Lacunarity study of speckle patterns produced by rough surfaces
NASA Astrophysics Data System (ADS)
Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.
2017-11-01
In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.
Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness
NASA Technical Reports Server (NTRS)
Wang, J. R.
1982-01-01
Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.
NASA Technical Reports Server (NTRS)
Wang, J. R.
1983-01-01
Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.
Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.
Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G
2015-03-07
The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Debapriya; Yang, Jian; Schweizer, Kenneth S.
2015-01-01
Here, we employ a hybrid Monte Carlo plus integral equation theory approach to study how dense fluids of small nanoparticles or polymer chains mediate entropic depletion interactions between topographically rough particles where all interaction potentials are hard core repulsion. The corrugated particle surfaces are composed of densely packed beads which present variable degrees of controlled topographic roughness and free volume associated with their geometric crevices. This pure entropy problem is characterized by competing ideal translational and (favorable and unfavorable) excess entropic contributions. Surface roughness generically reduces particle depletion aggregation relative to the smooth hard sphere case. However, the competition betweenmore » ideal and excess packing entropy effects in the bulk, near the particle surface and in the crevices, results in a non-monotonic variation of the particle-monomer packing correlation function as a function of the two dimensionless length scale ratios that quantify the effective surface roughness. As a result, the inter-particle potential of mean force (PMF), second virial coefficient, and spinodal miscibility volume fraction vary non-monotonically with the surface bead to monomer diameter and particle core to surface bead diameter ratios. A miscibility window is predicted corresponding to an optimum degree of surface roughness that completely destroys depletion attraction resulting in a repulsive PMF. Variation of the (dense) matrix packing fraction can enhance or suppress particle miscibility depending upon the amount of surface roughness. Connecting the monomers into polymer chains destabilizes the system via enhanced contact depletion attraction, but the non-monotonic variations with surface roughness metrics persist.« less
Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.
Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto
2008-04-01
Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N 2 :H 2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe 4 N, and Fe 3 N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.
Roughness effects on thermal-infrared emissivities estimated from remotely sensed images
NASA Astrophysics Data System (ADS)
Mushkin, Amit; Danilina, Iryna; Gillespie, Alan R.; Balick, Lee K.; McCabe, Matthew F.
2007-10-01
Multispectral thermal-infrared images from the Mauna Loa caldera in Hawaii, USA are examined to study the effects of surface roughness on remotely retrieved emissivities. We find up to a 3% decrease in spectral contrast in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 90-m/pixel emissivities due to sub-pixel surface roughness variations on the caldera floor. A similar decrease in spectral contrast of emissivities extracted from MASTER (MODIS/ASTER Airborne Simulator) ~12.5-m/pixel data can be described as a function of increasing surface roughness, which was measured remotely from ASTER 15-m/pixel stereo images. The ratio between ASTER stereo images provides a measure of sub-pixel surface-roughness variations across the scene. These independent roughness estimates complement a radiosity model designed to quantify the unresolved effects of multiple scattering and differential solar heating due to sub-pixel roughness elements and to compensate for both sub-pixel temperature dispersion and cavity radiation on TIR measurements.
Numerical analysis of the bucket surface roughness effects in Pelton turbine
NASA Astrophysics Data System (ADS)
Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.
2013-12-01
The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.
The role of the reflection coefficient in precision measurement of ultrasonic attenuation
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1984-01-01
Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Thompson, T. W.
1977-01-01
Radar cross section data shows that the Gulf Stream has a higher cross section per unit area (interpreted here as a greater roughness) than the water on the continental shelf. A steep gradient in cross section was often seen at the expected location of the western boundary. There were also longer-scale (10-20 km) gradual fluctuations within the stream of significant magnitude. These roughness variations are correlated with the surface shear stress that the local wind imposes on the sea. Using the available surface-truth information concerning the wind speed and direction, an assumed Gulf Stream velocity profile, and high-resolution ocean-surface temperature data obtained by the VHRR onboard a NOAA-NESS polar-orbiting satellite, the present study demonstrates that the computed surface stress variation bears a striking resemblance to the measured radar cross-section variations.
Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices
NASA Astrophysics Data System (ADS)
Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin
2017-02-01
The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.
NASA Astrophysics Data System (ADS)
Aghaei Jouybari, Mostafa; Yuan, Junlin
2017-11-01
Direct numerical simulations of turbulent channel flows are carried out over two surfaces: a synthesized sand-grain surface and a realistic turbine roughness that is characterized by more prominent large-scale surface features. To separate the effects of wall-normal variation of the roughness area fraction from the (true) variation of flow statistics, the governing equations are area-averaged using intrinsic averaging, contrary to the usually practice based on the total area (i.e., superficial averaging). Additional terms appear in the mean-momentum equation resulted from the wall-normal variation of the solid fraction and play a role in the near-wall balance. Results from surfaces with a step solidity function (e.g., cubes) will also be discussed. Compared to the sand grains, the turbine surface generates stronger form-induced fluctuations, despite weaker dispersive shear stress. This is associated with more significant form-induced productions (comparable to shear production) in Reynolds stress budgets, weaker pressure work, and, consequently, more anisotropic redistribution of turbulent kinetic energy in the roughness sublayer, which potentially leads to different turbulent responses between the two surfaces in non-equilibrium flows.
Effect of film slicks on near-surface wind
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga
2016-09-01
The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.
Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds
NASA Astrophysics Data System (ADS)
Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh
2016-02-01
A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.
Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles
2017-01-01
Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.
Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences
Zuluaga-Ramírez, Pablo; Arconada, Álvaro; Frövel, Malte; Belenguer, Tomás; Salazar, Félix
2015-01-01
We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others. PMID:25760056
Pressure variation of developed lapping tool on surface roughness
NASA Astrophysics Data System (ADS)
Hussain, A. K.; Lee, K. Q.; Aung, L. M.; Abu, A.; Tan, L. K.; Kang, H. S.
2018-01-01
Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.
Kasem, Haytam; Cohen, Yossi
2017-08-04
Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching
2016-01-01
Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.
NASA Technical Reports Server (NTRS)
Joseph, A.T.; Lang, R.; O'Neill, P.E.; van der Velde, R.; Gish, T.
2008-01-01
A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval uncertainty depending on the sensing configuration. The effects of surface roughness variations are found to be smallest for observations acquired at a view angle of 55 degrees and HH polarization. A possible explanation for this result is that at 55 degrees and HH polarization the effect of vertical surface height changes on the observed radar response are limited because the microwaves travel parallel to the incident plane and as a result will not interact directly with vertically oriented soil structures.
Calculations of microwave brightness temperature of rough soil surfaces: Bare field
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Wang, J. R.
1985-01-01
A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.
Rock discontinuity surface roughness variation with scale
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2017-04-01
ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.
NASA Astrophysics Data System (ADS)
Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.
2015-01-01
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
NASA Astrophysics Data System (ADS)
Marras, L.; Fontana, R.; Gambino, M. C.; Greco, M.; Materazzi, M.; Pampaloni, E.; Pezzati, L.; Poggi, P.
The knowledge of the shape of an artwork is an important element for its study and conservation. When dealing with a stone statue, roughness measurement is a very useful contribution to document its surface conditions, to assess either changes due to restoration intervention or surface decays due to weathering agents, and to monitor its time-evolution in terms of shape variations. In this work we present the preliminary results of the statistical analysis carried out on acquired data relative to six areas of the Michelangelo's David marble statue, representative of differently degraded surfaces. Determination of the roughness and its relative characteristic wavelength is shown.
The effects of soil moisture, surface roughness, and vegetation on L-band emission and backscatter
NASA Technical Reports Server (NTRS)
Wang, James R.; Shiue, J. C.; Engman, Edwin T.; Schmugge, Thomas J.; Mo, Tsan
1987-01-01
Measurements performed with SIR-B at 1.28 GHz and an airborne multiple-beam push-broom radiometer at 1.4 GHz over agricultural fields near Fresno, California are examined. A theoretical model (Kirchhoff approximation) was used to assess the effects of surface roughness and vegetation (alfalfa and lettuce) with respect to the responses of microwave emission and backscatter to soil-moisture variations. It is found that the surface roughness plays a dominant role compared to the vegetation cover in the microwave backscatter.
Simple model of surface roughness for binary collision sputtering simulations
NASA Astrophysics Data System (ADS)
Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew
2017-02-01
It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.
Determining Surface Roughness in Urban Areas Using Lidar Data
NASA Technical Reports Server (NTRS)
Holland, Donald
2009-01-01
An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
Influence of cutting data on surface quality when machining 17-4 PH stainless steel
NASA Astrophysics Data System (ADS)
Popovici, T. D.; Dijmărescu, M. R.
2017-08-01
The aim of the research presented in this paper is to analyse the cutting data influence upon surface quality for 17-4 PH stainless steel milling machining. The cutting regime parameters considered for the experiments were established using cutting regimes from experimental researches or from industrial conditions as basis, within the recommended ranges. The experimental program structure was determined by taking into account compatibility and orthogonality conditions, minimal use of material and labour. The machined surface roughness was determined by measuring the Ra roughness parameter, followed by surface profile registration in the form of graphics which were saved on a computer with MarSurf PS1Explorer software. Based on Ra roughness parameter, maximum values were extracted from these graphics and the influence charts of the cutting regime parameters upon surface roughness were traced using Microsoft Excel software. After a thorough analysis of the resulting data, relevant conclusions were drawn, presenting the interdependence between the surface roughness of the machined 17-4 PH samples and the cutting data variation.
Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Haynes, M.
2015-12-01
The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.
High-precision surface analysis of the roughness of Michelangelo's David
NASA Astrophysics Data System (ADS)
Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Materazzi, Marzia; Pampaloni, Enrico; Pezzati, Luca
2003-10-01
The knowledge of the shape of an artwork is an important element for its study and conservation. When dealing with a statue, roughness measurement is a very useful contribution to document its surface conditions, to assess either changes due to restoration intervention or surface decays due to wearing agents, and to monitor its time-evolution in terms of shape variations. In this work we present the preliminary results of the statistical analysis carried out on acquired data relative to six areas of the Michelangelo"s David marble statue, representative of differently degraded surfaces. Determination of the roughness and its relative characteristic wavelength is shown.
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
Use of upscaled elevation and surface roughness data in two-dimensional surface water models
Hughes, J.D.; Decker, J.D.; Langevin, C.D.
2011-01-01
In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2017-04-01
In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.
Roughness Measurement of Dental Materials
NASA Astrophysics Data System (ADS)
Shulev, Assen; Roussev, Ilia; Karpuzov, Simeon; Stoilov, Georgi; Ignatova, Detelina; See, Constantin von; Mitov, Gergo
2016-06-01
This paper presents a roughness measurement of zirconia ceramics, widely used for dental applications. Surface roughness variations caused by the most commonly used dental instruments for intraoral grinding and polishing are estimated. The applied technique is simple and utilizes the speckle properties of the scattered laser light. It could be easily implemented even in dental clinic environment. The main criteria for roughness estimation is the average speckle size, which varies with the roughness of zirconia. The algorithm used for the speckle size estimation is based on the normalized autocorrelation approach.
NASA Astrophysics Data System (ADS)
Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang
2017-07-01
We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.
Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley
NASA Technical Reports Server (NTRS)
Daily, M.; Elachi, C.; Farr, T.; Stromberg, W.; Williams, S.; Schaber, G.
1978-01-01
Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry.
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Knupp, K. R.; Molthan, A.; Coleman, T.
2017-12-01
Northern Alabama is among the most tornado-prone regions in the United States. This region has a higher degree of spatial variability in both terrain and land cover than the more frequently studied North American Great Plains region due to its proximity to the southern Appalachian Mountains and Cumberland Plateau. More research is needed to understand North Alabama's high tornado frequency and how land surface heterogeneity influences tornadogenesis in the boundary layer. Several modeling and simulation studies stretching back to the 1970's have found that variations in the land surface induce tornadic-like flow near the surface, illustrating a need for further investigation. This presentation introduces research investigating the hypothesis that horizontal gradients in land surface roughness, normal to the direction of flow in the boundary layer, induce vertically oriented vorticity at the surface that can potentially aid in tornadogenesis. A novel approach was implemented to test this hypothesis using a GIS-based quadrant pattern analysis method. This method was developed to quantify spatial relationships and patterns between horizontal variations in land surface roughness and locations of tornadogenesis. Land surface roughness was modeled using the Noah land surface model parameterization scheme which, was applied to MODIS 500 m and Landsat 30 m data in order to compare the relationship between tornadogenesis locations and roughness gradients at different spatial scales. This analysis found a statistical relationship between areas of higher roughness located normal to flow surrounding tornadogenesis locations that supports the tested hypothesis. In this presentation, the innovative use of satellite remote sensing data and GIS technologies to address interactions between the land and atmosphere will be highlighted.
NASA Technical Reports Server (NTRS)
Blumberg, Dan G.; Greeley, Ronald
1992-01-01
The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.
NASA Astrophysics Data System (ADS)
Greenhagen, B.; Paige, D. A.
2007-12-01
It is well known that surface roughness affects spectral slope in the infrared. For the first time, we applied a three-dimensional thermal model to a high resolution lunar topography map to study the effects of surface roughness on lunar thermal emission spectra. We applied a numerical instrument model of the upcoming Diviner Lunar Radiometer Experiment (DLRE) to simulate the expected instrument response to surface roughness variations. The Diviner Lunar Radiometer Experiment (DLRE) will launch in late 2008 onboard the Lunar Reconnaissance Orbiter (LRO). DLRE is a nine-channel radiometer designed to study the thermal and petrologic properties of the lunar surface. DLRE has two solar channels (0.3-3.0 μm high/low sensitivity), three mid-infrared petrology channels (7.55-8.05, 8.10-8.40 8.40-8.70 μm), and four thermal infrared channels (12.5-25, 25-50, 50-100, and 100-200 μm). The topographic data we used was selected from a USGS Hadley Rille DEM (from Apollo 15 Panoramic Camera data) with 10 m resolution (M. Rosiek; personal communication). To remove large scale topographic features, we applied a 200 x 200 pixel boxcar high-pass filter to a relatively flat portion of the DEM. This "flattened" surface roughness map served as the basis for much of this study. We also examined the unaltered topography. Surface temperatures were calculated using a three-dimensional ray tracing thermal model. We created temperature maps at numerous solar incidence angles with nadir viewing geometry. A DLRE instrument model, which includes filter spectral responses and detector fields of view, was applied to the high resolution temperature maps. We studied both the thermal and petrologic effects of surface roughness. For the thermal study, the output of the optics model is a filter specific temperature, scaled to a DLRE footprint of < 500 m. For the petrologic study, we examined the effect of the surface roughness induced spectral slope on the DLRE's ability to locate the Christiansen Feature, which is a good compositional indicator. With multiple thermal infrared channels over a wide spectral range, DLRE will be well suited to measure temperature variations due to surface roughness. Any necessary compensation (e.g. correction for spectral slope) to the mid-infrared petrology data will be performed.
Cury, Maiza S; Silva, Camilla B; Nogueira, Ruchele D; Campos, Michelle G D; Palma-Dibb, Regina G; Geraldo-Martins, Vinicius R
2018-02-01
The treatments for dentin hypersensitivity (DH) may change the surface roughness of the root dentin, which can lead to biofilm accumulation, increasing the risk of root caries. The aim was to compare the surface roughness of root dentin after different treatments of DH and the biofilm formation on those surfaces. After initial surface roughness (Sa) assessment, 50 bovine root fragments received the following treatments (n = 10): G 1-no treatment; G2-5% sodium fluoride varnish; G3-professional application of a desensitizing dentifrice; G4-toothbrushing with a desensitizing dentifrice; and G5-diode laser application (908 nm; 1.5 W, 20 s). The Sa was reevaluated after treatments. Afterward, all samples were incubated in a suspension of Streptococcus mutans at 37 °C for 24 h. The colony-forming units (CFU) were counted using a stereoscope, and the results were expressed in CFU/mL. The one-way ANOVA and the Tukey's tests compared the roughness data and the results obtained on the bacterial adhesion test (α = 5%). G2 (2.3 ± 1.67%) showed similar Sa variation than G1 (0.25 ± 0.41%) and G5 (5.69 ± 0.99%), but different from group G3 (9.05 ± 2.39%). Group 4 showed the highest Sa variation (30.02 ± 3.83%; p < 0.05). Bacterial adhesion was higher in G4 (2208 ± 211.9), suggesting that bacterial growth is greater on rougher surfaces. The diode laser and the conventional treatments for DH may change the surface roughness of the root dentin, but only brushing with desensitizing dentifrice induced a higher bacteria accumulation on root dentin surface.
NASA Astrophysics Data System (ADS)
Solař, P.; Kylián, O.; Marek, A.; Vandrovcová, M.; Bačáková, L.; Hanuš, J.; Vyskočil, J.; Slavínská, D.; Biederman, H.
2015-01-01
Titanium is one of the most common materials employed for production of implants, which is due to its good biocompatibility. However, the colonization of titanium surface by osteoblast cells may be influenced by its roughness and therefore precise control of roughness of titanium surface as well as identification of its optimal value for growth of cells is of high importance. In this study the nanorough titanium surfaces were prepared on polished disks of TiAlV by two step method of deposition. In the first step TiAlV were coated by nanoparticles generated by gas aggregation sources. Such prepared films of nanoparticles were subsequently covered with a titanium overlayer. Different values of surface roughness in the range 1-100 nm were achieved by variation of the size and number of the nanoparticles. Such prepared surfaces were subsequently used for investigation of influence of roughness of titanium surfaces on the adhesion of human osteoblast-like MG-63 cells. It was found out that 7 days after seeding the highest number of adhering cells was observed for samples with root-mean-square roughness of 30 nm.
NASA Astrophysics Data System (ADS)
Forooghi, Pourya; Stroh, Alexander; Schlatter, Philipp; Frohnapfel, Bettina
2018-04-01
Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Δ defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Δ =0 ). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045 h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.
The influence of surface roughness on volatile transport on the Moon
NASA Astrophysics Data System (ADS)
Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.
2018-01-01
The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria
2018-03-01
Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.
A step forward in the study of the electroerosion by optical methods
NASA Astrophysics Data System (ADS)
Aparicio, R.; Gale, M. F. Ruiz; Hogert, E. N.; Landau, M. R.; Gaggioli, y. N. G.
2003-05-01
This work develops two theoretical models of surfaces to explain the behavior of the light scattered by samples that suffers some alteration. In a first model, it is evaluated the mean intensity scattered by the sample, analyzing the different curves obtained as function of the eroded/total surface ratio. The theoretical results are compared with those obtained experimentally. It can be seen that there exists a strong relation between the electroerosion level and the light scattered by the sample. A second model analyzes a surface with random changes in its roughness. A translucent surface with its roughness changing in a controlled way is studied. Then, the correlation coefficient variation as function of the roughness variation is determined by the transmission speckle correlation method. The obtained experimental values are compared with those obtained with this model. In summary, it can be shown that the first- and second-order statistics properties of the transmitted or reflected light by a sample with a variable topography can be taken account as a parameter to analyze these morphologic changes.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan
2016-07-01
Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.
Fractal characterization and wettability of ion treated silicon surfaces
NASA Astrophysics Data System (ADS)
Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.
2017-02-01
Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
Modeling and experiments of the adhesion force distribution between particles and a surface.
You, Siming; Wan, Man Pun
2014-06-17
Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.
Ice Roughness and Thickness Evolution on a Swept NACA 0012 Airfoil
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching
2017-01-01
Several recent studies have been performed in the Icing Research Tunnel (IRT) at NASA Glenn Research Center focusing on the evolution, spatial variations, and proper scaling of ice roughness on airfoils without sweep exposed to icing conditions employed in classical roughness studies. For this study, experiments were performed in the IRT to investigate the ice roughness and thickness evolution on a 91.44-cm (36-in.) chord NACA 0012 airfoil, swept at 30-deg with 0deg angle of attack, and exposed to both Appendix C and Appendix O (SLD) icing conditions. The ice accretion event times used in the study were less than the time required to form substantially three-dimensional structures, such as scallops, on the airfoil surface. Following each ice accretion event, the iced airfoils were scanned using a ROMER Absolute Arm laser-scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger to determine the spatial roughness variations along the surfaces of the iced airfoils. The resulting measurements demonstrate linearly increasing roughness and thickness parameters with ice accretion time. Further, when compared to dimensionless or scaled results from unswept airfoil investigations, the results of this investigation indicate that the mechanisms for early stage roughness and thickness formation on swept wings are similar to those for unswept wings.
MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.
2004-01-01
The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such as the southwestern United States, where surface roughness has large spatial and temporal variations. ?? 2004 Elsevier B.V. All rights reserved.
High frequency acoustic propagation under variable sea surfaces
NASA Astrophysics Data System (ADS)
Senne, Joseph
This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.
Study on light scattering characterization for polishing surface of optical elements
NASA Astrophysics Data System (ADS)
Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo
2017-02-01
Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.
Surface wettability of silicon substrates enhanced by laser ablation
NASA Astrophysics Data System (ADS)
Tseng, Shih-Feng; Hsiao, Wen-Tse; Chen, Ming-Fei; Huang, Kuo-Cheng; Hsiao, Sheng-Yi; Lin, Yung-Sheng; Chou, Chang-Pin
2010-11-01
Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.
Yuan, Wu-Zhi; Zhang, Li-Zhi
2018-06-22
In this study, pinning and depinning of the contact line during droplet evaporation on the rough surfaces with randomly distributed structures is theoretically analyzed and numerically investigated. A fast Fourier transformation (FFT) method is used to generate the rough surfaces, whose skewness ( Sk), kurtosis ( K), and root-mean-square ( Rq) are obtained from real surfaces. A thermal multiphase LB model is proposed to simulate the isothermal pinning and depinning processes. The evaporation processes are recorded with the variations in contact angle, contact radius, and drop shape. It is found that the drops sitting on rough surfaces show different behavior from those on smoother surfaces. The former shows a pinned contact line during almost the whole lifetime. By contrast, the latter experiences a stick-slip-jump behavior until the drop disappears. At mesoscopic scale, the pinning of the contact line is actually a slow motion rather than a complete immobilization at the sharp edges. The dynamic equilibrium is achieved by the self-adjustment of the contact line according to each edge.
The influence of surface roughness of deserts on the July circulation - A numerical study
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Smith, W. E.
1985-01-01
The effect of the low surface roughness characteristics of deserts on atmospheric circulation in July is examined using numerical simulations with the GCM of the Goddard Laboratory for Atmospheric Science (GLAS). Identical sets of simulations were carried out with the model starting from the initial state of the atmosphere on June 15, for the years 1979 and 1980. The first simulation included a surface roughness factor of 45 cm, and the second set had a surface roughness factor of 0.02 cm for desert regions, and 45 cm for all other land. A comparative analysis of the numerical data was carried out in order to study the variations for the desert regions. It is shown that rainfall in the Sahara desert was reduced significantly in the data set with the nonuniform surface roughness factor in comparison with the other data set. The inter-tropical convergence zone (ITCZ) moved southward to about 15 degrees, which was close to its observed location at about 10 degrees N. In other deserts, the North American Great Plains, Rajputana in India, and the Central Asian desert, no similar changes were observed. Detailed contour maps of the weather conditions in the different desert regions are provided.
Effect of Soil Roughness on Overland Flow Connectivity at Different Slope Scenarios
NASA Astrophysics Data System (ADS)
Penuela Fernandez, A.; Javaux, M.; Bielders, C.
2013-12-01
Runoff generation, which involves the gradual depression filling and connection of overflowing depressions, is affected by surface roughness and slope. Therefore, quantifying and understanding the effects of surface roughness and slope on overland flow connectivity at the sub-grid scale can potentially improve current hydrological modeling and runoff prediction. However, little work has been conducted on quantifying these effects. This study examines the role of surface roughness on overland flow connectivity at the plot scale at different slopes. For this purpose, standard multi-Gaussian synthetic fields (6 × 6 m) with contrasting surface roughnesses, as defined by the parameters of the variogram (sill and range) of surface elevation, were used. In order to quantify the effects of soil roughness and slope on overland flow connectivity a functional connectivity indicator, so-called the Relative Surface Connection function (Antoine et al., 2009), was applied. This indicator, that represents the ratio of area connected to the outflow boundary (C) in function of the depression storage (DS), is able to capture runoff-relevant connectivity properties. Three parameters characterizing the connectivity function were used to quantify the effects of roughness and slope. These parameters are: C at DS = 0 (CDS=0), connectivity threshold (CT) and maximum depression storage (MDS). Results showed that variations on soil roughness and slope greatly affect the three parameters showing in some cases a clear relationship between structural connectivity and functional connectivity, such as between the ratio sill/range and MDS and between CDS=0 and range. This relationship, described by mathematical expressions, not only allows the quantification and comparison of the effects of soil roughness and slope in overland flow connectivity but also the prediction of these effects by the study of the variogram.
Analysis of the surface effects on adhesion in MEMS structures
NASA Astrophysics Data System (ADS)
Rusu, F.; Pustan, M.; Bîrleanu, C.; Müller, R.; Voicu, R.; Baracu, A.
2015-12-01
One of the main failure causes in microelectromechanical systems (MEMS) is stiction. Stiction is the adhesion of contacting surfaces due to surface forces. Adhesion force depends on the operating conditions and is influenced by the contact area. In this study, the adhesion force between MEMS materials and the AFM tips is analyzed using the spectroscopy in point mode of the AFM. The aim is to predict the stiction failure mode in MEMS. The investigated MEMS materials are silicon, polysilicon, platinum, aluminum, and gold. Three types of investigations were conducted. The first one aimed to determine the variation of the adhesion force with respect to the variation of the roughness. The roughness has a strong influence on the adhesion because the contact area between components increases if the roughness decreases. The second type of investigation aimed to determine the adhesion force in multiple points of each considered sample. The values obtained experimentally for the adhesion force were also validated using the JKR and DMT models. The third type of investigation was conducted with the purpose of determining the influence of the temperature on the adhesion force.
NASA Astrophysics Data System (ADS)
Tejasvi, Ravi; Basu, Suddhasatwa
2017-12-01
A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.
NASA Astrophysics Data System (ADS)
Riahi, Samira; Niroumand, Behzad; Dorri Moghadam, Afsaneh; Rohatgi, Pradeep K.
2018-05-01
In the present study, variation in surface wetting behavior of a hypoeutectic cast iron with its microstructural features and surface roughness was investigated. Samples with an identical composition, i.e. Fe-3.2 wt%C.E., and different microstructures (a gray cast iron with A-type flake graphite and a white cast iron) were fabricated by gravity casting of molten cast iron in a chill mold at different cooling rates. A variation of surface roughness was also developed by polishing, a four-stage electroetching and a four-stage mechanical abrading on the samples. Roughness and water contact angles of all surfaces were then measured. The surface roughness factor and the solid fraction in contact with water by the Wenzel and Cassie-Baxter contact models were also calculated and compared with the corresponding measured contact angles to find out which regime was active. Results indicated that the surface microstructure and the type of constituents present at the surface influenced the cast iron surface wettability and that it was possible to change the surface contact angle by modification of the surface microstructure. The mechanically abraded gray cast iron followed the Wenzel-type regime while the electroetched surfaces of gray cast iron exhibited a transition from Wenzel to Cassie-Baxter type regime. In white cast iron, the results indicated Wenzel type behavior in the electroetched samples while for the mechanically abraded samples, none of these two models could predict the wetting behavior. Furthermore, the wetting angles of both gray and white cast irons were measured after 1, 2, 3 and 4 weeks of air exposure. The results showed that the wetting angles of both samples increased to above 90° after one week of air exposure which was likely due to adsorption of low surface energy hydrocarbons on the surfaces.
1988-03-01
The Theory And Design Of Gas Turbines And Jet Engines . New York McGraw-Hill Book Company Incorporated, 1950. 14. Evans, R. L. The Effects Of Free...Fulfillment of the Requirement for the degree of Master of Science in Aeronautical Engineering SQN.LDR (MAJ.) Salman Absar Pakistan Air Force March 1988...center blade . Variation of the above parameters was studied for a cascade with NACA 65-A506 aerofoils . Three different categories of surface roughness
Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.
1990-09-01
The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.
NASA Astrophysics Data System (ADS)
Cierniewski, Jerzy; Ceglarek, Jakub; Karnieli, Arnon; Królewicz, Sławomir; Kaźmierowski, Cezary; Zagajewski, Bogdan
2017-10-01
The objective of this study was to assess the relationship between the hyperspectral reflectance of soils and their albedo, measured under various roughness conditions. 108 soil surface measurements were conducted in Poland and Israel. Each surface was characterised by its diurnal albedo variation in the field as well as by its reflectance spectra obtained in the laboratory. The best fit to the model was achieved by post-processing manipulation of the spectra, namely second derivate transformation. Using a stepwise elimination process, four spectral wavelengths and the roughness index were selected for modelling. The resulting models allowed the albedo of a soil to be predicted for its different roughness states and any solar zenith angle, provided that hyperspectral reflectance data is available.
Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng
2016-06-01
In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel topographic textures which are sensitive to the topographic changes, while the ejecta deposits of fresh craters appear obvious photometric textures which are sensitive to the brightness variations.
Continuous-wave ultrasound reflectometry for surface roughness imaging applications
Kinnick, R. R.; Greenleaf, J. F.; Fatemi, M.
2009-01-01
Background Measurement of surface roughness irregularities that result from various sources such as manufacturing processes, surface damage, and corrosion, is an important indicator of product quality for many nondestructive testing (NDT) industries. Many techniques exist, however because of their qualitative, time-consuming and direct-contact modes, it is of some importance to work out new experimental methods and efficient tools for quantitative estimation of surface roughness. Objective and Method Here we present continuous-wave ultrasound reflectometry (CWUR) as a novel nondestructive modality for imaging and measuring surface roughness in a non-contact mode. In CWUR, voltage variations due to phase shifts in the reflected ultrasound waves are recorded and processed to form an image of surface roughness. Results An acrylic test block with surface irregularities ranging from 4.22 μm to 19.05 μm as measured by a coordinate measuring machine (CMM), is scanned by an ultrasound transducer having a diameter of 45 mm, a focal distance of 70 mm, and a central frequency of 3 MHz. It is shown that CWUR technique gives very good agreement with the results obtained through CMM inasmuch as the maximum average percent error is around 11.5%. Conclusion Images obtained here demonstrate that CWUR may be used as a powerful noncontact and quantitative tool for nondestructive inspection and imaging of surface irregularities at the micron-size level with an average error of less than 11.5%. PMID:18664399
NASA Astrophysics Data System (ADS)
Li, Jie; Guo, LiXin; He, Qiong; Wei, Bing
2012-10-01
An iterative strategy combining Kirchhoff approximation^(KA) with the hybrid finite element-boundary integral (FE-BI) method is presented in this paper to study the interactions between the inhomogeneous object and the underlying rough surface. KA is applied to study scattering from underlying rough surfaces, whereas FE-BI deals with scattering from the above target. Both two methods use updated excitation sources. Huygens equivalence principle and an iterative strategy are employed to consider the multi-scattering effects. This hybrid FE-BI-KA scheme is an improved and generalized version of previous hybrid Kirchhoff approximation-method of moments (KA-MoM). This newly presented hybrid method has the following advantages: (1) the feasibility of modeling multi-scale scattering problems (large scale underlying surface and small scale target); (2) low memory requirement as in hybrid KA-MoM; (3) the ability to deal with scattering from inhomogeneous (including coated or layered) scatterers above rough surfaces. The numerical results are given to evaluate the accuracy of the multi-hybrid technique; the computing time and memory requirements consumed in specific numerical simulation of FE-BI-KA are compared with those of MoM. The convergence performance is analyzed by studying the iteration number variation caused by related parameters. Then bistatic scattering from inhomogeneous object of different configurations above dielectric Gaussian rough surface is calculated and the influences of dielectric compositions and surface roughness on the scattering pattern are discussed.
NASA Astrophysics Data System (ADS)
Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.
2014-12-01
Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.
Role of roughness parameters on the tribology of randomly nano-textured silicon surface.
Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S
2011-10-01
This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.
Fujii, Mie; Kitasako, Yuichi; Sadr, Alireza; Tagami, Junji
2011-01-01
This study aimed to evaluate enamel surface roughness (Ra) and pH before and after erosion by soft drinks. Enamel was exposed to a soft drink (cola, orange juice or green tea) for 1, 5 or 60 min; Ra was measured using contact-stylus surface profilometry (SSP) and non-contact focus variation 3D microscope (FVM). Surface pH was measured using a micro pH sensor. Data were analyzed at significance level of alpha=0.05. There was a significant correlation in Ra between SSP and FVM. FVM images showed no changes in the surface morphology after various periods of exposure to green tea. Unlike cola and orange juice, exposure to green tea did not significantly affect Ra or pH. A significant correlation was observed between surface pH and Ra change after exposure to the drinks. Optical surface analysis and micro pH sensor may be useful tools for non-damaging, quantitative assessment of soft drinks erosion on enamel.
NASA Astrophysics Data System (ADS)
Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat
2017-03-01
The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.
Variation in bed level shear stress on surfaces sheltered by nonerodible roughness elements
NASA Astrophysics Data System (ADS)
Sutton, Stephen L. F.; McKenna-Neuman, Cheryl
2008-09-01
Direct bed level observations of surface shear stress, pressure gradient variability, turbulence intensity, and fluid flow patterns were carried out in the vicinity of cylindrical roughness elements mounted in a boundary layer wind tunnel. Paired corkscrew vortices shed from each of the elements result in elevated shear stress and increased potential for the initiation of particle transport within the far wake. While the size and shape of these trailing vortices change with the element spacing, they persist even for large roughness densities. Wake interference coincides with the impingement of the upwind horseshoe vortices upon one another at a point when their diameter approaches half the distance between the roughness elements. While the erosive capability of the horseshoe vortex has been suggested for a variety of settings, the present study shows that the fluid stress immediately beneath this coherent structure is actually small in comparison to that caused by compression of the incident flow as it is deflected around the element and attached vortex. Observations such as these are required for further refinement of models of stress partitioning on rough surfaces.
