Sample records for surface scattering experiments

  1. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    ERIC Educational Resources Information Center

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  2. Scattering Models and Basic Experiments in the Microwave Regime

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Blanchard, A. J. (Principal Investigator)

    1985-01-01

    The objectives of research over the next three years are: (1) to develop a randomly rough surface scattering model which is applicable over the entire frequency band; (2) to develop a computer simulation method and algorithm to simulate scattering from known randomly rough surfaces, Z(x,y); (3) to design and perform laboratory experiments to study geometric and physical target parameters of an inhomogeneous layer; (4) to develop scattering models for an inhomogeneous layer which accounts for near field interaction and multiple scattering in both the coherent and the incoherent scattering components; and (5) a comparison between theoretical models and measurements or numerical simulation.

  3. Depth resolved grazing incidence neutron scattering experiments from semi-infinite interfaces: a statistical analysis of the scattering contributions

    NASA Astrophysics Data System (ADS)

    Adlmann, Franz A.; Herbel, Jörg; Korolkovas, Airidas; Bliersbach, Andreas; Toperverg, Boris; Van Herck, Walter; Pálsson, Gunnar K.; Kitchen, Brian; Wolff, Max

    2018-04-01

    Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.

  4. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  5. Microwave scattering models and basic experiments

    NASA Technical Reports Server (NTRS)

    Fung, Adrian K.

    1989-01-01

    Progress is summarized which has been made in four areas of study: (1) scattering model development for sparsely populated media, such as a forested area; (2) scattering model development for dense media, such as a sea ice medium or a snow covered terrain; (3) model development for randomly rough surfaces; and (4) design and conduct of basic scattering and attenuation experiments suitable for the verification of theoretical models.

  6. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    ERIC Educational Resources Information Center

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  7. SRS in the single molecule limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.; Crampton, Kevin T.; Fast, Alexander; Apkarian, Vartkess A.

    2017-02-01

    We present combined surface-enhanced stimulated Raman scattering (SE-SRS) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) measurements on individual plasmonic antennas dressed with bipyridyl-ethylene molecules. By carefully optimizing the conditions for performing SE-SRS experiments, we have obtained stable and reproducible molecular surface-enhanced SRS spectra from single nano-antennas. Using surface-enhanced Raman scattering (SERS) and transmission electron microscopy of the same antennas, we confirm that the observed SE-SRS signals originate from only one or a few molecules. We highlight the physics of surface enhancement in the context of coherent Raman scattering and derive sensitivity parameters under the relevant conditions. The implications of single molecule SRS measurements are discussed.

  8. Classical theory of atom-surface scattering: The rainbow effect

    NASA Astrophysics Data System (ADS)

    Miret-Artés, Salvador; Pollak, Eli

    2012-07-01

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  9. Classical theory of atom-surface scattering: The rainbow effect

    NASA Astrophysics Data System (ADS)

    Miret-Artés, Salvador; Pollak, Eli

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the "washboard model" in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  10. Hyperthermal Carbon Dioxide Interactions with Self-Assembled Monolayer Surfaces

    DTIC Science & Technology

    2013-09-08

    comparison of the scattering behavior from the liquid and semi-solid surfaces to allow new insight into the pivotal initial step in gas -surface reaction...scattering dynamics of atoms and molecules on liquid and SAM surfaces, in order to deepen the understanding of gas -surface interactions at liquid and... gas - liquid and gas -SAM interface have developed a basic picture of the gas -surface collision dynamics. The previous experiments showed a bimodal

  11. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  12. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

  13. Surface intervalley scattering on GaAs(110) studied with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1990-01-01

    Laser-based photoemission sources provide the unique opportunity to study dynamic electronic processes at surfaces and interfaces. Using angle-resolved, laser photoemission with < 1 ps time resolution, we have directly observed a new surface band at the X¯ point in the GaAs(110) surface Brillouin zone. The appearance of electron population in this valley occurs only as a result of scattering from the directly photoexcited valley at overlineГ. The momentum resolution of our experiment has permitted us to isolate the dynamic electron population changes at both overlineГ and X¯ and to deduce the scattering time between the two valleys.

  14. Measured microwave scattering cross sections of three meteorite specimens

    NASA Technical Reports Server (NTRS)

    Hughes, W. E.

    1972-01-01

    Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.

  15. Physically-Based Models for the Reflection, Transmission and Subsurface Scattering of Light by Smooth and Rough Surfaces, with Applications to Realistic Image Synthesis

    NASA Astrophysics Data System (ADS)

    He, Xiao Dong

    This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.

  16. The structure of epitaxial V2O3 films and their surfaces: A medium energy ion scattering study

    NASA Astrophysics Data System (ADS)

    Window, A. J.; Hentz, A.; Sheppard, D. C.; Parkinson, G. S.; Woodruff, D. P.; Unterberger, W.; Noakes, T. C. Q.; Bailey, P.; Ganduglia-Pirovano, M. V.; Sauer, J.

    2012-11-01

    Medium energy ion scattering, using 100 keV H+ incident ions, has been used to investigate the growth of epitaxial films, up to thicknesses of ~ 200 Å, of V2O3 on both Pd(111) and Au(111). Scattered-ion energy spectra provide a measure of the average film thickness and the variations in this thickness, and show that, with suitable annealing, the crystalline quality is good. Plots of the scattering yield as a function of scattering angle, so-called blocking curves, have been measured for two different incidence directions and have been used to determine the surface structure. Specifically, scattering simulations for a range of different model structures show poor agreement with experiment for half-metal (….V'O3V) and vanadyl (….V'O3V=O) terminations, with and without surface interlayer relaxations. However, good agreement with experiment is found for the modified oxygen-termination structure, first proposed by Kresse et al., in which a subsurface V half-metal layer is moved up into the outermost V buckled metal layer to produce a VO2 overlayer on the underlying V2O3, with an associated layer structure of ….O3VV''V 'O3. This result is consistent with the predictions of thermodynamic equilibrium at the surface under the surface preparation conditions, but is at variance with the conclusions of earlier studies of this system that have favoured the vanadyl termination. The results of these previous studies are re-evaluated in the light of the new result.

  17. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  18. Development of an alpha scattering instrument for heavy element detection in surface materials

    NASA Technical Reports Server (NTRS)

    Turkevich, A. L.; Economou, T.; Blume, E.; Anderson, W.

    1974-01-01

    The development and characteristics of a portable instrument for detecting and measuring the amounts of lead in painted surfaces are discussed. The instrument is based on the ones used with the alpha scattering experiment on the Surveyor lunar missions. The principles underlying the instrument are described. It is stated that the performance tests of the instrument were satisfactory.

  19. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    ERIC Educational Resources Information Center

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  20. Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system

    NASA Astrophysics Data System (ADS)

    Daon, Shauli; Pollak, Eli

    2015-05-01

    The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.

  1. Structural dynamics of surfaces by ultrafast electron crystallography: experimental and multiple scattering theory.

    PubMed

    Schäfer, Sascha; Liang, Wenxi; Zewail, Ahmed H

    2011-12-07

    Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials. © 2011 American Institute of Physics

  2. Monte Carlo simulation of wave sensing with a short pulse radar

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Davisson, L. D.; Kutz, R. L.

    1977-01-01

    A Monte Carlo simulation is used to study the ocean wave sensing potential of a radar which scatters short pulses at small off-nadir angles. In the simulation, realizations of a random surface are created commensurate with an assigned probability density and power spectrum. Then the signal scattered back to the radar is computed for each realization using a physical optics analysis which takes wavefront curvature and finite radar-to-surface distance into account. In the case of a Pierson-Moskowitz spectrum and a normally distributed surface, reasonable assumptions for a fully developed sea, it has been found that the cumulative distribution of time intervals between peaks in the scattered power provides a measure of surface roughness. This observation is supported by experiments.

  3. Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences

    NASA Technical Reports Server (NTRS)

    Craeye, C.; Sobieski, P. W.; Bliven, L. F.

    1997-01-01

    Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.

  4. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    DOE R&D Accomplishments Database

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  5. Interpreting Circularly Polarized 75-cm Oblique-Incidence Martian Surface Echoes Received by Mars Odyssey

    NASA Astrophysics Data System (ADS)

    Gunnarsdottir, Hrefna M.; Linscott, I. R.; Callas, J. L.; Tyler, G. L.; Cousins, M. D.

    2006-09-01

    Between August and December 2005, we conducted 76 oblique-incidence scattering experiments using the SRI 46-m antenna in the Stanford foothills to illuminate Mars for 20 min. periods with an unmodulated 75 cm-λ, circularly polarized wave. The direct signal and a Martian surface echo, which are separated by Doppler frequency, were received simultaneously by the one-bit receiver on board the Mars Odyssey spacecraft. Out of 45 experiments with high signal-to-noise ratios, 27 were in the northern hemisphere, while 18 were in the southern hemisphere, where preliminary data analysis is available. The surface echoes are characterized by both fluctuating amplitude and varying spectral width, which correspond roughly to the surface reflectivity and roughness, respectively. Analysis of the data is based on quasi-specular scattering theory, but interpretation of the echoes is complicated by Odyssey's reception of only the right-circular polarized (RCP) wave component, and by the high incidence angles involved (f > 60 deg.), for which the scattering theory is not well developed. Our analysis of the echoes makes use of MOLA topographic maps at a resolution of 128 points per deg. of longitude and latitude, to model the scattering surface in three dimensions along the specular track. We can account for most of the echo amplitude fluctuations by the variation in number of surface-model facets tilted to produce a specular reflection towards Odyssey, indicating that MOLA scale topography is sufficient to capture an important scattering mechanism at this wavelength. With this we have accomplished a first step in differentiating between changes in echo signal strength due to surface reflectivity and surface shape. At the same time, we obtain a measure of the small scale surface roughness by finding the maximum tilt angle away from a perfectly mirroring surface facet which contributes significantly to the echo at each time step.

  6. Monte Carlo wave packet study of negative ion mediated vibrationally inelastic scattering of NO from the metal surface

    NASA Astrophysics Data System (ADS)

    Li, Shenmin; Guo, Hua

    2002-09-01

    The scattering dynamics of vibrationally excited NO from a metal surface is investigated theoretically using a dissipative model that includes both the neutral and negative ion states. The Liouville-von Neumann equation is solved numerically by a Monte Carlo wave packet method, in which the wave packet is allowed to "jump" between the neutral and negative ion states in a stochastic fashion. It is shown that the temporary population of the negative ion state results in significant changes in vibrational dynamics, which eventually lead to vibrationally inelastic scattering of NO. Reasonable agreement with experiment is obtained with empirical potential energy surfaces. In particular, the experimentally observed facile multiquantum relaxation of the vibrationally highly excited NO is reproduced. The simulation also provides interesting insight into the scattering dynamics.

  7. A two-scale scattering model with application to the JONSWAP '75 aircraft microwave scatterometer experiment

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1977-01-01

    The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions.

  8. Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments

    NASA Astrophysics Data System (ADS)

    Monfared, S. K.; Buttler, W. T.; Frayer, D. K.; Grover, M.; LaLone, B. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Schauer, M. M.

    2015-06-01

    We report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. We describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.

  9. Surface Brillouin scattering study of the surface excitations in amorphous silicon layers produced by ion bombardment

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Comins, J. D.; Every, A. G.; Stoddart, P. R.; Pang, W.; Derry, T. E.

    1998-11-01

    Thin amorphous silicon layers on crystalline silicon substrates have been produced by argon-ion bombardment of (001) silicon surfaces. Thermally induced surface excitations characteristic of this example of a soft-on-hard system have been investigated by surface Brillouin scattering (SBS) as a function of scattering-angle and amorphous-layer thickness. At large scattering angles or for sufficiently large layer thickness, a second peak is present in the SBS spectrum near the low-energy threshold for the continuum of bulk excitations of the system. The measured spectra are analyzed on the basis of surface elastodynamic Green's functions, which successfully simulate their detailed appearance and identify the second peak as either a Sezawa wave (true surface wave) or a pseudo-Sezawa wave (attenuated surface wave) depending on the scattering parameters. The attributes of the pseudo-Sezawa wave are described; these include its asymmetrical line shape and variation in intensity with k∥d (the product of the surface excitation wave vector and the layer thickness), and its emergence as the Sezawa wave from the low-energy side of the Lamb shoulder at a critical value of k∥d. Furthermore, the behavior of a pronounced minimum in the Lamb shoulder near the longitudinal wave threshold observed in the experiments is reported and is found to be in good agreement with the calculated spectra. The elastic constants of the amorphous silicon layer are determined from the velocity dispersion of the Rayleigh surface acoustic wave and the minimum in the Lamb shoulder.

  10. Neutrons on a surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  11. Evaluation of lyophility of carbon materials for electrodes of supercapacitors

    NASA Astrophysics Data System (ADS)

    Kompan, M. E.; Agafonov, D. V.; Bursian, A. E.; Dmitriev, D. S.; Mikryukova, M. A.

    2016-12-01

    The heats of wetting have been measured experimentally for some of the solvents used for the preparation of electrolytes of supercapacitors. For the first time, the heat of wetting has been measured for a new promising solvent—tributyl phosphate. Using acetonitrile as an example, the possible orientation of the molecule at the adsorbing surface has been investigated by the technique of surface-enhanced Raman scattering (SERS) (effect of giant enhancement of the scattering by a conducting surface). The calculated estimates have been obtained for the quantities found in the experiment.

  12. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  13. Detection of vapor nanobubbles by small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri

    2018-04-01

    Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.

  14. Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements

    NASA Astrophysics Data System (ADS)

    Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.

    2012-12-01

    The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.

  15. Theory of raman scattering from molecules adsorbed at semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ueba, H.

    1983-09-01

    A theory is presented to calculate the Raman polarizability of an adsorbed molecule at a semiconductor surface, where the electronic excitation in the molecular site interacts with excitons (elementary excitations in the semiconductor) through non-radiative energy transfer between them, in an intermediate state in the Raman scattering process. The Raman polarizability thus calculated is found to exhibit a peak at the energy corresponding to a resonant excitation of excitons, thereby suggesting the possibility of surface enhanced Raman scattering on semiconductor surfaces. The mechanism studied here can also give an explanation of a recent observation of the Raman excitation profiles of p-NDMA and p-DMAAB adsorbed on ZnO or TiO 2, where those profiles were best described by assuming a resonant intermediate state of the exciton transition in the semiconductors. It is also demonstrated that in addition to vibrational Raman scattering, excitonic Raman scattering of adsorbed molecules will occur in the coupled molecule-semiconductor system, where the molecular returns to its ground electronic state by leaving an exciton in the semiconductor. A spectrum of the excitonic Raman scattering is expected to appear in the background of the vibrational Raman band and to be characterized by the electronic structure of excitons. A desirable experiment is suggested for an examination of the theory.

  16. On the importance of full-dimensionality in low-energy molecular scattering calculations

    PubMed Central

    Faure, Alexandre; Jankowski, Piotr; Stoecklin, Thierry; Szalewicz, Krzysztof

    2016-01-01

    Scattering of H2 on CO is of great importance in astrophysics and also is a benchmark system for comparing theory to experiment. We present here a new 6-dimensional potential energy surface for the ground electronic state of H2-CO with an estimated uncertainty of about 0.6 cm−1 in the global minimum region, several times smaller than achieved earlier. This potential has been used in nearly exact 6-dimensional quantum scattering calculations to compute state-to-state cross-sections measured in low-energy crossed-beam experiments. Excellent agreement between theory and experiment has been achieved in all cases. We also show that the fully 6-dimensional approach is not needed with the current accuracy of experimental data since an equally good agreement with experiment was obtained using only a 4-dimensional treatment, which validates the rigid-rotor approach widely used in scattering calculations. This finding, which disagrees with some literature statements, is important since for larger systems full-dimensional scattering calculations are currently not possible. PMID:27333870

  17. Interpretation of small-angle diffraction experiments on opal-like photonic crystals

    NASA Astrophysics Data System (ADS)

    Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.

    2011-08-01

    Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.

  18. Analysis of the applicability of the modified kinematic approximation to describe the off-specular neutron scattering from the surface of micro- and nanostructured objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belushkin, A. V., E-mail: belushk@nf.jinr.ru; Manoshin, S. A., E-mail: manoshin@nf.jinr.ru; Rikhvitskiy, V. S.

    2016-09-15

    The applicability of the modified kinematic approximation to describe the off-specular neutron scattering from interfaces between media is analyzed. It is demonstrated that in some cases one can expect not only a qualitative but also a quantitative agreement between the data and the results of experiments and calculations based on more accurate techniques. Diffuse scattering from rough surfaces and thin films with correlated and noncorrelated roughness of the upper and lower interfaces and the neutron diffraction by stripe magnetic domains and magnetic domains with a random size distribution (magnetic roughness) are considered as examples.

  19. Soft x-ray speckle from rough surfaces

    NASA Astrophysics Data System (ADS)

    Porter, Matthew Stanton

    Dynamic light scattering has been of great use in determining diffusion times for polymer solutions. At the same time, polymer thin films are becoming of increasing importance, especially in the semiconductor industry where they are used as photoresists and interlevel dielectrics. As the dimensions of these devices decrease we will reach a point where lasers will no longer be able to probe the length scales of interest. Current laser wavelengths limit the size of observable diffusion lengths to 180-700 nm. This dissertation will discuss attempts at pushing dynamic fight scattering experiments into the soft x-ray region so that we can examine fluctuations in polymer thin films on the molecular length scale. The dissertation explores the possibility of carrying out a dynamic light scattering experiment in the soft x-ray regime. A detailed account of how to meet the basic requirements for a coherent scattering experiment in the soft x-ray regime win be given. In addition, a complete description of the chamber design will be discussed. We used our custom designed scattering chamber to collect reproducible coherent soft x-ray scattering data from etched silicon wafers and from polystyrene coated silicon wafers. The data from the silicon wafers followed the statistics for a well-developed speckle pattern while the data from the polystyrene films exhibited Poisson statistics. We used the data from both the etched wafers and the polystyrene coated wafers to place a lower limit of ~20 Å on the RMS surface roughness of samples which will produce well defined speckle patterns for the current detector setup. Future experiments which use the criteria set forth in this dissertation have the opportunity to be even more successful than this dissertation project.

  20. Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments

    DOE PAGES

    Monfared, Shabnam Khalighi; Buttler, William Tillman; Frayer, Daniel K.; ...

    2015-06-11

    In this paper, we report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. Finally, we describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.

  1. Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface.

    PubMed

    Zheng, Hao; Bian, Guang; Chang, Guoqing; Lu, Hong; Xu, Su-Yang; Wang, Guangqiang; Chang, Tay-Rong; Zhang, Songtian; Belopolski, Ilya; Alidoust, Nasser; Sanchez, Daniel S; Song, Fengqi; Jeng, Horng-Tay; Yao, Nan; Bansil, Arun; Jia, Shuang; Lin, Hsin; Hasan, M Zahid

    2016-12-23

    We combine quasiparticle interference simulation (theory) and atomic resolution scanning tunneling spectromicroscopy (experiment) to visualize the interference patterns on a type-II Weyl semimetal Mo_{x}W_{1-x}Te_{2} for the first time. Our simulation based on first-principles band topology theoretically reveals the surface electron scattering behavior. We identify the topological Fermi arc states and reveal the scattering properties of the surface states in Mo_{0.66}W_{0.34}Te_{2}. In addition, our result reveals an experimental signature of the topology via the interconnectivity of bulk and surface states, which is essential for understanding the unusual nature of this material.

  2. A general method for controlling and resolving rotational orientation of molecules in molecule-surface collisions

    PubMed Central

    Godsi, Oded; Corem, Gefen; Alkoby, Yosef; Cantin, Joshua T.; Krems, Roman V.; Somers, Mark F.; Meyer, Jörg; Kroes, Geert-Jan; Maniv, Tsofar; Alexandrowicz, Gil

    2017-01-01

    The outcome of molecule–surface collisions can be modified by pre-aligning the molecule; however, experiments accomplishing this are rare because of the difficulty of preparing molecules in aligned quantum states. Here we present a general solution to this problem based on magnetic manipulation of the rotational magnetic moment of the incident molecule. We apply the technique to the scattering of H2 from flat and stepped copper surfaces. We demonstrate control of the molecule's initial quantum state, allowing a direct comparison of differences in the stereodynamic scattering from the two surfaces. Our results show that a stepped surface exhibits a much larger dependence of the corrugation of the interaction on the alignment of the molecule than the low-index surface. We also demonstrate an extension of the technique that transforms the set-up into an interferometer, which is sensitive to molecular quantum states both before and after the scattering event. PMID:28480890

  3. MISSE Scattered Atomic Oxygen Characterization Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2006-01-01

    An experiment designed to measure the atomic oxygen (AO) erosion profile of scattered AO was exposed to Low Earth Orbital (LEO) AO for almost four years as part of the Materials International Space Station Experiment 1 and 2 (MISSE 1 and 2). The experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), Tray 1, attached to the exterior of the International Space Station (ISS) Quest Airlock. The experiment consisted of an aperture disk lid of Kapton H (DuPont) polyimide coated on the space exposed surface with a thin AO durable silicon dioxide film. The aperture lid had a small hole in its center to allow AO to enter into a chamber and impact a base disk of aluminum. The AO that scattered from the aluminum base could react with the under side of the aperture lid which was coated sporadically with microscopic sodium chloride particles. Scattered AO erosion can occur to materials within a spacecraft that are protected from direct AO attack but because of apertures in the spacecraft the AO can attack the interior materials after scattering. The erosion of the underside of the Kapton lid was sufficient to be able to use profilometry to measure the height of the buttes that remained after washing off the salt particles. The erosion pattern indicated that peak flux of scattered AO occurred at and angle of approximately 45 from the incoming normal incidence on the aluminum base unlike the erosion pattern predicted for scattering based on Monte Carlo computational predictions for AO scattering from Kapton H polyimide. The effective erosion yield for the scattered AO was found to be a factor of 0.214 of that for direct impingement on Kapton H polyimide.

  4. Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An ab initio molecular dynamics study.

    PubMed

    Kolb, Brian; Guo, Hua

    2016-07-07

    Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.

  5. Quantum State-Resolved Reactive and Inelastic Scattering at Gas-Liquid and Gas-Solid Interfaces

    NASA Astrophysics Data System (ADS)

    Grütter, Monika; Nelson, Daniel J.; Nesbitt, David J.

    2012-06-01

    Quantum state-resolved reactive and inelastic scattering at gas-liquid and gas-solid interfaces has become a research field of considerable interest in recent years. The collision and reaction dynamics of internally cold gas beams from liquid or solid surfaces is governed by two main processes, impulsive scattering (IS), where the incident particles scatter in a few-collisions environment from the surface, and trapping-desorption (TD), where full equilibration to the surface temperature (T{TD}≈ T{s}) occurs prior to the particles' return to the gas phase. Impulsive scattering events, on the other hand, result in significant rotational, and to a lesser extent vibrational, excitation of the scattered molecules, which can be well-described by a Boltzmann-distribution at a temperature (T{IS}>>T{s}). The quantum-state resolved detection used here allows the disentanglement of the rotational, vibrational, and translational degrees of freedom of the scattered molecules. The two examples discussed are (i) reactive scattering of monoatomic fluorine from room-temperature ionic liquids (RTILs) and (ii) inelastic scattering of benzene from a heated (˜500 K) gold surface. In the former experiment, rovibrational states of the nascent HF beam are detected using direct infrared absorption spectroscopy, and in the latter, a resonace-enhanced multi-photon-ionization (REMPI) scheme is employed in combination with a velocity-map imaging (VMI) device, which allows the detection of different vibrational states of benzene excited during the scattering process. M. E. Saecker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson Science 252, 1421, 1991. A. M. Zolot, W. W. Harper, B. G. Perkins, P. J. Dagdigian and D. J. Nesbitt J. Chem. Phys 125, 021101, 2006. J. R. Roscioli and D. J. Nesbitt Faraday Disc. 150, 471, 2011.

  6. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    PubMed

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  7. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  8. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.

  9. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-07-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  10. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  11. Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt{110}. I. Quantitative structural study of the clean (1 × 2) surface

    NASA Astrophysics Data System (ADS)

    Masson, F.; Rabalais, J. W.

    1991-08-01

    The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS) is used for quantitative structural characterization of the reconstructed (1 × 2) missing-row Pt{110} clean surface. The results are presented as scans of scattered intensity versus incident angle at two scattering angles and are interpreted in terms of simple classical concepts (shadowing, blocking, focusing). Measured critical incident and exit angles corresponding to interatomic spacings unaffected by reconstruction are used to calibrate the screening constant of the interaction potential employed in the trajectory simulations. Analysis of the surface reconstruction is performed by combining experimental data and calibrated computations. The results indicate a contraction of the first-to-second interlayer spacing (-0.22 ± 0.07 Å, i.e., -16 ± 5%), a buckling of amplitude 0.19 ± 0.13 Å in the third layer and, possibly, a row-pairing in the second layer. These observations are in agreement with LEED, MEIS, GXRD, and RHEED experiments.

  12. Polarimetric SAR Models for Oil Fields Monitoring in China Seas

    NASA Astrophysics Data System (ADS)

    Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.

    2014-11-01

    In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification. Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.

  13. Polarimetric SAR Models for Oil Fields Monitoring in China Seas

    NASA Astrophysics Data System (ADS)

    Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.

    2014-11-01

    In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification.Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.

  14. High-Frequency Sound Interaction in Ocean Sediments

    DTIC Science & Technology

    2003-09-30

    results, combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot...understanding of the dominant scatterers versus frequency near the sediment surface, the potential need for poroelastic sediment models , the...work are described under a separate ONR project titled “ Acoustic propagation and scattering within sand sediments: Laboratory experiments, modeling

  15. Comparing Vesta's Surface Roughness to the Moon Using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.; Moghaddam, M.

    2015-12-01

    The first orbital bistatic radar (BSR) observations of a small body have been conducted opportunistically by NASA's Dawn spacecraft at Asteroid Vesta using the telecommunications antenna aboard Dawn to transmit and the Deep Space Network 70-meter antennas on Earth to receive. Dawn's high-gain communications antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength), and due to the opportunistic nature of the experiment, remained in a fixed orientation pointed toward Earth throughout each BSR observation. As a consequence, Dawn's transmitted radio waves scattered from Vesta's surface just before and after each occultation of the Dawn spacecraft behind Vesta, resulting in surface echoes at highly oblique incidence angles of greater than 85 degrees, and a small Doppler shift of ~2 Hz between the carrier signal and surface echoes from Vesta. We analyze the power and Doppler spreading of Vesta's surface echoes to assess surface roughness, and find that Vesta's area-normalized radar cross section ranges from -8 to -17 dB, which is notably much stronger than backscatter radar cross section values reported for the Moon's limbs (-20 to -35 dB). However, our measurements correspond to the forward scattering regime--such that at high incidence, radar waves are expected to scatter more weakly from a rough surface in the backscatter direction than that which is scattered forward. Using scattering models of rough surfaces observed at high incidence, we report on the relative roughness of Vesta's surface as compared to the Moon and icy Galilean satellites. Through this, we assess the dominant processes that have influenced Vesta's surface roughness at centimeter and decimeter scales, which are in turn applicable to assisting future landing, sampling and orbital missions of other small bodies.

  16. The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE)

    PubMed Central

    Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji

    2015-01-01

    The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035

  17. Appearance benefits of skin moisturization.

    PubMed

    Jiang, Z-X; DeLaCruz, J

    2011-02-01

    Skin hydration is essential for skin health. Moisturized skin is generally regarded as healthy and healthy looking. It is thus speculated that there may be appearance benefits of skin moisturization. This means that there are corresponding changes in the optical properties when skin is moisturized. The appearance of the skin is the result of light reflection, scattering and absorption at various skin layers of the stratum corneum, epidermis, dermis and beyond. The appearance benefits of skin moisturization are likely primarily due to the changes in the optical properties of the stratum corneum. We hypothesize that the major optical effect of skin moisturization is the decrease of light scattering at the skin surface, i.e., the stratum corneum. This decrease of surface scattering corresponds to an increase of light penetration into the deeper layers of the skin. An experiment was conducted to measure the corresponding change in skin spectral reflectance, the skin scattering coefficient and skin translucency with a change in skin hydration. In the experiment, skin hydration was decreased with the topical application of acetone and alcohol and increased with the topical application of known moisturizers and occlusives such as PJ. It was found that both the skin spectral reflectance and the skin scattering coefficient increased when the skin was dehydrated and decreased when the skin was hydrated. Skin translucency increased as the skin became moisturized. The results agree with the hypothesis that there is less light scattering at the skin surface and more light penetration into the deeper skin layers when the skin is moisturized. As a result, the skin appears darker, more pinkish and more translucent. © 2010 John Wiley & Sons A/S.

  18. Preliminary investigation of Faraday rotation effects and description of polarization measurements on the AFGL high latitude meteor scatter test bed

    NASA Astrophysics Data System (ADS)

    Ostergaard, Jens C.

    1989-01-01

    The background, methodology and preliminary results of an investigation of Faraday rotation effects on the Meteor Scatter High Latitude Test Bed in Greenland are presented. A short review of polarization theory for radio waves, presenting basic properties and changes when reflected from the surface of the earth or propagated through the ionosphere is included. Material published by other workers is presented to give the background for the current interest in Faraday rotation on meteor scatter links. Propagation losses for meteor scatter paths originate from spatial spreading of RF energy, scattering losses at the meteor trail, ionospheric absorption and polarization mismatch at the receiving antenna. That part of the polarization mismatch generated by the ionosphere, the Faraday rotation, is described and evaluated. A method to compute the Faraday rotation is presented and results obtained for the AFGL MSHL Test Bed are given. An experiment, including the measurement of signal strength and polarization throughout the lifetime of the individual meteor scatter return is needed to fully assess the combined affects of absorption and depolarization during both quiet and disturbed ionospheric conditions. The measurement accuracy to be expected from a proposed experiment is evaluated. A few examples of meteor scatter returns obtained with a prototype experiment in Greenland are shown and discussed.

  19. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  20. Scattering of water from the glycerol liquid-vacuum interface

    NASA Technical Reports Server (NTRS)

    Benjamin, I.; Wilson, M. A.; Pohorille, A.; Nathanson, G. M.

    1995-01-01

    Molecular dynamics calculations of the scattering of D2O from the glycerol surface at different collision energies are reported. The results for the trapping probabilities and energy transfer are in good agreement with experiments. The calculations demonstrate that the strong attractive forces between these two strongly hydrogen bonding molecules have only a minor effect on the initial collision dynamics. The trapping probability is influenced to a significant extent by the repulsive hard sphere-like initial encounter with the corrugated surface and, only at a later stage, by the efficiency of energy flow in the multiple interactions between the water and the surface molecules.

  1. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    NASA Astrophysics Data System (ADS)

    Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.

    2018-02-01

    We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.

  2. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration

    NASA Astrophysics Data System (ADS)

    Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.

  3. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  4. Highlights from Faraday Discussion FDSERS17: Surface Enhanced Raman Scattering - SERS, Glasgow, UK, 30th August-1st September 2017.

    PubMed

    Di Martino, G; Fleming, H; Kamp, M; Lussier, F

    2017-11-28

    The 2017 Faraday Discussion on Surface Enhanced Raman Scattering (SERS) attracted more than a hundred delegates from a broad spectrum of backgrounds and experience levels, bringing together leading scientists involved in the long living field of SERS. The meeting gave an overview of the liveliness of the topic, characterised by open questions and fascinating science still to discover. In the following, we discuss the topics covered during this meeting and briefly highlight the content of each presentation.

  5. Validation of space-based polarization measurements by use of a single-scattering approximation, with application to the global ozone monitoring experiment.

    PubMed

    Aben, Ilse; Tanzi, Cristina P; Hartmann, Wouter; Stam, Daphne M; Stammes, Piet

    2003-06-20

    A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface. The method can be applied to any space-based instrument that measures the polarization of reflected solar light. We successfully applied the method to validate the Global Ozone Monitoring Experiment (GOME) polarization measurements. The error in the GOME's three broadband polarization measurements appears to be approximately 1%.

  6. Surface interaction mechanisms of 5eV atomic oxygen: Data analysis from the UAH experiment on STS-8

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1987-01-01

    The University of Alabama in Huntsville (UAH) experiment which flew on the STS-8 mission had several objectives which were mostly of a speculative nature since so little was known of the processes of interest. The experiment provided original, if limited, data on: (1) oxidation of metal surfaces, (2) reaction rates of atomic oxygen with carbon and other surfaces and the dependence of these rates on temperature, and (3) the angular distribution of 5eV atoms scattered off a solid surface. Provided is a review of the results, with reference given to fuller published accounts where these are available.

  7. Tin particle size measurements in high explosively driven shockwave experiments using Mie scattering method

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team

    2014-03-01

    Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.

  8. An analytic model for acoustic scattering from an impedance cylinder placed normal to an impedance plane

    NASA Astrophysics Data System (ADS)

    Swearingen, Michelle E.

    2004-04-01

    An analytic model, developed in cylindrical coordinates, is described for the scattering of a spherical wave off a semi-infinite reight cylinder placed normal to a ground surface. The motivation for the research is to have a model with which one can simulate scattering from a single tree and which can be used as a fundamental element in a model for estimating the attenuation in a forest comprised of multiple tree trunks. Comparisons are made to the plane wave case, the transparent cylinder case, and the rigid and soft ground cases as a method of theoretically verifying the model for the contemplated range of model parameters. Agreement is regarded as excellent for these benchmark cases. Model sensitivity to five parameters is also explored. An experiment was performed to study the scattering from a cylinder normal to a ground surface. The data from the experiment is analyzed with a transfer function method to yield frequency and impulse responses, and calculations based on the analytic model are compared to the experimental data. Thesis advisor: David C. Swanson Copies of this thesis written in English can be obtained from

  9. Atomic and Molecular Beam Scattering: Characterizing Structure and Dynamics of Hybrid Organic-Semiconductor Interfaces and Introducing Novel Isotope Separation Techniques

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin John

    This thesis details a range of experiments and techniques that use the scattering of atomic beams from surfaces to both characterize a variety of interfaces and harness mass-specific scattering conditions to separate and enrich isotopic components in a mixture of gases. Helium atom scattering has been used to characterize the surface structure and vibrational dynamics of methyl-terminated Ge(111), thereby elucidating the effects of organic termination on a rigid semiconductor interface. Helium atom scattering was employed as a surface-sensitive, non-destructive probe of the surface. By means of elastic gas-surface diffraction, this technique is capable of providing measurements of atomic spacing, step height, average atomic displacement as a function of surface temperature, gas-surface potential well depth, and surface Debye temperature. Inelastic time-of-flight studies provide highly resolved energy exchange measurements between helium atoms and collective lattice vibrations, or phonons; a collection of these measurements across a range of incident kinematic parameters allowed for a thorough mapping of low-energy phonons (e.g., the Rayleigh wave) across the surface Brillouin zone and subsequent comparison with complementary theoretical calculations. The scattering of molecular beams - here, hydrogen and deuterium from methyl-terminated Si(111) - enables the measurement of the anisotropy of the gas-surface interaction potential through rotationally inelastic diffraction (RID), whereby incident atoms can exchange internal energy between translational and rotational modes and diffract into unique angular channels as a result. The probability of rotational excitations as a function of incident energy and angle were measured and compared with electronic structure and scattering calculations to provide insight into the gas-surface interaction potential and hence the surface charge density distribution, revealing important details regarding the interaction of H2 with an organic-functionalized semiconductor interface. Aside from their use as probes for surface structure and dynamics, atomic beam sources are also demonstrated to enable the efficient separation of gaseous mixtures of isotopes by means of diffraction and differential condensation. In the former method, the kinematic conditions for elastic diffraction result in an incident beam of natural abundance neon diffracting into isotopically distinct angles, resulting in the enrichment of a desired isotope; this purification can be improved by exploiting the difference in arrival times of the two isotopes at a given final angle. In the latter method, the identical incident velocities of coexpanded isotopes lead to minor but important differences in their incident kinetic energies, and thus their probability of adsorbing on a sufficiently cold surface, resulting in preferential condensation of a given isotope that depends on the energy of the incident beam. Both of these isotope separation techniques are made possible by the narrow velocity distribution and velocity seeding effect offered only by high-Mach number supersonic beam sources. These experiments underscore the utility of supersonically expanded atomic and molecular beam sources as both extraordinarily precise probes of surface structure and dynamics and as a means for high-throughput, non-dissociative isotopic enrichment methods.

  10. Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Kucherenko, Yu.

    2002-04-01

    The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.

  11. Surface Enhanced Raman Scattering (SERS)-Based Next Generation Commercially Available Substrate: Physical Characterization and Biological Application

    DTIC Science & Technology

    2011-09-01

    the spore and the active areas on the Klarite surface. For these experiments an aliquot of the common bacillus spore B. coagulans was drop...suspension B. coagulans (ATCC SUS-CG) was purchased from Raven Biologicals and used at a log 4 or 6 population per 0.1 mL of solution. For experiments...Klarite substrates were evaluated with the spore sample B. coagulans . In these experiments different substrates and the changes in overall band

  12. The Physical Character of the Au (001) Surface Reconstruction in the Presence of CO and O2

    NASA Astrophysics Data System (ADS)

    Loheac, Andrew; Pierce, Michael S.; Barbour, Andi; Komanicky, Vladimir; Zhu, Chenhui; You, Hoydoo

    2014-03-01

    The interaction of carbon monoxide and oxygen on Au (001) single crystal facets has been investigated using synchrotron based surface x-ray diffraction and scattering techniques. Preliminary experiments confirm the quasi-hexagonal surface reconstruction can be influenced by exposure to CO and O, and indicate that oxidation may be present. Subsequent surface x-ray scattering experiments included a residual gas analyzer (RGA) with isotopic CO to tag the chemical species. Both CO (by itself) and O (dissociated from molecular O2 by the x-rays) are capable of lifting the hexagonal surface reconstruction resulting in a disordered bulk truncated surface. A wide range of pressures (1 mTorr - 10 Torr) and temperatures (300 K - 900 K) have been explored. We have also adapted a system of coupled partial differential equations to model the absorption kinetics and surface reconstructions. This work and use of the Advanced Photon Source were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work at Safarik University was supported by Slovak grant VEGA 1/0782/12.

  13. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  14. The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Engman, E. T.; Rusek, M.; Steinmeier, C.

    1986-01-01

    An experiment was conducted from an L-band SAR aboard Space Shuttle Challenger in October 1984 to study the microwave backscatter dependence on soil moisture, surface roughness, and vegetation cover. The results based on the analyses of an image obtained at 21-deg incidence angle show a positive correlatlion between scattering coefficient and soil moisture content, with a sensitivity comparable to that derived from the ground radar measurements reported by Ulaby et al. (1978). The surface roughness strongly affects the microwave backscatter. A factor of two change in the standard deviation of surface roughness height gives a corresponding change of about 8 dB in the scattering coefficient. The microwave backscatter also depends on the vegetation types. Under the dry soil conditions, the scattering coefficient is observed to change from about -24 dB for an alfalfa or lettuce field to about -17 dB for a mature corn field. These results suggest that observations with a SAR system of multiple frequencies and polarizations are required to unravel the effects of soil moisture, surface roughness, and vegetation cover.

  15. HEKATE-A novel grazing incidence neutron scattering concept for the European Spallation Source.

    PubMed

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  16. HEKATE—A novel grazing incidence neutron scattering concept for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  17. Surface-enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerker, M.; Wang, D.S.; Chew, H.

