Effects of Fresh Detox Juices on Color Stability and Roughness of Resin-Based Composites.

    PubMed

    Yikilgan, İhsan; Akgul, Sinem; Hazar, Ahmet; Kedıcı Alp, Cemile; Baglar, Serdar; Bala, Oya

    2018-02-27

    To evaluate the effects of three fresh detox juices, including an orange, green, and red beverage, on the color stability and surface roughness of three anterior esthetic resin-based composites (RBCs). Disk-shaped specimens were prepared with three different esthetic RBCs (Amaris, G-aenial Anterior, Clearfil Majesty ES-2) according to the manufacturers' instructions. Forty specimens were prepared for each RBC, and all specimens were stored in artificial saliva at 37°C for 24 hours. The initial color values and surface roughness measurements of the specimens were taken using a spectrophotometer and a profilometer. The specimens were then divided into 4 subgroups (n = 10). All specimens except the control specimens were immersed in their designated fresh detox juices (green, red, or orange) for 10 minutes twice a day. Color and surface roughness measurements were taken on day 15 and day 30, and the results were analyzed by one-way ANOVA and Tukey HSD test. The association between color change and surface roughness was evaluated by Spearman's Rank Correlation analysis. Color changes and surface roughness increased upon exposure to fresh detox juices for 15 and 30 days for all of the RBCs. All of the G-aenial and Amaris groups displayed color changes above the threshold of acceptability, whereas Clearfil Majesty ES-2 displayed a color change above the threshold of acceptability only after exposure to the red beverage for 30 days (ΔE > 3.7). With regard to surface roughness, Clearfil Majesty ES-2 outperformed the other RBCs (p < 0.001). According to Spearman's Rank Correlation analysis, there was no correlation between color change and surface roughness (p > 0.001). Exposure to the fresh detox juices used in this study led to similar color changes in the RBCs used in this study. © 2018 by the American College of Prosthodontists.

  17. Scale resolving computation of submerged wall jets on flat wall with different roughness heights

    NASA Astrophysics Data System (ADS)

    Paik, Joongcheol; Bombardelli, Fabian

    2014-11-01

    Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.

  18. The effect of bed roughness on the free surface of an open channel flow and implications for remotely monitoring river discharge

    NASA Astrophysics Data System (ADS)

    Johnson, Erika; Cowen, Edwin

    2013-11-01

    The effect of increased bed roughness on the free surface turbulence signature of an open channel flow is investigated with the goal of incorporating the findings into a methodology to remotely monitor volumetric flow rates. Half of a wide (B = 2 m) open channel bed is covered with a 3 cm thick layer of loose gravel (D50 = 0.6 cm). Surface PIV (particle image velocimetry) experiments are conducted for a range of flow depths (B/H = 10-30) and Reynolds numbers (ReH = 10,000-60,000). It is well established that bed roughness in wall-bounded flows enhances the vertical velocity fluctuations (e.g. Krogstad et al. 1992). When the vertical velocity fluctuations approach the free surface they are redistributed (e.g. Cowen et al. 1995) to the surface parallel component directions. It is anticipated and confirmed that the interaction of these two phenomena result in enhanced turbulence at the free surface. The effect of the rough bed on the integral length scales and the second order velocity structure functions calculated at the free surface are investigated. These findings have important implications for developing new technologies in stream gaging.

  19. Stick–slip friction of gecko-mimetic flaps on smooth and rough surfaces

    PubMed Central

    Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L.; Israelachvili, Jacob N.

    2015-01-01

    The discovery and understanding of gecko ‘frictional-adhesion’ adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick–slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick–slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick–slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. PMID:25589569

  20. Effects of delayed finishing/polishing on surface roughness, hardness and gloss of tooth-coloured restorative materials.

    PubMed

    Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren

    2010-01-01

    The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.

  1. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing.

    PubMed

    Lai, Fang-I; Yang, Jui-Fu

    2013-05-17

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.

  2. Surface Roughness of the Moon Derived from Multi-frequency Radar Data

    NASA Astrophysics Data System (ADS)

    Fa, W.

    2011-12-01

    Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.

  3. The VHCF experimental investigation of FV520B-I with surface roughness Ry

    NASA Astrophysics Data System (ADS)

    Wang, J. L.; Zhang, Y. L.; Ding, M. C.; Zhao, Q. C.

    2018-05-01

    Different surface roughness type (Ra and Ry) has different effect on the VHCF failure and life. Ra is widely employed as the quantitative expression of the surface roughness, but there are few fatigue failure mechanism analysis and experimental study under surface roughness Ry. The VHCF experiment is conducted out using the specimen with different surface roughness values. The surface roughness Ry is employed as the major research object to investigate the relationship and distribution tendency between the Ry, fatigue life and the distance between internal inclusion and surface, and a new VHCF failure character is proposed.

  4. Effect of Multipath Laser Shock Processing on Microhardness, Surface Roughness, and Wear Resistance of 2024-T3 Al Alloy

    PubMed Central

    Kadhim, Abdulhadi; Salim, Evan T.; Fayadh, Saeed M.; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2014-01-01

    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm2; t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated. PMID:24737973

  5. [Comparison of two powder-stream systems for tooth polishing].

    PubMed

    Leckel, M; Lenz, P; Gilde, H

    1989-06-01

    The effect of two airpolishing systems on the surface roughness of polished ceramic test pieces was compared and evaluated using standardized procedures. Test pieces resembling enamel in hardness were treated with these air-polishing systems. Using a Perthometer surface roughness was found to increase significantly. Thus the possible effects of airpolishing systems on the enamel surface should be considered. Efficiency of extrinsic stain removal was studied by SEM and documented. Photographic techniques provided information on the homogeneity of the sodium bicarbonate spray.

  6. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    NASA Astrophysics Data System (ADS)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  7. Effect of artificial aging on the surface roughness and microhardness of resin-based materials.

    PubMed

    Santos, M Jacinta M C; Rêgo, Heleine Maria Chagas; Mukhopadhyay, Anuradha; El Najjar, Mai; Santos, Gildo C

    2016-01-01

    This study sought to verify the effects of aging on the surface roughness (Ra) and microhardness (Knoop hardness number [KHN]) of resin-based restorative materials protected with a surface sealer. Disc specimens of 2 resin-modified glass ionomers (RMGIs) and 1 composite resin (CR) were fabricated in a metal mold. Specimens of each material were divided into 1 group that was covered with surface sealer and 1 group that was not. Both groups of each material were then subdivided according to whether they were stored (aged) in cola or distilled water. Surface roughness and KHN values were obtained from each specimen before and after storage. After aging of the specimens, significantly higher Ra values were observed in the 2 RMGIs when they were not covered with a surface sealer, while the CR was not affected. The KHN values varied by materials and storage conditions (with and without a surface sealer). All the groups with a surface sealer exhibited increased Ra values after aging.

  8. Research on effect of rough surface on FMCW laser radar range accuracy

    NASA Astrophysics Data System (ADS)

    Tao, Huirong

    2018-03-01

    The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.

  9. Aerodynamic performance of transonic and subsonic airfoils: Effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface roughness and freestream turbulence, compared with data from the cambered vane airfoil. Stanton numbers, skin friction coefficients, aerodynamic losses, and Reynolds analogy behavior are numerically predicted for a turbine vane using the FLUENT with a k-epsilon RNG model to show the effects of Mach number, mainstream turbulence level, and surface roughness. Comparisons with wake aerodynamic loss experimental data are made. Numerically predicted skin friction coefficients and Stanton numbers are also used to deduce Reynolds analogy behavior on the vane suction and pressure sides.

  10. [Influence of surface roughness on degree of polarization of biotite plagioclase gneiss varying with viewing angle].

    PubMed

    Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei

    2011-12-01

    Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the rock and city architecture discrimination and minerals mapping.

  11. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.

  12. Roughness and wettability effect on histological and mechanical response of self-drilling orthodontic mini-implants.

    PubMed

    Espinar-Escalona, Eduardo; Bravo-Gonzalez, Luis-Alberto; Pegueroles, Marta; Gil, Francisco Javier

    2016-06-01

    Self-drilling orthodontic mini-implants can be used as temporary devices for orthodontic treatments. Our main goal was to evaluate surface characteristics, roughness and wettability, of surface modified mini-implants to increase their stability during orthodontic treatment without inducing bone fracture and tissue destruction during unscrewing. Modified mini-implants by acid etching, grit-blasting and its combination were implanted in 20 New Zealand rabbits during 10 weeks. After that, the bone-to-implant (BIC) parameter was determined and the torque during unscrewing was measured. The surface characteristics, roughness and wettability, were also measured, onto modified Ti c.p. discs. Acid-etched mini-implants (R a ≈ 1.7 μm, contact angle (CA) ≈ 66°) significantly improved the bone-to-implant parameter, 26 %, compared to as-machined mini-implants (R a ≈ 0.3 μm, CA ≈ 68°, BIC = 19 %) due to its roughness. Moreover, this surface treatment did not modify torque during unscrewing due to their statistically similar wettability (p > 0.05). Surface treatments with higher roughness and hydrophobicity (R a ≈ 4.5 μm, CA ≈ 74°) lead to a greater BIC and to a higher removal torque during unscrewing, causing bone fracture, compared to as-machined mini-implants. Based on these in vivo findings, we conclude that acid-etching surface treatment can support temporary anchoring of titanium mini-implants. This treatment represents a step forward in the direction of reducing the time prior to mini-implant loading by increasing their stability during orthodontic treatment, without inducing bone fracture and tissue destruction during unscrewing.

  13. Surface smoothening of the inherent roughness of micro-lenses fabricated with 2-photon lithography

    NASA Astrophysics Data System (ADS)

    Schift, Helmut; Kirchner, Robert; Chidambaram, Nachiappan; Altana, Mirco

    2018-01-01

    Two-photon polymerization by direct laser writing enables to write refractive micro-optical elements with sub-μm precision. The trajectories and layering during the direct writing process often result in roughness in the range of the writing increment, which has adverse effects for optical applications. Instead of increasing overlap between adjacent voxels, roughness in the range of 100 nm can be smoothed out by post-processing. For this a method known as TASTE was developed, which allows polishing of surfaces without changing the structural details or the overall shape. It works particularly well with thermoplastic polymers and enables sub-10 nm roughness. The optical quality was confirmed for an array with several 100 microlenses.

  14. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    NASA Astrophysics Data System (ADS)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a multi-scale wear model to explain the evolution of faults with displacement. We suggest that together, asperity failure as a scale invariant process, and the stochastic strength of host rocks are consistent with qualitative and quantitative observational constraints made in this study.

  15. Speckle phase near random surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyi; Cheng, Chuanfu; An, Guoqiang; Han, Yujing; Rong, Zhenyu; Zhang, Li; Zhang, Meina

    2018-03-01

    Based on Kirchhoff approximation theory, the speckle phase near random surfaces with different roughness is numerically simulated. As expected, the properties of the speckle phase near the random surfaces are different from that in far field. In addition, as scattering distances and roughness increase, the average fluctuations of the speckle phase become larger. Unusually, the speckle phase is somewhat similar to the corresponding surface topography. We have performed experiments to verify the theoretical simulation results. Studies in this paper contribute to understanding the evolution of speckle phase near a random surface and provide a possible way to identify a random surface structure based on its speckle phase.

  16. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-10-01

    We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.

  17. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation

    PubMed Central

    Khung, Y. L.; Ngalim, S. H.; Scaccabarozi, A.; Narducci, D.

    2015-01-01

    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1–3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes. PMID:26067470

  18. Surface treated polypropylene (PP) fibres for reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Buendía, Angel M., E-mail: buendia@uv.es; Romero-Sánchez, María Dolores; Climent, Verónica

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in themore » mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng

    Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less

  20. Effect of Multi-Pass Ultrasonic Surface Rolling on the Mechanical and Fatigue Properties of HIP Ti-6Al-4V Alloy

    PubMed Central

    Li, Gang; Qu, Shengguan; Xie, Mingxin; Ren, Zhaojun; Li, Xiaoqiang

    2017-01-01

    The main purpose of this paper was to investigate the effect of a surface plastic deformation layer introduced by multi-pass ultrasonic surface rolling (MUSR) on the mechanical and fatigue properties of HIP Ti-6Al-4V alloys. Some microscopic analysis methods (SEM, TEM and XRD) were used to characterize the modified microstructure in the material surface layer. The results indicated that the material surface layer experienced a certain extent plastic deformation, accompanied by some dense dislocations and twin generation. Moreover, surface microhardness, residual stress and roughness values of samples treated by MUSR were also greatly improved compared with that of untreated samples. Surface microhardness and compressive residual stress were increased to 435 HV and −1173 MPa, respectively. The minimum surface roughness was reduced to 0.13 μm. The maximum depth of the surface hardening layer was about 55 μm. However, the practical influence depth was about 450 μm judging from the tensile and fatigue fracture surfaces. The ultimate tensile strength of the MUSR-treated sample increased to 990 MPa from the initial 963 MPa. The fatigue strength of the MUSR-treated sample was increased by about 25% on the base of 107 cycles, and the lifetime was prolonged from two times to two orders of magnitude at the applied stress amplitudes of 650–560 MPa. The improved mechanical and fatigue properties of MUSR-treated samples should be attributed to the combined effects of the increased microhardness and compressive residual stress, low surface roughness, grain refinement and micro-pore healing in the material surface-modified layer. PMID:28772494

  1. Surface roughness measurement in the submicrometer range using laser scattering

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.

    2000-06-01

    A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.

  2. Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights

    NASA Astrophysics Data System (ADS)

    Rasmuson, J. A.; Johnson, W. P.

    2017-12-01

    A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector surfaces with the greatest RMS roughness had the highest sensitivity to the placement of the contact surface. These findings highlight the need for accurate and representative AFM measurements and have important implications for future transport models.

  3. In situ roughening of polymeric microstructures.

    PubMed

    Shadpour, Hamed; Allbritton, Nancy L

    2010-04-01

    A method to perform in situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15-30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damaged after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micrometer-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to largescale arrays of the structures.

  4. In-Situ Roughening of Polymeric Microstructures

    PubMed Central

    Shadpour, Hamed; Allbritton, Nancy L.

    2010-01-01

    A method to perform in-situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15 to 30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damage after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micron-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to large scale arrays of the structures. PMID:20423129

  5. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    NASA Astrophysics Data System (ADS)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.

  6. Preparation of anticoagulant PyC biomaterials with super-hydrophobic surface.

    PubMed

    Ze, Wang; Wen-Sheng, Tan; Ye-Xia; Ming, Zhang; Xiao-Ping, Li; Jian-Guo, Qiu; Xiao-Hong, Yang

    2018-01-01

    Pyrolytic carbon (PyC) is a kind of biomaterial which is chemically inert and has excellent biocompatibility. In order to obtain a super-hydrophobic PyC surface to improve anticoagulation and inhibit thrombus, this study prepares grating pair structure, microhole array structure, helix structure on PyC surface by nanoseconds laser etching. Rod-like ZnO film and ball-like ZnO film are prepared on the PyC surface by the hydrothermal method; polyvinyl pyrrolidone (PVP) nanofiber film and PVP/TiO 2 complex nanofiber film are prepared on the PyC surface by the electrospinning method; the PyC surface is silanized. Finally, surface microstructure and surface energy are characterized by scanning electron microscopy and contact angle meter (OCA20, German DataPhysics Co.). The periodical microstructures are formed respectively by nanoseconds laser etching. The surface roughness is increased by the hydrothermal and electrospinning method. Through infiltration experiment on rough and smooth PyC surfaces, rough PyC surface with microstructure is super-hydrophobic and has greater than 150° contact angle, which decreases blood flow resistance and inhibits thrombus.

