NASA Astrophysics Data System (ADS)
Fu, Qiang; Schaaf, Peter
2018-07-01
This special issue of the high impact international peer reviewed journal Applied Surface Science represents the proceedings of the 2nd International Conference on Applied Surface Science ICASS held 12-16 June 2017 in Dalian China. The conference provided a forum for researchers in all areas of applied surface science to present their work. The main topics of the conference are in line with the most popular areas of research reported in Applied Surface Science. Thus, this issue includes current research on the role and use of surfaces in chemical and physical processes, related to catalysis, electrochemistry, surface engineering and functionalization, biointerfaces, semiconductors, 2D-layered materials, surface nanotechnology, energy, new/functional materials and nanotechnology. Also the various techniques and characterization methods will be discussed. Hence, scientific research on the atomic and molecular level of material properties investigated with specific surface analytical techniques and/or computational methods is essential for any further progress in these fields.
Surface chemistry at Swiss Universities of Applied Sciences.
Brodard, Pierre; Pfeifer, Marc E; Adlhart, Christian D; Pieles, Uwe; Shahgaldian, Patrick
2014-01-01
In the Swiss Universities of Applied Sciences, a number of research groups are involved in surface science, with different methodological approaches and a broad range of sophisticated characterization techniques. A snapshot of the current research going on in different groups from the University of Applied Sciences and Arts Western Switzerland (HES-SO), the Zurich University of Applied Sciences (ZHAW) and the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) is given.
Workshop on Surface Science and Technology Held in Ann Arbor, Michigan on 7-9 November 1990
1992-03-01
assess the state of the art of surface science and technology as well as to identify new research opportunities essential for the understanding and control...The objective of this workshop was to review and assess the state of the art of surface science and technology as well as to identify new research...AD-A253 566 ’ # 4 - m~~i n~nl lInIir ~~ na Ri1 ?epoi’rt: EN 1Workshop on Surface Science and Technology DTIC ft , L-CTE I OUG0 3192 Ann Arbor
NASA Astrophysics Data System (ADS)
Aeschlimann, Martin; Berndt, Richard
2013-02-01
While surface science has traditionally focused on catalytic processes at surfaces, more recent developments have seen it evolve into a broad research area encompassing issues as diverse as single-molecule experiments, preparation and analysis of nanostructures, studies of novel and exotic materials, and elementary excitations in solids to name but a few. The aim of this small, but very select, focus issue of New Journal of Physics is to present a snapshot of just some of the latest cutting-edge research now being carried out on these topics. As editors, we hope that you find the contributions of interest to you and your future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Weidian
This project, “Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan” was carried out in two phases: (1) the 2009 – 2012 renovation of space in the new EMU Science Complex, which included the Surface Science Laboratory (SSL), a very vigorous research lab at EMU that carries on a variety of research projects to serve the auto and other industries in Michigan; and (2) the 2013 purchase of several pieces of equipment to further enhance the research capability of the SSL. The funding granted by the DoE was proposed to “renovate the space in the Science Complexmore » to include SSL and purchase equipment for tribological and electrochemical impedance measurements in the lab, thus SSL will serve the auto and other industries in Michigan better.” We believe we have fully accomplished the mission.« less
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
2000-01-01
The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.
The development of surface science in China: retrospect and prospects
NASA Astrophysics Data System (ADS)
Xide, Xie
1994-01-01
It is generally agreed that the year of 1977 marked the birth of surface science in China, therefore the length of its history of development is only half of that shown in the title of this volume. Since 1977 laboratories with modern facilities for surface studies have been established in various universities and research institutes. Three open laboratories better equipped than others have been set up in Beijing, Xiamen and Shanghai for surface physics, surface chemistry and applied surface physics, respectively. Five National Conferences on Physics of Surfaces and Interfaces were held in 1982, 1984, 1985, 1988 and 1991. In 1993 China is going to host the Fourth International Conference on the Structure of Surfaces in Shanghai August 16-19 which will serve as a milestone in the history of development of surface science in China. With the access to many overseas laboratories, quite a number of Chinese scientists and students have had opportunities to work and study abroad and have brought back with them experiences acquired. During the Conferences just mentioned, one could witness a number of steady progresses made over the years. In the present review, a brief description about the establishment of some major research facilities and progresses of some of the research is given with emphasis on work related to semiconductor surfaces, interfaces, superlattices, heterojunctions and quantum wells. Although the review nominally covers the development of research in surface science in China, due to the limitation of the capabilities of the author, mostly work done at Fudan University is included. For this the author would like to express her deep apology to many Chinese colleagues whose works have not been properly mentioned.
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; Bras, Rafael L.; McLaughlin, Dennis B.; Asrar, Ghassem R.; Wei, Ying; Betts, Alan K.; Beven, Keith J.; Duffy, Christopher J.; Dunne, Thomas; Koster, Randall D.;
1998-01-01
An agenda for land-surface hydrology research is proposed to open the debate for more comprehensive prioritization of science and application activities in the hydrologic sciences. A set of science questions are posed and the observational requirements to achieve substantial progress are identified. In this context, the proposal to initiate the 2nd International Hydrologic Decade (IHD) is put forth. The benefits of this initiative for enhanced scientific understanding and improved capability in meeting societal needs are also identified.
The birth and evolution of surface science: child of the union of science and technology.
Duke, C B
2003-04-01
This article is an account of the birth and evolution of surface science as an interdisciplinary research area. Surface science emanated from the confluence of concepts and tools in physics and chemistry with technological innovations that made it possible to determine the structure and properties of surfaces and interfaces and the dynamics of chemical reactions at surfaces. The combination in the 1960s and 1970s of ultra-high-vacuum (i.e., P < 10(-7) Pascal or 10(-9) Torr) technology with the recognition that electrons in the energy range from 50 to 500 eV exhibited inelastic collision mean free paths of the order of a few angstroms fostered an explosion of activity. The results were a reformulation of the theory of electron solid scattering, the nearly universal use of electron spectroscopies for surface characterization, the rise of surface science as an independent interdisciplinary research area, and the emergence of the American Vacuum Society (AVS) as a major international scientific society. The rise of microelectronics in the 1970s and 1980s resulted in huge increases in computational power. These increases enabled more complex experiments and the utilization of density functional theory for the quantitative prediction of surface structure and dynamics. Development of scanning-probe microscopies in the 1990s led to atomic-resolution images of macroscopic surfaces and interfaces as well as videos of atoms moving about on surfaces during growth and diffusion. Scanning probes have since brought solid-liquid interfaces into the realm of atomic-level surface science, expanding its scope to more complex systems, including fragile biological materials and processes.
Chemistry and materials science progress report, FY 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.
The birth and evolution of surface science: Child of the union of science and technology
Duke, C. B.
2003-01-01
This article is an account of the birth and evolution of surface science as an interdisciplinary research area. Surface science emanated from the confluence of concepts and tools in physics and chemistry with technological innovations that made it possible to determine the structure and properties of surfaces and interfaces and the dynamics of chemical reactions at surfaces. The combination in the 1960s and 1970s of ultra-high-vacuum (i.e., P < 10−7 Pascal or 10−9 Torr) technology with the recognition that electrons in the energy range from 50 to 500 eV exhibited inelastic collision mean free paths of the order of a few angstroms fostered an explosion of activity. The results were a reformulation of the theory of electron solid scattering, the nearly universal use of electron spectroscopies for surface characterization, the rise of surface science as an independent interdisciplinary research area, and the emergence of the American Vacuum Society (AVS) as a major international scientific society. The rise of microelectronics in the 1970s and 1980s resulted in huge increases in computational power. These increases enabled more complex experiments and the utilization of density functional theory for the quantitative prediction of surface structure and dynamics. Development of scanning-probe microscopies in the 1990s led to atomic-resolution images of macroscopic surfaces and interfaces as well as videos of atoms moving about on surfaces during growth and diffusion. Scanning probes have since brought solid–liquid interfaces into the realm of atomic-level surface science, expanding its scope to more complex systems, including fragile biological materials and processes. PMID:12651946
Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-03-01
Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stair, Peter C.
presentations on chemistry at solid and liquid surfaces of relevance to catalysis, synthesis, photochemistry, environmental science, and tribology. Topics include: Fundamental Surface Chemistry; Catalysis; Solid Liquid and Aerosol Interfaces; Surface Photochemistry; Synthesis of Surfaces; Environmental Interfaces; Hot Topics in Surface Chemical Reactions; Tribology; Gas-Surface Scattering and Reactions; Novel Materials and Environments.
Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Shen, Mingmin
The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
Abstracts and research accomplishments of university coal research projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-06-01
The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.
NASA Astrophysics Data System (ADS)
Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.
2006-12-01
The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.
Chemistry and Materials Science progress report, FY 1994. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-01
Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.
2018-04-23
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6930--18-9775 Bioinspired Surface Treatments for Improved Decontamination: Polyhedral...H. Moore Center for Bio/Molecular Science & Engineering Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5344 NRL/MR/6930--18...treatment of contaminated surfaces with a soapy water solution is reported. Wetting behaviors and target droplet diffusion on the surfaces are also
2014-01-02
of the formation of a hydrogen-bonded hydroxyl. Characteristic modes of the sarin molecule itself are also ob- served. These experimental results show...chemical warfare agent, surface science, uptake, decontamination, filtration , UHV, XPS, FTIR, TPD REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science
Gillams, Richard J; Jia, Tony Z
2018-05-08
An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.
Proceedings of the 5th Symposium on applied surface analysis
NASA Astrophysics Data System (ADS)
Grant, J. T.
1984-04-01
The 5th Symposium on Applied Surface Analysis was held at the University of Dayton, 8-10 June 1983. This Symposium was held to meet a need, namely to show the transition between basic surface science research and applications of this research to areas of Department of Defense interest. Areas receiving special attention at this Symposium were chemical bonding and reactions at metal-semiconductors interfaces, surface analysis and the tribological processes of ion implanted materials, microbeam analysis and laser ionization of sputtered neutrals. Other topics discussed included adsorption, adhesion, corrosion, wear and thin films. Approximately 110 scientists active in the field of surface analysis participated in the Symposium. Four scientists presented invited papers at the Symposium. There were 29 contributed presentations. The proceedings of the Symposium are being published in a special issue of the journal, Applications of Surface Science, by North-Holland Publishing Company.
Research Staff | Materials Science | NREL
Nancy.Haegel@nrel.gov | 303-384-6548 | Photo of Mowafak Al-Jassim Mowafak Al-Jassim Group Research Manager III and Surface Science Group Manager Glenn.Teeter@nrel.gov | 303-384-6664 Photo of Philip Parilla. Philip Parilla Group Manager/Senior Scientist Philip.Parilla@nrel.gov | 303-384-6506 Name Position Email Phone
Applications of HCMM satellite data to the study of urban heating patterns
NASA Technical Reports Server (NTRS)
Carlson, T. N. (Principal Investigator)
1980-01-01
A research summary is presented and is divided into two major areas, one developmental and the other basic science. In the first three sub-categories are discussed: image processing techniques, especially the method whereby surface temperature image are converted to images of surface energy budget, moisture availability and thermal inertia; model development; and model verification. Basic science includes the use of a method to further the understanding of the urban heat island and anthropogenic modification of the surface heating, evaporation over vegetated surfaces, and the effect of surface heat flux on plume spread.
The spectroscopy and chemical dynamics of microparticles explored using an ultrasonic trap.
Mason, N J; Drage, E A; Webb, S M; Dawes, A; McPheat, R; Hayes, G
2008-01-01
Microsized particles play an important role in many diverse areas of science and technology, for example, surface reactions of micron-sized particles play a key role in astrochemistry, plasma reactors and atmospheric chemistry. To date much of our knowledge of such surface chemistry is derived from 'traditional' surface science-based research. However, the large surface area and morphology of surface material commonly used in such surface science techniques may not necessarily mimic that on the surface of micron/nano scale particles. Hence, a new generation of experiments in which the spectroscopy (e.g., albedo) and chemical reactivity of micron-sized particles can be studied directly must be developed. One, as yet underexploited, non-invasive technique is the use of ultrasonic levitation. In this article, we describe the operation of an 'ultrasonic trap' to store and study the physical and chemical properties of microparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.
Research | Photovoltaic Research | NREL
-V cells Hybrid tandems Polycrystalline Thin-Film PV CdTe solar cells CIGS solar cells Perovskites and Organic PV Perovskite solar cells Organic PV solar cells Advanced Materials, Devices, and Science Interfacial and Surface Science Reliability and Engineering Real-Time PV and Solar Resource
Surface Chemistry of CWAs for Decon Enabling Sciences
2014-11-04
representing the formation of a hydrogen-bonded mode. Characteristic modes of the sarin molecule itself are also observed. These experimental results show...Triangle Park, NC 27709-2211 surface science, CWA, uptake, decomposition, decontamination, filtration , XPS, FTIR, TPD, MS, UHV REPORT DOCUMENTATION PAGE 11...Karwacki, Team Leader CBR Filtration Research and Technology Directorate at ECBC. Through this collaboration, we have established a facility for the study
Applications of surface analytical techniques in Earth Sciences
NASA Astrophysics Data System (ADS)
Qian, Gujie; Li, Yubiao; Gerson, Andrea R.
2015-03-01
This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences to show how each technique is applied and used to obtain specific information and to resolve real problems, which forms the central theme of this review. Although this review focuses on applications of these techniques to study mineralogical and geological samples, we also anticipate that researchers from other research areas such as Material and Environmental Sciences may benefit from this review.
United States Air Force Summer Faculty Research Program for 1990. Program Management Report
1991-06-05
propagation characteristics were extensively studied using pencil lead breaks in a center notch. For the fatigue studies center crack samples of 2024 - T351 ... aluminum specimens during fatigue cycling. The experimental procedure involved excitation of Rayleigh waves on the surface of each specimen and...Research Program (SFRP) provides opportunities for research in the physical sciences, engineering, and life sciences. The program has been effective
Surface texture measurement for dental wear applications
NASA Astrophysics Data System (ADS)
Austin, R. S.; Mullen, F.; Bartlett, D. W.
2015-06-01
The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE's Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE's Office of Energy Efficiency and Renewable Energy.« less
Wauchope, R Don; Ahuja, Lajpat R; Arnold, Jeffrey G; Bingner, Ron; Lowrance, Richard; van Genuchten, Martinus T; Adams, Larry D
2003-01-01
We present an overview of USDA Agricultural Research Service (ARS) computer models and databases related to pest-management science, emphasizing current developments in environmental risk assessment and management simulation models. The ARS has a unique national interdisciplinary team of researchers in surface and sub-surface hydrology, soil and plant science, systems analysis and pesticide science, who have networked to develop empirical and mechanistic computer models describing the behavior of pests, pest responses to controls and the environmental impact of pest-control methods. Historically, much of this work has been in support of production agriculture and in support of the conservation programs of our 'action agency' sister, the Natural Resources Conservation Service (formerly the Soil Conservation Service). Because we are a public agency, our software/database products are generally offered without cost, unless they are developed in cooperation with a private-sector cooperator. Because ARS is a basic and applied research organization, with development of new science as our highest priority, these products tend to be offered on an 'as-is' basis with limited user support except for cooperating R&D relationship with other scientists. However, rapid changes in the technology for information analysis and communication continually challenge our way of doing business.