    1980-12-15

    A model for Raman scattering by a molecule adsorbed at the surface of a spherical particle is articulated by treating the molecule as a classical electric dipole. This follows Moskovits's suggestion (J. Chem. Phys. 69, 4159 (1978)) and the experiments by Creighton et al. (J. Chem. Soc. Faraday Trans. II, 75, 790(1979)) that such a system may exhibit SERS simlar to that at roughened electrode surfaces. The molecule is stimulated by a primary field comprised of the incident and near-scattered fields. Emission consists of the dipole field plus a scattered field, each at the shifted frequency. Addition of feedback termsmore » between the dipole and the particle makes only a negligible contribution to the fields. For pyridine adsorbed at the surface of a silver sphere, the 1010 cm/sup -1/ band is enhanced by approx.10/sup 6/ if the radius is much less than the wavelengths and the excitation wavelength is approx.382 nm, a wavelength for which the relative refractive index of silver is close to m = ..sqrt..2i. Detailed results are given for the effect upon the angular distribution and the polarization of the Raman emission of particle size, distance from the surface, excitation wavelength, and location of the molecule upon the surface. These results simulate those observed at roughened silver electrodes and suggest that the mechanism of SERS at those electrodes may resemble the electromagnetic mechanism elucidated here. The authors predict that comparable effects should be observed for fluorescent scattering. 53 references, 9 figures.« less

  18. Study of curved and planar frequency-selective surfaces with nonplanar illumination

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Webb, Kevin J.

    1991-01-01

    A locally planar technique (LPT) is investigated for determining the forward-scattered field from a generally shaped inductive frequency-selective surface (FSS) with nonplanar illumination. The results of an experimental study are presented to assess the LPT accuracy. The effects of a nonplanar incident field are determined by comparing the LPT numerical results with a series of experiments with the feed source placed at varying distances from the planar FSS. The limitations of the LPT model due to surface curvature are investigated in an experimental study of the scattered fields from a set of hyperbolic cylinders of different curvatures. From these comparisons, guidelines for applying the locally planar technique are developed.

  19. A Spaceflight Experiment to Determine the Effect of Chamfered Sample Holders on Atomic Oxygen Erosion

    NASA Technical Reports Server (NTRS)

    Girish, Kshama; Banks, Bruce A.; De Groh, Kim K.

    2017-01-01

    The exteriors of low Earth orbit (LEO) spacecraft are subjected to many environmental threats that can cause the surface materials to degrade. One of these threats is atomic oxygen (AO), which is formed by photo dissociation of molecular oxygen by energetic UV radiation. Atomic oxygen exposure can result in oxidative erosion of polymers leading to structural or thermal failure of spacecraft components. The amount of AO erosion expected during a mission can be calculated by knowing the AO erosion yield (Ey, volume loss per incident atom) of the material and the AO fluence expected for the mission. The Ey can be determined through dehydrated mass loss measurements of test samples if one knows the AO fluence, density, and exposure area. Such measurements have been made as part of flight experiments, including the Materials International Space Station Experiment 2 (MISSE 2) Polymers Experiment. The MISSE 2 Polymers Experiment sample holders had chamfered circular apertures that controlled the exposure area, but also allowed some additional AO to scatter from the chamfered edges onto the samples thus causing some samples to erode thru and peel at their perimeter due to this scattering effect. By modeling the scattered AO flux one can predict the actual total AO fluence, and hence more accurate sample Ey. Sample holders with different chamfered-perimeter to exposed-area ratios have been designed for future spaceflight experiments that allow a more accurate determination of the Ey for large area polymers, representative of their use on spacecraft surfaces.

  20. Contamination study

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Herren, Kenneth A.

    1990-09-01

    The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.

  1. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    DTIC Science & Technology

    2016-12-22

    reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the

  2. Studies of Mineral-Water Surfaces

    NASA Astrophysics Data System (ADS)

    Ross, Nancy L.; Spencer, Elinor C.; Levchenko, Andrey A.; Kolesnikov, Alexander I.; Wesolowski, David J.; Cole, David R.; Mamontov, Eugene; Vlcek, Lukas

    In this chapter we discuss the application of inelastic and quasielastic neutron scattering to the elucidation of the structure, energetics, and dynamics of water confined on the surfaces of mineral oxide nanoparticles. We begin by highlighting recent advancements in this active field of research before providing a brief review of the theory underpinning inelastic neutron scattering (INS) and quasielastic neutron scattering (QENS) techniques. We then discuss examples illustrating the use of neutron scattering methods for studying hydration layers that are an integral part of the nanoparticle structure. The first investigation of this kind, namely the INS analysis of hydrated ZrO2 nanoparticles, is described, as well as a later, complementary QENS study that allowed for the dynamics of diffusion of the water molecules within the hydration layer to be examined in detail. The diverse range of information available from INS experiments is illustrated by a recent study combining INS with calorimetric experiments that elucidated the thermodynamic properties of adsorbed water on anatase (TiO2) nanoparticles. To emphasize the importance of molecular dynamics (MD) simulations for deconvoluting complex QENS spectra, we describe both the MD and the QENS analysis of rutile (TiO2) and cassiterite (SnO2) nanoparticle systems and show that, when combined, data obtained by these two complementary methods can provide a complete description of the motion of the water molecules on the nanoparticle surface. We close with a glimpse into the future for this thriving field of research.

  3. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    PubMed

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.

  4. Nonadiabatic dynamics of electron scattering from adsorbates in surface bands

    NASA Astrophysics Data System (ADS)

    Gumhalter, Branko; Šiber, Antonio; Buljan, Hrvoje; Fauster, Thomas

    2008-10-01

    We present a comparative study of nonadiabatic dynamics of electron scattering in quasi-two-dimensional surface band which is induced by the long-range component of the interactions with a random array of adsorbates. Using three complementary model descriptions of intraband spatiotemporal propagation of quasiparticles that go beyond the single-adsorbate scattering approach we are able to identify distinct subsequent regimes of evolution of an electron following its promotion into an unoccupied band state: (i) early quadratic or ballistic decay of the initial-state survival probability within the Heisenberg uncertainty window, (ii) preasymptotic exponential decay governed by the self-consistent Fermi golden rule scattering rate, and (iii) asymptotic decay described by a combined inverse power-law and logarithmic behavior. The developed models are applied to discuss the dynamics of intraband adsorbate-induced scattering of hot electrons excited into the n=1 image-potential band on Cu(100) surface during the first stage of a two-photon photoemission process. Estimates of crossovers between the distinct evolution regimes enable assessments of the lifespan of a standard quasiparticle behavior and thereby of the range of applicability of the widely used Fermi golden rule and optical Bloch equations approach for description of adsorbate-induced quasiparticle decay and dephasing in ultrafast experiments.

  5. Surface Fitting for Quasi Scattered Data from Coordinate Measuring Systems.

    PubMed

    Mao, Qing; Liu, Shugui; Wang, Sen; Ma, Xinhui

    2018-01-13

    Non-uniform rational B-spline (NURBS) surface fitting from data points is wildly used in the fields of computer aided design (CAD), medical imaging, cultural relic representation and object-shape detection. Usually, the measured data acquired from coordinate measuring systems is neither gridded nor completely scattered. The distribution of this kind of data is scattered in physical space, but the data points are stored in a way consistent with the order of measurement, so it is named quasi scattered data in this paper. Therefore they can be organized into rows easily but the number of points in each row is random. In order to overcome the difficulty of surface fitting from this kind of data, a new method based on resampling is proposed. It consists of three major steps: (1) NURBS curve fitting for each row, (2) resampling on the fitted curve and (3) surface fitting from the resampled data. Iterative projection optimization scheme is applied in the first and third step to yield advisable parameterization and reduce the time cost of projection. A resampling approach based on parameters, local peaks and contour curvature is proposed to overcome the problems of nodes redundancy and high time consumption in the fitting of this kind of scattered data. Numerical experiments are conducted with both simulation and practical data, and the results show that the proposed method is fast, effective and robust. What's more, by analyzing the fitting results acquired form data with different degrees of scatterness it can be demonstrated that the error introduced by resampling is negligible and therefore it is feasible.

  6. Critical behavior of the order-disorder phase transition in β -brass investigated by x-ray scattering

    NASA Astrophysics Data System (ADS)

    Madsen, A.; Als-Nielsen, J.; Hallmann, J.; Roth, T.; Lu, W.

    2016-07-01

    β -brass exhibits an archetypical example of an order-disorder transition with a critical behavior that was previously investigated by neutron scattering. The data were well described by the three-dimensional (3d) Ising model but the relatively crude experimental resolution prevented an in-depth examination of the single-length scaling hypothesis, a cornerstone in the theory of critical phenomena. With the development of synchrotron x-ray experiments, high-resolution data could be recorded and surprisingly it was found that the single-length scaling did not hold in most critical systems, possibly due to strain originating from surface defects and/or impurities. In this paper we demonstrate single-length critical behavior using high-resolution x-ray scattering in β -brass. The investigations confirm that β -brass behaves like a 3d Ising system over a wide range of length scales comprising correlated clusters of millions of atoms. To vary the surface sensitivity, experiments have been performed both in Bragg reflection and Laue transmission geometries but without any substantial differences observed in the scaling and critical behavior.

  7. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.

    PubMed

    van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P

    2012-12-20

    A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

  8. A new device for high-temperature in situ GISAXS measurements

    NASA Astrophysics Data System (ADS)

    Fritz-Popovski, Gerhard; Bodner, Sabine C.; Sosada-Ludwikowska, Florentyna; Maier, Günther A.; Morak, Roland; Chitu, Livia; Bruegemann, Lutz; Lange, Joachim; Krane, Hans-Georg; Paris, Oskar

    2018-03-01

    A heating stage originally designed for diffraction experiments is implemented into a Bruker NANOSTAR instrument for in situ grazing incidence small-angle x-ray scattering experiments. A controlled atmosphere is provided by a dome separating the sample environment from the evacuated scattering instrument. This dome is double shelled in order to enable cooling water to flow through it. A mesoporous silica film templated by a self-assembled block copolymer system is investigated in situ during step-wise heating in air. The GISAXS pattern shows the structural development of the ordered lattice of parallel cylindrical pores. The deformation of the elliptical pore-cross section perpendicular to the film surface was studied with increasing temperature. Moreover, the performance of the setup was tested by controlled in situ heating of a copper surface under controlled oxygen containing atmosphere.

  9. Radar scattering from desert terrains, Pisgah/Lavic Region, California: Implications for Magellan

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Arvidson, R. E.; Wall, S.

    1989-01-01

    A major component of the 1988 Mojave Field Experiment involved the simultaneous acquisition of quad-polarization multifrequency airborne Synthetic Aperture Radar (SAR) imaging radar data and ground measurements thought to be relevant to the radar scattering behavior of a variety of desert surfaces. In preparation for the Magellan mission to Venus, the experiment was designed to explore the ability of SAR to distinguish types of geological surfaces, and the effects of varying incidence angles on the appearance of such surfaces. The airborne SAR system acquired images at approx. 10 m resolution, at 3 incidence angles (30, 40, 50 degs) and at 3 wavelengths (P:68 cm, L:24 cm, C:5.6 cm). The polarimetric capabilities of the instrument allow the simulation of any combination of transmit and receive polarizations during data reduction. Calibrated trihedral corner reflectors were deployed within each scene to permit absolute radiometric calibration of the image data. Initial analyses of this comprehensive radar data set is reported, with emphasis on implications for interpretation of Magellan data.

  10. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  11. Layer-by-layer polyelectrolyte coating for surface-enhanced Raman scattering on gold nanostars inside hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Burmistrova, Natalia A.; Bondarenko, Sergei D.; Bratashov, Daniil N.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Khlebtsov, Boris N.; Skibina, Julia S.; Goryacheva, Irina Y.

    2018-04-01

    Photonic crystal fibers with hollow core (HC PCFs) are a specific class of optical fibers characterized by microstructure with periodic holes oriented along fiber. The combination of HC PCF with Raman spectroscopy for biosensors creation is attractive in the terms of the low sample volume, the possibility to increase the integration time without sample degradation and maintaining constant focus during experiments. Here we propose layer-by-layer polyelectrolyte coating of HC PCF inner surface in order to obtain charge-selective absorption of analyte, stabilization of Surface-Enhanced Raman scattering (SERS)-active gold nanoparticles. Distance between SERS hotspots and glass reduces nonlinear signals from glass, and increases signal-to-noise ratio of SERS spectra.

  12. Grazing-incidence small angle x-ray scattering studies of nanoscale polymer gratings

    NASA Astrophysics Data System (ADS)

    Doxastakis, Manolis; Suh, Hyo Seon; Chen, Xuanxuan; Rincon Delgadillo, Paulina A.; Wan, Lingshu; Williamson, Lance; Jiang, Zhang; Strzalka, Joseph; Wang, Jin; Chen, Wei; Ferrier, Nicola; Ramirez-Hernandez, Abelardo; de Pablo, Juan J.; Gronheid, Roel; Nealey, Paul

    2015-03-01

    Grazing-Incidence Small Angle X-ray Scattering (GISAXS) offers the ability to probe large sample areas, providing three-dimensional structural information at high detail in a thin film geometry. In this study we exploit the application of GISAXS to structures formed at one step of the LiNe (Liu-Nealey) flow using chemical patterns for directed self-assembly of block copolymer films. Experiments conducted at the Argonne National Laboratory provided scattering patterns probing film characteristics at both parallel and normal directions to the surface. We demonstrate the application of new computational methods to construct models based on scattering measured. Such analysis allows for extraction of structural characteristics at unprecedented detail.

  13. Characterization and Potential Application of Next Generation Commercial Surface Enhanced Raman Scattering Substrates

    DTIC Science & Technology

    2011-11-01

    were evaluated. For these experiments, an aliquot of the common bacillus spore B. coagulans was drop-dried onto the SERS substrate active surface...the Klarite surface. Spectra for bacillus spore B. coagulans on different substrate types. 3.5 Energetic Sample Evaluation Hazard detection...substrate types (a–f). Notice the dramatic difference in size between the spore and the active areas on the Klarite surface. Spectra for bacillus

  14. High-energy Electron Scattering and the Charge Distributions of Selected Nuclei

    DOE R&D Accomplishments Database

    Hahn, B.; Ravenhall, D. G.; Hofstadter, R.

    1955-10-01

    Experimental results are presented of electron scattering by Ca, V, Co, In, Sb, Hf, Ta, W, Au, Bi, Th, and U, at 183 Mev and (for some of the elements) at 153 Mev. For those nuclei for which asphericity and inelastic scattering are absent or unimportant, i.e., Ca, V, Co, In, Sb, Au, and Bi, a partial wave analysis of the Dirac equation has been performed in which the nuclei are represented by static, spherically symmetric charge distributions. Smoothed uniform charge distributions have been assumed; these are characterized by a constant charge density in the central region of the nucleus, with a smoothed-our surface. Essentially two parameters can be determined, related to the radium and to the surface thickness. An examination of the Au experiments show that the functional forms of the surface are not important, and that the charge density in the central regions is probably fairly flat, although it cannot be determined very accurately.

  15. Mechanical vibration of viscoelastic liquid droplets

    NASA Astrophysics Data System (ADS)

    Sharp, James; Harrold, Victoria

    2014-03-01

    The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.

  16. Time-independent quantum dynamics for diatom-surface scattering

    NASA Astrophysics Data System (ADS)

    Saalfrank, Peter; Miller, William H.

    1993-06-01

    Two time-independent quantum reactive scattering methods, namely, the S-matrix Kohn technique to compute the full S-matrix, and the absorbing boundary Green's function method to compute cumulative reaction probabilities, are applied here to the case of diatom-surface scattering. In both cases a discrete variable representation for the operators is used. We test the methods for two- and three-dimensional uncorrugated potential energy surfaces, which have been used earlier by Halstead et al. [J. Chem. Phys. 93, 2359 (1990)] and by Sheng et al. [J. Chem. Phys. 97, 684 (1992)] in studies of H2 dissociating on metal substrates with theoretical techniques different from those applied here. We find overall but not always perfect agreement with these earlier studies. Based on ab initio data and experiment, a new, six-dimensional potential energy surface for the dissociative chemisorption of H2 on Ni(100) is proposed. Two- and three-dimensional cuts through the new potential are performed to illustrate special dynamical aspects of this particular molecule-surface reaction: (i) the role of corrugation effects, (ii) the importance of the ``cartwheel'' rotation of H2, and (iii) the role of the ``helicopter'' degree of freedom for the adsorbing molecule.

  17. Interpretation of lunar and planetary electromagnetic scattering using the full wave solutions

    NASA Technical Reports Server (NTRS)

    Bahar, E.; Haugland, M.

    1993-01-01

    Bistatic radar experiments carried out during the Apollo 14, 15, and 16 missions provide a very useful data set with which to compare theoretical models and experimental data. Vesecky, et al. report that their model for near grazing angles compares favorably with experimental data. However, for angles of incidence around 80 degrees, all the analytical models considered by Vesecky, et al. predict values for the quasi-specular cross sections that are about half the corresponding values taken from the Apollo 16 data. In this work, questions raised by this discrepancy between the reported analytical and experimental results are addressed. The unified full wave solutions are shown to be in good agreement with the bistatic radar taken during Apollo 14 and 16 missions. Using the full wave approach, the quasi-specular contributions to the scattered field from the large scale surface roughness as well as the diffuse Bragg-like scattering from the small scale surface roughness are accounted for in a unified self-consistent manner. Since the full wave computer codes for the scattering cross sections contain ground truth data only, it is shown how it can be reliably used to predict the rough surface parameters of planets based on the measured data.

  18. Near grazing scattering from non-Gaussian ocean surfaces

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; Rodriguez, Ernesto

    1993-01-01

    We investigate the behavior of the scattered electromagnetic waves from non-Gaussian ocean surfaces at near grazing incidence. Even though the scattering mechanisms at moderate incidence angles are relatively well understood, the same is not true for near grazing rough surface scattering. However, from the experimental ocean scattering data, it has been observed that the backscattering cross section of a horizontally polarized wave can be as large as the vertical counterpart at near grazing incidence. In addition, these returns are highly intermittent in time. There have been some suggestions that these unexpected effects may come from shadowing or feature scattering. Using numerical scattering simulations, it can be shown that the horizontal backscattering cannot be larger than the vertical one for the Gaussian surfaces. Our main objective of this study is to gain a clear understanding of scattering mechanisms underlying the near grazing ocean scattering. In order to evaluate the backscattering cross section from ocean surfaces at near grazing incidence, both the hydrodynamic modeling of ocean surfaces and an accurate near grazing scattering theory are required. For the surface modeling, we generate Gaussian surfaces from the ocean surface power spectrum which is derived using several experimental data. Then, weakly nonlinear large scale ocean surfaces are generated following Longuet-Higgins. In addition, the modulation of small waves by large waves is included using the conservation of wave action. For surface scattering, we use MOM (Method of Moments) to calculate the backscattering from scattering patches with the two scale shadowing approximation. The differences between Gaussian and non-Gaussian surface scattering at near grazing incidence are presented.

  19. The Western Hemisphere of Venus: 3.5 CM Dual Circular-Polarization Radar Images

    NASA Astrophysics Data System (ADS)

    Haldemann, Albert F. C.; Muhleman, Duane O.; Butler, Bryan J.; Slade, Martin A.

    1997-08-01

    We present new dual circular-polarization radar maps of the western hemisphere of Venus. The results are from a 1993 experiment imaging Venus with 3.5 cm radar. Continuous-wave right circularly polarized flux was transmitted toward Venus from the 70 m Deep Space Network antenna in Goldstone, California. The echo was received in both the same sense (SS) and the opposite sense (OS) of circular polarization at the Very Large Array in New Mexico. By spatially reconstructing the echo with the interferometer, maps of Venusian radar albedo were made for each of two days of observation in both OS (echo principally due to specular reflection) and SS (diffuse echo) channels. On both days, the sub-earth longitude was near 300 E. The SS maps are dominated by a significant component of diffuse backscatter from the 285 E longitude highlands: Beta, Phoebe, and Themis Regiones. Beta Regio includes radar-anomalous regions with high reflectivity and low emissivity. The nature of these altitude-related electrical properties on Venus is one of the outstanding surface process questions that remain after Magellan. Our experiment adds the first full-disk polarization ratio (μc) maps to the discussion. The data show that different geology determines different radar scattering properties within Beta. Diffuse scattering is very important in Beta, and may be due to either surface or volume scattering. We find a strong correlation of the SS albedo σSSwith altitudeRp(km) in Beta, σSS∝ 0.3Rp. Also, σOS∝ 0.7Rp. The onset of this relationship is at theRp∼ 6054 km planetary radius contour. The nature and morphology of the highland radar anomalies in Beta is consistent with a diffuse scattering mechanism. In Beta Regio we find μc> 0.5 in general, with μcas high as 0.8 between Rhea and Theia Montes, to the west of Devana Chasma. These values are compatible with measurements of blocky terrestrial lava flows if surface scattering dominates. If volume scattering is important, the high RCP cross-sections may indicate an important decrease in embedded scatterer size with altitude, which could be related to enhanced weathering.

  20. Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.

    PubMed

    Yang, Xueming; Zhang, Dong H

    2008-08-01

    [Reaction: see text]. The concept of transition state has played a crucial role in the field of chemical kinetics and reaction dynamics. Resonances in the transition state region are important in many chemical reactions at reaction energies near the thresholds. Detecting and characterizing isolated reaction resonances, however, have been a major challenge in both experiment and theory. In this Account, we review the most recent developments in the study of reaction resonances in the benchmark F + H 2 --> HF + H reaction. Crossed molecular beam scattering experiments on the F + H 2 reaction have been carried out recently using the high-resolution, highly sensitive H-atom Rydberg tagging technique with HF rovibrational states almost fully resolved. Pronounced forward scattering for the HF (nu' = 2) product has been observed at the collision energy of 0.52 kcal/mol in the F + H 2 (j = 0) reaction. Quantum dynamical calculations based on two new potential energy surfaces, the Xu-Xie-Zhang (XXZ) surface and the Fu-Xu-Zhang (FXZ) surface, show that the observed forward scattering of HF (nu' = 2) in the F + H 2 reaction is caused by two Feshbach resonances (the ground resonance and first excited resonance). More interestingly, the pronounced forward scattering of HF (nu' = 2) at 0.52 kcal/mol is enhanced considerably by the constructive interference between the two resonances. In order to probe the resonance potential more accurately, the isotope substituted F + HD --> HF + D reaction has been studied using the D-atom Rydberg tagging technique. A remarkable and fast changing dynamical picture has been mapped out in the collision energy range of 0.3-1.2 kcal/mol for this reaction. Quantum dynamical calculations based on the XXZ surface suggest that the ground resonance on this potential is too high in comparison with the experimental results of the F + HD reaction. However, quantum scattering calculations on the FXZ surface can reproduce nearly quantitatively the resonance picture of the F + HD reaction observed in the experiment. It is clear that the dynamics of the F + HD reaction below the threshold was dominated by the ground resonance state. Furthermore, the forward scattering HF (nu' = 3) channel from the F + H 2 ( j = 0) reaction was investigated and was attributed mainly to a slow-down mechanism over the centrifugal exit barrier, with small contributions from a shape resonance mechanism in a narrow collision energy range. A striking effect of the reagent rotational excitation on resonance was also observed in F + H 2 ( j = 1), in comparison with F + H 2 ( j = 0). From these concerted experimental and theoretical studies, a clear physical picture of the reaction resonances in this benchmark reaction has emerged, providing a textbook example of dynamical resonances in elementary chemical reactions.

  1. Low-energy ion-backscattering spectroscopies applied to the determination of surface structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarmoff, J.A.

    1985-01-01

    Low-Energy Ion Scattering (LEIS) was investigated as a means for determining the geometric structure at a single-crystal surface. A three-dimensional Monte-Carlo computer simulation was developed and applied to existing LEIS data. The binary collision approximation was found to yield satisfactory results in simulating Buck's time-of-flight energy spectra for 2.4 keV Ne/sup +/ scattering from Ni(001). A two-atom-layer model was used in calculations of the azimuthal anisotropy of the ion yield measured by Bernheim and Slodzian for 9.5 keV Ne/sup +/ scattering from Cu(001). The calculations were successful in reproducing most of the features that had been observed in the experiments,more » which shows that this model contained most of the physics required to interpret the data. An apparatus for performing LEIS studies was built, and Low-Energy Ion-Backscattering Angular Distributions (LEIBAD) were collected with 3-20 keV /sup 6/Li/sup +/ incident on Cu(001). For incidence along a low-index Miller axis of the crystal, shadowing effects limited the penetration depth of the elastically scattered ions. However, neutralized Li atoms, which were not filtered out of the scattered yield by the high-pass filter, provided a background characteristic of the bulk. A high-resolution electrostatic analyzer was used to collect impact Collision Ion Scattering Spectroscopy (ICISS) data for 5-keV /sup 6/Li/sup +/ ions to study the Cu(110) and Cu(110) (2 x 1)-0 surfaces.« less

  2. The dynamics of energy and charge transfer in low and hyperthermal energy ion-solid interactions

    NASA Astrophysics Data System (ADS)

    Ray, Matthew Preston

    The energy and charge transfer dynamics for low and hyperthermal energy (10 eV to 2 keV) alkali and noble gas ions impacting noble metals as a function of incident energy, species and scattering geometry has been studied. The experiments were performed in an ultra-high vacuum scattering chamber attached to a low and hyperthermal energy beamline. The energy transfer was measured for K+ scattered from a Ag(001) surface along the [110] crystalline direction at a fixed laboratory angle of 90°. It was found that as the incident energy is reduced from 100 to 10 eV, the normalized scattered energy increased. Previous measurements have shown a decrease in the normalized energy as the incident ion energy is reduced due to an attractive image force. Trajectory analysis of the data using a classical scattering simulation revealed that instead of undergoing sequential binary collisions as in previous studies, the ion scatters from two surface atoms simultaneously leading to an increased normalized energy. Additionally, charge transfer measurements have been performed for Na + scattering from Ag(001) along the [110] crystalline direction at a fixed laboratory angle of 70°. It was found that over the range of energies used (10 eV to 2 keV), the neutralization probability of the scattered ions varied from ˜30% to ˜70% depending on the incident velocity, consistent with resonant charge transfer. A fully quantum mechanical model that treats electrons independently accurately reproduces the observed data. Measurements of electron-hole pair excitations were used to explore the pathways which a solid uses to dissipate the energy imparted by the incident ion beam. Ultrathin film (10 nm) metal-oxide-semiconductor (Au/SiO2/n-Si) devices were used to detect the electron-hole pairs for cases when the ion deposited all of its translational energy into the solid. The incident ions were incident at an angle normal to the surface of the device to maximize energy deposition and consequently electron-hole pair production. The rectifying metal-oxide-semiconductor device separates the electrons from the holes, allowing a current associated with electron-hole pair production to be measured. In these experiments a number of ion species (He+, Li+ , Ar+, K+) were made incident on multiple devices and the incident energy ranged from 100 eV to 2 keV. It was found that electron-hole pair production increased with incident ion velocity consistent with a kinetic electron excitation model where the electrons in the metal are partially confined to the surface.

  3. Surface areas of fractally rough particles studied by scattering

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.; Smith, Douglas M.; Ross, Steven B.; Le Méhauté, Alain; Spooner, Steven

    1989-05-01

    The small-angle scattering from fractally rough surfaces has the potential to give information on the surface area at a given resolution. By use of quantitative neutron and x-ray scattering, a direct comparison of surface areas of fractally rough powders was made between scattering and adsorption techniques. This study supports a recently proposed correction to the theory for scattering from fractal surfaces. In addition, the scattering data provide an independent calibration of molecular adsorbate areas.

  4. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  5. Scatter Measurements Made With Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Anthon, Erik W.

    1985-09-01

    The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.

  6. Scattered surface wave energy in the seismic coda

    USGS Publications Warehouse

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  7. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  8. Sensing Coulomb impurities with 1/f noise in 3D Topological Insulator

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Semonti; Banerjee, Mitali; Nhalil, Hariharan; Elizabeth, Suja; Ghosh, Arindam

    2015-03-01

    Electrical transport in the non-trivial surface states of bulk Topological Insulator (TI) reveal several intriguing properties ranging from bipolar field effect transistor action, weak antilocalization in quantum transport, to the recently discovered quantum anomalous Hall effect. Many of these phenomena depend crucially on the nature of disorder and its screening by the Dirac Fermions at the TI surface. We have carried out a systematic study of low-frequency 1/f noise in Bi1.6Sb0.4Te2Se1 single crystals, to explore the dominant source of scattering of surface electrons and monitor relative contributions of the surface and bulk channels. Our results reveal that while trapped coulomb impurities at the substrate-TI interface are dominating source of scattering for thin (10 nm) TI, charged crystal disorder contribute strongly in thick TI (110 nm) channels. An unexpected maximum at 25K in noise from thick TI devices indicate scattering of the surface states by a cooperative charge dynamics in the bulk of the TI, possibly associated with the Selenium vacancies. Our experiment demonstrates, for the first time, impact of the bulk charge distribution on the surface state transport in TIs that could be crucial to the implementation of these materials in electronic applications.

  9. Backscattering from a randomly rough dielectric surface

    NASA Technical Reports Server (NTRS)

    Fung, Adrian K.; Li, Zongqian; Chen, K. S.

    1992-01-01

    A backscattering model for scattering from a randomly rough dielectric surface is developed based on an approximate solution of a pair of integral equations for the tangential surface fields. Both like and cross-polarized scattering coefficients are obtained. It is found that the like polarized scattering coefficients contain two types of terms: single scattering terms and multiple scattering terms. The single scattering terms in like polarized scattering are shown to reduce the first-order solutions derived from the small perturbation method when the roughness parameters satisfy the slightly rough conditions. When surface roughnesses are large but the surface slope is small, only a single scattering term corresponding to the standard Kirchhoff model is significant. If the surface slope is large, the multiple scattering term will also be significant. The cross-polarized backscattering coefficients satisfy reciprocity and contain only multiple scattering terms. The difference between vertical and horizontal scattering coefficients is found to increase with the dielectric constant and is generally smaller than that predicted by the first-order small perturbation model. Good agreements are obtained between this model and measurements from statistically known surfaces.

  10. Genuine binding energy of the hydrated electron

    PubMed Central

    Luckhaus, David; Yamamoto, Yo-ichi; Suzuki, Toshinori; Signorell, Ruth

    2017-01-01

    The unknown influence of inelastic and elastic scattering of slow electrons in water has made it difficult to clarify the role of the solvated electron in radiation chemistry and biology. We combine accurate scattering simulations with experimental photoemission spectroscopy of the hydrated electron in a liquid water microjet, with the aim of resolving ambiguities regarding the influence of electron scattering on binding energy spectra, photoelectron angular distributions, and probing depths. The scattering parameters used in the simulations are retrieved from independent photoemission experiments of water droplets. For the ground-state hydrated electron, we report genuine values devoid of scattering contributions for the vertical binding energy and the anisotropy parameter of 3.7 ± 0.1 eV and 0.6 ± 0.2, respectively. Our probing depths suggest that even vacuum ultraviolet probing is not particularly surface-selective. Our work demonstrates the importance of quantitative scattering simulations for a detailed analysis of key properties of the hydrated electron. PMID:28508051

  11. Effect of surface topographic features on the optical properties of skin: a phantom study

    NASA Astrophysics Data System (ADS)

    Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.

    2016-10-01

    Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.

  12. Standoff detection of explosives: a challenging approach for optical technologies

    NASA Astrophysics Data System (ADS)

    Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.

    2011-06-01

    Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.

  13. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele; Blanco-Rey, María

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of themore » incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.« less

  14. Scattering of spermatozoa off cylindrical pillars

    NASA Astrophysics Data System (ADS)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  15. Determination of the Sources of Radar Scattering

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.

    1984-01-01

    Fine-resolution radar backscattering measurements were proposed to determine the backscattering sources in various vegetation canopies and surface targets. The results were then used to improve the existing theoretical models of terrain scattering, and also to enhance understanding of the radar signal observed by an imaging radar over a vegetated area. Various experiments were performed on targets such as corn, milo, soybeans, grass, asphalt pavements, soil and concrete walkways. Due to the lack of available references on measurements of this type, the obtained results will be used primarily as a foundation or future experiments. The constituent backscattering characteristics of the vegetation canopies was also examined.

  16. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael

    2015-08-01

    Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.

  17. Crop effect to soil moisture retrieval at different microwave frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjun; Luan, Jinzhe

    2006-12-01

    In soil moisture retrieval by microwave remote sensing technology, vegetation effect is important, due to its emission upward as well as masking the soil surface contribution. Because of good penetration characteristics through crop at low frequencies, L-band is often used, where crop is treated as a uniform layer, and 0 th-order Brightness Temperature model is used. Higher frequencies upper than L-band, the frequencies both on NASA AQUA AMSR-E and FY-3 to be launched next year in CHINA, may be more informative in SM retrieval. The multiple-scattering effects inside crop and that between crop layer and soil surface will be increasing when frequencies go higher from L-band. In this paper, a Matrix-Doubling model that account for multiple-scattering based on ray tracing technique is used to simulate the microwave emission of vegetated-surface at C- and X-band. The orientation and size of crop element such as leaves and cylinders are accounted for in crop layer, and AIEM is used for calculation of ground surface scattering. Simulation results from this model for corn and SGP99 experiment data are in good agreement. Since complicated theoretical model as used in this paper involves too many parameters, to make SM retrieval more directly, corresponding terms from the developed model are matched with 0 th-order,so as to derive effective single scattering albedo and vegetation opacity at C- and X-band.

  18. Unified description of H-atom-induced chemicurrents and inelastic scattering.

    PubMed

    Kandratsenka, Alexander; Jiang, Hongyan; Dorenkamp, Yvonne; Janke, Svenja M; Kammler, Marvin; Wodtke, Alec M; Bünermann, Oliver

    2018-01-23

    The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: ( i ) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" ( ii ) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and ( iii ) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption.

  19. Enhanced Dynamics of Hydrated tRNA on Nanodiamond Surfaces: A Combined Neutron Scattering and MD Simulation Study.

    PubMed

    Dhindsa, Gurpreet K; Bhowmik, Debsindhu; Goswami, Monojoy; O'Neill, Hugh; Mamontov, Eugene; Sumpter, Bobby G; Hong, Liang; Ganesh, Panchapakesan; Chu, Xiang-Qiang

    2016-09-14

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.

  20. Electron scattering in graphene with adsorbed NaCl nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The mainmore » inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.« less

  1. Evaluation of paraxial forward scattering from intraocular lens with increased surface light scattering using goniophotometry and Hartmann-Shack wavefront aberrometry.

    PubMed

    Minami, Keiichiro; Maruyama, Yoko; Mihashi, Toshifumi; Miyata, Kazunori; Oshika, Tetsuro

    2017-03-01

    To evaluate the influence of increases in light scattering on intraocular lens (IOL) surfaces on paraxial forward scattering using goniophotometry and Hartmann-Shack wavefront aberrometry. Surface light scattering was reproduced experimentally by acceleratedly aging 4 intraocular lenses by 0, 3, 5, and 10 years each. Light scattering from both IOL surfaces was measured using Scheimpflug photography. The paraxial forward scattering from the aged IOLs was measured using a goniophotometer with a halogen light source (wavelength: 350-850 nm) and telecentric optics, and changes in the maximum intensity and full width at 10% of maximum intensity (FW10%) were evaluated. The influences on the retina image were examined using a Hartmann-Shack aberrometer (wavelength: 840 nm). The contrast and difference from the point spread function of the central centroids were evaluated. The mean surface light scattering from both IOL surfaces ranged from 30.0 to 118.3 computer compatible tape (CCT) and increased with each aging year. Evaluations using the goniophotometer and the Hartmann-Shack aberrometer showed no significant change in the paraxial forward scattering with the aging year (P > .45, Kruskal-Wallis test), and no association with the surface light scattering intensity was found (P > .75, Spearman rank correlation). This experimental study using aged IOLs demonstrated that surface light scattering does not influence paraxial forward scattering.

  2. Simulation of the shape and size of casein micelles in a film state.

    PubMed

    Gebhardt, Ronald; Kulozik, Ulrich

    2014-04-01

    Size fractionated casein micelles (CMs) form homogeneous films in which they are densely packed. The lateral size of CMs in films can be well resolved by surface-sensitive methods, but the estimation of their heights is still a challenge. We show that height information can be obtained from scattering patterns of GISAXS experiments on highly ordered casein films. We use an elastic scattering approach within the distorted wave Born approximation (DWBA) to simulate for the first time the two-dimensional intensity distribution of a GISAXS experiment of the CM near their critical angle. The model which fits the GISAXS data best considers an ellipsoidal form factor for the CM and an arrangement on a hexagonal lattice. Our results indicate that during film formation the spherical solution structure of CMs becomes compressed in the direction perpendicular to the film surface. In the film state, the micelles assume an oblate ellipsoidal shape with an aspect ratio of 1.9. Hence, their surface and contact area to the surrounding increases. As a result, the density of κ-casein on the micellar surface decreases, which could influence the functional properties of coatings and films.

  3. Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.

    2014-01-15

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition inmore » view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.« less

  4. Density dependence of the saturated velocity in graphene

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.

    2016-11-01

    The saturated velocity of a semiconductor is an important measure in bench-marking performance for either logic or microwave applications. Graphene has been of interest for such applications due to its apparently high value of the saturated velocity. Recent experiments have suggested that this value is very density dependent and can even exceed the band limiting Fermi velocity. Some of these measurements have also suggested that the scattering is dominated by the low energy surface polar mode of the SiO2 substrate. Here, we show that the saturated velocity of graphene on SiO2 is relatively independent of the density and that the scattering is dominated by the high energy surface polar mode of the substrate.

  5. Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene

    PubMed Central

    2016-01-01

    A thiol-modified carotene, 7′-apo-7′-(4-mercaptomethylphenyl)-β-carotene, was used to obtain nonresonant surface-enhanced Raman scattering (SERS) spectra of carotene at an excitation wavelength of 1064 nm, which were compared with resonant SERS spectra at an excitation wavelength of 532 nm. These spectra and surface-enhanced hyper-Raman scattering (SEHRS) spectra of the functionalized carotene were compared with the spectra of nonmodified β-carotene. Using SERS, normal Raman, and SEHRS spectra, all obtained for the resonant case, the interaction of the carotene molecules with silver nanoparticles, as well as the influence of the resonance enhancement and the SERS enhancement on the spectra, were investigated. The interaction with the silver surface occurs for both functionalized and nonfunctionalized β-carotene, but only the stronger functionalization-induced interaction enables the acquisition of nonresonant SERS spectra of β-carotene at low concentrations. The resonant SEHRS and SERS spectra are very similar. Nevertheless, the SEHRS spectra contain additional bands of infrared-active modes of carotene. Increased contributions from bands that experience low resonance enhancement point to a strong interaction between silver nanoparticles and electronic levels of the molecules, thereby giving rise to a decrease in the resonance enhancement in SERS and SEHRS. PMID:28077983

  6. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111)

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin J.; Hund, Zachary M.; Muzas, Alberto; Díaz, Cristina; del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T.; Lewis, Nathan S.; Martín, Fernando; Sibener, S. J.