Global boundary flattening transforms for acoustic propagation under rough sea surfaces.
Oba, Roger M
2010-07-01
This paper introduces a conformal transform of an acoustic domain under a one-dimensional, rough sea surface onto a domain with a flat top. This non-perturbative transform can include many hundreds of wavelengths of the surface variation. The resulting two-dimensional, flat-topped domain allows direct application of any existing, acoustic propagation model of the Helmholtz or wave equation using transformed sound speeds. Such a transform-model combination applies where the surface particle velocity is much slower than sound speed, such that the boundary motion can be neglected. Once the acoustic field is computed, the bijective (one-to-one and onto) mapping permits the field interpolation in terms of the original coordinates. The Bergstrom method for inverse Riemann maps determines the transform by iterated solution of an integral equation for a surface matching term. Rough sea surface forward scatter test cases provide verification of the method using a particular parabolic equation model of the Helmholtz equation.
Measurements of Local Strain Variation in Si(1-x)Ge(x)/Si Heterostructures
NASA Technical Reports Server (NTRS)
Bell, L. D.; Kaiser, W. J.; Manion, S. J.; Milliken, S. J.; Pike, W. T.; Fathauer, R. W.
1995-01-01
The energy splitting of the conduction-band minimum of Si(1-x), Ge(x), due to strain has been directly measured by the application of ballistic-electron-emission microscope (BEEM) spectroscopy to Ag/Si(1-x), Ge(x) structures. Experimental values for this conduction-band splitting agree well with calculations. For Au/Si(1-x), Ge(x), however, heterogeneity in the strain of the Si(1-x), Ge(x) layer is introduced by deposition of the Au. This variation is attributed to species interdiffusion, which produces a rough Si(1-x)Ge(x) surface. Preliminary modeling indicates that the observed roughness is consistent with the strain variation measured by BEEM.
NASA Astrophysics Data System (ADS)
Physick, W. L.; Garratt, J. R.
1995-04-01
For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.
Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.
We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less
NASA Astrophysics Data System (ADS)
Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul
2018-01-01
Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.
Separating local topography from snow effects on momentum roughness in mountain regions
NASA Astrophysics Data System (ADS)
Diebold, M.; Katul, G. G.; Calaf, M.; Lehning, M.; Parlange, M. B.
2013-12-01
Parametrization of momentum surface roughness length in mountainous regions continues to be an active research topic given its application to improved weather forecasting and sub-grid scale representation of mountainous regions in climate models. A field campaign was conducted in the Val Ferret watershed (Swiss Alps) to assess the role of topographic variability and snow cover on momentum roughness. To this end, turbulence measurements in a mountainous region with and without snow cover have been analyzed. A meteorological mast with four sonic anemometers together with temperature and humidity sensors was installed at an elevation of 2500 m and data were obtained from October 2011 until May 2012. Because of the long-term nature of these experiments, natural variability in mean wind direction allowed a wide range of terrain slopes and snow depths to be sampled. A theoretical framework that accounted only for topographically induced pressure perturbations in the mean momentum balance was used to diagnose the role of topography on the effective momentum roughness height as inferred from the log-law. Surface roughness depended systematically on wind direction but was not significantly influenced by the presence of snow depth variation. Moreover, the wind direction and so the surface roughness influenced the normalized turbulent kinetic energy, which in theory should not depend on these factors in the near-neutral atmospheric surface layer. The implications of those findings to modeling momentum roughness heights and turbulent kinetic energy (e.g. in conventional K-epsilon closure) in complex terrain are briefly discussed.
NASA Astrophysics Data System (ADS)
Aydin, Ismail; Colakoglu, Gursel
2005-10-01
Although extensive research has been conducted in wood surface quality analysis, a unified approach to surface quality characterisation does not exist. Measurements of the variation in surface roughness and surface colour are used widely for the evaluation of wood surface quality. Colour is a basic visual feature for wood and wood-based products. Colour measurement is one of the quality control tests that should be carried out because the colour deviations are spotted easily by the consumers. On the other hand, a common problem faced by plywood manufacturers is panel delamination, for which a major cause is poor quality glue-bonds resulting from rough veneer. Rotary cut veneers with dimensions of 500 mm × 500 mm × 2 mm manufactured from alder ( Alnus glutinosa subsp. barbata) and beech ( Fagus orientalis Lipsky) logs were used as materials in this study. Veneer sheets were oven-dried in a veneer dryer at 110 °C (normal drying temperature) and 180 °C (high drying temperature) after peeling process. The surfaces of some veneers were then exposed at indoor laboratory conditions to obtain inactive wood surfaces for glue bonds, and some veneers were treated with borax, boric acid and ammonium acetate solutions. After these treatments, surface roughness and colour measurements were made on veneer surfaces. High temperature drying process caused a darkening on the surfaces of alder and beech veneers. Total colour change value (Δ E*) increased linear with increasing exposure time. Among the treatment solutions, ammonium acetate caused the biggest colour change while treatment with borax caused the lowest changes in Δ E* values. Considerable changes in surface roughness after preservative treatment did not occur on veneer surfaces. Generally, no clear changes were obtained or the values mean roughness profile ( Ra) decreased slightly in Ra values after the natural inactivation process.
NASA Astrophysics Data System (ADS)
Simeonov, J.; Czapiga, M. J.; Holland, K. T.
2017-12-01
We developed an inversion model for river bathymetry estimation using measurements of surface currents, water surface elevation slope and shoreline position. The inversion scheme is based on explicit velocity-depth and velocity-slope relationships derived from the along-channel momentum balance and mass conservation. The velocity-depth relationship requires the discharge value to quantitatively relate the depth to the measured velocity field. The ratio of the discharge and the bottom friction enter as a coefficient in the velocity-slope relationship and is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. Completing the inversion requires an estimate of the bulk friction, which in the case of sand bed rivers is a strong function of the size of dune bedforms. We explored the accuracy of existing and new empirical closures that relate the bulk roughness to parameters such as the median grain size diameter, ratio of shear velocity to sediment fall velocity or the Froude number. For given roughness parameterization, the inversion solution is determined iteratively since the hydraulic roughness depends on the unknown depth. We first test the new hydraulic roughness parameterization using estimates of the Manning roughness in sand bed rivers based on field measurements. The coupled inversion and roughness model is then tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID.
NASA Astrophysics Data System (ADS)
Oubanas, H.; Gejadze, I.; Malaterre, P.-O.; Durand, M.; Wei, R.; Frasson, R. P. M.; Domeneghetti, A.
2018-03-01
Space-borne instruments can measure river water surface elevation, slope, and width. Remote sensing of river discharge in ungauged basins is far more challenging, however. This work investigates the estimation of river discharge from simulated observations of the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission using a variant of the classical variational data assimilation method "4D-Var." The variational assimilation scheme simultaneously estimates discharge, river bathymetry, and bed roughness in the context of a 1.5 D full Saint-Venant hydraulic model. Algorithms and procedures are developed to apply the method to fully ungauged basins. The method was tested on the Po and Sacramento Rivers. The SWOT hydrology simulator was used to produce synthetic SWOT observations at each overpass time by simulating the interaction of SWOT radar measurements with the river water surface and nearby land surface topography at a scale of approximately 1 m, thus accounting for layover, thermal noise, and other effects. SWOT data products were synthesized by vectorizing the simulated radar returns, leading to height and width estimates at 200 m increments along the river centerlines. The ingestion of simulated SWOT data generally led to local improvements on prior bathymetry and roughness estimates which allowed the prediction of river discharge at the overpass times with relative root mean squared errors of 12.1% and 11.2% for the Po and Sacramento Rivers, respectively. Nevertheless, equifinality issues that arise from the simultaneous estimation of bed elevation and roughness may prevent their use for different applications, other than discharge estimation through the presented framework.
A multi-topographical-instrument analysis: the breast implant texture measurement
NASA Astrophysics Data System (ADS)
Garabédian, Charles; Delille, Rémi; Deltombe, Raphaël; Anselme, Karine; Atlan, Michael; Bigerelle, Maxence
2017-06-01
Capsular contracture is a major complication after implant-based breast augmentation. To address this tissue reaction, most manufacturers texture the outer breast implant surfaces with calibrated salt grains. However, the analysis of these surfaces on sub-micron scales has been under-studied. This scale range is of interest to understand the future of silicone particles potentially released from the implant surface and the aetiology of newly reported complications, such as Anaplastic Large Cell Lymphoma. The surface measurements were accomplished by tomography and by two optical devices based on interferometry and on focus variation. The robustness of the measurements was investigated from the tissue scale to the cellular scale. The macroscopic pore-based structure of the textured implant surfaces is consistently measured by the three instruments. However, the multi-scale analyses start to be discrepant in a scale range between 50 µm and 500 µm characteristic of a finer secondary roughness regardless of the pore shape. The focus variation and the micro-tomography would fail to capture this roughness regime because of a focus-related optical artefact and of step-shaped artefact respectively.
NASA Astrophysics Data System (ADS)
Déau, Estelle; Flandes, Alberto; Spilker, Linda J.; Petazzoni, Jérôme
2013-11-01
Typical variations in the opposition effect morphology of laboratory samples at optical wavelengths are investigated to probe the role of the textural properties of the surface (roughness, porosity and grain size). A previously published dataset of 34 laboratory phase curves is re-analyzed and fit with several morphological models. The retrieved morphological parameters that characterize the opposition surge, amplitude, width and slope (A, HWHM and S respectively) are correlated to the single scattering albedo, the roughness, the porosity and the grain size of the samples. To test the universality of the laboratory samples’ trends, we use previously published phase curves of planetary surfaces, including the Moon, satellites and rings of the giant planets. The morphological parameters of the surge (A and HWHM) for planetary surfaces are found to have a non-monotonic variation with the single scattering albedo, similar to that observed in asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94-105), which is unexplained so far. The morphological parameters of the surge (A and HWHM) for laboratory samples seem to exhibit the same non-monotonic variation with single scattering albedo. While the non-monotonic variation with albedo was already observed by Nelson et al. (Nelson, R.M., Hapke, B.W., Smythe, W.D., Hale, A.S., Piatek, J.L. [2004]. Planetary regolith microstructure: An unexpected opposition effect result. In: Mackwell, S., Stansbery, E. (Eds.), Proc. Lunar Sci. Conf. 35, p. 1089), we report here the same variation for the angular width.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface roughness and freestream turbulence, compared with data from the cambered vane airfoil. Stanton numbers, skin friction coefficients, aerodynamic losses, and Reynolds analogy behavior are numerically predicted for a turbine vane using the FLUENT with a k-epsilon RNG model to show the effects of Mach number, mainstream turbulence level, and surface roughness. Comparisons with wake aerodynamic loss experimental data are made. Numerically predicted skin friction coefficients and Stanton numbers are also used to deduce Reynolds analogy behavior on the vane suction and pressure sides.
Hoover, Brian G; Gamiz, Victor L
2006-02-01
The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence theory on the assumption of a random reflective phase screen and an expansion valid for large effective roughness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the sum of an incoherent component and a nonspecular coherent component proportional to an integral of the plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with previously published data in the examination of variations with incident angle, roughness, illumination wavelength, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic autocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results of the linear and parabolic approximations.
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.
2016-12-01
The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the assumption is applicable for the current case, i.e., high relative roughness, is a question. Two other roughness heights, i.e., the vertical roughness scale based on structure functions and viscous sublayer thickness determined from the wall boundary layer are also calculated and compared with the equivalent roughness height.
Wetting Hysteresis at the Molecular Scale
NASA Technical Reports Server (NTRS)
Jin, Wei; Koplik, Joel; Banavar, Jayanth R.
1996-01-01
The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.
Atmospheric stability analysis over statically and dynamically rough surfaces
NASA Astrophysics Data System (ADS)
Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza
2011-11-01
The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.
Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V
2018-05-29
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.
Electromagnetic wave scattering from rough terrain
NASA Astrophysics Data System (ADS)
Papa, R. J.; Lennon, J. F.; Taylor, R. L.
1980-09-01
This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.
Superposition of polarized waves at layered media: theoretical modeling and measurement
NASA Astrophysics Data System (ADS)
Finkele, Rolf; Wanielik, Gerd
1997-12-01
The detection of ice layers on road surfaces is a crucial requirement for a system that is designed to warn vehicle drivers of hazardous road conditions. In the millimeter wave regime at 76 GHz the dielectric constant of ice and conventional road surface materials (i.e. asphalt, concrete) is found to be nearly similar. Thus, if the layer of ice is very thin and thus is of the same shape of roughness as the underlying road surface it cannot be securely detected using conventional algorithmic approaches. The method introduced in this paper extents and applies the theoretical work of Pancharatnam on the superposition of polarized waves. The projection of the Stokes vectors onto the Poincare sphere traces a circle due to the variation of the thickness of the ice layer. The paper presents a method that utilizes the concept of wave superposition to detect this trace even if it is corrupted by stochastic variation due to rough surface scattering. Measurement results taken under real traffic conditions prove the validity of the proposed algorithms. Classification results are presented and the results discussed.
NASA Technical Reports Server (NTRS)
Von Doenhoff, Albert E; Horton, Elmer A
1958-01-01
An investigation was made in the Langley low-turbulence pressure tunnel to determine the effect of size and location of a sandpaper type of roughness on the Reynolds number for transition. Transition was observed by means of a hot-wire anemometer located at various chordwise stations for each position of the roughness. These observations indicated that when the roughness is sufficiently submerged in the boundary layer to provide a substantially linear variation of boundary-layer velocity with distance from the surface up to the top of the roughness, turbulent "spots" begin to appear immediately behind the roughness when the Reynolds number based on the velocity at the top of the roughness height exceeds a value of approximately 600. At Reynolds numbers even slightly below the critical value (value for transition), the sandpaper type of roughness introduced no measurable disturbances into the laminar layer downstream of the roughness. The extent of the roughness area does not appear to have an important effect on the critical value of the roughness Reynolds number.
NASA Astrophysics Data System (ADS)
Laasanen, Mikko S.; Saarakkala, Simo; Töyräs, Juha; Rieppo, Jarno; Jurvelin, Jukka S.
2005-07-01
Previous quantitative 2D-ultrasound imaging studies have demonstrated that the ultrasound reflection measurement of articular cartilage surface sensitively detects degradation of the collagen network, whereas digestion of cartilage proteoglycans has no significant effect on the ultrasound reflection. In this study, the first aim was to characterize the ability of quantitative 2D-ultrasound imaging to detect site-specific differences in ultrasound reflection and backscattering properties of cartilage surface and cartilage-bone interface at visually healthy bovine knee (n = 30). As a second aim, we studied factors controlling ultrasound reflection properties of an intact cartilage surface. The ultrasound reflection coefficient was determined in time (R) and frequency domains (IRC) at medial femoral condyle, lateral patello-femoral groove, medial tibial plateau and patella using a 20 MHz ultrasound imaging instrument. Furthermore, cartilage surface roughness was quantified by calculating the ultrasound roughness index (URI). The superficial collagen content of the cartilage was determined using a FT-IRIS-technique. A significant site-dependent variation was shown in cartilage thickness, ultrasound reflection parameters, URI and superficial collagen content. As compared to R and IRC, URI was a more sensitive parameter in detecting differences between the measurement sites. Ultrasound reflection parameters were not significantly related to superficial collagen content, whereas the correlation between R and URI was high. Ultrasound reflection at the cartilage-bone interface showed insignificant site-dependent variation. The current results suggest that ultrasound reflection from the intact cartilage surface is mainly dependent on the cartilage surface roughness and the collagen content has a less significant role.
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1996-01-01
An apparatus and method for determination of sample thickness and surface depression utilizing ultrasonic pulses is discussed. The sample is held in a predetermined position by a support member having a reference surface. Ultrasonic pulses travel through a medium of known velocity propagation and reflect off the reference surface and a sample surface. Time of flight data of surface echoes are converted to distances between sample surfaces to obtain computer-generated thickness profiles and surface mappings.
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Wiggs, G.
2012-12-01
The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.
NASA Astrophysics Data System (ADS)
Hubbard, A., II; Ryan, J.; Box, J. E.; Snooke, N.
2015-12-01
Surface albedo is a primary control on absorbed radiation and hence ice surface darkening is a powerful amplifier of melt across the margin of the Greenland ice sheet. To investigate the relationship between ice surface roughness and variations in albedo in space and time at ~dm resolution, a suite of Unmanned Aerial Vehicles (UAVs) were deployed from the margin of Russell Glacier between June and August, 2014. The UAVs were equipped with digital and multispectral cameras, GoPros, fast response broadband pyranometers and temperature and humidity sensors. The primary mission was regular repeat longitudinal transects attaining data from the margin to the equilibrium line 80 km into the ice sheet interior and which were complimented by selected watershed and catchment surveys. The pyranometers reliably measure bare ice surface albedo between 0.34 and 0.58 that correlate well against concurrent MODIS data (where available). Repeat digital photogrammetric analysis enables investigation of relationship between changing meso- and micro-scale albedo and melt processes modulated by ice surface roughness that, in turn, are related to the seasonally evolving surface energy balance recorded at three AWS on the flight path.
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.A.E.; Beijerinck, H.C.W.
2005-01-01
Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less
Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief
Smilgies, Detlef-M.; Powers, Judson A.; Bilderback, Donald H.; Thorne, Robert E.
2012-01-01
Interpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble. PMID:22713888
Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-01-01
We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.
Global statistics of microphysical properties of cloud-top ice crystals
NASA Astrophysics Data System (ADS)
van Diedenhoven, B.; Fridlind, A. M.; Cairns, B.; Ackerman, A. S.; Riedi, J.
2017-12-01
Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to "habit". We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.
Global Statistics of Microphysical Properties of Cloud-Top Ice Crystals
NASA Technical Reports Server (NTRS)
Van Diedenhoven, Bastiaan; Fridlind, Ann; Cairns, Brian; Ackerman, Andrew; Riedl, Jerome
2017-01-01
Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.
Variations in Surface Texture of the North Polar Residual Cap of Mars
NASA Technical Reports Server (NTRS)
Milkovich, S. M.; Byrne, S.; Russell, P. S.
2011-01-01
The northern polar residual cap (NPRC) of Mars is a water ice deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters. This roughness manifests as a series of bright mounds and dark hollows in visible images; these bright and dark patches have a characteristic wavelength and orientation. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water ice. Due to the presence of this old ice, it is thought that the NPRC is in a current state of net loss of material a result potentially at odds with impact crater statistics, which suggest ongoing deposition over the past 10-20 Kyr.
Substrate texture affects female cricket walking response to male calling song
NASA Astrophysics Data System (ADS)
Sarmiento-Ponce, E. J.; Sutcliffe, M. P. F.; Hedwig, B.
2018-03-01
Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.
Spontaneous formation of non-uniform double helices for elastic rods under torsion
NASA Astrophysics Data System (ADS)
Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao
2017-02-01
The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory.
Kournetas, N; Spintzyk, S; Schweizer, E; Sawada, T; Said, F; Schmid, P; Geis-Gerstorfer, J; Eliades, G; Rupp, F
2017-08-01
Comparability of topographical data of implant surfaces in literature is low and their clinical relevance often equivocal. The aim of this study was to investigate the ability of scanning electron microscopy and optical interferometry to assess statistically similar 3-dimensional roughness parameter results and to evaluate these data based on predefined criteria regarded relevant for a favorable biological response. Four different commercial dental screw-type implants (NanoTite Certain Prevail, TiUnite Brånemark Mk III, XiVE S Plus and SLA Standard Plus) were analyzed by stereo scanning electron microscopy and white light interferometry. Surface height, spatial and hybrid roughness parameters (Sa, Sz, Ssk, Sku, Sal, Str, Sdr) were assessed from raw and filtered data (Gaussian 50μm and 5μm cut-off-filters), respectively. Data were statistically compared by one-way ANOVA and Tukey-Kramer post-hoc test. For a clinically relevant interpretation, a categorizing evaluation approach was used based on predefined threshold criteria for each roughness parameter. The two methods exhibited predominantly statistical differences. Dependent on roughness parameters and filter settings, both methods showed variations in rankings of the implant surfaces and differed in their ability to discriminate the different topographies. Overall, the analyses revealed scale-dependent roughness data. Compared to the pure statistical approach, the categorizing evaluation resulted in much more similarities between the two methods. This study suggests to reconsider current approaches for the topographical evaluation of implant surfaces and to further seek after proper experimental settings. Furthermore, the specific role of different roughness parameters for the bioresponse has to be studied in detail in order to better define clinically relevant, scale-dependent and parameter-specific thresholds and ranges. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
NASA Astrophysics Data System (ADS)
Ju, Yaping; Zhang, Chuhua
2016-03-01
Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.
A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation
NASA Astrophysics Data System (ADS)
Limozin, Laurent; Bongrand, Pierre; Robert, Philippe
2016-10-01
Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2kBT, in the range of previously proposed rough parts of landscapes models during dissociation.
A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation
Limozin, Laurent; Bongrand, Pierre; Robert, Philippe
2016-01-01
Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2kBT, in the range of previously proposed rough parts of landscapes models during dissociation. PMID:27731375
A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation.
Limozin, Laurent; Bongrand, Pierre; Robert, Philippe
2016-10-12
Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2k B T, in the range of previously proposed rough parts of landscapes models during dissociation.
Mars radar clutter and surface roughness characteristics from MARSIS data
NASA Astrophysics Data System (ADS)
Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.
2018-01-01
Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.
Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission
NASA Technical Reports Server (NTRS)
Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando
2004-01-01
The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Boundary-layer cumulus over land: Some observations and conceptual models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, R.B.
1993-09-01
Starting in 1980, the Boundary Layer Research Team at the University of Wisconsin has been systematically studying the formation and evolution of nonprecipitating boundary-layer cumulus clouds (BLCu) in regions of fair weather (anticyclones) over land (Stull, 1980). Our approach is to quantify the average statistical characteristics of the surface, thermals, boundary layer, and clouds over horizontal regions of roughly 20 km in diameter. Within such a region over land, there is typically quite a variation in land use, and associated variations in surface albedo and moisture.
Comparison of USGS and DLR topographic models of Comet Borrelly and photometric applications
Kirk, R.L.; Howington-Kraus, E.; Soderblom, L.A.; Giese, B.; Oberst, J.
2004-01-01
Stereo analysis of images obtained during the 2001 flyby of Comet Borrelly by NASA's Deep Space 1 (DS1) probe allows us to quantify the shape and photometric behavior of the nucleus. The shape is complex, with planar facets corresponding to the dark, mottled regions of the surface whereas the bright, smooth regions are convexly curved. The photometric as well as textural differences between these regions can be explained in terms of topography (roughness) at and below the image resolution, without invoking significant variations in single-particle properties; the material on Borrelly's surface could be quite uniform. A statistical comparison of the digital elevation models (DEMs) produced from the three highest-resolution images independently at the USGS and DLR shows that their difference standard deviation is 120 m, consistent with a matching error of 0.20 pixel (similar to reported matching accuracies for many other stereo datasets). The DEMs also show some systematic differences attributable to manual versus automatic matching. Disk-resolved photometric modeling of the nucleus using the DEM shows that bright, smooth terrains on Borrelly are similar in roughness (Hapke roughness ?? = 20??) to C-type asteroid Mathilde but slightly brighter and more backscattering (single-scattering albedo w = 0.056, Henyey-Greenstein phase parameter g = -0.32). The dark, mottled terrain is photometrically consistent with the same particles but with roughnesses as large as 60??. Intrinsically darker material is inconsistent with the phase behavior of these regions. Many local radiance variations are clearly related to topography, and others are consistent with a topographic explanation; one need not invoke albedo variations greater than a few tens of percent to explain the appearance of Borrelly. Published by Elsevier Inc.
X-33 Hypersonic Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II
1999-01-01
Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.
NASA Astrophysics Data System (ADS)
Tollerud, H. J.; Fantle, M. S.
2011-12-01
Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that there were no active processes during the summers that changed surface roughness. Images from NASA's MODIS instrument (1640 nm, band 6) delineate winter flooding on the playa. Areas of water in the winter tend to be smoother in the summer. In particular, a smooth area of the play in summer 2010 aligns very closely with ponded water in February 2010. This indicates that standing water disrupts the playa surface, reducing roughness. We also compared the distribution of surface roughness across the playa to playa composition. X-ray diffraction (XRD) of samples from the Black Rock Desert demonstrates that the playa surface is composed of approximately 30% quartz, 45% clays, 10% calcite, and 5% halite. Calcite and halite concentrations vary significantly between samples. We produced a map of calcite concentration in the Black Rock Desert based on hyperspectral data from NASA's EO-1 Hyperion instrument. We find that calcite concentrations are higher in smooth areas that have been inundated by water. Without an understanding of the surface processes associated with dust emission, it is difficult to model atmospheric dust, especially in the past or future when there is much less data for an empirical dust model.
Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect
NASA Astrophysics Data System (ADS)
Schumer, Rina; Taloni, Alessandro; Furbish, David Jon
2017-03-01
Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.
NASA Technical Reports Server (NTRS)
Oertel, G. F.; Wade, T. L.
1981-01-01
The synthetic aperture radar (SAR) was studied to determine whether it could image large scale estuaries and oceanic features such as fronts and to explain the electromagnetic interaction between SAR and the individual surface front features. Fronts were observed to occur at the entrance to the Chesapeake Bay. The airborne measurements consisted of data collection by SAR onboard an F-4 aircraft and real aperture side looking radar (SLAR) in Mohawk aircraft. A total of 89 transects were flown. Surface roughness and color as well as temperature and salinity were evaluated. Cross-frontal surveys were made. Frontal shear and convergence flow were obtained. Surface active organic materials, it was indicated, are present at the air-sea interface. In all, 2000 analyses were conducted to characterize the spatial and temporal variabilities associated with water mass boundaries.
Taguchi Optimization of Cutting Parameters in Turning AISI 1020 MS with M2 HSS Tool
NASA Astrophysics Data System (ADS)
Sonowal, Dharindom; Sarma, Dhrupad; Bakul Barua, Parimal; Nath, Thuleswar
2017-08-01
In this paper the effect of three cutting parameters viz. Spindle speed, Feed and Depth of Cut on surface roughness of AISI 1020 mild steel bar in turning was investigated and optimized to obtain minimum surface roughness. All the experiments are conducted on HMT LB25 lathe machine using M2 HSS cutting tool. Ranges of parameters of interest have been decided through some preliminary experimentation (One Factor At a Time experiments). Finally a combined experiment has been carried out using Taguchi’s L27 Orthogonal Array (OA) to study the main effect and interaction effect of the all three parameters. The experimental results were analyzed with raw data ANOVA (Analysis of Variance) and S/N data (Signal to Noise ratio) ANOVA. Results show that Spindle speed, Feed and Depth of Cut have significant effects on both mean and variation of surface roughness in turning AISI 1020 mild steel. Mild two factors interactions are observed among the aforesaid factors with significant effects only on the mean of the output variable. From the Taguchi parameter optimization the optimum factor combination is found to be 630 rpm spindle speed, 0.05 mm/rev feed and 1.25 mm depth of cut with estimated surface roughness 2.358 ± 0.970 µm. A confirmatory experiment was conducted with the optimum factor combination to verify the results. In the confirmatory experiment the average value of surface roughness is found to be 2.408 µm which is well within the range (0.418 µm to 4.299 µm) predicted for confirmatory experiment.
Roughness sensor based on a compact optoelectronic emitter-receiver modules
NASA Astrophysics Data System (ADS)
Will, Matthias; Brodersen, Olaf; Steinke, Arndt
2012-04-01
In construction and manufacturing the surface roughness and their control plays a major role. The mechanical test probes are used in many applications, because the advantage of the higher resolution of optical systems often plays no role. But in all cases the measurement systems were uses outside of fabrication processes due to the complex and expensive equipment. To overcome these we developed a roughness sensor suitable for an automated control of machined surfaces. The sensor is able to handle high throughput and parallel systems is due to the low cost available. Our solution is compact stand-alone sensors that can be simple integrated in existing systems like machine tools or transport systems. The sensor is based on a diode laser, focusing optics and a special silicon photo diode array in a stable housing. The single-mode VCSEL at 670 nm emission wavelength is focused on the surface of the sample at distance of 5mm. The light was reflected from the test surface and detected with an 8-channel photodiode array. The position of the main reflex allows an optimization of the sensor distance to the surface. During the movement of the sample with a known velocity roughness depended signals over time were recorded at 8 cannels. This allows a detection of the angular distribution of the scattered light in combination of position dependent refection. It was shown here that we be able to achieve resolution below the spot diameter (30μm FWHM). We verify the sensor capabilities for real world applications on drilled samples with typical roughness variations in micro meter range.
Diamond turning of thermoplastic polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.; Scattergood, R.O.
Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.
A sensitivity analysis of a surface energy balance model to LAI (Leaf Area Index)
NASA Astrophysics Data System (ADS)
Maltese, A.; Cannarozzo, M.; Capodici, F.; La Loggia, G.; Santangelo, T.
2008-10-01
The LAI is a key parameter in hydrological processes, especially in the physically based distribution models. It is a critical ecosystem attribute since physiological processes such as photosynthesis, transpiration and evaporation depend on it. The diffusion of water vapor, momentum, heat and light through the canopy is regulated by the distribution and density of the leaves, branches, twigs and stems. The LAI influences the sensible heat flux H in the surface energy balance single source models through the calculation of the roughness length and of the displacement height. The aerodynamic resistance between the soil and within-canopy source height is a function of the LAI through the roughness length. This research carried out a sensitivity analysis of some of the most important parameters of surface energy balance models to the LAI time variation, in order to take into account the effects of the LAI variation with the phenological period. Finally empirical retrieved relationships between field spectroradiometric data and the field LAI measured via a light-sensitive instrument are presented for a cereal field.
Cu self-sputtering MD simulations for 0.1-5 keV ions at elevated temperatures
NASA Astrophysics Data System (ADS)
Metspalu, Tarvo; Jansson, Ville; Zadin, Vahur; Avchaciov, Konstantin; Nordlund, Kai; Aabloo, Alvo; Djurabekova, Flyura
2018-01-01
Self-sputtering of copper under high electric fields is considered to contribute to plasma buildup during a vacuum breakdown event frequently observed near metal surfaces, even in ultra high vacuum condition in different electric devices. In this study, by means of molecular dynamics simulations, we analyze the effect of surface temperature and morphology on the yield of self-sputtering of copper with ion energies of 0.1-5 keV. We analyze all three low-index surfaces of Cu, {1 0 0}, {1 1 0} and {1 1 1}, held at different temperatures, 300 K, 500 K and 1200 K. The surface roughness relief is studied by either varying the angle of incidence on flat surfaces, or by using arbitrary roughened surfaces, which result in a more natural distribution of surface relief variations. Our simulations provide detailed characterization of copper self-sputtering with respect to different material temperatures, crystallographic orientations, surface roughness, energies, and angles of ion incidence.
The SKED: speckle knife edge detector
NASA Astrophysics Data System (ADS)
Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.
2014-06-01
The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.
Li, Lester; Breedveld, Victor; Hess, Dennis W
2012-09-26
In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.
Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach
NASA Astrophysics Data System (ADS)
Wong, Colman Ching Chi; Liu, Chun-Ho
2013-04-01
Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient estimates are related to the friction factor in the way similar to that of uniform street canyons, i.e. they are linear functions of friction factor when the roughness is small and become insensitive to friction factor thereafter over very rough surfaces. It is thus suggested that aerodynamic resistance is the key factor affecting the air quality in urban areas. Moreover, the friction factor could be used to parameterize the dispersion coefficients over different roughness elements.
Efficiency of different protocols for enamel clean-up after bracket debonding: an in vitro study
Sigilião, Lara Carvalho Freitas; Marquezan, Mariana; Elias, Carlos Nelson; Ruellas, Antônio Carlos; Sant'Anna, Eduardo Franzotti
2015-01-01
Objective: This study aimed to assess the efficiency of six protocols for cleaning-up tooth enamel after bracket debonding. Methods: A total of 60 premolars were divided into six groups, according to the tools used for clean-up: 12-blade bur at low speed (G12L), 12-blade bur at high speed (G12H), 30-blade bur at low speed (G30L), DU10CO ORTHO polisher (GDU), Renew System (GR) and Diagloss polisher (GD). Mean roughness (Ra) and mean roughness depth (Rz) of enamel surface were analyzed with a profilometer. Paired t-test was used to assess Ra and Rz before and after enamel clean-up. ANOVA/Tukey tests were used for intergroup comparison. The duration of removal procedures was recorded. The association between time and variation in enamel roughness (∆Ra, ∆Rz) were evaluated by Pearson's correlation test. Enamel topography was assessed by scanning electron microscopy (SEM). Results: In Groups G12L and G12H, original enamel roughness did not change significantly. In Groups G30L, GDU, GR and GD, a smoother surface (p < 0.05) was found after clean-up. In Groups G30L and GD, the protocols used were more time-consuming than those used in the other groups. Negative and moderate correlation was observed between time and (∆Ra, ∆Rz); Ra and (∆Ra, ∆Rz); Rz (r = - 0.445, r = - 0.475, p < 0.01). Conclusion: All enamel clean-up protocols were efficient because they did not result in increased surface roughness. The longer the time spent performing the protocol, the lower the surface roughness. PMID:26560825
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
NASA Astrophysics Data System (ADS)
Oubanas, Hind; Gejadze, Igor; Malaterre, Pierre-Olivier; Mercier, Franck
2018-04-01
The upcoming Surface Water and Ocean Topography satellite mission, to be launched in 2021, will measure river water surface elevation, slope and width, with an unprecedented level of accuracy for a remote sensing tool. This work investigates the river discharge estimation from synthetic SWOT observations, in the presence of strong uncertainties in the model inputs, i.e. the river bathymetry and bed roughness. The estimation problem is solved by a novel variant of the standard variational data assimilation, the '4D-Var' method, involving the full Saint-Venant 1.5D-network hydraulic model SIC2. The assimilation scheme simultaneously estimates the discharge, bed elevation and bed roughness coefficient and is designed to assimilate both satellite and in situ measurements. The method is tested on a 50 km-long reach of the Garonne River during a five-month period of the year 2010, characterized by multiple flooding events. First, the impact of the sampling frequency on discharge estimation is investigated. Secondly, discharge as well as the spatially distributed bed elevation and bed roughness coefficient are determined simultaneously. Results demonstrate feasibility and efficiency of the chosen combination of the estimation method and of the hydraulic model. Assimilation of the SWOT data results into an accurate estimation of the discharge at observation times, and a local improvement in the bed level and bed roughness coefficient. However, the latter estimates are not generally usable for different independent experiments.
Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-12-01
We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.
NASA Astrophysics Data System (ADS)
Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji
2017-06-01
In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.
A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow
NASA Astrophysics Data System (ADS)
Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A.
Abrasive flow machining has been the pioneer of new finishing processes. Rotating workpiece and imposing a magnetic field using magnetorheological working medium are some assisting manipulations to improve surface finishing, because they can increase the forces on the workpiece surface. Similarly, swirling the inlet flow using stationary swirler vanes, as a novel idea, may also increase forces on the surface, and then raise the material removal, with a lower expense and energy consumption compared with the case of workpiece rotation. Thus, in this paper, surface roughness improvement is studied in a pipe with rotating inlet flow of a magnetorheological finishing medium under imposing a magnetic field. The results are compared with the case of rotating workpiece, using 3D numerical simulation. The governing hydrodynamic parameters are investigated in both cases to monitor the flow variations. It is shown that surface roughness is improved by rotating inlet flow. However, it is found that finishing in the entrance length of swirling-assisted inlet flow can be so economical for short length workpieces, compared with the case of rotating workpiece, with very near Ra values. By comparison of the numerical results and published experimental data, current study also shows the ability of the numerical simulation, as an inexpensive and efficient tool, to predict the surface roughness changes in finishing processes.
Study of the Vibration Effect on the Cutting Forces and Roughness of Slub Milling
NASA Astrophysics Data System (ADS)
Germa, S.; Estrems Amestoy, M.; Sánchez Reinoso, H. T.; Franco Chumillas, P.
2009-11-01
For the planning process of slab milling operations, the vibration of the tool is the main factor to be considered. Under vibration conditions, the effect of the small displacements of the cutting tool and the cutting forces on the chip thickness must be minimized in order to avoid undesirable consequences, such as the fast flank wear, superficial defects and roughness increase. In this work, a mathematical model is developed to take into account the combined effect of the cutting tool and workpiece oscillation, as well as the axial errors of different milling tool tips. As a result, the model estimates the variation of the cutting forces and the ideal surface roughness.
Erosive Potential of Cola and Orange Fruit Juice on Tooth Colored Restorative Materials
Rajavardhan, K; Sankar, AJS; Kumar, MGM; Kumar, KR; Pranitha, K; Kishore, KK
2014-01-01
Background: Erosion is a common condition which manifests due to consumption of high caloric and low pH acidic food stuffs such as carbonated drinks and fruit juices which cause irreversible damage to dental hard tissues and early deterioration of the dental restorations. Aim: The main aim of this study is to evaluate and to compare the erosive potential of carbonated drink (cola) and fruit juice (orange fruit juice) by measuring the surface roughness (Ra) values on two commonly used dental restorative materials. Materials and Methods: A total of 36 specimens each were prepared using both testing materials, compomer (Group I) and giomer (Group II). Six specimens in each group were discarded due to wide variation in pre exposed Ra values and the remaining 30 specimens in each group were further sub divided into 10 samples each according to the testing media used. Immersion regime was followed according to Von Fraunhofer and Rogers. The pre and post immersion surface roughness values were recorded using a profilometer. Results: Both tested materials showed statistically-significant surface erosion (P < 0.01) when exposed to cola and orange fruit juice than the control group (water). Discussion: Compomer showed more surface roughness when compared to giomer when exposed to the three tested media which can be attributed to the variation in filler content, decomposition of resin matrix and fallout of the fillers in composites when exposed to acidic drinks. Other factors responsible for this significant erosion were also discussed. Conclusions: Significant surface changes of the dental restorative materials can take place when exposed to low pH drinks for a prolonged period. PMID:25364590
Effects of vegetation canopy on the radar backscattering coefficient
NASA Technical Reports Server (NTRS)
Mo, T.; Blanchard, B. J.; Schmugge, T. J.
1983-01-01
Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.
Dielectric properties of Asteroid Vesta's surface as constrained by Dawn VIR observations
NASA Astrophysics Data System (ADS)
Palmer, Elizabeth M.; Heggy, Essam; Capria, Maria T.; Tosi, Federico
2015-12-01
Earth and orbital-based radar observations of asteroids provide a unique opportunity to characterize surface roughness and the dielectric properties of their surfaces, as well as potentially explore some of their shallow subsurface physical properties. If the dielectric and topographic properties of asteroid's surfaces are defined, one can constrain their surface textural characteristics as well as potential subsurface volatile enrichment using the observed radar backscatter. To achieve this objective, we establish the first dielectric model of asteroid Vesta for the case of a dry, volatile-poor regolith-employing an analogy to the dielectric properties of lunar soil, and adjusted for the surface densities and temperatures deduced from Dawn's Visible and InfraRed mapping spectrometer (VIR). Our model suggests that the real part of the dielectric constant at the surface of Vesta is relatively constant, ranging from 2.3 to 2.5 from the night- to day-side of Vesta, while the loss tangent shows slight variation as a function of diurnal temperature, ranging from 6 × 10-3 to 8 × 10-3. We estimate the surface porosity to be ∼55% in the upper meter of the regolith, as derived from VIR observations. This is ∼12% higher than previous estimation of porosity derived from previous Earth-based X- and S-band radar observation. We suggest that the radar backscattering properties of asteroid Vesta will be mainly driven by the changes in surface roughness rather than potential dielectric variations in the upper regolith in the X- and S-band.
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1994-01-01
Based on a geometric optics model and the assumption of an isotropic Gaussian surface slope distribution, the component of ocean surface microwave emissivity variation due to large-scale surface roughness is parameterized for the frequencies and approximate viewing angle of the Special Sensor Microwave/Imager. Independent geophysical variables in the parameterization are the effective (microwave frequency dependent) slope variance and the sea surface temperature. Using the same physical model, the change in the effective zenith angle of reflected sky radiation arising from large-scale roughness is also parameterized. Independent geophysical variables in this parameterization are the effective slope variance and the atmospheric optical depth at the frequency in question. Both of the above model-based parameterizations are intended for use in conjunction with empirical parameterizations relating effective slope variance and foam coverage to near-surface wind speed. These empirical parameterizations are the subject of a separate paper.
Surface roughness measurements
NASA Technical Reports Server (NTRS)
Howard, Thomas G.
1994-01-01
The Optics Division is currently in the research phase of producing grazing-incidence mirrors to be used in x-ray detector applications. The traditional method of construction involves labor-intensive glass grinding. This also culminates in a relatively heavy mirror. For lower resolution applications, the mirrors may be of a replicated design which involves milling a mandrel as a negative of the final shape and electroplating the cylindrical mirror onto it. The mirror is then separated from the mandrel by cooling. The mandrel will shrink more than the 'shell' (mirror) allowing it to be pulled from the mandrel. Ulmer (2) describes this technique and its variations in more detail. To date, several mirrors have been tested at MSFC by the Optical Fabrication Branch by focusing x-ray energy onto a detector with limited success. Little is known about the surface roughness of the actual mirror. Hence, the attempt to gather data on these surfaces. The test involves profiling the surface of a sample, replicating the surface as described above, and then profiling the replicated surface.
NASA Astrophysics Data System (ADS)
Barboza, Adriana L. Lemos; Kang, Kyung Won; Bonetto, Rita D.; Llorente, Carlos L.; Bilmes, Pablo D.; Gervasi, Claudio A.
2015-01-01
Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.
Assessment of Ice Shape Roughness Using a Self-Orgainizing Map Approach
NASA Technical Reports Server (NTRS)
Mcclain, Stephen T.; Kreeger, Richard E.
2013-01-01
Self-organizing maps are neural-network techniques for representing noisy, multidimensional data aligned along a lower-dimensional and nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. Prior investigations of ice shapes have focused on using self-organizing maps to characterize mean ice forms. The Icing Research Branch has recently acquired a high resolution three dimensional scanner system capable of resolving ice shape surface roughness. A method is presented for the evaluation of surface roughness variations using high-resolution surface scans based on a self-organizing map representation of the mean ice shape. The new method is demonstrated for 1) an 18-in. NACA 23012 airfoil 2 AOA just after the initial ice coverage of the leading 5 of the suction surface of the airfoil, 2) a 21-in. NACA 0012 at 0AOA following coverage of the leading 10 of the airfoil surface, and 3) a cold-soaked 21-in.NACA 0012 airfoil without ice. The SOM method resulted in descriptions of the statistical coverage limits and a quantitative representation of early stages of ice roughness formation on the airfoils. Limitations of the SOM method are explored, and the uncertainty limits of the method are investigated using the non-iced NACA 0012 airfoil measurements.
Wind resource assessment in heterogeneous terrain
NASA Astrophysics Data System (ADS)
Vanderwel, C.; Placidi, M.; Ganapathisubramani, B.
2017-03-01
High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of
NASA Astrophysics Data System (ADS)
Yen, Tsu-Hsu
2015-12-01
Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.
Wind flow modulation due to variations of the water surface roughness
NASA Astrophysics Data System (ADS)
Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana
2016-04-01
Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described by a logarithmic profile; b) in the presence of a surfactant film an increase of wind speed was revealed; the more elastic films was deployed on the surface - the stronger wind acceleration was detected; c) MGW result in deceleration of wind flow, the larger MGW amplitude the stronger wind flow reduction is; d) the wind deceleration effect is more pronounced for MGW with higher frequency, i.e. for slower propagating MGW. e) experimental dependencies of the logarithmic wind profile characteristics as functions of the rout mean square (RMS) wave height were obtained demonstrating the growth of the wind friction velocity and the roughness coefficient with RMS. The work has been supported by the Russian Foundation of Basic Research (Projects № 14-05-31535, 14-05-00876, 15-35-20992).
Variational divergence in wave scattering theory with Kirchhoffean trial functions
NASA Technical Reports Server (NTRS)
Bird, J. F.
1986-01-01
In a recent study of variational improvement of the Kirchhoff approximation for electromagnetic scattering by rough surfaces, a key ingredient in the variational principle was found to diverge for important configurations (e.g., backscatter) if the polarization had any vertical component. The cause and a cure of this divergence are discussed here. The divergence is demonstrated to occur for arbitrary perfectly conducting scatterers and its universal characterstics are determined, by means of a general divergence criterion that is derived. A variational cure for the divergence is prescribed, and it is tested successfully on a standard scattering model.
Impact of Surface Roughness on AMSR-E Sea Ice Products
NASA Technical Reports Server (NTRS)
Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew
2006-01-01
This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational sea ice algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and ice data collected during the AMSR-Ice03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of sea ice in the pixel area viewed. For example, this paper showed that if the sea ice areas modeled in this paper mere assumed to be completely smooth, sea ice concentrations were underestimated by nearly 14% using the NT sea ice algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled ice. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of sea ice concentration for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and 18.7 GHz to these factors to improve snow depth retrievals from spaceborne passive microwave sensors.
García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto
2016-11-01
The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.
NASA Astrophysics Data System (ADS)
Sagy, A.; Tesei, T.; Collettini, C.
2016-12-01
Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously during shear. The wavy ridged zone is the surface expression of penetrative cracking and fragmentation which widen the shear zone, while the smooth zones reflect localized flow and plastic deformation of the wear material. The similarity in topography of shear structures between experimental and natural faults suggests similar mechanical processes.
Microwave remote sensing of snowpacks
NASA Technical Reports Server (NTRS)
Stiles, W. H.; Ulaby, F. T.
1980-01-01
The interaction mechanisms responsible for the microwave backscattering and emission behavior of snow were investigated, and models were developed relating the backscattering coefficient (sigma) and apparent temperature (T) to the physical parameters of the snowpack. The microwave responses to snow wetness, snow water equivalent, snow surface roughness, and to diurnal variations were investigated. Snow wetness was shown to have an increasing effect with increasing frequency and angle of incidence for both active and passive cases. Increasing snow wetness was observed to decrease the magnitude sigma and increase T. Snow water equivalent was also observed to exhibit a significant influence sigma and T. Snow surface configuration (roughness) was observed to be significant only for wet snow surface conditions. Diurnal variations were as large as 15 dB for sigma at 35 GHz and 120 K for T at 37 GHz. Simple models for sigma and T of a snowpack scene were developed in terms of the most significant ground-truth parameters. The coefficients for these models were then evaluated; the fits to the sigma and T measurements were generally good. Finally, areas of needed additional observations were outlined and experiments were specified to further the understanding of the microwave-snowpack interaction mechanisms.
NASA Astrophysics Data System (ADS)
Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin
2016-12-01
The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.
Analysis and characterization of the vertical wind profile in UAE
NASA Astrophysics Data System (ADS)
Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.
2011-12-01
In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have low values during summer and high values during winter. This variation is mainly explained by the direct effect of air temperature on atmospheric stability. When the surface temperature becomes high, air is mixed well in atmospheric boundary layer. This phenomenon leads to vertically low wind speed change indicating low wind profile parameter. On the contrary, cold surface temperature prevents air from being mixed well in the boundary layer. This analysis is applied to different regions to see the spatial characteristics of wind in UAE. As a next step, a mesoscale model coupled with UAE roughness maps will be used to predict elevated wind speed. A micro-scale modeling approach will be also used to capture small-scale wind speed variability. This data will be combined with the NCMS data and tailored to the UAE by modeling the effects due to local changes in terrain elevation and local surface roughness changes and obstacles.
The use of radar imagery for surface water investigations
NASA Technical Reports Server (NTRS)
Bryan, M. L.
1981-01-01
The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.
Variation of the low level winds during the passage of a thunderstorm gust front
NASA Technical Reports Server (NTRS)
Sinclair, R. W.; Anthes, R. A.; Panofsky, H. A.
1973-01-01
Three time histories of wind profiles in thunderstorm gust fronts at Cape Kennedy and three at Oklahoma City are analyzed. Wind profiles at maximum wind strength below 100 m follow logarithmic laws, so that winds above the surface layer can be estimated from surface winds once the roughness length is known. A statistical analysis of 81 cases of surface winds during thunderstorms at Tampa revealed no predictor with skill to predict the time of maximum gust. Some 34% of the variance of the strength of the gust is accounted for by a stability index and surface wind prior to the gust; the regression equations for these variables are given. The coherence between microscale wind speed variations at the different levels has the same proportions as in non-thunderstorm cases.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2011-01-01
Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.
Scatter metrology of photovoltaic textured surfaces
NASA Astrophysics Data System (ADS)
Stover, John C.; Hegstrom, Eric L.
2010-09-01
In recent years it has become common practice to texture many of the layered surfaces making up photovoltaic cells in order to increase light absorption and efficiency. Profilometry has been used to characterize the texture, but this is not satisfactory for in-line production systems which move surfaces too fast for that measurement. Scatterometry has been used successfully to measure roughness for many years. Its advantages include low cost, non-contact measurement and insensitivity to vibration; however, it also has some limitations. This paper presents scatter measurements made on a number of photovoltaic samples using two different scatterometers. It becomes clear that in many cases the surface roughness exceeds the optical smoothness limit (required to calculate surface statistics from scatter), but it is also clear that scatter measurement is a fast, sensitive indicator of texture and can be used to monitor whether design specifications are being met. A third key point is that there is a lot of surface dependent information available in the angular variations of the measured scatter. When the surface is inspected by integrating the scatter signal (often called a "Haze" measurement) this information is lost.
Rough-to-smooth transition of an equilibrium neutral constant stress layer
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Fichtl, G. H.
1975-01-01
Purpose of research on rough-to-smooth transition of an equilibrium neutral constant stress layer is to develop a model for low-level atmospheric flow over terrains of abruptly changing roughness, such as those occurring near the windward end of a landing strip, and to use the model to derive functions which define the extent of the region affected by the roughness change and allow adequate prediction of wind and shear stress profiles at all points within the region. A model consisting of two bounding logarithmic layers and an intermediate velocity defect layer is assumed, and dimensionless velocity and stress distribution functions which meet all boundary and matching conditions are hypothesized. The functions are used in an asymptotic form of the equation of motion to derive a relation which governs the growth of the internal boundary layer. The growth relation is used to predict variation of surface shear stress.
NASA Technical Reports Server (NTRS)
King, James; Nickling, W. G.; Gilliles, J. A.
2006-01-01
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.
NASA Astrophysics Data System (ADS)
King, James; Nickling, W. G.; Gillies, J. A.
2006-12-01
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.
Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale
NASA Astrophysics Data System (ADS)
Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm
2016-11-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.
NASA Astrophysics Data System (ADS)
Ponnuvel, S.; Ananth, M. Prem
2018-03-01
In this study the effect of specific surface area of the MWCNTs on the drilled hole qualities was investigated. Epoxy araldite LY556 with hardener HY951 and E-glass coarse plain weave fabric are used for the fabrication of reference material (specimen A). Multi-WalledCarbon Nanotubes (MWCNTs) with diameters <8 nm and 20–30 nm are used for the fabrication of study materials, namely specimen B and specimen C respectively. In specimen B the epoxy resin was filled with MWCNTs having a specific surface area >500 m2 g‑1. MWCNTs in specimen C had a specific surface area >110 m2 g‑1. Drilling experiments were conducted on all the three specimens. Two dimensional delamination factor and the surface roughness of the inner wall of the drilled holes were investigated using Grey Relational Analysis (GRA) and Analysis of variance (ANOVA). Two dimensional delamination factor showed better performance from specimen B and specimen C in comparison with specimen A suggesting improvement in the bonding between epoxy and the glass fiber in the presence of MWCNTs. Similar observations were made for surface roughness of the inner wall of the drilled holes at 1250 rpm. Whereas the presence of MWCNTs (Specimen B and specimen C) produced poor surface finish at 500 rpm in comparison with specimen A. Variations in the hole quality characteristics between specimen B and specimen C was marginal with better observations in specimen C.
Effect of surface roughness on droplet splashing
NASA Astrophysics Data System (ADS)
Hao, Jiguang
2017-12-01
It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.
Four-parameter model for polarization-resolved rough-surface BRDF.
Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D
2011-01-17
A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.
Variations in debris distribution and thickness on Himalayan debris-covered glaciers
NASA Astrophysics Data System (ADS)
Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil
2016-04-01
Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.
Cohesive zone modelling of wafer bonding and fracture: effect of patterning and toughness variations
NASA Astrophysics Data System (ADS)
Kubair, D. V.; Spearing, S. M.
2006-03-01
Direct wafer bonding has increasingly become popular in the manufacture of microelectromechanical systems and semiconductor microelectronics components. The success of the bonding process is controlled by variables such as wafer flatness and surface preparation. In order to understand the effects of these variables, spontaneous planar crack propagation simulations were performed using the spectral scheme in conjunction with a cohesive zone model. The fracture-toughness on the bond interface is varied to simulate the effect of surface roughness (nanotopography) and patterning. Our analysis indicated that the energetics of crack propagation is sensitive to the local surface property variations. The patterned wafers are tougher (well bonded) than the unpatterned ones of the same average fracture-toughness.
A Map of Kilometer-Scale Topographic Roughness of Mercury
NASA Astrophysics Data System (ADS)
Kreslavsky, M. A.; Head, J. W., III; Kokhanov, A. A.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Kozlova, N. A.
2014-12-01
We present a new map of the multiscale topographic roughness of the northern circumpolar area of Mercury. The map utilizes high internal vertical precision surface ranging by the laser altimeter MLA onboard MESSENGER mission to Mercury. This map is analogous to global roughness maps that had been created by M.A.K. with collaborators for Mars (MOLA data) and the Moon (LOLA data). As measures of roughness, we used the interquartile range of along-track profile curvature at three baselines: 0.7 km, 2.8 km, and 11 km. Unlike in the cases of LOLA data for the Moon, and MOLA data for Mars, the MLA data allow high-quality roughness mapping only for a small part of the surface of the planet: the map covers 65N - 84N latitude zone, where the density of MLA data is the highest. The map captures the regional variations of the typical background topographic texture of the surface. The map shows the clear dichotomy between smooth northern plains and rougher cratered terrains. The lowered contrast of this dichotomy at the shortest (0.7 km) baseline indicates that regolith on Mercury is thicker and/or gardening processes are more intensive in comparison to the Moon, approximately by a factor of three. The map reveals sharp roughness contrasts within northern plains of Mercury that we interpret as geologic boundaries of volcanic plains of different age. In particular, the map suggests a younger volcanic plains unit inside Goethe basin and inside another unnamed stealth basin. -- Acknowledgement: Work on data processing was carried out at MIIGAiK by MAK, AAK, NAK and supported by Russian Science Foundation project 14-22-00197.
Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces
NASA Astrophysics Data System (ADS)
Thakkar, Manan; Busse, Angela; Sandham, Neil
2017-02-01
Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.
Surface roughness: A review of its measurement at micro-/nano-scale
NASA Astrophysics Data System (ADS)
Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.
2018-01-01
The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.
Enhancement of the fatigue performance of Ti-6Al-4V implant products
NASA Astrophysics Data System (ADS)
Wimalasiri, Dematapaksha H. R. J.
Implants surgery, in particular hip implants, is fast becoming a routine, popular approach for curing diseases such as, osteoarthritis and rheumatic arthritis. However one potential problem with the insertion of a metal implant is that of the risk of fatigue failure. Numerous factors affect the propensity of a metal to fatigue, none more so than the physical and stress state of the surface. This research is focused on an assessment of the role of manufacturing processes on the fatigue performance of hip implants made from a Ti-6Al-4V alloy. The role of surface defects, surface residual stresses and material microstructural properties which influence fatigue performance were examined. Characterization of the implant material and of the processes involved in actual hip implant manufacturing were conducted. Rotating bend fatigue testing using hour glass shaped specimens was conducted to evaluate the fatigue performance at selected manufacturing stages. The surface roughness/defects and residual stresses were measured prior to conducting fatigue tests. A variation of fatigue limit, attributed to variations of surface roughness and surface residual stress was observed. The influence of parameters such as, stress ratio and mean stress effect, variation of fracture mechanics parameters (e.g. DeltaK[th]) and the limiting threshold conditions for different stages of cracks were investigated in the context of Kitagawa-Takahashi (K-T) type diagrams. Experimental data was used to develop models which were used to calculate, (i). fatigue life at respective stress amplitude and, (ii). the fatigue limit of components with known surface roughness/defect size and residual stress. To evaluate material crack growth properties a surface replication method was used. The output from both models showed good correlation with experimental data. Comprehensive fractography was conducted using optical, secondary electron, and infinite focus microscopy to support the results obtained from fatigue testing. Analysis was performed on in-vivo hip implant failure data covering the last 12 years. Fatigue failures occur in two locations on the implant stem, namely the cone area and the neck area. These two locations were investigated separately to identify the factors, such as; the category of implant most vulnerable to failure, service life, design features, fixation with the host bone, crack initiation features and propagation details. An attempt was made to compare in-vivo fatigue features with experimental fatigue results. X-ray diffraction (XRD) was used to investigate the surface residual stresses resulting from different manufacturing processes. The results were confirmed and software and hardware settings were calibrated in accordance with the results obtained from XRD analysis conducted at National Physical Laboratories (NPL), UK. Surface roughness measurements were also conducted using stylus type surface profilometer. The knowledge gained from this research can be used to understand the causes and modes of in-vivo fatigue failure of hip implants made of Ti-6Al-4V. Understanding the fatigue/mechanical properties of the implant material enables recommendations and optimization of good practice in manufacturing to eliminate in-vivo fatigue failures.
NASA Astrophysics Data System (ADS)
Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa
2018-04-01
In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.
NASA Astrophysics Data System (ADS)
Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María. M.
2013-11-01
Surface properties are essential for a complete characterization of biomaterials. In restorative dentistry, the study of the surface properties of materials meant to replace dental tissues in an irreversibly diseased tooth is important to avoid harmful changes in future treatments. We have experimentally analyzed the surface characterization parameters of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental-resin. All the samples were submitted to rugometric and microtopographic non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to gather meaningful statistical parameters such as the average roughness (Ra), the root-mean-square deviation (Rq), the skewness (Rsk), and the kurtosis of the surface height distribution (Rku). For a comparison of the different biomaterials, the uncertainties associated to the surface parameters were also determined. With respect to Ra and Rq, significant differences between the composite shades were found. Among the dental resins, the nanocomposite presented the highest values and, for the zirconia ceramics, the pre-sintered sample registered the lowest ones. The composite performance may have been due to cluster-formation variations. Except for the composites with the surface treatment, the sample surfaces had approximately a normal distribution of heights. The surface treatment applied to the composites increased the average roughness and moved the height distribution farther away from the normal distribution. The zirconia-sintering process resulted in higher average roughness without affecting the height distribution.
Study of the normal emissivity of molybdenum during thermal oxidation process
NASA Astrophysics Data System (ADS)
Xu, Yihan; Li, Longfei; Yu, Kun; Liu, Yufang
2018-04-01
The infrared normal spectral emissivity of the oxidized molybdenum was measured during thermal oxidation process, and the integral emissivity was calculated from the data of spectral emissivity. It is found that the surface oxidation has a remarkable effect on the spectral emissivity of molybdenum, and the spectral emissivity curves become more fluctuant with the increase in oxidation time. The integral emissivity grows exponentially with the oxidation time at 773 K, remains almost constant at 823 K, and fluctuates at 873 and 923 K. The X-ray fluorescence spectrometer, the X-ray diffraction, and the scanning electron microscopy were employed to analyze the changes in surface composition and surface morphology. The results show that the most probable reason for the variation of integral emissivity is the change in surface roughness caused by the variation in the size and shape of oxide particle on specimen surface.
Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures
NASA Technical Reports Server (NTRS)
Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)
2000-01-01
We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.
Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes
NASA Astrophysics Data System (ADS)
Karkare, Siddharth; Bazarov, Ivan
2015-08-01
The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.
Rough-surface model for surface temperature calculations on Vesta
NASA Astrophysics Data System (ADS)
Palmer, E.; Sykes, M.
2014-07-01
We model observations by the Dawn Visual and Infrared spectrometer (VIR) [1] to reproduce the observed surface temperature of Vesta. The VIR instrument has collected over 3,700 spectral cubes of Vesta out to 5.1 microns. The observed surface temperature is derived by matching the irradiance near 5 microns with a grey body, the Planck function after removing a reflected-light component per previous procedures [2--5] with similar results. We noted that the observed surface temperatures are significantly hotter than what simple theoretical models would predict [2]. To better understand this, we used a high-resolution topographic model of Vesta [6] that provided exact phase, incidence, and emission angles for every VIR pixel. We assume an emissivity of 0.9, Bond albedo of between 0.16 and 0.22 [5], and a variety of thermal inertia values for a low-contrast, highly degraded, homogenous crater. We have created a ''rough-surface'' thermal model that takes into account how irregular grains create sub-pixel variations in the thermal spectrum and describe the effect it has on the observed surface temperatures of Vesta. We have applied this method to the VIR observations of Vesta, which produced a high level of agreement with the observed surface temperatures.
NASA Astrophysics Data System (ADS)
Karamış, M. B.; Yıldızlı, K.; Çakırer, H.
2004-05-01
Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.
Science synergism study for EOS on evolution of desert surfaces
NASA Technical Reports Server (NTRS)
Farr, Tom G.
1987-01-01
The effectiveness of EOS data as a basis for the study of desert surfaces' evolution is presently evaluated for both long and short term geomorphic evolution. Attention is given to the usefulness of such sensor systems planned for EOS as MODIS for regional vegetation distribution/variability monitoring, HIRIS for visible-near IR observations, TIMS for lithological identification, HMMR and SSMI for soil characteristics, LASA for atmospheric profiles, SAR for surface roughness, ALT for two-dimensional topography, ACR for the calibration of imaging sensors, and ERBE for climate modeling and regional surface albedo variation determinations.
NASA Astrophysics Data System (ADS)
Wang, G.; Liu, L.; Chen, G.
2016-12-01
The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.
The Effect of Roughness Model on Scattering Properties of Ice Crystals.
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Van Diedenhoven, Bastiaan
2016-01-01
We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5deg to 20deg, where the uniform roughness model produces a plateau while the Weibull model does not.
Surface Roughness of the Moon Derived from Multi-frequency Radar Data
NASA Astrophysics Data System (ADS)
Fa, W.
2011-12-01
Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.
The VHCF experimental investigation of FV520B-I with surface roughness Ry
NASA Astrophysics Data System (ADS)
Wang, J. L.; Zhang, Y. L.; Ding, M. C.; Zhao, Q. C.
2018-05-01
Different surface roughness type (Ra and Ry) has different effect on the VHCF failure and life. Ra is widely employed as the quantitative expression of the surface roughness, but there are few fatigue failure mechanism analysis and experimental study under surface roughness Ry. The VHCF experiment is conducted out using the specimen with different surface roughness values. The surface roughness Ry is employed as the major research object to investigate the relationship and distribution tendency between the Ry, fatigue life and the distance between internal inclusion and surface, and a new VHCF failure character is proposed.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.
We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less
Role of rough surface topography on gas slip flow in microchannels.
Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng
2012-07-01
We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.
Electro-thermal analysis of contact resistance
NASA Astrophysics Data System (ADS)
Pandey, Nitin; Jain, Ishant; Reddy, Sudhakar; Gulhane, Nitin P.
2018-05-01
Electro-Mechanical characterization over copper samples are performed at the macroscopic level to understand the dependence of electrical contact resistance and temperature on surface roughness and contact pressure. For two different surface roughness levels of samples, six levels of load are selected and varied to capture the bulk temperature rise and electrical contact resistance. Accordingly, the copper samples are modelled and analysed using COMSOLTM as a simulation package and the results are validated by the experiments. The interface temperature during simulation is obtained using Mikic-Elastic correlation and by directly entering experimental contact resistance value. The load values are varied and then reversed in a similar fashion to capture the hysteresis losses. The governing equations & assumptions underlying these models and their significance are examined & possible justification for the observed variations are discussed. Equivalent Greenwood model is also predicted by mapping the results of the experiment.
Seasonal Variation of Mass Transport Across the Tropopause
NASA Technical Reports Server (NTRS)
Appenzeller, Christof; Holton, James R.; Rosenlof, Karen H.
1996-01-01
The annual cycle of the net mass transport across the extratropical tropopause is examined. Contributions from both the global-scale meridional circulation and the mass variation of the lowermost stratosphere are included. For the northern hemisphere the mass of the lowermost stratosphere has a distinct annual cycle, whereas for the southern hemisphere, the corresponding variation is weak. The net mass transport across the tropopause in the northern hemisphere has a maximum in late spring and a distinct minimum in autumn. This variation and its magnitude compare well with older estimates based on representative Sr-90 mixing ratios. For the southern hemisphere the seasonal cycle of the net mass transport is weaker and follows roughly the annual variation of the net mass flux across a nearby isentropic surface.
Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels
NASA Astrophysics Data System (ADS)
Kandlikar, Satish G.; Schmitt, Derek; Carrano, Andres L.; Taylor, James B.
2005-10-01
Roughness features on the walls of a channel wall affect the pressure drop of a fluid flowing through that channel. This roughness effect can be described by (i) flow area constriction and (ii) increase in the wall shear stress. Replotting the Moody's friction factor chart with the constricted flow diameter results in a simplified plot and yields a single asymptotic value of friction factor for relative roughness values of ɛ /D>0.03 in the fully developed turbulent region. After reviewing the literature, three new roughness parameters are proposed (maximum profile peak height Rp, mean spacing of profile irregularities RSm, and floor distance to mean line Fp). Three additional parameters are presented to consider the localized hydraulic diameter variation (maximum, minimum, and average) in future work. The roughness ɛ is then defined as Rp+Fp. This definition yields the same value of roughness as obtained from the sand-grain roughness [H. Darcy, Recherches Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux (Mallet-Bachelier, Paris, France, 1857); J. T. Fanning, A Practical Treatise on Hydraulic and Water Supply Engineering (Van Nostrand, New York, 1877, revised ed. 1886); J. Nikuradse, "Laws of flow in rough pipes" ["Stromungsgesetze in Rauen Rohren," VDI-Forschungsheft 361 (1933)]; Beilage zu "Forschung auf dem Gebiete des Ingenieurwesens," Ausgabe B Band 4, English translation NACA Tech. Mem. 1292 (1937)]. Specific experiments are conducted using parallel sawtooth ridge elements, placed normal to the flow direction, in aligned and offset configurations in a 10.03mm wide rectangular channel with variable gap (resulting hydraulic diameters of 325μm-1819μm with Reynolds numbers ranging from 200 to 7200 for air and 200 to 5700 for water). The use of constricted flow diameter extends the applicability of the laminar friction factor equations to relative roughness values (sawtooth height) up to 14%. In the turbulent region, the aligned and offset roughness arrangements yield different results indicating a need to further characterize the surface features. The laminar to turbulent transition is also seen to occur at lower Reynolds numbers with an increase in the relative roughness.