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
NASA Astrophysics Data System (ADS)
Jones, J. W.; Hudson-Dunn, A.; Aquino, K.; Pasa, M.; Paez, F.
2013-12-01
The U.S. Geological Survey is developing techniques to monitor vegetation and surface water condition for improved resource management. Educational materials and data forms that allow volunteer Citizen Scientists to collect information on vegetation and surface water extent to enhance satellite and web camera data analyses (http://egsc.usgs.gov/shenandoah.html) have been developed, tested, and refined. Collection is focused on supplementing landscape phenology and surface water extent (SWE) essential climate variable (ECV) research. Low cost instrumentation, subject education, and measurement calibration techniques all have utility for multiple remote sensing and biophysical studies. Trials have been conducted with subjects ranging from elementary school-aged summer camp children to science major undergraduate and graduate students. Experiments were replicated in several project study areas in Virginia that are also phenology and SWE-ECV research sites. Analysis of volunteer responses and their narrative feedback have improved the ability to request and assess data from volunteers. Children ages 12 and over were able to provide reliable supplemental information for phenology and aquatic research. Finally, trial observation and subject feedback both confirmed that participation furthered volunteer interest in science.
Interactions of Deuterium Plasma with Lithiated and Boronized Surfaces in NSTX-U
NASA Astrophysics Data System (ADS)
Krstic, Predrag
2015-09-01
The main research goal of the presented research has been to understand the changes in surface composition and chemistry at the nanoscopic temporal and spatial scales for long pulse Plasma Facing Components (PFCs) and link these to the overall machine performance of the National Spherical Torus Experiment Upgrade (NSTX-U). A study is presented of the lithium surface science, with atomic spatial and temporal resolutions. The dynamic surface responds and evolves in a mixed material environments (D, Li, C, B, O, Mo, W) with impingement of plasma particles in the energy range below 100 eV. The results, obtained by quantum-classical molecular dynamics, include microstructure changes, erosion, surface chemistry, deuterium implantation and permeation. Main objectives of the research are i) a comparison of Li and B deposition on carbon, ii) the role of oxygen and other impurities e.g. boron, carbon in the lithium performance, and iii) how this performance will change when lithium is applied to a high-Z refractory metal substrate (Mo, W). In addition to predicting and understanding the phenomenology of the processes, we will show plasma induced erosion of PFCs, including chemical and physical sputtering yields at various temperatures (300-700 K) as well as deuterium uptake/recycling. This work is supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Science, Award Number DE-SC0013752.
Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film
NASA Astrophysics Data System (ADS)
Shu, Yi; Tian, He; Wang, Zhe; Zhao, Hai-Ming; Mi, Wen-Tian; Li, Yu-Xing; Cao, Hui-Wen; Ren, Tian-Ling
2015-11-01
Not Available Supported by the National Natural Science Foundation under Grant No 61434001 and 61574083, the National Basic Research Program of China under Grant No 2015CB352100, the National Key Project of Science and Technology under Grant No 2011ZX02403-002, and the Special Fund for Agroscientic Research in the Public Interest of China under Grant No 201303107.
NASA Astrophysics Data System (ADS)
Miao, Yuan-Hao; Hu, Hui-Yong; Song, Jian-Jun; Xuan, Rong-Xi; Zhang, He-Ming
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61474085 and 61704130), the Science Research Plan in Shaanxi Province, China (Grant No. 2016GY-085), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant No. 90109162905), and the Fundamental Research Funds for the Central Universities, China (Grant No. 61704130).
2010 Atmospheric System Research (ASR) Science Team Meeting Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, DL
This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.
Characterization of oxygen and titanium diffusion at the anatase TiO2(001) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, Gregory S.; Zehr, Robert T.; Henderson, Michael A.
2013-06-01
The diffusion of intrinsic defects in a single crystal anatase TiO2(001) film was explored by isotopic labeling and static secondary ion mass spectrometry. Using both 46Ti and 18O as isotopic labels, we show that the anatase surface responds to redox imbalances by diffusion of both Ti and O into the bulk under vacuum reduction and (at least) Ti from the bulk to the surface during oxidation. The diffusion of Ti between the bulk and surface in anatase TiO2(001) closely resembles what was observed in the literature for the rutile TiO2(110) surface, however the latter is not known to have oxygenmore » diffusion between the bulk and surface under typical ultrahigh vacuum conditions. We speculate that the open lattice of the anatase bulk structure may facilitate independent diffusion of both point defects (Ti interstitials and O vacancies) or concerted diffusion of "TiO" subunits. The authors gratefully acknowledge S.A. Chambers of Pacific Northwest National Laboratory (PNNL) for providing the anatase samples. This research was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, the Office of Naval Research Contract Number 200CAR262, and the Oregon Nanoscience and Microtechnologies Institute. PNNL is operated for the U.S. DOE by Battelle under Contract Number DE05-AC76RL0 1830. The research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility funded by the U.S. DOE Office of Biological and Environmental Research.« less
Surface acoustic wave devices for sensor applications
NASA Astrophysics Data System (ADS)
Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren
2016-02-01
Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).
Science Support Room Operations During Desert RATS 2009
NASA Technical Reports Server (NTRS)
Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.;
2010-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
NASA Astrophysics Data System (ADS)
Häberle, Patricio; Fuenzalida, Victor
2004-07-01
The 2003 Congreso Latinoamericano de Ciencia de Superficies y sus Aplicaciones (Latin American Congress of Surface Science and Its Applications) was held in Pucón, Chile, 7-12 December 2003. XI CLACSA is the continuation of a series of events that started in 1980. Until 1992, this series was called Simposio Latinoamericano de Física de Superficies (SLAFS). In recognition of the interdisciplinary nature of the field, starting in 1994 the meeting became CLACSA. The conference was organized by the Sociedad Latinoamericana de Ciencia de Superficies (SLACS) with the purpose of becoming a forum for the exchange of information associated with scientific research carried out in Latin America in the field of surface physics, systems of low dimensionality and areas related to condensed matter physics and science of materials. This scientific event has enjoyed a large participation from Latin American scientists, and has helped to stimulate the collaboration between researchers from Europe, Latin America and the United States.
A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Davis, M. H.
1989-01-01
A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.
Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; ...
2016-04-21
Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.
Modeling of scattering from ice surfaces
NASA Astrophysics Data System (ADS)
Dahlberg, Michael Ross
Theoretical research is proposed to study electromagnetic wave scattering from ice surfaces. A mathematical formulation that is more representative of the electromagnetic scattering from ice, with volume mechanisms included, and capable of handling multiple scattering effects is developed. This research is essential to advancing the field of environmental science and engineering by enabling more accurate inversion of remote sensing data. The results of this research contributed towards a more accurate representation of the scattering from ice surfaces, that is computationally more efficient and that can be applied to many remote-sensing applications.
Vigotsky, Andrew D.; Halperin, Israel; Lehman, Gregory J.; Trajano, Gabriel S.; Vieira, Taian M.
2018-01-01
Surface electromyography (sEMG) is a popular research tool in sport and rehabilitation sciences. Common study designs include the comparison of sEMG amplitudes collected from different muscles as participants perform various exercises and techniques under different loads. Based on such comparisons, researchers attempt to draw conclusions concerning the neuro- and electrophysiological underpinning of force production and hypothesize about possible longitudinal adaptations, such as strength and hypertrophy. However, such conclusions are frequently unsubstantiated and unwarranted. Hence, the goal of this review is to discuss what can and cannot be inferred from comparative research designs as it pertains to both the acute and longitudinal outcomes. General methodological recommendations are made, gaps in the literature are identified, and lines for future research to help improve the applicability of sEMG are suggested. PMID:29354060
ERIC Educational Resources Information Center
Iwu, R. U.; Azoro, A. V.
2017-01-01
A study was carried out to ascertain the barriers to effective participation of females in surface-mount technology (SMT) in Imo State. Four purposes and four research questions guided the study. The study adopted the survey research design. The population of the study consists of all the female science students and lecturers in six tertiary…
2005-01-01
Surface Tasks ................................................................................................... 250 Goali : Creep and Microstructural...SURFACE TASKS Morris Driels, Professor Department of Mechanical Engineering Sponsor: U.S. Army Materiel Systems Analysis Activity GOALI : CREEP AND...Professor Department of Mechanical Engineering Sponsor: National Science Foundation SUMMARY: This GOALI (Grant Opportunities for Academic Liaison
Life Sciences Implications of Lunar Surface Operations
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.
2010-01-01
The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.
Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors
NASA Astrophysics Data System (ADS)
Kennedy, Daniel; Jaworski, Michael
2014-10-01
Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
Convergence Science in a Nano World
Cady, Nathaniel
2013-01-01
Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.
1988-09-01
surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular
Fieldwork and social science research ethics.
Contractor, Qudsiya
2008-01-01
Fieldwork as a part of social science research brings the researcher closest to the subject of research. It is a dynamic process where there is an exchange between the researcher, participants, stakeholders, gatekeepers, the community and the larger sociopolitical context in which the research problem is located. Ethical dilemmas that surface during fieldwork often pose a unique challenge to the researcher. This paper is based on field experiences during an action research study conducted with a human rights perspective. It discusses the role conflict that researchers face during fieldwork in a situation of humanitarian crisis. It raises issues pertaining to the need to extend the ethical decision-making paradigm to address ethical dilemmas arising during the course of fieldwork.
ERIC Educational Resources Information Center
Bruno, Karl; Larsen, Katarina; van Leeuwen, Thed N.
2017-01-01
This article examines dynamics of knowledge production and discourses of basic-applied science and relevance at the Swedish Institute for Surface Chemistry, a semi-public industrially oriented research institute, from 1980 to 2005. We employ a three-pronged method, consisting of (1) an analysis of how the institute articulated its research…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler, J.O.
1986-06-01
The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)
Materials Science Research | Materials Science | NREL
Structure Theory We use high-performance computing to design and discover materials for energy, and to study structure of surfaces and critical interfaces. Images of red and yellow particles Materials Discovery Our by traditional targeted experiments. Photo of a stainless steel piece of equipment with multiple
Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces.
Michaelides, Angelos; Martinez, Todd J; Alavi, Ali; Kresse, Georg; Manby, Frederick R
2015-09-14
This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk; Martinez, Todd J.; Alavi, Ali
This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
Study of Vibrational Energy Transfer at a Surface by a Time-of-Flight Method.
1983-07-31
82174* - *-. L7 .i.&. I- I OD(D SOI x O 1 6/81 INIT DISTRIBUTION LIST July 31, 1983 No. Copies No. Copies Dr. L.V. Schmidt 1 Dr. F. Roberto 1 Assistant...of Scientific Dr. A.L. Slafkosky 1Research Scientific Advisor Directorate of Aerospace Sciences Commandant of the Marine Corps Bolling Air Force Base...Research Research Code 432 Directorate of Chemical Sciences Arlington, VA 22217 Bolling Air Force Base Washington, D.C. 20332Mr. David SiegelI Office of
Soil science and geology: Connects, disconnects and new opportunities in geoscience education
Landa, E.R.
2004-01-01
Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.
Aerothermodynamics and Turbulence
2013-03-08
Surface Heat Transfer and Detailed Flow Structure Fuel Injection in a Scramjet Combustor Reduced Uncertainty in Complex Flows Addressing... hypersonic flight data to capture shock interaction unsteadiness National Hypersonic Foundational Research Plan Joint Technology Office... Hypersonics Basic Science Roadmap Assessment of SOA and Future Research Directions Ongoing Basic Research for Understanding and Controlling Noise
Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne
NASA Technical Reports Server (NTRS)
Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis
2006-01-01
This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.
Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project
Debelius, Justine W.; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob
2016-01-01
The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond. PMID:27047589
Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project.
Debelius, Justine W; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob
2016-03-01
The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond.
2017-04-01
Calendar year (January 1 through December 31) DO Dissolved oxygen ELWS Water surface elevation ERDC Engineer Research and Development Center ISS...Dorothy H. Tillman, and David L. Smith April 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research ...military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies
2006-10-01
Engineering) Campbell D. Carter and Jeffrey M. Donbar (Aerospace Propulsion Division, Propulsion Sciences Branch (AFRL/ PRAS )) 5f. WORK UNIT NUMBER...Sciences Branch (AFRL/ PRAS ) Propulsion Directorate Air Force Research Laboratory, Air Force Materiel Command Wright-Patterson AFB, OH 45433-7251 Uni. of...M. Donbar b a Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA b Air Force Research Laboratory AFRL/ PRAS , Wright
RISK MANAGEMENT RESEARCH PLAN FOR ECOSYSTEM RESTORATION IN WATERSHEDS
This document outlines the scope of National Risk Management Laboratory (NRMRL) risk management research in the area of ecosystem restoration. NRMRL is uniquely positioned to make substantial contributions to ecosystem science because of its in-house expertise relative to surfac...
Enabling Research Tools for Sustained Climate Assessment
NASA Technical Reports Server (NTRS)
Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.
2016-01-01
The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.
JSC director's discretionary fund program
NASA Technical Reports Server (NTRS)
1991-01-01
The Johnson Space Center Director's Discretionary Fund Program Annual Report provides a brief review of the status of projects undertaken during the 1990 fiscal year. Three space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, and lunar surface habitat. A viable program of life sciences, space sciences, and engineering research has been maintained.
Halogenated organic compounds are common pollutants in groundwater. Consequently, there is widespread interest in understanding the reactions of these compounds in the environment and developing remediation strategies. One area of ongoing research involves the reductive dechlo...
1988-02-15
Center Attn: Dr. Ron Atkins Code 50C Chemistry Division Crane, Indiana 47522-5050 China Lake, California 93555 Scientific Advisor INaval Civil...Superintendent Marine Sciences Division Chemistry Division, Code 6100 San Diego, California 91232 Naval Research Laboratory Washington, D.C. 20375-5000 ,! .1
Science-based decision-making on the use of dispersants in the Deepwater Horizon oil spill
Prior to the DWH incident, most (if not all) existing oil spill response knowledgewas based on surface spills and surface applications of dispersant. The behavior ofdispersants subsea was (and still is) less understood, and previous research had notfocused on the duration or quan...