  7. Effect of plasma treatment (He/CH4) on glass surface for the reduction of powder flux adhesion in the spray drying process

    NASA Astrophysics Data System (ADS)

    Ramlan, Nadiah; Zamri, Nazirah Wahidah Mohd; Maskat, Mohd Yusof; Hoong, Chin Oi; Theng, Lau Yen; Zubairi, Saiful Irwan

    2018-04-01

    A 50Hz glow discharge He/CH4 plasma was generated and applied for the modification of glass surface to reduce powder adhesion on the wall of spray dryer. The hydrophobicity of the glass samples determined by the water droplet contact angle and adhesion weight on glass, dependent on the CH4 flow rate and plasma exposure time. There was a peak that appeared at 1470 cm-1 on the surface of treated glass indicating the presence of CH3 groups from ATR-FTIR data. Surface morphology analysis using scanning electron microscopy (SEM) showed changes of roughness in the surface-treated glass. The presence of alkyl group (CH3) that deposited on the glass surface is one of the factors that contribute to the increase in the surface roughness. The surface roughness will reflect the value of contact angle where hydrophobic surface are rougher compared to hydrophilic surface. The plasma treatment could enhance the value of the contact angle and thus reduced the adhesion on the spray dryer glass surface.

  8. Acoustic Receptivity of a Blasius Boundary Layer with 2-D and Oblique Surface Waviness

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Breuer, Kenneth S.

    2000-01-01

    An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional (2-D) and oblique (3-D) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well defined wavenumber spectrum with fundamental wavenumber k (sub w). A planar downstream traveling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to k (sub ts) = k (sub w). The range of acoustic forcing levels, epsilon, and roughness heights, DELTA h, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination epsilon dot DELTA h resulted in subsequent nonlinear development of the Tollmien-Schlichting (T-S) wave. This study provided the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the 2-D and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber a,, and measuring the T-S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.

  9. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing.

    PubMed

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-12-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces.

  10. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing

    PubMed Central

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-01-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces. PMID:25059249

  11. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes.

    PubMed

    Subramani, Arun; Huang, Xiaofei; Hoek, Eric M V

    2009-08-01

    Nanofiltration (NF) and reverse osmosis (RO) membranes are commonly applied to produce highly purified water from municipal wastewater effluents. In these applications, biofouling limits overall process performance and increases the cost of operation. Initial bacteria adhesion onto a membrane surface is a critical early step in the overall process of membrane biofouling. However, adsorption of effluent organic matter onto the membrane may precede bacterial deposition and change membrane surface properties. Herein we employed direct microscopic observation to elucidate mechanisms governing bacterial cell deposition onto clean and organic-fouled NF and RO membranes. Bovine serum albumin (BSA) and alginic acid (AA) were used as models for protein and polysaccharide rich organic matter in secondary wastewater effluents. In all experiments, organic fouling increased membrane hydraulic resistance and salt rejection, in addition to interfacial hydrophilicity and roughness. Even though surface hydrophilicity increased, the rougher surfaces presented by organic-fouled membranes produced nano-scale features that promoted localized bacterial deposition. An extended DLVO analysis of bacterial cells and membrane surface properties suggested that bacterial deposition correlated most strongly with the Lewis acid-base free energy of adhesion and root mean square (RMS) roughness, whereas van der Waals and electrostatic free energies were weakly correlated. This was true for both clean and organic-fouled membranes. Bacterial deposition rates were clearly influenced by an antagonistic interplay between macroscopic surface hydrophilicity and nano-scale surface roughness.

  12. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.

    PubMed

    Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G

    2005-10-01

    Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.

  13. Research of Surface Roughness Anisotropy

    NASA Astrophysics Data System (ADS)

    Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.

    2017-04-01

    The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.

  14. Influence of SMAT Parameters on Microstructural and Mechanical Properties of Al-Mg-Si Alloy AA 6061

    NASA Astrophysics Data System (ADS)

    Anand Kumar, S.; Satish Kumar, P.; Ganesh Sundara Raman, S.; Sankara Narayanan, T. S. N.

    2017-04-01

    In the present work, the influence of surface mechanical attrition treatment (SMAT) parameters on the microstructural and mechanical properties of an aluminum-magnesium-silicon alloy AA 6061 was studied using design of experiment technique. Balls of three different diameters were used, and SMAT was done for three different durations. The microstructural features of the surface layer fabricated by SMAT were characterized by cross-sectional scanning electron microscopic observations, x-ray diffraction technique and transmission electron microscopy. The microindentation hardness, nanoindentation hardness and surface roughness were determined. Due to SMAT, nanocrystallites formed on the surface and near-surface regions, and hardness and surface roughness increased. The ball diameter was the most influencing SMAT parameter compared to the treatment duration. However, interaction between ball diameter and treatment duration could not be ignored. Regression equations were developed relating the process parameters to the surface properties. The ball diameter and treatment duration could thus be properly selected as per the required values of roughness and/or the hardness.

  15. Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution.

    PubMed

    Secret, Emilie; Wu, Chia-Chen; Chaix, Arnaud; Galarneau, Anne; Gonzalez, Philippe; Cot, Didier; Sailor, Michael J; Jestin, Jacques; Zanotti, Jean-Marc; Cunin, Frédérique; Coasne, Benoit

    2015-07-28

    The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ξ ∼ 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process.

  16. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.

  17. Role of urban surface roughness in road-deposited sediment build-up and wash-off

    NASA Astrophysics Data System (ADS)

    Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing

    2018-05-01

    Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.

  18. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    NASA Astrophysics Data System (ADS)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2017-01-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  19. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  20. Collagen Self-Assembly on Orthopedic Magnesium Biomaterials Surface and Subsequent Bone Cell Attachment

    PubMed Central

    Zhao, Nan; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459

  1. Poly-Gaussian model of randomly rough surface in rarefied gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksenova, Olga A.; Khalidov, Iskander A.

    2014-12-09

    Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less

  2. Analogies to Demonstrate the Effect of Roughness on Surface Wettability

    ERIC Educational Resources Information Center

    Yolcu, Hasan

    2017-01-01

    This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…

  3. Ultrastructural evaluation of enamel after dental bleaching associated with fluoride.

    PubMed

    Dominguez, John A; Bittencourt, Bruna; Michel, Milton; Sabino, Nilson; Gomes, João Carlos; Gomes, Osnara M M

    2012-08-01

    This study evaluated the effects on human enamel after two bleaching procedures: with a fluoridated bleaching agent and with topical fluoride application postbleaching. It used 43 enamel blocks (3 mm(2) ) that were ground flat (600-2,000 grit) and polished with polishing paste (one and one-fourth). Specimens were randomly divided into three groups according to the bleaching procedure: (1) control group, (2) hydrogen peroxide 35% (HPF) and topical application of fluoride 1.23%, and (3) HP 38% (OP) with fluoride in its composition. Bleaching agents were used according to the manufacturer's instructions. Three methodologies were used: nanoindentation, to observe surface hardness and elastic modulus; atomic force microscopy, to observe surface roughness (R(a) - R(z)); and scanning electron microscopy, to observe the enamel surface effects. Group OP had a decrease in the elastic modulus after bleaching, which was recovered at 14 days. An increased roughness (R(a); 32%) was observed on group HPF and had an increased erosion on enamel surface (67%). It was concluded that topical application of fluoride, after using the nonfluoridated whitening agent, increased the roughness values and erosion of enamel. Copyright © 2012 Wiley Periodicals, Inc.

  4. Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study

    PubMed Central

    Mei, May L.; So, Sam Y. C.; Li, Hao; Chu, Chun-Hung

    2015-01-01

    This study concerned the effect of heat treatment during setting on the physical properties of four resin-based provisional restorative materials: Duralay (polymethyl methacrylate), Trim II (polyethyl methacrylate), Luxatemp (bis-acrylic composite), and Protemp 4 (bis-acrylic composite). Specimens were prepared at 23, 37, or 60 °C for evaluation of flexural strength, surface roughness, color change and marginal discrepancy. Flexural strength was determined by a three-point bending test. Surface profile was studied using atomic force microscopy. Color change was evaluated by comparing the color of the materials before and after placement in coffee. A travelling microscope helped prepare standardized crowns for assessment of marginal discrepancy. Flexural strength of all tested materials cured at 23 °C or 37 °C did not significantly change. The surface roughness and marginal discrepancy of the materials increased at 60 °C curing temperature. Marginal discrepancies, color stability, and other physical properties of materials cured at 23 °C or 37 °C did not significantly change. Flexural strength of certain provisional materials cured at 60 °C increased, but there was also an increase in surface roughness and marginal discrepancy. PMID:28788031

  5. Joint properties of a tool machining process to guarantee fluid-proof abilities

    NASA Astrophysics Data System (ADS)

    Bataille, C.; Deltombe, R.; Jourani, A.; Bigerelle, M.

    2017-12-01

    This study addressed the impact of rod surface topography in contact with reciprocating seals. Rods were tooled with and without centreless grinding. All rods tooled with centreless grinding were fluid-proof, in contrast to rods tooled without centreless grinding that either had leaks or were fluid-proof. A method was developed to analyse the machining signature, and the software Mesrug™ was used in order to discriminate roughness parameters that can be used to characterize the sealing functionality. According to this surface roughness analysis, a fluid-proof rod tooled without centreless grinding presents aperiodic large plateaus, and the relevant roughness parameter for characterizing the sealing functionality is the density of summits S DS. Increasing the density of summits counteracts leakage, which may be because motif decomposition integrates three topographical components: circularity (perpendicular long-wave roughness), longitudinal waviness, and roughness thanks to the Wolf pruning algorithm. A 3D analytical contact model was applied to analyse the contact area of each type of sample with the seal surface. This model provides a leakage probability, and the results were consistent with the interpretation of the topographical analysis.

  6. Variation in bed level shear stress on surfaces sheltered by nonerodible roughness elements

    NASA Astrophysics Data System (ADS)

    Sutton, Stephen L. F.; McKenna-Neuman, Cheryl

    2008-09-01

    Direct bed level observations of surface shear stress, pressure gradient variability, turbulence intensity, and fluid flow patterns were carried out in the vicinity of cylindrical roughness elements mounted in a boundary layer wind tunnel. Paired corkscrew vortices shed from each of the elements result in elevated shear stress and increased potential for the initiation of particle transport within the far wake. While the size and shape of these trailing vortices change with the element spacing, they persist even for large roughness densities. Wake interference coincides with the impingement of the upwind horseshoe vortices upon one another at a point when their diameter approaches half the distance between the roughness elements. While the erosive capability of the horseshoe vortex has been suggested for a variety of settings, the present study shows that the fluid stress immediately beneath this coherent structure is actually small in comparison to that caused by compression of the incident flow as it is deflected around the element and attached vortex. Observations such as these are required for further refinement of models of stress partitioning on rough surfaces.

  7. Infrared deflectometry for the inspection of diffusely specular surfaces

    NASA Astrophysics Data System (ADS)

    Höfer, Sebastian; Burke, Jan; Heizmann, Michael

    2016-12-01

    Deflectometry is a full-field gradient technique that lends itself very well to testing specular surfaces. It uses the geometry of specular reflection to determine the gradient of the surface under inspection. In consequence, a necessary precondition to apply deflectometry is the presence of at least partially specular reflection. Surfaces with larger roughness have increasingly diffuse reflection characteristics, making them inaccessible to usual deflectometry. However, many industrially relevant surfaces exist that change their reflection characteristic during production and processing. An example is metal sheets that are used as car body parts. Whereas the molded but otherwise raw metal sheets show a mostly diffuse reflection without sufficient specular reflection, the final car body panels have a high specular reflectance due to the lacquering. In consequence, it would be advantageous to apply the same inspection approach both for the raw material and for the final product. To solve this challenge, specular reflection from rough surfaces can be achieved using light with a larger wavelength, as the specular reflectivity of a surface depends on the ratio of the surface roughness and the wavelength of the light applied. Wavelengths in the thermal infrared range create enough specular reflection to apply deflectometry on many visually rough metal surfaces. This contribution presents the principles of thermal deflectometry, its special challenges, and illustrates its use with examples from the inspection of industrially produced surfaces.

  8. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration

    NASA Astrophysics Data System (ADS)

    Ren, Liyun; Pandit, Vaibhav; Elkin, Joshua; Denman, Tyler; Cooper, James A.; Kotha, Shiva P.

    2013-02-01

    PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min-1. During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation.PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min-1. During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33423f

  9. The influence of bone damage on press-fit mechanics.

    PubMed

    Bishop, Nicholas E; Höhn, Jan-Christian; Rothstock, Stephan; Damm, Niklas B; Morlock, Michael M

    2014-04-11

    Press-fitting is used to anchor uncemented implants in bone. It relies in part on friction resistance to relative motion at the implant-bone interface to allow bone ingrowth and long-term stability. Frictional shear capacity is related to the interference fit of the implant and the roughness of its surface. It was hypothesised here that a rough implant could generate trabecular bone damage during implantation, which would reduce its stability. A device was constructed to simulate implantation by displacement of angled platens with varying surface finishes (polished, beaded and flaked) onto the surface of an embedded trabecular bone cube, to different nominal interferences. Push-in (implantation) and Pull-out forces were measured and micro-CT scans were made before and after testing to assess permanent bone deformation. Depth of permanent trabecular bone deformation ('damage'), Pull-out force and Radial force all increased with implantation displacement and with implantation force, for all surface roughnesses. The proposed hypothesis was rejected, since primary stability did not decrease with trabecular bone damage. In fact, Pull-out force linearly increased with push-in force, independently of trabecular bone damage or implant surface. This similar behaviour for the different surfaces might be explained by the compaction of bone into the surfaces during push-in so that Pull-out resistance is governed by bone-on-bone, rather than implant surface-on-bone friction. The data suggest that maximum stability is achieved for the maximum implantation force possible (regardless of trabecular bone damage or surface roughness), but this must be limited to prevent periprosthetic cortical bone fracture, patient damage and component malpositioning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  11. Time-dependent behavior of rough discontinuities under shearing conditions

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao

    2018-02-01

    The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.

  12. Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study.

    PubMed

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-11-01

    To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  13. Disinfection procedures: their efficacy and effect on dimensional accuracy and surface quality of an irreversible hydrocolloid impression material.