    2016-08-01

    Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

  7. Surface-enhanced Raman scattering on single-wall carbon nanotubes.

    PubMed

    Kneipp, Katrin; Kneipp, Harald; Dresselhaus, Mildred S; Lefrant, Serge

    2004-11-15

    Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure.

  8. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    PubMed

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  9. New very high resolution radar studies of the Moon

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Campbell, Bruce

    1987-01-01

    As part of an effort to further understand the geologic utility of radar studies of the terrestrial planets, investigators at the Hawaii Institute of Geophysics are collaborating with NEROC Haystack Observatory, MIT and the Jet Propulsion Laboratory in the analysis of existing 3.8 and 70 cm radar images of the Moon, and in the acquisition of new data for selected lunar targets. The intent is to obtain multi-polarization radar images at resolutions approaching 75 meters (3.8 cm wavelength) and 400 meters (70 cm wavelength) for the Apollo landing sites (thereby exploiting available ground truth) or regions covered by the metric camera and geochemical experiments onboard the command modules of Apollos 15, 16 and 17. These data were collected in both like- and cross-polarizations, and, in the case of the 70 cm data, permit the phase records to be used to assess the scattering properties of the surface. The distribution of surface units on the Moon that show a mismatch between the surface implied by like- and cross-polarized scattering data is being analyzed, based on the scattering models of Evans and Hagfors.

  10. A new sample environment for cryogenic nuclear resonance scattering experiments on single crystals and microsamples at P01, PETRA III

    NASA Astrophysics Data System (ADS)

    Rackwitz, Sergej; Faus, Isabelle; Schmitz, Markus; Kelm, Harald; Krüger, Hans-Jörg; Andersson, K. Kristoffer; Hersleth, Hans-Petter; Achterhold, Klaus; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker; Wolny, Juliusz A.

    2014-04-01

    In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal.

  11. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  12. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  13. Comparison of finite source and plane wave scattering from corrugated surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1977-01-01

    The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.

  14. Laboratory study of adsorption and deliquescence on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James A.

    2018-07-01

    A sample of the zeolitic mineral chabazite was subjected to a range of water vapor pressures and temperatures found on present day Mars. Laser Raman scattering was applied to detect the relative amounts of water and carbon dioxide adsorbed by the sample. Results show that zeolites are capable of adsorbing water from the atmosphere on diurnal time scales and that Raman scattering spectroscopy provides a promising method for detecting this process during a landed mission. When the water vapor pressure and temperature were sufficiently low, the zeolite sample also adsorbed carbon dioxide, resulting in the simultaneous adsorption of water and carbon dioxide on the surface mineral grains. Additional experiments were carried out using a mixture of magnesium perchlorate and chabazite. The sample of mixed surface material remained visually unchanged during water adsorption, but was found to darken during deliquescence.

  15. An experimental study of the temporal statistics of radio signals scattered by rain

    NASA Technical Reports Server (NTRS)

    Hubbard, R. W.; Hull, J. A.; Rice, P. L.; Wells, P. I.

    1973-01-01

    A fixed-beam bistatic CW experiment designed to measure the temporal statistics of the volume reflectivity produced by hydrometeors at several selected altitudes, scattering angles, and at two frequencies (3.6 and 7.8 GHz) is described. Surface rain gauge data, local meteorological data, surveillance S-band radar, and great-circle path propagation measurements were also made to describe the general weather and propagation conditions and to distinguish precipitation scatter signals from those caused by ducting and other nonhydrometeor scatter mechanisms. The data analysis procedures were designed to provide an assessment of a one-year sample of data with a time resolution of one minute. The cumulative distributions of the bistatic signals for all of the rainy minutes during this period are presented for the several path geometries.

  16. Synoptic maps constructed from brightness observations of Thomson scattering by heliospheric electrons

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B.; Schwenn, R.

    1991-01-01

    Observations of the Thomson scattering brightness by electrons in the inner heliosphere provide a means of probing the heliospheric electron distributions. An extensive data base of Thomson scattering observations, stretching over many years, is available from the zodiacal light photometers on board the two Helios spacecraft. A survey of these data is in progress, presenting these scattering intensities in the form of synoptic maps for successive Carrington rotations. The Thomson scattering maps reflect conditions at typically several tenths of an astronomical unit from the sun. Some representative examples from the survey in comparison with other solar/heliospheric data, such as in situ observations of the Helios plasma experiment and synoptic maps constructed from magnetic field, H alpha and K-coronameter data are presented. The comparison will provide some information about the extension of solar surface features into the inner heliosphere.

  17. BRNBOX v.1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David F.

    Program BRNBOX conducts a systematic search through a pre-defined 3D volume of candidate sub-surface Born scattering points in order to identify the particular point that minimizes the misfit between predicted (i.e., calculated) and observed electromagnetic (EM) data. This global minimum misfit point is interpreted as the location where electrically conductive proppant is injected into a sub-surface petroleum reservoir in a hydraulic fracturing experiment.

  18. PREFACE: Atom-surface scattering Atom-surface scattering

    NASA Astrophysics Data System (ADS)

    Miret-Artés, Salvador

    2010-08-01

    It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties; all of them were ready for use! We cannot imagine him without his two old-fashioned Mercedes, also in his collection. He also has technical skills in construction and music and always has time for jogging. I would finally say that he is an even-tempered person. In brief, mens sana in corpore sano 1 . Dick is a theorist bound to experimental work, extremely intuitive and very dedicated. In his long stays outside Clemson, he always visited places where experiments were being carried out. He has been, and still is, of great help to experimental PhD students, postdocs or senior scientists in providing valuable advice and suggestions towards new measurements. Plausible interpretations of their results developing theoretical models or always searching for good agreement with experiment are two constants in his daily scientific work. Experimental work is present in most of his 150 papers. One of the main theoretical challenges in this field was to develop a formalism where the plethora of experimental results reported in the literature were accommodated. His transition matrix formalism was also seminal in the field of atom-surface scattering. Elastic and inelastic (single and double phonon) contributions were determined as well as the multiphonon background. This work was preceded by a theory for diffuse inelastic scattering and a posterior contribution for multiphonon scattering, both with V Celli. In a similar vein, a theory of molecule-surface scattering was also derived and, more recently, a theory for direct scattering, trapping and desorption. Very interesting extensions to scattering with molten metal and liquid surfaces have also been carried out. Along with collaborators he has studied energy accommodation and sticking coefficients, providing a better understanding of their meaning. G Armand and Dick proposed the well-known corrugated Morse potential as an interaction potential model providing reliable results of diffraction patterns and selective adsorption resonances. This proposal was, in a certain sense, the result of many previous studies carried out by the authors studying the hard corrugated wall, the eikonal approximation and the quantum theory of surface scattering. His stays with J Lapujoulade's group in Saclay were very fruitful for understanding diffraction patterns, surface phonons and selective adsorption resonances in metal vicinal surfaces. Together with R H Ritchie, he proposed some corrections to Van der Waals forces in 1985 and 1986. Self-energies of a charge near a surface or image states or potentials for electrons were also studied in collaboration with R H Ritchie in Oak Ridge and P Echenique in San Sebastian. In particular, they proposed a theory for cluster impact fusion in 1990. With J P Toennies and his group and visitors in Göttingen, many experimental features or effects were interpreted with Dick's invaluable collaboration. Thus, for example, we have (i) the large-momentum transfer undulations observed in the angular distribution of He atoms scattered by a platinum surface in the presence of a single CO adsorbate (the so-called reflection symmetry interference); (ii) the inelastic interference structures of the frustrated translational mode of CO on a copper surface; (iii) defect mediated diffraction resonances; (iv) inelastic focusing; (v) diffraction from nanostructure transmission gratings, etc. With J G Skofronick and S A Safron and their group in Tallahassee, He atom inelastic scattering from insulator experiments were carried out to test his theory. With K-H Rieder and his group in Berlin, Dick mainly considered the scattering of atoms from clean surfaces and in the presence of defects at grazing angles. And, finally, with W Ernst and his group in Graz, glass surface dynamics was developed as well as observation of the so-called boson peak. Finally, I would like to express my sincere gratitude to all contributors and those who were contacted but could not participate in this festschrift. They had to decline with regret because they had been retired for a long time, or had changed their research field, or were not able to meet the deadline. In any case, this initiative was really very welcome and supported with great enthusiasm by everybody. From all of the correspondence I have received expressing gratitude and honor for being invited to contribute, I would like to quote some words from G Comsa which reflect all of these feelings: 'Dick deserves, indeed, to be honored for both his scientific accomplishments and certainly no less for his modesty, honesty, friendliness and human warmth, qualities which are rarely honored'. I certainly cannot close this preface without mentioning the praiseworthy and professional work carried out by the Editorial Board, publishing team and Editors; in particular, L Smith and G Wright for their help and enthusiastic disposition. Thank you very much to everybody. 1 A healthy mind in a healthy body.

  19. A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.

    1996-01-01

    In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.

  20. Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.

    PubMed

    Lu, Jia; Zhou, Huaichun

    2017-07-01

    The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.

  1. X-ray Magnetic Scattering From Surfaces^*

    NASA Astrophysics Data System (ADS)

    Gibbs, Doon

    1997-03-01

    In the last several years, there have been continuing efforts to probe long-ranged magnetic order at surfaces by x-ray and neutron diffraction, following many earlier studies by low energy electron diffraction. The main motivation has been to discover how bulk magnetic structures are modified near a surface, where the crystal symmetry is broken. In this talk, we describe x-ray scattering studies of the magnetic structure observed near the (001) surface of the antiferromagnet uranium dioxide.(G. M. Watson, Doon Gibbs, G. H. Lander, B. D. Gaulin, L.E. Berman, Hj. Matzke and W. Ellis, Phys. Rev. Lett. 77), 751 (1996). Within about 50 Åof the surface, the intensity of the magnetic scattering decreases continuously as the bulk Neel temperature is approached from below. This contrasts with the bulk magnetic ordering transition which is discontinuous. Recent measurements of the specular magnetic reflectivity suggest that the width of the magnetic interface diverges as a power-law in reduced temperature reminiscent of surface induced disorder. Related experiments concerned with magnetic crystallography of Co_3-Pt(111) surfaces(S. Ferrer, P. Fajardo, F. de Bergevin, J. Alvarez, X. Torrelles, H. A. van der Vegt and V. H. Etgens, Phys. Rev. Lett. 77), 747 (1996). and interfacial magnetic roughness of Co/Cu multilayers(J. F. MacKay, C. Teichert, D.E. Savage and M.G. Lagally, Phys. Rev. Lett. 77), 3925 (1996). will also be discussed. ^* Work at Brookhaven National Laboratory is supported by the U.S. DOE under Contract No. DE-AC02-CH7600016.

  2. Wave scattering in spatially inhomogeneous currents

    NASA Astrophysics Data System (ADS)

    Churilov, Semyon; Ermakov, Andrei; Stepanyants, Yury

    2017-09-01

    We analytically study a scattering of long linear surface waves on stationary currents in a duct (canal) of constant depth and variable width. It is assumed that the background velocity linearly increases or decreases with the longitudinal coordinate due to the gradual variation of duct width. Such a model admits an analytical solution of the problem in hand, and we calculate the scattering coefficients as functions of incident wave frequency for all possible cases of sub-, super-, and transcritical currents. For completeness we study both cocurrent and countercurrent wave propagation in accelerating and decelerating currents. The results obtained are analyzed in application to recent analog gravity experiments and shed light on the problem of hydrodynamic modeling of Hawking radiation.

  3. Early diagnosis of teeth erosion using polarized laser speckle imaging

    NASA Astrophysics Data System (ADS)

    Nader, Christelle Abou; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Jeune, Bernard Le; Brun, Guy Le; Abboud, Marie

    2016-07-01

    Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness.

  4. Surface Tension and Viscosity of SCN and SCN-acetone Alloys at Melting Points and Higher Temperatures Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; deGroh, Henry C., III.

    2003-01-01

    Succinonitrile has been and is being used extensively in NASA's Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE). Succinonitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. Using the Surface Light Scattering technique we have determined non invasively, the surface tension and viscosity of SCN and SCN-Acetone Alloys at different temperatures. This relatively new and unique technique has several advantages over the classical methods such as, it is non invasive, has good accuracy and measures the surface tension and viscosity simultaneously. The accuracy of interfacial energy values obtained from this technique is better than 2% and viscosity about 10 %. Succinonitrile and succinonitrile-acetone alloys are well-established model materials with several essential physical properties accurately known - except the liquid/vapor surface tension at different elevated temperatures. We will be presenting the experimentally determined liquid/vapor surface energy and liquid viscosity of succinonitrile and succinonitrile-acetone alloys in the temperature range from their melting point to around 100 C using this non-invasive technique. We will also discuss about the measurement technique and new developments of the Surface Light Scattering Spectrometer.

  5. Characterizing near-surface firn using the scattered signal component of the glacier surface return from airborne radio-echo sounding

    NASA Astrophysics Data System (ADS)

    Rutishauser, Anja; Grima, Cyril; Sharp, Martin; Blankenship, Donald D.; Young, Duncan A.; Cawkwell, Fiona; Dowdeswell, Julian A.

    2016-12-01

    We derive the scattered component (hereafter referred to as the incoherent component) of glacier surface echoes from airborne radio-echo sounding measurements over Devon Ice Cap, Arctic Canada, and compare the scattering distribution to firn stratigraphy observations from ground-based radar data. Low scattering correlates to laterally homogeneous firn above 1800 m elevation containing thin, flat, and continuous ice layers and below 1200 m elevation where firn predominantly consists of ice. Increased scattering between elevations of 1200-1800 m corresponds to firn with inhomogeneous, undulating ice layers. No correlation was found to surface roughness and its theoretical incoherent backscattering values. This indicates that the scattering component is mainly influenced by the near-surface firn stratigraphy, whereas surface roughness effects are minor. Our results suggest that analyzing the scattered signal component of glacier surface echoes is a promising approach to characterize the spatial heterogeneity of firn that is affected by melting and refreezing processes.

  6. Characterizing near-surface firn from the scattered signal component of glacier surface reflections detected in airborne radio-echo sounding measurements

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.

    2016-12-01

    With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.

  7. Transmission of low-energy negative ions through insulating nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Liu, Zhonglin; Li, Pengfei; Jin, Bo; Song, Guangyin; Jin, Dingkun; Niu, Ben; Wei, Long; Ha, Shuai; Xie, Yiming; Ma, Yue; Wan, Chengliang; Cui, Ying; Zhou, Peng; Zhang, Hongqiang; Chen, Ximeng

    2018-04-01

    A simulation is performed to study the transmission of low-energy C l- ions through A l2O3 nanocapillaries. For the trajectory simulations, there are several processes involved: the image forces induced by the projectile; the electrostatic force from the deposited charges; the scattering from the inner surface and charge exchange. The simulation reproduces the main features of the experiments; i.e., the double peak structure in the transmitted angular distribution and the transmitted fractions of C l- , C l+ , and C l0 were found in the charge state distribution. The transmitted C l- ions are centered around the beam direction while the transmitted fractions of C l0 and C l+ are centered around the tilt angles. The role of the deposited charge is also studied by simulations. With the deposited charge, it is found that C l- is dominant in the transmission and the majority of the ions, centered around the tilt angle, are mainly from the single deflection by the negative charge patches on the inner surfaces of the capillaries, and only a few directly transmitted C l- ions are centered around the incident direction. There are also a few transmitted fractions of C l0 and C l+ from close surface scatterings. In the case that there are no negative charge patches, the simulation agrees with the experiment in detail: The majority of the directly transmitted C l- ions are centered around the incident direction while only a few scattered C l- ions are centered around the tilt angle from the single close collisions with the inner surfaces of the capillaries. There is a portion, comparable to the transmitted fraction of C l- , of the transmitted fractions of C l0 and C l+ , centered around the tilt angle, from the single scatterings with the inner surfaces of the capillaries. This confirms that at the present experimental conditions there are most probably no negative charge patches formed to guide the negative ions through insulating A l2O3 nanocapillaries.

  8. X-Ray Scattering Studies of the Liquid-Vapor Interface of Gallium.

    NASA Astrophysics Data System (ADS)

    Kawamoto, Eric Hitoshi

    A UHV system was developed for performing X-ray scattering studies and in situ analyses of liquid metal surfaces. A nearly ideal choice for this study, gallium has a melting point just above room temperature; is amenable to handling in both air and vacuum; its surface oxides can be removed while its cleanliness is maintained and monitored. Using argon glow-discharge sputtering techniques to remove intervening surface oxides, thin wetting layers of gallium were prepared atop nonreactive substrates, to be used as samples suited for liquid surface scattering experiments. Preliminary measurements of X-ray reflectivity from the liquid-vapor interface of gallium were performed with the X-ray UHV chamber configured for use in conjunction with liquid surface spectrometers at two synchrotron beamlines. A novel technique for carrying out and interpreting scattering measurements from curved liquid surfaces was demonstrated. The energy tunability and intense focused white beam flux from a wiggler source was shown to place within reach the large values of wavevector transfer at which specular reflectivity data yield small length scale information about surface structure. Various theoretical treatments and simulations predict quasi-lamellar ordering of atoms near the free surface of metallic liquids due to energetics particular to metals (electron delocalization, the dependence of system energy on ion and electron densities, surface tension and electrostatic energy). However, the experimental data reported to date is insufficient to distinguish between a monotonic, sigmoidal electron density profile found at the free surfaces of dielectric liquids, and the damped oscillatory layer-like profiles anticipated for metallic liquids. Out to a wavevector transfer of Q = 0.55 A ^{-1}, the reflectivity data measured from a curved Ga surface is not inconsistent with what is expected for a liquid-vapor electron density profile of Gaussian width sigma = 1.3 +/- 0.2 A. Subsequent measurements roughly tripled the range of Q, but an oxidized surface led to poor data and hindered interpretation. The analysis presented is speculative at best, but within the context of the thermally excited capillary wave model of simple liquid surfaces, there seems to be no serious deviation from the simple Gaussian interfacial profile with the aforementioned roughness.

  9. Presenting the Rain-Sea Interaction Facility

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Elfouhaily, Tonas M.

    1993-01-01

    The new Rain-Sea Interaction Facility (RSIF) was established at GSFC/WFF and the first finds are presented. The unique feature of this laboratory is the ability to systematically study microwave scattering from a water surface roughened by artificial rain, for which the droplets are at terminal velocity. The fundamental instruments and systems (e.g., the rain simulator, scatterometers, and surface elevation probes) were installed and evaluated during these first experiments - so the majority of the data were obtained with the rain simulator at 1 m above the water tank. From these initial experiments, three new models were proposed: the square-root function for NCS vs. R, the log Gaussian model for ring-wave elevation frequency spectrum, and the Erland probability density distribution for back scattered power. Rain rate is the main input for these models, although the coefficients may be dependent upon other factors (drop-size distribution, fall velocity, radar configuration, etc.). The facility is functional and we foresee collaborative studies with investigators who are engaged in measuring and modeling rain-sea interaction processes.

  10. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  11. Bulk Fermi surface and momentum density in heavily doped La2-xSrxCuO4 using high-resolution Compton scattering and positron annihilation spectroscopies

    NASA Astrophysics Data System (ADS)

    Al-Sawai, W.; Barbiellini, B.; Sakurai, Y.; Itou, M.; Mijnarends, P. E.; Markiewicz, R. S.; Kaprzyk, S.; Wakimoto, S.; Fujita, M.; Basak, S.; Lin, H.; Wang, Yung Jui; Eijt, S. W. H.; Schut, H.; Yamada, K.; Bansil, A.

    2012-03-01

    We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La2-xSrxCuO4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT-based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.

  12. Spin decoherence of InAs surface electrons by transition metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Soghomonian, V.; Heremans, J. J.

    2018-04-01

    Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.

  13. Theoretical and experimental models of the diffuse radar backscatter from Mars

    NASA Technical Reports Server (NTRS)

    England, A. W.

    1995-01-01

    The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.

  14. Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Duan, Xueyang

    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.

  15. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  16. Influence of surface light scattering in hydrophobic acrylic intraocular lenses on laser beam transmittance.

    PubMed

    Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori

    2017-02-01

    The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.

  17. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  18. SW radiative effect of aerosol in GRAPES_GFS

    NASA Astrophysics Data System (ADS)

    Chen, Qiying

    2017-04-01

    The aerosol particles can scatter and absorb solar radiation, and so change the shortwave radiation absorbed by the atmosphere, reached the surface and that reflected back to outer space at TOA. Since this process doesn't interact with other processes, it is called direct radiation effect. The clear sky downward SW and net SW fluxes at the surface in GRAPES_GFS of China Meteorological Administration are overestimated in Northern multitudes and Tropics. The main source of these errors is the absence of aerosol SW effect in GRAPES_GFS. The climatic aerosol mass concentration data, which include 13 kinds of aerosol and their 14 SW bands optical properties are considered in GRAPES_GFS. The calculated total optical depth, single scatter albedo and asymmetry factor are used as the input to radiation scheme. Compared with the satellite observation from MISER, the calculated total optical depth is in good consistent. The seasonal experiments show that, the summer averaged clear sky radiation fluxes at the surface are improved after including the SW effect of aerosol. The biases in the clear sky downward SW and net SW fluxes at the surface in Northern multitudes and Tropic reduced obviously. Furthermore, the weather forecast experiments also show that the skill scores in Northern hemisphere and East Asia also become better.

  19. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.

    2017-06-01

    Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

  20. Preliminary design of two Space Shuttle fluid physics experiments

    NASA Technical Reports Server (NTRS)

    Gat, N.; Kropp, J. L.

    1984-01-01

    The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.

  1. Extended hierarchical solvent perturbations from curved surfaces of mesoporous silica particles in a deep eutectic solvent.

    PubMed

    Hammons, Joshua A; Zhang, Fan; Ilavsky, Jan

    2018-06-15

    Many applications of deep eutectic solvents (DES) rely on exploitation of their unique yet complex liquid structures. Due to the ionic nature of the DES components, their diffuse structures are perturbed in the presence of a charged surface. We hypothesize that it is possible to perturb the bulk DES structure far (>100 nm) from a curved, charged surface with mesoscopic dimensions. We performed in situ, synchrotron-based ultra-small angle X-ray scattering (USAXS) experiments to study the solvent distribution near the surface of charged mesoporous silica particles (MPS) (≈0.5 µm in diameter) suspended in both water and a common type of DES (1:2 choline Cl-:ethylene glycol). A careful USAXS analysis reveals that the perturbation of electron density distribution within the DES extends ≈1 μm beyond the particle surface, and that this perturbation can be manipulated by the addition of salt ions (AgCl). The concentration of the pore-filling fluid is greatly reduced in the DES. Notably, we extracted the real-space structures of these fluctuations from the USAXS data using a simulated annealing approach that does not require a priori knowledge about the scattering form factor, and can be generalized to a wide range of complex small-angle scattering problems. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Interfacial Surgery Determination of Succinonitrile and Succinonitrile-Acetone Alloy Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; Frate, David T.; deGroh, Henry C., III

    2001-01-01

    The objectives of this ground based research is to measure the liquid/vapor interfacial surface energies of succinonitrile (SCN) and alloys of succinonitrile and acetone using Surface Light Scattering Spectrometer. Liquid/vapor interfacial energy measurements will be made near and above the melting point and are the primary goal of this proposal. A measurement of viscosity also results from the Surface Light Scattering technique employed. Interfacial free energies between the phases enters into many analysis of phase transformation and flow, including nucleation, dendritic growth, interface stability, Ostwald ripening, and Marangoni flow. Succirionitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Succinonitrile has been and is being used extensively in NASAs Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE) due to Glicksman and coworkers and subsequently in several theoretical and numerical studies of dendritic growth. Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. We believe the data sought through this proposal have significant basic physical property data value and thus the work proposed will provide needed data in support of NASAs Microgravity program research.

  3. Probing Sub-GeV Mass Strongly Interacting Dark Matter with a Low-Threshold Surface Experiment.

    PubMed

    Davis, Jonathan H

    2017-11-24

    Using data from the ν-cleus detector, based on the surface of Earth, we place constraints on dark matter in the form of strongly interacting massive particles (SIMPs) which interact with nucleons via nuclear-scale cross sections. For large SIMP-nucleon cross sections, the sensitivity of traditional direct dark matter searches using underground experiments is limited by the energy loss experienced by SIMPs, due to scattering with the rock overburden and experimental shielding on their way to the detector apparatus. Hence, a surface-based experiment is ideal for a SIMP search, despite the much larger background resulting from the lack of shielding. We show using data from a recent surface run of a low-threshold cryogenic detector that values of the SIMP-nucleon cross section up to approximately 10^{-27}  cm^{2} can be excluded for SIMPs with masses above 100 MeV.

  4. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.

    2002-01-01

    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  5. Photochemical effects in the lens from near infrared radiation?

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Al-Saqry, Riyadh; Schulmeister, Karl; Gallichanin, Konstantin; Kronschläger, Martin; Yu, Zhaohua

    2009-02-01

    Conclusion: The current data are consistent with a potential photochemical effect of in vivo exposure of the crystalline lens to near infrared radiation since the onset of cataract after in just above threshold dose was at least 18 hrs delayed after the exposure. Materials and methods: The eyes of 6 weeks old Sprague-Dawley rats were exposed unilaterally in vivo to 1090 nm, 6.2 W quasi-top hat spatial distribution with a 3 mm spot on the anterior lens surface within the dilated pupil. First, four exposure time groups of rats were exposed to increasing exposure times. At 24 hrs after exposure, the difference of light scattering between the lenses from the same animal was measured. Then, based on the first experiment, four post-exposure time groups were exposed unilaterally in vivo to 8 s of 1090 nm, 6.2 W quasi-top hat spatial distribution with a 3 mm spot on the anterior lens surface within the dilated pupil. After, the intended post-exposure time, the difference of light scattering between the lenses from the same animal was measured. Results: A 3 mm spot of 6.2 W induces light scattering in the lens with exposures of at least 8 s. Further, after 8 s of 6.2 W within a 3 mm spot on the lens surface, the light scattering increase in the lens was delayed at least 18 hrs after the exposure.

  6. Enhanced dynamics of hydrated tRNA on nanodiamond surfaces: A combined neutron scattering and MD simulation study

    DOE PAGES

    Dhindsa, Gurpreet K.; Bhowmik, Debsindhu; Goswami, Monojoy; ...

    2016-09-01

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on NDmore » surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. As a result, our new findings may provide new design principles for safer, improved drug delivery platforms.« less

  7. Surface diffusion of cyclic hydrocarbons on nickel

    NASA Astrophysics Data System (ADS)

    Silverwood, I. P.; Armstrong, J.

    2018-08-01

    Surface diffusion of adsorbates is difficult to measure on realistic systems, yet it is of fundamental interest in catalysis and coating reactions. quasielastic neutron scattering (QENS) was used to investigate the diffusion of cyclohexane and benzene adsorbed on a nickel metal sponge catalyst. Molecular dynamics simulations of benzene on a model (111) nickel surface showed localised motion with diffusion by intermittent jumps. The experimental data was therefore fitted to the Singwi-Sjölander model and activation energies for diffusion of 4.0 kJ mol-1 for benzene and 4.3 kJ mol-1 for cyclohexane were calculated for the two dimensional model. Limited motion out-of plane was seen in the dynamics simulations and is discussed, although the resolution of the scattering experiment is insufficient to quantify this. Good agreement is seen between the use of a perfect crystal as a model for a disordered system over short time scales, suggesting that simple models are adequate to describe diffusion over polycrystalline metal surfaces on the timescale of QENS measurement.

  8. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  9. Effect of Diffuse Backscatter in Cassini Datasets on the Inferred Properties of Titan's surface

    NASA Astrophysics Data System (ADS)

    Sultan-Salem, A. K.; Tyler, G. L.

    2006-12-01

    Microwave (2.18 cm-λ) backscatter data for the surface of Titan obtained with the Cassini Radar instrument exhibit a significant diffuse scattering component. An empirical scattering law of the form Acos^{n}θ, with free parameters A and n, is often employed to model diffuse scattering, which may involve one or more unidentified mechanisms and processes, such as volume scattering and scattering from surface structure that is much smaller than the electromagnetic wavelength used to probe the surface. The cosine law in general is not explicit in its dependence on either the surface structure or electromagnetic parameters. Further, the cosine law often is only a poor representation of the observed diffuse scattering, as can be inferred from computation of standard goodness-of-fit measures such as the statistical significance. We fit four Cassini datasets (TA Inbound and Outbound, T3 Outbound, and T8 Inbound) with a linear combination of a cosine law and a generalized fractal-based quasi-specular scattering law (A. K. Sultan- Salem and G. L. Tyler, J. Geophys. Res., 111, E06S08, doi:10.1029/2005JE002540, 2006), in order to demonstrate how the presence of diffuse scattering increases considerably the uncertainty in surface parameters inferred from the quasi-specular component, typically the dielectric constant of the surface material and the surface root-mean-square slope. This uncertainty impacts inferences concerning the physical properties of the surfaces that display mixed scattering properties.

  10. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavisse, L.; Jouvard, J.-M.; Girault, M.

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  11. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy.

    PubMed

    Redeckas, Kipras; Voiciuk, Vladislava; Vengris, Mikas

    2016-05-01

    Time-resolved multi-pulse spectroscopic methods-pump-dump-probe (PDP) and femtosecond stimulated Raman spectroscopy-were used to investigate the excited state photodynamics of the carbonyl group containing carotenoid fucoxanthin (FX). PDP experiments show that S1 and ICT states in FX are strongly coupled and that the interstate equilibrium is rapidly (<5 ps) reestablished after one of the interacting states is deliberately depopulated. Femtosecond stimulated Raman scattering experiments indicate that S1 and ICT are vibrationally distinct species. Identification of the FSRS modes on the S1 and ICT potential energy surfaces allows us to predict a possible coupling channel for the state interaction.

  12. A scattering model for defoliated vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1986-01-01

    A scattering model for defoliated vegetation is conceived as a layer of dielectric, finite-length cylinders with specified size and orientation distributions above an irregular ground surface. The scattering phase matrix of a single cylinder is computed, then the radiative transfer technique is applied to link volume scattering from vegetation to surface scattering from the soil surface. Polarized and depolarized scattering are computed and the effects of the cylinder size and orientation distributions are illustrated. It is found that size and orientation distributions have significant effects on the backscattered signal. The model is compared with scattering from defoliated trees and agricultural crops.

  13. Interface or bulk scattering in the semiclassical theory for spin valves

    NASA Astrophysics Data System (ADS)

    Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.

    2004-06-01

    By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.

  14. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G. Wayne

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90.degree. by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  15. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G.W.

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90[degree] by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle. 6 figs.

  16. Process and apparatus for sensing defects on a smooth cylindrical surface in tubing

    DOEpatents

    Dutton, G.W.

    1985-08-05

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90/sup 0/ by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  17. Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results.

    PubMed

    Lamaignère, Laurent; Gaudfrin, Kévin; Donval, Thierry; Natoli, Jeanyves; Sajer, Jean-Michel; Penninckx, Denis; Courchinoux, Roger; Diaz, Romain

    2018-04-30

    Forward pump pulses with nanosecond duration are able to generate an acoustic wave via electrostriction through a few centimeters of bulk silica. Part of the incident energy is then scattered back on this sound wave, creating a backward Stokes pulse. This phenomenon known as stimulated Brillouin scattering (SBS) might induce first energy-loss, variable change of the temporal waveform depending on the location in the spatial profile making accurate metrology impossible, and moreover it might also initiate front surface damage making the optics unusable. Experiments performed on thick fused silica optics at 355 nm with single longitudinal mode pulses allowed us to detect, observe and quantify these backward pulses. Experimental results are first compared to theoretical calculations in order to strengthen our confidence in metrology. On this basis a phase-modulator has been implemented on the continuous-wave seeders of the lasers leading to pulses with a wide spectrum that suppress SBS and do not exhibit temporal overshoots that also reduce Kerr effects. The developed set-ups are used to check the reduction of the backward stimulated Brillouin scattering and they allow measuring with accuracy the rear surface damage of thick fused silica optics.

  18. Aerosol Optical Depth Retrievals From High-Resolution Commercial Satellite Imagery Over Areas of High Surface Reflectance

    NASA Astrophysics Data System (ADS)

    Vincent, D. A.; Nielsen, K. E.; Durkee, P. A.; Reid, J. S.

    2005-12-01

    The advancement and proliferation of high-resolution commercial imaging satellites presents a new opportunity for overland aerosol characterization. Current aerosol optical depth retrieval methods typically fail over areas with high surface reflectance, such as urban areas and deserts, since the upwelling radiance due to scattering by aerosols is small compared to the radiance resulting from surface reflection. The method proposed here uses shadows cast on the surface to exploit the differences between radiance from the adjacent shaded and unshaded areas of the scene. Shaded areas of the scene are primarily illuminated by diffuse irradiance that is scattered downward from the atmosphere, while unshaded areas are illuminated by both diffuse and direct solar irradiance. The first-order difference between the shaded and unshaded areas is the direct component. Given uniform surface reflectance for the shaded and unshaded areas, the difference in reflected radiance measured by a satellite sensor is related to the direct transmission of solar radiation and inversely proportional to total optical depth. Using an iterative approach, surface reflectance and mean aerosol reflectance can be partitioned to refine the retrieved total optical depth. Aerosol optical depth can then be determined from its contribution to the total atmospheric optical depth (following correction for molecular Rayleigh scattering). Intitial results based on QuickBird imagery and AERONET data collected during the United Arab Emirates Unified Aerosol Experiment (UAE2) indicate that aerosol optical depth retrievals are possible in the visible and near-infrared region with an accuracy of ~0.04.

  19. Microwave model prediction and verifications for vegetated terrain

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1985-01-01

    To understand the scattering properties of a deciduous and a coniferous type vegetation scattering models were developed assuming either a disc type leaf or a needle type leaf. The major effort is to calculate the corresponding scattering phase functions and then each of the functions is used in a radiative transfer formulation to compute the scattering intensity and consequently the scattering coefficient. The radiative transfer formulation takes into account the irregular ground surface by including the rough soil surface in the boundary condition. Thus, the scattering model accounts for volume scattering inside the vegetation layer, the surface scattering from the ground and the interaction between scattering from the soil surface and the vegetation volume. The contribution to backscattering by each of the three scattering mechanisms is illustrated along with the effects of each layer or surface parameter. The major difference between the two types of vegetation is that when the incident wavelength is comparable to the size of the leaf there is a peak appearing in the mid angular region of the backscattering curve for the disc type leaf whereas it is a dip in the same region for a needle type leaf.

  20. Speckle phase near random surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyi; Cheng, Chuanfu; An, Guoqiang; Han, Yujing; Rong, Zhenyu; Zhang, Li; Zhang, Meina

    2018-03-01

    Based on Kirchhoff approximation theory, the speckle phase near random surfaces with different roughness is numerically simulated. As expected, the properties of the speckle phase near the random surfaces are different from that in far field. In addition, as scattering distances and roughness increase, the average fluctuations of the speckle phase become larger. Unusually, the speckle phase is somewhat similar to the corresponding surface topography. We have performed experiments to verify the theoretical simulation results. Studies in this paper contribute to understanding the evolution of speckle phase near a random surface and provide a possible way to identify a random surface structure based on its speckle phase.

  1. Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System

    DTIC Science & Technology

    2013-04-01

    Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System by Mikella E...Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System Mikella E. Farrell, Dimitra N. Stratis-Cullum, and Paul M. Pellegrino...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a

  2. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  3. Effects of spin excitons on the surface states of SmB 6 : A photoemission study

    DOE PAGES

    Arab, Arian; Gray, A. X.; Nemšák, S.; ...

    2016-12-12

    We present the results of a high-resolution valence-band photoemission spectroscopic study of SmB 6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data are interpreted in terms of the existence of heavy 4 f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about - 9 meV at low temperatures. We also attribute this feature tomore » a resonance caused by the spin-exciton scattering in SmB 6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. Thus, the existence of a low-energy spin exciton may be responsible for the scattering, which suppresses the formation of coherent surface quasiparticles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.« less

  4. Microscopic interpretation of inelastic electron scattering from even Ni isotopes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Atsushi; Ogawa, Kengo

    1990-10-01

    Transition charge densities of inelastic electron scattering for the excitation of 2+ and 4+ states in even-mass Ni isotopes are investigated in terms of the standard shell model of the (p3/2,p1/2,f5/2)n configurations. Effective transition operators pertinent to the model space are derived by considering particle-hole excitations up to 12ħω for C2 and 14ħω for C4 transitions within the framework of a first-order perturbation theory. It is shown that surface-peaked transition charge densities can be obtained for the first excited 2+ and 4+ states, being in agreement with experiment. Particle-hole excitations up to λħω, e.g., λ=2 for C2 transition, are most responsible for that feature. Higher ħω excitations appear relatively significant in the interior region of the nucleus: They enhance the peak around the surface, improving further agreement with experiment, but for C2 transition they tend to generate another peak inside the nucleus and thus seem to deteriorate agreement with experiment. Transition densities for the 0+g.s.-->2+2,3 and 0+g.s.-->4+2 transitions are also discussed.

  5. Multiple light scattering in metallic ejecta produced under intense shockwave compression.

    PubMed

    Franzkowiak, J-E; Mercier, P; Prudhomme, G; Berthe, L

    2018-04-10

    A roughened metallic plate, subjected to intense shock wave compression, gives rise to an expanding ejecta particle cloud. Photonic Doppler velocimetry (PDV), a fiber-based heterodyne velocimeter, is often used to track ejecta velocities in dynamic compression experiments and on nanosecond time scales. Shortly after shock breakout at the metal-vacuum interface, a particular feature observed in many experiments in the velocity spectrograms is what appear to be slow-moving ejecta, below the free-surface velocity. Using Doppler Monte Carlo simulations incorporating the transport of polarization in the ejecta, we show that this feature is likely to be explained by the multiple scattering of light, rather than by possible collisions among particles, slowing down the ejecta. As the cloud expands in a vacuum, the contribution of multiple scattering decreases due to the limited field of view of the pigtailed collimator used to probe the ejecta, showing that the whole geometry of the system must be taken into account in the calculations to interpret and predict PDV measurements.

  6. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction

    NASA Astrophysics Data System (ADS)

    Krywonos, Andrey

    Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.

  7. A preview of a modular surface light scattering instrument with autotracking optics

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Mann, J. Adin, Jr.; Cheung, H. Michael; Rogers, Richard B.; Lading, Lars

    1994-01-01

    NASA's Advanced Technology Development (ATD) program is sponsoring the development of a new generation of surface light scattering hardware. This instrument is designed to non-invasively measure the surface response function of liquids over a wide range of operating conditions while automatically compensating for a sloshing surface. The surface response function can be used to compute surface tension, properties of monolayers present, viscosity, surface tension gradient and surface temperature. The instrument uses optical and electronic building blocks developed for the laser light scattering program at NASA Lewis along with several unique surface light scattering components. The emphasis of this paper is the compensation for bulk surface motion (slosh). Some data processing background information is also included.

  8. Classical And Quantum Rainbow Scattering From Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, H.; Schueller, A.; Busch, M.

    2011-06-01

    The structure of clean and adsorbate covered surfaces as well as of ultrathin films can be investigated by grazing scattering of fast atoms. We present two recent experimental techniques which allow one to study the structure of ordered arrangements of surface atoms in detail. (1) Rainbow scattering under axial surface channeling conditions, and (2) fast atom diffraction. Our examples demonstrate the attractive features of grazing fast atom scattering as a powerful analytical tool in studies on the structure of surfaces. We will concentrate our discussion on the structure of ultrathin silica films on a Mo(112) surface and of adsorbed oxygenmore » atoms on a Fe(110) surface.« less

  9. Surface roughness measurement in the submicrometer range using laser scattering

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.