R-LINE: A Line Source Dispersion Model for Near-Surface Releases
Based on Science Advisory Board and the National Research Councilrecommendations, EPA-ORD initiated research on near-road air quality andhealth effects. Field measurements indicated that exposures to traffic-emitted air pollutants near roads can be influenced by complexities of r...
Science Operations Development for Field Analogs: Lessons Learned from the 2010 Desert RATS Test
NASA Technical Reports Server (NTRS)
Eppler, D. B.; Ming, D. W.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities.
Strang, David; Siler, Kyle
2017-08-01
This paper analyzes the surface structure of research articles published in Administrative Science Quarterly between 1956 and 2008. The period is marked by a shift from essays that interweave theory, methods and results to experimental reports that separate them. There is dramatic growth in the size of theory, methods and discussion sections, accompanied by a shrinking results section. Bibliographic references and hypotheses expand in number and become concentrated in theory sections. Article structure varies primarily with historical time and also with research design (broadly, quantitative vs. qualitative) and the author's background. We link trends in article structure to the disciplinary development of organization studies and consider its distinctive trajectory relative to physical science.
A novel polishing technology for epoxy resin based on 355 nm UV laser
NASA Astrophysics Data System (ADS)
Meng, Xinling; Tao, Luqi; Liu, Zhaolin; Yang, Yi; Ren, Tianling
2017-06-01
The electromagnetic shielding film has drawn much attention due to its wide applications in the integrated circuit package, which demands a high surface quality of epoxy resin. However, gaseous Cu will splash and adhere to epoxy resin surface when the Cu layer in PCB receives enough energy in the process of laser cutting, which has a negative effect on the quality of the shielding film. Laser polishing technology can solve this problem and it can effectively improve the quality of epoxy resin surface. The paper studies the mechanism of Cu powder spraying on the compound surface by 355 nm ultraviolet (UV) laser, including the parameters of laser polishing process and the remains of Cu content on compound surface. The results show that minimal Cu content can be realized with a scanning speed of 700 mm/s, a laser frequency of 50 kHz and the distance between laser focus and product top surface of -1.3 mm. This result is important to obtain an epoxy resin surface with high quality. Project supported by the National Natural Science Foundation of China (Nos. 61574083, 61434001), the National Basic Research Program (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002), the Special Fund for Agroscientic Research in the Public Interest of China (No 201303107), the support of the Independent Research Program of Tsinghua University (No. 2014Z01006), and Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen (No. ZDSYS20140509172959969).
CosmoQuest: Building community around Citizen Science Collaboration
NASA Astrophysics Data System (ADS)
Gay, P.
2015-12-01
CosmoQuest was envisioned in 2011 with a singular goal: to create a place where people of all backgrounds can learn and do science in a virtual research community. Like a brick-and-mortar center, CosmoQuest includes facilities for doing science and for educating its members through classes, seminars, and other forms of professional development. CosmoQuest is unique with its combination of public engagement in doing science—known as "citizen science"— and its diversity of learning opportunities that enable STEM education. Our suite of activities is able maximize people's ability to learn and do science, while improving scientific literacy. Since its launch on January 1, 2012, CosmoQuest has grown to become the most trafficked astronomy citizen science site on the English-language internet. It has hosted five citizen science portals supporting NASA SMD science and is the only citizen science site to have produced peer-reviewed surface science results [Robbins, et al. 2014]. CosmoQuest, however, is more than just citizen science. It is a virtual research center for the public, and for the educators who teach in classrooms and science centers. Like with with any research center, CosmoQuest's success hinges on its ability to build a committed research community, and the challenge has been creating this community without the benefit of real-world interactions. In this talk, we overview how CosmoQuest has built a virtual community through screen-to-screen interactions using a suite of technologies that must constantly evolve as the internet evolves.
Rheem, Sungsue; Rheem, Insoo; Oh, Sejong
2017-01-01
Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources .
Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter
2017-04-01
Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of <100m resolution). The overall area mapped from orbital imagery is approximately 6 times the overall surface of Mars [1]. The multi-temporal coverage of Martian surface allows a visual inspection of the surface to identify dynamic phenomena, i.e. surface features that change over time, such as slope streaks [2], recurring slope lineae [3], new impact craters [4], etc. However, visual inspection for change detection is a limited approach, since it requires extensive use of human resources, which is very difficult to achieve when dealing with a rapidly increasing volume of data. Although citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planetary and Space Science, 126: 93-138.
PREFACE: 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6)
NASA Astrophysics Data System (ADS)
Ahsan Bhatti, Javaid; Hussain, Talib; Khan, Wakil
2013-06-01
The Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA) conference series has been organized to create a new forum in Asia and Australia to discuss vacuum, surface and related sciences, techniques and applications. The conference series is officially endorsed by the International Union for Vacuum Science, Technique and Application (IUVSTA). The International Steering Committee of VASSCAA is comprised of Vacuum Societies in seven countries: Australia, China, India, Iran, Japan, South Korea and Pakistan. VASSCAA-1 was organized by the Vacuum Society of Japan in 1999 in Tokyo, Japan. VASSCAA-2 was held in 2002 in Hong Kong, VASSCAA-3 in Singapore in 2005. VASSCAA-4 was held in Matsue, Japan in 2008 and VASSCAA-5 in 2010 in Beijing, China. The 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6) was held from 9-13 October 2012 in the beautiful city of Islamabad, Pakistan. The venue of the conference was the Pak-China Friendship Centre, Islamabad. More than six hundred local delgates and around seventy delegates from different countries participated in this mega event. These delegates included scientists, researchers, engineers, professors, plant operators, designers, vendors, industrialists, businessmen and students from various research organizations, technical institutions, universities, industries and companies from Pakistan and abroad. The focal point of the event was to enhance cooperation between Pakistan and the international community in the fields of vacuum, surface science and other applied technologies. At VASSCAA-6 85 oral presentations were delivered by local and foreign speakers. These were divided into different sessions according to their fields. A poster session was organized at which over 70 researchers and students displayed their posters. The best three posters won prizes. In parallel to the main conference sessions four technical short courses were held. The participants showed keen interest in all these courses. The most significant part of this event was an international exhibition of science, technology, energy and industry. In this international exhibition over 60 prominent international as well as local industrialists and vendors displayed their products. For the recreation of conference participants a cultural program and dinner was arranged. This entertaining program was fully enjoyed by all the participants especially the foreign guests. Recreational trips were also arranged for the foreign delegates. This mega event provided a unique opportunity to our scientific community to benefit from the rich international experience. The conference was a major forum for the exchange of knowledge and provided numerous scientific, technical and social opportunities for meeting leading experts. Editors Dr Javaid Ahsan Bhatti, Dr Talib Hussain, Dr Suleman Qaiser and Dr Wakil Khan National Institute of Vacuum Science and Technology (NINVAST) NCP Complex, Quaid-e-Azam University, Islamabad, Pakistan The PDF also contains a list of delegates.
Advanced Remote Sensing Research
Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna
2008-01-01
'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).
Progress Report on the US Critical Zone Observatory Program
NASA Astrophysics Data System (ADS)
Barrera, E. C.
2014-12-01
The Critical Zone Observatory (CZO) program supported by the National Science Foundation originated from the recommendation of the Earth Science community published in the National Research Council report "Basic Research Opportunities in Earth Sciences" (2001) to establish natural laboratories to study processes and systems of the Critical Zone - the surface and near-surface environment sustaining nearly all terrestrial life. After a number of critical zone community workshops to develop a science plan, the CZO program was initiated in 2007 with three sites and has now grown to 10 sites and a National Office, which coordinates research, education and outreach activities of the network. Several of the CZO sites are collocated with sites supported by the US Long Term Ecological Research (LTER) and the Long Term Agricultural Research (LTAR) programs, and the National Ecological Observatory Network (NEON). Future collaboration with additional sites of these networks will add to the potential to answer questions in a more comprehensive manner and in a larger regional scale about the critical zone form and function. At the international level, CZOs have been established in many countries and strong collaborations with the US program have been in place for many years. The next step is the development of a coordinated international program of critical zone research. The success of the CZO network of sites can be measured in transformative results that elucidate properties and processes controlling the critical zone and how the critical zone structure, stores and fluxes respond to climate and land use change. This understanding of the critical zone can be used to enhance resilience and sustainability, and restore ecosystem function. Thus, CZO science can address major societal challenges. The US CZO network is a facility open to research of the critical zone community at large. Scientific data and information about the US program are available at www.criticalzone.org.
NASA SSERVI Contributions to Lunar Science and Exploration
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.
2015-01-01
NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration that will enable deeper understanding of the Moon and other airless bodies as we move further out of low-Earth orbit. The new Solar System Exploration Research Virtual Institute (SSERVI) will focus on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. The Institute focuses on interdisciplinary, exploration-related science centered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. We will provide a detailed look at research being conducted by each of the 9 domestic US teams as well as our 7 international partners. The research profile of the Institute integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies.
Bridging the PSI Knowledge Gap: A Multi-Scale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian D.
2015-01-08
Plasma-surface interactions (PSI) pose an immense scientific hurdle in magnetic confinement fusion and our present understanding of PSI in confinement environments is highly inadequate; indeed, a recent Fusion Energy Sciences Advisory Committee report found that 4 out of the 5 top five fusion knowledge gaps were related to PSI. The time is appropriate to develop a concentrated and synergistic science effort that would expand, exploit and integrate the wealth of laboratory ion-beam and plasma research, as well as exciting new computational tools, towards the goal of bridging the PSI knowledge gap. This effort would broadly advance plasma and material sciences,more » while providing critical knowledge towards progress in fusion PSI. This project involves the development of a Science Center focused on a new approach to PSI science; an approach that both exploits access to state-of-the-art PSI experiments and modeling, as well as confinement devices. The organizing principle is to develop synergistic experimental and modeling tools that treat the truly coupled multi-scale aspect of the PSI issues in confinement devices. This is motivated by the simple observation that while typical lab experiments and models allow independent manipulation of controlling variables, the confinement PSI environment is essentially self-determined with few outside controls. This means that processes that may be treated independently in laboratory experiments, because they involve vastly different physical and time scales, will now affect one another in the confinement environment. Also, lab experiments cannot simultaneously match all exposure conditions found in confinement devices typically forcing a linear extrapolation of lab results. At the same time programmatic limitations prevent confinement experiments alone from answering many key PSI questions. The resolution to this problem is to usefully exploit access to PSI science in lab devices, while retooling our thinking from a linear and de-coupled extrapolation to a multi-scale, coupled approach. The PSI Plasma Center consisted of three equal co-centers; one located at the MIT Plasma Science and Fusion Center, one at UC San Diego Center for Energy Research and one at the UC Berkeley Department of Nuclear Engineering, which moved to the University of Tennessee, Knoxville (UTK) with Professor Brian Wirth in July 2010. The Center had three co-directors: Prof. Dennis Whyte led the MIT co-center, the UCSD co-center was led by Dr. Russell Doerner, and Prof. Brian Wirth led the UCB/UTK center. The directors have extensive experience in PSI and material research, and have been internationally recognized in the magnetic fusion, materials and plasma research fields. The co-centers feature keystone PSI experimental and modeling facilities dedicated to PSI science: the DIONISOS/CLASS facility at MIT, the PISCES facility at UCSD, and the state-of-the-art numerical modeling capabilities at UCB/UTK. A collaborative partner in the center is Sandia National Laboratory at Livermore (SNL/CA), which has extensive capabilities with low energy ion beams and surface diagnostics, as well as supporting plasma facilities, including the Tritium Plasma Experiment, all of which significantly augment the Center. Interpretive, continuum material models are available through SNL/CA, UCSD and MIT. The participating institutions of MIT, UCSD, UCB/UTK, SNL/CA and LLNL brought a formidable array of experimental tools and personnel abilities into the PSI Plasma Center. Our work has focused on modeling activities associated with plasma surface interactions that are involved in effects of He and H plasma bombardment on tungsten surfaces. This involved performing computational material modeling of the surface evolution during plasma bombardment using molecular dynamics modeling. The principal outcomes of the research efforts within the combined experimental – modeling PSI center are to provide a knowledgebase of the mechanisms of surface degradation, and the influence of the surface on plasma conditions.« less
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
ERIC Educational Resources Information Center
Verkade, Heather; Lim, Saw Hoon
2016-01-01
In this study, a cohort of final-year undergraduate science students were surveyed to examine whether they fully read journal articles, including whether they seek to understand how the results support the conclusions. Their writing was also examined to see if they use deep or surface approaches to scientific writing.
Berkeley Lab's Cool Your School Program
Brady, Susan; Gilbert, Haley; McCarthy, Robert
2018-02-02
Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.
Chemistry Division annual progress report for period ending April 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.
1993-08-01
The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.
International Space Station Capabilities and Payload Accommodations
NASA Technical Reports Server (NTRS)
Kugler, Justin; Jones, Rod; Edeen, Marybeth
2010-01-01
This slide presentation reviews the research facilities and capabilities of the International Space Station. The station can give unique views of the Earth, as it provides coverage of 85% of the Earth's surface and 95% of the populated landmass every 1-3 days. The various science rack facilities are a resource for scientific research. There are also external research accom0dations. The addition of the Japanese Experiment Module (i.e., Kibo) will extend the science capability for both external payloads and internal payload rack locations. There are also slides reviewing the post shuttle capabilities for payload delivery.
ERIC Educational Resources Information Center
Jung, Hun Bok; Zamora, Felix; Duzgoren-Aydin, Nurdan S.
2017-01-01
Water quality is an important interdisciplinary environmental topic for project-based learning. An undergraduate summer research internship program at a public minority serving institution engaged environmental science majors in community-based research experiences. The research focused on the field monitoring of water quality for surface water…
The diverse applications of plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mukul, E-mail: mukulsharma@acropolis.edu.in; Darwhekar, Gajanan, E-mail: gdarwhekar@acropolis.edu.in; Dubey, Shivani, E-mail: dubeyshivani08@rediffmail.com
Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteriamore » and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.« less
The diverse applications of plasma
NASA Astrophysics Data System (ADS)
Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar
2015-07-01
Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Workshop on the Martian Surface and Atmosphere Through Time
NASA Technical Reports Server (NTRS)
Haberle, Robert M. (Editor); Jakosky, Bruce M. (Editor)
1992-01-01
The purpose of the workshop was to bring together the Mars Surface and Atmosphere Through Time (MSATT) Community and interested researchers to begin to explore the interdisciplinary nature of, and to determine the relationships between, various aspects of Mars science that involve the geological and chemical evolution of its surface, the structure and dynamics of its atmosphere, interactions between the surface and atmosphere, and the present and past states of its volatile endowment and climate system.
Mapping Land and Water Surface Topography with instantaneous Structure from Motion
NASA Astrophysics Data System (ADS)
Dietrich, J.; Fonstad, M. A.