    PubMed

    Rentzia, A; Coleman, D C; O'Donnell, M J; Dowling, A H; O'Sullivan, M

    2011-02-01

    This study investigated the antibacterial efficacy and effect of 0.55% ortho-phthalaldehyde (Cidex OPA(®)) and 0.5% sodium hypochlorite (NaOCl) on the dimensional accuracy and surface quality of gypsum casts retrieved from an irreversible hydrocolloid impression material. A simulated clinical cast and technique was developed to compare the dimensional accuracy and surface quality changes of the test gypsum casts with controls. Dimensional accuracy measurements were completed between fixed points using a travelling microscope under low angle illumination at a magnification of ×3. Surface quality changes of "smooth" and "rough" areas on the cast were evaluated by means of optical profilometry. The efficacy of the disinfection procedures against Pseudomonas aeruginosa was evaluated by determining the number of colony forming units (cfu) recovered after disinfection of alginate discs inoculated with 1×10⁶cfu for defined intervals. The dimensional accuracy of the gypsum casts was not significantly affected by the disinfection protocols. Neither disinfectant solution nor immersion time had an effect on the surface roughness of the "smooth" area on the cast, however, a significant increase in surface roughness was observed with increasing immersion time for the "rough" surface. Complete elimination of viable Pseudomonas aeruginosa cells from alginate discs was obtained after 30 and 120 s immersion in Cidex OPA(®) and NaOCl, respectively. Immersion of irreversible hydrocolloid impressions in Cidex OPA(®) for 30 s was proved to be the most effective disinfection procedure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  15. Numerical analysis of the bucket surface roughness effects in Pelton turbine

    NASA Astrophysics Data System (ADS)

    Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.

    2013-12-01

    The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.

  16. Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Umapathi, A.; Swaroop, S.

    2018-04-01

    Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm-2. Hardness and residual stress profiles indicated thermal softening near the surface (< 100 μm) and bulk softening due to adiabatic heating. Maximum hardness (235 HV at 500 μm) and maximum residual stress (- 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.

  17. Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Umapathi, A.; Swaroop, S.

    2018-05-01

    Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm-2. Hardness and residual stress profiles indicated thermal softening near the surface (< 100 μm) and bulk softening due to adiabatic heating. Maximum hardness (235 HV at 500 μm) and maximum residual stress (- 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.

  18. The improvement of surface roughness by polishing method of arcylic door panel at Taishi Tech Sdn Bhd

    NASA Astrophysics Data System (ADS)

    Basirin, Hammadi bin Mohd; Nawi, Ismail bin Haji Mohd

    2017-04-01

    This research is an approach to improve the surface roughness for acrylic door panel by using polishing process. The polishing process involve is sanding process by 3 types of sand paper. The sanding process used to improve the surface roughness by using the different grit sizes of sand paper. The experiment was done by using two types of material s, that is plywood and medium density board (MDF). These two materials are the main materials in producing the arcrylic door panel. The surface roughness of these two materials affects the qualities and quantities of the acrylic door panel. The surface structure was measured by using Optical Microscope and Scanning Electron Microscope (SEM) and the surface roughness was measured by using Mitutoyo surfest SJ 400 Tester. Results indicates that using the different types of grit are influence the surface roughness of the material. When the higher types of grit sizes had been used, the average roughness of the surface are decrease. In summary, a good surface roughness condition produced when using the higher types of grit sizes sand paper.

  19. Nanocryl Coating of PMMA Complete Denture Base Materials to Prevent Scratching.

    PubMed

    Fathi, Hawa M; Benonn, Hajer A; Johnson, Anthony

    2017-09-01

    The surface of polymethylmethacrylate (PMMA) is vulnerable to indentation by hard objects that may contribute to abrade the material surface and subject it to wear. This phenomenon promotes an increase in the surface roughness leading to microbial colonisation which can endanger the general health of wearers and damage the intra-oral prosthesis. The aim of this study is to investigate the effect of three different nanocryl coating agents (Easy Glaze, G-Coat Plus and Formulation XP) on surface roughness and thickness of PMMA material after a simulating cleaning process utilizing an electric toothbrush and three different dentifrices (pastes and immersion). Acrylic uncoated discs were used as a control group. The results showed that the G-Coat Plus coating agent had less changes in the surface roughness and thickness layer whereas the immersion cleaner revealed less abrasion effect compared with the paste cleaners which could be considered the most suitable cleaner to provide lower abrasivenes and good removal of organic debris. However, using nanofilled sealants did not demonstrate significant improvement in reducing surface roughness p ⟩ 0.05. Nevertheless, it could provide some protection against wearing to the acrylic resin surface during tooth brushing and may provide better resistance to microbial colonisation. Copyright© 2017 Dennis Barber Ltd.

  20. 50 kHz bottom backscattering measurements from two types of artificially roughened sandy bottoms

    NASA Astrophysics Data System (ADS)

    Son, Su-Uk; Cho, Sungho; Choi, Jee Woong

    2016-07-01

    Laboratory measurements of 50 kHz bottom backscattering strengths as a function of grazing angle were performed on the sandy bottom of a water tank; two types of bottom roughnesses, a relatively smooth interface and a rough interface, were created on the bottom surface. The roughness profiles of the two interface types were measured directly using an ultrasound arrival time difference of 5 MHz and then were Fourier transformed to obtain the roughness power spectra. The measured backscattering strengths increased from -29 to 0 dB with increasing grazing angle from 35 to 86°, which were compared to theoretical backscattering model predictions. The comparison results implied that bottom roughness is a key factor in accurately predicting bottom scattering for a sandy bottom.

  1. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  2. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    NASA Astrophysics Data System (ADS)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  3. Degradation of orthodontic wires under simulated cariogenic and erosive conditions.

    PubMed

    Jaber, Laura Cavalcante Lima; Rodrigues, José Augusto; Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso

    2014-01-01

    This study examined the effect of cariogenic and erosive challenges (CCs and ECs, respectively) on the degradation of copper-nickel-titanium (CuNiTi) orthodontic wires. Sixty wire segments were divided into four treatment groups and exposed to CCs, ECs, artificial saliva, or dry storage (no-treatment control). CC and EC were simulated using a demineralizing solution (pH 4.3) and a citric acid solution (pH 2.3), respectively. Following treatment, the average surface roughness (Ra) of the wires was assessed, and friction between the wires and a passive self-ligating bracket was measured. CuNiTi wires subjected to ECs exhibited significantly higher Ra values than did those that were stored in artificial saliva. In contrast, surface roughness was not affected by CCs. Finally, friction between the treated wires and brackets was not affected by ECs or CCs. Our results indicate that CuNiTi orthodontic wires may suffer degradation within the oral cavity, as ECs increased the surface roughness of these wires. However, rougher surfaces did not increase friction between the wire and the passive self-ligating bracket.

  4. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  5. Effect of resin infiltration and microabrasion on the microhardness, surface roughness and morphology of incipient carious lesions.

    PubMed

    Yazkan, Basak; Ermis, R Banu

    2018-02-15

    The effects of resin infiltration and microabrasion on incipient carious lesions by surface microhardness, roughness and morphological assessments, and resistance to further acid attack of treated lesions were evaluated. Eighty artificially-induced incipient lesions were randomly divided into five groups (n = 16): resin infiltration with an adhesive resin (Excite F, Ivoclar Vivadent, Schaan, Liechtenstein), resin infiltration with a resin infiltrant (Icon, DMG, Hamburg, Germany), microabrasion without polishing (Opalustre, Ultradent, South Jordan, UT, USA), microabrasion with polishing (Opalustre, Ultradent, Diamond Excel, FGM, Joinville, SC, Brazil), and distilled water (control group). All specimens were exposed to demineralization for another 10 d. Microhardness, roughness and morphological assessments were done at baseline, following initial demineralization, treatment and further demineralization. Data were analysed by the Kruskal-Wallis, Friedman's and Bonferroni tests (p < .05). Enamel lesions treated with resin infiltrant and microabrasion demonstrated similar hardness values, with a nonsignificant difference compared with sound enamel. Resin infiltration demonstrated lower roughness values than those of microabrasion, and the values did not reach the values of sound enamel. Further demineralization for 10 d did not affect the hardness but increased the roughness of infiltrated and microabraded enamel surfaces. Polishing did not influence the roughness of microabraded enamel surfaces. After resin infiltration, porosities on enamel were sealed completely. The surface structure was similar to that of the enamel conditioning pattern for microabraded enamel lesions. Within the limitations of this study, the icon infiltration and microabrasion technique appeared to be effective for improving microhardness. Icon appeared to provide reduced roughness, although not equal to sound enamel. Further research is needed to elucidate their clinical relevance.

  6. Static and sliding contact of rough surfaces: Effect of asperity-scale properties and long-range elastic interactions

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik

    2018-07-01

    Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.

  7. CF4 plasma treatment of poly(dimethylsiloxane): effect of fillers and its application to high-aspect-ratio UV embossing.

    PubMed

    Yan, Y H; Chan-Park, M B; Yue, C Y

    2005-09-13

    Surface modification of poly(dimethylsiloxane) (PDMS) was carried out via CF4 plasma treatment. The test PDMS used contains significant amounts of quartz and silica fillers, while the control material is the same PDMS with quartz removed by centrifugation. Fluorination accompanied with roughening was produced on both PDMS surfaces. With short plasma times (15 min or less), a macromolecular fluorocarbon layer was formed on the PDMS surfaces because of the dominant fluorination, leading to significant increase in F concentration, decrease of surface energy, and some roughening. With intermediate plasma times (15-30 min), dynamic balance between fluorination and ablation was achieved, leading to a plateau of the surface roughness, fluorine content, and [F-Si]/[F-C] ratio. At our longest investigated plasma time of 45 min, the plasma ablated the fluorinated covering layer on the PDMS surfaces, leading to significant increase in roughness and [F-Si]/[F-C] ratio and decrease of surface F concentration. The effect of additional quartz in the test PDMS on surface F concentration, [F-Si]/[F-C] ratio, and roughness was dramatic only when ablation was significant (i.e., 45 min). The obtained Teflon-like surface displays long-term stability as opposed to hydrophobic recovery of other plasma-treated PDMS surfaces to increase hydrophilicity. On the basis of the optimized plasma treatment time of 15 min, a microstructured PDMS mold was plasma treated and successfully used for multiple high-aspect-ratio (about 8) UV embossing of nonpolar polypropylene glycol diacrylate (PPGDA) resin.

  8. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  9. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

    PubMed Central

    2013-01-01

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526

  10. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.

    PubMed

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (p<0.05). Wire deflection significantly increased the roughness of the wires S and STC (p<0.05). The flexural strength of groups FSE and NS (PTFE and uncoated) was higher compared with that of the other groups (p<0.05). We concluded that the roughness and flexural strength of the orthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.

  11. Variability of Decimetre and Centimetre Scale Ice Surface Roughness and the Potential Consequences on the CryoSat Radar Altimeter Signal

    NASA Astrophysics Data System (ADS)

    Cawkwell, F. G.; Burgess, D. O.; Sharp, M. J.; Demuth, M.

    2004-12-01

    Snow and ice surface roughness affect the backscatter of the pulse emitted by a radar altimeter, and hence the accuracy of the surface elevation calculated from the waveform echo, but the influence of surface roughness has not been quantified. As part of the CryoSat calibration/validation field campaigns on the Devon Ice Cap in 2004, surface roughness measurements were made at 0.1-7km intervals along a 48km transect from near the summit to the southern margin. Measurements were made at the decimetre scale by surveying and at the centimetre scale using digital photography. The data collected were subjected to wavelet analysis to define characteristic roughness wavelengths, and the fractal dimension associated with each of these was calculated using the semi-variogram method. Vario functions were calculated for the photographic data. The survey results show that wavelength scales depend on orientation and distance from the ice cap summit, the fractal dimension depends on the wavelength scale and the orientation, and both are significantly affected by storm events. Profiles aligned with the easterly prevailing wind direction, and thus perpendicular to the predicted satellite track, proved to be more sensitive to meteorological events than those normal to the dominant winds. Wavelet and fractal analysis of the photographic data was less conclusive, potentially due to the `noisier' nature of the data at this scale, where `noise' is actually the superimposition of small scale wavelengths onto larger ones. Vario analysis showed the characteristic wavelengths at the centimetre scale to increase with distance from the summit, although the abrading effect of storm events caused a decrease in wavelength. The amplitude of the roughness also increases with distance from the summit, although following a period of calm this value is significantly decreased along the transect. Orientation with respect to the prevailing wind direction is also a significant factor. Analysis of the return waveforms acquired by an airborne radar altimeter concurrently with ground data will allow the impact of the different roughness scales and orientations to be assessed.

  12. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height.

  13. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  14. Tensile cracking of a brittle conformal coating on a rough substrate

    DOE PAGES

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less

  15. Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1

    NASA Astrophysics Data System (ADS)

    Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.

    2018-04-01

    In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.

  16. Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs

    NASA Astrophysics Data System (ADS)

    Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro

    2018-04-01

    The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.

  17. A new fiber optic sensor for inner surface roughness measurement

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  18. Research of influence of mobile cathodic stains of the vacuum arc for reception of the adjustable roughness of metal surfaces

    NASA Astrophysics Data System (ADS)

    Anikeev, V. N.; Dokukin, M. Yu

    2017-05-01

    In the modern technics there is a requirement in micro- and macrorough surfaces of products for improvement of their operational characteristics (improvement of adhesive properties of various coverings, decrease in deterioration of rubbing details because of the best deduction of greasing, increase of the heat exchanging coefficient from a surface, stimulation of adhesive processes on sites of contact to a bone fabric of medical implants in stomatology and orthopedy etc.). In the given work the modes of reception regulated micro- and macrorough surfaces on samples from a titanic alloy and stainless steel by electrothermal influence of moving cathodic stains in the vacuum arc discharge are investigated. Chaotically moving stains, possessing high specific power allocation (∼ 107 W/cm2), “scan” the difficult design of a product, including “shadow” sites, doing rough its blanket. The sizes of roughnesses are regulated by a current and time of influence of the discharge, pressure in the vacuum chamber and a number of other parameters. The scheme of experimental device, photo and the characteristic of rough surfaces and technological modes of their reception are resulted.

  19. Comparison of different rubber stoppers; the effect of sterilization on the number of particles released.

    PubMed

    Mannermaa, J P; Muttonen, E; Yliruusi, J; Juppo, A

    1992-01-01

    The effect of sterilization on the number of particles released from five different types of rubber stoppers, as well as on their surface roughness and elemental composition before and after sterilization is described. The stoppers were immersed in 200 ml of 0.9% sodium chloride solution in conical flasks. The number of particles released into the sodium chloride solution was measured by Coulter Counter. The surface roughness and the elemental composition of the stoppers were determined by SEM/EDX. All measurements were made both before and after sterilization at 121 degrees C to F0 15 mins. The number of particles released from a stopper during sterilization varies considerably between different stoppers and even between different batches of the same stopper. The only non-siliconized stopper in this study performed well. The absence of surface siliconization may have contributed to this performance. The scanning electron micrographs revealed well the differences in the surface roughness of the stoppers. The sterilization generally increases the surface roughness of the samples. The x-ray microanalysis revealed that the elemental composition of the stoppers may vary not only between different types of stoppers but also between different batches of the same stopper.