Micro-topography, rock surface modelling and minerology of notches in Mount Carmel
NASA Astrophysics Data System (ADS)
Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit
2016-04-01
Notches are defined as horizontal concaved indentations developed on slopes or cliffs in a basic "C" shape regardless of their location or formation process. Many studies have proclaimed that notches are associated with coastal processes where rocky shore faces are back carved, parallel to sea level by a combination of physical and biological abrasion, and by chemical and biological dissolution. The notches morphologies are various and depend on the lithology, climate, and environment history. These changes involve complex volumetric effects such as weathering and surface mineral dissolution. The main impetus for the present paper is to advance the modeling and the 3D complex pattern reconstruction of notch's cavity surface and detailed shapes and to assess the association between the morphological structures observed upon the notch parts and the fine scale mineralogical composition of the rock. The reconstruction of 3D surfaces using point clouds scanned data is a known problem in computer graphics. Several approaches are based on combinatorial structures, such as Delaunay triangulations, alpha shapes, or Voronoi diagrams. These schemes typically create a triangle mesh that interpolates all or most of the points. In the presence of noisy data, resulting surface is often jagged, and is therefore smoothed or refit to the points in subsequent processing. Fast Fourier Transform (FFT) is a common technique for solving dense, periodic Poisson systems. However, the FFT requires longer time and larger space, quickly becoming prohibitive for fine resolutions. The Poisson approach's key element is the observation that inward normal field of the boundary can be inferred as the gradient of a three dimensional solid indicator function. Thus, the generation of a watertight mesh can be obtained by: (1) transforming the oriented point samples into a continuous vector field referred to as the relationship between the gradient of the indicator function and an integral of surface normals. The computation of the indicator function is reduced to (2) finding a scalar function whose gradients best match the vector field. Point cloud input gives enough information for the approximation of the surface integral with discrete summation. A set of points used for the portioning of the whole scene into distinct patches and also for the surface integral scaled by the patch's area. (3) Extracting the appropriate iso-surface. The roughness spatial variation was calculated according to: 1) removal of the regional slope effect is a pre-step for the surface roughness indices calculation (regression surface is reduced from the original iso-surface model to produce residuals features, surface roughness, from which it possible to calculate the variogram of the residuals), 2) Semivariogram is used to determine the optimal window size for image texture analysis. Mineral composition and structure of the different patches and components define its solubility implying thus upon the micro-morphological differences. Spectral measurements taken in the field and in the lab will be constructed to spectral libraries representing the notch's visor, cavity and floor. The VIS-NIR, SWIR and MIR reflectance data measured by the different types of spectrometers will not be mixed for future evaluation of mineral identification. The constructed spectral libraries was analyzed and processed for the characterization of spectral features of samples. The spectral features were compared with various well characterized resampled mineral spectral libraries for identification of the forming minerals. The mineral composition is defined by spectroscopy and used to capture the areas corresponding to different patterns of micro roughness along the notch's surface. The suggested roughness and 3D surface reconstruction employ real data acquired by the Terrestrial Light and Range Detection (t-LiDAR) scanner. The project stresses an interdisciplinary approach to map the mineral variations along the notch's different components corresponding to the roughness surface changes.
NASA Astrophysics Data System (ADS)
Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis
2016-04-01
This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various parameters such as standard deviation of DTM, deviation of residual and standard deviation of prominence were calculated directly from the extracted DTM. Sophisticated statistical filters and elevation indices were developed to quantify both soil erosion and roughness. The applied methodology for monitoring both soil erosion and roughness provides an optimum way of reducing the existing gap between field scale and satellite scale. Keywords : UAV, soil, erosion, roughness, DTM
Paes, P N G; Bastian, F L; Jardim, P M
2017-09-01
Consider the efficacy of glass infiltration etching (SIE) treatment as a procedure to modify the zirconia surface resulting in higher interfacial fracture toughness. Y-TZP was subjected to 5 different surface treatments conditions consisting of no treatment (G1), SIE followed by hydrofluoric acid treatment (G2), heat treated at 750°C (G3), hydrofluoric acid treated (G4) and airborne-particle abrasion with alumina particles (G5). The effect of surface treatment on roughness was evaluated by Atomic Force Microscopy providing three different parameters: R a , R sk and surface area variation. The ceramic/resin cement interface was analyzed by Fracture Mechanics K I test with failure mode determined by fractographic analysis. Weibull's analysis was also performed to evaluate the structural integrity of the adhesion zone. G2 and G4 specimens showed very similar, and high R a values but different surface area variation (33% for G2 and 13% for G4) and they presented the highest fracture toughness (K IC ). Weibull's analysis showed G2 (SIE) tendency to exhibit higher K IC values than the other groups but with more data scatter and a higher early failure probability than G4 specimens. Selective glass infiltration etching surface treatment was effective in modifying the zirconia surface roughness, increasing the bonding area and hence the mechanical imbrications at the zirconia/resin cement interface resulting in higher fracture toughness (K IC ) values with higher K IC values obtained when failure probability above 20% was expected (Weibull's distribution) among all the experimental groups. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements
NASA Astrophysics Data System (ADS)
Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.
2017-12-01
The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.
Surface roughness measurement in the submicrometer range using laser scattering
NASA Astrophysics Data System (ADS)
Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.
2000-06-01
A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.
Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights
NASA Astrophysics Data System (ADS)
Rasmuson, J. A.; Johnson, W. P.
2017-12-01
A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector surfaces with the greatest RMS roughness had the highest sensitivity to the placement of the contact surface. These findings highlight the need for accurate and representative AFM measurements and have important implications for future transport models.
Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Domingue, Deborah; Verbiscer, Anne
1997-01-01
Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface roughness with hemisphere for any of the Galilean satellites.
Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement
NASA Astrophysics Data System (ADS)
Yan, Pei-Yang; Zhang, Guojing; Gullikson, Eric M.; Goldberg, Ken A.; Benk, Markus P.
2015-03-01
Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.
NASA Astrophysics Data System (ADS)
Oubanas, H.; Gejadze, I.; Malaterre, P. O.; Durand, M. T.; Wei, R.; Frasson, R. P. M.; Domeneghetti, A.
2017-12-01
This work investigates the estimation of river discharge from simulated observations of the forthcoming Surface Water and Ocean Topography (SWOT) mission, to be launched in 2021, using a variant of the standard variational data assimilation method `4D-Var'. The hydrology SWOT simulator, developed at the Jet Propulsion Laboratory (JPL) has been used to simulate the expected performance of the KaRIn instrument onboard the satellite, producing synthetic SWOT observations of height and width, at each satellite overpass. SWOT data products were synthesized at the spatial scale of 200 m along the river centerline. Using a 1.5D full Saint-Venant hydraulic model, variational data assimilation simultaneously estimates the inflow discharge, river bathymetry and bed roughness. The proposed method has been designed for an application to fully ungauged basins; therefore, the prior information is derived from the SWOT observations only and the globally available ancillary information. Two reaches of the Po and Sacramento Rivers of about 130 km and 150 km, respectively, have been considered in this study. Discharge was successfully recovered at the overpass time with a relative-root-mean-square error of 16% and 12.3% for the Po and Sacramento Rivers, respectively. The estimates of the bed level and the roughness coefficient demonstrate a local improvement; however they may not provide reliable global information of the river bathymetry and roughness.
Research of Surface Roughness Anisotropy
NASA Astrophysics Data System (ADS)
Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.
2017-04-01
The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M
2017-09-01
We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.
Non-linear boundary-layer receptivity due to distributed surface roughness
NASA Technical Reports Server (NTRS)
Amer, Tahani Reffet
1995-01-01
The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.
Role of urban surface roughness in road-deposited sediment build-up and wash-off
NASA Astrophysics Data System (ADS)
Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing
2018-05-01
Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.
In situ study on surface roughening in radiation-resistant Ag nanowires
NASA Astrophysics Data System (ADS)
Shang, Z.; Li, Jin; Fan, C.; Chen, Y.; Li, Q.; Wang, H.; Shen, T. D.; Zhang, X.
2018-05-01
Metallic materials subjected to heavy ion irradiation experience significant radiation damage. Free surface is a type of effective defect sinks to improve the radiation resistance in metallic materials. However, the radiation resistance of metallic nanowires (NWs) is largely unknown. Here we show, via in situ Kr ion irradiations in a transmission electron microscope, Ag NWs exhibited much better radiation resistance than coarse-grained Ag. Irradiation-induced prominent surface roughening in Ag NWs provides direct evidence for interaction between defect clusters and free surface. Diameter dependent variation of the surface roughness in irradiated Ag NWs has also been observed. This study provides insight on mechanisms of enhanced radiation resistance via free surfaces in metallic NWs.
In situ study on surface roughening in radiation-resistant Ag nanowires.
Shang, Z; Li, Jin; Fan, C; Chen, Y; Li, Q; Wang, H; Shen, T D; Zhang, X
2018-05-25
Metallic materials subjected to heavy ion irradiation experience significant radiation damage. Free surface is a type of effective defect sinks to improve the radiation resistance in metallic materials. However, the radiation resistance of metallic nanowires (NWs) is largely unknown. Here we show, via in situ Kr ion irradiations in a transmission electron microscope, Ag NWs exhibited much better radiation resistance than coarse-grained Ag. Irradiation-induced prominent surface roughening in Ag NWs provides direct evidence for interaction between defect clusters and free surface. Diameter dependent variation of the surface roughness in irradiated Ag NWs has also been observed. This study provides insight on mechanisms of enhanced radiation resistance via free surfaces in metallic NWs.
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
Analogies to Demonstrate the Effect of Roughness on Surface Wettability
ERIC Educational Resources Information Center
Yolcu, Hasan
2017-01-01
This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…
The variation of riverbed material due to tropical storms in Shi-Wen River, Taiwan.
Lin, Chin-Ping; Wang, Yu-Min; Tfwala, Samkele S; Chen, Ching-Nuo
2014-01-01
Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively.
The Variation of Riverbed Material due to Tropical Storms in Shi-Wen River, Taiwan
Lin, Chin-Ping; Tfwala, Samkele S.; Chen, Ching-Nuo
2014-01-01
Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively. PMID:24526910
NASA Technical Reports Server (NTRS)
Chami, Malik; LaFrance, Bruno; Fougnie, Bertrand; Chowdhary, Jacek; Harmel, Tristan; Waquet, Fabien
2015-01-01
In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors.
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
Stemp, W James; Lerner, Harry J; Kristant, Elaine H
2013-01-01
Although previous use-wear studies involving quartz and quartzite have been undertaken by archaeologists, these are comparatively few in number. Moreover, there has been relatively little effort to quantify use-wear on stone tools made from quartzite. The purpose of this article is to determine the effectiveness of a measurement system, laser scanning confocal microscopy (LSCM), to document the surface roughness or texture of experimental Mistassini quartzite scrapers used on two different contact materials (fresh and dry deer hide). As in previous studies using LSCM on chert, flint, and obsidian, this exploratory study incorporates a mathematical algorithm that permits the discrimination of surface roughness based on comparisons at multiple scales. Specifically, we employ measures of relative area (RelA) coupled with the F-test to discriminate used from unused stone tool surfaces, as well as surfaces of quartzite scrapers used on dry and fresh deer hide. Our results further demonstrate the effect of raw material variation on use-wear formation and its documentation using LSCM and RelA. © Wiley Periodicals, Inc.
Spaceborne radar observations: A guide for Magellan radar-image analysis
NASA Technical Reports Server (NTRS)
Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.
1989-01-01
Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described.
Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.
2016-08-01
Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.
Wetting properties of molecularly rough surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.
2015-09-14
We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less
NASA Astrophysics Data System (ADS)
Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman
2018-05-01
In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.
NASA Astrophysics Data System (ADS)
Basirin, Hammadi bin Mohd; Nawi, Ismail bin Haji Mohd
2017-04-01
This research is an approach to improve the surface roughness for acrylic door panel by using polishing process. The polishing process involve is sanding process by 3 types of sand paper. The sanding process used to improve the surface roughness by using the different grit sizes of sand paper. The experiment was done by using two types of material s, that is plywood and medium density board (MDF). These two materials are the main materials in producing the arcrylic door panel. The surface roughness of these two materials affects the qualities and quantities of the acrylic door panel. The surface structure was measured by using Optical Microscope and Scanning Electron Microscope (SEM) and the surface roughness was measured by using Mitutoyo surfest SJ 400 Tester. Results indicates that using the different types of grit are influence the surface roughness of the material. When the higher types of grit sizes had been used, the average roughness of the surface are decrease. In summary, a good surface roughness condition produced when using the higher types of grit sizes sand paper.
Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity
NASA Technical Reports Server (NTRS)
Olsen, Lola M.
2004-01-01
Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.
Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei
2010-01-01
Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.
NASA Astrophysics Data System (ADS)
Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan
2018-03-01
While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.
Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks.
Cong, W L; Pei, Z J; Treadwell, C
2014-08-01
Reported drilling methods for CFRP/Ti stacks include twist drilling, end milling, core grinding, and their derived methods. The literature does not have any report on drilling of CFRP/Ti stacks using rotary ultrasonic machining (RUM). This paper, for the first time, reports a study on drilling of CFRP/Ti stacks using RUM. It also compares results on drilling of CFRP/Ti stacks using RUM with reported results on drilling of CFRP/Ti stacks using other methods. When drilling CFRP/Ti stacks using RUM, cutting force, torque, and CFRP surface roughness were lower, hole size variation was smaller, CFRP groove depth was smaller, tool life was longer, and there was no obvious Ti exit burr and CFRP entrance delamination. Ti surface roughness when drilling of CFRP/Ti stacks using RUM was about the same as those when using other methods. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bryan, M. L.
1976-01-01
The use of side-looking airborne radar for urban studies is reviewed with attention given to the work of Moore (1969) and Lewis (1968) which may be summarized as follows: (1) linear elements of the transportation net were easily defined, (2) gross patterns of industry, residential and open space land were identified, but it was not possible to map the land use boundaries in great detail, (3) commercial land areas were often difficult to identify, and (4) multiple polarized imagery was helpful in correctly interpreting the total scene. It is found that the sensitivity of radar to surface roughness and the availability of multiple wavelength data allow the discrimination of variations in the surface roughness of intra-urban areas. An L-band imaging radar (25 cm; 1215-1225 GHz) of 25 m resolution will be operating from satellite altitudes in 1978 and will increase the availability of radar data.
Manufacturing polymer light emitting diode with high luminance efficiency by solution process
NASA Astrophysics Data System (ADS)
Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog
2012-06-01
While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.
NASA Astrophysics Data System (ADS)
Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu
2018-03-01
Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.
Evidence for ground-ice occurrence on asteroid Vesta using Dawn bistatic radar observations
NASA Astrophysics Data System (ADS)
Palmer, E. M.; Heggy, E.; Kofman, W. W.
2017-12-01
From 2011 to 2012, the Dawn spacecraft orbited asteroid Vesta, the first of its two targets in the asteroid belt, and conducted the first bistatic radar (BSR) experiment at a small-body, during which Dawn's high-gain communications antenna is used to transmit radar waves that scatter from Vesta's surface toward Earth at high incidence angles just before and after occultation of the spacecraft behind the asteroid. Among the 14 observed mid-latitude forward-scatter reflections, the radar cross section ranges from 84 ± 8 km2 (near Saturnalia Fossae) to 3,588 ± 200 km2 (northwest of Caparronia crater), implying substantial spatial variation in centimeter- to decimeter-scale surface roughness. The compared distributions of surface roughness and subsurface hydrogen concentration [H]—measured using data from Dawn's BSR experiment and Gamma Ray and Neutron Spectrometer (GRaND), respectively—reveal the occurrence of heightened subsurface [H] with smoother terrains that cover tens of square kilometers. Furthermore, unlike on the Moon, we observe no correlation between surface roughness and surface ages on Vesta—whether the latter is derived from lunar or asteroid-flux chronology [Williams et al., 2014]—suggesting that cratering processes alone are insufficient to explain Vesta's surface texture at centimeter-to-decimeter scales. Dawn's BSR observations support the hypothesis of transient melting, runoff and recrystallization of potential ground-ice deposits, which are postulated to flow along fractures after an impact, and provide a mechanism for the smoothing of otherwise rough, fragmented impact ejecta. Potential ground-ice presence within Vesta's subsurface was first proposed by Scully et al. [2014], who identified geomorphological evidence for transient water flow along several of Vesta's crater walls using Dawn Framing Camera images. While airless, differentiated bodies such as Vesta and the Moon are thought to have depleted their initial volatile content during the process of differentiation, evidence to the contrary is continuing to change our understanding of the distribution and preservation of volatiles during planetary formation in the early solar system.
Study of irradiation induced surface pattern and structural changes in Inconel 718 alloy
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Zhao, Zhenjiang; Wang, Jian; Zhang, Yifei
2018-05-01
Helium ions irradiation induced surface pattern and structural changes of Inconel 718 alloy were studied with the combined utilization of atomic force microscopy (AFM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, SRIM-2013 software was used to calculate the sputtering yield and detailed collision events. The result shows that, irradiation dose play an important role in altering the pattern of the surface. Enhanced irradiation aggravated the surface etching and increased the surface roughness. In ion irradiated layer, large amount of interstitials, vacancies and defect sinks were produced. Moreover, in samples with increasing dose irradiation, the dependence of interplanar spacing variation due to point defects clustering on sink density was discussed.
NASA Astrophysics Data System (ADS)
Lv, Junwei; Wang, Bin; Ma, Qi; Li, Mengyao; Wang, Wenjing; Lu, Gaotaihang; Li, Hui; Zhao, Chunxia
2018-04-01
Ethyltrichlorosilane used as precursor reacted with glass fiber (GF) surface. Then polysiloxane was functionalized onto GF surface to improve GF’s hydrophobicity and interfacial properties of GF reinforced composites. Fourier transform infrared spectroscopy (FTIR) confirmed the successful grafting of polysiloxane onto GF’s surface. Energy dispersive spectroscopy (EDS) characterized the variation of chemical composition of GF surface. Scanning electron microscopy (SEM) images showed that the polysiloxane was grafted onto GF’s surface uniformly and the surface roughness of GF was enhanced obviously. Static contact angle analysis (SCA) revealed the significant improvement of surface hydrophobicity. Compared with the original GF composites, the interfacial shear strength (IFSS) increased by 36.52%. Meanwhile, we discovered a facile way to accomplish the experiment.
Effect of engraving speeds of CO₂ laser irradiation on In-Ceram Alumina roughness: a pilot study.
Ersu, Bahadır; Ersoy, Orkun; Yuzugullu, Bulem; Canay, Senay
2015-05-01
The aim of the study was to determine the effect of CO₂ laser on surface roughness of In-Ceram-Alumina-ceramic. Four aluminum-oxide ceramic disc specimens were prepared of In-Ceram Alumina. Discs received CO₂ laser irradiation with different engraving speeds (100, 400, 600 and 800 mm/min) as a surface treatment. The roughness of the surfaces was measured on digital elevation models reconstructed from stereoscopic images acquired by scanning-electron-microscope. Surface roughness data were analyzed with One-Way-Analysis-of-Variance at a significance level of p<0.05. There was no significant difference between the roughness values (p=0.82). Due to higher laser durations, partial melting signs were observed on the surfaces. Tearing, smearing and swelling occurred on melted surfaces. Swelling accompanying melting increased the surface roughness, while laser power was fixed and different laser engraving speeds were applied. Although different laser irradiation speeds did not affect the roughness of ceramic surfaces, swelling was observed which led to changes on surfaces.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
A new fiber optic sensor for inner surface roughness measurement
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Liu, Shoubin; Hu, Hong
2009-11-01
In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
NASA Astrophysics Data System (ADS)
Goyal, Meetika; Aggarwal, Sanjeev; Sharma, Annu; Ojha, Sunil
2018-05-01
Temporal variations in nano-scale surface morphology generated on Polypropylene (PP) substrates utilizing 40 keV oblique argon ion beam have been presented. Due to controlled variation of crucial beam parameters i.e. ion incidence angle and erosion time, formation of ripple patterns and further its transition into dot nanostructures have been realized. Experimental investigations have been supported by evaluation of Bradley and Harper (B-H) coefficients estimated using SRIM (The Stopping and Range of Ions in Matter) simulations. Roughness of pristine target surfaces has been accredited to be a crucial factor behind the early time evolution of nano-scale patterns over the polymeric surface. Study of Power spectral density (PSD) spectra reveals that smoothing mechanism switch from ballistic drift to ion enhanced surface diffusion (ESD) which can be the most probable cause for such morphological transition under given experimental conditions. Compositional analysis and depth profiling of argon ion irradiated specimens using Rutherford Backscattering Spectroscopy (RBS) has also been correlated with the AFM findings.
Towards predictive models for transitionally rough surfaces
NASA Astrophysics Data System (ADS)
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.
NASA Astrophysics Data System (ADS)
Shindler, Joseph Daniel
X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.
Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
Qiu, J; Ran, D F; Liu, Y B; Liu, L H
2016-07-10
Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.
Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces
Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk
2014-01-01
Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265
Domain Derivatives in Dielectric Rough Surface Scattering
2015-01-01
and require the gradient of the objective function in the unknown model parameter vector at each stage of iteration. For large N, finite...differencing becomes numerically intensive, and an efficient alternative is domain differentiation in which the full gradient is obtained by solving a single...derivative calculation of the gradient for a locally perturbed dielectric interface. The method is non-variational, and algebraic in nature in that it
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
2012-12-01
a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3
Thermophysical characteristics of the large main-belt asteroid (349) Dembowska
NASA Astrophysics Data System (ADS)
Yu, Liang Liang; Yang, Bin; Ji, Jianghui; Ip, Wing-Huen
2017-12-01
(349) Dembowska is a large, bright main-belt asteroid that has a fast rotation and an oblique spin axis. It might have experienced partial melting and differentiation. We constrain Dembowska's thermophysical properties, such as thermal inertia, roughness fraction, geometric albedo and effective diameter within 3σ uncertainty of Γ =20^{+12}_{-7} Jm-2 s-0.5 K-1, f_r=0.25^{+0.60}_{-0.25}, p_v=0.309^{+0.026}_{-0.038} and D_eff=155.8^{+7.5}_{-6.2} km, by utilizing the advanced thermophysical model to analyse four sets of thermal infrared data obtained by the Infrared Astronomy Satellite (IRAS), AKARI, the Wide-field Infrared Survey Explorer (WISE) and the Subaru/Cooled Mid-Infrared Camera and Spectrometer (COMICS) at different epochs. In addition, by modelling the thermal light curve observed by WISE, we obtain the rotational phases of each data set. These rotationally resolved data do not reveal significant variations of thermal inertia and roughness across the surface, indicating that the surface of Dembowska should be covered by a dusty regolith layer with few rocks or boulders. Besides, the low thermal inertia of Dembowska shows no significant difference with other asteroids larger than 100 km, which indicates that the dynamical lives of these large asteroids are long enough to make their surfaces have sufficiently low thermal inertia. Furthermore, based on the derived surface thermophysical properties, as well as the known orbital and rotational parameters, we can simulate Dembowska's surface and subsurface temperatures throughout its orbital period. The surface temperature varies from ∼40 to ∼220 K, showing significant seasonal variation, whereas the subsurface temperature achieves equilibrium temperature about 120-160 K below a depth of 30-50 cm.
Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements
NASA Astrophysics Data System (ADS)
Arab-Sedze, Melanie; Heggy, Essam; Bretard, Frederic; Berveiller, Daniel; Jacquemoud, Stephane
2014-07-01
Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool to monitor large-scale ground deformation at active volcanoes. However, vegetation and pyroclastic deposits degrade the radar coherence and therefore the measurement of 3-D surface displacements. In this article, we explore the complementarity between ALOS - PALSAR coherence images, airborne LiDAR data and in situ measurements acquired over the Piton de La Fournaise volcano (Reunion Island, France) to determine the sources of errors that may affect repeat-pass InSAR measure- ments. We investigate three types of surfaces: terrains covered with vegetation, lava flows (a'a, pahoehoe or slabby pahoehoe lava flows) and pyroclastic deposits (lapilli). To explain the loss of coherence observed over the Dolomieu crater between 2008 and 2009, we first use laser altimetry data to map topographic variations. The LiDAR intensity, which depends on surface reflectance, also provides ancillary information about the potential sources of coherence loss. In addition, surface roughness and rock dielectric properties of each terrain have been determined in situ to better understand how electromagnetic waves interact with such media: rough and porous surfaces, such as the a'a lava flows, produce a higher coherence loss than smoother surfaces, such as the pahoehoe lava flows. Variations in dielectric properties suggest a higher penetration depth in pyroclasts than in lava flows at L-band frequency. Decorrelation over the lapilli is hence mainly caused by volumetric effects. Finally, a map of LAI (Leaf Area Index) produced using SPOT 5 imagery allows us to quantify the effect of vegeta- tion density: radar coherence is negatively correlated with LAI and is unreliable for values higher than 7.5.
The distribution of particulate material on Mars
NASA Technical Reports Server (NTRS)
Christensen, Philip R.
1991-01-01
The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.
Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A
2015-11-01
The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.
Cheap and fast measuring roughness on big surfaces with an imprint method
NASA Astrophysics Data System (ADS)
Schopf, C.; Liebl, J.; Rascher, R.
2017-10-01
Roughness, shape and structure of a surface offer information on the state, shape and surface characteristics of a component. Particularly the roughness of the surface dictates the subsequent polishing of the optical surface. The roughness is usually measured by a white light interferometer, which is limited by the size of the components. Using a moulding method of surfaces that are difficult to reach, an imprint is taken and analysed regarding to roughness and structure. This moulding compound method is successfully used in dental technology. In optical production, the moulding compound method is advantageous in roughness determination in inaccessible spots or on large components (astrological optics). The "replica method" has been around in metal analysis and processing. Film is used in order to take an impression of a surface. Then, it is analysed for structures. In optical production, compound moulding seems advantageous in roughness determination in inaccessible spots or on large components (astrological optics). In preliminary trials, different glass samples with different roughness levels were manufactured. Imprints were taken from these samples (based on DIN 54150 "Abdruckverfahren für die Oberflächenprüfung"). The objective of these feasibility tests was to determine the limits of this method (smallest roughness determinable / highest roughness). The roughness of the imprint was compared with the roughness of the glass samples. By comparing the results, the uncertainty of the measuring method was determined. The spectrum for the trials ranged from rough grind (0.8 μm rms), over finishing grind (0.6 μm rms) to polishing (0.1 μm rms).
Remote Sensing of Crystal Shapes in Ice Clouds
NASA Technical Reports Server (NTRS)
van Diedenhoven, Bastiaan
2017-01-01
Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally inconsistent with the data and thus crystal impurity, distortion or surface roughness is prevalent. However, conclusions about the dominating ice shapes are often inconclusive and contradictory and are highly dependent on the limited selection of shapes included in the investigations. Since ice crystal optical properties are mostly determined by the aspect ratios of the crystal components and their microscale structure, it is advised that remote sensing applications focus on the variation of these ice shape characteristics, rather than on the macroscale shape or habit. Recent studies use databases with nearly continuous ranges of crystal component aspect ratio and-or roughness levels to infer the variation of ice crystal shape from satellite and airborne remote sensing measurements. Here, the rationale and results of varying strategies for the remote sensing of ice crystal shape are reviewed. Observed systematic variations of ice crystal geometry with location, cloud height and atmospheric state suggested by the data are discussed. Finally, a prospective is given on the future of the remote sensing of ice cloud particle shapes.
The evolution of fracture surface roughness and its dependence on slip
NASA Astrophysics Data System (ADS)
Wells, Olivia L.
Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.
Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump
NASA Astrophysics Data System (ADS)
Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus
2017-11-01
Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.
NASA Astrophysics Data System (ADS)
Langel, Christopher Michael
A computational investigation has been performed to better understand the impact of surface roughness on the flow over a contaminated surface. This thesis highlights the implementation and development of the roughness amplification model in the flow solver OVERFLOW-2. The model, originally proposed by Dassler, Kozulovic, and Fiala, introduces an additional scalar field roughness amplification quantity. This value is explicitly set at rough wall boundaries using surface roughness parameters and local flow quantities. This additional transport equation allows non-local effects of surface roughness to be accounted for downstream of rough sections. This roughness amplification variable is coupled with the Langtry-Menter model and used to modify the criteria for transition. Results from flat plate test cases show good agreement with experimental transition behavior on the flow over varying sand grain roughness heights. Additional validation studies were performed on a NACA 0012 airfoil with leading edge roughness. The computationally predicted boundary layer development demonstrates good agreement with experimental results. New tests using varying roughness configurations are being carried out at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel to provide further calibration of the roughness amplification method. An overview and preliminary results are provided of this concurrent experimental investigation.
NASA Astrophysics Data System (ADS)
Barros, Julio; Flack, Karen; Schultz, Michael
2017-11-01
Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
Corrugated megathrust revealed offshore from Costa Rica
NASA Astrophysics Data System (ADS)
Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Brodsky, Emily E.; Brothers, Daniel S.; Bangs, Nathan L.; Kirkpatrick, James D.; Wood, Ruby; Okamoto, Kristina
2018-03-01
Exhumed faults are rough, often exhibiting topographic corrugations oriented in the direction of slip; such features are fundamental to mechanical processes that drive earthquakes and fault evolution. However, our understanding of corrugation genesis remains limited due to a lack of in situ observations at depth, especially at subducting plate boundaries. Here we present three-dimensional seismic reflection data of the Costa Rica subduction zone that image a shallow megathrust fault characterized by corrugated, and chaotic and weakly corrugated topographies. The corrugated surfaces extend from near the trench to several kilometres down-dip, exhibit high reflection amplitudes (consistent with high fluid content/pressure) and trend 11-18° oblique to subduction, suggesting 15 to 25 mm yr-1 of trench-parallel slip partitioning across the plate boundary. The corrugations form along portions of the megathrust with greater cumulative slip and may act as fluid conduits. In contrast, weakly corrugated areas occur adjacent to active plate bending faults where the megathrust has migrated up-section, forming a nascent fault surface. The variations in megathrust roughness imaged here suggest that abandonment and then reestablishment of the megathrust up-section transiently increases fault roughness. Analogous corrugations may exist along significant portions of subduction megathrusts globally.
Corrugated megathrust revealed offshore from Costa Rica
Edwards, Joel H.; Kluesner, Jared; Silver, Eli A.; Brodsky, Emily E.; Brothers, Daniel; Bangs, Nathan L.; Kirkpatrick, James D.; Wood, Ruby; Okamato, Kristina
2018-01-01
Exhumed faults are rough, often exhibiting topographic corrugations oriented in the direction of slip; such features are fundamental to mechanical processes that drive earthquakes and fault evolution. However, our understanding of corrugation genesis remains limited due to a lack of in situ observations at depth, especially at subducting plate boundaries. Here we present three-dimensional seismic reflection data of the Costa Rica subduction zone that image a shallow megathrust fault characterized by corrugated, and chaotic and weakly corrugated topographies. The corrugated surfaces extend from near the trench to several kilometres down-dip, exhibit high reflection amplitudes (consistent with high fluid content/pressure) and trend 11–18° oblique to subduction, suggesting 15 to 25 mm yr−1 of trench-parallel slip partitioning across the plate boundary. The corrugations form along portions of the megathrust with greater cumulative slip and may act as fluid conduits. In contrast, weakly corrugated areas occur adjacent to active plate bending faults where the megathrust has migrated up-section, forming a nascent fault surface. The variations in megathrust roughness imaged here suggest that abandonment and then reestablishment of the megathrust up-section transiently increases fault roughness. Analogous corrugations may exist along significant portions of subduction megathrusts globally.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Optimum surface roughness prediction for titanium alloy by adopting response surface methodology
NASA Astrophysics Data System (ADS)
Yang, Aimin; Han, Yang; Pan, Yuhang; Xing, Hongwei; Li, Jinze
Titanium alloy has been widely applied in industrial engineering products due to its advantages of great corrosion resistance and high specific strength. This paper investigated the processing parameters for finish turning of titanium alloy TC11. Firstly, a three-factor central composite design of experiment, considering the cutting speed, feed rate and depth of cut, are conducted in titanium alloy TC11 and the corresponding surface roughness are obtained. Then a mathematic model is constructed by the response surface methodology to fit the relationship between the process parameters and the surface roughness. The prediction accuracy was verified by the one-way ANOVA. Finally, the contour line of the surface roughness under different combination of process parameters are obtained and used for the optimum surface roughness prediction. Verification experimental results demonstrated that material removal rate (MRR) at the obtained optimum can be significantly improved without sacrificing the surface roughness.