2012-12-01
Structure from Motion (SfM) has given researchers an invaluable tool for low-cost, high-resolution 3D mapping of the environment. These SfM 3D surface models are commonly constructed from many digital photographs collected with one digital camera (either handheld or attached to aerial platform). This method works for stationary or very slow moving objects. However, objects in motion are impossible to capture with one-camera SfM. With multiple simultaneously triggered cameras, it becomes possible to capture multiple photographs at the same time which allows for the construction 3D surface models of moving objects and surfaces, an instantaneous SfM (ISfM) surface model. In river science, ISfM provides a low-cost solution for measuring a number of river variables that researchers normally estimate or are unable to collect over large areas. With ISfM and sufficient coverage of the banks and RTK-GPS control it is possible to create a digital surface model of land and water surface elevations across an entire channel and water surface slopes at any point within the surface model. By setting the cameras to collect time-lapse photography of a scene it is possible to create multiple surfaces that can be compared using traditional digital surface model differencing. These water surface models could be combined the high-resolution bathymetry to create fully 3D cross sections that could be useful in hydrologic modeling. Multiple temporal image sets could also be used in 2D or 3D particle image velocimetry to create 3D surface velocity maps of a channel. Other applications in earth science include anything where researchers could benefit from temporal surface modeling like mass movements, lava flows, dam removal monitoring. The camera system that was used for this research consisted of ten pocket digital cameras (Canon A3300) equipped with wireless triggers. The triggers were constructed with an Arduino-style microcontroller and off-the-shelf handheld radios with a maximum range of several kilometers. The cameras are controlled from another microcontroller/radio combination that allows for manual or automatic triggering of the cameras. The total cost of the camera system was approximately 1500 USD.
Science Writer's Guide to Landsat 7
NASA Technical Reports Server (NTRS)
1999-01-01
The Earth Observing System (EOS), the centerpiece of NASA's Earth science program, is a suite of spacecraft and interdisciplinary science investigations dedicated to advancing our understanding of global change. The flagship EOS satellite, Terra (formerly EOS AM-1), scheduled for launch in July 1999, will provide key measurements of the physical and radiative properties of clouds; air-land and air-sea exchanges of energy, carbon, and water; trace gases; and volcanoes. Flying in formation with Terra, Landsat 7 will make global high spatial resolution measurements of land surface and surrounding coastal regions. Other upcoming EOS missions and instruments include QuikSCAT, to collect sea surface wind data; the Stratospheric Gas and Aerosol Experiment (SAGE III), to create global profiles of key atmospheric gases; and the Active Cavity Radiometer Irradiance Monitors (ACRIM) to measure the energy output of the Sun. The second of the major, multi-instrument EOS platforms, PM-1, is scheduled for launch in 2000. Interdisciplinary research projects sponsored by EOS use specific Earth science data sets for a broader investigation into the function of Earth systems. Current EOS research spans a wide range of sciences, including atmospheric chemistry, hydrology, land use, and marine ecosystems. The EOS program has been managed since 1990 by the Goddard Space Flight Center in Greenbelt, Md., for NASA's Office of Earth Science in Washington, D. C. Additional information on the program can be found on the EOS Project Science Office Web site (http://eospso.gsfc.nasa.gov).
NASA Astrophysics Data System (ADS)
Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua
2015-05-01
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).
Geodesy, a Bibliometric Approach for 2000-2006
NASA Astrophysics Data System (ADS)
Vazquez, G.; Landeros, C. F.
2007-12-01
In recent years, bibliometric science has been frequently applied in the development and evaluation of scientific research. This work presents a bibliometric analysis for the research work performed in the field of geodesy "science of the measurement and mapping of the earth surface including its external gravity field". The objective of this work is to present a complete overview of the generated research on this field to assemble and study the most important publications occurred during the past seven years. The analysis was performed including the SCOPUS and WEB OF SCIENCE databases for all the geodetic scientific articles published between 2000 and 2006. The search profile was designed considering a strategy to seek for titles and article descriptors using the terms geodesy and geodetic and some other terms associated with the topics: geodetic surfaces, vertical measurements, reference systems and frames, modern space-geodetic techniques and satellite missions. Some preliminary results had been achieved specifically Bradford law of distribution for journals and education institutes, and Lotka's law for authors that also includes the cooperation between countries in terms of writing together scientific articles. In the particular case of distributions, the model suggested by Egghe (2002) was adopted for determining the cores.
Scientific misconduct: a perspective from India.
Sabir, Husain; Kumbhare, Subhash; Parate, Amit; Kumar, Rajesh; Das, Suroopa
2015-05-01
Misconduct in medical science research is an unfortunate reality. Science, for the most part, operates on the basis of trust. Researchers are expected to carry out their work and report their findings honestly. But, sadly, that is not how science always gets done. Reports keep surfacing from various countries about work being plagiarised, results which were doctored and data fabricated. Scientific misconduct is scourge afflicting the field of science, unfortunately with little impact in developing countries like India especially in health care services. A recent survey and a meta-analysis suggest that the few cases that do float up represents only tip of a large iceberg. This paper therefore highlights reasons for misconduct with steps that can be taken to reduce misconduct. Also the paper throws light on Indian scenario in relation to misconduct.
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
Post Secondary Project-Based Learning in Science, Technology, Engineering and Mathematics
ERIC Educational Resources Information Center
Ralph, Rachel A.
2015-01-01
Project-based learning (PjBL--to distinguish from problem-based learning--PBL) has become a recurrent practice in K-12 classroom environments. As PjBL has become prominent in K-12 classrooms, it has also surfaced in post-secondary institutions. The purpose of this paper is to examine the research that has studied a variety of science, technology,…
Hostility or Indifference? The Marginalization of Homeschooling in the Education Profession
ERIC Educational Resources Information Center
Howell, Charles
2013-01-01
Reasons for neglect of homeschooling in educational research literature are explored. The ideological hostility that occasionally surfaces in policy debates is unlikely to have a major influence on mainstream researchers. An alternative explanation based on Kuhn's concept of normal science is proposed. The dominant paradigm of educational research…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Sitz
2011-08-12
The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics atmore » surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.« less
Chapter 8: Materials for Exploration Systems
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2017-01-01
Materials science and processing research in space can be thought of as a field of study that began with the sounding rocket experiments in the 1950s. Material science studies of the lunar surface materials returned during the Apollo missions enabled the study of lunar resource utilization. The study of materials science and processing in space continued with over 30 years of microgravity materials processing research which continues today in the International Space Station. These studies are the technical foundation that could enable lower cost human exploration through the use of in-situ propellant production, the production of energy from space resources, and the eventual establishment of a substantial portion of humanity living self sufficiently off Earth.
NASA's Earth Venture-1 (EV-1) Airborne Science Investigations
NASA Technical Reports Server (NTRS)
Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal
2011-01-01
In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)
Solid earth science in the 1990s. Volume 1: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
This is volume one of a three volume series. A plan for solid earth science research for the next decade is outlined. The following topics are addressed: scientific requirements; status of current research; major new emphasis in the 1990's; interagency and international participation; and the program implementation plan. The following fields are represented: plate motion and deformation; lithospheric structure and evolution; volcanology; land surface (processes of change); earth structure and dynamics; earth rotation and reference frames; and geopotential fields. Other topics of discussion include remote sensing, space missions, and space techniques.
Editorial Introduction: Lunar Reconnaissance Orbiter, part II
NASA Astrophysics Data System (ADS)
Petro, Noah E.; Keller, John W.; Gaddis, Lisa R.
2017-02-01
The Lunar Reconnaissance Orbiter (LRO) mission has shifted our understanding of the history of the Moon. The seven instruments on LRO each have contributed to creating new paradigms for the evolution of the Moon by providing unprecedented measurements of the surface, subsurface, and lunar environment. In this second volume of the LRO Special Issue, we present 21 papers from a broad range of the areas of investigation from LRO, from the volatile inventory, to the shape of the Moons surface, to its rich volcanic history, and the interactions between the lunar surface and the space environment. These themes provide rich science for the instrument teams, as well as for the broader science community who continue to use the LRO data in their research.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Atanu K.; Engelhard, Mark H.; Liu, Fei
2013-12-02
Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at anmore » aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
NASA Astrophysics Data System (ADS)
2017-02-01
The main goal of the conference is to contribute to new knowledge in surface, interface, ultra-thin films and very-thin films science of inorganic and organic materials by the most rapid interactive manner - by direct communication among scientists of corresponding research fields. The list of topics indicates that conference interests cover the development of basic theoretical physical and chemical principles and performance of surfaces-, thin films-, and interface-related procedures, and corresponding experimental research on atomic scale. Topical results are applied at development of new inventive industrial equipments needed for investigation of electrical, optical, and structural properties, and other parameters of atomic-size research objects. The conference range spreads, from physical point of view, from fundamental research done on sub-atomic and quantum level to production of devices built on new physical principles. The conference topics include also presentation of principally new devices in following fields: solar cells, liquid crystal displays, high-temperature superconductivity, and sensors. During the event, special attention will be given to evaluation of scientific and technical quality of works prepared by PhD students, to deep ecological meaning of solar cell energy production, and to exhibitions of companies.
Molecular self-assembly on surfaces
NASA Astrophysics Data System (ADS)
Mateo-Marti, E.; Pradier, C. M.
2012-09-01
The aim of the present research is to study the interaction of biomolecules, among them single amino acids, on metallic and mineral surfaces, and their chemical reactivity by means of powerful surface science techniques. Therefore, the use of simple biomolecules gives fundamental and significant information, including an adequate control of biomolecule-surface interactions, which will be unattainable to develop with more complex molecules. Furthermore, these studies are focussed on the catalytic properties of different surfaces that could be involved in molecular self-organization processes and the formation of prebiotic organic compounds.
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2012-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona in the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where multi-day tests are achievable. Desert RATS 2011 Science Operations Test simulated the management of crewed science operations at targets that were beyond the light delay time experienced during Low-Earth Orbit (LEO) and lunar surface missions, such as a mission to a Near-Earth Object (NEO) or the martian surface. Operations at targets at these distances are likely to be the norm as humans move out of the Earth-Moon system. Operating at these distances places significant challenges on mission operations, as the imposed light-delay time makes normal, two-way conversations extremely inefficient. Consequently, the operations approach for space missions that has been exercised during the first half-century of human space operations is no longer viable, and new approaches must be devised.
NASA Technical Reports Server (NTRS)
Deering, D. W.
1985-01-01
The Scene Radiation and Atmospheric Effects Characterization (SRAEC) Project was established within the NASA Fundamental Remote Sensing Science Research Program to improve our understanding of the fundamental relationships of energy interactions between the sensor and the surface target, including the effect of the atmosphere. The current studies are generalized into the following five subject areas: optical scene modeling, Earth-space radiative transfer, electromagnetic properties of surface materials, microwave scene modeling, and scatterometry studies. This report has been prepared to provide a brief overview of the SRAEC Project history and objectives and to report on the scientific findings and project accomplishments made by the nineteen principal investigators since the project's initiation just over three years ago. This annual summary report derives from the most recent annual principal investigators meeting held January 29 to 31, 1985.
Instability of Hydrogenated TiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep
2015-11-06
Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depthmore » (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
The Deep Underground Science and Engineering Laboratory at Homestake
NASA Astrophysics Data System (ADS)
Lesko, Kevin T.
2008-11-01
The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.
Topological semimetals with Riemann surface states
NASA Astrophysics Data System (ADS)
Fang, Chen; Lu, Ling; Liu, Junwei; Fu, Liang
Topological semimetals have robust bulk band crossings between the conduction and the valence bands. Among them, Weyl semimetals are so far the only class having topologically protected signatures on the surface known as the ``Fermi arcs''. Here we theoretically find new classes of topological semimetals protected by nonsymmorphic glide reflection symmetries. On a symmetric surface, there are multiple Fermi arcs protected by nontrivial Z2 spectral flows between two high-symmetry lines (or two segments of one line) in the surface Brillouin zone. We observe that so far topological semimetals with protected Fermi arcs have surface dispersions that can be mapped to noncompact Riemann surfaces representing simple holomorphic functions. We propose perovskite superlattice [(SrIrO3)2m, (CaIrO3)2n] as a nonsymmorphic Dirac semimetal. C.F. and L.F. were supported by the S3TEC Solid State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-SC0001299/DE.
The First United States Microgravity Laboratory
NASA Technical Reports Server (NTRS)
Powers, C. Blake (Editor); Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Mikatarian, Jeff
1991-01-01
The United States Microgravity Laboratory (USML-1) is one part of a science and technology program that will open NASA's next great era of discovery and establish the United States' leadership in space. A key component in the preparation for this new age of exploration, the USML-1 will fly in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The major components of the USML-1 are the Crystal Growth Furnace, the Surface Tension Driven Convection Experiment (STDCE) Apparatus, and the Drop Physics Module. Other components of USML-1 include Astroculture, Generic Bioprocessing Apparatus, Extended Duration Orbiter Medical Project, Protein Crystal Growth, Space Acceleration Measurement System, Solid Surface Combustion Experiment, Zeolite Crystal Growth and Spacelab Glovebox provided by the European Space Agency.
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron; Slowing, Igor
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less
NASA Astrophysics Data System (ADS)
Keller, John Michael
This work presents two research efforts, one involving planetary science education research and a second involving the surface composition of Mars. In the former, student beliefs and reasoning difficulties associated with the greenhouse effect were elicited through student interviews and written survey responses from >900 US undergraduate non-science majors. This guided the development of the Greenhouse Effect Concept Inventory (GECI), an educational research tool designed to assess pre- and post-instruction conceptual understanding of the greenhouse effect. Three versions of this multiple-choice instrument were administered to >2,500 undergraduates as part of the development and validation process. In contrast to previous research efforts regarding causes, consequences, and solutions to the enhanced greenhouse effect, the GECI focuses primarily on the physics of energy flow through Earth's atmosphere. The GECI is offered to the science education community as a research tool for assessing instructional strategies on this topic. It was confirmed that the study population subscribes to several previously identified beliefs. These include correct understandings that carbon dioxide is an important greenhouse gas and the greenhouse effect increases planetary surface temperatures. Students also commonly associate the greenhouse effect with increased penetration of sunlight into and trapping of solar energy in the atmosphere. Students intermix concepts associated with the greenhouse effect, global warming, and ozone depletion. Reinforcing the latter concept, a majority believe that the Sun radiates most of its energy as ultraviolet light. Students also describe inaccurate and incomplete trapping models, which include permanent trapping, trapping through reflection, and trapping of gases and pollution. Another reasoning difficulty involves the idea that Earth's surface radiates energy primarily during the nighttime. The second research effort describes the distribution of chlorine on Mars measured by the Mars Odyssey Gamma Ray Spectrometer (GRS). The distribution of chlorine is heterogeneous across the surface, with a concentration of high chlorine centered over the Medusa Fossae Formation. The distribution of chlorine correlates positively with hydrogen and negatively with silicon and thermal inertia. Four mechanisms (aeolian, volcanic, aqueous, and hydrothermal) are discussed as possible factors influencing the distribution of chlorine measured within the upper few tens of centimeters of the surface.