  20. Smoothing and roughening of slip surfaces in direct shear experiments

    NASA Astrophysics Data System (ADS)

    Sagy, Amir; Badt, Nir; Hatzor, Yossef H.

    2015-04-01

    Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.

  1. Towards predictive models for transitionally rough surfaces

    NASA Astrophysics Data System (ADS)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  2. Effects of Bleaching Agents Combined with Regular and Whitening Toothpastes on Surface Roughness and Mineral Content of Enamel.

    PubMed

    Attia, Mariana Lerner; Cavalli, Vanessa; do Espírito Santo, Ana Maria; Martin, Airton Abrahão; D'Arce, Maria Beatriz Freitas; Aguiar, Flávio Henrique Baggio; Lovadino, José Roberto; do Rego, Marcos Augusto; Cavalcanti, Andréa Nóbrega; Liporoni, Priscila Christiane Suzy

    2015-07-01

    The purpose of this study was to evaluate surface roughness and changes in the composition of enamel submitted to different bleaching protocols and toothbrushing with regular and whitening toothpastes. Bleaching treatment could promote morphological and chemical changes in enamel surface. Enamel blocks were randomized into nine groups (n=10) according to the bleaching treatment (no bleaching, control group; 6% hydrogen peroxide, HP; or 10% carbamide peroxide, CP) and toothpaste used (placebo, PL; regular, R; or whitening dentifrice, W). Bleaching was performed according to manufacturers' instructions and all groups were submitted to 30,000 cycles of simulated toothbrushing with toothpaste (PL, R, or W). Mineral content evaluation and enamel roughness were evaluated initially (T1), after bleaching (T2), and after toothbrushing (T3), using an energy-dispersive micro X-ray fluorescence spectrometer and profilometry, respectively. Data were statistically analyzed with two way ANOVA, Tukey, and Dunnett tests (5%). Enamel surface roughness was influenced by bleaching and toothbrushing. Surface roughness increased for the groups that brushed with the placebo dentifrice (CP+PL, HP+PL, C+PL) and for the control group that brushed with whitening dentifrice (C+W). Enamel Ca/P ratio decreased after bleaching, but toothbrushing, regardless of the dentifrice used, did not reduce the enamel mineral content. The bleaching treatment resulted in a decrease of enamel mineral content, but the studied dentifrices did not contribute to surface mineral loss.

  3. Investigations on the effects of mouthrinses on the colour stability and surface roughness of different dental bioceramics

    PubMed Central

    Varol, Osman

    2017-01-01

    PURPOSE In this study, three bioceramic materials, [IPS Empress CAD (Ivoclar), IPS e.max CAD (Ivoclar), and Lava Ultimate CAD (3M ESPE)] were treated with three commercial mouthrinses [Listerine, Tantum Verde, and Klorhex]; and changes in colour reflectance and surface roughness values were then quantitatively assessed. MATERIALS AND METHODS One hundred and twenty ceramic samples, with dimensions of 2 × 12 × 14 mm, were prepared and divided into nine sample groups, except three control samples. The samples were immersed in the mouthrinse solutions for 120 hrs, and changes in colour reflectance and surface roughness values were measured by UV light spectrophotometry (Vita Easyshade; VITA Zahnfabrik) and by profilometer device (MitutoyoSurftest SJ-301), respectively. The change of surface roughness was inspected by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). RESULTS There was a positive correlation between the ΔE and increase in the surface roughness. Two of the ceramic materials, IPS Empress and Lava Ultimate, were affected significantly by the treatment of the mouthrinse solutions (P<.05). The most affecting solution was Tantum Verde and the most affected material was Lava Ultimate. As expected, the most resistant material to ΔE and chemical corrosion was IPS e max CAD among the materials used. CONCLUSION This work implied that mouthrinse with lower alcohol content had less deteriorating effect on colour and on the surface morphology of the bioceramic materials. PMID:28680552

  4. Investigation of the atmospheric boundary layer characteristics on gust factor for the calculation of wind load

    NASA Astrophysics Data System (ADS)

    Ghanadi, Farzin; Emes, Matthew; Yu, Jeremy; Arjomandi, Maziar; Kelso, Richard

    2017-06-01

    Dynamic amplification and gust effects from turbulence can increase wind loads significantly over and above the static wind loads that have been used for heliostat design. This paper presents the results of analyzing the relationship between gust factor and turbulence intensity within the atmospheric boundary layer (ABL) based on the high fidelity measurements of wind velocity at the SLTEST facility in the Utah desert. Results showed that there are distinct characteristics of a low roughness ABL that deviate from semi-empirical relationships derived for open country and urban terrains with larger surface roughness heights. The analysis also indicated that gust factor is increased by 2.4% when lowering the gust period from 3s to 1s in the low roughness field experiment ABL, compared to a 3.6% increase in a suburban terrain at a 10m height. Although 3s gust periods are recommended in AS/NZS 1170.2 [1], comparison of gust factor data with a 1s gust period is recommended particularly in high roughness ABLs such as in urban areas, to ensure that buildings are adequately designed to withstand higher frequency gusts. This research proved the strength of the correlation between gust factor and turbulence intensity is dependent on the surface roughness height of the terrain. It is recommended that the coefficient in the previous semi-empirical equation must be adjusted to be fitted to the low roughness desert terrain in the field experiment ABL.

  5. Surface engineering of ferroelectric polymer for the enhanced electrical performance of organic transistor memory

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk

    2018-05-01

    We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.

  6. The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials.

    PubMed

    Hung, Kuo-Yung; Lin, Yi-Chih; Feng, Hui-Ping

    2017-10-11

    The purpose of this study was to characterize the etching mechanism, namely, the etching rate and the activation energy, of a titanium dental implant in concentrated acid and to construct the relation between the activation energy and the nanoscale surface topographies. A commercially-pure titanium (CP Ti) and Ti-6Al-4V ELI surface were tested by shot blasting (pressure, grain size, blasting distance, blasting angle, and time) and acid etching to study its topographical, weight loss, surface roughness, and activation energy. An Arrhenius equation was applied to derive the activation energy for the dissolution of CP Ti/Ti-6Al-4V ELI in sulfuric acid (H₂SO₄) and hydrochloric acid (HCl) at different temperatures. In addition, white-light interferometry was applied to measure the surface nanomorphology of the implant to obtain 2D or 3D roughness parameters (Sa, Sq, and St). The nanopore size that formed after etching was approximately 100-500 nm. The surface roughness of CP Ti and Ti-6Al-4V ELI decreased as the activation energy decreased but weight loss increased. Ti-6Al-4V ELI has a higher level of activation energy than Ti in HCl, which results in lower surface roughness after acid etching. This study also indicates that etching using a concentrated hydrochloric acid provided superior surface modification effects in titanium compared with H₂SO₄.

  7. In Vitro Adhesion of Streptococcus sanguinis to Dentine Root Surface After Treatment with Er:Yag Laser, Ultrasonic System, or Manual Curette

    PubMed Central

    Martins, Fernanda L.; Giorgetti, Ana Paula O.; de Freitas, Patrícia M.; Duarte, Poliana M.

    2009-01-01

    Abstract Objective: The purpose of this in vitro study was to evaluate the dentine root surface roughness and the adherence of Streptococcus sanguinis (ATCC 10556) after treatment with an ultrasonic system, Er:YAG laser, or manual curette. Background Data: Bacterial adhesion and formation of dental biofilm after scaling and root planing may be a challenge to the long-term stability of periodontal therapy. Materials and Methods: Forty flattened bovine roots were randomly assigned to one of the following groups: ultrasonic system (n = 10); Er:YAG laser (n = 10); manual curette (n = 10); or control untreated roots (n = 10). The mean surface roughness (Ra, μm) of the specimens before and after exposure to each treatment was determined using a surface profilometer. In addition, S. sanguinis was grown on the treated and untreated specimens and the amounts of retained bacteria on the surfaces were measured by culture method. Results: All treatments increased the Ra; however, the roughest surface was produced by the curettes. In addition, the specimens treated with curettes showed the highest S. sanguinis adhesion. There was a significant positive correlation between roughness values and bacterial cells counts. Conclusion: S. sanguinis adhesion was the highest on the curette-treated dentine root surfaces, which also presented the greatest surface roughness. PMID:19712018

  8. Measuring Skew in Average Surface Roughness as a Function of Surface Preparation

    NASA Technical Reports Server (NTRS)

    Stahl, Mark

    2015-01-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  9. Emulation of Forward-looking Radar Technology for Threat Detection in Rough Terrain Environments: A Scattering and Imaging Study

    DTIC Science & Technology

    2012-12-01

    a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3

  10. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    USDA-ARS?s Scientific Manuscript database

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  11. A review of factors that affect contact angle and implications for flotation practice.

    PubMed

    Chau, T T; Bruckard, W J; Koh, P T L; Nguyen, A V

    2009-09-30

    Contact angle and the wetting behaviour of solid particles are influenced by many physical and chemical factors such as surface roughness and heterogeneity as well as particle shape and size. A significant amount of effort has been invested in order to probe the correlation between these factors and surface wettability. Some of the key investigations reported in the literature are reviewed here. It is clear from the papers reviewed that, depending on many experimental conditions such as the size of the surface heterogeneities and asperities, surface cleanliness, and the resolution of measuring equipment and data interpretation, obtaining meaningful contact angle values is extremely difficult and such values are reliant on careful experimental control. Surface wetting behaviour depends on not only surface texture (roughness and particle shape), and surface chemistry (heterogeneity) but also on hydrodynamic conditions in the preparation route. The inability to distinguish the effects of each factor may be due to the interplay and/or overlap of two or more factors in each system. From this review, it was concluded that: Surface geometry (and surface roughness of different scales) can be used to tune the contact angle; with increasing surface roughness the apparent contact angle decreases for hydrophilic materials and increases for hydrophobic materials. For non-ideal surfaces, such as mineral surfaces in the flotation process, kinetics plays a more important role than thermodynamics in dictating wettability. Particle size encountered in flotation (10-200 microm) showed no significant effect on contact angle but has a strong effect on flotation rate constant. There is a lack of a rigid quantitative correlation between factors affecting wetting, wetting behaviour and contact angle on minerals; and hence their implication for flotation process. Specifically, universal correlation of contact angle to flotation recovery is still difficult to predict from first principles. Other advanced techniques and measures complementary to contact angle will be essential to establish the link between research and practice in flotation.

  12. Random deposition of particles of different sizes.

    PubMed

    Forgerini, F L; Figueiredo, W

    2009-04-01

    We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.

  13. Gas discharge plasma treatment of poly(ethylene glycol-co-1,3/1,4 cyclohexanedimethanol terephthalate) for enhanced paint adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salapare, Hernando S., E-mail: hssalapare@up.edu.ph; Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila City 1000; College of Science, Pamantasan ng Lungsod ng Maynila, Intramuros, Manila City 1002

    Low-energy hydrogen-ions and tetrafluoromethane-ions produced from a gas discharge ion source were irradiated to poly(ethylene glycol-co-1,3/1,4 cyclohexanedimethanol terephthalate) (PETG) sheets for enhancing paint adhesion. The ion beams were characterized using a cast steel mass spectrometer, while the untreated and treated samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, contact angle measurements, and profilometry. The paint adhesion was determined by using the standard method for evaluating adhesion by knife [ASTM D6677-07, Standard Test Method for Evaluating Adhesion by Knife (ASTM International, West Conshohocken, PA, 2012)] and was correlated with the calculation of the work of adhesion derived frommore » the Young–Dupré equation. After plasma treatment, a significant decrease in the contact angle was observed in all samples, except for the CF{sub 4} ion-treated samples with the discharge current of 3 mA and an irradiation time of 30 min. At longer irradiation times, the treated samples showed lesser changes in the contact angle measurement. The increase in the average and root-mean-square surface roughness was observed on the samples after plasma treatment. The samples treated with either H{sub 2} or CF{sub 4} ions for 15 min showed a direct correlation between the discharge current and surface roughness. The samples treated for 30 min showed no significant correlation between the surface roughness and discharge current, which can be attributed to the possible melting of the samples since PETG has a low melting point. The observation made in this study on the relationship of wettability and surface roughness is consistent with the Wenzel wetting mode. Scanning electron micrographs showed surface etching on the hydrogen ion-treated samples while no significant surface changes were observed for the CF{sub 4} ion-treated samples. In general, paint adhesion was stronger for samples that exhibited enhanced wettability and high work of adhesion. The optimal work of adhesion to double the paint adhesion performance was at least 84.79 mN/m. The increase in the surface roughness after the treatment provided an increased friction between the paint and the PETG surface. The increase in the paint adhesion was also due to the covalent, hydrogen, and van der Waals bonding that are typically observed for highly wettable surfaces.« less

  14. Effect of Blade Roughness on Transition and Wind Turbine Performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrmann, Robert S.; White, E. B.

    The real-world effect of accumulated surface roughness on wind-turbine power production is not well understood. To isolate specific blade roughness features and test their effect, field measurements of turbine-blade roughness were made and simulated on a NACA 633-418 airfoil in a wind tunnel. Insect roughness, paint chips, and erosion were characterized then manufactured. In the tests, these roughness configurations were recreated as distributed roughness, a forward-facing step, and an eroded leading edge. Distributed roughness was tested in three heights and five densities. Chord Reynolds number was varied between 0:8 to 4:8 × 10 6. Measurements included lift, drag, pitching moment,more » and boundary-layer transition location. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, the lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, natural transition is replaced by bypass transition. The critical roughness Reynolds number varies between 178 to 318, within the historical range. At a chord Reynolds number of 3:2 × 10 6, the maximum lift-to-drag ratio decreases 40% for 140 μm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss of an in-service wind turbine.« less

  15. A process-based investigation into the impact of the Congo basin deforestation on surface climate

    NASA Astrophysics Data System (ADS)

    Bell, Jean P.; Tompkins, Adrian M.; Bouka-Biona, Clobite; Sanda, I. Seidou

    2015-06-01

    The sensitivity of climate to the loss of the Congo basin rainforest through changes in land cover properties is examined using a regional climate model. The complete removal of the Congo basin rainforest results in a dipole rainfall anomaly pattern, characterized by a decrease (˜-42%) in rainfall over the western Congo and an increase (˜10%) in the basin's eastern part. Three further experiments systematically examine the individual response to the changes in albedo, surface roughness, and evapotranspiration efficiency that accompany deforestation. The increased albedo (˜) caused by the Congo basin rainforest clearance results in cooler and drier climate conditions over the entire basin. The drying is accompanied with a reduction in available surface energy. Reducing evapotranspiration efficiency or roughness length produces similar positive air temperature anomaly patterns. The decreased evapotranspiration efficiency leads to a dipole response in rainfall, similar to that resulting from a reduced surface roughness following Congo basin rainforest clearance. This precipitation anomaly pattern is strongly linked to the change in low-level water vapor transport, the influence of the Rift valley highlands, and the spatial pattern of water recycling activity. The climate responds linearly to the separate albedo, surface roughness, and evapotranspiration efficiency changes, which can be summed to produce a close approximation to the impact of the full deforestation experiment. It is suggested that the widely contrasting climate responses to deforestation in the literature could be partly due to the relative magnitude of change of the radiative and nonradiative parameterizations in their respective land surface schemes.