    2000-06-01

    A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.

  10. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  11. Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering

    NASA Astrophysics Data System (ADS)

    Røising, Henrik Schou; Simon, Steven H.

    2018-03-01

    Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.

  12. Assessment of surface roughness by use of soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Meng, Yan-li; Wang, Yong-gang; Chen, Shu-yan; Chen, Bo

    2009-08-01

    A soft x-ray reflectometer with laser produced plasma source has been designed, which can work from wavelength 8nm to 30 nm and has high performance. Using the soft x-ray reflectometer above, the scattering light distribution of silicon and zerodur mirrors which have super-smooth surfaces could be measured at different incidence angle and different wavelength. The measurement when the incidence angle is 2 degree and the wavelength is 11nm has been given in this paper. A surface scattering theory of soft x-ray grazing incidence optics based on linear system theory and an inverse scattering mathematical model is introduced. The vector scattering theory of soft x-ray scattering also is stated in detail. The scattering data are analyzed by both the methods above respectively to give information about the surface profiles. On the other hand, both the two samples are measured by WYKO surface profiler, and the surface roughness of the silicon and zerodur mirror is 1.3 nm and 1.5nm respectively. The calculated results are in quantitative agreement with those measured by WYKO surface profiler, which indicates that soft x-ray scattering is a very useful tool for the evaluation of highly polished surfaces. But there still some difference among the results of different theory and WYKO, and the possible reasons of such difference have been discussed in detail.

  13. The 2017 solar eclipse and Majorana & Allais gravity anomalies

    NASA Astrophysics Data System (ADS)

    Munera, Hector A.

    2017-01-01

    Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce torsional effects on scattered dark matter. Scattered gravity may be detected with mechanical gravimeters and torsinds located inside and outside the optical shadow path in USA, Canada and Mexico.

  14. Experimental and theoretical study of rotationally inelastic diffraction of H{sub 2}(D{sub 2}) from methyl-terminated Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nihill, Kevin J.; Hund, Zachary M.; Sibener, S. J., E-mail: s-sibener@uchicago.edu

    2016-08-28

    Fundamental details concerning the interaction between H{sub 2} and CH{sub 3}–Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H{sub 2} and D{sub 2} from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H{sub 2} compared to the strong RID features observed for D{sub 2} over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuationmore » of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH{sub 3}–Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H{sub 2} and D{sub 2} have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H{sub 2} (D{sub 2}) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H{sub 2}(D{sub 2})/CH{sub 3}−Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H{sub 2} with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.« less

  15. Improving Estimated Optical Constants With MSTM and DDSCAT Modeling

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Wolff, M. J.

    2015-12-01

    We present numerical experiments to determine quantitatively the effects of mineral particle clustering on Mars spacecraft spectral signatures and to improve upon the values of refractive indices (optical constants n, k) derived from Mars dust laboratory analog spectra such as those from RELAB and MRO CRISM libraries. Whereas spectral properties for Mars analog minerals and actual Mars soil are dominated by aggregates of particles smaller than the size of martian atmospheric dust, the analytic radiative transfer (RT) solutions used to interpret planetary surfaces assume that individual, well-separated particles dominate the spectral signature. Both in RT models and in the refractive index derivation methods that include analytic RT approximations, spheres are also over-used to represent nonspherical particles. Part of the motivation is that the integrated effect over randomly oriented particles on quantities such as single scattering albedo and phase function are relatively less than for single particles. However, we have seen in previous numerical experiments that when varying the shape and size of individual grains within a cluster, the phase function changes in both magnitude and slope, thus the "relatively less" effect is more significant than one might think. Here we examine the wavelength dependence of the forward scattering parameter with multisphere T-matrix (MSTM) and discrete dipole approximation (DDSCAT) codes that compute light scattering by layers of particles on planetary surfaces to see how albedo is affected and integrate our model results into refractive index calculations to remove uncertainties in approximations and parameters that can lower the accuracy of optical constants. By correcting the single scattering albedo and phase function terms in the refractive index determinations, our data will help to improve the understanding of Mars in identifying, mapping the distributions, and quantifying abundances for these minerals and will address long-standing questions on fundamental physics in the martian surface (e.g., what is the fundamental scattering unit for closely packed dust or regolith grains?). This work was supported by NASA's Mars Fundamental Research Program and performed with the Pleiades cluster courtesy of NASA's Advanced Supercomputing Division.

  16. Mars Express Bistatic Radar Observations 2016

    NASA Astrophysics Data System (ADS)

    Andert, Tom; Simpson, Richard A.; Pätzold, Martin; Kahan, Daniel S.; Remus, Stefan; Oudrhiri, Kamal

    2017-04-01

    One objective of the Mars Express Radio Science Experiment (MaRS) is to address the dielectric properties and surface roughness of Mars, which can be determined by means of a surface scattering experiment, also known as bistatic radar (BSR). The radio subsystem transmitter located on board the Mars Express spacecraft beams right circularly polarized (RCP) radio signals at two wavelengths - 3.6 cm (X-Band) and 13 cm (S-Band) - toward Mars' surface. Part of the impinging radiation is then scattered toward a receiver at a ground station on Earth and both the right and left circularly polarized echo components (RCP and LCP, respectively) are recorded. The dielectric constant can be derived in this configuration from the RCP-to-LCP power ratio. This approach eliminates the need for absolute end-to-end calibration in favor of relative calibration of the RCP and LCP ground receiver channels. Nonetheless, accurate relative calibration of the two receiving channels remains challenging. The most favorable configuration for bistatic radar experiments is around Earth-Mars opposition, which occurs approximately every two years. In 2016 the minimum distance of about 0.5 AU was reached on May 30th; eleven BSR experiments were successfully conducted between the end of April and mid-June. The specular point tracks during two experiments over the Syrtis Major region were very similar on April 27th and June 2nd, and the data were collected using the same Earth-based antenna. The separation in time and the different observing angles provide an opportunity to check reproducibility of the calibrations and analysis methods. The paper will illustrate the general spacecraft-to-ground BSR observation technique and describe in detail the calibration procedures at the ground station needed to perform the relative calibration of the two receiving channels. Results from the calibrations and the surface observations will be shown for the two MaRS experiments over Syrtis Major.

  17. A novel approach to simulate chest wall micro-motion for bio-radar life detection purpose

    NASA Astrophysics Data System (ADS)

    An, Qiang; Li, Zhao; Liang, Fulai; Chen, Fuming; Wang, Jianqi

    2016-10-01

    Volunteers are often recruited to serve as the detection targets during the research process of bio-radar life detection technology, in which the experiment results are highly susceptible to the physical status of different individuals (shape, posture, etc.). In order to objectively evaluate the radar system performance and life detection algorithms, a standard detection target is urgently needed. The paper first proposed a parameter quantitatively controllable system to simulate the chest wall micro-motion caused mainly by breathing and heart beating. Then, the paper continued to analyze the material and size selection of the scattering body mounted on the simulation system from the perspective of back scattering energy. The computational electromagnetic method was employed to determine the exact scattering body. Finally, on-site experiments were carried out to verify the reliability of the simulation platform utilizing an IR UWB bioradar. Experimental result shows that the proposed system can simulate a real human target from three aspects: respiration frequency, amplitude and body surface scattering energy. Thus, it can be utilized as a substitute for a human target in radar based non-contact life detection research in various scenarios.

  18. The boomerang effect in electron-hydrogen molecule scattering as determined by time-dependent calculations

    NASA Astrophysics Data System (ADS)

    Ben-Asher, Anael; Moiseyev, Nimrod

    2017-05-01

    The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.

  19. The boomerang effect in electron-hydrogen molecule scattering as determined by time-dependent calculations.

    PubMed

    Ben-Asher, Anael; Moiseyev, Nimrod

    2017-05-28

    The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν=0→ν≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H 2 - in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H 2 - is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H 2 - with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.

  20. Investigation of change of tumor optical properties after laser-induced plasmon-resonant photothermal treatment of transplanted tumors in rats

    NASA Astrophysics Data System (ADS)

    Genin, Vadim D.; Genina, Elina A.; Bucharskaya, Alla B.; Tuchin, Valery V.; Khlebtsov, Nikolay G.; Terentyuk, Georgy S.; Bashkatov, Alexey N.

    2018-04-01

    The paper presents the investigation of change of tumor optical properties of the rat tumor doped by gold nanoparticles after laser-induced plasmon-resonant photothermal treatment. To obtain the model tumors the rats have been implanted by suspension of alveolar kidney cancer cells. An hour before the experiment the animals have been injected by the suspension of gold nanorods intratumorally. For irradiation a diode laser with wavelength 808 nm has been used. After the irradiation the tumor has been removed and sliced. Spectra of total and collimated transmission and diffuse reflectance of the samples of different layers of the tumors have been measured in the wavelength range 350-2500 nm. Absorption, scattering, reduced scattering coefficients and scattering anisotropy factor of tumor tissues have been calculated with inverse adding-doubling method. The results of the experiment have shown that after doping the tumor tissue by the plasmon resonant nanoparticles and NIR laser irradiating, there is the decreases of absorption as well as scattering properties of the tumor and surrounding tissues. However, despite the sufficiently high temperature on the surface (about 80°C), the changes in the center of the tumor are insignificant.

  1. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, P. D., E-mail: grigorev@itp.ac.ru; Dyugaev, A. M.; Lebedeva, E. V.

    2008-02-15

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium.

  2. On the neutralization in low energy ion scattering spectroscopy (leiss): He + ions on clean and oxygen covered Ni(001) surfaces

    NASA Astrophysics Data System (ADS)

    Preuss, E.

    1981-10-01

    A formula for the He + ion survival probability against neutralization is presented, which was derived from the fit of the azimuthal angular dependence of the Ni peak heights on clean and O covered Ni(001) surfaces observed in LEISS experiments and computer simulations. The formula contains a collision- and two Auger-type neutralization terms for the ion trajectories prolonged by multiple collisions above the "neutralization surface plane", which was assumed to be corrugated and shaped like muffin-tins.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  4. Segmented Liner to Control Mode Scattering

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2013-01-01

    The acoustic performance of duct liners can be improved by segmenting the treatment. In a segmented liner treatment, one stage of liner reduces the target sound and scatters energy into other acoustic modes, which are attenuated by a subsequent stage. The Curved Duct Test Rig is an experimental facility in which sound incident on the liner can be generated in a specific mode and the scatter of energy into other modes can be quantified. A series of experiments is performed in which the baseline configuration is asymmetric, that is, a liner is on one side wall of the test duct and the wall opposite is acoustically hard. Segmented liner treatment is achieved by progressively replacing sections of the hard wall opposite with liner in the axial direction, from 25% of the wall surface to 100%. It is found that the energy scatter from the (0,0) to the (0,1) mode reduces as the percentage of opposite wall treatment increases, and the frequency of peak attenuation shifts toward higher frequency. Similar results are found when the incident mode is of order (0,1) and scatter is into the (0,0) mode. The propagation code CDUCT-LaRC is used to predict the effect of liner segmenting on liner performance. The computational results show energy scatter and the effect of liner segmentation that agrees with the experimental results. The experiments and computations both show that segmenting the liner treatment is effective to control the scatter of incident mode energy into other modes. CDUCT-LaRC is shown to be a valuable tool to predict trends of liner performance with liner configuration.

  5. Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.

    2017-12-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.

  6. Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces

    DTIC Science & Technology

    2013-06-14

    Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering.” Waves...device applications. Thus, the negative refraction of a surface plasmon polariton was studied in two papers. In the first [1], all- angle negative... angle of incidence, measured counterclockwise from the negative x1 axis, is . The surface plasmon polariton of frequency transmitted through the

  7. Multi-hybrid method for investigation of EM scattering from inhomogeneous object above a dielectric rough surface

    NASA Astrophysics Data System (ADS)

    Li, Jie; Guo, LiXin; He, Qiong; Wei, Bing

    2012-10-01

    An iterative strategy combining Kirchhoff approximation^(KA) with the hybrid finite element-boundary integral (FE-BI) method is presented in this paper to study the interactions between the inhomogeneous object and the underlying rough surface. KA is applied to study scattering from underlying rough surfaces, whereas FE-BI deals with scattering from the above target. Both two methods use updated excitation sources. Huygens equivalence principle and an iterative strategy are employed to consider the multi-scattering effects. This hybrid FE-BI-KA scheme is an improved and generalized version of previous hybrid Kirchhoff approximation-method of moments (KA-MoM). This newly presented hybrid method has the following advantages: (1) the feasibility of modeling multi-scale scattering problems (large scale underlying surface and small scale target); (2) low memory requirement as in hybrid KA-MoM; (3) the ability to deal with scattering from inhomogeneous (including coated or layered) scatterers above rough surfaces. The numerical results are given to evaluate the accuracy of the multi-hybrid technique; the computing time and memory requirements consumed in specific numerical simulation of FE-BI-KA are compared with those of MoM. The convergence performance is analyzed by studying the iteration number variation caused by related parameters. Then bistatic scattering from inhomogeneous object of different configurations above dielectric Gaussian rough surface is calculated and the influences of dielectric compositions and surface roughness on the scattering pattern are discussed.

  8. Scattering by inhomogeneous systems with rough internal surfaces: Porous solids and random-field Ising systems

    NASA Astrophysics Data System (ADS)

    Wong, Po-Zen

    1985-12-01

    For a two-component inhomogeneous system consisting of compact domains of characteristic size R, I show that if the domain walls are ``rough'' and their root-mean-square fluctuation w over a distance r obeys a power law w=b(r/a)x (a is the lattice constant and x>0), then the geometrical correlation function γ(r) has leading terms proportional to rx and r for r<>R-1, where d is the dimension of the system. Two possible applications of this result are discussed. (i) In granular porous solids which have a minimum grain size Rmin, the above result implies that surface roughness can cause I(q) to fall off like 1/qα for q>>Rmin-1, where α=3+x>3 for d=3. In particular, when x>1, the surface becomes a fractal with dimension D=1+x=α-2, which can be extracted from the scattering data. On the other hand, if the grains are smooth and their size distribution obeys a power law dN(R)/dR~R-β over a range Rmin

  9. Research on energy transmission calculation problem on laser detecting submarine

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Li, Yingchao; Zhang, Lizhong; Wang, Chao; An, Yan

    2014-12-01

    The laser detection and identification is based on the method of using laser as the source of signal to scan the surface of ocean. If the laser detection equipment finds out the target, it will immediately reflect the returning signal, and then through receiving and disposing the returning signal by the receiving system, to realize the function of detection and identification. Two mediums channels should be though in the process of laser detection transmission, which are the atmosphere and the seawater. The energy loss in the process of water transport, mainly considering the surface reflection and scattering attenuation and internal attenuation factors such as seawater. The energy consumption though atmospheric transmission, mainly considering the absorption of atmospheric and the attenuation causing by scattering, the energy consumption though seawater transmission, mainly considering the element such as surface reflection, the attenuation of scattering and internal attenuation of seawater. On the basis of the analysis and research, through the mode of establishment of atmospheric scattering, the model of sea surface reflection and the model of internal attenuation of seawater, determine the power dissipation of emitting lasers system, calculates the signal strength that reaches the receiver. Under certain conditions, the total attenuation of -98.92 dB by calculation, and put forward the related experiment scheme by the use of Atmospheric analog channel, seawater analog channel. In the experiment of the theory, we use the simulation pool of the atmosphere and the sea to replace the real environment where the laser detection system works in this kind of situation. To start with, we need to put the target in the simulating seawater pool of 10 meters large and then control the depth of the target in the sea level. We, putting the laser detection system in position where it is 2 kilometers far from one side, secondly use the equipment to aim at the target in some distance. Lastly, by launching and detecting the signal of returning wave, identify the effect of the image produced by the system.

  10. Light scatter on the surface of AcrySof intraocular lenses: part I. Analysis of lenses retrieved from pseudophakic postmortem human eyes.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David J

    2008-01-01

    To investigate the cause of light scatter measured on the surface of AcrySof intraocular lenses (Alcon Laboratories, Inc., Fort Worth, TX) retrieved from pseudophakic postmortem human eyes. Ten intraocular lenses (Alcon AcrySofModel MA60BM) were retrieved postmortem and analyzed for light scatter before and after removal of surface-bound biofilms. Six of the 10 lenses exhibited light scatter that was clearly above baseline levels. In these 6 lenses, both peak and average pixel density were reduced by approximately 80% after surface cleaning. The current study demonstrates that a coating deposited in vivo on the lens surface is responsible for the light scatter observed when incident light is applied.

  11. Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [C22C1im]+[NTf2].

    PubMed

    Mars, Julian; Hou, Binyang; Weiss, Henning; Li, Hailong; Konovalov, Oleg; Festersen, Sven; Murphy, Bridget M; Rütt, Uta; Bier, Markus; Mezger, Markus

    2017-10-11

    Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.7 nm. Small angle X-ray scattering and polarized light microscopy measurements suggest that the observed surface structure is related to fluctuations into a metastable liquid crystalline SmA 2 phase that was found by supercooling the bulk liquid. The observed surface ordering persists up to 157 °C, i.e. more than 88 K above the bulk melting temperature of 68.1 °C. Close to the bulk melting point, we find a thickness of the ordered layer of L = 30 nm. The dependency of L(τ) = Λ ln(τ/τ 1 ) vs. reduced temperature τ follows a logarithmic growth law. In agreement with theory, the pre-factor Λ is governed by the correlation length of the isotropic bulk phase.

  12. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  13. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  14. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  15. Surface periodicity of Ir(110) from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Bu, H.; Shi, M.; Rabalais, J. W.

    1991-03-01

    The surface periodicity of the Ir(110) surface in both the clean reconstructed (1×3) and oxygen stabilized unreconstructed (1×1) phases have been investigated using time-of-flight scattering and recoiling spectrometry (TOF-SARS). A pulsed 4 keV Ar + ion beam is directed at a grazing incident angle to the surface and the scattered neutral plus ion flux is monitored as a function of beam exit angle and crystal azimuthal angle. It is demonstrated that either maxima or minima are obtained in the scattered flux along the low-index crystallographic directions depending on whether near-specular or off-specular scattering conditions, respectively, are used. These scattering intensity patterns as a function of crystal azimuthal angle provide a direct measure of the surface periodicity. These intensity variations are explained in terms of the Lindhard critical angle, semichannel focusing effects, and trajectory simulations.

  16. Quantum vs Classical Mechanics for a 'Simple' Dissociation Reaction. Should They Give the Same Results?

    NASA Astrophysics Data System (ADS)

    Holloway, Stephen

    1997-03-01

    When performing molecular dynamical simulations on light systems at low energies, there is always the risk of producing data that bear no similarity to experiment. Indeed, John Barker himself was particularly anxious about treating Ar scattering from surfaces using classical mechanics where it had been shown experimentally in his own lab that diffraction occurs. In such cases, the correct procedure is probably to play the trump card "... well of course, quantum effects will modify this so that....." and retire gracefully. For our particular interests, the tables are turned in that we are interested in gas-surface dynamical studies for highly quantized systems, but would be interested to know when it is possible to use classical mechanics in order that a greater dimensionality might be treated. For molecular dissociation and scattering, it has been oft quoted that the greater the number of degrees of freedom, the more appropriate is classical mechanics, primarily because of the mass averaging over the quantized dimensions. Is this true? We have been investigating the dissociation of hydrogen molecules at surfaces and in this talk I will present quantum results for dissociation and scattering, along with a novel method for their interpretation based upon adiabatic potential energy surfaces. Comparison with classical calculations will be made and conclusions drawn. a novel method for their interpretation based upon adiabatic potential energy surfaces

  17. Analytical fitting model for rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  18. Surface wave scattering from sharp lateral discontinuities

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.

    1994-11-01

    The problem of surface wave scattering is re-explored, with quasi-degenerate normal mode coupling as the starting point. For coupling among specified spheroidal and toroidal mode dispersion branches, a set of coupled wave equations is derived in the frequency domain for first-arriving Rayleigh and Love waves. The solutions to these coupled wave equations using linear perturbation theory are surface integrals over the unit sphere covering the lateral distribution of perturbations in Earth structure. For isotropic structural perturbations and surface topographic perturbations, these solutions agree with the Born scattering theory previously obtained by Snieder and Romanowicz. By transforming these surface integrals into line integrals along the boundaries of the heterogeneous regions in the case of sharp discontinuities, and by using uniformly valid Green's functions, it is possible to extend the solution to the case of multiple scattering interactions. The proposed method allows the relatively rapid calculation of exact second order scattered wavefield potentials for scattering by sharp discontinuities, and it has many advantages not realized in earlier treatments. It employs a spherical Earth geometry, uses no far field approximation, and implicitly contains backward as well as forward scattering. Comparisons of asymptotic scattering and an exact solution with single scattering and multiple scattering integral formulations show that the phase perturbation predicted by geometrical optics breaks down for scatterers less than about six wavelengths in diameter, and second-order scattering predicts well both the amplitude and phase pattern of the exact wavefield for sufficiently small scatterers, less than about three wavelengths in diameter for anomalies of a few percent.

  19. Scatter metrology of photovoltaic textured surfaces

    NASA Astrophysics Data System (ADS)

    Stover, John C.; Hegstrom, Eric L.

    2010-09-01

    In recent years it has become common practice to texture many of the layered surfaces making up photovoltaic cells in order to increase light absorption and efficiency. Profilometry has been used to characterize the texture, but this is not satisfactory for in-line production systems which move surfaces too fast for that measurement. Scatterometry has been used successfully to measure roughness for many years. Its advantages include low cost, non-contact measurement and insensitivity to vibration; however, it also has some limitations. This paper presents scatter measurements made on a number of photovoltaic samples using two different scatterometers. It becomes clear that in many cases the surface roughness exceeds the optical smoothness limit (required to calculate surface statistics from scatter), but it is also clear that scatter measurement is a fast, sensitive indicator of texture and can be used to monitor whether design specifications are being met. A third key point is that there is a lot of surface dependent information available in the angular variations of the measured scatter. When the surface is inspected by integrating the scatter signal (often called a "Haze" measurement) this information is lost.

  20. Quasiparticle Scattering in the Rashba Semiconductor BiTeBr: The Roles of Spin and Defect Lattice Site.

    PubMed

    Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong

    2016-09-28

    Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.

  1. Dynamics of confined water reconstructed from inelastic x-ray scattering measurements of bulk response functions

    NASA Astrophysics Data System (ADS)

    Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.

    2012-03-01

    Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).

  2. Electromagnetic Modeling, Optimization and Uncertainty Quantification for Antenna and Radar Systems Surfaces Scattering and Energy Absorption

    DTIC Science & Technology

    2017-03-06

    design of antenna and radar systems, energy absorption and scattering by rough-surfaces. This work has lead to significant new methodologies , including...problems in the field of electromagnetic propagation and scattering, with applicability to design of antenna and radar systems, energy absorption...and scattering by rough-surfaces. This work has lead to significant new methodologies , including introduction of a certain Windowed Green Function

  3. Quantum state-resolved energy transfer dynamics at gas-liquid interfaces: IR laser studies of CO2 scattering from perfluorinated liquids.

    PubMed

    Perkins, Bradford G; Häber, Thomas; Nesbitt, David J

    2005-09-01

    An apparatus for detailed study of quantum state-resolved inelastic energy transfer dynamics at the gas-liquid interface is described. The approach relies on supersonic jet-cooled molecular beams impinging on a continuously renewable liquid surface in a vacuum and exploits sub-Doppler high-resolution laser absorption methods to probe rotational, vibrational, and translational distributions in the scattered flux. First results are presented for skimmed beams of jet-cooled CO(2) (T(beam) approximately 15 K) colliding at normal incidence with a liquid perfluoropolyether (PFPE) surface at E(inc) = 10.6(8) kcal/mol. The experiment uses a tunable Pb-salt diode laser for direct absorption on the CO(2) nu(3) asymmetric stretch. Measured rotational distributions in both 00(0)0 and 01(1)0 vibrational manifolds indicate CO(2) inelastically scatters from the liquid surface into a clearly non-Boltzmann distribution, revealing nonequilibrium dynamics with average rotational energies in excess of the liquid (T(s) = 300 K). Furthermore, high-resolution analysis of the absorption profiles reveals that Doppler widths correspond to temperatures significantly warmer than T(s) and increase systematically with the J rotational state. These rotational and translational distributions are consistent with two distinct gas-liquid collision pathways: (i) a T approximately 300 K component due to trapping-desorption (TD) and (ii) a much hotter distribution (T approximately 750 K) due to "prompt" impulsive scattering (IS) from the gas-liquid interface. By way of contrast, vibrational populations in the CO(2) bending mode are inefficiently excited by scattering from the liquid, presumably reflecting much slower T-V collisional energy transfer rates.

  4. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chang, Zheng; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan

    2013-11-01

    A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications. Electronic supplementary information (ESI) available: Details of experimental section, characterization details and relaxivity curve of developed QMT nanoprobe in water at 1.5 T magnetic filed strength. See DOI: 10.1039/c3nr03762b

  5. Theory of the reaction dynamics of small molecules on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Bret

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H 2, H 2O and CH 4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimentalmore » data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).« less

  6. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  7. Single scattering solution for radiative transfer through Rayleigh and aerosol atmosphere

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1977-01-01

    A solution is presented to the radiative transfer of the solar irradiation through a turbid atmosphere, based on the single-scattering approximation, i.e., an assumption that a photon that underwent scattering either leaves the top of the atmosphere or strikes the surface. The solution depends on a special idealization of the scattering phase function of the aerosols. The equations developed are subsequently applied to analyze quantitatively the enhancement of the surface irradiation and the enhancement of the scattered radiant emittance as seen from above the atmosphere, caused by the surface reflectance and atmospheric back scattering. An order of magnitude error analysis is presented.

  8. Modeling of scattering from ice surfaces

    NASA Astrophysics Data System (ADS)

    Dahlberg, Michael Ross

    Theoretical research is proposed to study electromagnetic wave scattering from ice surfaces. A mathematical formulation that is more representative of the electromagnetic scattering from ice, with volume mechanisms included, and capable of handling multiple scattering effects is developed. This research is essential to advancing the field of environmental science and engineering by enabling more accurate inversion of remote sensing data. The results of this research contributed towards a more accurate representation of the scattering from ice surfaces, that is computationally more efficient and that can be applied to many remote-sensing applications.

  9. Silicon and Germanium (111) Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  10. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.

  11. Bio-physical modeling of time-resolved forward scattering by Listeria colonies

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Banada, Padmapriya P.; Bhunia, Arun K.; Hirleman, E. Daniel

    2006-10-01

    We have developed a detection system and associated protocol based on optical forward scattering where the bacterial colonies of various species and strains growing on solid nutrient surfaces produced unique scatter signatures. The aim of the present investigation was to develop a bio-physical model for the relevant phenomena. In particular, we considered time-varying macroscopic morphological properties of the growing colonies and modeled the scattering using scalar diffraction theory. For the present work we performed detailed studies with three species of Listeria; L. innocua, L. monocytogenes, and L. ivanovii. The baseline experiments involved cultures grown on brain heart infusion (BHI) agar and the scatter images were captured every six hours for an incubation period of 42 hours. The morphologies of the colonies were studied by phase contrast microscopy, including measurement of the diameter of the colony. Growth curves, represented by colony diameter as a function of time, were compared with the time-evolution of scattering signatures. Similar studies were carried out with L. monocytogenes grown on different substrates. Non-dimensionalizing incubation time in terms of the time to reach stationary phase was effective in reducing the dimensionality of the model. Bio-physical properties of the colony such as diameter, bacteria density variation, surface curvature/profile, and transmission coefficient are important parameters in predicting the features of the forward scattering signatures. These parameters are included in a baseline model that treats the colony as a concentric structure with radial variations in phase modulation. In some cases azimuthal variations and random phase inclusions were included as well. The end result is a protocol (growth media, incubation time and conditions) that produces reproducible and distinguishable scatter patterns for a variety of harmful food borne pathogens in a short period of time. Further, the bio-physical model we developed is very effective in predicting the dominant features of the scattering signatures required by the identification process and will be effective for informing further improvements in the instrumentation.

  12. Using cross-correlations of random wavefields for surface waves tomography and structural health monitoring.

    NASA Astrophysics Data System (ADS)

    Sabra, K.

    2006-12-01

    The random nature of noise and scattered fields tends to suggest limited utility. Indeed, seismic or acoustic fields from random sources or scatterers are often considered to be incoherent, but there is some coherence between two sensors that receive signals from the same individual source or scatterer. An estimate of the Green's function (or impulse response) between two points can be obtained from the cross-correlation of random wavefields recorded at these two points. Recent theoretical and experimental studies in ultrasonics, underwater acoustics, structural monitoring and seismology have investigated this technique in various environments and frequency ranges. These results provide a means for passive imaging using only the random wavefields, without the use of active sources. The coherent wavefronts emerge from a correlation process that accumulates contributions over time from random sources whose propagation paths pass through both receivers. Results will be presented from experiments using ambient noise cross-correlations for the following applications: 1) passive surface waves tomography from ocean microseisms and 2) structural health monitoring of marine and airborne structures embedded in turbulent flow.

  13. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2013-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~860 μm. Advances in the ultraviolet (UV) TS diagnostic at the Omega Laser Facility provide the ability to detect deep UV photons (~190 nm) and allow access to scattered light from EPW's propagating near the 3 ω quarter-critical surface (~2.5 × 1021 cm-3) . A series of experiments studied the effects of ablator materials on coronal plasma conditions. Electron temperatures and densities were measured from 150 μm to 400 μm from the initial target surface. Standard CH shells were compared to three-layered shells consisting of Si doped CH, Si, and Be. Early analysis indicates that these multilayered targets have less hot-electron energy as a result of higher electron temperature in the coronal plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Theory and measure of certain image norms in SAR

    NASA Technical Reports Server (NTRS)

    Raney, R. K.

    1984-01-01

    The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms.

  15. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.

    PubMed

    Goda, Shuichiro; Koga, Tomoyuki; Yamashita, Kenichiro; Kuriura, Ryo; Ueda, Toshifumi

    2018-04-08

    In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.

  16. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    PubMed

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  17. Detection of volatile organic compounds by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Chang, Allan S. P.; Maiti, Amitesh; Ileri, Nazar; Bora, Mihail; Larson, Cindy C.; Britten, Jerald A.; Bond, Tiziana C.

    2012-06-01

    We present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor is strongly influenced by the substrate temperature, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  18. Scattering Mechanisms and Nature of the Indirect Propagation Paths Measured by the CONSERT Instrument during the Late Phase of Philae's Descent onto 67P/Churyumov-Gerasimenko's Surface

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Statz, C.; Herique, A.; Rogez, Y.; Zine, S.; Ciarletti, V.; Kofman, W. W.

    2017-12-01

    Bi-static electromagnetic wave propagation measurements performed by the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) during the descent of Philae onto comet 67P/Churyumov-Gerasimenko's surface (SDL) complement the data obtained during the first science sequence (FSS). These SDL measurements allow analyses of the comet's surface and near subsurface dielectric and roughness properties - especially in vicinity of the designated Agilkia landing site - during the late phase of the descent and support the main scientific objective of CONSERT, the dielectric characterization of the comet's nucleus. In order to perform the propagation measurements, the CONSERT instrument unit aboard the lander received and processed the radio signal emitted by the orbiter's CONSERT counterpart. The lander's CONSERT unit then transmitted a signal back to the orbiter. This happened at a time scale of milliseconds for each measurement and a temporal resolution of the signal below 30m. Multiple measurements were performed throughout the descent and the first science sequence. The signal received by the CONSERT unit aboard Rosetta consists of the direct propagation path between Rosetta and lander Philae as well as indirect propagation paths. These measured paths consist of reflections from 67P/C-G's surface and near subsurface. Due to the large footprint of CONSERT's receiving and transmitting antenna's in the bi-static context and the complex surface geometry of 67P/C-G, the measured signatures are likely to originate from a region with approximately 1,5 km diameter subsequently covering a large portion of the head and resulting in a scattering angle between orbiter, surface and lander dependent on the measurement position. With the direct propagation path between lander and orbiter as a calibration reference and a varying scattering angle (up to approximately 40°), bounds on the likely scattering mechanisms can be imposed and localized. The information on the scattering mechanisms is crucial for the creation of a surface permittivity map of 67P/C-G and the contextualization of the permittivity estimation based on CONSERT's FSS measurements. From the localized permittivity and roughness distributions based on the SDL measurements further properties with regard to 67P/C-G's composition can be derived.

  19. Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes

    NASA Astrophysics Data System (ADS)

    Qiang, FangWei; Wei, PeiJun; Liu, XiQiang

    2013-08-01

    The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.

  20. Photon Doppler velocimetry measurements of transverse surface velocities

    NASA Astrophysics Data System (ADS)

    Johnson, C. R.; LaJeunesse, J. W.; Sable, P. A.; Dawson, A.; Hatzenbihler, A.; Borg, J. P.

    2018-06-01

    The goal of this work was to develop a technique for making transverse surface velocity measures utilizing Photon Doppler Velocimetry (PDV). Such a task is achieved by transmitting light and collecting Doppler-shifted light at an angle relative to the normal axis, where measured velocities are representative of a component of the transverse velocity. Because surface characteristics have an intrinsic effect on light scatter, different surface preparations were explored to direct reflectivity, including diffusion by means of sandpapering, or increasing retroreflectivity by coating with microspheres, milling v-cuts, and electrochemically etching grooves. Testing of these surface preparations was performed using an experiment featuring a 30 mm diameter aluminum disk rotating at 6000 or 6600 RPM. A single PDV collimator was positioned along the rotational axis of the disk at various angles, resolving the apparent transverse velocity. To characterize surface preparations, light return and velocities were recorded as a function of probe angle ranging from 0° to 51° from the surface normal for each preparation. Polished and electrochemically etched surfaces did not provide enough reflected light to resolve a beat frequency; however, sandpapered surfaces, retroreflective microspheres, and milled v-cuts provided adequate reflected light for incidence angles up to 51°. Applications of the surface preparations were then studied in gas gun experiments. Retroreflective microspheres were studied in a planar impact experiment, and milled v-cuts were studied in an oblique impact experiment. A normal and transverse profile of particle velocity was resolved in the oblique impact experiment.

  1. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.

    PubMed

    Zhang, Kun; Ji, Ji; Li, Yixin; Liu, Baohong

    2014-07-01

    Surface-enhanced Raman scattering (SERS) has proven to be promising for the detection of trace analytes; however, the precise nanofabrication of a specific and sensitive plasmonic SERS-active substrate is still a major challenge that limits the scope of its applications. In this work, gold nanoparticles are self-assembled into densely packed two-dimensional arrays at a liquid/liquid interface between dimethyl carbonate and water in the absence of template controller molecules. Both the simulation and experiment results show that the particles within these film-like arrays exhibit strong electromagnetic coupling and enable large amplification of Raman signals. In order to realize the level of sensing specificity, the surface chemistry of gold nanoparticles (Au NPs) is rationally tailored by incorporating an appropriate chemical moiety that specifically captures molecules of interest. The ease of fabrication and good uniformity make this platform ideal for in situ SERS sensing of trace targets in complex samples.

  2. Wind Speed Measurement from Bistatically Scattered GPS Signals

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.

    1999-01-01

    Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

  3. Lidar instruments proposed for Eos

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    1990-01-01

    Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.

  4. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  5. Influence of sample pool on interference pattern in defocused interferometric particle imaging.

    PubMed

    Zhang, Hongxia; Zhou, Ye; Liu, Jing; Jia, Dagong; Liu, Tiegen

    2017-04-01

    Particles widely exist in various fields. In practical experiments, sometimes it is necessary to dissolve particles in water in a sample pool. This article proposes two typical layouts of the sample pool in defocused interferometric particle imaging (IPI). Layout I is the sample pool surface perpendicular to the incident light and layout II is the sample pool surface perpendicular to the scattered light. For layout I, the scattered light of the particles does not keep symmetric at the meridional and sagittal planes after being refracted by the sample pool surface, and elliptical interference patterns are formed at the defocused IPI image plane. But for layout II, the scattered light keeps symmetric after being refracted, and circular interference patterns are formed. Aimed at the two sample pool layouts, the ray-tracing software ZEMAX was used to simulate the spot shape of particles at different defocus distances. Furthermore, its effect on the ellipticity of the interference pattern with the tilt angle of the sample pool is analyzed. The relative error of the axis ratio for layout I does not exceed 9.2% at different defocus distances. The experimental results have good agreement with the theoretical analyses, and it indicates that layout II is more reasonable for the IPI system.

  6. Influence of sample pool on interference pattern in defocused interferometric particle imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Zhou, Ye; Liu, Jing; Jia, Dagong; Liu, Tiegen

    2017-04-01

    Particles widely exist in various fields. In practical experiments, sometimes it is necessary to dissolve particles in water in a sample pool. This article proposes two typical layouts of the sample pool in defocused interferometric particle imaging (IPI). Layout I is the sample pool surface perpendicular to the incident light and layout II is the sample pool surface perpendicular to the scattered light. For layout I, the scattered light of the particles does not keep symmetric at the meridional and sagittal planes after being refracted by the sample pool surface, and elliptical interference patterns are formed at the defocused IPI image plane. But for layout II, the scattered light keeps symmetric after being refracted, and circular interference patterns are formed. Aimed at the two sample pool layouts, the ray-tracing software ZEMAX was used to simulate the spot shape of particles at different defocus distances. Furthermore, its effect on the ellipticity of the interference pattern with the tilt angle of the sample pool is analyzed. The relative error of the axis ratio for layout I does not exceed 9.2% at different defocus distances. The experimental results have good agreement with the theoretical analyses, and it indicates that layout II is more reasonable for the IPI system.

  7. A comparison between active and passive sensing of soil moisture from vegetated terrains

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Eom, H. J.

    1985-01-01

    A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing three contributing terms to radar backscattering can be identified: (1) the ground surface scatter term; (2) the volume scatter term representing scattering from the vegetation layer; and (3) the surface volume scatter term accounting for scattering from both surface and volume. In emission three sources of contribution can also be identified: (1) surface emission; (2) upward volume emission from the vegetation layer; and (3) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms (1) and (3) increase due to increase in permittivity in the active case. However, in passive sensing, term (1) decreases but term (3) increases for the same reason. This self compensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.

  8. A comparison between active and passive sensing of soil moisture from vegetated terrains

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Eom, H. J.

    1984-01-01

    A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing three contributing terms to radar backscattering can be identified: (1) the ground surface scatter term; (2) the volume scatter term representing scattering from the vegetation layer; and (3) the surface volume scatter term accounting for scattering from both surface and volume. In emission three sources of contribution can also be identified: (1) surface emission; (2) upward volume emission from the vegetation layer; and (3) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms (1) and (3) increase due to increase in permittivity in the active case. However, in passive sensing, term (1) decreases but term (3) increases for the same reason. This self conpensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.

  9. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.

    PubMed

    Bauer, Christophe; Abid, Jean-Pierre; Fermin, David; Girault, Hubert H

    2004-05-15

    The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer valid for this system because of (i) the temporal overlap between the internal and external thermalization process is very important; (ii) a part of the photonic energy is directly transferred toward the adsorbates (not among "cold" conduction band electrons). These findings have important consequence for femtochemistry on metal surfaces since they show that reactions can be initiated by nascent nonthermal electrons (as photoexcited, out of a Fermi-Dirac distribution) besides of the hot electron gas.