Monitoring of Surface Roughness in Aluminium Turning Process
NASA Astrophysics Data System (ADS)
Chaijareenont, Atitaya; Tangjitsitcharoen, Somkiat
2018-01-01
As the turning process is one of the most necessary process. The surface roughness has been considered for the quality of workpiece. There are many factors which affect the surface roughness. Hence, the objective of this research is to monitor the relation between the surface roughness and the cutting forces in aluminium turning process with a wide range of cutting conditions. The coated carbide tool and aluminium alloy (Al 6063) are used for this experiment. The cutting parameters are investigated to analyze the effects of them on the surface roughness which are the cutting speed, the feed rate, the tool nose radius and the depth of cut. In the case of this research, the dynamometer is installed in the turret of CNC turning machine to generate a signal while turning. The relation between dynamic cutting forces and the surface roughness profile is examined by applying the Fast Fourier Transform (FFT). The experimentally obtained results showed that the cutting force depends on the cutting condition. The surface roughness can be improved when increasing the cutting speed and the tool nose radius in contrast to the feed rate and the depth of cut. The relation between the cutting parameters and the surface roughness can be explained by the in-process cutting forces. It is understood that the in-process cutting forces are able to predict the surface roughness in the further research.
Describing soil surface microrelief by crossover length and fractal dimension
NASA Astrophysics Data System (ADS)
Vidal Vázquez, E.; Miranda, J. G. V.; Paz González, A.
2007-05-01
Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent self-affine models, semivariogram (SMV) and local root mean square (RMS). Both algorithms, SMV and RMS, gave equivalent results for D and l indices, irrespective of trend removal procedure, even if some bias was present which is in accordance with previous work. Treatments with two tillage operations had the greatest D values, irrespective of evolution stage under rainfall and trend removal procedure. Primary tillage had the greatest initial values of RR and l. Differences in D values between treatments with primary tillage and those with two successive tillage operations were significant for oriented but not for random conditions. The statistical index RR and the fractal indices l and D decreased with increasing cumulative rainfall following different patterns. The l and D decay from initial value was very sharp after the first 24.4 mm cumulative rainfall. For five out of six tillage treatments a significant relationship between D and l was found for the random microrelief conditions allowing a covariance analysis. It was concluded that using RR or l together with D best allow joint description of vertical and horizontal soil roughness variations.
Super Water-Repellent Fractal Surfaces of a Photochromic Diarylethene Induced by UV Light
NASA Astrophysics Data System (ADS)
Izumi, Norikazu; Minami, Takayuki; Mayama, Hiroyuki; Takata, Atsushi; Nakamura, Shinichiro; Yokojima, Satoshi; Tsujii, Kaoru; Uchida, Kingo
2008-09-01
Photochromic diarylethene forms super water-repellent surfaces upon irradiation with UV light. Microfibril-like crystals grow on the solid diarylethene surface after UV irradiation, and the contact angle of water on the surface becomes larger with increasing surface roughness with time. The fractal analysis was made by the box-counting method for the rough surfaces. There are three regions in the roughness size having the fractal dimension of ca. 2.4 (size of roughness smaller than 5 µm), of ca. 2.2 (size of roughness between 5-40 µm), and of ca. 2.0 (size of roughness larger than 40 µm). The fractal dimension of ca. 2.4 was due to the fibril-like structures generated gradually by UV irradiation on diarylethene surfaces accompanied with an increase in the contact angle. The surface structure with larger fractal dimension mainly contributes to realizing the super water-repellency of the diarylethene surfaces. This mechanism of spontaneous formation of fractal surfaces is similar to that for triglyceride and alkylketene dimer waxes.
2015-04-16
This image from NASA MESSENGER spacecraft provides a perspective view of the center portion of Carnegie Rupes, a large tectonic landform, which cuts through Duccio crater. The image shows the terrain (variations in topography) as measured by the MLA instrument and surface mapped by the MDIS instrument. The image was color-coded to highlight the variations in topography (red = high standing terrain, blue = low lying terrain). Tectonic landforms such as Carnegie Rupes form on Mercury as a response to interior planetary cooling, resulting in the overall shrinking of the planet. To make this graphic, 48 individual MDIS images were used as part of the mosaic. Instruments: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Latitude: 57.1° Longitude: 304.0° E Scale: Duccio crater has a diameter of roughly 105 kilometers (65 miles) Height: Portions of Carnegie Rupes are nearly 2 kilometers (1.2 miles) in height Orientation: North is roughly to the left of the image http://photojournal.jpl.nasa.gov/catalog/PIA19422
Measuring skew in average surface roughness as a function of surface preparation
NASA Astrophysics Data System (ADS)
Stahl, Mark T.
2015-08-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
Surface roughness retrieval by inversion of the Hapke model: A multiscale approach
NASA Astrophysics Data System (ADS)
Labarre, S.; Ferrari, C.; Jacquemoud, S.
2017-07-01
Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Characteristics of surface roughness associated with leading edge ice accretion
NASA Technical Reports Server (NTRS)
Shin, Jaiwon
1994-01-01
Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.
Incorporating Skew into RMS Surface Roughness Probability Distribution
NASA Technical Reports Server (NTRS)
Stahl, Mark T.; Stahl, H. Philip.
2013-01-01
The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.
Soil roughness, slope and surface storage relationship for impervious areas
NASA Astrophysics Data System (ADS)
Borselli, Lorenzo; Torri, Dino
2010-11-01
SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.
Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces.
Zeiger, Adam S; Hinton, Benjamin; Van Vliet, Krystyn J
2013-07-01
There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R
2004-09-01
Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.
Small scale variability of snow properties on Antarctic sea ice
NASA Astrophysics Data System (ADS)
Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael
2016-04-01
Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.
NASA Astrophysics Data System (ADS)
Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir
2018-03-01
Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.
1991-01-01
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.
Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL maskmore » blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.« less
Erosion of phosphor bronze under cavitation attack in a mineral oil
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1986-01-01
Experimental investigations on erosion of a copper alloy, phosphor bronze, under cavitation attack in a viscous mineral oil are presented. The details of pit formation and erosion were studied using scanning electron microscopy. The mean depth of penetration, the variations in surface roughness, and the changes in erosion pit size were studied. Cavitation pits formed initially over the grain boundaries while the surface grains were plastically deformed. Erosion of surface grains occurred largely by ductile fracture involving microcracking and removal in layers. The ratio h/a of the depth h to half width a of cavitation pits increased with test duration from 0.047 to 0.55.
Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.
Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg
2014-07-01
The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maslenikov, I.; Useinov, A.; Birykov, A.; Reshetov, V.
2017-10-01
The instrumented indentation method requires the sample surface to be flat and smooth; thus, hardness and elastic modulus values are affected by the roughness. A model that accounts for the isotropic surface roughness and can be used to correct the data in two limiting cases is proposed. Suggested approach requires the surface roughness parameters to be known.
Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.
2015-01-01
Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999
Enhanced Backscattering from Rough Surfaces
1991-10-18
experimental results M. Nieto-Vesperinas and J. A. Sinchez-Gfi Insuituto de Optica. Consejo Superior de Investigaciones Cientificas, c/Serrono 1221. Madrid...2A7, UK I Division de Fisica Aplicada, CICESE, Apdo. Postal 2732 Ensenada, Baja California, Mexico Instituto de Optics, CSIC, Serrano 121, Madrid 2806...extracted as a de - is less than two for the copolarized case because of the scriptive parameter of the curves, and the variation of contribution of single
Effects of Surface Roughness on Conical Squeeze Film Bearings with Micropolar fluid
NASA Astrophysics Data System (ADS)
Rajani, C. B.; Hanumagowda, B. N.; Shigehalli, Vijayalaxmi S.
2018-04-01
In the current paper, a hypothetical analysis of the impact of surface roughness on squeeze film lubrication of rough conical bearing using Micropolar fluid is examined using Eringen’sMicropolar fluid model. The generalized averaged Reynolds type equation for roughness has been determined analytically using the Christensen’s stochastic theory of roughness effects and the closed form expressions are obtained for the fluid film pressure, load carrying capacity and squeezing time. Further, the impacts of surface roughness using micropolar fluids on the squeeze film lubrication of rough conical bearings has been discussed and according to the outcomes arrived, pressure, load carrying capacity and squeezing time increases for azimuthal roughness pattern and decreases for radial roughness patterns comparatively to the smooth case.
Generalizing roughness: experiments with flow-oriented roughness
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano
2015-04-01
Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.
Acoustic and electromagnetic wave interaction in the detection and identification of buried objects
NASA Astrophysics Data System (ADS)
Lawrence, Daniel Edward
2002-09-01
In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first order solution for TM polarization, but a second order IBC is needed for TE polarization. The crucial factor in the calculation of the potentially small Doppler components is that the time-varying nature of the cylinder boundary, contained within the surface impedance expressions, can be isolated from the unperturbed terms in the scattered field.
Quantitative Mapping of Surface Texture on the Northern Polar Residual Cap of Mars
NASA Astrophysics Data System (ADS)
Milkovich, S. M.; Byrne, S.; Russell, P. S.
2010-12-01
The northern polar residual cap (NPRC) of Mars is a water ice deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters [1]. This roughness manifests as a series of bright and dark patches in visible images. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water ice. Due to the presence of this old ice, it is thought that the NPRC is in a current state of net loss of material [2]. The NPRC provides a link between the current martian climate and the historical climate recorded within the layers of the underlying north polar layered deposits. By characterizing and mapping the variations in surface texture of the NPRC, we seek to understand what factors (distance from the pole, GCM and mesoscale wind direction predictions, etc) are currently at work in resurfacing the deposit, and may have been at work in shaping the layers below. Maps of NPRC texture wavelength and orientation are being produced from HiRISE images. Two-dimensional Fourier analysis is performed upon a 256 meter x 256 meter region (corresponding to 512 x 512 pixels in 0.5 cm/pxl images, or 1024 x 1024 pixels in 0.25 cm/pxl images) within each image analyzed. The dominant wavelength of the resulting peak power spectrum corresponds to the average size of a pit-knob pair in the image, and so is a proxy for the scale of the surface roughness. The orientation of the surface roughness (i.e., the orientation of a chain of pits and mounds) is measured from a narrow range of wavelengths encompassing the dominant wavelength. We will report on how the dominant wavelengths and orientations of this surface texture vary with location and what that implies for the processes currently shaping this landscape. [1] P. C. Thomas et al, Nature 404, 161-164, 2000 [2]Y. Langevin et al, Science 307, 5715, 1581-1584, 2005.
Analysis of multi lobe journal bearings with surface roughness using finite difference method
NASA Astrophysics Data System (ADS)
PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.
2018-04-01
Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.
NASA Astrophysics Data System (ADS)
Gunnarsdottir, Hrefna M.; Linscott, I. R.; Callas, J. L.; Tyler, G. L.; Cousins, M. D.
2006-09-01
Between August and December 2005, we conducted 76 oblique-incidence scattering experiments using the SRI 46-m antenna in the Stanford foothills to illuminate Mars for 20 min. periods with an unmodulated 75 cm-λ, circularly polarized wave. The direct signal and a Martian surface echo, which are separated by Doppler frequency, were received simultaneously by the one-bit receiver on board the Mars Odyssey spacecraft. Out of 45 experiments with high signal-to-noise ratios, 27 were in the northern hemisphere, while 18 were in the southern hemisphere, where preliminary data analysis is available. The surface echoes are characterized by both fluctuating amplitude and varying spectral width, which correspond roughly to the surface reflectivity and roughness, respectively. Analysis of the data is based on quasi-specular scattering theory, but interpretation of the echoes is complicated by Odyssey's reception of only the right-circular polarized (RCP) wave component, and by the high incidence angles involved (f > 60 deg.), for which the scattering theory is not well developed. Our analysis of the echoes makes use of MOLA topographic maps at a resolution of 128 points per deg. of longitude and latitude, to model the scattering surface in three dimensions along the specular track. We can account for most of the echo amplitude fluctuations by the variation in number of surface-model facets tilted to produce a specular reflection towards Odyssey, indicating that MOLA scale topography is sufficient to capture an important scattering mechanism at this wavelength. With this we have accomplished a first step in differentiating between changes in echo signal strength due to surface reflectivity and surface shape. At the same time, we obtain a measure of the small scale surface roughness by finding the maximum tilt angle away from a perfectly mirroring surface facet which contributes significantly to the echo at each time step.
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-01-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932
NASA Astrophysics Data System (ADS)
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-06-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
Surface modifications of ultra-thin gold films by swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Dash, P.; Mallick, P.; Rath, H.; Dash, B. N.; Tripathi, A.; Prakash, Jai; Avasthi, D. K.; Satyam, P. V.; Mishra, N. C.
2010-10-01
Gold films of thickness 10 and 20 nm grown on float glass substrate by thermal evaporation technique were irradiated with 107 MeV Ag8+ and 58 MeV Ni5+ ions at different fluences and characterized by Grazing Incidence X-ray Diffraction (GIXRD) and Atomic Force Microscopy (AFM). The pristine films were continuous and no island structures were found even at these small thicknesses. The surface roughness estimated from AFM data did not show either monotonic increase or decrease with ion fluences. Instead, it increased at low fluences and decreased at high fluences for 20 nm thick film. In the 10 nm film roughness first increased with ion fluence, then decreased and again increased at higher fluences. The pattern of variation, however, was identical for Ni and Ag beams. Both the beams led to the formation of cracks on the film surface at intermediate fluences. The observed ion-irradiation induced thickness dependent topographic modification is explained by the spatial confinement of the energy deposited by ions in the reduced dimension of the films.
NASA Astrophysics Data System (ADS)
Zhang, Li-Zhi; Yuan, Wu-Zhi
2018-04-01
The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.
Dynamic evolution of interface roughness during friction and wear processes.
Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L
2014-01-01
Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.
Sustaining dry surfaces under water
Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.
2015-01-01
Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732
Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun
2017-11-01
Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mapping of Titan: Results from the first Titan radar passes
Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.
2006-01-01
The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.
2017-10-01
Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.
Araújo, Célio U; Basting, Roberta T
2018-03-01
To perform an in situ evaluation of surface roughness and micromorphology of two soft liner materials for dentures at different time intervals. The surface roughness of materials may influence the adhesion of micro-organisms and inflammation of the mucosal tissues. The in situ evaluation of surface roughness and the micromorphology of soft liner materials over the course of time may present results different from those of in vitro studies, considering the constant presence of saliva and food, the changes in temperature and the pH level in the oral cavity. Forty-eight rectangular specimens of each of the two soft liner materials were fabricated: a silicone-based material (Mucopren Soft) and an acrylic resin-based material (Trusoft). The specimens were placed in the dentures of 12 participants (n = 12), and the materials were evaluated for surface roughness and micromorphology at different time intervals: 0, 7, 30 and 60 days. Roughness (Ra) was evaluated by means of a roughness tester. Surface micromorphology was evaluated by scanning electron microscopy. Analysis of variance for randomised block design and Tukey's test showed that surface roughness values were lower in the groups using the silicone-based material at all the time intervals (P < .0001). The average surface roughness was higher at time interval 0 than at the other intervals, for both materials (P < .0001). The surface micromorphology showed that the silicone material presented a more regular and smoother surface than the acrylic resin-based material. The surface roughness of acrylic resin-based and silicone-based denture soft liner materials decreased after 7 days of evaluation, leading to a smoother surface over time. The silicone-based material showed lower roughness values and a smoother surface than the acrylic resin-based material, thereby making it preferred when selecting more appropriate material, due its tendency to promote less biofilm build-up. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces
NASA Astrophysics Data System (ADS)
Mutta, Geeta Rani; Carapezzi, Stefania
2018-07-01
The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.
Surface roughness analysis of fiber post conditioning processes.
Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R
2008-02-01
The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.
Effect of surface topographic features on the optical properties of skin: a phantom study
NASA Astrophysics Data System (ADS)
Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.
2016-10-01
Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.
The effect of toothbrush bristle stiffness on nanohybrid surface roughness
NASA Astrophysics Data System (ADS)
Zairani, O.; Irawan, B.; Damiyanti, M.
2017-08-01
The surface of a restoration can be affected by toothpaste containing abrasive agents and the stiffness of toothbrush bristles. Objective: To identify the effect of toothbrush bristle stiffness on nanohybrid surface roughness. Methods: Sixteen nanohybrid specimens were separated into two groups. The first group was brushed using soft-bristle toothbrushes, and the second group was brushed using medium-bristle toothbrushes. Media such as aqua bides was used for brushing in both groups. Brushing was done 3 times for 5 minutes. Surface roughness was measured initially and at 5, 10, and 15 minutes using a surface roughness tester. Results: The results, tested with One-Way ANOVA and Independent Samples t Test, demonstrated that after brushing for 15 minutes, the soft-bristle toothbrush group showed a significantly different value (p < 0.05) of nanohybrid surface roughness. The group using medium-bristle toothbrushes showed the value of nano hybrid surface roughness significant difference after brushing for 10 minutes. Conclusion: Roughness occurs more rapidly when brushing with medium-bristle tooth brushes than when brushing with soft-bristle toothbrushes.
The Backscattering Phase Function for a Sphere with a Two-Scale Relief of Rough Surface
NASA Astrophysics Data System (ADS)
Klass, E. V.
2017-12-01
The backscattering of light from spherical surfaces characterized by one and two-scale roughness reliefs has been investigated. The analysis is performed using the three-dimensional Monte-Carlo program POKS-RG (geometrical-optics approximation), which makes it possible to take into account the roughness of objects under study by introducing local geometries of different levels. The geometric module of the program is aimed at describing objects by equations of second-order surfaces. One-scale roughness is set as an ensemble of geometric figures (convex or concave halves of ellipsoids or cones). The two-scale roughness is modeled by convex halves of ellipsoids, with surface containing ellipsoidal pores. It is shown that a spherical surface with one-scale convex inhomogeneities has a flatter backscattering phase function than a surface with concave inhomogeneities (pores). For a sphere with two-scale roughness, the dependence of the backscattering intensity is found to be determined mostly by the lower-level inhomogeneities. The influence of roughness on the dependence of the backscattering from different spatial regions of spherical surface is analyzed.
The importance of media roughness considerations for describing particle deposition in porous media
NASA Astrophysics Data System (ADS)
Jin, C.; Emelko, M.
2016-12-01
The morphology of media/collector surfaces (i.e., roughness) is one of the most important factors that has been recognized for decades; however, literature has been, for the most part, contradictory, non-mechanistic, and non-quantitative. A one-site kinetic model for attachment/detachment using a convection-diffusion model was used to evaluate particle deposition on collector surfaces in the packed beds. Rigorous controlled experiments addressing the impacts of surface roughness on particle deposition were conducted in parallel plate and packed bed systems; they demonstrated that a) surface roughness consistently influenced colloid deposition in a nonlinear, non-monotonic manner such that a critical roughness size associated with minimum particle deposition could be identified and b) collector surface roughness and background ionic strength concurrently influenced particle deposition. Excellent agreement between experimental data and numerical simulations was found when the most current knowledge representing hydrodynamic and interfacial forces associated with collector media roughness was represented. Although surface roughness also had a non-linear, non-monotonic impact on DLVO interaction energy at all separation distances, it was inadequate for describing and simulating particle deposition on surfaces with variable roughness. Notably, this work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with non-smooth collector surfaces.
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2010-06-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Furthermore, retrieval of soil moisture using AIEM-like models is a classic example of the underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to directly obtain surface roughness information along with soil moisture from multi-angular ASAR images. The method first used a semi-empirical relationship that connects the roughness slope (Zs) and the difference in backscattering coefficient (Δσ) from ASAR data in different incidence angles, in combination with an optimal calibration form consisting of two roughness parameters (the standard deviation of surface height and the correlation length), to estimate the roughness parameters. The deduced surface roughness was then used in the AIEM model for the retrieval of soil moisture. An evaluation of the proposed method was performed in a grassland site in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It has demonstrated that the method is feasible to achieve reliable estimation of soil water content. The key challenge to surface soil moisture retrieval is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
Modeling of surface roughness effects on Stokes flow in circular pipes
NASA Astrophysics Data System (ADS)
Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian
2018-02-01
Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.
Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-12-01
Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".
NASA Astrophysics Data System (ADS)
Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.
2016-12-01
Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.
Optical mapping of surface roughness by implementation of a spatial light modulator
NASA Astrophysics Data System (ADS)
Aulbach, Laura; Pöller, Franziska; Lu, Min; Wang, Shengjia; Koch, Alexander W.
2017-08-01
It is well-known that the surface roughness of materials plays an important role in the operation and performance of technological systems. The roughness influences key parameters, such as friction and wear, and is directly connected to the functionality and durability of the respective system. Tactile methods are widely used for the measurement of surface roughness, but a destructive measurement procedure and the lack of feasibility of online monitoring are crucial drawbacks. In the last decades, several non-contact, usually optical systems for surface roughness measurements have been developed, e.g., white light interferometry, light scatter analysis, or speckle correlation. These techniques are in turn often unable to assign the roughness to a certain surface area or involve inappropriate adjustment procedures. One promising and straightforward optical measurement method is the surface roughness measurement by analyzing the fringe visibility of an interferometric fringe pattern. In our work, we employed a spatial light modulator in the interferometric setup to vary the fringe visibility and provide a stable and reliable measurement system. In previous research, either the averaged fringe visibility or the fringe visibility along a defined observation profile were analyzed. In this article, the analysis of the fringe visibility is extended to generate a complete roughness map of the measurement target. Thus, surface defects or areas of different roughness can be easily located.
Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing
NASA Astrophysics Data System (ADS)
Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean
2014-11-01
We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.
NASA Astrophysics Data System (ADS)
Stockhoff, Mariele; Jan, Sebastien; Dubois, Albertine; Cherry, Simon R.; Roncali, Emilie
2017-06-01
Typical PET detectors are composed of a scintillator coupled to a photodetector that detects scintillation photons produced when high energy gamma photons interact with the crystal. A critical performance factor is the collection efficiency of these scintillation photons, which can be optimized through simulation. Accurate modelling of photon interactions with crystal surfaces is essential in optical simulations, but the existing UNIFIED model in GATE is often inaccurate, especially for rough surfaces. Previously a new approach for modelling surface reflections based on measured surfaces was validated using custom Monte Carlo code. In this work, the LUT Davis model is implemented and validated in GATE and GEANT4, and is made accessible for all users in the nuclear imaging research community. Look-up-tables (LUTs) from various crystal surfaces are calculated based on measured surfaces obtained by atomic force microscopy. The LUTs include photon reflection probabilities and directions depending on incidence angle. We provide LUTs for rough and polished surfaces with different reflectors and coupling media. Validation parameters include light output measured at different depths of interaction in the crystal and photon track lengths, as both parameters are strongly dependent on reflector characteristics and distinguish between models. Results from the GATE/GEANT4 beta version are compared to those from our custom code and experimental data, as well as the UNIFIED model. GATE simulations with the LUT Davis model show average variations in light output of <2% from the custom code and excellent agreement for track lengths with R 2 > 0.99. Experimental data agree within 9% for relative light output. The new model also simplifies surface definition, as no complex input parameters are needed. The LUT Davis model makes optical simulations for nuclear imaging detectors much more precise, especially for studies with rough crystal surfaces. It will be available in GATE V8.0.
In vivo surface roughness evolution of a stressed metallic implant
NASA Astrophysics Data System (ADS)
Tan, Henry
2016-10-01
Implant-associated infection, a serious medical issue, is caused by the adhesion of bacteria to the surface of biomaterials; for this process the surface roughness is an important property. Surface nanotopography of medical implant devices can control the extent of bacterial attachment by modifying the surface morphology; to this end a model is introduced to facilitate the analysis of a nanoscale smooth surface subject to mechanical loading and in vivo corrosion. At nanometre scale rough surface promotes friction, hence reduces the mobility of the bacteria; this sessile environment expedites the biofilm growth. This manuscript derives the controlling equation for surface roughness evolution for metallic implant subject to in-plane stresses, and predicts the in vivo roughness changes within 6 h of continued mechanical loading at different stress level. This paper provides analytic tool and theoretical information for surface nanotopography of medical implant devices.
Molecular dynamics simulation of nanobubble nucleation on rough surfaces
NASA Astrophysics Data System (ADS)
Liu, Yawei; Zhang, Xianren
2017-04-01
Here, we study how nanobubbles nucleate on rough hydrophobic surfaces, using long-time standard simulations to directly observe the kinetic pathways and using constrained simulations combined with the thermodynamic integration approach to quantitatively evaluate the corresponding free energy changes. Both methods demonstrate that a two-step nucleation route involving the formation of an intermediate state is thermodynamically favorable: at first, the system transforms from the Wenzel state (liquid being in full contact with the solid surface) to the Cassie state (liquid being in contact with the peaks of the rough surface) after gas cavities occur in the grooves (i.e., the Wenzel-to-Cassie transition); then, the gas cavities coalesce and form a stable surface nanobubble with pinned contact lines (i.e., the Cassie-to-nanobubble transition). Additionally, the free energy barriers for the two transitions show opposing dependencies on the degree of surface roughness, indicating that the surfaces with moderate roughness are favorable for forming stable surface nanobubbles. Moreover, the simulation results also reveal the coexistence and transition between the Wenzel, Cassie, and nanobubble states on rough surfaces.
Quantification of soil surface roughness evolution under simulated rainfall
USDA-ARS?s Scientific Manuscript database
Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. The objective of this study was to compare several existing soil surface roughness indices and to test the Revised Triangular Prism surface area Method (RTPM) as a new approach to cal...
Deng, Yi; Liu, Xiaochen; Xu, Anxiu; Wang, Lixin; Luo, Zuyuan; Zheng, Yunfei; Deng, Feng; Wei, Jie; Tang, Zhihui; Wei, Shicheng
2015-01-01
As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK–nanohydroxyapatite ternary composites (PEEK/n-HA/CF) with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation) and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment/proliferation and promotes the production of alkaline phosphatase (ALP) activity and calcium nodule formation compared with the other groups. More importantly, the PEEK/n-HA/CF implant with appropriate surface roughness exhibits remarkably enhanced bioactivity and osseointegration in vivo in the animal experiment. These findings will provide critical guidance for the design of CFRPEEK-based implants with optimal roughness to regulate cellular behaviors, and to enhance biocompability and osseointegration. Meanwhile, the PEEK/n-HA/CF ternary composite with optimal surface roughness might hold great potential as bioactive biomaterial for bone grafting and tissue engineering applications. PMID:25733834
The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry
NASA Astrophysics Data System (ADS)
Eid, K. F.; Panth, M.; Sommers, A. D.
2018-03-01
This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.
Al-Nawas, B; Groetz, K A; Goetz, H; Duschner, H; Wagner, W
2008-01-01
Test of favourable conditions for osseointegration with respect to optimum bone-implant contact (BIC) in a loaded animal model. The varied parameters were surface roughness and surface topography of commercially available dental implants. Thirty-two implants of six types of macro and microstructure were included in the study (total 196). The different types were: minimally rough control: Branemark machined Mk III; oxidized surface: TiUnite MkIII and MkIV; ZL Ticer; blasted and etched surface: Straumann SLA; rough control: titanium plasma sprayed (TPS). Sixteen beagle dogs were implanted with the whole set of the above implants. After a healing period of 8 weeks, implants were loaded for 3 months. For the evaluation of the BIC areas, adequately sectioned biopsies were visualized by subsurface scans with confocal laser scanning microscopy (CLSM). The primary statistical analysis testing BIC of the moderately rough implants (mean 56.1+/-13.0%) vs. the minimally rough and the rough controls (mean 53.9+/-11.2%) does not reveal a significant difference (P=0.57). Mean values of 50-70% BIC were found for all implant types. Moderately rough oxidized implants show a median BIC, which is 8% higher than their minimally rough turned counterpart. The intraindividual difference between the TPS and the blasted and etched counterparts revealed no significant difference. The turned and the oxidized implants show median values of the resonance frequency [implant stability quotients (ISQ)] over 60; the nonself-tapping blasted and etched and TPS implants show median values below 60. In conclusion, the benefit of rough surfaces relative to minimally rough ones in this loaded animal model was confirmed histologically. The comparison of different surface treatment modalities revealed no significant differences between the modern moderately rough surfaces. Resonance frequency analysis seems to be influenced in a major part by the transducer used, thus prohibiting the comparison of different implant systems.
Comparative Study of Lunar Roughness from Multi - Source Data
NASA Astrophysics Data System (ADS)
Lou, Y.; Kang, Z.
2017-07-01
The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.
NASA Astrophysics Data System (ADS)
Anisja, D. H.; Indrani, D. J.; Herda, E.
2017-08-01
Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.
NASA Technical Reports Server (NTRS)
Chow, L. S. H.; Cheng, H. S.
1976-01-01
The Christensen theory of a stochastic model for hydrodynamic lubrication of rough surfaces was extended to elastohydrodynamic lubrication between two rollers. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the rms surface roughness, were obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure was shown to decrease slightly by considering longitudinal surface roughness. The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitely wide slider bearing. Using the flow balance concept, the perturbed Reynolds equation, was derived and solved for the perturbed pressure distribution. In addition, Cheng's numerical scheme was modified to incorporate a single two-dimensional elastic asperity on the stationary surface. The perturbed pressures obtained by these three different models were compared.
Hu, Yandong; Werner, Carsten; Li, Dongqing
2004-12-15
Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.
NASA Astrophysics Data System (ADS)
Chu, Minghan; Meng, Fanxiao; Bergstrom, Donald J.
2017-11-01
An in-house computational fluid dynamics code was used to simulate turbulent flow over a flat plate with a step change in roughness, exhibiting a smooth-rough-smooth configuration. An internal boundary layer (IBL) is formed at the transition from the smooth to rough (SR) and then the rough to smooth (RS) surfaces. For an IBL the flow far above the surface has experienced a wall shear stress that is different from the local value. Within a Reynolds-Averaged-Navier-Stokes (RANS) formulation, the two-layer k- ɛ model of Durbin et al. (2001) was implemented to analyze the response of the flow to the change in surface condition. The numerical results are compared to experimental data, including some in-house measurements and the seminal work of Antonia and Luxton (1971,72). This problem captures some aspects of roughness in industrial and environmental applications, such as corrosion and the earth's surface heterogeneity, where the roughness is often encountered as discrete distributions. It illustrates the challenge of incorporating roughness models in RANS that are capable of responding to complex surface roughness profiles.
NASA Astrophysics Data System (ADS)
Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri
2018-01-01
Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.
Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.
Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina
2014-08-12
It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.
An experimental study of high-pressure droplet combustion
NASA Technical Reports Server (NTRS)
Norton, Chris M.; Litchford, Ron J.; Jeng, San-Mou
1990-01-01
The results are presented of an experimental study on suspended n-heptane droplet combustion in air for reduced pressures up to P(r) = 2.305. Transition to fully transient heat-up through the critical state is demonstrated above a threshold pressure corresponding to P(r) of roughly 1.4. A silhouette imaging technique resolves the droplet surface for reduced pressures up to about P(r) roughly 0.63, but soot formation conceals the surface at higher pressures. Images of the soot plumes do not show any sudden change in behavior indicative of critical transition. Mean burning rate constants are computed from the d-squared variation law using measured effective droplet diameters at ignition and measured burn times, and corrected burning times are computed for an effective initial droplet diameter. The results show that the burning rates increase as the fuel critical pressure is approached and decrease as the pressure exceeds the fuel critical pressure. Corrected burning times show inverse behavior.
Wetting failure of hydrophilic surfaces promoted by surface roughness
Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing
2014-01-01
Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties. PMID:24948390
Comparison of Predicted and Measured Turbine Vane Rough Surface Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.
2000-01-01
The proposed paper compares predicted turbine vane heat transfer for a rough surface over a wide range of test conditions with experimental data. Predictions were made for the entire vane surface. However, measurements were made only over the suction surface of the vane, and the leading edge region of the pressure surface. Comparisons are shown for a wide range of test conditions. Inlet pressures varied between 3 and 15 psia, and exit Mach numbers ranged between 0.3 and 0.9. Thus, while a single roughened vane was used for the tests, the effective rougness,(k(sup +)), varied by more than a factor of ten. Results were obtained for freestream turbulence levels of 1 and 10%. Heat transfer predictions were obtained using the Navier-Stokes computer code RVCQ3D. Two turbulence models, suitable for rough surface analysis, are incorporated in this code. The Cebeci-Chang roughness model is part of the algebraic turbulence model. The k-omega turbulence model accounts for the effect of roughness in the application of the boundary condition. Roughness causes turbulent flow over the vane surface. Even after accounting for transition, surface roughness significantly increased heat transfer compared to a smooth surface. The k-omega results agreed better with the data than the Cebeci-Chang model. However, the low Reynolds number k-omega model did not accurately account for roughness when the freestream turbulence level was low. The high Reynolds number version of this model was more suitable when the freestream turbulence was low.
Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region
NASA Astrophysics Data System (ADS)
Gorrab, A.; Zribi, M.; Baghdadi, N.; Lili Chabaane, Z.
2015-10-01
The goal of this paper is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to demonstrate that it is possible to estimate of both soil moisture and texture from the same experimental campaign, using a single radar signal configuration (one incidence angle, one polarization). Firstly, we analyzed statistically the relationships between X-band SAR (TerraSAR-X) backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs parameter and the Zg parameter) at HH polarization and for an incidence angle about 36°, over a semi-arid site in Tunisia (North Africa). Results have shown a high sensitivity of real radar data to the two soil parameters: roughness and moisture. A linear relationship is obtained between volumetric soil moisture and radar signal. A logarithmic correlation is observed between backscattering coefficient and all roughness parameters. The highest dynamic sensitivity is obtained with Zg parameter. Then, we proposed to retrieve of both soil moisture and texture using these multi-temporal X-band SAR images. Our approach is based on the change detection method and combines the seven radar images with different continuous thetaprobe measurements. To estimate soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our approaches are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple correction for temporal variations in roughness was included. The results reveal a small improvement in the estimation of soil moisture when a correction for temporal variations in roughness is introduced. Finally, by considering the estimated temporal dynamics of soil moisture, a methodology is proposed for the retrieval of clay and sand content (expressed as percentages) in soil. Two empirical relationships were established between the mean moisture values retrieved from the seven acquired radar images and the two soil texture components over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved.