  16. Fractal analysis as a potential tool for surface morphology of thin films

    NASA Astrophysics Data System (ADS)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  17. A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow

    NASA Astrophysics Data System (ADS)

    Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A.

    Abrasive flow machining has been the pioneer of new finishing processes. Rotating workpiece and imposing a magnetic field using magnetorheological working medium are some assisting manipulations to improve surface finishing, because they can increase the forces on the workpiece surface. Similarly, swirling the inlet flow using stationary swirler vanes, as a novel idea, may also increase forces on the surface, and then raise the material removal, with a lower expense and energy consumption compared with the case of workpiece rotation. Thus, in this paper, surface roughness improvement is studied in a pipe with rotating inlet flow of a magnetorheological finishing medium under imposing a magnetic field. The results are compared with the case of rotating workpiece, using 3D numerical simulation. The governing hydrodynamic parameters are investigated in both cases to monitor the flow variations. It is shown that surface roughness is improved by rotating inlet flow. However, it is found that finishing in the entrance length of swirling-assisted inlet flow can be so economical for short length workpieces, compared with the case of rotating workpiece, with very near Ra values. By comparison of the numerical results and published experimental data, current study also shows the ability of the numerical simulation, as an inexpensive and efficient tool, to predict the surface roughness changes in finishing processes.

  18. Total hemispherical emissivity of very high temperature reactor (VHTR) candidate materials: Hastelloy X, Haynes 230, and Alloy 617

    NASA Astrophysics Data System (ADS)

    Maynard, Raymond K.

    An experimental system was constructed in accordance with the standard ASTM C835-06 to measure the total hemispherical emissivity of structural materials of interest in Very High Temperature Reactor (VHTR) systems. The system was tested with304 stainless steel as well as for oxidized and un-oxidized nickel, and good reproducibility and agreement with the literature data was found. Emissivity of Hastelloy X was measured under different conditions that included: (i) "as received" (original sample) from the supplier; (ii) with increased surface roughness; (iii) oxidized, and; (iv) graphite coated. Measurements were made over a wide range of temperatures. Hastelloy X, as received from the supplier, was cleaned before additional roughening of the surface and coating with graphite. The emissivity of the original samples (cleaned after received) varied from around 0.18 to 0.28 in the temperature range of 473 K to 1498 K. The apparent emissivity increased only slightly as the roughness of the surface increased (without corrections for the increased surface area due to the increased surface roughness). When Hastelloy X was coated with graphite or oxidized however, its emissivity was observed to increase substantially. With a deposited graphite layer on the Hastelloy, emissivity increased from 0.2 to 0.53 at 473 K and from 0.25 to 0.6 at 1473 K; a finding that has strong favorable safety implications in terms of decay heat removal in post-accident VHTR environments. Although initial oxidation of Hastelloy X increased the emissivity prolonged oxidation did not significantly increase emissivity. However as there is some oxidation of Hastelloy X used in the construction of VHTRs, this represents an essentially neutral finding in terms of the safety implications in post-accident VHTR environments. The total hemispherical emissivity of Haynes 230 alloy, which is regarded as a leading candidate material for heat exchangers in VHTR systems, was measured under various surface conditions. The emissivity increased from 0.178 at 600 K to 0.235 at 1375 K for Haynes 230 as received sample. The emissivity increased significantly when its surface roughness was increased, or was oxidized in air, or coated with graphite dust, as compared to the as received material. The total hemispherical emissivity of Alloy 617 was measured as a function of temperature. The total emissivity increased from about 0.2 at 600 K to about 0.35 at 1275 K.

  19. Cheap and fast measuring roughness on big surfaces with an imprint method

    NASA Astrophysics Data System (ADS)

    Schopf, C.; Liebl, J.; Rascher, R.

    2017-10-01

    Roughness, shape and structure of a surface offer information on the state, shape and surface characteristics of a component. Particularly the roughness of the surface dictates the subsequent polishing of the optical surface. The roughness is usually measured by a white light interferometer, which is limited by the size of the components. Using a moulding method of surfaces that are difficult to reach, an imprint is taken and analysed regarding to roughness and structure. This moulding compound method is successfully used in dental technology. In optical production, the moulding compound method is advantageous in roughness determination in inaccessible spots or on large components (astrological optics). The "replica method" has been around in metal analysis and processing. Film is used in order to take an impression of a surface. Then, it is analysed for structures. In optical production, compound moulding seems advantageous in roughness determination in inaccessible spots or on large components (astrological optics). In preliminary trials, different glass samples with different roughness levels were manufactured. Imprints were taken from these samples (based on DIN 54150 "Abdruckverfahren für die Oberflächenprüfung"). The objective of these feasibility tests was to determine the limits of this method (smallest roughness determinable / highest roughness). The roughness of the imprint was compared with the roughness of the glass samples. By comparing the results, the uncertainty of the measuring method was determined. The spectrum for the trials ranged from rough grind (0.8 μm rms), over finishing grind (0.6 μm rms) to polishing (0.1 μm rms).

  20. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  1. Shape dependence of slip length on patterned hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Chen, Min

    2011-08-01

    The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.

  2. A Transport Equation Approach to Modeling the Influence of Surface Roughness on Boundary Layer Transition

    NASA Astrophysics Data System (ADS)

    Langel, Christopher Michael

    A computational investigation has been performed to better understand the impact of surface roughness on the flow over a contaminated surface. This thesis highlights the implementation and development of the roughness amplification model in the flow solver OVERFLOW-2. The model, originally proposed by Dassler, Kozulovic, and Fiala, introduces an additional scalar field roughness amplification quantity. This value is explicitly set at rough wall boundaries using surface roughness parameters and local flow quantities. This additional transport equation allows non-local effects of surface roughness to be accounted for downstream of rough sections. This roughness amplification variable is coupled with the Langtry-Menter model and used to modify the criteria for transition. Results from flat plate test cases show good agreement with experimental transition behavior on the flow over varying sand grain roughness heights. Additional validation studies were performed on a NACA 0012 airfoil with leading edge roughness. The computationally predicted boundary layer development demonstrates good agreement with experimental results. New tests using varying roughness configurations are being carried out at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel to provide further calibration of the roughness amplification method. An overview and preliminary results are provided of this concurrent experimental investigation.

  3. Investigations on the micro-scale surface interactions at the tool and workpiece interface in micro-manufacturing of bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Peker, Mevlut Fatih

    Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate the surface topography changes during long-run micro-stamping of BPPs, and establish relationships between surface roughness--corrosion resistance and surface roughness-contact resistance characteristics of BPPs. Formability levels of formed BPPs and repeatability characteristics of the process were investigated. In addition, blank thickness changes, von-Mises stress, plastic strain levels and distributions of micro-stamping process were determined via finite element analysis (FEA). Test results revealed that the surface roughness change for the stamping dies and BPPs was unsteady (no trend) due to the continuous change of surface topography (i.e. asperity deformation). Sub-micron range local plastic deformations on stamping dies led to surface topography changes on BPP in long-run manufacturing case. As surface defects trigger corrosion, the correlation between surface roughness and corrosion resistance of BPPs was found to be direct. Increasing number of surface irregularities (asperities) lowered contact surface area that resulted in increased contact resistance. ZrN coated BPPs, on the other hand, did not change surface roughness, however; it improved the protection of BPPs against corrosion significantly. In addition, ZrN coating increased the conductivity of BPPs and reduced the contact resistance between BPP and gas diffusion layer (GDL), at certain extent. As dimensional stability and repeatability was confirmed in forming of both uncoated and coated BPPs during the long run manufacturing, different formability levels were achieved for coated and uncoated samples. Lower channel height values were obtained for coated plates because of the different surface hardness of uncoated and coated plates. In tribological size effect part of study, micro stamping experiments using three different dies with distinct channel height values at different stamping force levels were performed. It was concluded that decrease in forming die dimensions led to increase in coefficient of friction as previously reported by other researchers as one of the consequences of tribological size effect. On the other hand, coefficient of friction values were not affected by the force levels used in the experiments and simulations, whereas plastic strain, equivalent stress, and formability levels were increased with increasing stamping force, as expected. In essence, this study proposed a methodology to investigate the long-run manufacturing effects on dimensional stability and surface characteristics of micro-stamped sheets. It also correlates these parameters to fuel cell performance measures such as interfacial contact and corrosion resistance.

  4. Study on the Optimization and Process Modeling of the Rotary Ultrasonic Machining of Zerodur Glass-Ceramic

    NASA Astrophysics Data System (ADS)

    Pitts, James Daniel

    Rotary ultrasonic machining (RUM), a hybrid process combining ultrasonic machining and diamond grinding, was created to increase material removal rates for the fabrication of hard and brittle workpieces. The objective of this research was to experimentally derive empirical equations for the prediction of multiple machined surface roughness parameters for helically pocketed rotary ultrasonic machined Zerodur glass-ceramic workpieces by means of a systematic statistical experimental approach. A Taguchi parametric screening design of experiments was employed to systematically determine the RUM process parameters with the largest effect on mean surface roughness. Next empirically determined equations for the seven common surface quality metrics were developed via Box-Behnken surface response experimental trials. Validation trials were conducted resulting in predicted and experimental surface roughness in varying levels of agreement. The reductions in cutting force and tool wear associated with RUM, reported by previous researchers, was experimentally verified to also extended to helical pocketing of Zerodur glass-ceramic.

  5. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces.

    PubMed

    El Gamal, Ahmed; Medioni, Etienne; Rocca, Jean Paul; Fornaini, Carlo; Muhammad, Omid H; Brulat-Bouchard, Nathalie

    2017-05-01

    The purpose of this study is to determine the CO 2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO 2 /HF/Si; group D, Li: HF/Si; group E, Zr: CO 2 /Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO 2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.

  6. Surface roughness and bacterial adhesion on root dentin treated with diode laser and conventional desensitizing agents.

    PubMed

    Cury, Maiza S; Silva, Camilla B; Nogueira, Ruchele D; Campos, Michelle G D; Palma-Dibb, Regina G; Geraldo-Martins, Vinicius R

    2018-02-01

    The treatments for dentin hypersensitivity (DH) may change the surface roughness of the root dentin, which can lead to biofilm accumulation, increasing the risk of root caries. The aim was to compare the surface roughness of root dentin after different treatments of DH and the biofilm formation on those surfaces. After initial surface roughness (Sa) assessment, 50 bovine root fragments received the following treatments (n = 10): G 1-no treatment; G2-5% sodium fluoride varnish; G3-professional application of a desensitizing dentifrice; G4-toothbrushing with a desensitizing dentifrice; and G5-diode laser application (908 nm; 1.5 W, 20 s). The Sa was reevaluated after treatments. Afterward, all samples were incubated in a suspension of Streptococcus mutans at 37 °C for 24 h. The colony-forming units (CFU) were counted using a stereoscope, and the results were expressed in CFU/mL. The one-way ANOVA and the Tukey's tests compared the roughness data and the results obtained on the bacterial adhesion test (α = 5%). G2 (2.3 ± 1.67%) showed similar Sa variation than G1 (0.25 ± 0.41%) and G5 (5.69 ± 0.99%), but different from group G3 (9.05 ± 2.39%). Group 4 showed the highest Sa variation (30.02 ± 3.83%; p < 0.05). Bacterial adhesion was higher in G4 (2208 ± 211.9), suggesting that bacterial growth is greater on rougher surfaces. The diode laser and the conventional treatments for DH may change the surface roughness of the root dentin, but only brushing with desensitizing dentifrice induced a higher bacteria accumulation on root dentin surface.

  7. Effect of 100 MeV Ag+7 ion irradiation on the bulk and surface magnetic properties of Co-Fe-Si thin films

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.

    2014-12-01

    Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.

  8. Optimum surface roughness prediction for titanium alloy by adopting response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Aimin; Han, Yang; Pan, Yuhang; Xing, Hongwei; Li, Jinze

    Titanium alloy has been widely applied in industrial engineering products due to its advantages of great corrosion resistance and high specific strength. This paper investigated the processing parameters for finish turning of titanium alloy TC11. Firstly, a three-factor central composite design of experiment, considering the cutting speed, feed rate and depth of cut, are conducted in titanium alloy TC11 and the corresponding surface roughness are obtained. Then a mathematic model is constructed by the response surface methodology to fit the relationship between the process parameters and the surface roughness. The prediction accuracy was verified by the one-way ANOVA. Finally, the contour line of the surface roughness under different combination of process parameters are obtained and used for the optimum surface roughness prediction. Verification experimental results demonstrated that material removal rate (MRR) at the obtained optimum can be significantly improved without sacrificing the surface roughness.

  9. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  10. Wear behavior of pressable lithium disilicate glass ceramic.

    PubMed

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  11. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    DOE PAGES

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less

  12. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  13. Effects of bio-inspired microscale roughness on macroscale flow structures

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano

    2016-11-01

    The interaction between rough surfaces and flows is a complex physical situation that produces rich flow phenomena. While random roughness typically increases drag, properly engineered roughness patterns may produce positive results, e.g. dimples in a golf ball. Here we present a set of PIV measurements in an index matched facility of the effect of a bio-inspired surface that consists of an array of mushroom-shaped micro-pillars. The experiments are carried out-under fully wetted conditions-in a flow with adverse pressure gradient, triggering flow separation. The introduction of the micro-pillars dramatically decreases the size of the recirculation bubble; the area with backflow is reduced by approximately 60%. This suggests a positive impact on the form drag generated by the fluid. Furthermore, a negligible effect is seen on the turbulence production terms. The micro-pillars affect the flow by generating low and high pressure perturbations at the interface between the bulk and roughness layer, in a fashion comparable to that of synthetic jets. The passive approach, however, facilitates the implementation of this coating. As the mechanism does not rely on surface hydrophobicity, it is well suited for underwater applications and its functionality should not degrade over time.

  14. The effect of copper substrate’s roughness on graphene growth process via PECVD

    NASA Astrophysics Data System (ADS)

    Fan, Tengfei; Yan, Cuixia; Lu, Jianchen; Zhang, Lianchang; Cai, Jinming

    2018-04-01

    Despite many excellent properties, the synthesis of high quality graphene with low-cost way is still a challenge, thus many different factors have been researched. In this work, the effect of surface roughness to the graphene quality was studied. Graphene was synthesized by plasma enhanced chemical vapor deposition (PECVD) method on copper substrates with different roughness from 0.074 μm to 0.339 μm, which were prepared via annealing, corrosion or polishing, respectively. Ar+ plasma cleaning was applied before graphene growth in order to accommodate similar surface chemical reactivity to each other. Scanning electron microscope and Raman spectroscope were employed to investigate the effect of surface roughness, which reveals that the graphene quality decrease first and then increase again according to the ratio of ID/IG in Raman spectroscopy. When the ratio of ID/IG reaches the largest number, the substrate roughness is 0.127 μm, where is the graphene quality changing point. First principle calculation was applied to explain the phenomenon and revealed that it is strongly affected by the graphene grain size and quantity which can induce defects. This strategy is expected to guide the industrial production of graphene.