  10. Comparative surface dynamics of amorphous and semicrystalline polymer films

    PubMed Central

    Becker, James S.; Brown, Ryan D.; Killelea, Daniel R.; Yuan, Hanqiu; Sibener, S. J.

    2011-01-01

    The surface dynamics of amorphous and semicrystalline polymer films have been measured using helium atom scattering. Time-of-flight data were collected to resolve the elastic and inelastic scattering components in the diffuse scattering of neutral helium atoms from the surface of a thin poly(ethylene terephthalate) film. Debye–Waller attenuation was observed for both the amorphous and semicrystalline phases of the polymer by recording the decay of elastically scattered helium atoms with increasing surface temperature. Thermal attenuation measurements in the specular scattering geometry yielded perpendicular mean-square displacements of 2.7•10-4 Å2 K-1 and 3.1•10-4 Å2 K-1 for the amorphous and semicrystalline surfaces, respectively. The semicrystalline surface was consistently ∼15% softer than the amorphous across a variety of perpendicular momentum transfers. The Debye–Waller factors were also measured at off-specular angles to characterize the parallel mean-square displacements, which were found to increase by an order of magnitude over the perpendicular mean-square displacements for both surfaces. In contrast to the perpendicular motion, the semicrystalline state was ∼25% stiffer than the amorphous phase in the surface plane. These results were uniquely accessed through low-energy neutral helium atom scattering due to the highly surface-sensitive and nonperturbative nature of these interactions. The goal of tailoring the chemical and physical properties of complex advanced materials requires an improved understanding of interfacial dynamics, information that is obtainable through atomic beam scattering methods. PMID:20713734

  11. A diffuse radar scattering model from Martian surface rocks

    NASA Technical Reports Server (NTRS)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  12. Chemical contamination remote sensing

    NASA Technical Reports Server (NTRS)

    Carrico, J. P.; Phelps, K. R.; Webb, E. N.; Mackay, R. A.; Murray, E. R.

    1986-01-01

    A ground mobile laser test bed system was assembled to assess the feasibility of detection of various types of chemical contamination using Differential Scattering (DISC) and Differential Absorption (DIAL) Lidar techniques. Field experiments with the test bed system using chemical simulants were performed. Topographic reflection and range resolved DIAL detection of vapors as well as DISC detection of aerosols and surface contamination were achieved. Review of detection principles, design of the test bed system, and results of the experiments are discussed.

  13. Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    NASA Astrophysics Data System (ADS)

    Besselink, R.; Stawski, T. M.; Van Driessche, A. E. S.; Benning, L. G.

    2016-12-01

    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 ṡ 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals.

  14. Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1981-01-01

    NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.

  15. Laboratory studies of the growth, sublimation, and light- scattering properties of single levitated ice particles

    NASA Astrophysics Data System (ADS)

    Bacon, Neil Julian

    2001-12-01

    I describe experiments to investigate the properties of microscopic ice particles. The goal of the work was to measure parameters that are important in cloud processes and radiative transfer, using a novel technique that avoids the use of substrates. The experiments were conducted in two separate electrodynamic balance chambers. Single, charged ice particles were formed from frost particles or from droplets frozen either homogeneously or heteroge neously with a bionucleant. The particles were trapped at temperatures between -38°C and -4°C and grown or sublimated according to the temperature gradient in the cham ber. I describe observations of breakup of sublimating frost particles, measurements of light scattering by hexagonal crystals, and observations of the morphology of ice particles grown from frozen water droplets and frost particles. The breaking strength of frost particles was an order of magnitude less than that of bulk ice. Light scattering features not previously observed were analyzed and related to crystal dimension. Initial results from a computer model failed to reproduce these features. The widths of scattering peaks suggest that surface roughness may play a role in determining the angular distribution of scattered light. Ice particle mass evolution was found to be consistent with diffusion- limited growth. Crystals grown slowly from frozen droplets adopted isometric habits, while faster growth resulted in thin side-planes, although there was not an exact correspondence between growth conditions and particle morphology. From the morphological transition, I infer lower limits for the critical supersaturation for layer nucleation on the prism face of 2.4% at -15°C, 4.4% at -20°C, and 3.1% at -25°C. Analytic expressions for the size dependence of facet stability are developed, indicating a strong dependence of stability on both crystal size and surface kinetics, and compared with data. I discuss the role of complex particle morphologies in radiative transfer and highlight the need for further measurements.

  16. Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.

  17. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  18. Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chandra, Nitish

    The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.

  19. Scatter of X-rays on polished surfaces

    NASA Technical Reports Server (NTRS)

    Hasinger, G.

    1981-01-01

    In investigating the dispersion properties of telescope mirrors used in X-ray astronomy, the slight scattering characteristics of X-ray radiation by statistically rough surfaces were examined. The mathematics and geometry of scattering theory are described. The measurement test assembly is described and results of measurements on samples of plane mirrors are given. Measurement results are evaluated. The direct beam, the convolution of the direct beam and the scattering halo, curve fitting by the method of least squares, various autocorrelation functions, results of the fitting procedure for small scattering, and deviations in the kernel of the scattering distribution are presented. A procedure for quality testing of mirror systems through diagnosis of rough surfaces is described.

  20. Surface electrical properties experiment. Part 2: Theory of radio-frequency interferometry in geophysical subsurface probing

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Tsang, L.

    1974-01-01

    The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented.

  1. Initial Testing of the Mark-0 X-Band RF Gun at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.

    A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program.more » Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.« less

  2. Microwave backscattering theory and active remote sensing of the ocean surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Miller, L. S.

    1977-01-01

    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures.

  3. Study on light scattering characterization for polishing surface of optical elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo

    2017-02-01

    Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.

  4. Potential scattering on a spherical surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Ho, Tin-Lun

    2018-06-01

    The advances in cold atom experiments have allowed construction of confining traps in the form of curved surfaces. This opens up the possibility of studying quantum gases in curved manifolds. On closed surfaces, many fundamental processes are affected by the local and global properties, i.e. the curvature and the topology of the surface. In this paper, we study the problem of potential scattering on a spherical surface and discuss its difference with that on a 2D plane. For bound states with angular momentum m, their energies (E m ) on a sphere are related to those on a 2D plane (-| {E}m,o| ) as {E}m=-| {E}m,o| +{E}R≤ft[\\tfrac{{m}2-1}{3}+O≤ft(\\tfrac{{r}o2}{{R}2}\\right)\\right], where {E}R={{{\\hslash }}}2/(2{{MR}}2), and R is the radius of the sphere. Due to the finite extent of the manifold, the phase shifts on a sphere at energies E∼ {E}R differ significantly from those on a 2D plane. As energy E approaches zero, the phase shift in the planar case approaches 0, whereas in the spherical case it reaches a constant that connects the microscopic length scale to the largest length scale R.

  5. Surface phonons in the topological insulators Bi2Se3 and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Boulares, Ibrahim; Shi, Guangsha; Kioupakis, Emmanouil; Lošťák, Petr; Uher, Ctirad; Merlin, Roberto

    2018-03-01

    Raman scattering [K. M. F. Shahil et al., Appl. Phys. Lett. 96, 153103 (2010), V. Gnezdilov et al., Phys. Rev. B 84, 195118 (2011) and H. -H. Kung et al., Phys. Rev. B 95, 245406 (2017)], inelastic helium scattering [X. Zhu et al., Phys. Rev. Lett. 107, 186102 (2011)] and photoemission experiments [J. A. Sobota et al., Phys. Rev. Lett. 113, 157401 (2014)] on the topological insulators Bi2Se3 and Bi2Te3 show features in the range ∼ 50-160 cm-1, which have been assigned alternatively to Raman-forbidden, bulk infrared modes arising from symmetry breaking at the surface or to surface phonons, which couple to the topologically protected electronic states. Here, we present temperature- and wavelength- dependent Raman studies showing additional modes we ascribe to surface phonons in both Bi2Se3 and Bi2Te3. Our assignment is supported by density functional theory calculations revealing surface phonons at frequencies close to those of the extra peaks in the Raman data. The theoretical results also indicate that these modes are not a consequence of spin-orbit coupling and, thus, that their occurrence is unrelated to the topological properties of these materials.

  6. The SASS scattering coefficient algorithm. [Seasat-A Satellite Scatterometer

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Grantham, W. L.; Boggs, D. H.; Sweet, J. L.

    1980-01-01

    This paper describes the algorithms used to convert engineering unit data obtained from the Seasat-A satellite scatterometer (SASS) to radar scattering coefficients and associated supporting parameters. A description is given of the instrument receiver and related processing used by the scatterometer to measure signal power backscattered from the earth's surface. The applicable radar equation used for determining scattering coefficient is derived. Sample results of SASS data processed through current algorithm development facility (ADF) scattering coefficient algorithms are presented which include scattering coefficient values for both water and land surfaces. Scattering coefficient signatures for these two surface types are seen to have distinctly different characteristics. Scattering coefficient measurements of the Amazon rain forest indicate the usefulness of this type of data as a stable calibration reference target.

  7. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  8. Experimental study of dual polarized radar return from the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2017-10-01

    Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.

  9. Probing mesoscopic crystals with electrons: One-step simultaneous inelastic and elastic scattering theory

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir U.; Silkin, Vyacheslav M.; Krasovskii, Eugene E.

    2017-12-01

    Inelastic scattering of the medium-energy (˜10 -100 eV) electrons underlies the method of the high-resolution electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional (Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials. We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the inelastic scattering only ("energy-loss functions" formalism), in contrast to its justifiable use for bulk solids and surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π +σ plasmon and elastic diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale, which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.

  10. Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection

    DTIC Science & Technology

    2012-09-01

    Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection by Mikella E. Farrell, Ellen L. Holthoff and Paul M...Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection Mikella E. Farrell, Ellen L. Holthoff and Paul M. Pellegrino Sensors and...DD-MM-YYYY) September 2012 2. REPORT TYPE Reprint 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Next-generation Surface Enhanced Raman

  11. Microjets and coated wheels: versatile tools for exploring collisions and reactions at gas-liquid interfaces.

    PubMed

    Faust, Jennifer A; Nathanson, Gilbert M

    2016-07-07

    This tutorial review describes experimental aspects of two techniques for investigating collisions and reactions at the surfaces of liquids in vacuum. These gas-liquid scattering experiments provide insights into the dynamics of interfacial processes while minimizing interference from vapor-phase collisions. We begin with a historical survey and then compare attributes of the microjet and coated-wheel techniques, developed by Manfred Faubel and John Fenn, respectively, for studies of high- and low-vapor pressure liquids in vacuum. Our objective is to highlight the strengths and shortcomings of each technique and summarize lessons we have learned in using them for scattering and evaporation experiments. We conclude by describing recent microjet studies of energy transfer between O2 and liquid hydrocarbons, HCl dissociation in salty water, and super-Maxwellian helium evaporation.

  12. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  13. Polar catastrophe and the structure of KT a 1 - x N b x O 3 surfaces: Results from elastic and inelastic helium atom scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, F. A.; Trelenberg, T. W.; Li, Jiefang A.

    2015-07-13

    In this paper, the structure and dynamics of cleaved (001) surfaces of potassium tantalates doped with niobium, KTa 1-xNb xO 3 (KTN), with x ranging from 0% to 30%, were measured by helium atom scattering (HAS). Through HAS time-of-flight (TOF) experiments, a dispersionless branch (Einstein phonon branch) with energy of 13-14meV was observed across the surface Brillouin zone in all samples. When this observation is combined with the results from earlier experimental and theoretical studies on these materials, a consistent picture of the stable surface structure emerges: After cleaving the single-crystal sample, the surface should be composed of equal areasmore » of KO and TaO 2/NbO 2 terraces. The data, however, suggest that K + and O 2- ions migrate from the bulk to the surface, forming a charged KO lattice that is neutralized primarily by additional K + ions bridging pairs of surface oxygens. This structural and dynamic modification at the (001) surface of KTN appears due to its formally charged KO(-1) and TaO 2/NbO 2(+1) layers and avoids a “polar catastrophe.” Finally, this behavior is contrasted with the (001) surface behavior of the fluoride perovskite KMnF 3 with its electrically neutral KF and MnF 2 layers.« less

  14. Polar catastrophe and the structure of KTa 1-xNb xO₃ surfaces: Results from elastic and inelastic helium atom scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, F. A.; Trelenberg, T. W.; Li, J. A.

    2015-07-13

    The structure and dynamics of cleaved (001) surfaces of potassium tantalates doped with niobium, KTa 1-xNb xO₃ (KTN), with x ranging from 0% to 30%, were measured by helium atom scattering (HAS). Through HAS time-of-flight (TOF) experiments, a dispersionless branch (Einstein phonon branch) with energy of 13-14 meV was observed across the surface Brillouin zone in all samples. When this observation is combined with the results from earlier experimental and theoretical studies on these materials, a consistent picture of the stable surface structure emerges: After cleaving the single-crystal sample, the surface should be composed of equal areas of KO andmore » TaO₂/NbO₂ terraces. The data, however, suggest that K⁺ and O²⁻ ions migrate from the bulk to the surface, forming a charged KO lattice that is neutralized primarily by additional K⁺ ions bridging pairs of surface oxygens. This structural and dynamic modification at the (001) surface of KTN appears due to its formally charged KO(-1) and TaO₂/NbO₂(+1) layers and avoids a “polar catastrophe.” This behavior is contrasted with the (001) surface behavior of the fluoride perovskite KMnF₃ with its electrically neutral KF and MnF₂ layers.« less

  15. Backscattering from a Gaussian distributed, perfectly conducting, rough surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1977-01-01

    The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.

  16. Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1991-01-01

    Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.

  17. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    DOE PAGES

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; ...

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO 2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated usingmore » the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.« less

  18. Small-angle x-ray scattering in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim

    2018-05-01

    We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.

  19. Angular distributions for the F+H2-->HF+H reaction: The role of the F spin-orbit excited state and comparison with molecular beam experiments

    NASA Astrophysics Data System (ADS)

    Tzeng, Yi-Ren; Alexander, Millard H.

    2004-09-01

    We report quantum mechanical calculations of center-of-mass differential cross sections (DCS) for the F+H2→HF+H reaction performed on the multistate [Alexander-Stark-Werner (ASW)] potential energy surfaces (PES) that describe the open-shell character of this reaction. For comparison, we repeat single-state calculations with the Stark-Werner (SW) and Hartke-Stark-Werner (HSW) PESs. The ASW DCSs differ from those predicted for the SW and HSW PES in the backward direction. These differences arise from nonadiabatic coupling between several electronic states. The DCSs are then used in forward simulations of the laboratory-frame angular distributions (ADs) measured by Lee, Neumark, and co-workers [J. Chem. Phys. 82, 3045 (1985)]. The simulations are scaled to match experiment over the range 12°<Θlab<80°. As a natural consequence of the reduced backward scattering, the ASW ADs are more forward and sideways scattered than predicted by the HSW PES. At the two higher collision energies (2.74 and 3.42 kcal/mol) the enhanced sideways scattering of HF v'=2 products bring the ASW ADs in very good agreement with the experiment. At the lowest collision energy (1.84 kcal/mol), the simulations, for all three sets of PESs consistently underestimate the sideways scattering. The residual disagreements, particularly at the lowest collision energy, may be due to the known deficiencies in the PESs.

  20. Atomic Beam Scattering Methods to Study Overlayer Structures and H-Surface Interaction Relevant to Astrophysics

    NASA Astrophysics Data System (ADS)

    Lin, Jingsu

    In this thesis we present results of experimental methods for studying surface structures of ultra-thin films and describe a new apparatus to study the recombination of atomic hydrogen on well characterized low temperature surface using atomic and molecular beam methods. We have used atomic beam scattering (ABS) to characterize the growth of mercury and lead overlayers on Cu(001) surface. The structures of ordered phases have been identified using ABS and low-energy electron diffraction (LEED). A model to analyze diffraction data from these phases is presented. The new apparatus we are going to describe includes a high performance atomic hydrogen source using radio-frequency (RF) dissociation. The dissociation efficiency can be as high as 90% in the optimized pressure range. An atomic hydrogen beam line has been added to our ultra-high vacuum (UHV) scattering apparatus. We have also designed and constructed a low temperature sample manipulator for experiments at liquid helium temperatures. The manipulator has one degree of freedom of rotation and the capability of heating the sample to 700K and cooling down to 12K. The first sample studied was a single graphite surface. We have used a He beam to characterize the sample surface and to monitor deposition of H on the sample surface in real time. A series of "adsorption curves" have been obtained at different temperature and doses. We found that at temperatures below 16K, both H and H_2 have formed a partial layer on the surface. From adsorption curve, we deduce that the initial sticking coefficient for H is about 0.06 when surface at 16K. When the H beam is interrupted, the He specularly reflected beam recovers partially, indicating that hydrogen atoms desorb, while others remain on the surface. The residual coverage of H is estimated to be about 2% of a monolayer.

  1. Examination of Surface Roughness on Light Scattering by Long Ice Columns by Use of a Two-Dimensional Finite-Difference Time-Domain Algorithm

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.

    2004-01-01

    Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.

  2. Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1983-01-01

    The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.

  3. Progress in radar snow research. [Brookings, South Dakota

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.

  4. Silica-coated titania and zirconia colloids for subsurface transport field experiments

    USGS Publications Warehouse

    Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.

    2000-01-01

    Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.

  5. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  6. Does the low hole transport mass in <110> and <111> Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard

    2012-06-01

    The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.

  7. Satellite remote sensing of surface energy and mass balance - Results from FIFE

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.

    1991-01-01

    Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.

  8. Wavelength dependence in radio-wave scattering and specular-point theory

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.

    1976-01-01

    Radio-wave scattering from natural surfaces contains a strong quasispecular component that at fixed wavelengths is consistent with specular-point theory, but often has a strong wavelength dependence that is not predicted by physical optics calculations under the usual limitations of specular-point models. Wavelength dependence can be introduced by a physical approximation that preserves the specular-point assumptions with respect to the radii of curvature of a fictitious, effective scattering surface obtained by smoothing the actual surface. A uniform low-pass filter model of the scattering process yields explicit results for the effective surface roughness versus wavelength. Interpretation of experimental results from planetary surfaces indicates that the asymptotic surface height spectral densities fall at least as fast as an inverse cube of spatial frequency. Asymptotic spectral densities for Mars and portions of the lunar surface evidently decrease more rapidly.

  9. Retrieval of background surface reflectance with BRD components from pre-running BRDF

    NASA Astrophysics Data System (ADS)

    Choi, Sungwon; Lee, Kyeong-Sang; Jin, Donghyun; Lee, Darae; Han, Kyung-Soo

    2016-10-01

    Many countries try to launch satellite to observe the Earth surface. As important of surface remote sensing is increased, the reflectance of surface is a core parameter of the ground climate. But observing the reflectance of surface by satellite have weakness such as temporal resolution and being affected by view or solar angles. The bidirectional effects of the surface reflectance may make many noises to the time series. These noises can lead to make errors when determining surface reflectance. To correct bidirectional error of surface reflectance, using correction model for normalized the sensor data is necessary. A Bidirectional Reflectance Distribution Function (BRDF) is making accuracy higher method to correct scattering (Isotropic scattering, Geometric scattering, Volumetric scattering). To correct bidirectional error of surface reflectance, BRDF was used in this study. To correct bidirectional error of surface reflectance, we apply Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. And we apply 2 steps for retrieving Background Surface Reflectance (BSR). The first step is retrieving Bidirectional Reflectance Distribution (BRD) coefficients. Before retrieving BSR, we did pre-running BRDF to retrieve BRD coefficients to correct scatterings (Isotropic scattering, Geometric scattering, Volumetric scattering). In pre-running BRDF, we apply BRDF with observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get BRD coefficients for calculating scattering. After that, we apply BRDF again in the opposite direction with BRD coefficients and angular data to retrieve BSR as a second step. As a result, BSR has very similar reflectance to one of VGT-S1. And reflectance in BSR is shown adequate. The highest reflectance of BSR is not over 0.4μm in blue channel, 0.45μm in red channel, 0.55μm in NIR channel. And for validation we compare reflectance of clear sky pixel from SPOT/VGT status map data. As a result of comparing BSR with VGT-S1, bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. They are very reasonable results, so we confirm that BSR is similar to VGT-S1. And weakness of this study is missing pixel in BSR which are observed less time to retrieve BRD components. If missing pixels are filled, BSR is better to retrieve surface products with more accuracy. And we think that after filling the missing pixel and being more accurate, it can be useful data to retrieve surface product which made by surface reflectance like cloud masking and retrieving aerosol.

  10. Interrelating meteorite and asteroid spectra at UV-Vis-NIR wavelengths using novel multiple-scattering methods

    NASA Astrophysics Data System (ADS)

    Martikainen, Julia; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-10-01

    Asteroids have remained mostly the same for the past 4.5 billion years, and provide us information on the origin, evolution and current state of the Solar System. Asteroids and meteorites can be linked by matching their respective reflectance spectra. This is difficult, because spectral features depend strongly on the surface properties, and meteorite surfaces are free of regolith dust present in asteroids. Furthermore, asteroid surfaces experience space weathering which affects their spectral features.We present a novel simulation framework for assessing the spectral properties of meteorites and asteroids and matching their reflectance spectra. The simulations are carried out by utilizing a light-scattering code that takes inhomogeneous waves into account and simulates light scattering by Gaussian-random-sphere particles large compared to the wavelength of the incident light. The code uses incoherent input and computes phase matrices by utilizing incoherent scattering matrices. Reflectance spectra are modeled by combining olivine, pyroxene, and iron, the most common materials that dominate the spectral features of asteroids and meteorites. Space weathering is taken into account by adding nanoiron into the modeled asteroid spectrum. The complex refractive indices needed for the simulations are obtained from existing databases, or derived using an optimization that utilizes our ray-optics code and the measured spectrum of the material.We demonstrate our approach by applying it to the reflectance spectrum of (4) Vesta and the reflectance spectrum of the Johnstown meteorite measured with the University of Helsinki integrating-sphere UV-Vis-NIR spectrometer.Acknowledgments. The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL).

  11. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    PubMed

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate.

  12. A Quantitative Test of the Applicability of Independent Scattering to High Albedo Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1993-01-01

    To test the hypothesis that the independent scattering calculation widely used to model radiative transfer in atmospheres and clouds will give a useful approximation to the intensity and linear polarization of visible light scattered from an optically thick surface of transparent particles, laboratory measurements are compared to the independent scattering calculation for a surface of spherical particles with known optical constants and size distribution. Because the shape, size distribution, and optical constants of the particles are known, the independent scattering calculation is completely determined and the only remaining unknown is the net effect of the close packing of the particles in the laboratory sample surface...

  13. Comparison of scattering and reflection SFG: a question of phase-matching.

    PubMed

    de Aguiar, Hilton B; Scheu, Rüdiger; Jena, Kailash C; de Beer, Alex G F; Roke, Sylvie

    2012-05-21

    We present a comparison between sum frequency scattering (SFS) and reflection mode sum frequency generation (R-SFG). We have used scattering theory to describe both scattering experiments as well as reflection mode experiments. The interfacial vibrational spectrum of nanoscopic oil droplets dispersed in water was probed with SFS as well as with R-SFG. Spectra recorded in phase-matched R-SFG mode and spectra recorded with SFS from the same sample are different, which shows that different interfaces are measured. Scattering spectra at different scattering angles agree with nonlinear light scattering theory. We further present experiments with polymer films aimed at quantifying the comparative strength of R-SFG and SFS experiments.

  14. Implementation of a method for calculating temperature-dependent resistivities in the KKR formalism

    NASA Astrophysics Data System (ADS)

    Mahr, Carsten E.; Czerner, Michael; Heiliger, Christian

    2017-10-01

    We present a method to calculate the electron-phonon induced resistivity of metals in scattering-time approximation based on the nonequilibrium Green's function formalism. The general theory as well as its implementation in a density-functional theory based Korringa-Kohn-Rostoker code are described and subsequently verified by studying copper as a test system. We model the thermal expansion by fitting a Debye-Grüneisen curve to experimental data. Both the electronic and vibrational structures are discussed for different temperatures, and employing a Wannier interpolation of these quantities we evaluate the scattering time by integrating the electron linewidth on a triangulation of the Fermi surface. Based thereupon, the temperature-dependent resistivity is calculated and found to be in good agreement with experiment. We show that the effect of thermal expansion has to be considered in the whole calculation regime. Further, for low temperatures, an accurate sampling of the Fermi surface becomes important.

  15. Nanoscale electron transport at the surface of a topological insulator.

    PubMed

    Bauer, Sebastian; Bobisch, Christian A

    2016-04-21

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  16. Nanoscale electron transport at the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  17. Workshop on Radar Investigations of Planetary and Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.

  18. SAR Polarimetric Scattering from Natural Terrains

    DTIC Science & Technology

    2017-02-17

    Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Radar polarimetry and speckles of random rough surface scattering is studied using 3-D numerical...Performance : 04/18/2013 - 04/17/2016 AOARD PM: Dr. Seng Hong Abstract : Radar polarimetry and speckles of random rough surface scattering is studied using 3...Doctoral Dissertation Title : Polarimetry In Radar Backscattering from Soil and Vegetated Surfaces Institution : University of Washington, Seattle

  19. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  20. First Rosetta Radio Science Bistatic Radar Observations of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Andert, Thomas P.; Remus, Stefan; Simpson, Richard A.; Pätzold, Martin; Asmar, Sami W.; Kahan, Daniel S.; Bird, Mike K.; Häusler, Bernd; Tellmann, Silvia

    2015-04-01

    The Rosetta spacecraft was successfully inserted on 6th August 2014 into orbit around comet 67P/Churyumov-Gerasimenko. In September Rosetta was placed into bound orbits with an initial distance of 30 km and a decreasing distance until the end October. After lander delivery, bound orbits were maintained again at 20 km and 30 km. One of the objectives of the Rosetta Radio Science Investigations (RSI) is to address the dielectric properties, small-scale roughness, and rotational state of the nucleus of the comet, which can be determined by means of a surface scattering experiment, also known as Bistatic Radar. The radio subsystem transmitter located on board the Rosetta spacecraft beams right circularly polarized radio signals at two wavelengths -3.6 cm (X-Band) and 13 cm (S-Band) - toward the nucleus surface. Part of the impinging radiation is then scattered toward a receiver at a ground station on Earth and recorded. On September 29th, 2014 the first Bistatic Radar experiment ever at a comet was successfully conducted. The distance between 67P/Churyumov-Gerasimenko and Rosetta was 20 km and both right circularly polarized (RCP) and left circularly polarized (LCP) reflected signals from the comet's surface in X-Band were detected during the experiment at the Goldstone complex of the NASA Deep Space Network. The ultra-stable oscillator (USO) on board Rosetta served during the experiment as a very stable reference frequency source. The direct and reflected signal were separated during the experiment by only a fraction of 1 Hz. The extreme stability of the USO allowed a detection and separation of the weak signals even on the required long integration times. Five additional Bistatic Radar experiments were conducted successfully between mid-October and mid-December 2014 with the 70-m DSN ground stations in Goldstone and Canberra at different distances to the comet (10 km, 20 km and 30 km) and reflected signals were observed in each case.

  1. Study of the blue-green laser scattering from the rough sea surface with foams by the improved two-scale method

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.

    2015-10-01

    The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.

  2. In situ surface roughness measurement using a laser scattering method

    NASA Astrophysics Data System (ADS)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  3. Further investigations of experiment A0034 atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Thermal control coatings within the recessed compartments of LDEF Experiment A0034 experienced the maximum leading edge fluence of atomic oxygen with considerably less solar UV radiation exposure than top-surface mounted materials of other LDEF experiments on either the leading or the trailing edge. This combination of exposure within A0034 resulted in generally lower levels of darkening attributable to solar UV radiation than for similar materials on other LDEF experiments exposed to greater cumulative solar UV radiation levels. Changes in solar absorptance and infrared thermal emittance of the exposed coatings are thus unique to this exposure. Analytical results for other applications have been found for environmentally induced changes in fluorescence, surface morphology, light scattering, and the effects of coating outgassing products on adjacent mirrors and windows of the A0034 experiment. Some atmospheric bleaching of the thermal control coatings, in addition to that presumably experience during reentry and recovery operations, has been found since initial post-flight observations and measurements.

  4. Polarized Light Scattering from Perfect and Perturbed Surfaces and Fundamental Scattering Systems

    DTIC Science & Technology

    1992-02-29

    ob- one frequency, an extension of it to multiple-field interac- served in the elastically scattered light emitted from glass tions would follow the...that 8. V CeIll . A. A. Maradudin, A. M. Marvin, and A. R. McGurn, can explain only gross scattering features. It is inde "Some aspects of light...and a surface of index n a 10.0 - 0.01. Such a surface could be made with a series of 1/4-wave dielectric layers on a glass substrate. It Is more

  5. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.

    PubMed

    He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an

    2018-03-01

    A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.

  6. Bistatic Radar Observations of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Andert, T.; Remus, S.; Simpson, R. A.; Paetzold, M.; Häusler, B.; Tellmann, S.; González Peytavi, G.; Bird, M. K.

    2017-12-01

    Objectives of the Rosetta Radio Science investigations included determining the dielectric properties, small-scale roughness, and rotational state of the nucleus of comet 67P/Churyumov-Gerasimenko (67P/C-G) from bistatic radar (BSR) measurements. The radio transmitter and high gain antenna (HGA) on the spacecraft beamed right circularly polarized (RCP) radio signals at two wavelengths - 3.6 cm (X-Band) and 13 cm (S-Band) - toward the nucleus surface. Part of the impinging radiation was then scattered toward a 70-m ground station of the NASA Deep Space Network (DSN) on Earth where it was received and recorded coherently in both RCP and left circular polarization (LCP). Between late September and mid-December 2014 six BSR experiments at 67P/C-G were successfully conducted. Such measurements had never before been attempted at such a small body in interplanetary space. The distances between the spacecraft and the comet varied from 10 km (September) to 30 km (December) and the incident angles ranged from 42° to 56°. In five experiments the HGA footprint was close to the equator; on 29 November the footprint was close to the rotation axis. Both RCP and LCP echoes were detected at X-band during the experiments; the echoes on 29 November were strongest. Rosetta's ultra-stable oscillator provided a very stable frequency reference for transmission; such stability was required because the direct and reflected signals were separated during the experiments by only a fraction of 1 Hz. For a known incidence angle and measured RCP/LCP power ratio, the surface dielectric constant may be obtained by applying Fresnel theory if the surface is sufficiently smooth. In the Rosetta case the resulting power ratios on 29 November yielded non-physical dielectric constants, possibly because of the irregularly shaped surface. The paper will investigate the possibility that a cloud of discrete scatters might be responsible for the observed RCP/LCP ratios.

  7. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    NASA Astrophysics Data System (ADS)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  8. Laboratory observations and simulations of phase reddening

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Grynko, Ye.; Pommerol, A.; Keller, H. U.; Thomas, N.; Roush, T. L.

    2014-09-01

    The visible reflectance spectrum of many Solar System bodies changes with changing viewing geometry for reasons not fully understood. It is often observed to redden (increasing spectral slope) with increasing solar phase angle, an effect known as phase reddening. Only once, in an observation of the martian surface by the Viking 1 lander, was reddening observed up to a certain phase angle with bluing beyond, making the reflectance ratio as a function of phase angle shaped like an arch. However, in laboratory experiments this arch-shape is frequently encountered. To investigate this, we measured the bidirectional reflectance of particulate samples of several common rock types in the 400-1000 nm wavelength range and performed ray-tracing simulations. We confirm the occurrence of the arch for surfaces that are forward scattering, i.e. are composed of semi-transparent particles and are smooth on the scale of the particles, and for which the reflectance increases from the lower to the higher wavelength in the reflectance ratio. The arch shape is reproduced by the simulations, which assume a smooth surface. However, surface roughness on the scale of the particles, such as the Hapke and van Horn (Hapke, B., van Horn, H. [1963]. J. Geophys. Res. 68, 4545-4570) fairy castles that can spontaneously form when sprinkling a fine powder, leads to monotonic reddening. A further consequence of this form of microscopic roughness (being indistinct without the use of a microscope) is a flattening of the disk function at visible wavelengths, i.e. Lommel-Seeliger-type scattering. The experiments further reveal monotonic reddening for reflectance ratios at near-IR wavelengths. The simulations fail to reproduce this particular reddening, and we suspect that it results from roughness on the surface of the particles. Given that the regolith of atmosphereless Solar System bodies is composed of small particles, our results indicate that the prevalence of monotonic reddening and Lommel-Seeliger-type scattering for these bodies results from microscopic roughness, both in the form of structures built by the particles and roughness on the surface of the particles themselves. It follows from the singular Viking 1 observation that the surface in front of the lander was composed of semi-transparent particles, and was smooth on the scale of the particle size.

  9. Surface Collective Modes in the Topological Insulators Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 - x Se x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogar, A.; Vig, S.; Thaler, A.

    We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 - x Se x . Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ '' ( q , ω ) at THz energy scales, and is themore » most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role« less

  10. Surface collective modes in the topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogar, A.; Gu, G.; Vig, S.

    In this study, we used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x. Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ''(q,ω) at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed inmore » previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.« less

  11. Surface Collective Modes in the Topological Insulators Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 - x Se x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogar, A.; Vig, S.; Thaler, A.

    We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x . Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ '' ( q , ω ) at THz energy scales, and is the most likely origin of a quasiparticlemore » dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.« less

  12. Surface collective modes in the topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x

    DOE PAGES

    Kogar, A.; Gu, G.; Vig, S.; ...

    2015-12-15

    In this study, we used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi 2Se 3 and Bi 0.5Sb 1.5Te 3-xSe x. Our goal was to identify the “spin plasmon” predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ''(q,ω) at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed inmore » previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.« less

  13. Spectral scattering characteristics of space target in near-UV to visible bands.

    PubMed

    Bai, Lu; Wu, Zhensen; Cao, Yunhua; Huang, Xun

    2014-04-07

    In this study, the spectral scattering characteristics of a space target are calculated in the near-UV to visible bands on the basis of measured data of spectral hemispheric reflectivity in the upper half space. Further, the bidirectional reflection distribution function (BRDF) model proposed by Davies is modified to describe the light scattering properties of a target surface. This modification aims to improve the characteristics identifying ability for different space targets. By using this modified Davies spectrum BRDF model, the spectral scattering characteristics of each subsurface can be obtained. A mathematical model of spectral scattering properties of the space target is built by summing all the contributing surface grid reflection scattering components, considering the impact of surface shadow effect.Moreover, the spectral scattering characteristics of the space target calculated with both the traditional and modified Davies BRDF models are compared. The results show that in the fixed and modified cases, the hemispheric reflectivity significantly affects the spectral scattering irradiance of the target.

  14. Foreign body detection in food materials using compton scattered x-rays

    NASA Astrophysics Data System (ADS)

    McFarlane, Nigel James Bruce

    This thesis investigated the application of X-ray Compton scattering to the problem of foreign body detection in food. The methods used were analytical modelling, simulation and experiment. A criterion was defined for detectability, and a model was developed for predicting the minimum time required for detection. The model was used to predict the smallest detectable cubes of air, glass, plastic and steel. Simulations and experiments were performed on voids and glass in polystyrene phantoms, water, coffee and muesli. Backscatter was used to detect bones in chicken meat. The effects of geometry and multiple scatter on contrast, signal-to-noise, and detection time were simulated. Compton scatter was compared with transmission, and the effect of inhomogeneity was modelled. Spectral shape was investigated as a means of foreign body detection. A signal-to-noise ratio of 7.4 was required for foreign body detection in food. A 0.46 cm cube of glass or a 1.19 cm cube of polystyrene were detectable in a 10 cm cube of water in one second. The minimum time to scan a whole sample varied as the 7th power of the foreign body size, and the 5th power of the sample size. Compton scatter inspection produced higher contrasts than transmission, but required longer measurement times because of the low number of photon counts. Compton scatter inspection of whole samples was very slow compared to production line speeds in the food industry. There was potential for Compton scatter in applications which did not require whole-sample scanning, such as surface inspection. There was also potential in the inspection of inhomogeneous samples. The multiple scatter fraction varied from 25% to 55% for 2 to 10 cm cubes of water, but did not have a large effect on the detection time. The spectral shape gave good contrasts and signal-to-noise ratios in the detection of chicken bones.

  15. Enhancement factor statistics of surface enhanced Raman scattering in multiscale heterostructures of nanoparticles.

    PubMed

    Zito, Gianluigi; Rusciano, Giulia; Sasso, Antonio

    2016-08-07

    Suitable metal nanostructures may induce surface-enhanced Raman scattering (SERS) enhancement factors (EFs) large-enough to reach single-molecule sensitivity. However, the gap hot-spot EF probability density function (PDF) has the character of a long-tail distribution, which dramatically mines the reproducibility of SERS experiments. Herein, we carry out electrodynamic calculations based on a 3D finite element method of two plasmonic nanostructures, combined with Monte Carlo simulations of the EF statistics under different external conditions. We compare the PDF produced by a homodimer of nanoparticles with that provided by a self-similar trimer. We show that the PDF is sensitive to the spatial distribution of near-field enhancement specifically supported by the nanostructure geometry. Breaking the symmetry of the plasmonic system is responsible for inducing particular modulations of the PDF tail resembling a multiple Poisson distribution. We also study the influence that molecular diffusion towards the hottest hot-spot, or selective hot-spot targeting, might have on the EF PDF. Our results quantitatively assess the possibility of designing the response of a SERS substrate so as to contain the intrinsic EF PDF variance and significantly improving, in principle, the reproducibility of SERS experiments.

  16. Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Richter, K.; Price, T. J.; Jones, J.; Faust, C.; Hickman, A. P.; Huennekens, J.; Malenda, R. F.; Ross, A. J.; Harker, H.; Crozet, P.; Forrey, R. C.

    2015-05-01

    Rotationally inelastic collisions of NaK A1Σ+ molecules with He and Ar are studied. At Lehigh, we use pump-probe polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. At Lyon, Fourier transform (FT)-resolved LIF spectra are recorded. In both cases, the pump laser excites a particular ro-vibrational level A1Σ+ (v , J). We observe strong direct lines corresponding to transitions from the (v , J) level pumped, and weak satellite lines corresponding to transitions from collisionally-populated levels (v ,J' = J + ΔJ). The ratios of satellite to direct line intensities in LIF and PL yield population and orientation transfer information. A strong propensity for ΔJ = even transitions is observed for both He and Ar perturbers. In the FT fluorescence experiment we also observe v-changing collisions. Ab initio potential surface and scattering calculations are underway for collisions in the A1Σ+ and X1Σ+ states. For He-NaK we have calculated potential surfaces using GAMESS and carried out coupled channel scattering calculations of transfer of population, orientation, and alignment. Calculations of v-changing collision cross sections are also in progress. Work supported by NSF, XSEDE and CNRS (PICS).

  17. A Backscattering Enhanced Microwave Canopy Scattering Model Based On MIMICS

    NASA Astrophysics Data System (ADS)

    Shen, X.; Hong, Y.; Qin, Q.; Chen, S.; Grout, T.