NASA Astrophysics Data System (ADS)
Du, Hang; Song, Ci; Li, Shengyi
2018-01-01
In order to obtain high precision and high surface quality silicon carbide mirrors, the silicon carbide mirror substrate is subjected to surface modification treatment. In this paper, the problem of Silicon Carbide (SiC) mirror surface roughness deterioration by MRF is studied. The reasons of surface flaws of “Comet tail” are analyzed. Influence principle of MRF polishing depth and the surface roughness of modified SiC mirrors is obtained by experiments. On this basis, the united process of modified SiC mirrors is proposed which is combined MRF with the small grinding head CCOS. The united process makes improvement in the surface accuracy and surface roughness of modified SiC mirrors.
Karda, Babita; Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder
2016-05-01
With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t -test. Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (p<0.001) with tooth enamel, composite and compomer (p=0.002). Coca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks.
Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079
NASA Astrophysics Data System (ADS)
Zhong, L. Q.; Liang, Y. L.; Hu, H.
2017-09-01
In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.
Characterization, modeling and simulation of fused deposition modeling fabricated part surfaces
NASA Astrophysics Data System (ADS)
Taufik, Mohammad; Jain, Prashant K.
2017-12-01
Surface roughness is generally used for characterization, modeling and simulation of fused deposition modeling (FDM) fabricated part surfaces. But the average surface roughness is not able to provide the insight of surface characteristics with sharp peaks and deep valleys. It deals in the average sense for all types of surfaces, including FDM fabricated surfaces with distinct surface profile features. The present research work shows that kurtosis and skewness can be used for characterization, modeling and simulation of FDM surfaces because these roughness parameters have the ability to characterize a surface with sharp peaks and deep valleys. It can be critical in certain application areas in tribology and biomedicine, where the surface profile plays an important role. Thus, in this study along with surface roughness, skewness and kurtosis are considered to show a novel strategy to provide new transferable knowledge about FDM fabricated part surfaces. The results suggest that the surface roughness, skewness and kurtosis are significantly different at 0° and in the range (0°, 30°], [30°, 90°] of build orientation.
NASA Astrophysics Data System (ADS)
Ramadhani, A. M.; Herda, E.; Triaminingsih, S.
2017-08-01
This study aims to determine the effect of brushing with toothpaste containing nanocalcium carbonate on the roughness of nanofill composite resin surface. Brushing was conducted with 3 types of materials for 3 consecutive brushing periods of 10 minutes each. Surface roughness was measured using a surface-roughness tester and the results were analyzed using the repeated ANOVA and the one-way ANOVA test. The surface morphology was observed using SEM after 3 months’ worth of brushing with the 3 materials. It was found that the nanofill composite resin surface-roughness value increased significantly (p<0.005) after brushing with toothpaste containing nano calcium carbonate for 3 months, but the value was not as high as that obtained when brushing with other types of toothpaste.
Study on stair-step liquid triggered capillary valve for microfluidic systems
NASA Astrophysics Data System (ADS)
Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim
2018-06-01
In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.
Cultivation of algal biofilm using different lignocellulosic materials as carriers.
Zhang, Qi; Liu, Cuixia; Li, Yubiao; Yu, Zhigang; Chen, Zhihua; Ye, Ting; Wang, Xun; Hu, Zhiquan; Liu, Shiming; Xiao, Bo; Jin, Shiping
2017-01-01
Algal biofilm technology is recently supposed to be a promising method to produce algal biomass as the feedstock for the production of biofuels. However, the carrier materials currently used to form algal biofilm are either difficult to be obtained at a low price or undurable. Commercialization of the biofilm technology for algal biomass production extremely requires new and inexpensive materials as biofilm carriers with high biomass production performances. Four types of lignocellulosic materials were investigated to evaluate their performance of acting as carriers for algal cells attachment and the relevant effects on the algal biomass production in this study. The cultivation of algal biofilm was processed in a self-designed flat plate photo-bioreactor. The biofilm production and chemical composition of the harvested biomass were determined. The surface physics properties of the materials were examined through a confocal laser-scanning microscopy. Algal biomass production varied significantly with the variation of the carriers ( P < 0.05). All the lignocellulosic materials showed better performances in biofilm production than poly methyl methacrylate, and the application of pine sawdust as the carrier could gain the maximum biofilm productivity of 10.92 g m -2 day -1 after 16-day cultivation. In addition, 20.10-23.20% total lipid, 30.35-36.73% crude proteins, and 20.29-25.93% carbohydrate were achieved from the harvested biomasses. Biomass productivity increased linearly as the increase of surface roughness, and Wenzel's roughness factor of the tested materials, and surface roughness might significantly affect the biomass production through the size of surface morphology and the area of surface ( P < 0.05). The results showed that lignocellulosic materials can be efficient carriers for low-cost cultivation of algal biofilm and the enhancement of biomass productivity.
Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction
NASA Astrophysics Data System (ADS)
Krywonos, Andrey
Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.
NASA Astrophysics Data System (ADS)
Jiao, Peng; Yang, Er; Ni, Yong Xin
2018-06-01
The overland flow resistance on grassland slope of 20° was studied by using simulated rainfall experiments. Model of overland flow resistance coefficient was established based on BP neural network. The input variations of model were rainfall intensity, flow velocity, water depth, and roughness of slope surface, and the output variations was overland flow resistance coefficient. Model was optimized by Genetic Algorithm. The results show that the model can be used to calculate overland flow resistance coefficient, and has high simulation accuracy. The average prediction error of the optimized model of test set is 8.02%, and the maximum prediction error was 18.34%.
Spin Hall effect originated from fractal surface
NASA Astrophysics Data System (ADS)
Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.
2018-05-01
The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H = 1 to H = 0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.
Rough surface reconstruction for ultrasonic NDE simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.
2014-02-18
The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors.more » This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.« less
Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland
Nicholas, F.W.; Lewis, J.E.
1980-01-01
Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.
NASA Astrophysics Data System (ADS)
Marras, S.; Suckale, J.; Eguzkitza, B.; Houzeaux, G.; Vázquez, M.; Lesage, A. C.
2016-12-01
The propagation of tsunamis in the open ocean has been studied in detail with many excellent numerical approaches available to researchers. Our understanding of the processes that govern the onshore propagation of tsunamis is less advanced. Yet, the reach of tsunamis on land is an important predictor of the damage associated with a given event, highlighting the need to investigate the factors that govern tsunami propagation onshore. In this study, we specifically focus on understanding the effect of bottom roughness at a variety of scales. The term roughness is to be understood broadly, as it represents scales ranging from small features like rocks, to vegetation, up to the size of larger structures and topography. In this poster, we link applied mathematics, computational fluid dynamics, and tsunami physics to analyze the small scales features of coastal hydrodynamics and the effect of roughness on the motion of tsunamis as they run up a sloping beach and propagate inland. We solve the three-dimensional Navier-Stokes equations of incompressible flows with free surface, which is tracked by a level set function in combination with an accurate re-distancing scheme. We discretize the equations via linear finite elements for space approximation and fully implicit time integration. Stabilization is achieved via the variational multiscale method whereas the subgrid scales for our large eddy simulations are modeled using a dynamically adaptive Smagorinsky eddy viscosity. As the geometrical characteristics of roughness in this study vary greatly across different scales, we implement a scale-dependent representation of the roughness elements. We model the smallest sub-grid scale roughness features by the use of a properly defined law of the wall. Furthermore, we utilize a Manning formula to compute the shear stress at the boundary. As the geometrical scales become larger, we resolve the geometry explicitly and compute the effective volume drag introduced by large scale immersed bodies. This study is a necessary step to verify and validate our model before proceeding further into the simulation of sediment transport in turbulent free surface flows. The simulation of such problems requires a space and time-dependent viscosity to model the effect of solid bodies transported by the incoming flow on onshore tsunami propagation.
Shen, Jie; Wan, Mi; Shi, Jiafeng
2018-01-01
The surface roughness of roads is an essential road characteristic. Due to the employed carrying platforms (which are often cars), existing measuring methods can only be used for motorable roads. Until now, there has been no effective method for measuring the surface roughness of un-motorable roads, such as pedestrian and bicycle lanes. This hinders many applications related to pedestrians, cyclists and wheelchair users. In recognizing these research gaps, this paper proposes a method for measuring the surface roughness of pedestrian and bicycle lanes based on Global Positioning System (GPS) and accelerometer sensors on bicycle-mounted smartphones. We focus on the International Roughness Index (IRI), as it is the most widely used index for measuring road surface roughness. Specifically, we analyzed a computing model of road surface roughness, derived its parameters with GPS and accelerometers on bicycle-mounted smartphones, and proposed an algorithm to recognize potholes/humps on roads. As a proof of concept, we implemented the proposed method in a mobile application. Three experiments were designed to evaluate the proposed method. The results of the experiments show that the IRI values measured by the proposed method were strongly and positively correlated with those measured by professional instruments. Meanwhile, the proposed algorithm was able to recognize the potholes/humps that the bicycle passed. The proposed method is useful for measuring the surface roughness of roads that are not accessible for professional instruments, such as pedestrian and cycle lanes. This work enables us to further study the feasibility of crowdsourcing road surface roughness with bicycle-mounted smartphones. PMID:29562731
Estimating small-scale roughness of a rock joint using TLS data
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2016-04-01
Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface) is approximately normal. Standard deviation of differences on average slightly increases with the noise level, but is strongly dependent on the analysis direction. As proved by different researches within the field of signal, image and also TLS data processing, noise can be, to a certain extent, removed by a post-processing step called denoising. In this research, four denoising methods, namely discrete WT (DWT) and stationary WT (SWT), and classic NLM (NLM) and probabilistic NLM (PNLM), were used on noisy ATOS data. Results were compared based on the (i) height and (ii) roughness differences between denoised surfaces and reference ATOS surface, (iii) the peak signal-to-noise ratio (PSNR) and (iv) the visual check of denoised surface. Increased PSNRs and reduced roughness differences prove the importance of the TLS data denoising procedure. In case of SWT, NLM and PNLM the surface is mostly over smoothed, whereas in case of DWT some noise remains. References: - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Sturzenegger, M. and D. Stead (2009). "Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts." Engineering Geology 106(3-4): 163-182.
McConnell, Marla D; Liu, Yu; Nowak, Andrew P; Pilch, Shira; Masters, James G; Composto, Russell J
2010-03-15
Bacterial adhesion to oral hard materials is dependent on various factors, for example, surface roughness and surface composition. In this study, bacteria retention on three oral hard substrates, hydroxyapatite (HAP), enamel, and polished enamel (p-enamel) were investigated. The surface morphology and roughness of the three substrates were measured by scanning probe microscopy. HAP had the roughest surface, followed by enamel and polished enamel. For each individual substrate type, the roughness was shown to increase with scan size up to 50 microm x 50 microm. For HAP and enamel, roughness decreased considerably after formation of a pellicle, while addition of polymer coating to the pellicle layer reduced roughness much less in comparison. Bacterial surface coverage was measured at 30 min, 3 h, and 24 h on both native and surface-modified substrates, which were coated with two different polycarboxylate-based polymers, Gantrez S97 and Carbopol 940. As a result, the polymer coated surfaces had reduced bacteria coverage compared with the native surfaces over all time points and substrates measured. The reduction is the combined effect of electrostatic repulsion and sequestering of Ca(2+) ions at the surface, which plays a key role in the initial adhesion of bacteria to enamel surfaces in models of plaque formation. (c) 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ghosh, Debashis; Mallik, Manab; Mandal, Nilrudra; Dutta, Samik; Roy, Himadri; Lohar, Aditya Kumar
2017-04-01
This investigation was primarily carried out to examine the abrasive wear behavior of as cast Al-4.5 % Cu alloy. Wear tests have been carried out using an abrasive wear machine with emery paper embedded with SiC particles acting as abrasive medium. The experiments were planned using central composite design, with, load, cycle and grit size as input variables, whereas wear rate and 3D roughness were considered as output variable. Analysis of variance was applied to check the adequacy of the mathematical model and their respective parameters. Microstructural investigations of the worn surfaces have been carried out to explain the observed results and to understand the wear micro-mechanisms as per the planned experiments. Desirability function optimization technique was finally employed to optimize the controlling factors. The observed results revealed that, grit size plays a significant role in the variation of wear rate and 3D roughness as compared to load and cycles. Based on the significance of interactions, the regression equations were derived and verified further with a number of confirmation runs to assess the adequacy of the model. A close agreement (±10 %) between the predicted and experimentally measured results was obtained from this investigation.
Sasaki, Kotaro; Rispin, Karen
2017-01-01
In under-resourced settings where motorized wheelchairs are rarely available, manual wheelchair users with limited upper-body strength and functionalities need to rely on assisting pushers for their mobility. Because traveling surfaces in under-resourced settings are often unpaved and rough, wheelchair pushers could experience high physiological loading. In order to evaluate pushers' physiological loading and to improve wheelchair designs, we built indoor modular units that simulate rough surface conditions, and tested a hypothesis that pushing different wheelchairs would result in different physiological performances and pushers' perception of difficulty on the simulated rough surface. Eighteen healthy subjects pushed two different types of pediatric wheelchairs (Moti-Go manufactured by Motivation, and KidChair by Hope Haven) fitted with a 50-kg dummy on the rough and smooth surfaces at self-selected speeds. Oxygen uptake, traveling distance for 6 minutes, and the rating of difficulty were obtained. The results supported our hypothesis, showing that pushing Moti-Go on the rough surface was physiologically less loading than KidChair, but on the smooth surface, the two wheelchairs did not differ significantly. These results indicate wheelchair designs to improve pushers' performance in under-resourced settings should be evaluated on rough surfaces.
Correlation of bond strength with surface roughness using a new roughness measurement technique.
Winkler, M M; Moore, B K
1994-07-01
The correlation between shear bond strength and surface roughness was investigated using new surface measurement methods. Bonding agents and associated resin composites were applied to set amalgam after mechanically roughening its surface. Surface treatments were noe (as set against glass), 80 grit, and 600 grit abrasive paper. Surface roughness (R(a) as measured parallel and perpendicular (+) to the direction of the polishing scratches and true profile length were measured. A knife-edge was applied (rate = 2.54 mm/min) at the bonding agent/amalgam interface of each sample until failure. Coefficients of determination for mean bond strength vs either roughness (R(a), of profile length were significantly higher for measurements in parallel directions than for those measurements in (+) directions. The shear bond strength to set amalgam for a PENTA-containing adhesives system (L.D. Caulk Division) was not significantly different from that of a PENTA-free adhesive (3M Dental Products Division), even though PENTA has been reported to increase bond strength to nonprecious metals. The shear bond strength of resin composite to amalgam is correlated to surface roughness when it is measured parallel to the polishing scratches. This correlation is significantly lower when surface roughness is measured in the typical manner, perpendicular to the polishing scratches.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
Surface roughness manifestations of deep-seated landslide processes
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Lamb, M. P.
2012-12-01
In many mountainous drainage basins, deep-seated landslides evacuate large volumes of sediment from small surface areas, leaving behind a strong topographic signature that sets landscape roughness over a range of spatial scales. At long spatial wavelengths of hundreds to thousands of meters, landslides tend to inhibit channel incision and limit topographic relief, effectively smoothing the topography at this length scale. However, at short spatial wavelengths on the order of meters, deformation of deep-seated landslides generates surface roughness that allows expert mappers or automated algorithms to distinguish landslides from the surrounding terrain. Here, we directly connect the characteristic spatial wavelengths and amplitudes of this fine scale surface roughness to the underlying landslide deformation processes. We utilize the two-dimensional wavelet transform with high-resolution, airborne LiDAR-derived digital elevation models to systematically document the characteristic length scales and amplitudes of different kinematic units within slow moving earthflows, a common type of deep-seated landslide. In earthflow source areas, discrete slumped blocks generate high surface roughness, reflecting an extensional deformation regime. In earthflow transport zones, where material translates with minimal surface deformation, roughness decreases as other surface processes quickly smooth short wavelength features. In earthflow depositional toes, compression folds and thrust faults again increase short wavelength surface roughness. When an earthflow becomes inactive, roughness in all of these kinematic zones systematically decreases with time, allowing relative dating of earthflow deposits. We also document how each of these roughness expressions depends on earthflow velocity, using sub-pixel change detection software (COSI-Corr) and pairs of orthorectified aerial photographs to determine spatially extensive landslide surface displacements. In source areas, the wavelength of slumped blocks tends to correlate with velocity as predicted by a simple sliding block model, but the amplitude is insensitive to velocity, suggesting that landslide depth rather than velocity sets this characteristic block amplitude. In both transport zones and depositional toes, the amplitude of the surface roughness is higher where the longitudinal gradient in velocity is higher, confirming that differential movement generates and maintains this fine scale roughness.
NASA Astrophysics Data System (ADS)
Marzahn, P.; Ludwig, R.
2016-06-01
In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.
Analysis of Surface Roughness at Overlapping Laser Shock Peening
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.
2016-02-01
The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.
He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan
2014-01-01
This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (p<0.05). Sandblasting zirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.
How surface mounds and depressions change during rainfall events
USDA-ARS?s Scientific Manuscript database
The soil roughness, or microrelief, controls processes occurring on the surface. Although there are numerous studies on how soil roughness affects soil erosion processes, little are focused on quantifying different roughness functions on surface hydrology and erosion, i.e., water diverging and soil...
NASA Astrophysics Data System (ADS)
Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis
2017-06-01
Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.
Quantifying surface roughness effects on phonon transport in silicon nanowires.
Lim, Jongwoo; Hippalgaonkar, Kedar; Andrews, Sean C; Majumdar, Arun; Yang, Peidong
2012-05-09
Although it has been qualitatively demonstrated that surface roughness can reduce the thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain unknown and warrant quantitative studies and analysis. In this work, vapor-liquid-solid (VLS) grown SiNWs were controllably roughened and then thoroughly characterized with transmission electron microscopy to obtain detailed surface profiles. Once the roughness information (root-mean-square, σ, correlation length, L, and power spectra) was extracted from the surface profile of a specific SiNW, the thermal conductivity of the same SiNW was measured. The thermal conductivity correlated well with the power spectra of surface roughness, which varies as a power law in the 1-100 nm length scale range. These results suggest a new realm of phonon scattering from rough interfaces, which restricts phonon transport below the Casimir limit. Insights gained from this study can help develop a more concrete theoretical understanding of phonon-surface roughness interactions as well as aid the design of next generation thermoelectric devices.
Influence of polishing on surface roughness following toothbrushing wear of composite resins.
Dalla-Vecchia, Karine Battestin; Taborda, Talita Damas; Stona, Deborah; Pressi, Heloísa; Burnett Júnior, Luiz Henrique; Rodrigues-Junior, Sinval Adalberto
2017-01-01
This study aimed to evaluate the influence of different polishing systems on the surface roughness of composite resins following procedures to simulate the effects of toothbrushing over time. Four currently available commercial composites were used to make 128 cylindrical specimens. The specimens were randomly allocated to polishing with a 1-step polisher or 1 of 3 multistep polishers (n = 8 per group). The baseline surface roughness was measured, and the specimens were submitted to 5000, 10,000, and 20,000 brushing cycles to represent toothbrushing throughout 6, 12, and 24 months, respectively. Results showed that surface roughness was influenced by the type of composite and polishing system and was not influenced by the simulated toothbrushing time. However, the surface roughness, as challenged by toothbrushing wear, was affected by the interaction among the composite, the polisher, and the toothbrushing time. The 1-step polisher produced the highest surface roughness and influenced toothbrushing wear resistance of some composites.
Surface roughness model based on force sensors for the prediction of the tool wear.
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-04-04
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.
Surface roughness effects on bidirectional reflectance
NASA Technical Reports Server (NTRS)
Smith, T. F.; Hering, R. G.
1972-01-01
An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.
NASA Astrophysics Data System (ADS)
Champion, J.; Ristorcelli, T.; Ferrari, C. C.; Briottet, X.; Jacquemoud, S.
2013-12-01
Surface roughness is a key physical parameter that governs various processes (incident radiation distribution, temperature, erosion,...) on Earth and other Solar System objects. Its impact on the scattering function of incident electromagnetic waves is difficult to model. In the 80's, Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. This analytical radiative transfer model is widely used in solar system science whereas its ability to remotely determine surface roughness is still a question at issue. The validation of the Hapke model has been only occasionally undertaken due to the lack of radiometric data associated with field measurement of surface roughness. We propose to validate it on Earth, on several volcanic terrains for which very high resolution digital elevation models are available at small scale. We simulate the BRDF of these DEMs thanks to a ray-tracing code and fit them with the Hapke model to retrieve surface roughness. The mean slope angle of the facets, which quantifies surface roughness, can be fairly well retrieved when most conditions are met, i.e. a random-like surface and little multiple scattering between the facets. A directional sensitivity analysis of the Hapke model confirms that both surface intrinsic optical properties (facet's reflectance or single scattering albedo) and roughness are the most influential variables on ground BRDFs. Their interactions in some directions explain why their separation may be difficult, unless some constraints are introduced in the inversion process. Simulation of soil surface BRDF at different illumination and viewing angles
Specular Reflection from Rough Surfaces Revisited
NASA Astrophysics Data System (ADS)
Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.
2016-10-01
In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in nontransparent rough surfaces at oblique angles, where roughness was treated as a variable. We present a simple trigonometry-based model explaining the observed phenomenon, which we experimentally validated using aluminum surfaces that have controlled roughness. The reported demonstration requires no special equipment, other than cellphone cameras, dielectric or metal plate, and sandpaper, and serves as an introduction to wave optics. This activity can be used to get further insight into everyday applications of wave optics for students already familiar with wave optics fundamentals.
Surface roughness scattering of electrons in bulk mosfets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuverink, Amanda Renee
2015-11-01
Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less
NASA Astrophysics Data System (ADS)
Di Tuccio, Maria Concetta; De Grandi, Sandro; Vivarelli, Arianna; Becherini, Francesca; Pockelé, Luc; Bernardi, Adriana
2015-04-01
To conserve the work of arts (paintings, sculptures, etc..) in a preventive mode, a careful monitoring of the environment around these artifacts, as well as of their surface temperature, is necessary. The latter is the only physical variable which can be measured in a non-invasive way, following directly the thermal conditions and variations of the work of arts due to the dynamics of the microclimate. Considering that the works of art are often untouchable, an automated and accurate remote sensing could be very useful to prevent dangerous processes of deterioration. For these reasons a new sensor has been developed by a spin-off of the ISAC - CNR. This sensor allows to check in real-time the surface temperature changes of the artifacts both over time and at different predefined points. This automated sensor is a radiometer sensible to wavelengths ranging from 7,5 µm to 13,4 µm. A system rotating over three dimension "pan and tilt" allows to make multiple measures on a grid of points previously defined on the surface of the work of arts. The accuracy, obtained by means of a carefull calibration process, is 0,5 °C, more precise than the usual remote sensing (thermal camera and commercial radiometers), characterized by an accuracy value of 2°C. In order to obtain accurate measures of the surface temperature for a real body, the correct emissivity values need to be integrated in the calculation. Hence, an easy to use management software has been developed allowing to set the emissivity value in each point of the grid. For rejoinable points of the surface, the exact emissivity value could be determined comparing the measurements recorded by the new infrared sensor with the ones obtained by a very sensitive sensor (0,02 - 0,03)°C manually placed on the surface for a short time. In case of work of arts placed at great distance from the sersor, the emissivity values must be determined previously. The emissivity depends on a lot of variables and one of them is the surface roughness. Since the artifacts are often charaterized by a high surface roughness, such dependence has been studied in order to obtain accurate temperature measurements. The results obtained indicate an increase of the emissivity with increasing surface roughness. In conclusion, this study has allowed to develop a reliable, accurate and automatic control system, as well as a low cost sensor that, unlike the thermal camera, can also be used by less experienced operators. Besides, in order to support the museums managers in the preventive conservation of the artifacts, an alarm system is automatically activated when dangerously large thermal variations on the surface are detected.
Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces
NASA Astrophysics Data System (ADS)
Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.
2004-06-01
The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.
Modeling of surface roughness effects on glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark
1990-01-01
A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.
Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek
2017-01-01
Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847
NASA Technical Reports Server (NTRS)
Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.
2004-01-01
Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
NASA Astrophysics Data System (ADS)
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi
2017-12-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan
2017-01-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265
Comparison of two metrological approaches for the prediction of human haptic perception
NASA Astrophysics Data System (ADS)
Neumann, Annika; Frank, Daniel; Vondenhoff, Thomas; Schmitt, Robert
2016-06-01
Haptic perception is regarded as a key component of customer appreciation and acceptance for various products. The prediction of customers’ haptic perception is of interest both during product development and production phases. This paper presents the results of a multivariate analysis between perceived roughness and texture related surface measurements, to examine whether perceived roughness can be accurately predicted using technical measurements. Studies have shown that standardized measurement parameters, such as the roughness coefficients (e.g. Rz or Ra), do not show a one-dimensional linear correlation with the human perception (of roughness). Thus, an alternative measurement method was compared to standard measurements of roughness, in regard to its capability of predicting perceived roughness through technical measurements. To estimate perceived roughness, an experimental study was conducted in which 102 subjects evaluated four sets of 12 different geometrical surface structures regarding their relative perceived roughness. The two different metrological procedures were examined in relation to their capability to predict the perceived roughness of the subjects stated within the study. The standardized measurements of the surface roughness were made using a structured light 3D-scanner. As an alternative method, surface induced vibrations were measured by a finger-like sensor during robot-controlled traverse over a surface. The presented findings provide a better understanding of the predictability of human haptic perception using technical measurements.
Shin, Young-Kyu; Han, Chong-Hyun; Heo, Seong-Joo; Kim, Sunjai; Chun, Heoung-Jae
2006-01-01
To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (Oneplant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P < .05). At 12 months, significant differences were noted in the amount of alveolar bone loss recorded for the 3 groups (P < .05). The group with the rough-surfaced microthreaded neck had a mean crestal bone loss of 0.18 +/- 0.16 mm; the group with the rough-surfaced neck, 0.76 +/- 0.21 mm; and the group with the machined neck, 1.32 +/- 0.27 mm. In the rough-surfaced group and the rough-surfaced microthreaded group, no statistically significant changes were observed after 3 months, whereas the machined-surface group showed significant bone loss for every interval (P < .05). To minimize marginal bone loss, in addition to the use of a rough surface at the marginal bone level, a macroscopic modification such as the addition of microthreads could be recommended. A rough surface and microthreads at the implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading.
The machined surface of magnesium AZ31 after rotary turning at air cooling condition
NASA Astrophysics Data System (ADS)
Akhyar, G.; Purnomo, B.; Hamni, A.; Harun, S.; Burhanuddin, Y.
2018-04-01
Magnesium is a lightweight metal that is widely used as an alternative to iron and steel. Magnesium has been applied in the automotive industry to reduce the weight of a component, but the machining process has the disadvantage that magnesium is highly flammable because it has a low flash point. High temperature can cause the cutting tool wear and contributes to the quality of the surface roughness. The purpose of this study is to obtain the value of surface roughness and implement methods of rotary cutting tool and air cooling output vortex tube cooler to minimize the surface roughness values. Machining parameters that is turning using rotary cutting tool at speed the workpiece of (Vw) 50, 120, 160 m/min, cutting speed of rotary tool of (Vt) 25, 50, 75 m/min, feed rate of (f) 0.1, 0.15, 0.2 mm/rev, and depth of cut of 0.3 mm. Type of tool used is a carbide tool diameter of 16 mm and air cooling pressure of 6 bar. The results show the average value of the lowest surface roughness on the speed the workpiece of 80 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. While the average value of the highest surface roughness on the speed the workpiece of 160 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. The influence of machining parameters concluded the higher the speed of the workpiece the surface roughness value higher. Otherwise the higher cutting speed of rotary tool then the lower the surface roughness value. The observation on the surface of the rotary tool, it was found that no uniform tool wear which causes non-uniform surface roughness. The use of rotary cutting tool contributing to lower surface roughness values generated.
Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel
NASA Astrophysics Data System (ADS)
Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich
2015-06-01
In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest.
Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness
NASA Astrophysics Data System (ADS)
Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah
2018-01-01
In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.
Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces.
Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; Song, Hwangjun
2010-11-01
This study investigated the surface characteristics and in vitro osteoconductivity of a titanium (Ti) surface incorporated with the magnesium ions (Mg) produced by hydrothermal treatment for future application as an endosseous implant surface. Mg-incorporated Ti oxide surfaces were produced by hydrothermal treatment using Mg-containing solution on two different microstructured surfaces--abraded minimally rough (Ma) or grit-blasted moderately rough (RBM) samples. The surface characteristics were evaluated using scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). MC3T3-E1 pre-osteoblast cell attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Ma, RBM, Mg-incorporated Ma (Mg), and Mg-incorporated grit-blasted (RBM/Mg) Ti surfaces were evaluated. Hydrothermal treatment produced an Mg-incorporated Ti oxide layer with nanoporous surface structures. Mg-incorporated surfaces showed surface morphologies and surface roughness values almost identical to those of untreated smooth or micro-rough surfaces at the micron scale. ICP-AES analysis showed Mg ions released from treated surfaces into the solution. Mg incorporation significantly increased cellular attachment (P=0 at 0.5 h, P=0.01 at 1 h) on smooth surfaces, but no differences were found on micro-rough surfaces. Mg incorporation further increased ALP activity in cells grown on both smooth and micro-rough surfaces at 7 and 14 days of culture (P=0). Real-time polymerase chain reaction analysis showed higher mRNA expressions of the osteoblast transcription factor gene (Dlx5), various integrins, and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on micro-rough (RBM) and Mg-incorporated (Mg and RBM/Mg) surfaces than those on Ma surfaces. Mg incorporation further increased the mRNA expressions of key osteoblast genes and integrins (α1, α2, α5, and β1) in cells grown on both the smooth and the micro-rough surfaces. These results indicate that an Mg-incorporated nanoporous Ti oxide surface produced by hydrothermal treatment may improve implant bone healing by enhancing the attachment and differentiation of osteoblastic cells. © 2010 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Novareza, O.; Sulistiyarini, D. H.; Wiradmoko, R.
2018-02-01
This paper presents the result of using Taguchi method in turning process of medium carbon steel of AISI 4140. The primary concern is to find the optimal surface roughness after turning process. The taguchi method is used to get a combination of factors and factor levels in order to get the optimum surface roughness level. Four important factors with three levels were used in experiment based on Taguchi method. A number of 27 experiments were carried out during the research and analysed using analysis of variance (ANOVA) method. The result of surface finish was determined in Ra type surface roughness. The depth of cut was found to be the most important factors for reducing the surface roughness of AISI 4140 steel. On the contrary, the other important factors i.e. spindle speed and rake side angle of the tool were proven to be less factors that affecting the surface finish. It is interesting to see the effect of coolant composition that gained the second important factors to reduce the roughness. It may need further research to explain this result.
NASA Astrophysics Data System (ADS)
Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju
2017-01-01
In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.
USDA-ARS?s Scientific Manuscript database
Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...
NASA Astrophysics Data System (ADS)
Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.
2018-03-01
The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.
NASA Technical Reports Server (NTRS)
Greivenkamp, John E. (Editor); Young, Matt (Editor)
1989-01-01
Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.
Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability
NASA Astrophysics Data System (ADS)
Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios
2015-03-01
In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.
Roughness based perceptual analysis towards digital skin imaging system with haptic feedback.
Kim, K
2016-08-01
To examine psoriasis or atopic eczema, analyzing skin roughness by palpation is essential to precisely diagnose skin diseases. However, optical sensor based skin imaging systems do not allow dermatologists to touch skin images. To solve the problem, a new haptic rendering technology that can accurately display skin roughness must be developed. In addition, the rendering algorithm must be able to filter spatial noises created during 2D to 3D image conversion without losing the original roughness on the skin image. In this study, a perceptual way to design a noise filter that will remove spatial noises and in the meantime recover maximized roughness is introduced by understanding human sensitivity on surface roughness. A visuohaptic rendering system that can provide a user with seeing and touching digital skin surface roughness has been developed including a geometric roughness estimation method from a meshed surface. In following, a psychophysical experiment was designed and conducted with 12 human subjects to measure human perception with the developed visual and haptic interfaces to examine surface roughness. From the psychophysical experiment, it was found that touch is more sensitive at lower surface roughness, and vice versa. Human perception with both senses, vision and touch, becomes less sensitive to surface distortions as roughness increases. When interact with both channels, visual and haptic interfaces, the performance to detect abnormalities on roughness is greatly improved by sensory integration with the developed visuohaptic rendering system. The result can be used as a guideline to design a noise filter that can perceptually remove spatial noises while recover maximized roughness values from a digital skin image obtained by optical sensors. In addition, the result also confirms that the developed visuohaptic rendering system can help dermatologists or skin care professionals examine skin conditions by using vision and touch at the same time. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of sealer coating and storage methods on the surface roughness of soft liners.
Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat
2016-03-01
A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P<.001), and silicone-based sealer-coated soft liners exhibited a decrease in roughness, but it was not significant (2.16-2.02 μm, P>.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
The nucleus of Comet Borrelly: A study of morphology and surface brightness
Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.
2004-01-01
Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.
[Modeling and Simulation of Spectral Polarimetric BRDF].
Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu
2016-01-01
Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.
Eggshell structure in Caiman latirostris eggs improves embryo survival during nest inundation.