Operations of Suborbital Research Platforms to Obtain Remote Sensing Data
NASA Technical Reports Server (NTRS)
Hines, Dennis O.
2014-01-01
The Armstrong Flight Research Center (AFRC) operates six highly modified aircraft in support the NASA science mission.These include two ER-2 aircraft, a DC-8, a G-III, and two Global Hawks. The NASA science missions demands that these aircraft be deployed around the globe while carrying a variety of science instruments. The ER-2 reconnaissance aircraft provides routine access to altitudes over 70,000 ft (20km) for large payloads and with an endurance of over 10hours. Recently the ER-2s have conducted convective storm research missions in the mid-western United States and supported the development of new instruments. The DC-8 is a four-engine jetliner that operates for up to 12 hours ataltitudes that range from the surface to 42,000 ft (13 km). Although its flight envelope is equivalent to conventional.
ERIC Educational Resources Information Center
Varunki, Maaret; Katajavuori, Nina; Postareff, Liisa
2017-01-01
Research shows that a surface approach to learning is more common among students in the natural sciences, while students representing the "soft" sciences are more likely to apply a deep approach. However, findings conflict concerning the stability of approaches to learning in general. This study explores the variation in students'…
SWOT Hydrology in the classroom
NASA Astrophysics Data System (ADS)
Srinivasan, M. M.; Destaerke, D.; Butler, D. M.; Pavelsky, T.
2014-12-01
The Surface Water and Ocean Topography (SWOT) Mission Education Program will participate in the multinational, multiagency program, Global Learning and Observations to Benefit the Environment (GLOBE). GLOBE is a worldwide hands-on, primary and secondary school-based science and education community of over 24,000 schools in more than 100 countries. Over 1.5 million students have contributed more than 23 million measurements to the GLOBE database for use in inquiry-based science projects. The objectives of the program are to promote the teaching and learning of science; enhance environmental awareness, literacy and stewardship; and contribute to science research and environmental monitoring.SWOT will measure sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. This new SWOT-GLOBE partnership will focus on the limnology aspects of SWOT. These measurements will be useful in monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment.GLOBE's cadre of teachers are trained in five core areas of Earth system science, including hydrology. The SWOT Education teams at NASA and CNES are working with the GLOBE Program implementers to develop and promote a new protocol under the Hydrology topic area for students to measure attributes of surface water bodies that will support mission science objectives. This protocol will outline and describe a methodology to measure width and height of rivers and lakes.This new GLOBE protocol will be included in training to provide teachers with expertise and confidence in engaging students in this new scientific investigation. Performing this additional measurement will enhance GLOBE students experience in scientific investigation, and will provide useful measurements to SWOT researchers that can support the SWOT mission research goals.SWOT public engagement will involve communicating the value of its river and lake height measurements, lake water storage, and river discharge. This is also important to the GLOBE Program as curriculum integration of its hydrology measurements can be enhanced by strengthened ties to the concepts of watersheds and the hydrologic cycle. Understanding can also be increased of the relation of lake and river levels to drought and water supply.
Surface Carbonization of GaN and the Related Structure Evolution during the Annealing Process
NASA Astrophysics Data System (ADS)
Liu, Jin-Long; Chen, Liang-Xian; Wei, Jun-Jun; Hei, Li-Fu; Zhang, Xu; Li, Cheng-Ming
2018-01-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 51402013, the National Key Research and Development Program of China under Grant No 2016YFE0133200, and the European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme under Grant No 734578.
Green infrastructure and its catchment-scale effects: an emerging science
Golden, Heather E.; Hoghooghi, Nahal
2018-01-01
Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evapotranspiration processes, and indirectly modify surface precipitation patterns. Green infrastructure, or low-impact development (LID), can be used as a standalone practice or in concert with gray infrastructure (traditional stormwater management approaches) for cost-efficient, decentralized stormwater management. The growth in LID over the past several decades has resulted in a concomitant increase in research evaluating LID efficiency and effectiveness, but mostly at localized scales. There is a clear research need to quantify how LID practices affect water quantity (i.e., runoff and discharge) and quality at the scale of catchments. In this overview, we present the state of the science of LID research at the local scale, considerations for scaling this research to catchments, recent advances and findings in scaling the effects of LID practices on water quality and quantity at catchment scales, and the use of models as novel tools for these scaling efforts. PMID:29682288
Green infrastructure and its catchment-scale effects: an emerging science.
Golden, Heather E; Hoghooghi, Nahal
2018-01-01
Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evapotranspiration processes, and indirectly modify surface precipitation patterns. Green infrastructure, or low-impact development (LID), can be used as a standalone practice or in concert with gray infrastructure (traditional stormwater management approaches) for cost-efficient, decentralized stormwater management. The growth in LID over the past several decades has resulted in a concomitant increase in research evaluating LID efficiency and effectiveness, but mostly at localized scales. There is a clear research need to quantify how LID practices affect water quantity (i.e., runoff and discharge) and quality at the scale of catchments. In this overview, we present the state of the science of LID research at the local scale, considerations for scaling this research to catchments, recent advances and findings in scaling the effects of LID practices on water quality and quantity at catchment scales, and the use of models as novel tools for these scaling efforts.
NASA Astrophysics Data System (ADS)
Faccenna, C.; Funiciello, F.
2012-04-01
EC-Marie Curie Initial Training Networks (ITN) projects aim to improve the career perspectives of young generations of researchers. Institutions from both academic and industry sectors form a collaborative network to recruit research fellows and provide them with opportunities to undertake research in the context of a joint research training program. In this frame, TOPOMOD - one of the training activities of EPOS, the new-born European Research Infrastructure for Geosciences - is a funded ITN project designed to investigate and model how surface processes interact with crustal tectonics and mantle convection to originate and develop topography of the continents over a wide range of spatial and temporal scales. The multi-disciplinary approach combines geophysics, geochemistry, tectonics and structural geology with advanced geodynamic numerical/analog modelling. TOPOMOD involves 8 European research teams internationally recognized for their excellence in complementary fields of Earth Sciences (Roma TRE, Utrecht, GFZ, ETH, Cambridge, Durham, Rennes, Barcelona), to which are associated 5 research institutions (CNR-Italy, Univ. Parma, Univ. Lausanne, Univ. Montpellier, Univ. Mainz) , 3 high-technology enterprises (Malvern Instruments, TNO, G.O. Logical Consulting) and 1 large multinational oil and gas company (ENI). This unique network places emphasis in experience-based training increasing the impact and international visibility of European research in modeling. Long-term collaboration and synergy are established among the overmentioned research teams through 15 cross-disciplinary research projects that combine case studies in well-chosen target areas from the Mediterranean, the Middle and Far East, west Africa, and South America, with new developments in structural geology, geomorphology, seismology, geochemistry, InSAR, laboratory and numerical modelling of geological processes from the deep mantle to the surface. These multidisciplinary projects altogether aim to answer a key question in earth Sciences: how do deep and surface processes interact to shape and control the topographic evolution of our planet.
Atmospheric Science Data Center
2014-05-15
... 2004. The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...
NASA Astrophysics Data System (ADS)
Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang
2016-09-01
The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, Linda
The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Andy Schuerger, a research assistant professor with the University of Florida, demonstrates the Mars Simulation Chamber at the Space Life Sciences Lab during a tour of the facility for members of the news media. Schuerger is studying the effects of interplanetary space and Mars surface conditions on the survival, growth, and potential adaption of terrestrial microbes to the martian surface.
From supercontinents to surface environment: Geological records from Asia
NASA Astrophysics Data System (ADS)
Shaji, E.; Kwon, Sanghoon; Yang, Qiong-Yan
2018-05-01
This special issue of the Journal of Asian Earth Sciences stems from the 2016 Annual Convention of the International Association for Gondwana Research (IAGR) and 13th international conference presentations on Gondwana to Asia held at Trivandrum, India during 18-22 November 2016, covering a wide range of topics from supercontinents to life and surface environment with the Asian region in focus.
Pattern transition from nanohoneycomb to nanograss on germanium by gallium ion bombardment
NASA Astrophysics Data System (ADS)
Zheng Xiao-Hu郑, 晓虎; Zhang Miao张, 苗; Huang An-Ping黄, 安平; Xiao Zhi-Song肖, 志松; Paul, K. Chu朱 剑 豪; Wang Xi王, 曦; Di Zeng-Feng狄, 增峰
2015-05-01
During the irradiation of Ge surface with Ga+ ions up to 1017 ions·cm-2, various patterns from ordered honeycomb to nanograss structure appear to be decided by the ion beam energy. The resulting surface morphologies have been studied by scanning electron microscopy and atomic force microscopy. For high energy Ga+ irradiation (16-30 keV), by controlling the ion fluence, we have captured that the equilibrium nanograss morphology also originates from the ordered honeycomb structure. When honeycomb holes are formed by ion erosion, heterogeneous distribution of the deposited energy along the holes leads to viscous flow from the bottom to the plateau. Redistribution of target atoms results in the growth of protuberances on the plateau, and finally the pattern evolution from honeycomb to nanograss with an equilibrium condition. Project supported by the National Natural Science Funds for Excellent Young Scholar, China (Grant No. 51222211), the National Natural Science Foundation of China (Grant Nos. 61176001 and 61006088), the National Basic Research Program of China (Grant No. 2010CB832906), the Pujiang Talent Project of Shanghai, China (Grant No. 11PJ1411700), the Hong Kong Research Grants Council (RGC) General Research Funds (GRF), China (Grant No. 112212), the City University of Hong Kong of Hong Kong Applied Research Grant (ARG), China (Grant No. 9667066), and the International Collaboration and Innovation Program on High Mobility Materials Engineering of Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Schmidt, Gregory
2016-07-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and explora-tion, training the next generation of lunar scientists, and community development. The institute is a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdis-ciplinary, research-focused collaborations. Its relative-ly large domestic teams work together along with in-ternational partners in both traditional and virtual set-tings to bring disparate approaches together for mutual benefit. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. com-plement of the Institute and how it is engaging the in-ternational science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. The Institute is centered on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. It focuses on interdisciplinary, exploration-related science cen-tered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Mar-tian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environ-ments as well as science uniquely enabled from these bodies. The technical focus ranges from investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. SSERVI enhances the widening knowledgebase of planetary research by acting as a bridge between several differ-ent groups and bringing together researchers from the scientific and exploration communities, multiple disci-plines across the full range of planetary sciences, and domestic and international communities and partner-ships.
Tektite 1, man-in-the-sea project: Marine Science Program
Clifton, H.E.; Mahnken, C.V.W.; Van Derwalker, J. C.; Waller, R.A.
1970-01-01
The Tektite experiment was designed to provide data for a number of behavioral, biomedical, and engineering studies in addition to the marine sciences program. Conditions for some of these studies were not altogether compatible with the program for the marine sciences. For example, isolation imposed by human behavioral studies precluded physical contact with the surface team, even though such contact was physically possible and desirable for the conduct of the marine sciences program. Isolation also imposed on the scientific team the duty of all in-habitat maintenance, both scheduled and unscheduled, thereby taking substantial time from scientific research. In addition, between 10 and 20 percent of the waking time was devoted to performance of psychological tests required for the biomedical studies. Most of the experiments were directed toward detecting potentially adverse changes and thus were accepted as necessary and desirable. The only health problem to affect the scientific program during the dive was a minor external ear infection contracted by all the divers. Nonetheless, the experiment demon. strated, at least to our satisfaction, the advantages of underwater habitation and saturation diving for biological and geological research. A major advantage is the opportunity for continuous monitoring of organisms or processes. In addition, underwater habitation provides for considerably more research time in the water than surface diving or intermittent bottom dwelling, and this advantage increases greatly as the depth of habitation increases. Even in the relatively shallow depths at which Tektite 1 was conducted, the undersea team could spend appreciably more time at work in the water than their colleagues on the surface. Finally, Tektite 1 demonstrated that the scientist who lives in the sea need not have the extensive qualifications of a professional diver. Of the four scientists of the in-habitat team, only Crew Chief Waller was so qualified; the other three had used scuba as a research tool, but on a relatively limited basis. Any healthy, well-conditioned marine scientist with a basic diving background is capable of extending his research into the shallow sea on a full-time basis. It is hoped that many such scientists will in the future be able to utilize the undersea laboratory.
NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise
NASA Astrophysics Data System (ADS)
Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.
2017-12-01
Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the processes involved in observational research. Through EOL's Education and Outreach Program, we strive to inspire and develop the next generation of observational scientists and engineers by offering a range of educational, experiential, and outreach opportunities, including engineering internships.
EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Gordon E.; Chaka, Anne; Shuh, David K.
2011-08-01
This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussionsmore » successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.« less
NASA Astrophysics Data System (ADS)
Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.
2007-12-01
On July 10, 2007, the former Homestake Mine, Lead, South Dakota, was selected as the development site for the Deep Underground Science and Engineering Laboratory, to become the Sanford Underground Science and Engineering Laboratory at Homestake. Work on refurbishment and certification of the Ross Shaft began in August 2007 to effect pumping of water that had reached the 5000 level in late July. Completion of this work will allow a physics and geosciences laboratory to be constructed on the 4,850 ft level (1,478 m from the surface). Concurrent with reentry operations, several earth science research activities have been initiated. These early activities are as follows: (1) Seismic monitoring system: Accelerometers will be installed in surface boreholes and underground drifts as they become available as a result of the reentry work. (2) Evaluation of the 300 level (91 m), which has multiple locations for horizontal access, is ongoing. This near- surface level, with varying overburden thicknesses, offers excellent opportunities to investigate the "critical zone" in terms of hydrology, ecology, and geochemistry, yielding measurements of both moisture and carbon fluxes to evaluate fluid exchanges with the atmosphere. (3) Water and soil samples were collected in the Ross Shaft as part of the first reentry work. Molecular survey of microbial diversity showed the presence of mesophilic and thermophilic cellulose-degrading microorganisms. (4) Supercritical carbon dioxide injection experiments are being planned that will take advantage of three pairs of existing, nearly vertical, open 8-inch (0.2 m) boreholes that are easily accessible from the Ross Shaft. The candidate holes are located between the 1550 and the 2900 levels and are between 90 to 180 m in length (5) Monitoring of the response of the water during the dewatering operations will be facilitated by the use of existing boreholes. Ultimately, the dewatering operation provide access to the 8000 level (depth of 2,438 m), the deepest level. These five examples of ongoing research activities should provide a basis for many other earth science and engineering investigations at this multilevel facility, which already has extensive underground workings. These examples address different aspects of three main themes identified as important by deep underground research communities: restless earth for geo-science, ground truth for geo-engineering, and dark life for geo-microbiology.