    2010-12-01

    For modeling microwave scattering of vegetated areas, several microwave canopy scattering models, based on the vectorized radiative transfer equation (VRT) that use different solving techniques, have been proposed in the past three decades. As an iterative solution of VRT at low orders, the Michigan Microwave Canopy Scattering Model (MIMICS) gives an analytical expression for calculating scattering as long as the volume scattering is not too strong. The most important usage of such models is to predict scattering in the backscattering direction. Unfortunately, the simplified assumption of MIMICS is that the scattering between the ground and trunk layers only includes the specular reflection. As a result, MIMICS includes a dominant coherent term which vanishes in the backscattering direction because this term contains a delta function factor of zero in this direction. This assumption needs reconsideration for accurately calculating the backscattering. In the framework of MIMICS, any incoherent terms that involve surface scattering factors must at least undergo surface scattering twice and volume scattering once. Therefore, these incoherent terms are usually very weak. On the other hand, due to the phenomenon of backscattering enhancement, the surface scattering in the backscattering direction is very strong compared to most other directions. Considering the facts discussed above, it is reasonable to add a surface backscattering term to the last equation of the boundary conditions of MIMICS. More terms appear in the final result including a backscattering coherent term which enhances the backscattering. The modified model is compared with the original MIMICS (version 1.0) using JPL/AIRSAR data from NASA Campaign Soil Moisture Experimental 2003 (SMEX03) and Washita92. Significant improvement is observed.

  18. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    PubMed

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-04

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.

  19. Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB 6

    DOE PAGES

    Luo, Yongkang; Chen, Hua; Dai, Jianhui; ...

    2015-02-25

    Motivated by the high sensitivity to Fermi surface topology and scattering mechanisms in magnetothermoelectric transport, we have measured the thermopower and Nernst effect on the (011) plane of the proposed topological Kondo insulator SmB 6. These experiments, together with electrical resistivity and Hall effect measurements, suggest that the (011) plane also harbors a metallic surface with an effective mass on the order of 10–10 2 m 0. The surface and bulk conductances are well distinguished in these measurements and are categorized into metallic and nondegenerate semiconducting regimes, respectively. As a result, electronic correlations play an important role in enhancing scatteringmore » and also contribute to the heavy surface state.« less

  20. New light-shielding technique for shortening the baffle length of a star sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sato, Yukio; Mitani, Kenji; Kanai, Hiroshi; Hama, Kazumori

    2002-10-01

    We have developed a star sensor with a short baffle of 140 mm. Our baffle provides a Sun rejection angle of 35 degrees with stray light attenuation less than the intensity level of a visual magnitude of Mv = +5 for a wide field of view lens of 13x13 degrees. The application of a new light shielding technique taking advantage of total internal reflection phenomena enables us to reduce the baffle length to about three fourths that of the conventional two-stage baffle. We have introduced two ideas to make the baffle length shorter. The one is the application of a nearly half sphere convex lens as the first focusing lens. The bottom surface reflects the scattering rays with high incident angles of over 50 degrees by using the total internal reflection phenomena. The other is the painting of the surface of the baffle with not frosted but gloss black paint. The gloss black paint enables most of the specular reflection rays to go back to outer space without scattering. We confirm the baffle performance mentioned above by scattering ray tracing simulation and a light attenuation experiment in a darkroom on the ground.

  1. Wave scattering from random sets of closely spaced objects through linear embedding via Green's operators

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; de Hon, B. P.; Tijhuis, A. G.

    2011-08-01

    In this paper we present the application of linear embedding via Green's operators (LEGO) to the solution of the electromagnetic scattering from clusters of arbitrary (both conducting and penetrable) bodies randomly placed in a homogeneous background medium. In the LEGO method the objects are enclosed within simple-shaped bricks described in turn via scattering operators of equivalent surface current densities. Such operators have to be computed only once for a given frequency, and hence they can be re-used to perform the study of many distributions comprising the same objects located in different positions. The surface integral equations of LEGO are solved via the Moments Method combined with Adaptive Cross Approximation (to save memory) and Arnoldi basis functions (to compress the system). By means of purposefully selected numerical experiments we discuss the time requirements with respect to the geometry of a given distribution. Besides, we derive an approximate relationship between the (near-field) accuracy of the computed solution and the number of Arnoldi basis functions used to obtain it. This result endows LEGO with a handy practical criterion for both estimating the error and keeping it in check.

  2. Laser diagnostics for characterization of sprays formed by a collapsing non-equilibrium bubble

    NASA Astrophysics Data System (ADS)

    Kannan, Y. S.; Balusamy, S.; Karri, B.

    2015-12-01

    In this paper, we investigate the use of laser diagnostic tools for in-plane imaging of bubble induced spray using a laser sheet and Mie scattering technique. A perspex plate of thickness 10 mm with a hole of diameter 1 mm in the center is placed in the middle of a glass tank filled with water such that the top surface of the plate coincides with the water surface. A bubble is created just below the hole using a low-voltage spark circuit such that it expands against the hole. This leads to the formation of two jets which impact leading to a spray and break-up into droplets. The spray evolution is observed using a laser sheet directed in a plane through the center of the hole. The illuminated plane is imaged using a high-speed camera based on the Mie scattering from glass beads suspended in the liquid. Results show that Mie scattering technique has potential in studying bubble-induced sprays with applications such as in fuel sprays, drug-delivery etc, and also for validation of numerical codes. We present results from our ongoing experiments in this paper.

  3. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  4. Analysis of selected specimens from the STS-46 Energetic Oxygen Interaction with Materials-3 experiment

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Bourassa, Roger J.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    The Energetic Oxygen Interaction with Materials 3 (EOIM-3) experiment was flown on the STS-46 mission, which was launched on 31 Jul. 1992 and returned 8 Aug. 1992. Boeing specimens were located on both the NASA Marshall Space Flight Center (MSFC) tray and the Ballistic Missile Defense Organization (BMDO) tray integrated by the Jet Propulsion Laboratory (JPL). The EOIM-3 pallet was mounted in the Space Shuttle payload bay near the aft bulkhead. During the mission, the atomic oxygen (AO) exposure levels of specimens in these passive sample trays was about 2.3 x 10(exp 20) atoms/sq cm. The specimens also received an estimated 22 equivalent sun hours of solar exposure. In addition, it appears that the EOIM-3 pallet was exposed to a silicone contamination source and many specimens had a thin layer of silicon based deposit on their surfaces after the flight. The specimens on the MSFC tray included seven solid film lubricants, a selection of butyl rubber (B612) and silicone (S383) o-rings, three indirect scatter surfaces, and Silver/Fluorinated Ethylene Propylene (Ag/FEP) and Chemglaze A276 specimens which had previously flown on trailing edge locations of the Long Duration Exposure Facility (LDEF). The specimens on the JPL tray included composites previously flown on LDEF and two indirect scattering surfaces.

  5. Nanostructural reorganization of bacterial cellulose by ultrasonic treatment.

    PubMed

    Tischer, Paula C S Faria; Sierakowski, Maria Rita; Westfahl, Harry; Tischer, Cesar Augusto

    2010-05-10

    In this work, bacterial cellulose was subjected to a high-power ultrasonic treatment for different time intervals. The morphological analysis, scanning electron microscopy, and atomic force microscopy revealed that this treatment changed the width and height of the microfibrillar ribbons and roughness of their surface, originating films with new nanostructures. Differential thermal analysis showed a higher thermal stability for ultrasonicated samples with a pyrolysis onset temperature of 208 degrees C for native bacterial cellulose and 250 and 268 degrees C for the modified samples. The small-angle X-ray scattering experiments demonstrated that the treatment with ultrasound increased the thickness of the ribbons, while wide-angle X-ray scattering experiments demonstrated that the average crystallite dimension and the degree of crystallinity also increased. A model is proposed where the thicker ribbons and crystallites result from the fusion of neighboring ribbons due to cavitation effects.

  6. Simulations and experiments on gas adsorption in novel microporous polymers

    NASA Astrophysics Data System (ADS)

    Larsen, Gregory Steven

    Microporous materials represent a fascinating class of materials with a broad range of applications. The work presented here focuses on the use of a novel class of microporous material known as polymers of intrinsic micrioporosity, or PIMs, for use in gas separation and storage technologies. The aim of this research is to develop a detailed understanding of the relationship between the monomeric structure and the adsorptive performance of PIMs. First, a generalizable structure generation technique was developed such that simulation samples of PIM-1 recreated experimental densities, scattering, surface areas, pore size distributions, and adsorption isotherms. After validation, the simulations were applied as virtual experiments on several new PIMs with the intent to screen their capabilities as adsorbent materials and elucidate design principles for linear PIMs. The simulations are useful in understanding the unique properties such as pore size distribution and scattering observed experimentally.

  7. Cloud Effects in Hyperspectral Imagery from First-Principles Scene Simulations

    DTIC Science & Technology

    2009-01-01

    SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, or distribution to multiple locations...scattering and absorption, scattering events, surface scattering with material-dependent bidirectional reflectances, multiple surface adjacency...aerosols or clouds, they may be absorbed, or they may reflect off the ground or an object. A given photon may undergo multiple scattering events

  8. Surface roughness scattering of electrons in bulk mosfets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuverink, Amanda Renee

    2015-11-01

    Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less

  9. Wave optics simulation of statistically rough surface scatter

    NASA Astrophysics Data System (ADS)

    Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.

    2017-09-01

    The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.

  10. Numerical simulation of Bragg scattering of sound by surface roughness for different values of the Rayleigh parameter

    NASA Astrophysics Data System (ADS)

    Salin, M. B.; Dosaev, A. S.; Konkov, A. I.; Salin, B. M.

    2014-07-01

    Numerical simulation methods are described for the spectral characteristics of an acoustic signal scattered by multiscale surface waves. The methods include the algorithms for calculating the scattered field by the Kirchhoff method and with the use of an integral equation, as well as the algorithms of surface waves generation with allowance for nonlinear hydrodynamic effects. The paper focuses on studying the spectrum of Bragg scattering caused by surface waves whose frequency exceeds the fundamental low-frequency component of the surface waves by several octaves. The spectrum broadening of the backscattered signal is estimated. The possibility of extending the range of applicability of the computing method developed under small perturbation conditions to cases characterized by a Rayleigh parameter of ≥1 is estimated.

  11. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  12. Comparison between reflectivity statistics at heights of 3 and 6 km and rain rate statistics at ground level

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1975-01-01

    An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.

  13. Surface Parameters of Titan Feature Classes From Cassini RADAR Backscatter Measurements

    NASA Astrophysics Data System (ADS)

    Wye, L. C.; Zebker, H. A.; Lopes, R. M.; Peckyno, R.; Le Gall, A.; Janssen, M. A.

    2008-12-01

    Multimode microwave measurements collected by the Cassini RADAR instrument during the spacecraft's first four years of operation form a fairly comprehensive set of radar backscatter data over a variety of Titan surface features. We use the real-aperture scatterometry processor to analyze the entire collection of active data, creating a uniformly-calibrated dataset that covers 93% of Titan's surface at a variety of viewing angles. Here, we examine how the measured backscatter response (radar reflectivity as a function of incidence angle) varies with surface feature type, such as dunes, cryovolcanic areas, and anomalous albedo terrain. We identify the feature classes using a combination of maps produced by the RADAR, ISS, and VIMS instruments. We then derive surface descriptors including roughness, dielectric constant, and degree of volume scatter. Radar backscatter on Titan is well-modeled as a superposition of large-scale surface scattering (quasispecular scattering) together with a combination of small-scale surface scattering and subsurface volume scattering (diffuse scattering). The viewing geometry determines which scattering mechanism is strongest. At low incidence angles, quasispecular scatter dominates the radar backscatter return. At higher incidence angles (angles greater than ~30°), diffuse scatter dominates the return. We use a composite model to separate the two scattering regimes; we model the quasispecular term with a combination of two traditional backscatter laws (we consider the Hagfors, Gaussian, and exponential models), following a technique developed by Sultan-Salem and Tyler [1], and we model the diffuse term, which encompasses both diffuse mechanisms, with a simple cosine power law. Using this total composite model, we analyze the backscatter curves of all features classes on Titan for which we have adequate angular coverage. In most cases, we find that the superposition of the Hagfors law with the exponential law best models the quasispecular response. A generalized geometric optics approach permits us to combine the best-fit parameters from each component of the composite model to yield a single value for the surface dielectric constant and RMS slope [1]. In this way, we map the relative variation of composition and wavelength-scale structure across the surface. We also map the variation of radar albedo across the analyzed features, as well as the relative prevalence of the different scattering mechanisms through the measured ratio of diffuse power to quasispecular power. These map products help to constrain how different geological processes might be interacting on a global scale. [1] A. K. Sultan-Salem, G. L. Tyler, JGR 112, 2007.

  14. Analysis of dense-medium light scattering with applications to corneal tissue: experiments and Monte Carlo simulations.

    PubMed

    Kim, K B; Shanyfelt, L M; Hahn, D W

    2006-01-01

    Dense-medium scattering is explored in the context of providing a quantitative measurement of turbidity, with specific application to corneal haze. A multiple-wavelength scattering technique is proposed to make use of two-color scattering response ratios, thereby providing a means for data normalization. A combination of measurements and simulations are reported to assess this technique, including light-scattering experiments for a range of polystyrene suspensions. Monte Carlo (MC) simulations were performed using a multiple-scattering algorithm based on full Mie scattering theory. The simulations were in excellent agreement with the polystyrene suspension experiments, thereby validating the MC model. The MC model was then used to simulate multiwavelength scattering in a corneal tissue model. Overall, the proposed multiwavelength scattering technique appears to be a feasible approach to quantify dense-medium scattering such as the manifestation of corneal haze, although more complex modeling of keratocyte scattering, and animal studies, are necessary.

  15. Development progress of the Materials Analysis and Particle Probe

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  16. Development progress of the Materials Analysis and Particle Probe.

    PubMed

    Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  17. Breakdown of equipartition in diffuse fields caused by energy leakage

    NASA Astrophysics Data System (ADS)

    Margerin, L.

    2017-05-01

    Equipartition is a central concept in the analysis of random wavefields which stipulates that in an infinite scattering medium all modes and propagation directions become equally probable at long lapse time in the coda. The objective of this work is to examine quantitatively how this conclusion is affected in an open waveguide geometry, with a particular emphasis on seismological applications. To carry our this task, the problem is recast as a spectral analysis of the radiative transfer equation. Using a discrete ordinate approach, the smallest eigenvalue and associated eigenfunction of the transfer equation, which control the asymptotic intensity distribution in the waveguide, are determined numerically with the aid of a shooting algorithm. The inverse of this eigenvalue may be interpreted as the leakage time of the diffuse waves out of the waveguide. The associated eigenfunction provides the depth and angular distribution of the specific intensity. The effect of boundary conditions and scattering anisotropy is investigated in a series of numerical experiments. Two propagation regimes are identified, depending on the ratio H∗ between the thickness of the waveguide and the transport mean path in the layer. The thick layer regime H∗ > 1 has been thoroughly studied in the literature in the framework of diffusion theory and is briefly considered. In the thin layer regime H∗ < 1, we find that both boundary conditions and scattering anisotropy leave a strong imprint on the leakage effect. A parametric study reveals that in the presence of a flat free surface, the leakage time is essentially controlled by the mean free time of the waves in the layer in the limit H∗ → 0. By contrast, when the free surface is rough, the travel time of ballistic waves propagating through the crust becomes the limiting factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse coda quality factor, increases with scattering anisotropy. For sufficiently thin layers H∗≈ 1/5, the energy flux is predominantly directed parallel to the surface and equipartition breaks down. Qualitatively, the anisotropy of the intensity field is found to increase with the inverse non-dimensional leakage time, with the scattering mean free time as time scale. Because it enhances leakage, a rough free surface may result in stronger anisotropy of the intensity field than a flat surface, for the same bulk scattering properties. Our work identifies leakage as a potential explanation for the large deviation from isotropy observed in the coda of body waves.

  18. Changes of polarimetric scattering characteristics of ALOS PALSAR caused by the 2011 Eruption of Shinmoe-dake Volcano

    NASA Astrophysics Data System (ADS)

    Ohkura, Hiroshi

    Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.

  19. Electride Mediated Surface Enhanced Raman Scattering (SERS)

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2016-01-01

    An electride may provide surface enhanced Raman scattering (SERS). The electride, a compound where the electrons serve as anions, may be a ceramic electride, such as a conductive ceramic derived from mayenite, or an organic electride, for example. The textured electride surface or electride particles may strongly enhance the Raman scattering of organic or other Raman active analytes. This may also provide a sensitive method for monitoring the chemistry and electronic environment at the electride surface. The results are evidence of a new class of polariton (i.e., a surface electride-polariton resonance mechanism) that is analogous to the surface plasmon-polariton resonance that mediates conventional SERS.

  20. Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate

    NASA Astrophysics Data System (ADS)

    Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang

    2017-03-01

    Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.

  1. Investigating the interfacial dynamics of thin films

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Aaron W.

    This thesis probes the interfacial dynamics and associated phenomena of thin films. Surface specific tools were used to study the self-assembly of alkanethiols, the mono- and bilayer dynamics of SF6, and the surface motion of poly(methyl methacrylate). Non-pertubative helium atom scattering was the principal technique used to investigate these systems. A variety of other complementary tools, including scanning tunneling microscopy, electron diffraction, Auger spectroscopy, atomic force microscopy, and ellipsometry were used in tandem with the neutral atom scattering studies. Controlling the spontaneous assembly of alkanethiols on Au(111) requires a better fundamental understanding of the adsorbate-adsorbate and substrate-adsorbate interactions. Our characterization focused on two key components, the surface structure and adsorbate vibrations. The study indicates that the Au(111) reconstruction plays a larger role than anticipated in the low-density phase of alkanethiol monolayers. A new structure is proposed for the 1-decanethiol monolayer that impacts the low-energy vibrational mode. Varying the alkane chain lengths imparts insight into the assembly process via characterization of a dispersionless phonon mode. Studies of SF6 physisorbed on Au(111) bridge surface research on rare gas adsorbates with complicated dynamical organic thin films. Mono- and bilayer coverages of SF6/Au(111) were studied at cryogenic temperatures. Our experiments probed the surface properties of SF6 yielding insights into substrate and coverage effects. The study discovered a dispersionless Einstein oscillation with multiple harmonic overtones. A second layer of SF6 softened the mode, but did not show any indications of bulk or cooperative interactions. The vibrational properties of SF 6 showed both striking similarities and differences when compared with physisorbed rare gases. Lastly, this thesis will discuss studies of thin film poly(methyl methacrylate) on Si. The non-pertubative and surface specific nature of helium atom scattering allows for a deft study of the relationship between surface motion and the glass transition temperature. An added parameter in this complex organic system is the film thickness. The confinement effects and enhanced surface displacement were examined as a function of the thermal attenuation of both inelastic and elastic helium atom scattering. The Debye-Waller factor for these thin films of PMMA is similar to the low-density alkanethiol self-assembled monolayers discussed earlier.

  2. Subjective Visual Performance and Objective Optical Quality With Intraocular Lens Glistening and Surface Light Scattering.

    PubMed

    Luo, Furong; Bao, Xuan; Qin, Yingyan; Hou, Min; Wu, Mingxing

    2018-06-01

    To evaluate the long-term effect of glistenings and surface light scattering of intraocular lenses (IOLs) on visual and optical performance after cataract surgery. Pseudophakic eyes that underwent standard phacoemulsification and two types of hydrophobic acrylic spherical IOL implantation without complications for at least 5 years were included in this retrospective study. Participants were divided into the glistenings, surface light scattering, and control groups according to the current condition of the IOLs. Then participants received a follow-up examination including uncorrected and corrected distance visual acuity (UDVA and CDVA), contrast sensitivity, straylight, and intraocular higher order aberrations, as well as point spread function (PSF) and modulation transfer function (MTF). A total of 140 eyes were included in the study. UDVA, CDVA, and glare sensitivity were not significantly different among the three groups (P > .05). However, compared with the control group, the IOLs of the glistenings and surface light scattering groups were associated with significantly lower contrast sensitivity under no glare conditions. Furthermore, eye with glistenings exhibited the highest straylight value (P < .05), whereas no difference was found between the surface light scattering and control groups. In contrast to the control group, the spherical aberration increased and the mean values of PSF and MTF decreased in the glistenings and surface light scattering groups. Both glistenings and surface light scattering tend to impair subjective visual performance, such as contrast sensitivity, and potentially affect objective optical quality, including straylight, spherical aberration, PSF, and MTF. [J Refract Surg. 2018;34(6):372-378.]. Copyright 2018, SLACK Incorporated.

  3. Study of α-Cu 0.82Al 0.18(100) using low energy ion scattering

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Muhlen, E. Zur; O'Connor, D. J.; King, B. V.; MacDonald, R. J.

    1996-07-01

    The clean α-Cu 0.82Al 0.18(100) surface has been investigated using low energy ion scattering. The surface structure was found to be similar to the structure of the Cu(100) surface. By measuring the first layer concentration of Al using He + and Ne + beams and standard calibration procedure, the α-Cu 0.82Al 0.18(100) surface was found to be slightly Al-rich. Analysis of multiple scattering of ions suggests that Al atoms do not form islands. It was also found that Al atoms sit higher than the Cu atoms on the surface. By comparison with computer simulations (SABRE and FAN2D), the buckling of Al was found to be 0.16 ± 0.07 Å. No reconstructions were observed on the surface by low energy ion scattering which is in agreement with previous LEED studies.

  4. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    PubMed

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  5. Vertical coherence and forward scattering from the sea surface and the relation to the directional wave spectrum.

    PubMed

    Dahl, Peter H; Plant, William J; Dall'Osto, David R

    2013-09-01

    Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces.

  6. The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.

    2015-12-01

    Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the presence of a complex snow stratigraphy.

  7. Single-scatter vector-wave scattering from surfaces with infinite slopes using the Kirchhoff approximation.

    PubMed

    Bruce, Neil C

    2008-08-01

    This paper presents a new formulation of the 3D Kirchhoff approximation that allows calculation of the scattering of vector waves from 2D rough surfaces containing structures with infinite slopes. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some preliminary calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared with the equivalent 1D surface calculations for the Kirchhoff and integral equation methods. Good agreement is found between the methods.

  8. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  9. Laser-induced speckle scatter patterns in Bacillus colonies

    PubMed Central

    Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon

    2014-01-01

    Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840

  10. Surface and adsorbate structural analysis from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Rabalais, J. W.; Bu, H.; Roux, C.

    1992-02-01

    The methods of obtaining surface structural information from low energy ion scattering spectrometry are described. These methods include measurements of backscattering, forwardscattering, and recoiling intensities vs beam incident α, beam exit β, crystal azimuthal δ, and scattering Θ angles. References are provided which give examples of each different kind of measurement. The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS), which collects both scattered.and recoiled neutrals and ions simultaneously, is described. TOF-SARS data for the three surface phases, clean Ni{110}-(1 × 1), Ni{110}-(1 × 2)-H missing row, and Ni{110}-(2 × 1)-O missing row, are used to illustrate some of the structural measurements.

  11. Real-time detection of laser-GaAs interaction process

    NASA Astrophysics Data System (ADS)

    Jia, Zhichao; Li, Zewen; Lv, Xueming; Ni, Xiaowu

    2017-05-01

    A real-time method based on laser scattering technology was used to detect the interaction process of GaAs with a 1080 nm laser. The detector collected the scattered laser beam from the GaAs wafer. The main scattering sources were back surface at first, later turn into front surface and vapor, so scattering signal contained much information of the interaction process. The surface morphologies of GaAs with different irradiation times were observed using an optical microscope to confirm occurrence of various phenomena. The proposed method is shown to be effective for the real-time detection of GaAs. By choosing a proper wavelength, the scattering technology can be promoted in detection of thicker GaAs wafer or other materials.

  12. Refractive index sensing by Brillouin scattering in side-polished optical fibers.

    PubMed

    Bernini, Romeo; Persichetti, Gianluca; Catalano, Ester; Zeni, Luigi; Minardo, Aldo

    2018-05-15

    In this Letter, we demonstrate the possibility to measure the refractive index of a liquid, using the stimulating Brillouin scattering in a 3-cm-long side-polished optical fiber. In addition, we show that by depositing a high-refractive index layer on the polished surface the sensitivity of the Brillouin frequency shift (BFS) can be increased due to a higher penetration of the evanescent field in the outer medium. Experiments show a maximum BFS change of about 11 MHz when varying the refractive index of the external medium from 1 (air) to 1.402, and a BFS sensitivity to refractive index of about 293 MHz/RIU around 1.40.

  13. Return Current Electron Beams and Their Generation of "Raman" Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  14. Derivation of Mars Surface Scattering Properties from OMEGA Spot Pointing Observations

    NASA Astrophysics Data System (ADS)

    Pinet, P. C.; Daydou, Y.; Cord, A.; Chevrel, S. C.; Poulet, F.; Erard, S.; Bibring, J.-P.; Langevin, Y.; Melchiorri, R.; Bellucci, G.; Altieri, F.; Arvidson, R. E.; OMEGA Co-Investigator Team

    2005-03-01

    OMEGA emission phase function (EPF) observation shows that one may access from orbit to geology-driven surface scattering properties such as surface roughness. It has implications for spectroscopic interpretation and for CRISM observations to come.

  15. Shattering of SiMe3+ during surface-induced dissociation

    NASA Astrophysics Data System (ADS)

    Schultz, David G.; Hanley, Luke

    1998-12-01

    We provide experimental evidence that upon hyperthermal impact of Si(CD3)3+ ions with an organic surface, a portion of the ions undergo dissociation while still in contact with the surface. We use a tandem configuration of quadrupole mass spectrometers along with an energy analyzer to measure the kinetic energy distributions of the fragments that form as a result of the surface scattering of 25 eV Si(CD3)3+. These distributions are different for scattering from a clean Au(111) surface versus scattering from an organic surface composed of a self-assembled monolayer of hexanethiolate on Au(111). Parent and fragment ions recoil from the clean Au(111) surface with the same velocity, as is expected for fragmentation away from the surface. However, the same scattering products recoil from the organic surface with different velocities but similar energies, suggesting that the fragmentation dynamics are modified by surface interactions. We perform molecular dynamics simulations which predict residence times of ˜210 fs at the organic surface and ˜20 fs at the Au surface. The simulations also predict that 13% and 31% of the ions fragment within 1.1 ps of surface impact at the organic and Au surfaces, respectively. Thus, the experimental observation of dissociation at only the organic surface results from its longer ion-surface interaction time. The fragmentation time scale predicted by Rice-Ramsperger-Kassel-Marcus calculations is yet longer, suggesting that at least a portion of the surface-induced dissociation of Si(CD3)3+ may occur via a nonstatistical mechanism. Our interpretation draws heavily from an analogous "shattering" mechanism previously proposed for cluster-surface scattering [E. Hendell, U. Even, T. Raz, and R. D. Levine, Phys. Rev. Lett. 75, 2670 (1995)].

  16. Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots

    DTIC Science & Technology

    2014-06-23

    Resonant scattering of surface plasmon polaritons by dressed quantum dots Danhong Huang,1 Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4 Shawn... polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In con- trast to...induced polarization field, treated as a source term9 arising from photo-excited electrons, allows for a resonant scattering of surface plasmon- polariton

  17. JPRS Report, Science & Technology, Japan, 4th International Conference on Langmuir-Blodgett Films

    DTIC Science & Technology

    1989-08-23

    Toshiba-cho, Saiwai-ku, Kawasaki, 210 Japan Surface enhanced resonance Raman scattering (SERRS) from a Langmuir-Blodgett monolayer of 4’-n...4000 cm" . These results show that the spectra are affected by the enhancement due to resonance Raman scattering . The dependence of SERRS intensity...enhanced adsorption is one of the surface enhanced processes such as the surface enhanced Raman scattering (SERS) and the enhanced fluorescence. There

  18. Scatter from optical components; Proceedings of the Meeting, San Diego, CA, Aug. 8-10, 1989

    NASA Astrophysics Data System (ADS)

    Stover, John C.

    Various papers on scatter from optical components are presented. Individual topics addressed include: BRDF of SiC and Al foam compared to black paint at 3.39 microns, characterization of optical baffle materials, bidirectional transmittance distribution function of several IR materials at 3.39 microns, thermal cycling effects on the BRDF of beryllium mirrors, BTDV of ZnSe with multilayer coatings at 3.39 microns, scattering from contaminated surfaces, cleanliness correlation by BRDF and PFO instruments, contamination effects on optical surfaces, means of eliminating the effects of particulate contamination on scatter measurements of superfine optical surfaces, vacuum BRDF measurement of cryogenic optical surfaces, Monte Carlo simulation of contaminant transport to and deposition on complex spacecraft surfaces, surface particle observation and BRDF predictions, satellite material contaminant optical properties, dark field photographic techniques for documenting optical surface contamination, design of a laboratory study of contaminant film darkening in space, contamination monitoring approaches for EUV space optics.

  19. Interference of conically scattered light in surface plasmon resonance.

    PubMed

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  20. Surface intervalley scattering on GaAs(110): Direct observation with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1989-02-01

    Angle-resolved laser photoemission investigations of the laser excited GaAs(110) surface have revealed a previously unobserved valley of the C3 unoccupied surface band whose minimum is at X¯ in the surface Brillouin zone. Electron population in this valley increases only as a result of scattering from the directly photoexcited valley at Γ¯. With high momentum resolution, we have isolated the dynamic electron population changes at both Γ¯ and X¯ and deduced the scattering time between the two valleys.

  1. Analysis of composite/difference field scattering properties between a slightly rough optical surface and multi-body defects.

    PubMed

    Gong, Lei; Wu, Zhensen; Gao, Ming; Qu, Tan

    2018-03-20

    The effective extraction of optical surface roughness and defect characteristic provide important realistic values to improve optical system efficiency. Based on finite difference time domain/multi-resolution time domain (FDTD/MRTD) mixed approach, composite scattering between a slightly rough optical surface and multi-body defect particles with different positions is investigated. The scattering contribution of defect particles or the slightly rough optical surface is presented. Our study provides a theoretical and technological basis for the nondestructive examination and optical performance design of nanometer structures.

  2. Control of crankshaft finish by scattering technique

    NASA Astrophysics Data System (ADS)

    Fontani, Daniela; Francini, Franco; Longobardi, Giuseppe; Sansoni, Paola

    2001-06-01

    The paper describes a new sensor dedicated to measure and check the surface quality of mechanical products. The results were obtained comparing the light scattered from two different ranges of angles by means of 16 photodiodes. The device is designed for obtaining valid data from curved surfaces as that of a crankshaft. Experimental measurements show that the ratio between scattered and reflected light intensity increases with the surface roughness. This device was developed for the off-tolerance detection of mechanical pieces in industrial production. Results of surface quality on crankshaft supplied by Renault were carried out.

  3. Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1991-01-01

    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.

  4. Polarimetric scattering behavior of materials at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    DiGiovanni, David Anthony

    Terahertz spectroscopic techniques have long been used to characterize the electromagnetic behavior of materials for use in radar, astronomy, and remote sensing applications. Spectroscopic information is valuable, but additional information about materials is present in the polarization of the scattered radiation. This thesis has investigated the polarimetric scattering behavior of various rough dielectric and metallic materials from 100 GHz to 1.55 THz. Common building materials and terrain, such as sand, gravel, soil, concrete, and roofing shingles, were studied. In order to obtain a better understanding of basic rough surface scattering phenomenology in this region of the spectrum, roughened metal and plastic samples were studied as well. The scattering behavior of these materials was studied as a function of incident angle, roughness, frequency, and polarization. Theoretical scattering models were used to compare measured results to theoretical predictions. Good agreement was observed between scattering measurements and theoretical predictions based on the small perturbation theory for the roughened metal surfaces. However, a substantial disagreement was observed for the rough dielectric surfaces and is discussed.

  5. Neutrally Charged Gas/Liquid Interface by a Catanionic Langmuir Monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, David; Bu, Wei

    Surface-sensitive synchrotron X-ray scattering and spectroscopic experiments were performed to explore the characteristics of Langmuir monolayers of oppositely charged mixed amphiphiles. A premixed (molar 1:1 stearic acid/stearylamine) solution was spread as a monolayer at the gas/liquid interface on pure water and on mono- and divalent salt solutions, revealing that the negatively charged carboxyl groups and positively charged amine groups are miscible into one another and tend to bond together to form a nearly neutral surface. Similar control experiments on pure stearic acid (SA) and stearylamine (ST) were also conducted for comparison. Due to the strong bonding, hexagonal structures in smallmore » domains with acyl-chains normal to the liquid surface are formed at zero surface pressures, that is, at molecular areas much larger than those of the densely packed acyl chains. In-plane X-ray diffraction indicates that the catanionic surface is highly ordered and modifies the structure of the water surface and thus can serve as a model system for interactions of an amino acid template with solutes.« less

  6. Chemical Analysis of the Moon at the Surveyor VI Landing Site: Preliminary Results.

    PubMed

    Turkevich, A L; Patterson, J H; Franzgrote, E J

    1968-06-07

    The alpha-scattering experiment aboard soft-landing Surveyor VI has provided a chemical analysis of the surface of the moon in Sinus Medii. The preliminary results indicate that, within experimental errors, the composition is the same as that found by Surveyor V in Mare Tranquillitatis. This finding suggests that large portions of the lunar maria resemble basalt in composition.

  7. A study of areas of low radio-thermal emissivity on Venus

    NASA Astrophysics Data System (ADS)

    Wilt, Robert Joseph

    1992-01-01

    Observations performed by the Magellan radiometer experiment have confirmed previous findings that a few regions on Venus, primarily at higher elevations, possess unexpectedly low values of radiothermal emissivity, occasionally reaching as low as 0.3. Values of emissivity below 0.7 occur over about 1.5 percent of the surface, and are associated with several types of features, including highlands, volcanoes, tectonically uplifted terrain, and impact craters. There is a strong correlation of low emissivity and high elevation, but rather than decreasing gradually with elevation, the emissivity drops rapidly in a small altitude range above a certain 'critical radius'. The altitude at which the change in emissive properties occurs varies from feature to feature; on average, it lies at a planetary radius of about 6054 km. Notable exceptions to the association of low emissivity and high elevation exist; for example, Lakshmi Planum, Maat Mons, and the summits of many volcanoes display high emissivities at high elevations, while in some impact craters and plains areas we find low emissivities at low elevations. Two possible explanations for low emissivities have been advanced: (1) emission from a highly reflective single interface between the atmosphere and a surface material having a bulk dielectric constant of order 80 ('high-dielectric' model); and (2) emission from the surface of a low-loss soil having a more usual permittivity (of order 2) which contains subsurface scatterers composed of ordinary rock materials ('volume scattering' model). Theoretical results and Monte Carlo simulations are used to show that the previously proposed volume scattering model cannot account for the observed emissivities; however, scattering from a material with very low loss (loss factor of order 10-3 or less) containing subsurface voids could produce the observed results. Consideration of the two models in light of the Magellan observations leads us to believe that the low emissivities on Venus result from the creation of a high-dielectic material by surface-atmosphere interaction, probably a loaded dielectric containing a conductive mineral.

  8. A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach

    NASA Technical Reports Server (NTRS)

    Kriegsmann, Gregory A.; Taflove, Allen; Umashankar, Koradar R.

    1987-01-01

    A new formulation of electromagnetic wave scattering by convex, two-dimensional conducting bodies is reported. This formulation, called the on-surface radiation condition (OSRC) approach, is based upon an expansion of the radiation condition applied directly on the surface of a scatterer. It is now shown that application of a suitable radiation condition directly on the surface of a convex conducting scatterer can lead to substantial simplification of the frequency-domain integral equation for the scattered field, which is reduced to just a line integral. For the transverse magnetic case, the integrand is known explicitly. For the transverse electric case, the integrand can be easily constructed by solving an ordinary differential equation around the scatterer surface contour. Examples are provided which show that OSRC yields computed near and far fields which approach the exact results for canonical shapes such as the circular cylinder, square cylinder, and strip. Electrical sizes for the examples are ka = 5 and ka = 10. The new OSRC formulation of scattering may present a useful alternative to present integral equation and uniform high-frequency approaches for convex cylinders larger than ka = 1. Structures with edges or corners can also be analyzed, although more work is needed to incorporate the physics of singular currents at these discontinuities. Convex dielectric structures can also be treated using OSRC.

  9. Multiple scattering effects with cyclical terms in active remote sensing of vegetated surface using vector radiative transfer theory

    USDA-ARS?s Scientific Manuscript database

    The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...

  10. Wave scattering from a periodic dielectric surface for a general angle of incidence

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Kong, J. A.

    1982-01-01

    Electromagnetic waves scattered from a periodic dielectric and perfectly conducting surface are studied for a general angle of incidence. It is shown that the one-dimensional corrugated surface can be solved by using two scalar functions: the components of the electric and magnetic fields along the row direction of the surface, and appropriate boundary conditions to obtain simple matrix equations. Results are compared to the case where the incident angle wave vector is perpendicular to the row direction. Numerical results demonstrate that energy conservation and reciprocity are obeyed for scattering by sinusoidal surfaces for the general case, which checks the consistency of the formalism.

  11. Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the Electromagnetic Perspective

    DTIC Science & Technology

    2011-09-01

    and Imaging Framework First, the parallelized 3-D FDTD algorithm is applied to simulate composite scattering from targets in a rough ground...solver as pertinent to forward-looking radar sensing , the effects of surface clutter on multistatic target imaging are illustrated with large-scale...Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the

  12. Electron Scattering Measurements applied to Neutrino Interactions on Nuclei

    NASA Astrophysics Data System (ADS)

    Christy, M. Eric

    2013-04-01

    The extraction of neutrino mass differences and flavor mixing parameters from oscillation experiments requires models of neutrino-nucleus scattering as input. With the reduction of other systematics, the uncertainties stemming from such models are expected to be one of the larger contributions to the systematic uncertainties for next generation oscillation experiments. The neutrino energy range sensitive to oscillations in long baseline experiments is typically the few GeV range, where the interactions with the nucleus and the subsequent production and propagation of hadrons within the nucleus is in the regime studied by nuclear physics experiments at facilities such as Jefferson Lab. While processes such as resonance production have been well studied in electron scattering, there is currently precious little corresponding data from neutrino scattering. Results from electron scattering experiments, therefore, have an important role to play in both building and constraining models for neutrino scattering. On the other hand, the study of nucleon structure via weak probes is very complementary to the program at Jefferson Lab utilizing electromagnetic probes. Neutrino scattering experiments such at MINERvA are expected to provide new experimental information on axial elastic and resonance transition form factors and on medium modifications via the axial coupling. This talk will focus on the application of electron scattering measurements to neutrino interactions on nuclei, but will also touch on where neutrino scattering measurements can add to our understanding of the nucleus.

  13. Surface-enhanced resonant Raman spectroscopy (SERRS) of single-walled carbon nanotubes absorbed on the Ag-coated anodic aluminum oxide (AAO) surface

    NASA Astrophysics Data System (ADS)

    Dou, X. Y.; Zhou, Z. P.; Tan, P. H.; Song, L.; Liu, L. F.; Zhao, X. W.; Luo, S. D.; Yan, X. Q.; Liu, D. F.; Wang, J. X.; Gao, Y.; Zhang, Z. X.; Yuan, H. J.; Zhou, W. Y.; Xie, S. S.

    2005-05-01

    In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO 3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the “electromagnetic” and “chemical” mechanism, were mainly responsible for the experiment results.

  14. Area densitometry using rotating Scheimpflug photography for posterior capsule opacification and surface light scattering analyses.