Cedillo-Leal, César; Simoncini, Melina S; Leiva, Pamela M L; Larriera, Alejandro; Lang, Jeffrey W; Piña, Carlos I
2017-05-17
Egg inundation often results in poor hatching success in crocodylians. However, how tolerant eggs are to submergence, and/or how eggshell ultrastructure may affect embryo survival when inundated, are not well understood. In this study, our objective was to determine if embryo survival in Caiman latirostris is affected by eggshell surface roughness, when eggs are submerged under water. Tolerance to inundation was tested early (day 30) versus late (day 60) in development, using eight clutches (four per time treatments), subdivided into four groups: ( N = 9 per clutch per treatment; 9 × 4 = 36 eggs per group). 'Rough' eggshell represented the natural, unmodified eggshell surface structure. 'Smooth' eggshell surface structure was created by mechanically sanding the natural rough surface to remove surface columnar elements and secondary layer features, e.g. irregularities that result in 'roughness'. When inundated by submerging eggs under water for 10 h at day 30, 'smooth' eggshell structure resulted in more than twice as many dead embryos (16 versus 6, smooth versus rough; N = 36), and fewer than half as many healthy embryos (6 versus 13, smooth versus rough, respectively; N = 36). By contrast, at day 60, inundation resulted in very low hatching success, regardless of eggshell surface structure. Only two hatchlings survived the inundation, notably in the untreated group with intact, rough eggshells. Inundation produced a high rate of malformations (58% at day 30), but did not affect hatchling size. Our results indicate that eggshell roughness enhances embryo survival when eggs are inundated early in development, but not late in development. Apparently, the natural surface 'roughness' entraps air bubbles at the eggshell surface during inundation, thereby facilitating gas exchange through the eggshell even when the egg is submerged under water. © 2017 The Author(s).
Development of the Navy’s Next-Generation Nonhydrostatic Modeling System
2013-09-30
e.g. surface roughness, land- sea mask, surface albedo ) are needed by physical parameterizations. The surface values will be read and interpolated...characteristics (e.g. albedo , surface roughness) is now available to the model during the initialization stage. We have added infrastructure to the...six faces (Fig 3). 4 Figure 3: Topography (top left, in meters), surface roughness (top right, in meters), albedo (bottom left, no units
Gloss measurements and rugometric inspection in dental biomaterials
NASA Astrophysics Data System (ADS)
Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Yebra, Ana; Rubiño, Manuel; Pérez, María. M.
2013-11-01
In dental applications, optimizing appearance is desirable and increasingly demanded by patients. The specular gloss is among the major appearance properties of dental biomaterials, and its relationship with surface roughness has been reported. Roughness and gloss are key surface aspects that complement each other. We have experimentally analyzed the specular gloss and surface roughness of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We have studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental resin. Gloss measurements were performed with a standardized reflectometer and the corresponding gloss percentages were calculated. All the samples were submitted to rugometric non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to determine meaningful statistical parameters such as the average roughness (Ra) and the root-mean-square deviation (Rq). For a comparison of the different biomaterials, the uncertainties associated to the measure of the surface gloss and roughness were also determined. The differences between the two shades of both kinds of composites proved significant in the case of the roughness parameters but not for the specular gloss. The surface treatment applied to the dental-resin composites increased the average roughness but the changes in the specular gloss were significant only for the A2 enamel nano-composite. For the zirconia ceramic the sintered process resulted in an increase in the surface roughness with a decrease of the specular gloss, corroborating that the relationship between the gloss and the roughness shows the expected behavior.
RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langel, Christopher M.; Chow, Raymond C.; van Dam, C. P.
The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With thismore » motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 63 3 -418 airfoil. The refined model demonstrates favorable agreement predicting changes to the transition location, as well as drag, for a number of different leading edge roughness configurations on the NACA 63 3-418 airfoil. Additional tests were conducted on a thicker S814 airfoil, with similar roughness configurations to the NACA 63 3-418. Simulations run with the roughness model compare favorably with the results obtained in the experimental study for both airfoils.« less
Surface Roughness and Gloss of Actual Composites as Polished With Different Polishing Systems.
Rodrigues-Junior, S A; Chemin, P; Piaia, P P; Ferracane, J L
2015-01-01
This in vitro study evaluated the effect of polishing with different polishing systems on the surface roughness and gloss of commercial composites. One hundred disk-shaped specimens (10 mm in diameter × 2 mm thick) were made with Filtek P-90, Filtek Z350 XT, Opallis, and Grandio. The specimens were manually finished with #400 sandpaper and polished by a single operator using three multistep systems (Superfix, Diamond Pro, and Sof-lex), one two-step system (Polidores DFL), and one one-step system (Enhance), following the manufacturer's instructions. The average surface roughness (μm) was measured with a surface profilometer (TR 200 Surface Roughness Tester), and gloss was measured using a small-area glossmeter (Novo-Curve, Rhopoint Instrumentation, East Sussex, UK). Data were analyzed by two-way analysis of variance and Tukey's test (α=0.05). Statistically significant differences in surface roughness were identified by varying the polishing systems (p<0.0001) and by the interaction between polishing system and composite (p<0.0001). Pairwise comparisons revealed higher surface roughness for Grandio when polished with Sof-Lex and Filtek Z250 and Opallis when polished with Enhance. Gloss was influenced by the composites (p<0.0001), the polishing systems (p<0.0001), and the interaction between them (p<0.0001). The one-step system, Enhance, produced the lowest gloss for all composites. Surface roughness and gloss were affected by composites and polishing systems. The interaction between both also influenced these surface characteristics, meaning that a single polishing system will not behave similarly for all composites. The multistep systems produced higher gloss, while the one-step system produced the highest surface roughness and the lowest gloss of all.
Analyzing refractive index profiles of confined fluids by interferometry.
Kienle, Daniel F; Kuhl, Tonya L
2014-12-02
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
2014-03-06
from scattered satellite transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has...Earth’s atmosphere. The 2012 GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new...bi-static radar technique utilizes signals of opportunity transmitted from existing L-band Global Navigation Satellite Systems ( GNSS ), including GPS
Gong, Lei; Wu, Zhensen; Gao, Ming; Qu, Tan
2018-03-20
The effective extraction of optical surface roughness and defect characteristic provide important realistic values to improve optical system efficiency. Based on finite difference time domain/multi-resolution time domain (FDTD/MRTD) mixed approach, composite scattering between a slightly rough optical surface and multi-body defect particles with different positions is investigated. The scattering contribution of defect particles or the slightly rough optical surface is presented. Our study provides a theoretical and technological basis for the nondestructive examination and optical performance design of nanometer structures.
Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation
Salazar, Félix; Barrientos, Alberto
2013-01-01
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488
Surface changes of enamel after brushing with charcoal toothpaste
NASA Astrophysics Data System (ADS)
Pertiwi, U. I.; Eriwati, Y. K.; Irawan, B.
2017-08-01
The aim of this study was to determine the surface roughness changes of tooth enamel after brushing with charcoal toothpaste. Thirty specimens were brushed using distilled water (the first group), Strong® Formula toothpaste (the second group), and Charcoal® Formula toothpaste for four minutes and 40 seconds (equivalent to one month) and for 14 minutes (equivalent to three months) using a soft fleece toothbrush with a mass of 150 gr. The roughness was measured using a surface roughness tester, and the results were tested with repeated ANOVA test and one-way ANOVA. The value of the surface roughness of tooth enamel was significantly different (p<0.05) after brushing for an equivalent of one month and an equivalent of three months. Using toothpaste containing charcoal can increase the surface roughness of tooth enamel.
Surface roughness measurement on a wing aircraft by speckle correlation.
Salazar, Félix; Barrientos, Alberto
2013-09-05
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.
Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha
2015-07-01
Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.
Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic.
Boaventura, Juliana Maria Capelozza; Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi
2013-01-01
To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0-S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) RESULTS: All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic.
Femtosecond laser-induced surface wettability modification of polystyrene surface
NASA Astrophysics Data System (ADS)
Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong
2016-12-01
In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.
NASA Astrophysics Data System (ADS)
Pei, Haiqing; Wen, Zhixun; Li, Zhenwei; Zhang, Yamin; Yue, Zhufeng
2018-05-01
The high-temperature oxidation dynamics and mechanisms of a Ni-based single crystal superalloy with four kinds of surface roughnesses were investigated by virtue of XRD, OM, SEM and EDS at 1000 °C. In the initial oxidation stage, outer (Ni, Co)O was mainly produced on the surfaces of the samples with Ra = 90 nm and 19 nm. Correspondingly, outer Cr2O3 and transient θ-Al2O3 were mainly formed on the surfaces with Ra = 509 nm and 182 nm. After 180 min oxidation, the values of instantaneous parabolic mass gain coefficients (kp) of the samples with all surface roughnesses were gradually consistent with the data of the growth parabolic coefficient of α-Al2O3. The oxidation mechanisms of Ni-based superalloy with different surface roughnesses were discussed by a model. The external diffusion flux of Al (DAl) increases with the increases of surface roughness. Thus, the required Al concentration decreases with the increases of surface roughness when the selective oxidation of Al occurrs to form a protective single α-Al2O3 film.
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
NASA Astrophysics Data System (ADS)
Barros, Julio; Schultz, Michael; Flack, Karen
2016-11-01
Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.
NASA Astrophysics Data System (ADS)
Dai, Shuyu; Kirschner, A.; Sun, Jizhong; Tskhakaya, D.; Wang, Dezhen
2014-12-01
The roughness-induced uneven erosion-deposition behaviour is widely observed on plasma-wetted surfaces in tokamaks. The three-dimensional (3D) angular distribution of background plasma and impurities is expected to have an impact on the local erosion-deposition characteristic on rough surfaces. The investigations of 13C deposition on rough surfaces in TEXTOR experiments have been re-visited by 3D treatment of surface morphology to evaluate the effect of 3D angular distribution and its connection with surface topography by the code package SURO/ERO/SDPIC. The simulation results show that the erosion/deposition patterns and evolution of surface topography are strongly affected by the azimuthal direction of incident flux. A reduced aspect ratio of rough surface leads to an increase in 13C deposition due to the enhanced trapping ability at surface recessions. The shadowing effect of rough surface has been revealed based on the relationship between 3D incident direction and surface topography properties. The more realistic surface structures used by 3D SURO can well reproduce the experimental results of the increase in the 13C deposition efficiency by a factor of 3-5 on a rough surface compared with a smooth one. The influence of sheath electric field on the local impact angle and resulting 13C deposition has been studied, which indicates that the difference in 13C deposition caused by sheath electric field can be alleviated by the use of more realistic surface structures. The difference in 13C deposition on smooth graphite and tungsten substrates has been specified by consideration of effects of kinetic reflection, enhanced physical sputtering and nucleation.
Surface roughness and packaging tightness affect calcium lactate crystallization on Cheddar cheese.
Rajbhandari, P; Kindstedt, P S
2014-01-01
Calcium lactate crystals that sometimes form on Cheddar cheese surfaces are a significant expense to manufacturers. Researchers have identified several postmanufacture conditions such as storage temperature and packaging tightness that contribute to crystal formation. Anecdotal reports suggest that physical characteristics at the cheese surface, such as roughness, cracks, and irregularities, may also affect crystallization. The aim of this study was to evaluate the combined effects of surface roughness and packaging tightness on crystal formation in smoked Cheddar cheese. Four 20-mm-thick cross-section slices were cut perpendicular to the long axis of a retail block (~300g) of smoked Cheddar cheese using a wire cutting device. One cut surface of each slice was lightly etched with a cheese grater to create a rough, grooved surface; the opposite cut surface was left undisturbed (smooth). The 4 slices were vacuum packaged at 1, 10, 50, and 90kPa (very tight, moderately tight, loose, very loose, respectively) and stored at 1°C. Digital images were taken at 1, 4, and 8 wk following the first appearance of crystals. The area occupied by crystals and number of discrete crystal regions (DCR) were quantified by image analysis. The experiment was conducted in triplicate. Effects of storage time, packaging tightness, surface roughness, and their interactions were evaluated by repeated-measures ANOVA. Surface roughness, packaging tightness, storage time, and their 2-way interactions significantly affected crystal area and DCR number. Extremely heavy crystallization occurred on both rough and smooth surfaces when slices were packaged loosely or very loosely and on rough surfaces with moderately tight packaging. In contrast, the combination of rough surface plus very tight packaging resulted in dramatic decreases in crystal area and DCR number. The combination of smooth surface plus very tight packaging virtually eliminated crystal formation, presumably by eliminating available sites for nucleation. Cut-and-wrap operations may significantly influence the crystallization behavior of Cheddar cheeses that are saturated with respect to calcium lactate and thus predisposed to form crystals. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer
NASA Technical Reports Server (NTRS)
Gillies, John A.; Nickling, William G.; King, James
2007-01-01
Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.
Youssef, Doaa; El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-06-28
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick's texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm.
El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-01-01
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick’s texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm. PMID:28773080
Han, Jeong-Yeol; Kim, Sug-Whan; Han, Inwoo; Kim, Geon-Hee
2008-03-17
A new evolutionary grinding process model has been developed for nanometric control of material removal from an aspheric surface of Zerodur substrate. The model incorporates novel control features such as i) a growing database; ii) an evolving, multi-variable regression equation; and iii) an adaptive correction factor for target surface roughness (Ra) for the next machine run. This process model demonstrated a unique evolutionary controllability of machining performance resulting in the final grinding accuracy (i.e. averaged difference between target and measured surface roughness) of -0.2+/-2.3(sigma) nm Ra over seven trial machine runs for the target surface roughness ranging from 115 nm to 64 nm Ra.
Russell, Richard; Chatterjee, Garga; Nakayama, Ken
2011-01-01
Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers’ exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. PMID:22192636
A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2017-10-01
Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.
Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.
Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja
2018-06-26
nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark T.
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces grinding saving both time and money and allows the science requirements to be better defined. In this study various materials are polished from a fine grind to a fine polish. Each sample's RMS surface roughness is measured at 81 locations in a 9x9 square grid using a Zygo white light interferometer at regular intervals during the polishing process. Each data set is fit with various standard distributions and tested for goodness of fit. We show that the skew in the RMS data changes as a function of polishing time.
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-04-01
We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.
Surface Roughness of Composite Resins after Simulated Toothbrushing with Different Dentifrices.
Monteiro, Bruna; Spohr, Ana Maria
2015-07-01
The aim of the study was to evaluate, in vitro, the surface roughness of two composite resins submitted to simulated toothbrushing with three different dentifrices. Totally, 36 samples of Z350XT and 36 samples of Empress Direct were built and randomly divided into three groups (n = 12) according to the dentifrice used (Oral-B Pro-Health Whitening [OBW], Colgate Sensitive Pro-Relief [CS], Colgate Total Clean Mint 12 [CT12]). The samples were submitted to 5,000, 10,000 or 20,000 cycles of simulated toothbrushing. After each simulated period, the surface roughness of the samples was measured using a roughness tester. According to three-way analysis of variance, dentifrice (P = 0.044) and brushing time (P = 0.000) were significant. The composite resin was not significant (P = 0.381) and the interaction among the factors was not significant (P > 0.05). The mean values of the surface roughness (µm) followed by the same letter represent no statistical difference by Tukey's post-hoc test (P <0.05): Dentifrice: CT12 = 0.269(a); CS Pro- Relief = 0.300(ab); OBW = 0.390(b). Brushing time: Baseline = 0,046ª; 5,000 cycles = 0.297(b); 10,000 cycles = 0.354(b); 20,000 cycles = 0.584(c). Z350 XT and Empress Direct presented similar surface roughness after all cycles of simulated toothbrushing. The higher the brushing time, the higher the surface roughness of composite resins. The dentifrice OBW caused a higher surface roughness in both composite resins.
Variation of turbulence in a coastal thermal internal boundary layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
SethuRaman, S.; Raynor, G.S.; Brown, R.M.
1981-01-01
Internal boundary layers (IBL) form when an air mass encounters a change in surface characteristics. There are essentially two types of internal boundary layers - one caused by the change in surface roughness and the other by the variation in surface heating. The former is known as the aerodynamic internal boundary layer (AIBL) and the latter the thermal internal boundary layer (TIBL). Change in shear stress generally characterizes the AIBL and change in turbulence the TIBL. Results of some observations of the vertical component of turbulence made in a coastal TIBL over Long Island, New York from 1974 to 1978more » are reported. Vertical turbulence measured by a simple sail plane variometer in a thermal internal boundary layer over Long Island with onshore flows indicates the structure to depend significantly on the land-water temperature difference. The position of the vertical velocity fluctuation maximum seems to vary from one test to another but its variation could not be correlated to other parameters due to lack of a sufficient number of tests. The structure of vertical turbulence was found to be different for sea breeze flows as compared to gradient winds.« less
Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong
2015-01-01
In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303
Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco
2008-01-01
Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932
Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator
Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W.
2017-01-01
The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler. PMID:28294990
NASA Astrophysics Data System (ADS)
Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor
In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.
Effects of plaque lengths on stent surface roughness.
Syaifudin, Achmad; Takeda, Ryo; Sasaki, Katsuhiko
2015-01-01
The physical properties of the stent surface influence the effectiveness of vascular disease treatment after stent deployment. During the expanding process, the stent acquires high-level deformation that could alter either its microstructure or the magnitude of surface roughness. This paper constructed a finite element simulation to observe the changes in surface roughness during the stenting process. Structural transient dynamic analysis was performed using ANSYS, to identify the deformation after the stent is placed in a blood vessel. Two types of bare metal stents are studied: a Palmaz type and a Sinusoidal type. The relationship between plaque length and the changes in surface roughness was investigated by utilizing three different length of plaque; plaque length longer than the stent, shorter than the stent and the same length as the stent. In order to reduce computational time, 3D cyclical and translational symmetry was implemented into the FE model. The material models used was defined as a multilinear isotropic for stent and hyperelastic for the balloon, plaque and vessel wall. The correlation between the plastic deformation and the changes in surface roughness was obtained by intermittent pure tensile test using specimen whose chemical composition was similar to that of actual stent material. As the plastic strain is achieved from FE simulation, the surface roughness can be assessed thoroughly. The study found that the plaque size relative to stent length significantly influenced the critical changes in surface roughness. It was found that the length of stent which is equal to the plaque length was preferable due to the fact that it generated only moderate change in surface roughness. This effect was less influential to the Sinusoidal stent.
Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 20-Inch Mach 6 Air Tunnel
NASA Technical Reports Server (NTRS)
Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.
2000-01-01
Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.
Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 31-Inch Mach 10 Air Tunnel
NASA Technical Reports Server (NTRS)
Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.
2000-01-01
Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 31-Inch Mach 10 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, 3-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 5.1 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.
NASA Astrophysics Data System (ADS)
Song, Myoung Youp; Mumm, Daniel R.; Song, Jiunn
2013-03-01
Crofer22 APU specimens were prepared by grinding with grit 120 and 400 SiC grinding papers, and were then thermally cycled. The variation in oxidation behavior with thermal cycling was then investigated. Observation of microstructures, measurement of area-specific resistance (ASR), analysis of the atomic percentages of the elements by EDX, and XRD analysis were performed. XRD patterns showed that the (Cr, Mn)3O4 spinel phase grew on the surface of the Crofer22 APU samples ground using grit 120. For the samples ground with grit 400, ASR increased as the number of thermal cycles ( n) increased. Plots of ln (ASR/T) vs. 1/ T for the samples ground with grit 400 after n = 4, 20, and 40 exhibited good linearity, and the apparent activation energies were between 73.4 kJ/mole and 82.5 kJ/mole.
Reflective properties of randomly rough surfaces under large incidence angles.
Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J
2014-06-01
The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.
Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas
NASA Astrophysics Data System (ADS)
Ni, H.; Lin, X. G.; Zhang, J. X.
2017-09-01
A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.
Effects of random aspects of cutting tool wear on surface roughness and tool life
NASA Astrophysics Data System (ADS)
Nabil, Ben Fredj; Mabrouk, Mohamed
2006-10-01
The effects of random aspects of cutting tool flank wear on surface roughness and on tool lifetime, when turning the AISI 1045 carbon steel, were studied in this investigation. It was found that standard deviations corresponding to tool flank wear and to the surface roughness increase exponentially with cutting time. Under cutting conditions that correspond to finishing operations, no significant differences were found between the calculated values of the capability index C p at the steady-state region of the tool flank wear, using the best-fit method or the Box-Cox transformation, or by making the assumption that the surface roughness data are normally distributed. Hence, a method to establish cutting tool lifetime could be established that simultaneously respects the desired average of surface roughness and the required capability index.
Optical modeling of agricultural fields and rough-textured rock and mineral surfaces
NASA Technical Reports Server (NTRS)
Suits, G. H.; Vincent, R. K.; Horwitz, H. M.; Erickson, J. D.
1973-01-01
Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces.
Significance of dual polarized long wavelength radar for terrain analysis
NASA Technical Reports Server (NTRS)
Macdonald, H. C.; Waite, W. P.
1978-01-01
Long wavelength systems with improved penetration capability have been considered to have the potential for minimizing the vegetation contribution and enhancing the surface return variations. L-band imagery of the Arkansas geologic test site provides confirmatory evidence of this effect. However, the increased wavelength increases the sensitivity to larger scale structure at relatively small incidence angles. The regularity of agricultural and urban scenes provides large components in the low frequency-large scale portion of the roughness spectrum that are highly sensitive to orientation. The addition of a cross polarized channel is shown to enable the interpreter to distinguish vegetation and orientational perturbations in the surface return.
Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V
2014-08-25
The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.
NASA Astrophysics Data System (ADS)
AL-Milaji, Karam N.
Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag reduction, anti-icing, anti-fogging, energy conservation, noise reduction, and self-cleaning. In fact, the same concept could be applied in designing and producing surfaces that repel organic contaminations (e.g. low surface tension liquids). However, superoleophobic surfaces are more challenging to fabricate than superhydrophobic surfaces since the combination of multiscale roughness with re-entrant or overhang structure and surface chemistry must be provided. In this study, simple, cost-effective and potentially scalable techniques, i.e., airbrush and electrospray, were employed for the sake of making superhydrophobic and superoleophobic coatings with random and patterned multiscale surface roughness. Different types of silicon dioxide were utilized in this work to in order to study and to characterize the effect of surface morphology and surface roughness on surface wettability. The experimental findings indicated that super liquid repellent surfaces with high apparent contact angles and extremely low sliding angles were successfully fabricated by combining re-entrant structure, multiscale surface roughness, and low surface energy obtained from chemically treating the fabricated surfaces. In addition to that, the experimental observations regarding producing textured surfaces in mask-assisted electrospray were further validated by simulating the actual working conditions and geometries using COMSOL Multiphysics.
Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-01-01
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained. PMID:24714391
NASA Astrophysics Data System (ADS)
Das, Arunangsu; Sarkar, Susenjit; Karanjai, Malobika; Sutradhar, Goutam
2018-04-01
The present work was undertaken to investigate and characterize the machining parameters (such as surface roughness, etc.) of uni-axially pressed commercially pure titanium sintered powder metallurgy components. Powder was uni-axially pressed at designated pressure of 840 MPa to form cylindrical samples and the green compacts were sintered at 0.001 mbar for about 4 h with sintering temperature varying from 1350 to 1450 °C. The influence of the sintering temperature, pulse-on and pulse-off time at wire-EDM on the surface roughness of the preforms has been investigated thoroughly. Experiments were conducted under different machining parameters in a CNC operated wire-cut EDM. The surface roughness of the machined surface was measured and critically analysed. The optimum surface roughness was achieved under the conditions of 6 μs pulse-on time, 9 μs pulse-off time and at sintering temperature of 1450 °C.
14 CFR 25.1517 - Rough air speed, VRA.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation during...
14 CFR 25.1517 - Rough air speed, VRA.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation during...
Sugiyama, Toshiko; Kameyama, Atsushi; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki
2017-06-01
This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words: CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness.
Sugiyama, Toshiko; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki
2017-01-01
Background This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). Material and Methods After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Results Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Conclusions Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words:CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness. PMID:28638554
Novel MRF fluid for ultra-low roughness optical surfaces
NASA Astrophysics Data System (ADS)
Dumas, Paul; McFee, Charles
2014-08-01
Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.
NASA Astrophysics Data System (ADS)
Elbing, Brian; Perlin, Marc; Dowling, David; Solomon, Michael; Ceccio, Steven
2008-11-01
Two experiments were conducted to investigate polymer drag reduction (PDR) within high Reynolds number (to 200 million based on downstream distance), rough-wall turbulent boundary layers. The first experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate at speeds to 20 m/s with the surface hydraulically smooth and fully rough. Local skin-friction measurements on the smooth and rough surfaces had maximum PDR levels of 65 and 75 percent, respectively. However, PDR decreased with increasing downstream distance and flow speed more rapidly on the rough surface, and at the top speed no measureable level of PDR was observed. The roughness-induced increased diffusion was quantified with near-wall concentration measurements and the second experiment, which measured concentration profiles on a 0.94 m long flat-plate with three surface conditions: smooth, 240-grit, and 60-grit sandpaper. The increased diffusion does not fully explain the smooth-rough PDR differences observed in the first experiment. Rheological analysis of drawn samples from the first experiment indicates that polymer degradation (chain scission) could be responsible for the remaining loss of rough-wall PDR. These results have implications for the cost effectiveness of PDR for surface ships.
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Meneveau, Charles
2016-01-01
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.
Application of IEM model on soil moisture and surface roughness estimation
NASA Technical Reports Server (NTRS)
Shi, Jiancheng; Wang, J. R.; Oneill, P. E.; Hsu, A. Y.; Engman, E. T.
1995-01-01
Monitoring spatial and temporal changes of soil moisture are of importance to hydrology, meteorology, and agriculture. This paper reports a result on study of using L-band SAR imagery to estimate soil moisture and surface roughness for bare fields. Due to limitations of the Small Perturbation Model, it is difficult to apply this model on estimation of soil moisture and surface roughness directly. In this study, we show a simplified model derived from the Integral Equation Model for estimation of soil moisture and surface roughness. We show a test of this model using JPL L-band AIRSAR data.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1979-01-01
A microwave backscatter technique is presented that has the ability to sense the dominant surface wavelength of a random rough surface. The purpose of this technique is to perform this measurement from an aircraft or spacecraft, wherein the horizontal velocity of the radar is an important parameter of the measurement system. Attention will be directed at water surface conditions for which a dominant wavelength can be defined, then the spatial variations of reflectivity will have a two dimensional spectrum that is sufficiently close to that of waves to be useful. The measurement concept is based on the relative motion between the water waves and a nadir looking radar, and the fact that while the instantaneous Doppler frequency at the receiver returned by any elementary group of scatterers on a water wave is monotonically changing, the difference in the Doppler frequency between any two scattering 'patches' stays approximately constant as these waves travel parallel to the major axis of an elliptical antenna footprint. The results of a theoretical analysis and a laboratory experiment with a continuous wave (CW) radar that encompasses several of the largest waves in the illuminated area show how the structure in the Doppler spectrum of the backscattered signal is related to the surface spectrum and its parameters in an especially direct and simple way when an incoherent envelope detector is the receiver.
Surface areas of fractally rough particles studied by scattering
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Schaefer, Dale W.; Smith, Douglas M.; Ross, Steven B.; Le Méhauté, Alain; Spooner, Steven
1989-05-01
The small-angle scattering from fractally rough surfaces has the potential to give information on the surface area at a given resolution. By use of quantitative neutron and x-ray scattering, a direct comparison of surface areas of fractally rough powders was made between scattering and adsorption techniques. This study supports a recently proposed correction to the theory for scattering from fractal surfaces. In addition, the scattering data provide an independent calibration of molecular adsorbate areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubisztal, J., E-mail: julian.kubisztal@us.edu.pl
A new approach to numerical analysis of maps of material surface has been proposed and discussed in detail. It was concluded that the roughness factor RF and the root mean square roughness S{sub q} show a saturation effect with increasing size of the analysed maps what allows determining the optimal map dimension representative of the examined material. A quantitative method of determining predominant direction of the surface texture based on the power spectral density function is also proposed and discussed. The elaborated method was applied in surface analysis of Ni + Mo composite coatings. It was shown that co-deposition ofmore » molybdenum particles in nickel matrix leads to an increase in surface roughness. In addition, a decrease in size of the embedded Mo particles in Ni matrix causes an increase of both the surface roughness and the surface texture. It was also stated that the relation between the roughness factor and the double layer capacitance C{sub dl} of the studied coatings is linear and allows determining the double layer capacitance of the smooth nickel electrode. - Highlights: •Optimization of the procedure for the scanning of the material surface •Quantitative determination of the surface roughness and texture intensity •Proposition of the parameter describing privileged direction of the surface texture •Determination of the double layer capacitance of the smooth electrode.« less
Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder
2016-01-01
Introduction With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. Aim The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Materials and Methods Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t –test. Results Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (p<0.001) with tooth enamel, composite and compomer (p=0.002). Coca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Conclusion Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks. PMID:27437343
Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung
2015-12-01
The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.
Effects of surface roughness and absorption on light propagation in graded-profile waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilenko, S S; Osovitskii, A N
2011-06-30
This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)
Drug release from slabs and the effects of surface roughness.
Kalosakas, George; Martini, Dimitra
2015-12-30
We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of surface roughness and polishing techniques for new ceramic materials.
Campbell, S D
1989-05-01
The surface roughness of crown and bridge materials should be minimized to obtain optimal biocompatability. This study used scanning electron microscopy to evaluate the effect of polishing procedures on two all-ceramic crown materials (Dicor and Cerestore). The "as formed," unpolished specimens of both Dicor and Cerestore materials presented a rough surface. It was found that any attempt to polish the Cerestore coping material resulted in an extremely rough surface. Finishing of the Dicor ceramic resulted in a smoother but pitted surface. Polishing of both ceramic materials resulted in a surface that was rougher than the glazed metal ceramic controls. The smoothest finish was obtained when the glazed veneer (Cerestore) and shading porcelain (Dicor) were applied to the all-ceramic materials.
Sakhaei Manesh, Vahid; Giacomin, Paul; Stoll, Richard
2017-06-01
Obtaining clean and smooth root canal walls is the ideal clinical outcome of the cleaning and shaping stage in root canal treatment. This study compares the surface roughness of root canal surfaces instrumented with a NiTi filing system with either adaptive reciprocating (AR) or continuous rotation (CR). Root canal cleaning and shaping was carried out on the mesial canals of 24 extracted first molars roots with either AR or CR. Roots were split in half and the surface roughness of their canals was evaluated in 12 three dimensional roughness reconstructions using a scanning electron microscope. Rz (nm) values were calculated in three areas of each reconstruction and analyzed (α = 0.05). Mann-Whitney tests showed that surface roughness was significantly higher overall in the AR group (Rz = 967 ± 250 nm) compared with the CR group (Rz = 739 ± 239 nm; p = 0.044). The roughness values generally increased from apical towards the coronal third in both groups. A less aggressive finishing file or a continuous rotary system to end the cleaning and shaping stage may be beneficial to reduce roughness of the root canal surface. © 2017 Wiley Periodicals, Inc.
Surface roughness estimation of MBE grown CdTe/GaAs(211)B by ex-situ spectroscopic ellipsometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Merve, E-mail: mervegunnar@iyte.edu.tr; Bilgilisoy, Elif; Arı, Ozan
Spectroscopic ellipsometry (SE) ranging from 1.24 eV to 5.05 eV is used to obtain the film thickness and optical properties of high index (211) CdTe films. A three-layer optical model (oxide/CdTe/GaAs) was chosen for the ex-situ ellipsometric data analysis. Surface roughness cannot be determined by the optical model if oxide is included. We show that roughness can be accurately estimated, without any optical model, by utilizing the correlation between SE data (namely the imaginary part of the dielectric function, or phase angle, ψ) and atomic force microscopy (AFM) roughness. and ψ values at 3.31 eV, which corresponds to E{sub 1}more » critical transition energy of CdTe band structure, are chosen for the correlation since E{sub 1} gives higher resolution than the other critical transition energies. On the other hand, due to the anisotropic characteristic of (211) oriented CdTe surfaces, SE data ( and ψ) shows varieties for different azimuthal angle measurements. For this reason, in order to estimate the surface roughness by considering these correlations, it is shown that SE measurements need to be taken at the same surface azimuthal angle. Estimating surface roughness in this manner is an accurate way to eliminate cumbersome surface roughness measurement by AFM.« less
The effect of welding parameters on surface quality of AA6351 aluminium alloy
NASA Astrophysics Data System (ADS)
Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.
2015-12-01
In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.
Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic
Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi
2013-01-01
Objective. To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Materials and methods. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0–S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) Results. All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. Conclusions. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic. PMID:22724660
Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha
2015-01-01
Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194
Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation
NASA Technical Reports Server (NTRS)
Wu, S. T.
1984-01-01
An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).
Surface Modifications and Their Effects on Titanium Dental Implants
Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.
2015-01-01
This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097
Influence of surface roughness on cetyltrimethylammonium bromide adsorption from aqueous solution.
Wu, Shuqing; Shi, Liu; Garfield, Lucas B; Tabor, Rico F; Striolo, Alberto; Grady, Brian P
2011-05-17
The influence of surface roughness on surfactant adsorption was studied using a quartz crystal microbalance with dissipation (QCM-D). The sensors employed had root-mean-square (R) roughness values of 2.3, 3.1, and 5.8 nm, corresponding to fractal-calculated surface area ratios (actual/nominal) of 1.13, 1.73, and 2.53, respectively. Adsorption isotherms measured at 25 °C showed that adsorbed mass of cetyltrimethylammonium bromide per unit of actual surface area below 0.8 cmc, or above 1.2 cmc, decreases as the surface roughness increases. At the cmc, both the measured adsorbed amount and the measured dissipation increased dramatically on the rougher surfaces. These results are consistent with the presence of impurities, suggesting that roughness exacerbates well-known phenomena reported in the literature of peak impurity-related adsorption at the cmc. The magnitude of the increase, especially in dissipation, suggests that changes in adsorbed amount may not be the only reason for the observed results, as aggregates at the cmc on rougher surfaces are more flexible and likely contain larger amounts of solvent. Differences in adsorption kinetics were also found as a function of surface roughness, with data showing a second, slower adsorption rate after rapid initial adsorption. A two-rate Langmuir model was used to further examine this effect. Although adsorption completes faster on the smoother surfaces, initial adsorption at zero surface coverage is faster on the rougher surfaces, suggesting the presence of more high-energy sites on the rougher surfaces.