ERIC Educational Resources Information Center
McNaught, Carmel; Lau, W. M.; Lam, Paul; Hui, Mark Y. Y.; Au, Peter C. T.
2005-01-01
The paper reports a study for determining a suitable process for converting traditional surface science courses into case-based learning ones in two universities in Hong Kong. In this preparative study, a set of baseline data was collected on the current level of students' conceptual understanding and also students' perceptions about the…
Current issues and problems in welding science
NASA Astrophysics Data System (ADS)
David, S. A.; Debroy, T.
1992-07-01
Recent advances in welding science are examined with consideration given to the progress made in understanding physical processes of welding and in understanding weldment microstructure and properties and the correlation between microstructure and properties of the welds. Particular attention is given to the methods used for intelligent control and automation of welding. Also discussed are issues and problems that were brought to the surface by technological advances and interdisciplinary research on welding.
NASA Astrophysics Data System (ADS)
Zhao, Juan; Wu, Hui; Sun, Hai-Bo; Wang, Li-Fei
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11504206 and 11404049), the China Postdoctoral Science Foundation (CPSF) (Grant No. 2014M561259), and the Ph. D. Research Start-up Fund of Shandong Jiaotong University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barteau, Mark A.
2006-10-04
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Few reactions are as conceptually simple or as devilishly difficult as the epoxidation of ethylene to form ethylene oxide:
NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)
2011-11-23
When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument
Quantitative Modeling of Earth Surface Processes
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.
This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.
Evaluating the High School Lunar Research Projects Program
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.
2012-12-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.
Chiral selection on inorganic crystalline surfaces
NASA Technical Reports Server (NTRS)
Hazen, Robert M.; Sholl, David S.
2003-01-01
From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.
Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1991-01-01
The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
Bioinspired Functional Surfaces for Technological Applications
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata
2016-08-01
Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.
Iceland: Eyjafjallajökull Volcano
Atmospheric Science Data Center
2013-04-17
... erroneous impression that they are below the land surface. A quantitative computer analysis is necessary to separate out wind and height. ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debehets, J.; Homm, P.; Menghini, M.
In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate detector and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-level. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs. This work has been funded by J.D.'s PhD fellowship of the Fund of Scientific Research-Flanders (FWO-V) (Dossier No. 11U4516N). P.H. acknowledges support from Becas Chile-CONICYT. This research was also supported by the FWO Odysseus Program, the Belgian Hercules Stichting with the Project No. Her/08/25 and AKUL/13/19 and the KU Leuven project GOA "Fundamental challenges in Semiconductor Research". The authors would also like to thank Bastiaan Opperdoes and Ludwig Henderix for technical support. The work was supported by the U.S. Department of Energy (USDOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the USDOE under contract DE-AC05-76RL01830.« less
Desert Research and Technology Studies 2005 Report
NASA Technical Reports Server (NTRS)
Ross, Amy J.; Kosmo, Joseph J.; Janoiko, Barbara A.; Bernard, Craig; Splawn, Keith; Eppler, Dean B.
2006-01-01
During the first two weeks of September 2005, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2005 Research and Technology Studies (RATS). The Desert RATS field test activity is the culmination of the various individual science and advanced engineering discipline areas year-long technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The purpose of the RATS is to drive out preliminary exploration concept of operations EVA system requirements by providing hands-on experience with simulated planetary surface exploration extravehicular activity (EVA) hardware and procedures. The RATS activities also are of significant importance in helping to develop the necessary levels of technical skills and experience for the next generation of engineers, scientists, technicians, and astronauts who will be responsible for realizing the goals of the Constellation Program. The 2005 Desert RATS was the eighth RATS field test and was the most systems-oriented, integrated field test to date with participants from NASA field centers, the United States Geologic Survey (USGS), industry partners, and research institutes. Each week of the test, the 2005 RATS addressed specific sets of objectives. The first week focused on the performance of surface science astro-biological sampling operations, including planetary protection considerations and procedures. The second week supported evaluation of the Science, Crew, Operations, and Utility Testbed (SCOUT) proto-type rover and its sub-systems. Throughout the duration of the field test, the Communications, Avionics, and Infomatics pack (CAI-pack) was tested. This year the CAI-pack served to provide information on surface navigation, science sample collection procedures, and EVA timeline awareness. Additionally, 2005 was the first year since the Apollo program that two pressurized suited test subjects have worked together simultaneously. Another first was the demonstration of recharge of cryogenic life support systems while in-use by the suited test subjects. The recharge capability allowed the simulated EVA test duration to be doubled, facilitating SCOUT proto-type rover testing. This paper summarizes Desert RATS 2005 test hardware, detailed test objectives, test operations and test results.
NASA Astrophysics Data System (ADS)
Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Hörz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary; Marinova, Margarita; May, Lisa; Meyer, Jonathan; Ming, Doug; Monteleone, Brian; Morisset, Caroline; Noble, Sarah; Rampe, Elizabeth; Rice, James; Schutt, John; Skinner, James; Tewksbury-Christle, Carolyn M.; Tewksbury, Barbara J.; Vaughan, Alicia; Yingst, Aileen; Young, Kelsey
2013-10-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space. The results from the RATS tests allow selection of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although the metric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone.
NASA Technical Reports Server (NTRS)
Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey;
2012-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although the metric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone.
Dimensional crossover and thermoelectric properties in CeTe2-xSbx single crystals
NASA Astrophysics Data System (ADS)
Rhyee, Jong-Soo; Lee, Kyung Eun; Nyeong Kim, Jae; Shim, Ji Hoon; Min, Byeong Hun; Kwon, Yong Seung
2013-03-01
Several years before, we proposed that the charge density wave is a new pathway for high thermoelectric performance in In4Se3-x bulk crystalline materials. (Nature v.459, p. 965, 2009) Recently, from the increase of the chemical potential by halogen doped In4Se3-xH0.03 (H =Halogen elements) crystals, we achieved high ZT (maximum ZT 1.53) over a wide temperature range. (Adv. Mater. v.23, p.2191, 2011) Here we demonstrate the low dimensionality increases power factor in CeTe2-xSbx single crystals. The band structures of CeTe2 show the 2-dimensional (2D) Fermi surface nesting behavior as well as a 3-dimensional (3D) electron Fermi surface hindering the perfect charge density wave (CDW) gap opening. By hole doping with the substitution of Sb at the Te-site, the 3D-like Fermi surface disappears and the 2D perfect CDW gap opening enhances the power factor up to x = 0.1. With further hole doping, the Fermi surfaces become 3-dimensional structure with heavy hole bands. The enhancement of the power factor is observed near the dimensional crossover of CDW, at x = 0.1, where the CDW gap is maximized. This research was supported by Basic Science Research Program (2011-0021335), Mid-career Research Program (Strategy) (No. 2012R1A2A1A03005174) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and TJ Park Junior Faculty Fellowship funded by the POSCO TJ Park Foundation.
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1991-12-01
Symposium 89, F.-L. Krause , H. Jansen, eds., held in Berlin, NY:ASME. FRG November 1989. Hansmann, W. November. 1985. Interactiver entwurf und Nowacki, H...8217 Smoothing of Multipatch Bzier Surfaces - Curvature Approximation and Knot Removal for Wolfgang Schwarz, EDS GmbH, FRG (A). Handling Scattered Data - Bernd...Physical Oceanography research vessel. The Institute has three CTDs which have been used to obtain a very complete hydrographic series Dr. Wolfgang F
Landa, E.R.; ,
2006-01-01
Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late-twentieth century. The shift in recent decades within both disciplines, towards greater emphasis on environmental-quality issues and a systems approach, has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere and lithosphere, introductory and advanced soil-science classes are now taught in a number of Earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface to groundwater 'critical zone' requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable Earth-science specialty area for graduate study. ?? The Geological Society of London 2006.
1998-02-27
NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
1999-05-26
NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Cohen, B. A.; Ming, D. W.; Eppler, D. B.
2011-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is one of several analog tests that NASA conducts each year to combine operations development, technology advances and science under planetary surface conditions. The D-RATS focus is testing preliminary operational concepts for extravehicular activity (EVA) systems in the field using simulated surface operations and EVA hardware and procedures. For 2010 hardware included the Space Exploration Vehicles, Habitat Demonstration Units, Tri-ATHLETE, and a suite of new geology sample collection tools, including a self-contained GeoLab glove box for conducting in-field analysis of various collected rock samples. The D-RATS activities develop technical skills and experience for the mission planners, engineers, scientists, technicians, and astronauts responsible for realizing the goals of exploring planetary surfaces.
DORADO/DOLPHIN: A Unique Semi-submersible Autonomous Vehicle for Ocean Field Experiments.
NASA Astrophysics Data System (ADS)
Wallace, D.
2016-02-01
The Ocean Science and Technology research group (CERC.OCEAN) at Dalhousie University focuses on new approaches to the design and development of autonomous platforms to study biogeochemical and ecological changes in the world's oceans. Mesoscale "patch" experiments involving tracers are used to test hypotheses (e.g. iron fertilization) and examine near-surface processes and air-sea exchange. Such experiments typically require mapping of rapidly-evolving properties on scales of 10's to 100's of kilometers. These experiments typically employ a research vessel to monitor patch movement and to support process studies: however allocation of expensive vessel time between these uses can be problematic. We present a class of autonomous vehicle with unique potential for mesoscale mapping and experimental science at sea. The Dorado/Dolphin semi-submersibles, manufactured by International Submarine Engineering Ltd., travel just below the sea surface. A surface-piercing, "snorkel" mast allows use of a diesel engine allowing speeds of up to 16 knots and sufficient power for support of complex payloads. A tow-body can profile to 200m. The mast allows air sampling with near-zero atmospheric disturbance as well as remote sensing of the sea surface. The characteristics of this type of vehicle will be compared with those of other available platforms. We will report on our adaptation of the vehicle for measurement of gases and purposeful tracers (e.g. SF5CF3) as well as properties such as T, S, pCO2, O2, fluorescence, etc. and present and solicit ideas for the vehicles' further application/use for ocean science.
Successful Strategies for Earth Science Research in Native Communities
NASA Astrophysics Data System (ADS)
Redsteer, M. H.; Anderson, D.; Ben, N.; Bitsuie, R.; Blackhorse, A.; Breit, G.; Clifford, A.; Salabye, J.; Semken, S.; Weaver, K.; Yazzie, N.
2004-12-01
A small U.S. Geological Survey pilot project utilizes strategies that are successful at involving the Native community in earth science research. This work has ignited the interest of Native students in interdisciplinary geoscience studies, and gained the recognition of tribal community leaders from the conterminous United States, Alaska, and Canada. This study seeks to examine land use, climatic variability, and their related impacts on land-surface conditions in the ecologically sensitive Tsezhin Bii' region of the Navajo Nation. Work conducted by predominantly Native American researchers, includes studies of bedrock geology, surficial processes, soil and water quality, and plant ecology, as well as the history of human habitation. Community involvement that began during the proposal process, has helped to guide research, and has provided tribal members with information that they can use for land use planning and natural resource management. Work by Navajo tribal members who have become involved in research as it has progressed, includes K-12 science curriculum development, community outreach and education on environmental and geologic hazards, drought mitigation, grazing management, and impacts of climate change and land use on medicinal plants.
Rosenberry, Donald O.; Melchior, Robert C.; Jones, Perry M.; Strietz, Andrew; Barr, Kelton D.; Lee, David R.; Piegat, James J.
2011-01-01
Tom Winter spent nearly 50 years conducting research in earth science, and he specialized in the exchange between groundwater and surface water. Tom's highly productive career began in Minnesota. This fi eld trip revisits many of the places where Tom conducted his early research and demonstrates the continuing relevance of that research. Stops and topics include the groundwater infl uence on the record low stage of White Bear Lake, the contribution of groundwater to continually rising water levels in an abandoned open-pit iron mine, hydrogeology of the Shingobee headwaters aquatic ecosystem research site, hydrogeology of Lake Sallie, geology associated with the Pillager water gap, and the hydrogeology of Little Rock Lake.
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung
2014-11-01
Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).
NASA Astrophysics Data System (ADS)
Hamann, Ilse; Arnault, Joel; Bliefernicht, Jan; Klein, Cornelia; Heinzeller, Dominikus; Kunstmann, Harald
2014-05-01
Changing climate and hydro-meteorological boundary conditions are among the most severe challenges to Africa in the 21st century. In particular West Africa faces an urgent need to develop effective adaptation and mitigation strategies to cope with negative impacts on humans and environment due to climate change, increased hydro-meteorological variability and land use changes. To help meet these challenges, the German Federal Ministry of Education and Research (BMBF) started an initiative with institutions in Germany and West African countries to establish together a West African Science Service Center on Climate Change and Adapted Land Use (WASCAL). This activity is accompanied by an establishment of trans-boundary observation networks, an interdisciplinary core research program and graduate research programs on climate change and related issues for strengthening the analytical capabilities of the Science Service Center. A key research activity of the WASCAL Competence Center is the provision of regional climate simulations in a fine spatio-temporal resolution for the core research sites of WASCAL for the present and the near future. The climate information is needed for subsequent local climate impact studies in agriculture, water resources and further socio-economic sectors. The simulation experiments are performed using regional climate models such as COSMO-CLM, RegCM and WRF and statistical techniques for a further refinement of the projections. The core research sites of WASCAL are located in the Sudanian Savannah belt in Northern Ghana, Southern Burkina Faso and Northern Benin. The climate in this region is semi-arid with six rainy months. Due to the strong population growth in West Africa, many areas of the Sudanian Savannah have been already converted to farmland since the majority of the people are living directly or indirectly from the income produced in agriculture. The simulation experiments of the Competence Center and the Core Research Program are accompanied by the WASCAL Graduate Research Program on the West African Climate System. The GRP-WACS provides ten scholarships per year for West African PhD students with a duration of three years. Present and future WASCAL PhD students will constitute one important user group of the Linux cluster that will be installed at the Competence Center in Ouagadougou, Burkina Faso. Regional Land-Atmosphere Simulations A key research activity of the WASCAL Core Research Program is the analysis of interactions between the land surface and the atmosphere to investigate how land surface changes affect hydro-meteorological surface fluxes such as evapotranspiration. Since current land surface models of global and regional climate models neglect dominant lateral hydrological processes such as surface runoff, a novel land surface model is used, the NCAR Distributed Hydrological Modeling System (NDHMS). This model can be coupled to WRF (WRF-Hydro) to perform two-way coupled atmospheric-hydrological simulations for the watershed of interest. Hardware and network prerequisites include a HPC cluster, network switches, internal storage media, Internet connectivity of sufficient bandwidth. Competences needed are HPC, storage, and visualization systems optimized for climate research, parallelization and optimization of climate models and workflows, efficient management of highest data volumes.