    PubMed

    Minami, Keiichiro; Honbo, Masato; Mori, Yosai; Kataoka, Yasushi; Miyata, Kazunori

    2015-11-01

    To compare area densitometry analysis using rotating Scheimpflug photography in quantifications of posterior capsule opacification (PCO) and surface light scattering with previous anterior-segment analyzer measurement. Miyata Eye Hospital, Miyazaki, Japan. Prospective observational case series. Scheimpflug images of eyes with foldable intraocular lenses (IOLs) were obtained using rotating and fixed Scheimpflug photography. Area densitometry on the posterior and anterior surfaces was conducted for PCO and surface light scattering analyses, respectively, with an identical area size. Correlation between two measurements was analyzed using linear regression. The study included 105 eyes of 74 patients who received IOLs 1 to 18 years (mean, 4.9 ± 4.5 years) postoperatively. In the PCO analysis on the posterior IOL surface, there was a significant correlation between the two measurements (P < .001, R(2) = 0.60). In the surface light scattering analysis, a significant and higher correlation was obtained (P < .001, R(2) = 0.91) until the fixed Scheimpflug photography exhibited saturation due to intensive scatterings. Area densitometry combined with a rotating Scheimpflug photography was exchangeable to previously established densitometry measurement, and allowed successive evaluation in longer-term observations. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Measuring stream discharge by non-contact methods: A proof-of-concept experiment

    USGS Publications Warehouse

    Costa, J.E.; Spicer, K.R.; Cheng, R.T.; Haeni, F.P.; Melcher, N.B.; Thurman, E.M.; Plant, W.J.; Keller, W.C.

    2000-01-01

    This report describes an experiment to make a completely non-contact open-channel discharge measurement. A van-mounted, pulsed doppler (10GHz) radar collected surface-velocity data across the 183-m wide Skagit River, Washington at a USGS streamgaging station using Bragg scattering from short waves produced by turbulent boils on the surface of the river. Surface velocities were converted to mean velocities for 25 sub-sections by assuming a normal open-channel velocity profile (surface velocity times 0.85). Channel cross-sectional area was measured using a 100 MHz ground-penetrating radar antenna suspended from a cableway car over the river. Seven acoustic doppler current profiler discharge measurements and a conventional current-meter discharge measurement were also made. Three non-contact discharge measurements completed in about a 1-hour period were within 1 % of the gaging station rating curve discharge values. With further refinements, it is thought that open-channel flow can be measured reliably by non-contact methods.

  16. Photoacoustic microscopic imaging of surface and subsurface damages in CFRP

    NASA Astrophysics Data System (ADS)

    Nakahata, Kazuyuki; Ogi, Keiji; Namita, Takeshi; Ohira, Katsumi; Maruyama, Masayuki; Shiina, Tsuyoshi

    2018-04-01

    Photoacoustic imaging comprises an optical excitation within a target zone and the detection of the ultrasonic wave so created. A pulsed laser illuminates the target zone, and this illumination causes rapid thermoelastic expansion that generates a broadband high-frequency ultrasonic wave (photoacoustic wave, PA). In this paper, we report proof-of-concept experiments for nondestructive testing of laminar materials using a PA microscope. A specimen containing carbon-fiber-reinforced plastic (CFRP) was used in this experiment and involved an artificial delamination. A 532-nm-wavelength laser irradiates the top surface of the specimen, and the resulting ultrasonic waves are received by a point-focusing immersion transducer on the same side. Our system estimated the depth and dimension of the subsurface delamination accurately. By coating a light-absorbing material on the surface, the amplitude of the PA wave increased. This finding shows that the signal-noise (S/N) ratio of the scattered wave from delaminations can be improved with the surface coatings.

  17. Quantum transport in mesoscopic 3He films: experimental study of the interference of bulk and boundary scattering.

    PubMed

    Sharma, P; Córcoles, A; Bennett, R G; Parpia, J M; Cowan, B; Casey, A; Saunders, J

    2011-11-04

    We discuss the mass transport of a degenerate Fermi liquid ^{3}He film over a rough surface, and the film momentum relaxation time, in the framework of theoretical predictions. In the mesoscopic regime, the anomalous temperature dependence of the relaxation time is explained in terms of the interference between elastic boundary scattering and inelastic quasiparticle-quasiparticle scattering within the film. We exploit a quasiclassical treatment of quantum size effects in the film in which the surface roughness, whose power spectrum is experimentally determined, is mapped into an effective disorder potential within a film of uniform thickness. Confirmation is provided by the introduction of elastic scattering centers within the film. The improved understanding of surface roughness scattering may impact on enhancing the conductivity in thin metallic films.

  18. Constraining ejecta particle size distributions with light scattering

    NASA Astrophysics Data System (ADS)

    Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William

    2017-06-01

    The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.

  19. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  20. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    PubMed

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  1. Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah; Verbiscer, Anne

    1997-01-01

    Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface roughness with hemisphere for any of the Galilean satellites.

  2. Quantum dynamical simulation of the scattering of Ar from a frozen LiF(100) surface based on a first principles interaction potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azuri, Asaf; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il

    2015-07-07

    In-plane two and three dimensional diffraction patterns are computed for the vertical scattering of an Ar atom from a frozen LiF(100) surface. Suitable collimation of the incoming wavepacket serves to reveal the quantum mechanical diffraction. The interaction potential is based on a fit to an ab initio potential calculated using density functional theory with dispersion corrections. Due to the potential coupling found between the two horizontal surface directions, there are noticeable differences between the quantum angular distributions computed for two and three dimensional scattering. The quantum results are compared to analogous classical Wigner computations on the same surface and withmore » the same conditions. The classical dynamics largely provides the envelope for the quantum diffractive scattering. The classical results also show that the corrugation along the [110] direction of the surface is smaller than along the [100] direction, in qualitative agreement with experimental observations of unimodal and bimodal scattering for the [110] and [100] directions, respectively.« less

  3. Interferometric detection of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Karen

    Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.

  4. Spin-orbit coupling and surface magnetism coexisting in spin-dependent low-energy He+-ion surface scattering

    NASA Astrophysics Data System (ADS)

    Suzuki, T. T.; Sakai, O.

    2017-04-01

    Surface magnetism is analyzed by spin-dependent He+-ion neutralization (the Auger neutralization) in the vicinity of a surface using an electron spin-polarized low-energy He+-ion beam [spin-polarized ion scattering spectroscopy (SP-ISS)]. Recently, spin-orbit coupling (SOC) has been found to act as another mechanism of spin-dependent low-energy He+-ion scattering. Thus, it is crucial for surface magnetism analyses by SP-ISS to separate those two mechanisms. In the present study, we investigated the spin-induced asymmetry in scattering of low-energy He+ ions on ultrathin Au and Sn films as well as the oxygen adsorbate on a magnetized-Fe(100) surface where these two mechanisms may coexist. We found that the Fe surface magnetism immediately disappeared with the growth of those overlayers. On the other hand, we observed no induced spin polarization in the Au and Sn thin films even in the very initial stage of the growth. We also observed that the spin asymmetry of the O adsorbate was induced by the magnetism of the underlying Fe substrate. The present study demonstrates that the two mechanisms of the spin-asymmetric He+-ion scattering (the ion neutralization and SOC) can be separated by an azimuthal-angle-resolved SP-ISS measurement.

  5. Time-of-flight scattering and recoiling spectrometer (TOF-SARS) for surface analysis

    NASA Astrophysics Data System (ADS)

    Grizzi, O.; Shi, M.; Bu, H.; Rabalais, J. W.

    1990-02-01

    A UHV spectrometer system has been designed and constructed for time-of-flight scattering and recoiling spectrometry (TOF-SARS). The technique uses a pulsed primary ion beam and TOF methods for analysis of both scattered and recoiled neutrals (N) and ions (I) simultaneously with continuous scattering angle variation over a flight path of ≊1 m. The pulsed ion beam line uses an electron impact ionization source with acceleration up to 5 keV; pulse widths down to 20 ns with average current densities of 0.05-5.0 nA/mm2 have been obtained. Typical current densities used herein are ≊0.1 nA/mm2 and TOF spectra can be collected with a total ion dose of <10-3 ions/surface atom. A channel electron multiplier detector, which is sensitive to both ions and fast neutrals, is mounted on a long tube connected to a precision rotary motion feedthru, allowing continuous rotation over a scattering angular range 0°<θ<165°. The sample is mounted on a precision manipulator, allowing azimuthal δ and incident α angle rotation, as well as translation along three orthogonal axes. The system also accommodates standard surface analysis instrumentation for LEED, AES, XPS, and UPS. The capabilities of the system are demonstrated by the following examples: (A) TOF spectra versus scattering angle θ; (B) comparison to LEED and AES; (C) surface and adsorbate structure determinations; (D) monitoring surface roughness; (E) surface semichanneling measurements; (F) measurements of scattered ion fractions; and (G) ion induced Auger electron emission.

  6. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete.

    PubMed

    Ham, Suyun; Song, Homin; Oelze, Michael L; Popovics, John S

    2017-03-01

    We describe an approach that utilizes ultrasonic surface wave backscatter measurements to characterize the volume content of relatively small distributed defects (microcrack networks) in concrete. A simplified weak scattering model is used to demonstrate that the scattered wave field projected in the direction of the surface wave propagation is relatively insensitive to scatterers that are smaller than the propagating wavelength, while the scattered field projected in the opposite direction is more sensitive to sub-wavelength scatterers. Distributed microcracks in the concrete serve as the small scatterers that interact with a propagating surface wave. Data from a finite element simulation were used to demonstrate the viability of the proposed approach, and also to optimize a testing configuration to collect data. Simulations were validated through experimental measurements of ultrasonic backscattered surface waves from test samples of concrete constructed with different concentrations of fiber filler (0.0, 0.3 and 0.6%) to mimic increasing microcrack volume density and then samples with actual cracking induced by controlled thermal cycles. A surface wave was induced in the concrete samples by a 50kHz ultrasonic source operating 10mm above the surface at an angle of incidence of 9°. Silicon-based miniature MEMS acoustic sensors located a few millimeters above the concrete surface both behind and in front of the sender were used to detect leaky ultrasonic surface waves emanating from concrete. A normalized backscattered energy parameter was calculated from the signals. Statistically significant differences in the normalized backscattered energy were observed between concrete samples with varying levels of simulated and actual cracking damage volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Triton - Scattering models and surface/atmosphere constraints

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid

    1989-01-01

    Modeling of Triton's spectrum indicates a bright scattering layer of optical depth tau about 3 overlying an optically deep layer of CH4 with high absorption and little scattering. UV absorption in the spectrum indicates tau about 0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p = 0.62 + 0.18 or - 0.12 radius r = 1480 + or - 180 km, and temperature T = 48 + or - 6 K. With scattering optical depths of 0.3-3 and about 1-10 mb of N2, a Mars-like atmospheric density and surface visibility pertain.

  8. Coherent X-ray Scattering from Liquid-Air Interfaces

    NASA Astrophysics Data System (ADS)

    Shpyrko, Oleg

    Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.

  9. Acoustic and electromagnetic wave interaction in the detection and identification of buried objects

    NASA Astrophysics Data System (ADS)

    Lawrence, Daniel Edward

    2002-09-01

    In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first order solution for TM polarization, but a second order IBC is needed for TE polarization. The crucial factor in the calculation of the potentially small Doppler components is that the time-varying nature of the cylinder boundary, contained within the surface impedance expressions, can be isolated from the unperturbed terms in the scattered field.

  10. Relativistic Electron Beams, Forward Thomson Scattering, and ``Raman'' Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1999-11-01

    Experiments at LLE (see abstract by D. Hicks at this meeting) show that surprisingly high potentials (+0.5 to 2.0 MV) develop in plasmas irradiated by high-energy lasers. The highly conducting plasma will be a near equipotential and should attract return-current electrons in a radial beam-like distribution, especially in the outer low-density regions. This will initiate the BOT instability, creating large plasma waves with phase velocities close to c. Coherent Thomson scattering of the interaction beam from these waves must occur primarily in the forward direction. This will appear to be ``backward SRS'' upon reflection from a critical surface. We will show that the resulting spectrum is fairly broad and at short wavelengths. Collisional absorption of the scattered EM wave limits the reflectivity to low values (depending on the density scale length). Thus, a distinct difference exists between the spectrum for thick targets (nc surface present) and thin targets (gasbags, etc., from which primarily a narrow absolute-SRS backward emission occurs, at the peak density). The thick-target, reflected-wave angular distribution will be concentrated in the backward direction. The corresponding plasma-wave k-vector will be a fraction of k_0. The variation of the spectrum with potential and angle will be discussed. Comparison will be made with recent results at LLE and LLNL. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, UR, and NYSERDA.

  11. Numerical Solution of Light Scattered from and Transmitted through a Rough Dielectric Surface with Applications to Periodic Roughness and Isolated Structures

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang

    2007-01-01

    Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.

  12. Laser-Plasma Interaction Experiments at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Shaw, J. G.; Seka, W.; Epstein, R.; Short, R. W.; Follett, R. K.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Michel, P.; Chapman, T.; Hohenberger, M.

    2017-10-01

    Laser-plasma interaction (LPI) instabilities, such as stimulated Raman scattering (SRS) and two-plasmon decay, can be detrimental for direct-drive inertial confinement fusion because of target preheat by the high-energy electrons they generate. The radiation-hydrodynamic code DRACO was used to design planar-target experiments at the National Ignition Facility that generated plasma and interaction conditions relevant to ignition direct-drive designs (IL 1015W/cm2 , Te > 3 keV, density gradient scale lengths of Ln 600 μm). Laser-energy conversion efficiency to hot electrons of 0.5% to 2.5% with temperature of 45 to 60 keV was inferred from the experiment when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014W/cm2 . LPI was dominated by SRS, as indicated by the measured scattered-light spectra. Simulations of SRS using the LPI code LPSE have been performed and compared with predictions of theoretical models. Implications for ignition-scale direct-drive experiments will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Scatter evaluation of supersmooth surfaces

    NASA Astrophysics Data System (ADS)

    Silva, R. M.; Orazio, F. D., Jr.; Stowell, W. K.

    1983-04-01

    Data are presented showing that there are many optical surfaces below the standards in scatter behavior which have been classified under the general term 'supersmooth'. Indeed, there are three orders of magnitude of scatter fitting this description. It is pointed out that optical surfaces can be scattermapped at levels from thousands of parts per million per steradian down to a few parts per billion per steradian. It is believed that the equipment and optics are now ready for the application of BRDF as a new 'performance' standard for surfaces that can be specified to the optician. Such nebulous terms as 'supersmooth' can then be retired.

  14. Trampoline motions in Xe-graphite(0 0 0 1) surface scattering

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimasa; Yamaguchi, Hiroki; Hashinokuchi, Michihiro; Sawabe, Kyoichi; Maruyama, Shigeo; Matsumoto, Yoichiro; Shobatake, Kosuke

    2005-09-01

    We have investigated Xe scattering from the graphite(0 0 0 1) surface at hyperthermal incident energies using a molecular beam-surface scattering technique and molecular dynamics simulations. For all incident conditions, the incident Xe atom conserves the momentum parallel to the surface and loses approximately 80% of the normal incident energy. The weak interlayer potential of graphite disperses the deformation over the wide range of a graphene sheet. The dynamic corrugation induced by the collision is smooth even at hyperthermal incident energy; the graphene sheet moves like a trampoline net and the Xe atom like a trampoliner.

  15. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode ofmore » the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.« less

  16. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu; Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases whenmore » the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.« less

  17. [Study of surface enhanced Raman scattering of trace trinitrotoluene based on silver colloid nanoparticles].

    PubMed

    Zhang, Chun-ling; Li, Zhe; Wu, Zheng-long; Han, De-jun

    2012-03-01

    Trinitrotoluene (TNT), a representative nitroexplosive, attracts more and more attentions because of the urgent demand for trace analysis of explosives in recent years. The present study investigated the experiment condition of the surface enhanced Raman scattering (SERS) of 10(-6) mol x L(-1) TNT solution, especially the influence of NaCl and basic hydrolysis. The results indicate that SERS spectra of TNT can not be obtained when preparing the SERS samples without NaCl, and it was also shown that the intensity of Raman peaks has a relationship with the concentration of NaCl. With the increase in the concentration of NaCl, the intensity of Raman peak at 1 392 cm(-1) has a maximum value. This report explained the reason why NaCl can affect the intensity of SERS theoretically. It was also shown that the SERS spectrum of TNT treated with basic hydrolysis is more intense than that without basic hydrolysis.

  18. Mars observer radio science (MORS) observations in polar regions

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.

    1992-01-01

    MORS observations will focus on two major areas of study: (1) the gravity field of Mars and its interpretation in terms of internal structure and history and (2) the structure of the atmosphere, with emphasis on both temperature-pressure profiles of the background atmosphere and small scale inhomogeneities resulting from turbulence. Scattering of cm wavelength radio signals from Mars' surface at highly oblique angles will also be studied during the primary mission; nongrazing scattering experiments may be possible during an extended mission. During the MORS primary mission, measurements of the spacecraft distance and velocity with respect to Earth based tracking stations will be used to develop models of the global gravity field. The improvement in knowledge of the gravity field will be especially evident in polar regions. The spatial and temporal coverage of atmospheric radio occultation measurements are determined by the geometry of the spacecraft orbit and the direction to the Earth. Profiles of atmospheric temperature and pressure will extend from the surface to altitudes of 50 to 70 km.

  19. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2014-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation.

    PubMed

    Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David

    2014-10-20

    Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.

  1. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  2. Study of the transverse and longitudinal electric field components of surface plasmon polaritons on flat metal film by polarization-resolved Fourier-space microscopy

    NASA Astrophysics Data System (ADS)

    Liu, C.; Ong, H. C.

    2018-01-01

    We have employed a polarization-resolved Fourier-space surface plasmon resonance microscope to determine the electric field component ratio of surface plasmon polaritons (SPPs) propagating on a flat gold film. By using a metallic nanoparticle as a probe to capture the radiation damping of the SPP scattered waves, we find the angular far-field distribution is related to the transverse and longitudinal fields of SPPs. The experiment is supported by analytical and numerical calculations. Our results present a simple but useful approach to probe the behaviors of SPPs such as the transverse spin density as well as the energy density.

  3. Estimation of the sea surface's two-scale backscatter parameters

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1978-01-01

    The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.

  4. Trace Detection of Metalloporphyrin-Based Coordination Polymer Particles via Modified Surface-Enhanced Raman Scattering Assisted by Surface Metallization.

    PubMed

    Sun, Yu; Caravella, Alessio

    2016-01-01

    This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs.

  5. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camden, Jon P.

    2013-07-12

    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  6. Fabrication and testing of scatter plates for interferometry

    NASA Technical Reports Server (NTRS)

    Pour, J. J., Sr.; Pitts, J. R.

    1972-01-01

    Scatter plate interferometry has become a reliable method of measuring surface configurations of telescope mirrors and other optical components. The scatter plate used in an instrument should be of optimum quality if the surface it is being used to measure is to be of high accuracy. Tests were performed and results show that, although many scatter plates would function, few were of the optimum quality necessary. These few were of the 180 grit group, using 35- and 30-s exposures, which are figures derived from calculations.

  7. Structure and Dynamics of Interfaces: Drops and Films

    NASA Technical Reports Server (NTRS)

    Mann, J. Adin, Jr.; Mann, Elizabeth K.; Meyer, William V.; Neumann, A. Wilhelm; Tavana, Hossein

    2015-01-01

    We aim to acquire measurements of the structure and dynamics of certain liquid-fluid interfaces using an ensemble of techniques in collaboration: (1) Total internal reflection (TIR) Surface light scattering spectroscopy (SLSS), (2) Brewster angle microscopy (BAM), and (3) Drop-shape analysis. SLSS and BAM can be done on a shared interfacial footprint. Results using a 50-50 mixture of pentane-isohexane, which extends the range of NASA's Confined Vapor Bubble (CVB) experiment, yield surface tension results that differ from the expected Langmuir Fit. These results were confirmed using both the SLSS and drop-shape analysis approaches.

  8. Disorder and superfluid density in overdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Lee-Hone, N. R.; Dodge, J. S.; Broun, D. M.

    2017-07-01

    We calculate superfluid density for a dirty d -wave superconductor. The effects of impurity scattering are treated within the self-consistent t -matrix approximation, in weak-coupling BCS theory. Working from a realistic tight-binding parametrization of the Fermi surface, we find a superfluid density that is both correlated with Tc and linear in temperature, in good correspondence with recent experiments on overdoped La2 -xSrxCuO4 .

  9. Probing topological Fermi-Arcs and bulk boundary correspondence in the Weyl semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    The relation between surface Fermi-arcs and bulk Weyl cones in a Weyl semimetal, uniquely allows to study the notion of bulk to surface correspondence. We visualize these topological Fermi arc states on the surface of the Weyl semi-metal tantalum arsenide using scanning tunneling spectroscopy. Its surface hosts 12 Fermi arcs amongst several other surface bands of non-topological origin. We detect the possible scattering processes of surface bands in which Fermi arcs are involved including intra- and inter arc scatterings and arc-trivial scatterings. Each of the measured scattering processes entails additional information on the unique nature of Fermi arcs in tantalum arsenide: their contour, their energy-momentum dispersion and its relation with the bulk Weyl nodes. We further identify a sharp distinction between the wave function's spatial distribution of topological versus trivial bands. The non-topological surface bands, which are derived from the arsenic dangling bonds, are tightly bound to the arsenic termination layer. In contrast, the Fermi-arc bands reside on the deeper tantalum layer, penetrating into the bulk, which is predominantly derived from tantalum orbitals.

  10. A new fiber optic sensor for inner surface roughness measurement

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  11. Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Lacis, A. A.; Travis, L. D.

    1994-01-01

    Although neglecting polarization and replacing the rigorous vector radiative transfer equation by its approximate scalar counterpart has no physical background, it is a widely used simplification when the incident light is unpolarized and only the intensity of the reflected light is to be computed. We employ accurate vector and scalar multiple-scattering calculations to perform a systematic study of the errors induced by the neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-scattering atmosphere (with and without depolarization) above a Lambertian surface. Specifically, we calculate percent errors in the reflected intensity for various directions of light incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos, depolarization factors, and surface albedos. The numerical data displayed can be used to decide whether or not the scalar approximation may be employed depending on the parameters of the problem. We show that the errors decrease with increasing depolarization factor and/or increasing surface albedo. For conservative or nearly conservative scattering and small surface albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may be too large for some practical applications, and, therefore, rigorous vector calculations should be employed whenever possible. However, if approximate scalar calculations are used, we recommend to avoid geometries involving phase angles equal or close to 0 deg and 90 deg, where the errors are especially significant. We propose a theoretical explanation of the large vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the differences are caused by the particular structure of the Rayleigh scattering matrix and come from lower-order (except first-order) light scattering paths involving right scattering angles and right-angle rotations of the scattering plane.

  12. Effect of reflected and refracted signals on coherent underwater acoustic communication: results from the Kauai experiment (KauaiEx 2003).

    PubMed

    Rouseff, Daniel; Badiey, Mohsen; Song, Aijun

    2009-11-01

    The performance of a communications equalizer is quantified in terms of the number of acoustic paths that are treated as usable signal. The analysis uses acoustical and oceanographic data collected off the Hawaiian Island of Kauai. Communication signals were measured on an eight-element vertical array at two different ranges, 1 and 2 km, and processed using an equalizer based on passive time-reversal signal processing. By estimating the Rayleigh parameter, it is shown that all paths reflected by the sea surface at both ranges undergo incoherent scattering. It is demonstrated that some of these incoherently scattered paths are still useful for coherent communications. At range of 1 km, optimal communications performance is achieved when six acoustic paths are retained and all paths with more than one reflection off the sea surface are rejected. Consistent with a model that ignores loss from near-surface bubbles, the performance improves by approximately 1.8 dB when increasing the number of retained paths from four to six. The four-path results though are more stable and require less frequent channel estimation. At range of 2 km, ray refraction is observed and communications performance is optimal when some paths with two sea-surface reflections are retained.

  13. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  14. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    PubMed

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  15. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    NASA Astrophysics Data System (ADS)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J. R.; Gerbaldi, C.; Bruna, M.; Borini, S.; Daghero, D.; Gonnelli, R. S.

    2017-02-01

    We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  16. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brice, S. J.; Cooper, R. L.; DeJongh, F.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for amore » CENNS experiment.« less

  17. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions

    NASA Astrophysics Data System (ADS)

    Dong, Miao L.; Goyal, Kashika G.; Worth, Bradley W.; Makkar, Sorab S.; Calhoun, William R.; Bali, Lalit M.; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  18. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions.

    PubMed

    Dong, Miao L; Goyal, Kashika G; Worth, Bradley W; Makkar, Sorab S; Calhoun, William R; Bali, Lalit M; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  19. Complex index of refraction estimation from degree of polarization with diffuse scattering consideration.

    PubMed

    Zhan, Hanyu; Voelz, David G; Cho, Sang-Yeon; Xiao, Xifeng

    2015-11-20

    The estimation of the refractive index from optical scattering off a target's surface is an important task for remote sensing applications. Optical polarimetry is an approach that shows promise for refractive index estimation. However, this estimation often relies on polarimetric models that are limited to specular targets involving single surface scattering. Here, an analytic model is developed for the degree of polarization (DOP) associated with reflection from a rough surface that includes the effect of diffuse scattering. A multiplicative factor is derived to account for the diffuse component and evaluation of the model indicates that diffuse scattering can significantly affect the DOP values. The scattering model is used in a new approach for refractive index estimation from a series of DOP values that involves jointly estimating n, k, and ρ(d)with a nonlinear equation solver. The approach is shown to work well with simulation data and additive noise. When applied to laboratory-measured DOP values, the approach produces significantly improved index estimation results relative to reference values.

  20. Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves.

    PubMed

    Plass, G N; Kattawar, G W; Guinn, J A

    1975-08-01

    The radiance in the earth's atmosphere and ocean is calculated for a realistic model including an ocean surface with waves. Individual photons are followed in a Monte Carlo calculation. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols as well as molecular and aerosol absorption are taken into account. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate single-scattering functions are used which are calculated separately for the aerosols and the hydrosols from the Mie theory with appropriate and different size distributions in each case. The scattering angles are determined from the appropriate scattering function including the strong forwardscattering peak when there is aerosol or hydrosol scattering. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the oceanc surface. The wave slope is chosen from the Cox-Munk distribution. Graphs show the influence of the waves on the upward radiance at the top of the atmosphere and just above the ocean surface and on the downward radiance just below the ocean surface as well as deeper within the ocean. The radiance changes are sufficient at the top of the atmosphere to determine the sea state from satellite measurements. Within the ocean the waves smooth out the abrupt transition that occurs at the edge of the allowed cone for radiation entering a calm ocean. The influence of the waves on the contrast between the sky and sea at the horizon is discussed. It is shown that the downward flux just below the surface increases with wind speed at all solar angles.

  1. Physics of a rapid CD4 lymphocyte count with colloidal gold.

    PubMed

    Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F

    2012-03-01

    The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.

  2. Radiometry rocks

    NASA Astrophysics Data System (ADS)

    Harvey, James E.

    2012-10-01

    Professor Bill Wolfe was an exceptional mentor for his graduate students, and he made a major contribution to the field of optical engineering by teaching the (largely ignored) principles of radiometry for over forty years. This paper describes an extension of Bill's work on surface scatter behavior and the application of the BRDF to practical optical engineering problems. Most currently-available image analysis codes require the BRDF data as input in order to calculate the image degradation from residual optical fabrication errors. This BRDF data is difficult to measure and rarely available for short EUV wavelengths of interest. Due to a smooth-surface approximation, the classical Rayleigh-Rice surface scatter theory cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. The classical Beckmann-Kirchhoff theory has a paraxial limitation and only provides a closed-form solution for Gaussian surfaces. Recognizing that surface scatter is a diffraction process, and by utilizing sound radiometric principles, we first developed a linear systems theory of non-paraxial scalar diffraction in which diffracted radiance is shift-invariant in direction cosine space. Since random rough surfaces are merely a superposition of sinusoidal phase gratings, it was a straightforward extension of this non-paraxial scalar diffraction theory to develop a unified surface scatter theory that is valid for moderately rough surfaces at arbitrary incident and scattered angles. Finally, the above two steps are combined to yield a linear systems approach to modeling image quality for systems suffering from a variety of image degradation mechanisms. A comparison of image quality predictions with experimental results taken from on-orbit Solar X-ray Imager (SXI) data is presented.

  3. Rough surface wavelength measurement through self mixing of Doppler microwave backscatter. [from ocean waves

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1979-01-01

    A microwave backscatter technique is presented that has the ability to sense the dominant surface wavelength of a random rough surface. The purpose of this technique is to perform this measurement from an aircraft or spacecraft, wherein the horizontal velocity of the radar is an important parameter of the measurement system. Attention will be directed at water surface conditions for which a dominant wavelength can be defined, then the spatial variations of reflectivity will have a two dimensional spectrum that is sufficiently close to that of waves to be useful. The measurement concept is based on the relative motion between the water waves and a nadir looking radar, and the fact that while the instantaneous Doppler frequency at the receiver returned by any elementary group of scatterers on a water wave is monotonically changing, the difference in the Doppler frequency between any two scattering 'patches' stays approximately constant as these waves travel parallel to the major axis of an elliptical antenna footprint. The results of a theoretical analysis and a laboratory experiment with a continuous wave (CW) radar that encompasses several of the largest waves in the illuminated area show how the structure in the Doppler spectrum of the backscattered signal is related to the surface spectrum and its parameters in an especially direct and simple way when an incoherent envelope detector is the receiver.

  4. Accurate source location from waves scattered by surface topography: Applications to the Nevada and North Korean test sites

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Wang, N.; Bao, X.; Flinders, A. F.

    2016-12-01

    Scattered waves generated near the source contains energy converted from the near-field waves to the far-field propagating waves, which can be used to achieve location accuracy beyond the diffraction limit. In this work, we apply a novel full-wave location method that combines a grid-search algorithm with the 3D Green's tensor database to locate the Non-Proliferation Experiment (NPE) at the Nevada test site and the North Korean nuclear tests. We use the first arrivals (Pn/Pg) and their immediate codas, which are likely dominated by waves scattered at the surface topography near the source, to determine the source location. We investigate seismograms in the frequency of [1.0 2.0] Hz to reduce noises in the data and highlight topography scattered waves. High resolution topographic models constructed from 10 and 90 m grids are used for Nevada and North Korea, respectively. The reference velocity model is based on CRUST 1.0. We use the collocated-grid finite difference method on curvilinear grids to calculate the strain Green's tensor and obtain synthetic waveforms using source-receiver reciprocity. The `best' solution is found based on the least-square misfit between the observed and synthetic waveforms. To suppress random noises, an optimal weighting method for three-component seismograms is applied in misfit calculation. Our results show that the scattered waves are crucial in improving resolution and allow us to obtain accurate solutions with a small number of stations. Since the scattered waves depends on topography, which is known at the wavelengths of regional seismic waves, our approach yields absolute, instead of relative, source locations. We compare our solutions with those of USGS and other studies. Moreover, we use differential waveforms to locate pairs of the North Korea tests from years 2006, 2009, 2013 and 2016 to further reduce the effects of unmodeled heterogeneities and errors in the reference velocity model.

  5. Specularity of longitudinal acoustic phonons at rough surfaces

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Ghossoub, Marc G.; Valavala, Krishna; Ma, Jun; Rajagopal, Manjunath C.; Sinha, Sanjiv

    2018-01-01

    The specularity of phonons at crystal surfaces is of direct importance to thermal transport in nanostructures and to dissipation in nanomechanical resonators. Wave scattering theory provides a framework for estimating wavelength-dependent specularity, but experimental validation remains elusive. Widely available thermal conductivity data presents poor validation since the involvement of the infinitude of phonon wavelengths in thermal transport presents an underconstrained test for specularity theory. Here, we report phonon specularity by measuring the lifetimes of individual coherent longitudinal acoustic phonon modes excited in ultrathin (36-205 nm) suspended silicon membranes at room temperature over the frequency range ˜20 -118 GHz. Phonon surface scattering dominates intrinsic Akhiezer damping at frequencies ≳60 GHz, enabling measurements of phonon boundary scattering time over wavelengths ˜72 -140 nm . We obtain detailed statistics of the surface roughness at the top and bottom surfaces of membranes using HRTEM imaging. We find that the specularity of the excited modes are in good agreement with solutions of wave scattering only when the TEM statistics are corrected for projection errors. The often-cited Ziman formula for phonon specularity also appears in good agreement with the data, contradicting previous results. This work helps to advance the fundamental understanding of phonon scattering at the surfaces of nanostructures.

  6. Precision determination of electron scattering angle by differential nuclear recoil energy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liyanage, N.; Saenboonruang, K.

    2015-12-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less

  7. Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liyanage, Nilanga; Saenboonruang, Kiadtisak

    2015-09-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less

  8. Handheld directional reflectometer: an angular imaging device to measure BRDF and HDR in real time

    NASA Astrophysics Data System (ADS)

    Mattison, Phillip R.; Dombrowski, Mark S.; Lorenz, James M.; Davis, Keith J.; Mann, Harley C.; Johnson, Philip; Foos, Bryan

    1998-10-01

    Many applications require quantitative measurements of surface light scattering, including quality control on production lines, inspection of painted surfaces, inspection of field repairs, etc. Instruments for measuring surface scattering typically fall into two main categories, namely bidirectional reflectometers, which measure the angular distribution of scattering, and hemispherical directional reflectometers, which measure the total scattering into the hemisphere above the surface. Measurement of the bi-directional reflectance distribution function (BRDF) gives the greatest insight into how light is scattered from a surface. Measurements of BRDF, however, are typically very lengthy measurements taken by moving a source and detector to map the scattering. Since BRDF has four angular degrees of freedom, such measurements can require hours to days to complete. Instruments for measuring BRDF are also typically laboratory devices, although a field- portable bi-directional reflectometer does exist. Hemispherical directional reflectance (HDR) is a much easier measurement to make, although care must be taken to use the proper methodology when measuring at wavelengths beyond 10 micrometer, since integrating spheres (typically used to make such measurements) are very energy inefficient and lose their integrating properties at very long wavelengths. A few field- portable hemispherical directional reflectometers do exist, but typically measure HDR only at near-normal angles. Boeing Defense and Space Group and Surface Optics Corporation, under a contract from the Air Force Research Laboratory, have developed a new hand-held instrument capable of measuring both BRDF and HDR using a unique, patented angular imaging technique. A combination of an hemi-ellipsoidal mirror and an additional lens translate the angular scatter from a surface into a two-dimensional spatial distribution, which is recorded by an imaging array. This configuration fully maps the scattering from a half-hemisphere above the surface with more than 30,000 angularly-resolved points and update rates to 60 measurements per second. The instrument then computes HDR from the measured BDR. For ease of use, the instrument can also compare both the BRDF and HDR to preset limits, generating a Pass/Fail indicator for HDR and a high-acceptable-low image display of BRDF. Beam incidence elevation is variable from normal incidence ((theta) equals 0 degrees) to 5 degrees off grazing ((theta) equals 85 degrees), while scattering is measured to nearly 90 degrees off normal. Such capability is extremely important for any application requiring knowledge of surface appearance at oblique viewing angles. The current instrument operates over the range of 3 micrometer to 12 micrometer, with extension into the visible band possible.

  9. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles

    NASA Astrophysics Data System (ADS)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.

    2009-04-01

    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted in December 2008 at the AIDA cloud chamber in the temperature range from -5°C to -70°C. In a series of experiments small externally generated seed ice crystals were grown in AIDA at distinct temperature and saturation ratio conditions. For these experiments the long known ice morphology diagram with the temperature dependent morphology changes and the supersaturation dependent structural complexity could clearly be reproduced by PHIPS. Structural details like hollow crystals, crystals with inclusions, and crystals with stepped surfaces (Hopper crystals) could be resolved by PHIPS. Moreover, the advantage of stereo-imaging in terms of habit classification and particle orientation deduction could be demonstrated. The scattering function measurement reveals ice particle orientation dependent specular reflection peaks which might contain information about the surface roughness. The presentation will describe the instrument set up in detail and highlight some preliminary results.

  10. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  11. Effect of Surface Reflectivity Variations On Uv-visible Limb Scattering Measurements of The Atmosphere

    NASA Astrophysics Data System (ADS)

    Oikarinen, L.

    Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.

  12. On the role of the frozen surface approximation in small wave-height perturbation theory for moving surfaces

    NASA Astrophysics Data System (ADS)

    Keiffer, Richard; Novarini, Jorge; Scharstein, Robert

    2002-11-01

    In the standard development of the small wave-height approximation (SWHA) perturbation theory for scattering from moving rough surfaces [e.g., E. Y. Harper and F. M. Labianca, J. Acoust. Soc. Am. 58, 349-364 (1975)] the necessity for any sort of frozen surface approximation is avoided by the replacement of the rough boundary by a flat (and static) boundary. In this paper, this seemingly fortuitous byproduct of the small wave-height approximation is examined and found to fail to fully agree with an analysis based on the kinematics of the problem. Specifically, the first-order correction term from standard perturbation approach predicts a scattered amplitude that depends on the source frequency, whereas the kinematics of the problem point to a scattered amplitude that depends on the scattered frequency. It is shown that a perturbation approach in which an explicit frozen surface approximation is made before the SWHA is invoked predicts (first-order) scattered amplitudes that are in agreement with the kinematic analysis. [Work supported by ONR/NRL (PE 61153N-32) and by grants of computer time DoD HPC Shared Resource Center at Stennis Space Center, MS.

  13. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  14. Characterization of Nanoparticle Aggregation in Biologically Relevant Fluids

    NASA Astrophysics Data System (ADS)

    McEnnis, Kathleen; Lahann, Joerg

    Nanoparticles (NPs) are often studied as drug delivery vehicles, but little is known about their behavior in blood once injected into animal models. If the NPs aggregate in blood, they will be shunted to the liver or spleen instead of reaching the intended target. The use of animals for these experiments is costly and raises ethical questions. Typically dynamic light scattering (DLS) is used to analyze aggregation behavior, but DLS cannot be used because the components of blood also scatter light. As an alternative, a method of analyzing NPs in biologically relevant fluids such as blood plasma has been developed using nanoparticle tracking analysis (NTA) with fluorescent filters. In this work, NTA was used to analyze the aggregation behavior of fluorescent polystyrene NPs with different surface modifications in blood plasma. It was expected that different surface chemistries on the particles will change the aggregation behavior. The effect of the surface modifications was investigated by quantifying the percentage of NPs in aggregates after addition to blood plasma. The use of this characterization method will allow for better understanding of particle behavior in the body, and potential problems, specifically aggregation, can be addressed before investing in in vivo studies.

  15. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    NASA Astrophysics Data System (ADS)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  16. Problems encountered in the use of neutron methods for elemental analysis on planetary surfaces

    USGS Publications Warehouse

    Senftle, F.; Philbin, P.; Moxham, R.; Boynton, G.; Trombka, J.