  15. Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Lashkov, V. A.; Valiev, R. Z.; Bondarenko, A. S.

    2016-09-01

    This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.

  16. Measuring skew in average surface roughness as a function of surface preparation

    NASA Astrophysics Data System (ADS)

    Stahl, Mark T.

    2015-08-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  17. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach

    NASA Astrophysics Data System (ADS)

    Labarre, S.; Ferrari, C.; Jacquemoud, S.

    2017-07-01

    Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.

  18. Precision of 655nm Confocal Laser Profilometry for 3D surface texture characterisation of natural human enamel undergoing dietary acid mediated erosive wear.

    PubMed

    Mullan, F; Mylonas, P; Parkinson, C; Bartlett, D; Austin, R S

    2018-03-01

    To assess the precision of optical profilometry for characterising the 3D surface roughness of natural and polished human enamel in order to reliably quantify acid mediated surface roughness changes in human enamel. Forty-two enamel samples were prepared from extracted human molars and either polished flat or left unmodified. To investigate precision, the variability of thirty repeated measurements of five areas of one polished and one natural enamel sample was assessed using 655nm Confocal Laser Profilometry. Remaining samples were subjected to forty-five minutes orange juice erosion and microstructural changes were analysed using Sa roughness change (μm) and qualitatively using surface/subsurface confocal microscopy. Enamel surface profilometry from the selected areas revealed maximal precision of 5nm for polished enamel and 23nm for natural enamel. After erosion, the polished enamel revealed a 48% increase in mean (SD) Sa roughness of 0.10 (0.07)μm (P<0.05), whereas in contrast the natural enamel revealed a 45% decrease in mean (SD) roughness of -0.32 (0.42)μm (P<0.05). These data were supported by qualitative confocal images of the surface/subsurface enamel. This study demonstrates a method for precise surface texture measurement of natural human enamel. Measurement precision was superior for polished flat enamel in contrast to natural enamel however, natural enamel responds very differently to polished enamel when exposed to erosion challenges. Therefore, thus future studies characterising enamel surface changes following erosion on natural enamel may provide more clinically relevant responses in comparison to polished enamel. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Multiple scattering in the remote sensing of natural surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wen-Hao; Weeks, R.; Gillespie, A.R.

    1996-07-01

    Radiosity models predict the amount of light scattered many times (multiple scattering) among scene elements in addition to light interacting with a surface only once (direct reflectance). Such models are little used in remote sensing studies because they require accurate digital terrain models and, typically, large amounts of computer time. We have developed a practical radiosity model that runs relatively quickly within suitable accuracy limits, and have used it to explore problems caused by multiple-scattering in image calibration, terrain correction, and surface roughness estimation for optical images. We applied the radiosity model to real topographic surfaces sampled at two verymore » different spatial scales: 30 m (rugged mountains) and 1 cm (cobbles and gravel on an alluvial fan). The magnitude of the multiple-scattering (MS) effect varies with solar illumination geometry, surface reflectivity, sky illumination and surface roughness. At the coarse scale, for typical illumination geometries, as much as 20% of the image can be significantly affected (>5%) by MS, which can account for as much as {approximately}10% of the radiance from sunlit slopes, and much more for shadowed slopes, otherwise illuminated only by skylight. At the fine scale, radiance from as much as 30-40% of the scene can have a significant MS component, and the MS contribution is locally as high as {approximately}70%, although integrating to the meter scale reduces this limit to {approximately}10%. Because the amount of MS increases with reflectivity as well as roughness, MS effects will distort the shape of reflectance spectra as well as changing their overall amplitude. The change is proportional to surface roughness. Our results have significant implications for determining reflectivity and surface roughness in remote sensing.« less

  20. Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.

    PubMed

    Lu, Jia; Zhou, Huaichun

    2017-07-01

    The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.

  1. Adsorption of silica colloids onto like-charged silica surfaces of different roughness

    DOE PAGES

    Dylla-Spears, R.; Wong, L.; Shen, N.; ...

    2017-01-17

    Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less

  2. Numerical analysis of the effect of surface roughness on mechanical fields in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges

    2018-06-01

    This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.

  3. Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels.

    PubMed

    Markov, Pavel A; Krachkovsky, Nikita S; Durnev, Eugene A; Martinson, Ekaterina A; Litvinets, Sergey G; Popov, Sergey V

    2017-09-01

    The surface structure, biocompatibility, textural, and adhesive properties of calcium hydrogels derived from 1, 2, and 4% solutions of apple pectin were examined in this study. An increase in the pectin concentration in hydrogels was shown to improve their stability toward elastic and plastic deformation. The elasticity of pectin hydrogels, measured as Young's modulus, ranged from 6 to 100 kPa. The mechanical properties of the pectin hydrogels were shown to correspond to those of soft tissues. The characterization of surface roughness in terms of the roughness profile (Ra) and the root-mean-square deviation of the roughness profile (Rq) indicated an increased roughness profile for hydrogels depending on their pectin concentration. The adhesion of AU2% and AU4% hydrogels to the serosa abdominal wall, liver, and colon was higher than that of the AU1% hydrogel. The adhesion of macrophages and the non-specific adsorption of blood plasma proteins were found to increase as the pectin concentration in the hydrogels increased. The rate of degradation of all hydrogels was higher in phosphate buffered saline (PBS) than that in DMEM and a fibroblast cell monolayer. The pectin hydrogel was also found to have a low cytotoxicity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2572-2581, 2017. © 2017 Wiley Periodicals, Inc.

  4. Incorporating Skew into RMS Surface Roughness Probability Distribution

    NASA Technical Reports Server (NTRS)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  5. Tribological Properties of PVD Ti/C-N Nanocoatnigs

    NASA Astrophysics Data System (ADS)

    Leitans, A.; Lungevics, J.; Rudzitis, J.; Filipovs, A.

    2017-04-01

    The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.

  6. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.

    PubMed

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t -test and Pearson correlation tests were used for statistical analysis ( P < 0.05 level of significance). Significant increase was observed in the level of debris ( P = 0.0001), surface roughness ( P = 0.0001), and friction resistance ( P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations ( P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.

  7. Soil roughness, slope and surface storage relationship for impervious areas

    NASA Astrophysics Data System (ADS)

    Borselli, Lorenzo; Torri, Dino

    2010-11-01

    SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.

  8. Supersonic turbulent boundary layers with periodic mechanical non-equilibrium

    NASA Astrophysics Data System (ADS)

    Ekoto, Isaac Wesley

    Previous studies have shown that favorable pressure gradients reduce the turbulence levels and length scales in supersonic flow. Wall roughness has been shown to reduce the large-scales in wall bounded flow. Based on these previous observations new questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface roughness and favorable pressure gradients are combined? To answer these questions and to enhance the current experimental database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties along with surface and flow visualizations of a high-speed (M = 2.86), high Reynolds number (Retheta ≈ 60,000) supersonic turbulent boundary layer distorted by curvature-induced favorable pressure gradients and large-scale ( k+s ≈ 300) uniform surface roughness. Nine models were tested at three separate locations. Three pressure gradient models strengths (a nominally zero, a weak, and a strong favorable pressure gradient) and three roughness topologies (aerodynamically smooth, square, and diamond shaped roughness elements) were used. Highly resolved planar measurements of mean and fluctuating velocity components were accomplished using particle image velocimetry. Stagnation pressure profiles were acquired with a traversing Pitot probe. Surface pressure distributions were characterized using pressure sensitive paint. Finally flow visualization was accomplished using schlieren photographs. Roughness topology had a significant effect on the boundary layer mean and turbulent properties due to shock boundary layer interactions. Favorable pressure gradients had the expected stabilizing effect on turbulent properties, but the improvements were less significant for models with surface roughness near the wall due to increased tendency towards flow separation. It was documented that proper roughness selection coupled with a sufficiently strong favorable pressure gradient produced regions of "negative" production in the transport of turbulent stress. This led to localized areas of significant turbulence stress reduction. With proper roughness selection and sufficient favorable pressure gradient strength, it is believed that localized relaminarization of the boundary layer is possible.

  9. Implementation and analysis of relief patterns of the surface of benign and malignant lesions of the skin by microtopography

    NASA Astrophysics Data System (ADS)

    López Pacheco, María del Carmen; Filipe Pereira da Cunha Martins-Costa, Manuel; Pérez Zapata, Aura Judith; Domínguez Cherit, Judith; Ramón Gallegos, Eva

    2005-12-01

    The objective of this study was to be able to distinguish between healthy skin tissue and malignant ones, furthermore determining a unique pattern of roughness for each skin lesion by microtopographic analysis of the skin surface of Mexican patients during the period from April to October 2002. The standard technique used in this study for the diagnosis of skin cancer and the comparison of the results was the haematoxylin eosin histopathological technique. Latex impressions were taken from skin lesions as well as from the healthy skin of each patient to serve as control samples. These impressions were analysed by the MICROTOP.03.MFC microtopographic system inspection. It was observed that when the tumour becomes rougher, more malign will be the lesion. On average, the melanoma present an increase of roughness of 67% compared to healthy skin, obtaining a roughness relation of 1:2.54. The percentage decreases to 49% (49%, 1:60) in the case of basal cell carcinoma and to 40% in pre-malignant lesions such as melanocytic nevus (40%, 1:150). In benign lesions such as the seborrhoea keratosis only a small increase in roughness was noted (4%, 1:0.72). Microtopographic inspection of the skin surface can be considered as a complementary diagnostic technique for skin cancer.

  10. Scanning electron microscopy and roughness study of dental composite degradation.

    PubMed

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  11. [The effects of surface morphology of calcium phosphate ceramics on apatite formation in dynamic SBF].

    PubMed

    Duan, Yourong; Lü, Wanxin; Wang, Chaoyuan; Chen, Jiyong; Zhang, Xingdong

    2002-06-01

    Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be the prerequisite of new bone growth on ceramics and to be related to the osteoinductivity of the material. The research of the factors effecting bone-like apatite formation is a great help in understanding the mechanism of osteoinduction. This paper is aimed to a comparative study of in vitro formation of bone-like apatite on the surface of dense and rough calcium phosphate ceramics with SBF flowing at different rates. The results showed that the rough surface was beneficial to the formation of bone-like apatite, and the apatite formed faster in 1.5 SBF than in SBF. Rough surface, namely, larger surface area, increased the dissolution of Ca2+ and HPO4(2-) and higher concentration of Ca2+ and HPO4(2-) ions of SBF and was in turn advantageous to the accumulation of Ca2+, HPO4(2-), PO4(3-) near the ceramic surface. Local supersaturating concentration of Ca2+, HPO4(2-), PO4(3-) near sample surface was essential to nucleation of apatite on the surface of sample.

  12. Investigation of the influence of a step change in surface roughness on turbulent heat transfer

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.

    1991-01-01

    The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.

  13. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications.

    PubMed

    Tran, Phong; Webster, Thomas J

    2008-01-01

    Metallic bone implants possess numerous problems limiting their long-term efficacy, such as poor prolonged osseointegration, stress shielding, and corrosion under in vivo environments. Such problems are compounded for bone cancer patients since numerous patients receive orthopedic implants after cancerous bone resection. Unfortunately, current orthopedic materials were not originally developed to simultaneously increase healthy bone growth (as in traditional orthopedic implant applications) while inhibiting cancerous bone growth. The long-term objective of the present research is to investigate the use of nano-rough selenium to prevent bone cancer from re-occurring while promoting healthy bone growth for this select group of cancer patients. Selenium is a well known anti-cancer chemical. However, what is not known is how healthy bone cells interact with selenium. To determine this, selenium, spherical or semispherical shots, were pressed into cylindrical compacts and these compacts were then etched using 1N NaOH to obtain various surface structures ranging from the micron, submicron to nano scales. Changes in surface chemistry were also analyzed. Through these etching techniques, results of this study showed that biologically inspired surface roughness values were created on selenium compacts to match that of natural bone roughness. Moreover, results showed that healthy bone cell adhesion increased with greater nanometer selenium roughness (more closely matching that of titanium). In this manner, this study suggests that nano-rough selenium should be further tested for orthopedic applications involving bone cancer treatment.

  14. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications

    PubMed Central

    Tran, Phong; Webster, Thomas J

    2008-01-01

    Metallic bone implants possess numerous problems limiting their long-term efficacy, such as poor prolonged osseointegration, stress shielding, and corrosion under in vivo environments. Such problems are compounded for bone cancer patients since numerous patients receive orthopedic implants after cancerous bone resection. Unfortunately, current orthopedic materials were not originally developed to simultaneously increase healthy bone growth (as in traditional orthopedic implant applications) while inhibiting cancerous bone growth. The long-term objective of the present research is to investigate the use of nano-rough selenium to prevent bone cancer from re-occurring while promoting healthy bone growth for this select group of cancer patients. Selenium is a well known anti-cancer chemical. However, what is not known is how healthy bone cells interact with selenium. To determine this, selenium, spherical or semispherical shots, were pressed into cylindrical compacts and these compacts were then etched using 1N NaOH to obtain various surface structures ranging from the micron, submicron to nano scales. Changes in surface chemistry were also analyzed. Through these etching techniques, results of this study showed that biologically inspired surface roughness values were created on selenium compacts to match that of natural bone roughness. Moreover, results showed that healthy bone cell adhesion increased with greater nanometer selenium roughness (more closely matching that of titanium). In this manner, this study suggests that nano-rough selenium should be further tested for orthopedic applications involving bone cancer treatment. PMID:18990948

  15. Nozzle wall roughness effects on free-stream noise and transition in the pilot low-disturbance tunnel

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Beckwith, I. E.; Chen, F. J.

    1985-01-01

    An investigation at Mach 3.5 into the effects of nozzle wall roughness on free stream pressure fluctuations and cone transition Reynolds numbers was conducted in the pilot low disturbance tunnel at the Langley Research Center. Nozzle wall roughness caused by either particle deposits or imperfections in surface finish increased free stream noise levels and reduced the transition Reynolds numbers on a cone mounted in the test rhombus.

  16. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.

    PubMed

    Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I

    2016-04-01

    Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.

  17. Reducing the influence of the surface roughness on the hardness measurement using instrumented indentation test

    NASA Astrophysics Data System (ADS)

    Maslenikov, I.; Useinov, A.; Birykov, A.; Reshetov, V.

    2017-10-01

    The instrumented indentation method requires the sample surface to be flat and smooth; thus, hardness and elastic modulus values are affected by the roughness. A model that accounts for the isotropic surface roughness and can be used to correct the data in two limiting cases is proposed. Suggested approach requires the surface roughness parameters to be known.

  18. An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing

    NASA Astrophysics Data System (ADS)

    Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh

    2017-11-01

    In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.