Report of the Terrestrial Bodies Science Working Group. Volume 5: Mars
NASA Technical Reports Server (NTRS)
Masursky, H.; Albee, A. L.; Briggs, G.; Duke, M. B.; Schopf, J. W.; Soderblom, L.; Sonett, C. P.; Stewart, I.; Trombka, J. L.; Wood, J.
1977-01-01
Present knowledge of the global properties and surface characteraretics of Mars and the composition and dynamics of its atmosphere are reviewed. The objectives of proposed missions, the exploration strategy, and supporting research and technology required are delineated.
Detailed ocean current maps may lie over the horizon
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
In another case of military swords being turned into scientific plowshares, two American researchers have used radar systems once designed to detect Soviet planes during the Cold War to map open-ocean currents instead.In the name of science, Thomas Georges and Jack Harlan of NOAA's Environmental Technology Laboratory borrowed some time last summer on the U.S. Navy's over-the-horizon (OTH) radar systems in both Virginia and Texas. Training the radars on the waters off of the southern coast of Florida, the researchers gathered enough data to deduce the surface motion of two 70,000 km2 swatches of the Caribbean Sea and Gulf of Mexico. By bouncing 5-28 MHz radio waves off the ionosphere down to the sea surface and back, the researchers were able to derive the characteristics of the ocean surface from Bragg backscatter resonance.
Recent Advances in the Sciences of Electrocatalysis.
1980-11-01
without substantial restructuring of the surface as well as chemical changes and contamination . Several research groups (30-35) have carried out... contamination . In the USA these include A. Hubbard (71,72) at the University of California at Santa Barbara, J.A. Joebstl (73,74) at Fort Belvoir, P... contamination ; and intro- duction of the Pt single crystal surfaces into the electrolyte at controlled potentials in the hydrogen adsorption region. In
NASA Technical Reports Server (NTRS)
1988-01-01
The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.
Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard
2008-01-01
The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.
NASA Astrophysics Data System (ADS)
Mendoza, Bernardo S.
2003-05-01
physica status solidi (c) conferences and critical reviews publishes conference proceedings, ranging from large international meetings to specialized topical workshops as well as collections of topical reviews on various areas of current solid state physics research. The objective of "Optics of Surfaces and Interfaces" (OSI-V) is to bridge the gap between basic and applied science. Apart from recent advances in theoretical modeling and experimental research, special attention is given to novel techniques of optical spectroscopy at interfaces.
NASA Technical Reports Server (NTRS)
Liu, Gao-Lian
1991-01-01
Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.
Preview of Our Changing Planet. The U.S. Climate Change Science Program for Fiscal Year 2008
2007-04-01
reduce the uncertainty in predictions of the global and regional water cycle and surface climate. Sunlight not reflected back to space provides the...research elements include atmospheric composition, climate variability and change, the global water cycle , land-use and land-cover change, the global...entire planet, and researchers with the ability to better explain observed changes in the climate system. Global Water Cycle – Research associated with
Meeting at the Museum: Sustained Research Education Partnerships Start in Your Own Back Yard
NASA Astrophysics Data System (ADS)
Morin, P. J.; Hamilton, P.; Campbell, K. M.
2007-12-01
The Science Museum of Minnesota (SMM) and the National Center for Earth-surface Dynamics (NCED) have been formal partners since 2002, when we jointly secured NSF center-level funding. We began in our local community by together creating our own "Big Back Yard", a 1.75 acre outdoor park in which museum visitors, teachers and students explore natural and engineered river systems through miniature golf and interactive exhibits. We went on to jointly design "Earthscapes" programming for students, teachers and graduate students, related directly or indirectly to the park. From there, our partnership led to a major new exhibition that begins touring nationally and around the world in late 2007. A current effort seeks to bring NCED and SMM together with five other geo-science-oriented, NSF-supported Science and Technology Centers (STCs) from around the United States to develop collaborative means by which the research and science of all six STCs can reach larger informal science education audiences. We have learned a lot along the way about how museums can help individual and teams of researchers most effectively reach formal and informal audiences. Successful partnerships require significant joint commitment and funding, dedicated staff, and meaningful formative and summative evaluation. For a research center or an individual researcher, partnering with a museum provides experience, expertise, infrastructure, collegial relationships and community visibility that significantly enhance that of the academy. For a museum, one successful and highly visible research collaboration opens many new doors in the research community, providing new opportunities to broaden and deepen the scientific content of exhibits and programming.
BASALT Project Helps Develop Mars Science Protocols
2016-11-18
Researchers from NASA Ames and the University of Hawaii - Hilo spent 18 days simulating science activities on the surface of Mars. Although no spacesuits were used, scientist hiked around Hawaii Volcanoes National Park on the Island of Hawaii and collected rock samples like they would on the Red Planet. One goal of the Biologic Analog Science Associated with Lava Terrains project is to develop rules and protocols that could be used on an actual Mars mission to identify and protect geologic samples that could contain life. Communications with a mission control room were delayed, to simulate actual transmission times between Earth and Mars.
Applications of surface analysis and surface theory in tribology
NASA Technical Reports Server (NTRS)
Ferrante, John
1988-01-01
Tribology, the study of adhesion, friction and wear of materials is a complex field which requires a knowledge of solid state physics, surface physics, chemistry, material science and mechanical engineering. It has been dominated, however, by the more practical need to make equipment work. With the advent of surface analysis and advances in surface and solid state theory, a new dimension has been added to the analysis of interactions at tribological interfaces. In this paper the applications of tribological studies and their limitations are presented. Examples from research at the NASA Lewis Research Center are given. Emphasis is on fundamental studies involving the effects of monolayer coverage and thick films on friction and wear. A summary of the current status of theoretical calculations of defect energetics is presented. In addition, some new theoretical techniques which enable simplified quantitative calculations of adhesion, fracture and friction are discussed.
Applications of surface analysis and surface theory in tribology
NASA Technical Reports Server (NTRS)
Ferrante, John
1989-01-01
Tribology, the study of adhesion, friction and wear of materials, is a complex field which requires a knowledge of solid state physics, surface physics, chemistry, material science, and mechanical engineering. It has been dominated, however, by the more practical need to make equipment work. With the advent of surface analysis and advances in surface and solid-state theory, a new dimension has been added to the analysis of interactions at tribological interfaces. In this paper the applications of tribological studies and their limitations are presented. Examples from research at the NASA Lewis Research Center are given. Emphasis is on fundamental studies involving the effects of monolayer coverage and thick films on friction and wear. A summary of the current status of theoretical calculations of defect energetics is presented. In addition, some new theoretical techniques which enable simplified quantitative calculations of adhesion, fracture, and friction are discussed.
Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)
NASA Technical Reports Server (NTRS)
Digby, Susan
1995-01-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.
Contents of the NASA ocean data system archive, version 11-90
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1990-01-01
The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
NASA Astrophysics Data System (ADS)
Xie, Tao; Perrie, William; Fang, He; Zhao, Li; Yu, Wen-Jin; He, Yi-Jun
2017-05-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC1401007), the Global Change Research Program of China (Grant No. 2015CB953901), the Canadian Program on Energy Research and Development (OERD), the Office of Naval Research (Code 322, “Arctic and Global Prediction” (Principal Investigator: William Perrie)) (Grant No. N00014-15-1-2611), and the National Natural Science Foundation of China (Grant No. 41276187).
IcePod - A versatile Science Platform for the New York Air National Guard's LC-130 Aircraft
NASA Astrophysics Data System (ADS)
Frearson, N.; Bell, R. E.; Zappa, C. J.
2011-12-01
The ICEPOD program is a five-year effort to develop an ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams and outlet glaciers for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean systems. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station, and on targeted science missions, from mapping sea ice and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying the drainage systems from large subglacial lakes in East Antarctica. It is a key aspect of the design that at the conclusion of this program, the Pod, Deployment Arm and Data Acquisition and Management system will become available for use by the science community at large to install their own instruments onto. The science requirements for the primary instruments in the Icepod program have been defined and can be viewed on-line at www.ldeo.columbia.edu/icepod. As a consequence, the instrumentation will consist of a scanning laser for precise measurements of the ice surface, stereo-photogrammetry from both visible and infrared imaging cameras to document the ice surface and temperature, a VHF coherent, pulsed radar to recover ice thickness and constrain the distribution of water at the ice sheet bed and an L-band radar to measure surface accumulation or sea-ice thickness. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data integrated with inertial measurement technology integrated into the pod. There will also be two operational modes - a low altitude flight mode that will optimize the imaging systems and a high altitude flight mode that will facilitate wider use of the instrumentation suite on routine NYANG support missions. Proposals for new observations are welcome. The sensor system will become a research facility operated for the science community, and data will be maintained at and provided through a polar data center.
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric
Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.
Tribology. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Havas, George D., Comp.
Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…
PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology
NASA Astrophysics Data System (ADS)
Niño, Ely Dannier V.
2013-11-01
These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for making possible this international meeting of researchers. It should be noted that the event organized by UIS and UPB universities, through their research groups FITEK and GINTEP, was a very significant contribution to the national and international scientific community, achieving the interaction of different research groups from academia and business sector. On behalf of the research groups GINTEP - UPB and FITEK - UIS, we greatly appreciate the support provided by the Sponsors, who allowed to continue with the dream of research. Ely Dannier V-Nitilde no The Editor The PDF file also contains a list of committees and sponsors.
Thermal remote sensing: theory, sensors, and applications
USDA-ARS?s Scientific Manuscript database
Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...
Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Lin, Shi-Chao; Zhang, Xin; Zhao, Wei-Chen; Chen, Zhao-Yang; Du, Pan; Zhao, Yong-Mei; Wu, Zheng-Long; Xu, Hai-Jun
2018-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB745100), the National Natural Science Foundation of China (Grant Nos. 21390202 and 21676015), and the Beijing Higher Education Young Elite Teacher Project.
NASA Astrophysics Data System (ADS)
Munteanu, Daniel
2018-04-01
The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).
NASA Astrophysics Data System (ADS)
Hao, Hui-Ming; Liu, Yao-Yao; Zhang, Ping; Cai, Ming-Lei; Wang, Xiao-Yan; Zhu, Ji-Liang; Ye, Wen-Jiang
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087 and 11504080), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2017202004), the Research Project of the Education Department of Hebei Province, China (Grant No. QN2014130), the Key Subject Construction Project of Hebei Provincial University, and the Undergraduate Innovation and Entrepreneurship Training Program, China (Grant No. 201610080016).
JSC Director's Discretionary Fund Program
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M. (Editor)
1991-01-01
The JSC Center Director's Discretionary Fund Program 1991 Annual Report provides a brief status of the projects undertaken during the 1991 fiscal year. For this year, four space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, lunar surface habitat, and in situ resource utilization. In this way, a viable program of life sciences, space sciences, and engineering research has been maintained. For additional information on any single project, the individual investigator should be contacted.
Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.
Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal
2017-07-17
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.
Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems
Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; ...
2017-07-17
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less
Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less
NASA Astrophysics Data System (ADS)
Kövér, László
2014-10-01
This Special Issue of the journal Applied Surface Science contains full papers from a selection of contributions presented in the Applied Surface Science sessions of the 19th International Vacuum Congress (IVC-19) held in the Palais des Congrès, Paris, between September 9 and 13, 2013. The triennial IVC conferences represent major meetings in the field of the vacuum related sciences and are the largest scientific events of the International Union for Vacuum Science, Technique and Applications (IUVSTA). The IVC-19 and partner conferences had altogether 2555 participants. Supported by the Applied Surface Science Division of IUVSTA, the Applied Surface Science part was one of the most attended among the sub-conferences of the IVC-19. This Special Issue - without trying to achieve completeness - intends to provide a cross section of the topics of the Applied Surface Science and joint sessions of the IVC-19, covering important fields such as Surface Analysis, Surface Modifications, Surface Chemistry and Catalysis, Quantitative Surface and Interface Analysis, Coatings, Tribology, Adhesion, Characterization of Nanomaterials, Energy and Sustainable Development, Self Assembly, Nano-instrumentation, SPM and Novel Probe Techniques, New Approaches and Novel Applications of Surface/Interface Analytical Methods.
USGS lidar science strategy—Mapping the technology to the science
Stoker, Jason M.; Brock, John C.; Soulard, Christopher E.; Ries, Kernell G.; Sugarbaker, Larry J.; Newton, Wesley E.; Haggerty, Patricia K.; Lee, Kathy E.; Young, John A.
2016-01-11
The U.S. Geological Survey (USGS) utilizes light detection and ranging (lidar) and enabling technologies to support many science research activities. Lidar-derived metrics and products have become a fundamental input to complex hydrologic and hydraulic models, flood inundation models, fault detection and geologic mapping, topographic and land-surface mapping, landslide and volcano hazards mapping and monitoring, forest canopy and habitat characterization, coastal and fluvial erosion mapping, and a host of other research and operational activities. This report documents the types of lidar being used by the USGS, discusses how lidar technology facilitates the achievement of individual mission area goals within the USGS, and offers recommendations and suggested changes in direction in terms of how a mission area could direct work using lidar as it relates to the mission area goals that have already been established.
NASA Astrophysics Data System (ADS)
Jin, Zhang; Yuling, Liu; Chenqi, Yan; Yangang, He; Baohong, Gao
2016-04-01
The replacement metal gate (RMG) defectivity performance control is very challenging in high-k metal gate (HKMG) chemical mechanical polishing (CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad, pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Natural Science Foundation for the Youth of Hebei Province (Nos. F2012202094, F2015202267), and the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology (No. 2013010).
Science in the Wild: Adventure Citizen Science in the Arctic and Himalaya
NASA Astrophysics Data System (ADS)
Horodyskyj, U. N.; Rufat-Latre, J.; Reimuller, J. D.; Rowe, P.; Pothier, B.; Thapa, A.
2016-12-01
Science in the Wild provides educational hands-on adventure science expeditions for the everyday person, blending athletics and academics in remote regions of the planet. Participants receive training on field data collection techniques in order to be able to help scientists in the field while on expedition with them. At SITW, we also involve our participants in analyzing and interpreting the data, thus teaching them about data quality and sources of error and uncertainty. SITW teaches citizens the art of science storytelling, aims to make science more open and transparent, and utilizes open source software and hardware in projects. Open science serves both the research community and the greater public. For the former, it makes science reproducible, transparent and more impactful by mobilizing multidisciplinary and international collaborative research efforts. For the latter, it minimizes mistrust in the sciences by allowing the public a `behind-the-scenes' look into how scientific research is conducted, raw and unfiltered. We present results from a citizen-science expedition to Baffin Island (Canadian Arctic), which successfully skied and sampled snow for dust and black carbon concentration from the Penny Ice Cap, down the 25-mile length of Coronation Glacier, and back to the small Arctic town of Qikitarjuaq. From a May/June 2016 citizen-science expedition to Nepal (Himalaya), we present results comparing 2014/16 depth and lake floor compositional data from supraglacial lakes on Ngozumpa glacier while using open-source surface and underwater robotics. The Sherpa-Scientist Initiative, a program aimed at empowering locals in data collection and interpretation, successfully trained half a dozen Sherpas during this expedition and demonstrates the value of local engagement. In future expeditions to the region, efforts will be made to scale up the number of trainees and expand our spatial reach in the Himalaya.