Laser post-processing of Inconel 625 made by selective laser melting
NASA Astrophysics Data System (ADS)
Witkin, David; Helvajian, Henry; Steffeney, Lee; Hansen, William
2016-04-01
The effect of laser remelting of surfaces of as-built Selective Laser Melted (SLM) Inconel 625 was evaluated for its potential to improve the surface roughness of SLM parts. Many alloys made by SLM have properties similar to their wrought counterparts, but surface roughness of SLM-made parts is much higher than found in standard machine shop operations. This has implications for mechanical properties of SLM materials, such as a large debit in fatigue properties, and in applications of SLM, where surface roughness can alter fluid flow characteristics. Because complexity and netshape fabrication are fundamental advantages of Additive Manufacturing (AM), post-processing by mechanical means to reduce surface roughness detracts from the potential utility of AM. Use of a laser to improve surface roughness by targeted remelting or annealing offers the possibility of in-situ surface polishing of AM surfaces- the same laser used to melt the powder could be amplitude modulated to smooth the part during the build. The effects of remelting the surfaces of SLM Inconel 625 were demonstrated using a CW fiber laser (IPG: 1064 nm, 2-50 W) that is amplitude modulated with a pulse profile to induce remelting without spallation or ablation. The process achieved uniform depth of melting and improved surface roughness. The results show that with an appropriate pulse profile that meters the heat-load, surface features such as partially sintered powder particles and surface connected porosity can be mitigated via a secondary remelting/annealing event.
NASA Technical Reports Server (NTRS)
King, James; Nickling, William G.; Gillies, John A.
2005-01-01
The presence of nonerodible elements is well understood to be a reducing factor for soil erosion by wind, but the limits of its protection of the surface and erosion threshold prediction are complicated by the varying geometry, spatial organization, and density of the elements. The predictive capabilities of the most recent models for estimating wind driven particle fluxes are reduced because of the poor representation of the effectiveness of vegetation to reduce wind erosion. Two approaches have been taken to account for roughness effects on sediment transport thresholds. Marticorena and Bergametti (1995) in their dust emission model parameterize the effect of roughness on threshold with the assumption that there is a relationship between roughness density and the aerodynamic roughness length of a surface. Raupach et al. (1993) offer a different approach based on physical modeling of wake development behind individual roughness elements and the partition of the surface stress and the total stress over a roughened surface. A comparison between the models shows the partitioning approach to be a good framework to explain the effect of roughness on entrainment of sediment by wind. Both models provided very good agreement for wind tunnel experiments using solid objects on a nonerodible surface. However, the Marticorena and Bergametti (1995) approach displays a scaling dependency when the difference between the roughness length of the surface and the overall roughness length is too great, while the Raupach et al. (1993) model's predictions perform better owing to the incorporation of the roughness geometry and the alterations to the flow they can cause.
Distributed Roughness Effects on Blunt-Body Transition and Turbulent Heating
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2014-01-01
An experimental program has been conducted to obtain data on the effects of surface roughness on blunt bodies at laminar, transitional, and turbulent conditions. Wind tunnel models with distributed surface roughness heights from 0.06 mm to 1.75 mm were tested and heating data were obtained using global surface thermography. Heating rates of up to 85% higher than predicted, smooth-surface turbulent levels were measured.
Wind tunnel model surface gauge for measuring roughness
NASA Technical Reports Server (NTRS)
Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.
1987-01-01
The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.
NASA Astrophysics Data System (ADS)
Krynkin, A.; Dolcetti, G.; Hunting, S.
2017-02-01
Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.
Krynkin, A; Dolcetti, G; Hunting, S
2017-02-01
Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.
Friction and wear of plasma-deposited diamond films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.
1993-01-01
Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.
Effect of deformation on the thermal conductivity of granular porous media with rough grain surface
NASA Astrophysics Data System (ADS)
Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad
2017-08-01
Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.
Korkut, Derya Sevim; Guller, Bilgin
2008-05-01
Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.
Effect of different surface treatments on roughness of IPS Empress 2 ceramic.
Kara, Haluk Baris; Dilber, Erhan; Koc, Ozlem; Ozturk, A Nilgun; Bulbul, Mehmet
2012-03-01
The aim of this study was to evaluate the influence of different surface treatments (air abrasion, acid etching, laser irradiation) on the surface roughness of a lithium-disilicate-based core ceramic. A total of 40 discs of lithium disilicate-based core ceramic (IPS Empress 2; Ivoclar Vivadent, Schaan, Liechtenstein) were prepared (10 mm in diameter and 1 mm in thickness) according to the manufacturer's instructions. Specimens were divided into four groups (n = 10), and the following treatments were applied: air abrasion with alumina particles (50 μm), acid etching with 5% hydrofluoric acid, Nd:YAG laser irradiation (1 mm distance, 100 mJ, 20 Hz, 2 W) and Er:YAG laser irradiation (1 mm distance, 500 mJ, 20 Hz, 10 W). Following determination of surface roughness (R(a)) by profilometry, specimens were examined with atomic force microscopy. The data were analysed by one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). One-way ANOVA indicated that surface roughness following air abrasion was significantly different from the surface roughness following laser irradiation and acid etching (P < 0.001). The Tukey HSD test indicated that the air abrasion group had a significantly higher mean value of roughness (P < 0.05) than the other groups. No significant difference was found between the acid etching and laser irradiation (both Er:YAG and Nd:YAG) groups (P > 0.05). Air abrasion increased surface roughness of lithium disilicate-based core ceramic surfaces more effectively than acid-etching and laser irradiation.
Alao, Abdur-Rasheed; Stoll, Richard; Song, Xiao-Fei; Abbott, John R; Zhang, Yu; Abduo, Jaafar; Yin, Ling
2017-10-01
This paper studied surface fracture, roughness and morphology, phase transformations, and material removal mechanisms of lithium metasilicate/disilicate glass ceramics (LMGC/LDGC) in CAD/CAM-milling and subsequent surface treatments. LMGC (IPS e.max CAD) blocks were milled using a chairside dental CAD/CAM milling unit and then treated in sintering, polishing and glazing processes. X-ray diffraction was performed on all processed surfaces. Scanning electron microscopy (SEM) was applied to analyse surface fracture and morphology. Surface roughness was quantitatively characterized by the arithmetic average surface roughness R a and the maximum roughness R z using desktop SEM-assisted morphology analytical software. The CAD/CAM milling induced extensive brittle cracks and crystal pulverization on LMGC surfaces, which indicate that the dominant removal mechanism was the fracture mode. Polishing and sintering of the milled LMGC lowered the surface roughness (ANOVA, p < 0.05), respectively, while sintering also fully transformed the weak LMGC to the strong LDGC. However, polishing and glazing of LDGC did not significantly improve the roughness (ANOVA, p > 0.05). In comparison of all applied fabrication process routes, it is found that CAD/CAM milling followed by polishing and sintering produced the smoothest surface with R a = 0.12 ± 0.08µm and R z = 0.89 ± 0.26µm. Thus , it is proposed as the optimized process route for LMGC/LDGC in dental restorations. This route enables to manufacture LMGC/LDGC restorations with cost effectiveness, time efficiency, and improved surface quality for better occlusal functions and reduced bacterial plaque accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of polishing on surface roughness, gloss, and color of resin composites.
Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Nagafuji, Junichi; Kotaku, Mayumi; Miyazaki, Masashi; Powers, John M
2011-09-01
This study evaluated the effects of polishing on surface roughness, gloss, and color of regular, opaque, and enamel shades for each of three resin composites. Two-mm-thick resin disks made with Estelite Σ Quick, Clearfil Majesty, and Beautifil II were final polished with 180-, 1000-, and 3000-grit silicon carbide paper. Surface roughness, gloss, and color were measured one week after curing. Estelite Σ Quick had significantly lower roughness values and significantly higher gloss values as compared with Clearfil Majesty and Beautifil II. The effects of surface roughness and gloss on color (L*a*b*) differed among resin composites and by shade. Correlation coefficients between surface roughness and L*a*b* color factors were generally high for Clearfil Majesty, partially high (i.e., between roughness and L*) for Beautifil II, and low for Estelite Σ Quick. Correlation coefficients between gloss and L*a*b* color parameters were generally high for Beautifil II and low for Estelite Σ Quick and Clearfil Majesty. However, for all resin composites, the values of the color differences between 3000-grit and 180-grit polishing groups for all shades were imperceptible by the naked eye.
Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation
NASA Astrophysics Data System (ADS)
Zhang, W. J.; Qiu, J.; Liu, L. H.
2015-07-01
Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.
Response Ant Colony Optimization of End Milling Surface Roughness
Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.
2010-01-01
Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914
Roughness Perception of Haptically Displayed Fractal Surfaces
NASA Technical Reports Server (NTRS)
Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)
2000-01-01
Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.
On the receptivity problem for Goertler vortices: Vortex motions induced by wall roughness
NASA Technical Reports Server (NTRS)
Denier, James P.; Hall, Philip; Seddougui, Sharon
1990-01-01
The receptivity problem for Goertler vortices induced by wall roughness is investigated. The roughness is modelled by small amplitude perturbations to the curved wall over which the flow takes place. The amplitude of these perturbations is taken to be sufficiently small for the induced Goertler vortices to be described by linear theory. The roughness is assumed to vary in the spanwise direction on the boundary layer lengthscale, while in the flow direction the corresponding variation is on the lengthscale over which the wall curvature varies. In fact the latter condition can be relaxed to allow for a faster streamwise roughness variation so long as the variation does not become as fast as that in the spanwise direction. The function which describes the roughness is assumed to be such that its spanwise and streamwise dependences can be separated; this enables progress by taking Fourier or Laplace transforms where appropriate. The cases of isolated and distributed roughness elements are investigated and the coupling coefficient which relates the amplitude of the forcing and the induced vortex amplitude is found asymptotically in the small wavelength limit. It is shown that this coefficient is exponentially small in the latter limit so that it is unlikely that this mode can be stimulated directly by wall roughness. The situation at 0(1) wavelengths is quite different and this is investigated numerically for different forcing functions. It is found that an isolated roughness element induces a vortex field which grows within a wedge at a finite distance downstream of the element. However, immediately downstream of the obstacle the disturbed flow produced by the element decays in amplitude. The receptivity problem at larger Goertler numbers appropriate to relatively large wall curvature is discussed in detail.
Dissolution of minerals with rough surfaces
NASA Astrophysics Data System (ADS)
de Assis, Thiago A.; Aarão Reis, Fábio D. A.
2018-05-01
We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate laws of our model give rough rates in the range 10-6 -10-5 mol/(m2 s). This estimate is consistent with the range of calcite dissolution rates obtained in a recent work after treatment of literature data, which suggests the universal control of kink site dissolution in short term laboratory works. The weak effects of lattice size on our results also suggest that smoothing of mineral grain surfaces across geological times may be a microscopic explanation for the difference of chemical weathering rate of silicate minerals in laboratory and in the environment.
TARTARI, Talita; DUARTE JUNIOR, Anivaldo Pereira; SILVA JÚNIOR, José Otávio Carrera; KLAUTAU, Eliza Burlamaqui; SILVA E SOUZA JUNIOR, Mario Honorato; SILVA E SOUZA, Patrícia de Almeida Rodrigues
2013-01-01
An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics. Objectives To evaluate the effects of sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), etidronic (HEBP), and citric acid (CA) associated with different irrigation regimens on root dentin roughness. Material and Methods Forty-five root halves of anterior teeth were used. The root parts were sectioned in thirds, embedded in acrylic resin and polished to a standard surface roughness. Initially, the samples of each third were randomly assigned into 3 groups and treated as follows: G1 - saline solution (control); G2 - 5% NaOCl+18% HEBP mixed in equal parts; and G3 - 2.5% NaOCl. After initial measuments, the G3 samples were distributed into subgroups G4, G5 and G6, which were subjected to 17% EDTA, 10% CA and 9% HEBP, respectively. Following the new measuments, these groups received a final flush with 2.5% NaOCl, producing G7, G8 and G9. The dentin surface roughness (Ra) was determined before and after treatments using a profilometer. The Wilcoxon test (α<0.05) was used to compare the values before and after treatments, and the Friedman test (α<0.05) to detect any differences among root thirds. Results (i) NaOCl did not affect the surface roughness; (ii) there was a significant increase in roughness after the use of chelating agents (P<0.01); and (iii) only the G3 group showed a difference in surface roughness between apical third and other thirds of the teeth (P<0.0043). Conclusion Only the irrigation regimens that used chelating agents altered the roughness of root dentin. PMID:24212986
Surface Roughness Retrieval By Inversion Of Hapke Model: A Multi-scale Approach
NASA Astrophysics Data System (ADS)
Labarre, S.; Ferrari, C. C.; Jacquemoud, S.
2015-12-01
Surface roughness is a key property of soils that affects the various processes involved in their evolution such as solar absorption, erosion or moisture, both on Earth and other Solar System surfaces. In the 80's, B.Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. The effect of roughness on the BRDF is modeled as a shadowing function of the so-called roughness parameter, which is the mean slope angle of the facets composing the surface integrated over all scales from the sub-millimeter to the kilometer scales. Hapke model is widely used in planetary sciences to retrieve the roughness parameter from observed BRDFs. Yet the physical meaning of the retrieved roughness is not clear as the scale at which it happens is not defined. This work aims at understanding the relative impact of the roughness defined at each scale to the BRDF in order to test the ability of the singly retrieved roughness parameter at describing the ground truth. We propose to perform a wavelet analysis on meter-sized digital elevation models (DEM) generated from various volcanic and sedimentary terrains at high-mm-scale spatial resolution. It consists in splitting the DEM in several spatial frequencies and in simulating the BRDF at each scale with a ray-tracing code. Also the global BRDF is simulated so that the relative contribution of each scale can be studied. Then the Hapke model is fitted to the global BRDF to retrieve the roughness parameter. We will expose and discuss the results of this study. Figure: BRDF of a'a lava DEM simulated at varying azimut (φi) and incidence angles (i), in the principal plan. The direction of the light source is given by the colored squares. Mean slope angle of the surface is 36°.
Tartari, Talita; Duarte Junior, Anivaldo Pereira; Silva Júnior, José Otávio Carrera; Klautau, Eliza Burlamaqui; Silva E Souza Junior, Mario Honorato; Silva E Souza Junior, Patrícia de Almeida Rodrigues
2013-01-01
An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics. To evaluate the effects of sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), etidronic (HEBP), and citric acid (CA) associated with different irrigation regimens on root dentin roughness. Forty-five root halves of anterior teeth were used. The root parts were sectioned in thirds, embedded in acrylic resin and polished to a standard surface roughness. Initially, the samples of each third were randomly assigned into 3 groups and treated as follows: G1 - saline solution (control); G2 - 5% NaOCl+18% HEBP mixed in equal parts; and G3 - 2.5% NaOCl. After initial measuments, the G3 samples were distributed into subgroups G4, G5 and G6, which were subjected to 17% EDTA, 10% CA and 9% HEBP, respectively. Following the new measuments, these groups received a final flush with 2.5% NaOCl, producing G7, G8 and G9. The dentin surface roughness (Ra) was determined before and after treatments using a profilometer. The Wilcoxon test (α<0.05) was used to compare the values before and after treatments, and the Friedman test (α<0.05) to detect any differences among root thirds. (i) NaOCl did not affect the surface roughness; (ii) there was a significant increase in roughness after the use of chelating agents (P<0.01); and (iii) only the G3 group showed a difference in surface roughness between apical third and other thirds of the teeth (P<0.0043). Only the irrigation regimens that used chelating agents altered the roughness of root dentin.
Surface Roughness of Composite Resins after Simulated Toothbrushing with Different Dentifrices
Monteiro, Bruna; Spohr, Ana Maria
2015-01-01
Background: The aim of the study was to evaluate, in vitro, the surface roughness of two composite resins submitted to simulated toothbrushing with three different dentifrices. Materials and Methods: Totally, 36 samples of Z350XT and 36 samples of Empress Direct were built and randomly divided into three groups (n = 12) according to the dentifrice used (Oral-B Pro-Health Whitening [OBW], Colgate Sensitive Pro-Relief [CS], Colgate Total Clean Mint 12 [CT12]). The samples were submitted to 5,000, 10,000 or 20,000 cycles of simulated toothbrushing. After each simulated period, the surface roughness of the samples was measured using a roughness tester. Results: According to three-way analysis of variance, dentifrice (P = 0.044) and brushing time (P = 0.000) were significant. The composite resin was not significant (P = 0.381) and the interaction among the factors was not significant (P > 0.05). The mean values of the surface roughness (µm) followed by the same letter represent no statistical difference by Tukey's post-hoc test (P <0.05): Dentifrice: CT12 = 0.269a; CS Pro- Relief = 0.300ab; OBW = 0.390b. Brushing time: Baseline = 0,046ª; 5,000 cycles = 0.297b; 10,000 cycles = 0.354b; 20,000 cycles = 0.584c. Conclusion: Z350 XT and Empress Direct presented similar surface roughness after all cycles of simulated toothbrushing. The higher the brushing time, the higher the surface roughness of composite resins. The dentifrice OBW caused a higher surface roughness in both composite resins. PMID:26229362
de Moraes Rego Roselino, Lourenço; Tirapelli, Camila; de Carvalho Panzeri Pires-de-Souza, Fernanda
2018-03-30
This clinical study evaluated the influence of whitening toothpaste on color and surface roughness of dental enamel. Initially, the abrasiveness of the toothpastes used (Sorriso Dentes Brancos [SDB]; Colgate Luminous White and Close up White Now) was tested on 30 (n = 10) plexiglass acrylic plates that were submitted to mechanical tooth brushing totalizing 29,200 cycles. Subsequently, 30 participants were selected, and received a toothbrush and nonwhitening toothpaste (SDB). The participants used these products for 7 days and initial color readouts (Spectrophotometer) and surface roughness of one maxillary central incisors was performed after this period of time. For surface roughness readouts, one replica of the maxillary central incisor was obtained by a polyvinyl siloxane impression material (Express) and polyurethane resin. After baseline measurements, participants were separated into three groups (n = 10), according to the toothpaste used. The participants returned after 7, 30, and 90 days when new color readouts and surface roughness were recorded. The measured values were statistically analyzed (2-way-ANOVA, repeated measures, Tukey, P < .05). Whitening toothpastes did not promote significant (P > .05) color alteration and nor increased the surface roughness of the dental enamel in brushing time of the study. The abrasiveness of whitening toothpaste and the brushing trial period did not affect the surface roughness of dental enamel. However, color changes observed on enamel were above the perceptibility and acceptability thresholds reported in the literature. The over-the-counter toothpastes tested had an effect on dental enamel color above the perceptibility and acceptability thresholds but did not change the surface roughness of the teeth. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja
2018-04-01
Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.
Three-tier rough superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun
2015-08-01
A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s-1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s-1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.
NASA Astrophysics Data System (ADS)
Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.
2018-01-01
In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.
The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel
NASA Astrophysics Data System (ADS)
Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.
2018-01-01
Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.
Huang, H W; Lin, C H; Yu, C C; Lee, B D; Chiu, C H; Lai, C F; Kuo, H C; Leung, K M; Lu, T C; Wang, S C
2008-05-07
Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same device without a rough p-GaN surface. In addition, by examining the radiation patterns, the green PC LED with nano-rough p-GaN surface shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices by using the technique of nanoimprint lithography under suitable nanopattern design.
Three-tier rough superhydrophobic surfaces.
Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun
2015-08-07
A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.
Lemos, Cleidiel Aa; Mauro, Silvio J; Dos Santos, Paulo H; Briso, Andre Lf; Fagundes, Ticiane C
2017-04-01
The aim of this study was to investigate the association of different degradations on the roughness, gloss, and color changes of microhybrid composites. Ten specimens were prepared for Charisma, Amelogen Plus, Point 4, and Opallis resins. Surfaces were polished and baseline measurements of roughness, gloss, and color were recorded. Specimens were then submitted to chemical and mechanical challenges, and the specimens were reevaluated. Roughness and gloss were analyzed by Kruskal -Wallis and Dunn's test (p < 0.05). Color change (ΔE) was analyzed by one-way analysis of variance and Tukey's tests (p < 0.05). The initial and final data were compared using the Wilcoxon test (p < 0.05). Spearman test checked the correlation between the roughness and gloss (p < 0.05). Regarding surface roughness and gloss, there was no difference between composites before challenges. However, all composites showed a significant increase of roughness after challenges, with highest values for Charisma. The gloss was influenced by challenges, evidencing the best gloss for Point 4. Charisma showed the highest value of color change. There was no correlation between surface roughness and gloss for the initial analysis, and after the challenges. Composites were influenced by association of challenges, and Charisma showed the highest changes for roughness, gloss, and color. The type of composite resin influenced the properties of materials, which are surface roughness, gloss, and color change. The dentist should be aware of the performance of different brands, to choose the correct required composite resin for each type of patient or region to be restored.
Bottiglione, F; Carbone, G
2015-01-14
The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.
Convection from Hemispherical and Conical Model Ice Roughness Elements in Stagnation Region Flows
NASA Technical Reports Server (NTRS)
Hughes, Michael T.; Shannon, Timothy A.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy
2016-01-01
To improve ice accretion prediction codes, more data regarding ice roughness and its effects on convective heat transfer are required. The Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research was used to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. In the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with multiple surfaces or sets of roughness panels, each with a different representation of ice roughness. The sets of roughness panels were constructed using two element distribution patterns that were created based on a laser scan of an iced airfoil acquired in the Icing Research Tunnel at NASA Glenn. For both roughness patterns, surfaces were constructed using plastic hemispherical elements, plastic conical elements, and aluminum conical elements. Infrared surface thermometry data from tests run in the VIST were used to calculate area averaged heat transfer coefficient values. The values from the roughness surfaces were compared to the smooth control surface, showing convective enhancement as high as 400% in some cases. The data gathered during this study will ultimately be used to improve the physical modeling in LEWICE or other ice accretion codes and produce predictions of in-flight ice accretion on aircraft surfaces with greater confidence.
Correlation between substratum roughness and wettability, cell adhesion, and cell migration.
Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F
1997-07-01
Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.
Mechanisms resulting in accreted ice roughness
NASA Technical Reports Server (NTRS)
Bilanin, Alan J.; Chua, Kiat
1992-01-01
Icing tests conducted on rotating cylinders in the BF Goodrich's Icing Research Facility indicate that a regular, deterministic, icing roughness pattern is typical. The roughness pattern is similar to kernels of corn on a cob for cylinders of diameter typical of a cob. An analysis is undertaken to determine the mechanisms which result in this roughness to ascertain surface scale and amplitude of roughness. Since roughness and the resulting augmentation of the convected heat transfer coefficient has been determined to most strongly control the accreted ice in ice prediction codes, the ability to predict a priori, location, amplitude and surface scale of roughness would greatly augment the capabilities of current ice accretion models.
Effect of surface roughness on liquid property measurements using mechanically oscillating sensors
NASA Technical Reports Server (NTRS)
Jain, Mahaveer K.; Grimes, Craig A.
2002-01-01
The resonant frequency and quality factor Q of a liquid immersed magnetoelastic sensor are shown to shift linearly with the liquid viscosity and density product. Measurements using different grade oils, organic chemicals, and glycerol-water mixtures show that the surface roughness of the sensor in combination with the molecular size of the liquid play important roles in determining measurement sensitivity, which can be controlled through adjusting the surface roughness of the sensor surface. A theoretical model describing the sensor resonant frequency and quality factor Q as a function of liquid properties is developed using a novel equivalent circuit approach. Experimental results are in agreement with theory when the liquid molecule size is larger than the average surface roughness. However, when the molecular size of the liquid is small relative to the surface roughness features molecules are trapped, and the trapped molecules act both as a mass load and viscous load; the result is higher viscous damping of the sensor than expected. c2002 Elsevier Science B.V. All rights reserved.
Surface roughness formation during shot peen forming
NASA Astrophysics Data System (ADS)
Koltsov, V. P.; Vinh, Le Tri; Starodubtseva, D. A.
2018-03-01
Shot peen forming (SPF) is used for forming panels and skins, and for hardening. As a rule, shot peen forming is performed after milling. Surface roughness is a complex structure, a combination of an original microrelief and shot peen forming indentations of different depths and chaotic distribution along the surface. As far as shot peen forming is a random process, surface roughness resulted from milling and shot peen forming is random too. During roughness monitoring, it is difficult to determine the basic surface area which would ensure accurate results. It can be assumed that the basic area depends on the random roughness which is characterized by the degree of shot peen forming coverage. The analysis of depth and shot peen forming indentations distribution along the surface made it possible to identify the shift of an original center profile plane and create a mathematical model for the arithmetic mean deviation of the profile. Experimental testing proved model validity and determined an inversely proportional dependency of the basic area on the degree of coverage.
Liang, Guoxing; Schmauder, Siegfried; Lyu, Ming; Schneider, Yanling; Zhang, Cheng; Han, Yang
2018-01-01
Friction and wear tests were performed on AISI 1045 steel specimens with different initial roughness parameters, machined by a creep-feed dry grinding process, to study the friction and wear behavior on a pin-on-disc tester in dry sliding conditions. Average surface roughness (Ra), root mean square (Rq), skewness (Rsk) and kurtosis (Rku) were involved in order to analyse the influence of the friction and wear behavior. The observations reveal that a surface with initial roughness parameters of higher Ra, Rq and Rku will lead to a longer initial-steady transition period in the sliding tests. The plastic deformation mainly concentrates in the depth of 20–50 μm under the worn surface and the critical plastic deformation is generated on the rough surface. For surfaces with large Ra, Rq, low Rsk and high Rku values, it is easy to lose the C element in, the reciprocating extrusion. PMID:29401703
Effect of Acidic Agents on Surface Roughness of Dental Ceramics
Kukiattrakoon, Boonlert; Hengtrakool, Chanothai; Kedjarune-Leggat, Ureporn
2011-01-01
Background: An increase in surface roughness of ceramics may decrease strength and affect the clinical success of ceramic restorations. However, little is known about the effect of acidic agents on ceramic restorations. The aim of this study was to evaluate the surface roughness of dental ceramics after being immersed in acidic agents. Methods: Eighty-three ceramic disk specimens (12.0 mm in diameter and 2.0 mm in thickness) were made from four types of ceramics (VMK 95, Vitadur Alpha, IPS Empress Esthetic, and IPS e.max Ceram). Baseline data of surface roughness were recorded by profilometer. The specimens were then immersed in acidic agents (citrate buffer solution, pineapple juice and green mango juice) and deionized water (control) at 37°C for 168 hours. One group was immersed in 4% acetic acid at 80°C for 168 hours. After immersion, surface roughness was evaluated by a profilometer at intervals of 24, 96, and 168 hours. Surface characteristics of specimens were studied using scanning electron microscopy (SEM). Data were analyzed using two-way repeated ANOVA and Tukey's multiple comparisons (α = 0.05). Results: For all studied ceramics, all surface roughness parameters were significantly increased after 168 hours immersion in all acidic agents (P < 0.05). After 168 hours in 4% acetic acid, there were significant differences for all roughness parameters from other acidic agents of all evaluated ceramics. Among all studied ceramics, Vitadur Alpha showed significantly the greatest values of all surface roughness parameters after immersion in 4% acetic acid (P < 0.001). SEM photomicrographs also presented surface destruction of ceramics in varying degrees. Conclusion: Acidic agents used in this study negatively affected the surface of ceramic materials. This should be considered when restoring the eroded tooth with ceramic restorations in patients who have a high risk of erosive conditions. PMID:22132009
A study on porous super austenitic stainless steel coating for improvement of bone ingrowth
NASA Astrophysics Data System (ADS)
Oh, Keun Taek; Park, Yong Soo
1998-02-01
In this study, the prostheses were provided with the bone ingrowth site by coating the super stainless steel powder on the same substrate (S32050) using plasma spraying method. Plasma current and powder feed rate varied in this study based on the optimum conditions of previous experiments. The optimum conditions for satisfying the requirements of the porous coatings were found. The characteristics of the coatings were observed according to the experimental parameters. It was found that plasma current influenced the chemical composition (the oxides, Cr component), melting and flattening degree of the sprayed particle (surface roughness, thickness of the splat, pores) and corrosion -resistance. The powder feed rate also influenced the coating thickness and efficiency. The amount of Cr was increased, but Ni, Mo, Fe were decreased with plasma current. An increase of Cr in the coating surface corresponded to an increase in the amount of the formed oxides. The coated specimen in 400A had a high corrosion-resistance owing to a dense coating. The coated specimen in 500A formed many types of oxides. In 300A current, the coating was rough with many pores, and corrosion-resistance of the coating showed a large variation according to the oxidation and compositional change. Specifically at 100 g/min powder feed rate in a 300A current, the coating was rough and porous, nevertheless, it had high corrosion resistance.
NASA Astrophysics Data System (ADS)
Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.
2013-03-01
Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.
An Automated Road Roughness Detection from Mobile Laser Scanning Data
NASA Astrophysics Data System (ADS)
Kumar, P.; Angelats, E.
2017-05-01
Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.
Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, B. J.; Lundquist, J. K.
2013-12-01
The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.
Chen, Shaoshan; Li, Shengyi; Hu, Hao; Li, Qi; Tie, Guipeng
2014-11-01
A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the influence of structural characteristics on the surface roughness of MRF-finished KDP crystal. The material removal by dissolution is uniform layer by layer when the polishing parameters are stable. The angle between the direction of the polishing wheel's linear velocity and the initial turning lines will affect the surface roughness. If the direction is perpendicular to the initial turning lines, the polishing can remove the lines. If the direction is parallel to the initial turning lines, the polishing can achieve better surface roughness. The structural characteristic of KDP crystal is related to its internal chemical bonds due to its anisotropy. During the MRF finishing process, surface roughness will be improved if the structural characteristics of the KDP crystal are the same on both sides of the wheel. The processing results of (001) plane crystal show we can get the best surface roughness (RMS of 0.809 nm) if the directions of cutting and MRF polishing are along the (110) direction.
NASA Astrophysics Data System (ADS)
Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong
2017-07-01
In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.
Subgap in the Surface Bound States Spectrum of Superfluid (3) 3 He-B with Rough Surface
NASA Astrophysics Data System (ADS)
Nagato, Y.; Higashitani, S.; Nagai, K.
2018-03-01
The subgap structure in the surface bound states spectrum of superfluid ^3He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.
Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones
NASA Astrophysics Data System (ADS)
Irimpan, Kiran Joy; Menezes, Viren
2018-03-01
Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.
Potential roughness near lithographically fabricated atom chips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krueger, P.; Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 Rue Lhomond, F-75005 Paris; Andersson, L. M.
2007-12-15
Potential roughness has been reported to severely impair experiments in magnetic microtraps. We show that these obstacles can be overcome as we measure disorder potentials that are reduced by two orders of magnitude near lithographically patterned high-quality gold layers on semiconductor atom chip substrates. The spectrum of the remaining field variations exhibits a favorable scaling. A detailed analysis of the magnetic field roughness of a 100-{mu}m-wide wire shows that these potentials stem from minute variations of the current flow caused by local properties of the wire rather than merely from rough edges. A technique for further reduction of potential roughnessmore » by several orders of magnitude based on time-orbiting magnetic fields is outlined.« less
Implementation of Combined Feather and Surface-Normal Ice Growth Models in LEWICE/X
NASA Technical Reports Server (NTRS)
Velazquez, M. T.; Hansman, R. J., Jr.
1995-01-01
Experimental observations have shown that discrete rime ice growths called feathers, which grow in approximately the direction of water droplet impingement, play an important role in the growth of ice on accreting surfaces for some thermodynamic conditions. An improved physical model of ice accretion has been implemented in the LEWICE 2D panel-based ice accretion code maintained by the NASA Lewis Research Center. The LEWICE/X model of ice accretion explicitly simulates regions of feather growth within the framework of the LEWICE model. Water droplets impinging on an accreting surface are withheld from the normal LEWICE mass/energy balance and handled in a separate routine; ice growth resulting from these droplets is performed with enhanced convective heat transfer approximately along droplet impingement directions. An independent underlying ice shape is grown along surface normals using the unmodified LEWICE method. The resulting dual-surface ice shape models roughness-induced feather growth observed in icing wind tunnel tests. Experiments indicate that the exact direction of feather growth is dependent on external conditions. Data is presented to support a linear variation of growth direction with temperature and cloud water content. Test runs of LEWICE/X indicate that the sizes of surface regions containing feathers are influenced by initial roughness element height. This suggests that a previous argument that feather region size is determined by boundary layer transition may be incorrect. Simulation results for two typical test cases give improved shape agreement over unmodified LEWICE.
NASA Astrophysics Data System (ADS)
Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.
2015-09-01
Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.
Combined radar-radiometer surface soil moisture and roughness estimation
USDA-ARS?s Scientific Manuscript database
A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution rad...
Modeling interface shear behavior of granular materials using micro-polar continuum approach
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.
2018-01-01
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.