  19. The effect of long-term use of tooth bleaching products on the human enamel surface.

    PubMed

    Polydorou, Olga; Scheitza, Sophia; Spraul, Mathias; Vach, Kirstin; Hellwig, Elmar

    2018-01-01

    The aim of this in vitro study was to evaluate the long-term effect of bleaching on human enamel. Four groups of enamel specimens were prepared (n = 20): group 1: bleaching with Opalescence Boost [40% hydrogen peroxide (H 2 O 2 ), 3 × 20 min/week]; group 2: control group (the specimens were stored in human saliva); group 3: beaching with Vivastyle Paint on Plus (6% H 2 O 2 , 2 × 10 min/day), and group 4: bleaching with Opalescence PF 16% [16% carbamide peroxide (CP), 6 h/day]. After each bleaching session the specimens were stored in human saliva. Knoop microhardness and surface roughness were measured: before bleaching, after 2-week and after 8-week bleaching. After 2-week treatment, surface roughness was significantly increased in all experimental groups (p < 0.05), while among them no significant difference was found (p > 0.05). The roughness changes exerted after 8-week bleaching were not significantly higher than the ones after 2 weeks (p > 0.05). After 8-week treatment, the increase in roughness caused by 16% CP was significantly higher (p < 0.05) than the one caused by 40% H 2 O 2 . Microhardness increased in all groups including control; however, only 40% H 2 O 2 increased the microhardness significantly (p < 0.05). The effect of bleaching on enamel was not shown to be dependent on the method or the H 2 O 2 concentration. Bleaching with CP 16% resulted in higher roughness than bleaching with H 2 O 2 , while 40% H 2 O 2 caused the higher microhardness increase. The present study showed that in-office bleaching with 40% H 2 O 2 seems to be at least as safe as home bleaching as far as their effects on human enamel are concerned.

  20. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  1. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  2. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  3. Effect of surface roughness on contact line dynamics of a thin droplet

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Debanik; Soltannia, Babak; Nazaripoor, Hadi; Sadrzadeh, Mohtada

    2017-11-01

    Any surface possesses inherent roughness. Droplet spreading on a surface is an example of a contact line problem. The tri-phase contact line is prone to stress singularity which can be relieved by using precursor film assumption and disjoining pressure. In this study, an axisymmetric, incompressible, Newtonian droplet spreading on a surface was investigated. An evolution equation which tracks the droplet height over time was obtained considering the lubrication approximation. The nonlinear PDE of evolution equation was solved using finite difference scheme. A simplified Gaussian model was used as a starting point to assess the role of roughness in the dynamics of contact line. The preliminary results revealed that, for both impermeable and permeable surfaces, the apparent contact angle increased in the presence of defects whereas the equilibrium stage remained unaffected. The apparent contact angle, however, was more strongly dependent on the nature and density of defects for impermeable surfaces due to the longer droplet lifetime. Furthermore, random self-affine and non-Gaussian models are employed. The mathematical model results are finally compared with theoretical models like the Cassie-Baxter, Wenzel, and Penetration modes. NSERC.

  4. The effect of heterogeneity and surface roughness on soil hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hallin, I.; Bryant, R.; Doerr, S. H.; Douglas, P.

    2010-05-01

    Soil water repellency, or hydrophobicity, can develop under both natural and anthropogenic conditions. Forest fires, vegetation decomposition, microbial activity and oil spills can all promote hydrophobic behaviour in surrounding soils. Hydrophobicity can stabilize soil organic matter pools and decrease evapotranspiration, but there are many negative impacts of hydrophobicity as well: increased erosion of topsoil, an increasingly scarce resource; increased runoff, which can lead to flooding; and decreased infiltration, which directly affects plant health. The degree of hydrophobicity expressed by soil can vary greatly within a small area, depending partly on the type and severity of the disturbance as well as on temporal factors such as water content and microbial activity. To date, many laboratory investigations into soil hydrophobicity have focused on smooth particle surfaces. As a result, our understanding of how hydrophobicity develops on rough surfaces of macro, micro and nano-particulates is limited; we are unable to predict with certainty how these soil particles will behave on contact with water. Surface chemistry is the main consideration when predicting hydrophobic behaviour of smooth solids, but for particles with rough surfaces, hydrophobicity is believed to develop as a combination of surface chemistry and topography. Topography may reflect both the arrangement (aggregation) of soil particles and the distribution of materials adsorbed on particulate surfaces. Patch-wise or complete coverage of rough soil particles by hydrophobic material may result in solid/water contact angles ≥150° , at which point the soil may be classified as super-hydrophobic. Here we present a critical review of the research to date on the effects of heterogeneity and surface roughness on soil hydrophobicity in which we discuss recent advances, current trends, and future research areas. References: Callies, M., Y. Chen, F. Marty, A. Pépin and D. Quéré. 2005. Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectronic Engineering. 78-79:100-105. Doerr, S.H. C.J. Ritsema, L.W. Dekker, D.F. Scott and D. Carter. 2007. Water repellence of soils: new insights and emerging research needs. Hydrological Processes. 21:2223-2228. Doerr, S.H., R.A. Shakesby and R.P.D. Walsh. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews. 51:33-65. McHale, G. N.J. Shirtcliffe, M.I. Newton, F.B. Pyatt and S.H. Doerr. 2007. Self-organization of hydrophobic soil and granular surfaces. Applied Physics Letters. 90. 054110.

  5. Measurement of surface roughness changes of unpolished and polished enamel following erosion

    PubMed Central

    Austin, Rupert S.; Parkinson, Charles R.; Hasan, Adam; Bartlett, David W.

    2017-01-01

    Objectives To determine if Sa roughness data from measuring one central location of unpolished and polished enamel were representative of the overall surfaces before and after erosion. Methods Twenty human enamel sections (4x4 mm) were embedded in bis-acryl composite and randomised to either a native or polishing enamel preparation protocol. Enamel samples were subjected to an acid challenge (15 minutes 100 mL orange juice, pH 3.2, titratable acidity 41.3mmol OH/L, 62.5 rpm agitation, repeated for three cycles). Median (IQR) surface roughness [Sa] was measured at baseline and after erosion from both a centralised cluster and four peripheral clusters. Within each cluster, five smaller areas (0.04 mm2) provided the Sa roughness data. Results For both unpolished and polished enamel samples there were no significant differences between measuring one central cluster or four peripheral clusters, before and after erosion. For unpolished enamel the single central cluster had a median (IQR) Sa roughness of 1.45 (2.58) μm and the four peripheral clusters had a median (IQR) of 1.32 (4.86) μm before erosion; after erosion there were statistically significant reductions to 0.38 (0.35) μm and 0.34 (0.49) μm respectively (p<0.0001). Polished enamel had a median (IQR) Sa roughness 0.04 (0.17) μm for the single central cluster and 0.05 (0.15) μm for the four peripheral clusters which statistically significantly increased after erosion to 0.27 (0.08) μm for both (p<0.0001). Conclusion Measuring one central cluster of unpolished and polished enamel was representative of the overall enamel surface roughness, before and after erosion. PMID:28771562

  6. Effect of Pd Surface Roughness on the Bonding Process and High Temperature Reliability of Au Ball Bonds

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Kim, H. J.; McCracken, M.; Viswanathan, G.; Pon, F.; Mayer, M.; Zhou, Y. N.

    2011-06-01

    A 0.3- μm-thick electrolytic Pd layer was plated on 1 μm of electroless Ni on 1 mm-thick polished and roughened Cu substrates with roughness values ( R a) of 0.08 μm and 0.5 μm, respectively. The rough substrates were produced with sand-blasting. Au wire bonding on the Ni/Pd surface was optimized, and the electrical reliability was investigated under a high temperature storage test (HTST) during 800 h at 250°C by measuring the ball bond contact resistance, R c. The average value of R c of optimized ball bonds on the rough substrate was 1.96 mΩ which was about 40.0% higher than that on the smooth substrate. The initial bondability increased for the rougher surface, so that only half of the original ultrasonic level was required, but the reliability was not affected by surface roughness. For both substrate types, HTST caused bond healing, reducing the average R c by about 21% and 27%, respectively. Au diffusion into the Pd layer was observed in scanning transmission electron microscopy/ energy dispersive spectroscopy (STEM-EDS) line-scan analysis after HTST. It is considered that diffusion of Au or interdiffusion between Au and Pd can provide chemically strong bonding during HTST. This is supported by the R c decrease measured as the aging time increased. Cu migration was indicated in the STEM-EDS analysis, but its effect on reliability can be ignored. Au and Pd tend to form a complete solid solution at the interface and can provide reliable interconnection for high temperature (250°C) applications.

  7. Tool wear compensation scheme for DTM

    NASA Astrophysics Data System (ADS)

    Sandeep, K.; Rao, U. S.; Balasubramaniam, R.

    2018-04-01

    This paper is aimed to monitor tool wear in diamond turn machining (DTM), assess effects of tool wear on accuracies of the machined component, and develop compensation methodology to enhance size and shape accuracies of a hemispherical cup. In order to find change in the centre and radius of tool with increasing wear of tool, a MATLAB program is used. In practice, x-offsets are readjusted by DTM operator for desired accuracy in the cup and the results of theoretical model show that change in radius and z-offset are insignificant however x-offset is proportional to the tool wear and this is what assumed while resetting tool offset. Since we could not measure the profile of tool; therefore we modeled our program for cup profile data. If we assume no error due to slide and spindle of DTM then any wear in the tool will be reflected in the cup profile. As the cup data contains surface roughness, therefore random noise similar to surface waviness is added. It is observed that surface roughness affects the centre and radius but pattern of shifting of centre with increase in wear of tool remains similar to the ideal condition, i.e. without surface roughness.

  8. Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.

    PubMed

    Gunjan, Madhu Ranjan; Raj, Rishi

    2017-07-18

    The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among others.

  9. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  10. Thermal contact conductance as a method of rectification in bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Robert A.

    2016-08-01

    A thermal rectifier that utilizes thermal expansion to directionally control interfacial conductance between two contacting surfaces is presented. The device consists of two thermal reservoirs contacting a beam with one rough and one smooth end. When the temperature of reservoir in contact with the smooth surface is raised, a similar temperature rise will occur in the beam, causing it to expand, thus increasing the contact pressure at the rough interface and reducing the interfacial contact resistance. However, if the temperature of the reservoir in contact with the rough interface is raised, the large contact resistance will prevent a similar temperaturemore » rise in the beam. As a result, the contact pressure will be marginally affected and the contact resistance will not change appreciably. Owing to the decreased contact resistance of the first scenario compared to the second, thermal rectification occurs. A parametric analysis is used to determine optimal device parameters including surface roughness, contact pressure, and device length. Modeling predicts that rectification factors greater than 2 are possible at thermal biases as small as 3 K. Lastly, thin surface coatings are discussed as a method to control the temperature bias at which maximum rectification occurs.« less

  11. Flow over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Warncke Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2006-11-01

    Certain species of sharks (e.g. shortfin mako and common hammerhead) have a skin structure that could result in a bristling of their denticles (scales) during increased swimming speeds (Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. 2000, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 80:157-171). This unique surface geometry results in a three-dimensional array of cavities* (d-type roughness geometry) forming within the surface and has been given the acronym MAKO (Micro-roughness Array for Kinematic Optimization). Possible mechanisms leading to drag reduction over the shark's body by this unique roughness geometry include separation control thereby reducing pressure drag, skin friction reduction (via the `micro-air bearing' effect first proposed by Bushnell (AIAA 83-0227)), as well as possible transition delay in the boundary layer. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies. Support for this research by NSF SGER grant CTS-0630489 and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  12. Generalizing roughness: experiments with flow-oriented roughness

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano

    2015-04-01

    Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.

  13. Comparison of four methods of surface roughness assessment of corneal stromal bed after lamellar cutting

    PubMed Central

    Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles

    2017-01-01

    Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095

  14. Analysis of multi lobe journal bearings with surface roughness using finite difference method

    NASA Astrophysics Data System (ADS)

    PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.

    2018-04-01

    Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.

  15. Pressure variation of developed lapping tool on surface roughness

    NASA Astrophysics Data System (ADS)

    Hussain, A. K.; Lee, K. Q.; Aung, L. M.; Abu, A.; Tan, L. K.; Kang, H. S.

    2018-01-01

    Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.

  16. Experimental Investigation of Average Heat-Transfer and Friction Coefficients for Air Flowing in Circular Tubes Having Square-Thread-Type Roughness

    NASA Technical Reports Server (NTRS)

    Sams, E. W.

    1952-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well as those of other investigators, were used to isolate the influence of ratios of thread height to width, thread spacing to width, and the conventional roughness ratio on the friction coefficient. A fair correlation of the friction data was obtained for each tube with heat addition when the friction coefficient and Reynolds number were defined on the basis of film properties; however, the data for each tube retained the curve characteristic of that particular roughness. The friction data for all the rough tubes could be represented by a single line for the complete turbulence region by incorporating a roughness parameter in the film correlation. No correlation was obtained for the region of incomplete turbulence.

  17. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  18. Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

    PubMed Central

    Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio

    2017-01-01

    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932

  19. Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio

    2017-06-01

    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.

  20. Tribological changes in the articular cartilage of a human femoral head with avascular necrosis.

    PubMed

    Seo, Eun-Min; Shrestha, Suman K; Duong, Cong-Truyen; Sharma, Ashish Ranjan; Kim, Tae-Woo; Vijayachandra, Ayyappan; Thompson, Mark S; Cho, Myung Guk; Park, Sungchan; Kim, Kwanghoon; Park, Seonghun; Lee, Sang-Soo

    2015-06-29

    The present study evaluated the tribological properties of the articular cartilage surface of the human femoral head with postcollapse stage avascular necrosis (AVN) using atomic force microscopy. The cartilage surface in the postcollapse stage AVN of the femoral head was reported to resemble those of disuse conditions, which suggests that the damage could be reversible and offers the possibilities of success of head-sparing surgeries. By comparing the tribological properties of articular cartilage in AVN with that of osteoarthritis, the authors intended to understand the cartilage degeneration mechanism and reversibility of AVN. Human femoral heads with AVN were explanted from the hip replacement surgery of four patients (60-83 years old). Nine cylindrical cartilage samples (diameter, 5 mm and height, 0.5 mm) were sectioned from the weight-bearing areas of the femoral head with AVN, and the cartilage surface was classified according to the Outerbridge Classification System (AVN0, normal; AVN1, softening and swelling; and AVN2, partial thickness defect and fissuring). Tribological properties including surface roughness and frictional coefficients and histochemistry including Safranin O and lubricin staining were compared among the three groups. The mean surface roughness Rq values of AVN cartilage increased significantly with increasing Outerbridge stages: Rq = 137 ± 26 nm in AVN0, Rq = 274 ± 49 nm in AVN1, and Rq = 452 ± 77 nm in AVN2. Significant differences in Rq were observed among different Outerbridge stages in all cases (p < 0.0001). The frictional coefficients (μ) also increased with increasing Outerbridge stages. The frictional coefficient values were μ = 0.115 ± 0.034 in AVN0, μ = 0.143 ± 0.025 in AVN1, and μ = 0.171 ± 0.039 in AVN2. Similarly to the statistical analysis of surface roughness, significant statistical differences were detected between different Outerbridge stages in all cases (p < 0.05). Both surface roughness and frictional coefficient of cartilage, which were linearly correlated, increased with increasing Outerbridge stages in postcollapse AVN. The underlying mechanism of these results can be related to proteoglycan loss within the articular cartilage that is also observed in osteoarthritis. With regard to the tribological properties, the cartilage degeneration mechanism in AVN was similar to that of osteoarthritis without reversibility.