    1974-01-01

    From experimental studies of gamma rays from fast and thermal neutron reactions in hydrogeneous and non-hydrogeneous, semi-infinite samples and from Monte Carlo calculations on soil of a composition which might typically be encountered on planetary surfaces, it is found that gamma rays from fast or inelastic scattering reactions would dominate the observed spectra. With the exception of gamma rays formed by inelastically scattered neutrons on oxygen, useful spectra would be limited to energies below 3 MeV. Other experiments were performed which show that if a gamma-ray detector were placed within 6 m of an isotopic neutron source in a spacecraft, it would be rendered useless for gamma-ray spectrometry below 3 MeV because of internal activation produced by neutron exposure during space travel. Adequate shielding is not practicable because of the size and weight constraints for planetary missions. Thus, it is required that the source be turned off or removed to a safe distance during non-measurement periods. In view of these results an accelerator or an off-on isotopic source would be desirable for practical gamma-ray spectral analysis on planetary surfaces containing but minor amounts of hydrogen. ?? 1974.

  17. Comparison of Aerosol Single Scattering Albedos Derived by Diverse Techniques In Two North Atlantic Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Redemann, J.; Schmid, B.; Bergstrom, R. W.; Livingston, J. M.; McIntosh, D. M.; Ramirez, S. A.; Hartley, S.; Hobbs, P. V.; Quinn, P. K.

    2002-01-01

    Aerosol single scattering albedo omega (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical depths from satellite radiances. Recently, two experiments in the North Atlantic region, the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2), determined aerosol omega by a variety of techniques. The techniques included fitting of calculated to measured radiative fluxes; retrievals of omega from skylight radiances; best fits of complex refractive index to profiles of backscatter extinction, and size distribution; and in situ measurements of scattering and absorption at the surface and aloft. Both TARFOX and ACE-2 found a fairly wide range of values for omega at midvisable wavelengths approx. 550 nm, with omega(sub midvis) greater than or equal to 0.85 and less than or equal to 0.99 for the marine aerosol impacted by continental pollution. Frequency distributions of omega could usually be approximated by lognormals in omega(sub max) - omega, with some occurrence of bimodality, suggesting the influence of different aerosol sources or processing. In both TARFOX and ACE-2, closure tests between measured and calculated radiative fluxes yielded best-fit values of omega(sub midvis) 0.90 +/- 0.04 for the polluted boundary layer. Although these results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., thermal offsets, unknown gas absorption) The other techniques gave larger values for omega(sub midvis) for the polluted boundary layer, with a typical result of omega(sub midvis) = 0.95 +/- 0.04. Current uncertainties in omega are large in terms of climate effects More tests are needed of the consistency among different methods and of humidification effects on omega.

  18. A noncoherent model for microwave emissions and backscattering from the sea surface

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Fung, A. K.

    1973-01-01

    The two-scale (small irregularities superimposed upon large undulations) scattering theory proposed by Semyonov was extended and used to compute microwave apparent temperature and the backscattering cross section from ocean surfaces. The effect of the small irregularities upon the scattering characteristics of the large undulations is included by modifying the Fresnel reflection coefficients; whereas the effect of the large undulations upon those of the small irregularities is taken into account by averaging over the surface normals of the large undulations. The same set of surface parameters is employed for a given wind speed to predict both the scattering and the emission characteristics at both polarizations.

  19. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers andmore » can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally,more » a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.« less

  1. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  2. Evidence for ground-ice occurrence on asteroid Vesta using Dawn bistatic radar observations

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.

    2017-12-01

    From 2011 to 2012, the Dawn spacecraft orbited asteroid Vesta, the first of its two targets in the asteroid belt, and conducted the first bistatic radar (BSR) experiment at a small-body, during which Dawn's high-gain communications antenna is used to transmit radar waves that scatter from Vesta's surface toward Earth at high incidence angles just before and after occultation of the spacecraft behind the asteroid. Among the 14 observed mid-latitude forward-scatter reflections, the radar cross section ranges from 84 ± 8 km2 (near Saturnalia Fossae) to 3,588 ± 200 km2 (northwest of Caparronia crater), implying substantial spatial variation in centimeter- to decimeter-scale surface roughness. The compared distributions of surface roughness and subsurface hydrogen concentration [H]—measured using data from Dawn's BSR experiment and Gamma Ray and Neutron Spectrometer (GRaND), respectively—reveal the occurrence of heightened subsurface [H] with smoother terrains that cover tens of square kilometers. Furthermore, unlike on the Moon, we observe no correlation between surface roughness and surface ages on Vesta—whether the latter is derived from lunar or asteroid-flux chronology [Williams et al., 2014]—suggesting that cratering processes alone are insufficient to explain Vesta's surface texture at centimeter-to-decimeter scales. Dawn's BSR observations support the hypothesis of transient melting, runoff and recrystallization of potential ground-ice deposits, which are postulated to flow along fractures after an impact, and provide a mechanism for the smoothing of otherwise rough, fragmented impact ejecta. Potential ground-ice presence within Vesta's subsurface was first proposed by Scully et al. [2014], who identified geomorphological evidence for transient water flow along several of Vesta's crater walls using Dawn Framing Camera images. While airless, differentiated bodies such as Vesta and the Moon are thought to have depleted their initial volatile content during the process of differentiation, evidence to the contrary is continuing to change our understanding of the distribution and preservation of volatiles during planetary formation in the early solar system.

  3. A three-dimensional He-CO potential energy surface with improved long-range behavior

    NASA Astrophysics Data System (ADS)

    McBane, George C.

    2016-12-01

    A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.

  4. Surface-Wave Pulse Routing around Sharp Right Angles

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.

    2018-04-01

    Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.

  5. Surface analysis by means of high resolution energy loss spectroscopy of 180° elastic scattered protons in the 100 keV regime

    NASA Astrophysics Data System (ADS)

    Jun-ichi, Kanasaki; Noriaki, Matsunami; Noriaki, Itoh; Tomoki, Oku; Kensin, Kitoh; Masahiko, Aoki; Koji, Matsuda

    1988-06-01

    The design and computer simulation of the performance of a new ion-beam surface analyzer has been presented. The analyzer has the capability of analyzing the energy of ions incident at 100 keV and scattered by 180° at surfaces with a resolution of 5 eV. The analyzer consists of an ion source, an accelerating-decelerating tube and a multichannel analyzer. Computer simulation of the energy spectra of ions scattered from GaAs is reported.

  6. Properties of dust and clouds in the Mars atmosphere: Analysis of Viking IRTM emission phase function sequences

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.

    1991-01-01

    An analysis of emission-phase-function (EPF) observations from the Viking Orbiter Infrared Thermal Mapper (IRTM) yields a wide variety of results regarding dust and cloud scattering in the Mars atmosphere and atmospheric-corrected albedos for the surface of Mars. A multiple scattering radiative transfer model incorporating a bidirectional phase function for the surface and atmospheric scattering by dust and clouds is used to derive surface albedos and dust and ice optical properties and optical depths for these various conditions on Mars.

  7. The Harp probe - An in situ Bragg scattering sensor

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, E.; Huang, N. E.; Long, S. R.; Bliven, L. F.

    1984-01-01

    A wave sensor, consisting of parallel, evenly spaced capacitance wires, whose output is the sum of the water surface deflections at the wires, has been built and tested in a wave tank. The probe output simulates Bragg scattering of electromagnetic waves from a water surface with waves; it can be used to simulate electromagnetic probing of the sea surface by radar. The study establishes that the wave probe, called the 'Harp' for short, will simulate Bragg scattering and that it can also be used to study nonlinear wave processes.

  8. The Clementine Bistatic Radar Experiment

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lichtenberg, C. L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E. M.

    1996-01-01

    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.

  9. Full wave two-dimensional modeling of scattering and inverse scattering for layered rough surfaces with buried objects

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Hao

    Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.

  10. Computer code for scattering from impedance bodies of revolution. Part 3: Surface impedance with s and phi variation. Analytical and numerical results

    NASA Technical Reports Server (NTRS)

    Uslenghi, Piergiorgio L. E.; Laxpati, Sharad R.; Kawalko, Stephen F.

    1993-01-01

    The third phase of the development of the computer codes for scattering by coated bodies that has been part of an ongoing effort in the Electromagnetics Laboratory of the Electrical Engineering and Computer Science Department at the University of Illinois at Chicago is described. The work reported discusses the analytical and numerical results for the scattering of an obliquely incident plane wave by impedance bodies of revolution with phi variation of the surface impedance. Integral equation formulation of the problem is considered. All three types of integral equations, electric field, magnetic field, and combined field, are considered. These equations are solved numerically via the method of moments with parametric elements. Both TE and TM polarization of the incident plane wave are considered. The surface impedance is allowed to vary along both the profile of the scatterer and in the phi direction. Computer code developed for this purpose determines the electric surface current as well as the bistatic radar cross section. The results obtained with this code were validated by comparing the results with available results for specific scatterers such as the perfectly conducting sphere. Results for the cone-sphere and cone-cylinder-sphere for the case of an axially incident plane were validated by comparing the results with the results with those obtained in the first phase of this project. Results for body of revolution scatterers with an abrupt change in the surface impedance along both the profile of the scatterer and the phi direction are presented.

  11. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive immunoassay based on surface-enhanced Raman scattering (SERS) spectroscopy has been developed for multiplex detection of surface envelope and capsid antigens of the viral zoonotic pathogens West Nile virus (WNV) and Rift Valley fever virus (RVFV). Detection was mediated by antibo...

  12. Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.

    2007-07-01

    This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.

  13. On the Angular Variation of Solar Reflectance of Snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Choudhury, B. J.

    1979-01-01

    Spectral and integrated solar reflectance of nonhomogeneous snowpacks were derived assuming surface reflection of direct radiation and subsurface multiple scattering. For surface reflection, a bidirectional reflectance distribution function derived for an isotropic Gaussian faceted surface was considered and for subsurface multiple scattering, an approximate solution of the radiative transfer equation was studied. Solar radiation incident on the snowpack was decomposed into direct and atmospherically scattered radiation. Spectral attenuation coefficients of ozone, carbon dioxide, water vapor, aerosol and molecular scattering were included in the calculation of incident solar radiation. Illustrative numerical results were given for a case of North American winter atmospheric conditions. The calculated dependence of spectrally integrated directional reflectance (or albedo) on solar elevation was in qualitative agreement with available observations.

  14. Colorimetry and magnitudes of asteroids

    NASA Technical Reports Server (NTRS)

    Bowell, E.; Lumme, K.

    1979-01-01

    In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.

  15. Inversion algorithms for the microwave remote sensing of soil moisture. Experiments with swept frequency microwaves

    NASA Technical Reports Server (NTRS)

    Hancock, G. D.; Waite, W. P.

    1984-01-01

    Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.

  16. Observation of correlated excitations in bimolecular collisions

    NASA Astrophysics Data System (ADS)

    Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.

  17. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  18. Properties of cutoff corrugated surfaces for corrugated horn design. [corrugation shape and density effects on scattering

    NASA Technical Reports Server (NTRS)

    Mentzer, C. A.; Peters, L., Jr.

    1974-01-01

    Corrugated horns involve a junction between the corrugated surface and a conducting ground plane. Proper horn design requires an understanding of the electromagnetic properties of the corrugated surface and this junction. An integral equation solution has been used to study the influence of corrugation density and tooth thickness on the power loss, surface current, and the scattering from a ground plane/corrugated surface junction.

  19. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2015-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  20. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  1. Reaction formulation for radiation and scattering from plates, corner reflectors and dielectric-coated cylinders

    NASA Technical Reports Server (NTRS)

    Wang, N. N.

    1974-01-01

    The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.

  2. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  3. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  4. Defect mapping system

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  5. Defect mapping system

    DOEpatents

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  6. Application of confocal laser microscopy for monitoring mesh implants in herniology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, V P; Belokonev, V I; Bratchenko, I A

    2011-04-30

    The state of the surface of mesh implants and their encapsulation region in herniology is investigated by laser confocal microscopy. A correlation between the probability of developing relapses and the size and density of implant microdefects is experimentally shown. The applicability limits of differential reverse scattering for monitoring the post-operation state of implant and adjacent tissues are established based on model numerical experiments. (optical technologies in biophysics and medicine)

  7. Polarized electroluminescence from edge-emission organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Ran, G. Z.; Jiang, D. F.

    2011-01-01

    We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.

  8. An Investigation of Particulate Behavior in Solid Rocket Motors

    DTIC Science & Technology

    1981-06-01

    that in the latter only a relatively few Al203 particles (of circular cross-section) are present. The other residue appears to be from the inhibitor ...cast in the propellant (Figure 16). The presence of large amounts of inhibitor residue obviously affected the scattered-light intensity profile and the...calculations. Therefore, the quantity of inhibitor used in future experi- ments should be minimized. D. DISCUSSION OF RESULTS The volume-surface mean

  9. Airborne characterization of aerosols over the contiguous United States during the SEAC4RS and DC3 campaigns: an in situ light scattering perspective

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Remer, L.; Puthukkudy, A.; Orozco, D.; Dubovik, O.; Martins, J. V.

    2017-12-01

    Models used to estimate climate change and interpret remote sensing observations must make assumptions regarding aerosol radiation interactions. This presentation will summarize aerosol light scattering measurements made by the Polarized Imaging Nephelometer (PI-Neph) during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry (DC3) experiments. The data presented includes direct measurements of phase function (P11) and polarized phase function (-P12/P11) as well as retrievals of size distribution, sphericity and complex refractive index made using the Generalized Retrieval of Aerosol and Surface Properties (GRASP). An aerosol classification scheme is developed to identify different aerosol types measured during the deployments, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location. Principal component analysis (PCA) is then used to reduce the dimensionality of the multi-angle PI-Neph scattering data and a strong link between the PCA scores and the ancillary classification results is observed. The scattering differences that reliable distinguish the different aerosol types are found to be quite subtle and often rely on the relationships between many scattering angles simultaneously. This fact emphasis the value of multi-angle scattering measurements, as well as principal component analysis's ability to reveal the underlying patterns in these datasets. The parameters retrieved from the DC3 scattering data suggest the presence of a significant amount of dust in aerosols influenced by convective systems, with the quantity of dust correlating strongly with sampling location and the underlying surface features. All fine mode dominated aerosol types from SEAC4RS had remarkably similar retrieved properties, except for the real refractive index of the biomass burning cases, which was consistently elevated (n532=1.54) when compared to the other types (n532=1.50). This result suggests that climate and remote sensing models may often be able to capture the differences in optical properties between biomass burning and other fine mode aerosols by only adjusting the real refractive index of the particles.

  10. Entropy-Based Classification of Subsurface Scatterers: A Valuable Tool for the Analysis of Data Obtained by the Fully Polarimetric WISDOM Radar

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Statz, C.; Hahnel, R.; Benedix, W. S.; Hamran, S. E.; Ciarletti, V.

    2016-12-01

    The "Water Ice Subsurface Deposition on Mars" Experiment (WISDOM) is a Ground Penetrating Radar (GPR) and part of the 2020 ExoMars Rover payload. It will be the first GPR operating on a planetary rover and the first fully polarimetric radar tasked at probing the subsurface of Mars. WISDOM operates at frequencies between 500 MHz and 3 GHz yielding a centimetric resolution and a penetration depth of about 3 meters in Martian soil. Its prime scientific objective is the detailed characterization of the material distribution within the first few meters of the Martian subsurface as a contribution to the search for evidence of past life. For the first time, WISDOM will give access to the geological structure, electromagnetic nature, and hydrological state of the shallow subsurface by retrieving the layering and properties of the buried reflectors at an unprecedented resolution and, due to the fully polarimetric measurements, amount of information. Furthermore, a "real time" subsurface analysis will support the drill operations by identifying locations of high scientific interest and low risk. Key element in the WISDOM data analysis is the fast and reliable classification and correct localization of subsurface scatterers and layers. The fully polarimetric nature of the WISDOM measurements allows the use of the entropy-alpha decomposition (H-alpha). This method enables the classification of reconstructed images of the subsurface (obtained by inverse imaging algorithms, e.g. f-k migration) with regard to the main scattering mechanisms of geological features present in the image of the subsurface. It is, for example, possible to differentiate smooth surfaces, rough surfaces, isolated spherical scatterers, double- and bounce scattering, anisotropic scatterers, clouds of small scatterers of similar shape as well as layers of oblate spheroids. Preliminary tests under laboratory conditions suggest the feasibility and value of the approach for the classification of geological features in the Martian subsurface in the context of WISDOM data processing and operations. It is a fast and reliable tool leveraging the whole amount of information provided by the fully polarimetric WISDOM Radar.

  11. Long-term effect of surface light scattering and glistenings of intraocular lenses on visual function.

    PubMed

    Hayashi, Ken; Hirata, Akira; Yoshida, Motoaki; Yoshimura, Koichi; Hayashi, Hideyuki

    2012-08-01

    To investigate the long-term effect of surface light scattering and glistenings of various intraocular lenses (IOLs) on visual function and optical aberrations after cataract surgery. Case-control study. Thirty-five eyes that underwent implantation of a hydrophobic acrylic, silicone, or polymethyl methacrylate (PMMA) IOL more than 10 years ago were recruited. The scattering light intensity of the surface and internal matrix of the optic was measured using Scheimpflug photography. Visual acuity (VA) was measured using VA charts, and contrast VA and that with glare (glare VA) were examined using a contrast sensitivity tester. Ocular higher-order aberrations (HOAs) were measured using a Hartmann-Shack aberrometer. Mean scattering light intensity of the surface and internal matrix of the optic was significantly higher in the acrylic group than in the silicone and PMMA groups (P < .0001). Mean uncorrected VA, photopic and mesopic contrast VA and glare VA, and HOAs did not differ significantly among groups, although mean corrected VA in the acrylic group was significantly better than that in the other groups (P = .0023). Scattering light intensity of the surface and internal matrix did not correlate with VA, contrast VA, or glare VA, and did not correlate with ocular and internal optic HOAs in the acrylic group. At more than 10 years postoperatively, visual function, including contrast sensitivity, and ocular HOAs were comparable among eyes that received acrylic, silicone, and PMMA IOLs. Surface scattering and glistenings with the acrylic IOLs were not significantly correlated with visual function and optical aberrations. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs

    NASA Astrophysics Data System (ADS)

    Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro

    2018-04-01

    The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.

  13. Estimation of Soil Moisture with L-band Multi-polarization Radar

    NASA Technical Reports Server (NTRS)

    Shi, J.; Chen, K. S.; Kim, Chung-Li Y.; Van Zyl, J. J.; Njoku, E.; Sun, G.; O'Neill, P.; Jackson, T.; Entekhabi, D.

    2004-01-01

    Through analyses of the model simulated data-base, we developed a technique to estimate surface soil moisture under HYDROS radar sensor (L-band multi-polarizations and 40deg incidence) configuration. This technique includes two steps. First, it decomposes the total backscattering signals into two components - the surface scattering components (the bare surface backscattering signals attenuated by the overlaying vegetation layer) and the sum of the direct volume scattering components and surface-volume interaction components at different polarizations. From the model simulated data-base, our decomposition technique works quit well in estimation of the surface scattering components with RMSEs of 0.12,0.25, and 0.55 dB for VV, HH, and VH polarizations, respectively. Then, we use the decomposed surface backscattering signals to estimate the soil moisture and the combined surface roughness and vegetation attenuation correction factors with all three polarizations.

  14. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    PubMed

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  15. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements.

    PubMed

    Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd

    2013-01-04

    Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  16. Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment

    ERIC Educational Resources Information Center

    Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.

    2012-01-01

    We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…

  17. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  18. Small-Angle Scatter Measurement.

    NASA Astrophysics Data System (ADS)

    Wein, Steven Jay

    The design, analysis, and performance of a small -angle scatterometer are presented. The effects of the diffraction background, geometrical aberrations and system scatter at the small-angles are separated. Graphs are provided that quantify their contribution. The far-field irradiance distributions of weakly truncated and untruncated Gaussian beams are compared. The envelope of diffraction ringing is shown to decrease proportionately with the level of truncation in the pupil. Spherical aberration and defocus are shown to have little effect on the higher-order diffraction rings of Gaussian apertures and as such will have a negligible effect on most scatter measurements. A method is presented for determining the scattered irradiance level for a given BRDF in relation to the peak irradiance of the point spread function. A method of Gaussian apodization is presented and tested that allows the level of diffraction ringing to become a design parameter. Upon sufficient reduction of the diffraction background, the scattered light from the scatterometers' primary mirror is seen to be the limiting component of the small-angle instrument profile. The scatterometer described was able to make a meaningful measurement close enough to the specular direction at 0.6328mum in order to observe the characteristic height and width of the scatter function. This allowed the rms roughness and autocorrelation length of the surface to be determined from the scatter data at this wavelength. The inferred rms roughness agreed well with an independent optical profilometer measurement of the surface. The BRDF of the samples were also measured at 10.6mum. The rms roughness inferred from this scatter data did not agree with the other measurements. The BRDF did not scale in accordance with the scaler diffraction theory of microrough surfaces. The scattering in the visible was dominated by the effects of surface roughness whereas the scattering in the far-infrared was apparently dominated by the effects of contaminants and surface defects. The model for the surface statistics is investigated. A K_0 (modified Bessel function) autocorrelation function is shown to predict the scattered light distribution of these samples much better than the conventional negative -exponential function. Additionally, a sampling theory is developed that addresses the negative-exponentially correlated output of lock-in amplifiers, detectors, and electronic circuits in general. It is shown that the optimum sampling rate is approximately one sample per time constant and at this rate the improvement in SNR is sqrt {N/2} where N is the number of measurements.

  19. Scattering of turbulent-jet wavepackets by a swept trailing edge.

    PubMed

    Piantanida, Selene; Jaunet, Vincent; Huber, Jérôme; Wolf, William R; Jordan, Peter; Cavalieri, André V G

    2016-12-01

    Installed jet noise is studied by means of a simplified configuration comprising a flat plate in the vicinity of a round jet. The effects of Mach number, jet-plate radial distance, and trailing-edge sweep angle are explored. Acoustic measurements are performed using a traversable 18-microphone azimuthal array, providing pressure data at 360 points on a cylindrical surface surrounding the jet-plate system. Key observations include a decrease, with increasing Mach number, of the relative level of the scattered field in comparison to the uninstalled jet; an exponential dependence of the scattered sound pressure level on the radial jet-plate separation; and considerable sideline noise reductions with increasing sweep angle, with which there is an overall reduction in acoustic efficiency. The measurements are compared with results obtained using a kinematic wavepacket source model, whose radiation is computed in two ways. A TGF for a semi-infinite flat plate is used to provide a low-order approximation of the scattering effect. Use of a more computationally intensive boundary element method provides additional precision. Good agreement between model predictions and experiment, encouraging from the perspective of low-cost prediction strategies, demonstrates that the models comprise the essential sound generation mechanisms.

  20. A programmable metasurface with dynamic polarization, scattering and focusing control

    NASA Astrophysics Data System (ADS)

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-10-01

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.

  1. A programmable metasurface with dynamic polarization, scattering and focusing control

    PubMed Central

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-01-01

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997

  2. A programmable metasurface with dynamic polarization, scattering and focusing control.

    PubMed

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-10-24

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.

  3. Monitoring of mirror degradation of fluorescence detectors at the Pierre Auger Observatory due to dust sedimentation

    NASA Astrophysics Data System (ADS)

    Nozka, L.; Hiklova, H.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Palatka, M.; Pech, M.; Ridky, J.; Schovanek, P.

    2018-05-01

    We present results of the monitoring method we have used to characterize the optical performance deterioration due to the dust of our mirror segments produced for fluorescence detectors used in astrophysics experiments. The method is based on the measurement of scatter profiles of reflected light. The scatter profiles and the reflectivity of the mirror segments sufficiently describe the performance of the mirrors from the perspective of reconstruction algorithms. The method is demonstrated on our mirror segments installed in frame of the Pierre Auger Observatory project. Although installed in air-conditioned buildings, both the dust sedimentation and the natural aging of the reflective layer deteriorate the optical throughput of the segments. In the paper, we summarized data from ten years of operation of the fluorescence detectors. During this time, we periodically measured in-situ scatter characteristics represented by the specular reflectivity and the reflectivity of the diffusion part at the wavelength of 670 nm of the segment surface (measured by means of the optical scatter technique as well). These measurements were extended with full Bidirectional Reflectance Distribution Functions (BRDF) profiles of selected segments made in the laboratory. Cleaning procedures are also discussed in the paper.

  4. Spectropolarimetric Imaging Observations

    NASA Astrophysics Data System (ADS)

    Bradley, Christine Lavella

    The capability to map anthropogenic aerosol quantities and properties over land can provide significant insights for climate and environmental studies on global and regional scales. One of the primary challenges in aerosol information monitoring is separating two signals measured by downward-viewing airborne or spaceborne instruments: the light scattered from the aerosols and light reflected from the Earth's surface. In order to study the aerosols independently, the surface signal needs to be subtracted out from the measurements. Some observational modalities, such as multispectral and multiangle, do not provide enough information to uniquely define the Earth's directional reflectance properties for this task due to the high magnitude and inhomogeneity of albedo for land surface types. Polarization, however, can provide additional information to define surface reflection. To improve upon current measurement capabilities of aerosols over urban areas, Jet Propulsion Laboratory developed the Multiangle SpectroPolarimetric Imager (MSPI) that can accurately measure the Degree of Linear Polarization to 0.5%. In particular, data acquired by the ground-based prototype, GroundMSPI, is used for directional reflectance studies of outdoor surfaces in this dissertation. This work expands upon an existing model, the microfacet model, to characterize the polarized bidirectional reflectance distribution function (pBRDF) of surfaces and validate an assumption, the Spectral Invariance Hypothesis, on the surface pBRDF that is used in aerosol retrieval algorithms. The microfacet model is commonly used to represent the pBRDF of Earth's surface types, such as ocean and land. It represents a roughened surface comprised of randomly oriented facets that specularly reflect incoming light into the upward hemisphere. The analytic form of the pBRDF for this model assumes only a single reflection of light from the microfaceted surface. If the incoming illumination is unpolarized, as it is with natural light from the Sun, the reflected light is linearly polarized perpendicular to the plane that contains the illumination and view directions, the scattering plane. However, previous work has shown that manmade objects, such as asphalt and brick, show a polarization signature that differs from the single reflection microfacet model. Using the polarization ray-tracing (PRT) program POLARIS-M, a numerical calculation for the pBRDF is made for a roughened surface to account for multiple reflections that light can experience between microfacets. Results from this numerical PRT method shows rays that experience two or more reflections with the microfacet surface can be polarized at an orientation that differs from the analytical single reflection microfacet model. This PRT method is compared against GroundMSPI data of manmade surfaces. An assumption made regarding the pBRDF for this microfacet model is verified with GroundMSPI data of urban areas. This is known as the Spectral Invariance Hypothesis and asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is the same for all wavelengths. This simplifies the microfacet model by assuming some surface parameters such as the index of refraction are spectrally neutral. GroundMSPI acquires the pBRF for five prominent region types, asphalt, brick, cement, dirt, and grass, for day-long measurements on clear sky conditions. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The pBRF is measured for the three polarimetric wavelengths of GroundMSPI, 470, 660, and 865nm, and the best fit slope of the spectral correlation is reported. This investigation shows agreement to the Spectral Invariance Hypothesis within 10% for all region types excluding grass. Grass measurements show a large mean deviation of 31.1%. This motivated an angle of linear polarization (AoLP) analysis of cotton crops to isolate single reflection cases, or specular reflections, from multiple scattering cases of light in vegetation. Results from this AoLP method show that specular reflections off the top surface of leaves follow the Spectral Invariance Hypothesis.

  5. Studies of electrode structures and dynamics using coherent X-ray scattering and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, H.; Liu, Y.; Ulvestad, A.

    2017-08-01

    Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.

  6. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how information from a single scattering halo can be used in conjunction with X-ray spectroscopy to directly measure the dust-to-gas mass ratio, laying the groundwork for future scattering halo surveys. Distant quasars also produce X-rays that pierce the intergalactic medium. These sources invite the unique opportunity to search for extragalactic dust, whether distributed diffusely throughout intergalactic space, surrounding other galaxies, or occupying reservoirs of cool intergalactic gas. I review X-ray scattering in a cosmological context, examining the range and sensitivity of Chandra to detect the low surface brightness levels of intergalactic scattering. Of particular interest is large "grey" dust, which would cause systematic errors in precision cosmology experiments at a level comparable to the size of the error bars sought. This requires using the more exact Mie scattering treatment, which reduces the scattering cross-section for soft X-rays by a factor of about ten, compared to the Rayleigh-Gans approximation used for interstellar X-ray scattering studies. This allows me to relax the limit on intergalactic dust imposed by previous X-ray imaging of a z=4.3 quasar, QSO 1508+5714, which overestimated the scattering intensity. After implementing the Mie solution with the cosmological integral for scattering halo intensity, I found that intergalactic dust will scatter 1-3% of soft X-ray light. Unfortunately the wings of the Chandra PSF are brighter than the surface brightness expected for these intergalactic scattering halos. The X-ray signatures of intergalactic dust may only be visible if a distant quasar suddenly dimmed by a factor of 1000 or more, leaving behind an X-ray scattering echo, or "ghost" halo.

  7. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  8. North Atlantic Aerosol Single Scattering Albedos: TARFOX and ACE-2 Results and Their Relation to Radiative Effects Derived from Satellite Optical Depths

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Redemann, J.; Quinn, P. K.; Carrico, C. M.; Rood, M. J.

    2000-01-01

    Bergstrom and Russell estimated direct solar radiative flux changes caused by atmospheric aerosols over the mid-latitude North Atlantic Ocean under cloud-free and cloudy conditions. They excluded African dust aerosols, primarily by restricting calculations to latitudes 25-60 N. As inputs they used midvisible aerosol optical depth (AOD) maps derived from AVHRR satellite measurements and aerosol intensive properties determined primarily in the 1996 IGAC Troposheric Aerosol Radiative Forcing Observational Experiment (TARFOX). Those aerosol intensive properties, which included optical depth wavelength dependence and spectra of single scattering albedo (SSA) and scattering asymmetry parameter, were also checked against initial properties from the 1997 North Atlantic Aerosol Characterization Experiment (ACE 2). Bergstrom and Russell investigated the sensitivity of their derived flux changes to assumed input parameters, including midvisible AOD, SSA, and scattering asymmetry parameter. Although the sensitivity of net flux change at the tropopause to SSA was moderate over the ocean (e.g., a SSA uncertainty of 0.07 produced a flux-change uncertainty of 21%), the sensitivity over common land surfaces can be much larger. Also, flux changes within and below the aerosol layer, which affect atmospheric stability, heating rates, and cloud formation and persistence, are quite sensitive to aerosol SSA. Therefore, this paper focuses on the question: "What have we learned from TARFOX and ACE 2 regarding aerosol single scattering albedo?" Three techniques were used in TARFOX to determine midvisible SSA. One of these derived SSA as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from aerosol properties. Another technique combined airborne measurements of aerosol scattering and absorption by nephelometer and absorption photometer. A third technique obtained SSA from best-fit complex refractive indices derived by comparing vertical profiles of lidar backscatter, sunphotometer extinction, and relative size distribution. In ACE 2 midvisible SSA was determined both as a best-fit parameter in comparing measured and calculated flux changes at the surface and by combining nephelometer and absorption photometer measurements. The nephelometer/absorption-photometer results were obtained on the ACE 2 ship (10 m asl), at the Sagres, Portugal site at 50 m asl, and also on the Pelican aircraft. This paper presents and compares the TARFOX and ACE 2 SSA results from the above techniques for different situations (e.g., marine vs continental flows, "clean" vs polluted conditions). It also discusses the strengths and limitations of the techniques, including whether they describe the aerosol in its ambient state or as perturbed by sampling processes; whether they describe the aerosol at the surface, as a function of altitude, or integrated over a column; the ease of acquiring representative data sets; results obtained in tests of consistency with radiative flux changes, and the likelihood of various artifacts and errors.

  9. Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes

    PubMed Central

    Marsh, Jon N.; Partlow, Kathryn C.; Abendschein, Dana R.; Scott, Michael J.; Lanza, Gregory M.; Wickline, Samuel A.

    2007-01-01

    Targeted, liquid perfluorocarbon nanoparticles are effective agents for acoustic contrast enhancement of abundant cellular epitopes (e.g. fibrin in thrombi) and for lower prevalence binding sites, such as integrins associated with tumor neovasculature. In this study we sought to delineate the quantitative relationship between the extent of contrast enhancement of targeted surfaces and the density (and concentration) of bound perfluorocarbon (PFC) nanoparticles. Two dramatically different substrates were utilized for targeting. In one set of experiments, the surfaces of smooth, flat, avidin-coated agar disks were exposed to biotinylated nanoparticles to yield a thin layer of targeted contrast. For the second set of measurements, we targeted PFC nanoparticles applied in thicker layers to cultured smooth muscle cells expressing the transmembrane glycoprotein “tissue factor” at the cell surface. An acoustic microscope was used to characterize reflectivity for all samples as a function of bound PFC (determined via gas chromatography). We utilized a formulation of low-scattering nanoparticles having oil-based cores to compete against high-scattering PFC nanoparticles for binding, to elucidate the dependence of contrast enhancement on PFC concentration. The relationship between reflectivity enhancement and bound PFC content varied in a curvilinear fashion, and exhibited an apparent asymptote (approximately 16 dB and 9 dB enhancement for agar and cell samples, respectively) at the maximum concentrations (~150 μg and ~1000 μg PFOB for agar and cell samples, respectively). Samples targeted with only oil-based nanoparticles exhibited mean backscatter values that were nearly identical to untreated samples (<1 dB difference), confirming the oil particles’ low-scattering behavior. The results of this study indicate that substantial contrast enhancement with liquid perfluorocarbon nanoparticles can be realized even in cases of partial surface coverage (as might be encountered when targeting sparsely populated epitopes), or when targeting surfaces with locally irregular topography. Furthermore, it may be possible to assess the quantity of bound cellular epitopes through acoustic means. PMID:17434667

  10. Retrieval of Soil Moisture and Roughness from the Polarimetric Radar Response

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.

    1997-01-01

    The main objective of this investigation was the characterization of soil moisture using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces was considered and a hybrid model that relates the radar backscattering coefficient to soil moisture and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave frequencies over a wide range of moisture conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of soil moisture content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the soil moisture content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough soil surface was considered. A general scattering model for grass-blades of arbitrary cross section was developed and incorporated in a first order random media model. The vegetation model and the bare-soil model are combined and the accuracy of the combined model is evaluated against experimental observations from a wheat field over the entire growing season. A complete set of ground-truth data and polarimetric backscatter data were collected. Also an inversion algorithm for estimating soil moisture and surface roughness from multi-polarized multi-frequency observations of vegetation-covered ground is developed.

  11. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S.; Shastry, K.; Anto, C. V.

    2016-03-15

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer’s new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer’s unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectramore » can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.« less

  12. KSC-2013-3908

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Dust particles scatter during an experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The fabricated material is designed to mimic the dust on the lunar surface. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities. CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities.

  13. The scatter of obliquely incident plane waves from a corrugated conducting surface

    NASA Technical Reports Server (NTRS)

    Levine, D. N.

    1975-01-01

    A physical optics solution is presented for the scattering of plane waves from a perfectly conducting corrugated surface in the case of waves incident from an arbitrary direction and for an observer far from the surface. This solution was used to compute the radar cross section of the surface in the case of backscatter from irregular (i.e., stochastic) corrugations and to point out a correction to the literature on this problem. A feature of the solution is the occurrence of singularities in the scattered fields which appear to be a manifestation of focussing by the surface at its stationary points. Whether or not the singularities occur in the solution depends on the manner in which one restricts the analysis to the far field.

  14. Surface morphology evolution during plasma etching of silicon: roughening, smoothing and ripple formation

    NASA Astrophysics Data System (ADS)

    Ono, Kouichi; Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji

    2017-10-01

    Atomic- or nanometer-scale roughness on feature surfaces has become an important issue to be resolved in the fabrication of nanoscale devices in industry. Moreover, in some cases, smoothing of initially rough surfaces is required for planarization of film surfaces, and controlled surface roughening is required for maskless fabrication of organized nanostructures on surfaces. An understanding, under what conditions plasma etching results in surface roughening and/or smoothing and what are the mechanisms concerned, is of great technological as well as fundamental interest. In this article, we review recent developments in the experimental and numerical study of the formation and evolution of surface roughness (or surface morphology evolution such as roughening, smoothing, and ripple formation) during plasma etching of Si, with emphasis being placed on a deeper understanding of the mechanisms or plasma-surface interactions that are responsible for. Starting with an overview of the experimental and theoretical/numerical aspects concerned, selected relevant mechanisms are illustrated and discussed primarily on the basis of systematic/mechanistic studies of Si etching in Cl-based plasmas, including noise (or stochastic roughening), geometrical shadowing, surface reemission of etchants, micromasking by etch inhibitors, and ion scattering/chanelling. A comparison of experiments (etching and plasma diagnostics) and numerical simulations (Monte Carlo and classical molecular dynamics) indicates a crucial role of the ion scattering or reflection from microscopically roughened feature surfaces on incidence in the evolution of surface roughness (and ripples) during plasma etching; in effect, the smoothing/non-roughening condition is characterized by reduced effects of the ion reflection, and the roughening-smoothing transition results from reduced ion reflections caused by a change in the predominant ion flux due to that in plasma conditions. Smoothing of initially rough surfaces as well as non-roughening of initially planar surfaces during etching (normal ion incidence) and formation of surface ripples by plasma etching (off-normal ion incidence) are also presented and discussed in this context.

  15. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce a.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    2011-01-01

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  16. Microgravity

    NASA Image and Video Library

    1998-02-05

    Sections of ZBLAN fibers pulled in a conventional 1-g process (left) and in experiments aboard NASA's KC-135 low-gravity aircraft. The rough surface of the 1-g fiber indicates surface defects that would scatter an optical signal and greatly degrade its quality. ZBLAN is part of the family of heavy-metal fluoride glasses (fluorine combined zirconium, barium, lanthanum, aluminum, and sodium). NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. ZBLAN is a heavy-metal fluoride glass that shows exceptional promise for high-throughput communications with infrared lasers. Photo credit: NASA/Marshall Space Flight Center

  17. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    PubMed

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  18. Big geo data surface approximation using radial basis functions: A comparative study

    NASA Astrophysics Data System (ADS)

    Majdisova, Zuzana; Skala, Vaclav

    2017-12-01

    Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for big scattered datasets in n-dimensional space. It is a non-separable approximation, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.

  19. Hygroscopic Measurements of Aerosol Particles in the San Joaquin Valley California during the DRAGON and Discover AQ Campaign 2013

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2013-12-01

    In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f(RH), showed relatively low hygroscopic growth in the aerosol particles, especially in comparison to a similar experiment conducted in 2012 in the Baltimore-Washington area. In average, during January and early February, the f(RH=85%) was 1.57×0.16 in the sampling site, which leads to the conclusion that the particle loading was dominated by black carbon and remnants of biomass burning. We refer to concurrent speciation measurements by Zhang et al. (private communication) in Fresno, during the study. The implications for sunphotometer measurements in DRAGON are discussed.

  20. Spin-dependent electron scattering at graphene edges on Ni(111).

    PubMed

    Garcia-Lekue, A; Balashov, T; Olle, M; Ceballos, G; Arnau, A; Gambardella, P; Sanchez-Portal, D; Mugarza, A

    2014-02-14

    We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of the Shockley bands of Ni, which we attribute to their distinct coupling to bulk states. Moreover, we find a strong dependence of the scattering amplitude on the atomic structure of the edges, depending on the orbital character and energy of the surface states.

Top