  1. Heterogeneous nucleation on rough surfaces: Generalized Gibbs' approach.

    PubMed

    Abyzov, Alexander S; Schmelzer, Jürn W P; Davydov, Leonid N

    2017-12-07

    Heterogeneous nucleation (condensation) of liquid droplets from vapor (gas) on a defective solid surface is considered. The vapor is described by the van der Waals equation of state. The dependence of nucleating droplet parameters on droplet size is accounted for within the generalized Gibbs approach. As a surface defect, a conic void is taken. This choice allows us to simplify the analysis and at the same time to follow the main aspects of the influence of the surface roughness on the nucleation process. Similar to condensation on ideal planar surfaces, the contact angle and catalytic factor for heterogeneous nucleation on a rough surface depend on the degree of vapor overcooling. In the case of droplet formation on a hydrophilic surface of a conic void, the nucleation rate considerably increases in comparison with the condensation on a planar interface. In fact, the presence of a defect on the hydrophilic surface leads to a considerable shift of the spinodal towards lower supersaturation in comparison with heterogeneous nucleation on a planar interface. With the decrease in the void cone angle, the heterogeneous spinodal approaches the binodal, and the region of metastability is diminished at the expense of the instability region.

  2. Irregular wall roughness in turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  3. The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials

    PubMed Central

    Hung, Kuo-Yung; Lin, Yi-Chih; Feng, Hui-Ping

    2017-01-01

    The purpose of this study was to characterize the etching mechanism, namely, the etching rate and the activation energy, of a titanium dental implant in concentrated acid and to construct the relation between the activation energy and the nanoscale surface topographies. A commercially-pure titanium (CP Ti) and Ti-6Al-4V ELI surface were tested by shot blasting (pressure, grain size, blasting distance, blasting angle, and time) and acid etching to study its topographical, weight loss, surface roughness, and activation energy. An Arrhenius equation was applied to derive the activation energy for the dissolution of CP Ti/Ti-6Al-4V ELI in sulfuric acid (H2SO4) and hydrochloric acid (HCl) at different temperatures. In addition, white-light interferometry was applied to measure the surface nanomorphology of the implant to obtain 2D or 3D roughness parameters (Sa, Sq, and St). The nanopore size that formed after etching was approximately 100–500 nm. The surface roughness of CP Ti and Ti-6Al-4V ELI decreased as the activation energy decreased but weight loss increased. Ti-6Al-4V ELI has a higher level of activation energy than Ti in HCl, which results in lower surface roughness after acid etching. This study also indicates that etching using a concentrated hydrochloric acid provided superior surface modification effects in titanium compared with H2SO4. PMID:29019926

  4. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses.

    PubMed

    Ji, Yong Woo; Cho, Young Joo; Lee, Chul Hee; Hong, Soon Ho; Chung, Dong Yong; Kim, Eung Kweon; Lee, Hyung Keun

    2015-01-01

    To compare physical characteristics of cosmetic contact lenses (Cos-CLs) and conventional contact lenses (Con-CLs) that might affect susceptibility to bacterial adhesion on the contact lens (CL) surface. Surface characteristics of Cos-CLs and Con-CLs made from the same material by the same manufacturer were measured by atomic force microscopy (AFM) and scanning electron microscopy. To determine the extent and rate of bacterial adhesion, Cos-CL and Con-CL were immersed in serum-free Roswell Park Memorial Institute media containing Staphylococcus aureus or Pseudomonas aeruginosa. Additionally, the rate of removal of adherent bacteria was evaluated using hand rubbing or immersion in multipurpose disinfecting solutions (MPDS). The mean surface roughness (root mean square and peak-to-valley value) measured by AFM was significantly higher for Cos-CL than for Con-CL. At each time point, significantly more S. aureus and P. aeruginosa adhered to Cos-CL than to Con-CL, which correlated with the surface roughness of CL. In Cos-CL, bacteria were mainly found on the tinted surface rather than on the noncolored or convex areas. Pseudomonas aeruginosa attached earlier than S. aureus to all types of CL. However, P. aeruginosa was more easily removed from the surface of CL than S. aureus by hand rubbing or MPDS soaking. Increased surface roughness is an important physical factor for bacterial adhesion in Cos-CL, which may explain why rates of bacterial keratitis rates are higher in Cos-CL users in CL physical characteristics.

  5. An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion.

    PubMed

    Bigerelle, M; Anselme, K; Dufresne, E; Hardouin, P; Iost, A

    2002-08-01

    We present a new parameter to quantify the order of a surface. This parameter is scale-independent and can be used to compare the organization of a surface at different scales of range and amplitude. To test the accuracy of this roughness parameter versus a hundred existing ones, we created an original statistical bootstrap method. In order to assess the physical relevance of this new parameter, we elaborated a great number of surfaces with various roughness amplitudes on titanium and titanium-based alloys using different physical processes. Then we studied the influence of the roughness amplitude on in vitro adhesion and proliferation of human osteoblasts. It was then shown that our new parameter best discriminates among the cell adhesion phenomena than others' parameters (Average roughness (Ra em leader )): cells adhere better on isotropic surfaces with a low order, provided this order is quantified on a scale that is more important than that of the cells. Additionally, on these low ordered metallic surfaces, the shape of the cells presents the same morphological aspect as that we can see on the human bone trabeculae. The method used to prepare these isotropic surfaces (electroerosion) could be undoubtedly and easily applied to prepare most biomaterials with complex geometries and to improve bone implant integration. Moreover, the new order parameter we developed may be particularly useful for the fundamental understanding of the mechanism of bone cell installation on a relief and of the formation of bone cell-material interface.

  6. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  7. Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces.

    PubMed

    Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun

    2017-11-01

    Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In situ evaluation of surface roughness and micromorphology of temporary soft denture liner materials at different time intervals.

    PubMed

    Araújo, Célio U; Basting, Roberta T

    2018-03-01

    To perform an in situ evaluation of surface roughness and micromorphology of two soft liner materials for dentures at different time intervals. The surface roughness of materials may influence the adhesion of micro-organisms and inflammation of the mucosal tissues. The in situ evaluation of surface roughness and the micromorphology of soft liner materials over the course of time may present results different from those of in vitro studies, considering the constant presence of saliva and food, the changes in temperature and the pH level in the oral cavity. Forty-eight rectangular specimens of each of the two soft liner materials were fabricated: a silicone-based material (Mucopren Soft) and an acrylic resin-based material (Trusoft). The specimens were placed in the dentures of 12 participants (n = 12), and the materials were evaluated for surface roughness and micromorphology at different time intervals: 0, 7, 30 and 60 days. Roughness (Ra) was evaluated by means of a roughness tester. Surface micromorphology was evaluated by scanning electron microscopy. Analysis of variance for randomised block design and Tukey's test showed that surface roughness values were lower in the groups using the silicone-based material at all the time intervals (P < .0001). The average surface roughness was higher at time interval 0 than at the other intervals, for both materials (P < .0001). The surface micromorphology showed that the silicone material presented a more regular and smoother surface than the acrylic resin-based material. The surface roughness of acrylic resin-based and silicone-based denture soft liner materials decreased after 7 days of evaluation, leading to a smoother surface over time. The silicone-based material showed lower roughness values and a smoother surface than the acrylic resin-based material, thereby making it preferred when selecting more appropriate material, due its tendency to promote less biofilm build-up. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  9. The influence of surface roughness on volatile transport on the Moon

    NASA Astrophysics Data System (ADS)

    Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2018-01-01

    The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.

  10. Laboratory observations and simulations of phase reddening

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Grynko, Ye.; Pommerol, A.; Keller, H. U.; Thomas, N.; Roush, T. L.

    2014-09-01

    The visible reflectance spectrum of many Solar System bodies changes with changing viewing geometry for reasons not fully understood. It is often observed to redden (increasing spectral slope) with increasing solar phase angle, an effect known as phase reddening. Only once, in an observation of the martian surface by the Viking 1 lander, was reddening observed up to a certain phase angle with bluing beyond, making the reflectance ratio as a function of phase angle shaped like an arch. However, in laboratory experiments this arch-shape is frequently encountered. To investigate this, we measured the bidirectional reflectance of particulate samples of several common rock types in the 400-1000 nm wavelength range and performed ray-tracing simulations. We confirm the occurrence of the arch for surfaces that are forward scattering, i.e. are composed of semi-transparent particles and are smooth on the scale of the particles, and for which the reflectance increases from the lower to the higher wavelength in the reflectance ratio. The arch shape is reproduced by the simulations, which assume a smooth surface. However, surface roughness on the scale of the particles, such as the Hapke and van Horn (Hapke, B., van Horn, H. [1963]. J. Geophys. Res. 68, 4545-4570) fairy castles that can spontaneously form when sprinkling a fine powder, leads to monotonic reddening. A further consequence of this form of microscopic roughness (being indistinct without the use of a microscope) is a flattening of the disk function at visible wavelengths, i.e. Lommel-Seeliger-type scattering. The experiments further reveal monotonic reddening for reflectance ratios at near-IR wavelengths. The simulations fail to reproduce this particular reddening, and we suspect that it results from roughness on the surface of the particles. Given that the regolith of atmosphereless Solar System bodies is composed of small particles, our results indicate that the prevalence of monotonic reddening and Lommel-Seeliger-type scattering for these bodies results from microscopic roughness, both in the form of structures built by the particles and roughness on the surface of the particles themselves. It follows from the singular Viking 1 observation that the surface in front of the lander was composed of semi-transparent particles, and was smooth on the scale of the particle size.

  11. 2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces

    NASA Astrophysics Data System (ADS)

    Mutta, Geeta Rani; Carapezzi, Stefania

    2018-07-01

    The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.

  12. Influence of Surface Texture and Roughness of Softer and Harder Counter Materials on Friction During Sliding

    NASA Astrophysics Data System (ADS)

    Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.

    2015-01-01

    Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.

  13. Effect of surface topographic features on the optical properties of skin: a phantom study

    NASA Astrophysics Data System (ADS)

    Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.

    2016-10-01

    Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.

  14. Influence of Surface Roughness on Strong Light-Matter Interaction of a Quantum Emitter-Metallic Nanoparticle System.

    PubMed

    Lu, Yu-Wei; Li, Ling-Yan; Liu, Jing-Feng

    2018-05-08

    We investigate the quantum optical properties of strong light-matter interaction between a quantum emitter and a metallic nanoparticle beyond idealized structures with a smooth surface. Based on the local coupling strength and macroscopic Green's function, we derived an exact quantum optics approach to obtain the field enhancement and light-emission spectrum of a quantum emitter. Numerical simulations show that the surface roughness has a greater effect on the near-field than on the far-field, and slightly increases the vacuum Rabi splitting on average. Further, we verified that the near-field enhancement is mainly determined by the surface features of hot-spot area.

  15. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.

    2012-07-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.

  16. The effect of toothbrush bristle stiffness on nanohybrid surface roughness

    NASA Astrophysics Data System (ADS)

    Zairani, O.; Irawan, B.; Damiyanti, M.

    2017-08-01

    The surface of a restoration can be affected by toothpaste containing abrasive agents and the stiffness of toothbrush bristles. Objective: To identify the effect of toothbrush bristle stiffness on nanohybrid surface roughness. Methods: Sixteen nanohybrid specimens were separated into two groups. The first group was brushed using soft-bristle toothbrushes, and the second group was brushed using medium-bristle toothbrushes. Media such as aqua bides was used for brushing in both groups. Brushing was done 3 times for 5 minutes. Surface roughness was measured initially and at 5, 10, and 15 minutes using a surface roughness tester. Results: The results, tested with One-Way ANOVA and Independent Samples t Test, demonstrated that after brushing for 15 minutes, the soft-bristle toothbrush group showed a significantly different value (p < 0.05) of nanohybrid surface roughness. The group using medium-bristle toothbrushes showed the value of nano hybrid surface roughness significant difference after brushing for 10 minutes. Conclusion: Roughness occurs more rapidly when brushing with medium-bristle tooth brushes than when brushing with soft-bristle toothbrushes.

  17. The Backscattering Phase Function for a Sphere with a Two-Scale Relief of Rough Surface

    NASA Astrophysics Data System (ADS)

    Klass, E. V.

    2017-12-01

    The backscattering of light from spherical surfaces characterized by one and two-scale roughness reliefs has been investigated. The analysis is performed using the three-dimensional Monte-Carlo program POKS-RG (geometrical-optics approximation), which makes it possible to take into account the roughness of objects under study by introducing local geometries of different levels. The geometric module of the program is aimed at describing objects by equations of second-order surfaces. One-scale roughness is set as an ensemble of geometric figures (convex or concave halves of ellipsoids or cones). The two-scale roughness is modeled by convex halves of ellipsoids, with surface containing ellipsoidal pores. It is shown that a spherical surface with one-scale convex inhomogeneities has a flatter backscattering phase function than a surface with concave inhomogeneities (pores). For a sphere with two-scale roughness, the dependence of the backscattering intensity is found to be determined mostly by the lower-level inhomogeneities. The influence of roughness on the dependence of the backscattering from different spatial regions of spherical surface is analyzed.

  18. Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.

    2015-12-01

    The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.

  19. The effects of ultrasonic agitation on supercritical CO2 copper electroplating.

    PubMed

    Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Guan-Lin; Sánchez, Jorge; Shyu, Jenq-Huey

    2018-01-01

    Applying ultrasound to the electroplating process can improve mechanical properties and surface roughness of the coating. Supercritical electroplating process can refine grain to improve the surface roughness and hardness. However, so far there is no research combining the above two processes to explore its effect on the coating. This study aims to use ultrasound (42kHz) in supercritical CO 2 (SC-CO 2 ) electroplating process to investigate the effect of ultrasonic powers and supercritical pressures on the properties of copper films. From the results it was clear that higher ultrasonic irradiation resulted in higher current efficiency, grain refinement, higher hardness, better surface roughness and higher internal stress. SEM was also presented to verify the correctness of the measured data. The optimal parameters were set to obtain the deposit at pressure of 2000psi and ultrasonic irradiation of 0.157W/cm 3 . Compared with SC-CO 2 electroplating process, the current efficiency can be increased from 77.57% to 93.4%, the grain size decreases from 24.34nm to 22.45nm, the hardness increases from 92.87Hv to 174.18Hv, and the surface roughness decreases from 0.83μm to 0.28μm. Therefore, this study has successfully integrated advantages of ultrasound and SC-CO 2 electroplating, and proved that applied ultrasound to SC-CO 2 electroplating process can significantly improve the mechanical properties of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate

    NASA Astrophysics Data System (ADS)

    Ekinci, Şerafettin

    Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.

Top