NASA Astrophysics Data System (ADS)
Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow
2017-04-01
Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This was confirm by further statistical analysis (cluster analysis and correlation matrix) of the water quality parameters. Spatial distribution of water quality parameters, trace elements and the results obtained from the statistical analysis was determined by geographical information system (GIS). In addition, the isotopic analysis of the sampled surface water and groundwater revealed that most of the surface water and groundwater were of meteoric origin with little or no isotopic variations. It is expected that outcomes of this research will form a baseline for making appropriate decision on water quality management by decision makers in the Lower Tano river Basin. Keywords: Water stable isotopes, Trace elements, Multivariate statistics, Evaluation indices, Lower Tano river basin.
NASA Scientists Push the Limits of Computer Technology
NASA Technical Reports Server (NTRS)
1998-01-01
Dr. Donald Frazier,NASA researcher, uses a blue laser shining through a quarts window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center.
NASA Scientists Push the Limits of Computer Technology
NASA Technical Reports Server (NTRS)
1998-01-01
NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
NASA Scientists Push the Limits of Computer Technology
NASA Technical Reports Server (NTRS)
1999-01-01
NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
ExoMars 2018 Landing Site Selection Process
NASA Astrophysics Data System (ADS)
Vago, Jorge L.; Kminek, Gerhard; Rodionov, Daniel
The ExoMars 2018 mission will include two science elements: a Rover and a Surface Platform. The ExoMars Rover will carry a comprehensive suite of instruments dedicated to geology and exobiology research named after Louis Pasteur. The Rover will be able to travel several kilometres searching for traces of past and present signs of life. It will do this by collecting and analysing samples from outcrops, and from the subsurface—down to 2-m depth. The very powerful combination of mobility with the ability to access locations where organic molecules can be well preserved is unique to this mission. After the Rover will have egressed, the ExoMars Surface Platform will begin its science mission to study the surface environment at the landing location. This talk will describe the landing site selection process and introduce the scientific, planetary protection, and engineering requirements that candidate landing sites must comply with in order to be considered for the mission.
Preparation of atomically flat TiO2(001) surfaces
NASA Astrophysics Data System (ADS)
Wang, Yang; Weitering, Hanno H.; Snijders, Paul C.
2015-03-01
Transition metal oxides with the rutile structure (MO2, M = e.g. Ti, V, or Nb) have highly directional partially occupied t2g orbitals. Some of these orbitals form quasi-1D electronic bands along the rutile c-axis, and Peierls-like ordering phenomena have been observed in VO2 and NbO2. Tailoring the electronic properties of these materials via quantum confinement requires epitaxial growth on suitable substrates such as low index TiO2 surfaces. Because of the high surface energy of rutile TiO2(001), the standard approach of sputtering and annealing usually introduces faceting. Here we demonstrate a facile method to create atomically flat, non-faceted TiO2(001) surfaces. Using scanning tunneling microscopy we observe terraces with a width of approximately 150 nm. Step heights of approximately 0.3 nm are observed, consistent with the c lattice parameter of rutile TiO2. Low energy electron diffraction patterns reveal sharp diffraction spots with an in-plane lattice constant of 0.358 nm which is consistent with a (1x1) ordering of the (001) plane. These TiO2(001) single crystal surfaces can serve as an ideal substrate for further growth of rutile heterostructures. Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
NASA Technical Reports Server (NTRS)
1994-01-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.
High Speed Aerodynamic Characteristics of the GAF0PH Aerofoil
1980-09-01
upper surface of the aerofoil for angles of incidence greater than 210. POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories, Box...kCLAERO-.NOTE3 98 -AR-002-223 -LEVEL m DEPARTMENT OF DEFENCE 00 DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES...MELBOURNE, VICTORIA AERODYNAMICS NOTE 398 ’,\\ HIGH SPEED AERODYNAMIC CHARACTERISTICS OF THE GAFPH AEROFOIL by ~B D :, . , .IR-© Approved for Public Release
SeisCORK Engineering Design Study
2006-05-01
Stephen, R. A., et al. (1994a), The seafloor borehole array seismic system (SEABASS) and VLF ambient noise, Marine Geophysical Researches, 16, 243...286. Stephen, R. A., et al. (1994b), The Seafloor Borehole Array Seismic System (SEABASS) and VLF Ambient Noise, Marine Geophysical Researches, 16, 243...Contents Executive Summary 4 Introduction 5 General Science Goals and Justification for Borehole Seismology in the Seafloor 6 Validating Surface Seismic
FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, G.A.
1997-05-01
The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Abe, Takeshi
2017-12-01
The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.
NASA Astrophysics Data System (ADS)
Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.
2017-12-01
Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)
NASA Astrophysics Data System (ADS)
Zheng, Xue-Feng; Fan, Shuang; Chen, Yong-He; Kang, Di; Zhang, Jian-Kun; Wang, Chong; Mo, Jiang-Hui; Li, Liang; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue
2015-02-01
The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor (HEMT) becomes one of the most important reliability issues with the downscaling of feature size. In this paper, the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K. Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current. By comparing the experimental data with the numerical transport models, it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current. However, good agreement is found between the experimental data and the two-dimensional variable range hopping (2D-VRH) model. Therefore, it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer. Moreover, the activation energy of surface leakage current is extracted, which is around 0.083 eV. Finally, the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied. It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV, which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201206), the New Experiment Development Funds for Xidian University, China (Grant No. SY1213), the 111 Project, China (Grant No. B12026), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051325002).
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Podnar, Gregg W.; Dolan, John M.; Stancliff, Stephen; Lin, Ellie; Hosler, Jeffrey C.; Ames, Troy J.; Higinbotham, John; Moisan, John R.; Moisan, Tiffany A.;
2008-01-01
Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth s climate and ecology. Ocean sensing is typically done with satellites, buoys, and crewed research ships. The limitations of these systems include the fact that satellites are often blocked by cloud cover, and buoys and ships have spatial coverage limitations. This paper describes a multi-robot science exploration software architecture and system called the Telesupervised Adaptive Ocean Sensor Fleet (TAOSF). TAOSF supervises and coordinates a group of robotic boats, the OASIS platforms, to enable in-situ study of phenomena in the ocean/atmosphere interface, as well as on the ocean surface and sub-surface. The OASIS platforms are extended deployment autonomous ocean surface vehicles, whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). TAOSF allows a human operator to effectively supervise and coordinate multiple robotic assets using a sliding autonomy control architecture, where the operating mode of the vessels ranges from autonomous control to teleoperated human control. TAOSF increases data-gathering effectiveness and science return while reducing demands on scientists for robotic asset tasking, control, and monitoring. The first field application chosen for TAOSF is the characterization of Harmful Algal Blooms (HABs). We discuss the overall TAOSF architecture, describe field tests conducted under controlled conditions using rhodamine dye as a HAB simulant, present initial results from these tests, and outline the next steps in the development of TAOSF.
Structural and electronic properties of CdS/ZnS core/shell nanowires: A first-principles study
NASA Astrophysics Data System (ADS)
Kim, Hyo Seok; Kim, Yong-Hoon
2015-03-01
Carrying out density functional theory (DFT) calculation, we studied the relative effects of quantum confinement and strain on the electronic structures of II-IV semiconductor compounds with a large lattice-mismatch, CdS and ZnS, in the core/shell nanowire geometry. We considered different core radii and shell thickness of the CdS/ZnS core/shell nanowire, different surface facets, and various defects in the core/shell interface and surface regions. To properly describe the band level alignment at the core/shell boundary, we adopted the self-interaction correction (SIC)-DFT scheme. Implications of our findings in the context of device applications will be also discussed. This work was supported by the Basic Science Research Grant (No. 2012R1A1A2044793), Global Frontier Program (No. 2013-073298), and Nano-Material Technology Development Program (2012M3A7B4049888) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea. Corresponding author
Nanotechnology and bone healing.
Harvey, Edward J; Henderson, Janet E; Vengallatore, Srikar T
2010-03-01
Nanotechnology and its attendant techniques have yet to make a significant impact on the science of bone healing. However, the potential benefits are immediately obvious with the result that hundreds of researchers and firms are performing the basic research needed to mature this nascent, yet soon to be fruitful niche. Together with genomics and proteomics, and combined with tissue engineering, this is the new face of orthopaedic technology. The concepts that orthopaedic surgeons recognize are fabrication processes that have resulted in porous implant substrates as bone defect augmentation and medication-carrier devices. However, there are dozens of applications in orthopaedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from 10s of nanometers to a few micrometers. Examples include scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. We review the basic science, clinical implications, and early applications of the nanotechnology revolution and emphasize the rich possibilities that exist at the crossover region between micro- and nanotechnology for developing new treatments for bone healing.
Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment
NASA Technical Reports Server (NTRS)
King, Michael D.
2000-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.
Advanced Stirling Technology Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Wong, Wayne A.
2007-01-01
The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.
NASA's Earth science flight program status
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Volz, Stephen M.
2010-10-01
NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019-2020 timeframe. NASA will begin refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2013 and will initiate a Gravity Recovery and Climate Experiment (GRACE) Follow-on mission for launch in 2016.
NASA Astrophysics Data System (ADS)
Scheffler, Matthias; Schneider, Wolf-Dieter
2008-12-01
Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K Iori, K Sakamoto, H Narita, A Kimura, M Taniguchi, S Qiao, K Hasegawa, K Shimada, H Namatame and S Blügel Activated associative desorption of C + O → CO from Ru(001) induced by femtosecond laser pulses S Wagner, H Öström, A Kaebe, M Krenz, M Wolf, A C Luntz and C Frischkorn Surface structure of Sn-doped In2O3 (111) thin films by STM Erie H Morales, Yunbin He, Mykola Vinnichenko, Bernard Delley and Ulrike Diebold Coulomb oscillations in three-layer graphene nanostructures J Güttinger, C Stampfer, F Molitor, D Graf, T Ihn and K Ensslin Adsorption processes of hydrogen molecules on SiC(001), Si(001) and C(001) surfaces Xiangyang Peng, Peter Krüger and Johannes Pollmann Fermi surface nesting in several transition metal dichalcogenides D S Inosov, V B Zabolotnyy, D V Evtushinsky, A A Kordyuk, B Büchner, R Follath, H Berger and S V Borisenko Probing molecule-surface interactions through ultra-fast adsorbate dynamics: propane/Pt(111) A P Jardine, H Hedgeland, D Ward, Y Xiaoqing, W Allison, J Ellis and G Alexandrowicz A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy R Temirov, S Soubatch, O Neucheva, A C Lassise and F S Tautz
NASA Astrophysics Data System (ADS)
Lazarus, E.
2015-12-01
In the archetypal "tragedy of the commons" narrative, local farmers pasture their cows on the town common. Soon the common becomes crowded with cows, who graze it bare, and the arrangement of open access to a shared resource ultimately fails. The "tragedy" involves social and physical processes, but the denouement depends on who is telling the story. An economist might argue that the system collapses because each farmer always has a rational incentive to graze one more cow. An ecologist might remark that the rate of grass growth is an inherent control on the common's carrying capacity. And a geomorphologist might point out that processes of soil degradation almost always outstrip processes of soil production. Interdisciplinary research into human-environmental systems still tends to favor disciplinary vantages. In the context of Anthropocene grand challenges - including fundamental insight into dynamics of landscape resilience, and what the dominance of human activities means for processes of change and evolution on the Earth's surface - two disciplines in particular have more to talk about than they might think. Here, I use three examples - (1) beach nourishment, (2) upstream/downstream fluvial asymmetry, and (3) current and historical "land grabbing" - to illustrate a range of interconnections between physical Earth-surface science and common-pool resource economics. In many systems, decision-making and social complexity exert stronger controls on landscape expression than do physical geomorphological processes. Conversely, human-environmental research keeps encountering multi-scale, emergent problems of resource use made 'common-pool' by water, nutrient and sediment transport dynamics. Just as Earth-surface research can benefit from decades of work on common-pool resource systems, quantitative Earth-surface science can make essential contributions to efforts addressing complex problems in environmental sustainability.
SSERVI Analog Regolith Simulant Testbed Facility
NASA Astrophysics Data System (ADS)
Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina
2016-10-01
The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities, as well as public outreach and education opportunities.
[Recent progress of research and applications of fractal and its theories in medicine].
Cai, Congbo; Wang, Ping
2014-10-01
Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.
NASA Astrophysics Data System (ADS)
de Boer, G.; Lawrence, D.; Elston, J.; Argrow, B. M.; Palo, S. E.; Curry, N.; Finamore, W.; Mack, J.; LoDolce, G.; Schmid, B.; Long, C. N.; Bland, G.; Maslanik, J. A.; Gao, R. S.; Telg, H.; Semmer, S.; Maclean, G.; Ivey, M.; Hock, T. F.; Bartram, B.; Bendure, A.; Stachura, M.
2015-12-01
Use of unmanned aircraft systems (UAS) in evaluation of geophysical parameters is expanding at a rapid rate. Despite limitation imposed by necessary regulations related to operation of UAS in the federal airspace, several groups have developed and deployed a variety of UAS and the associated sensors to make measurements of the atmosphere, land surface, ocean and cryosphere. Included in this grouping is work completed at the University of Colorado - Boulder, which has an extended history of operating UAS and expanding their use in the earth sciences. Collaborative projects between the department of Aerospace Engineering, the Cooperative Institute for Research in Environmental Sciences (CIRES), the Research and Engineering Center for Unmanned Vehicles (RECUV), the National Oceanographic and Atmospheric Administration (NOAA) and National Centers for Atmospheric Research (NCAR) have resulted in deployment of UAS to a variety of environments, including the Arctic. In this presentation, I will give an overview of some recent efforts lead by the University of Colorado to develop and deploy a variety of UAS. Work presented will emphasize recent campaigns and instrument development and testing related to understanding the land-atmosphere interface. Specifically, information on systems established for evaluating surface radiation (including albedo), turbulent exchange of water vapor, heat and gasses, and aerosol processes will be presented, along with information on the use of terrestrial ecosystem sensing to provide critical measurments for the evaluation of lower atmospheric flux measurements.
NASA Technical Reports Server (NTRS)
Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona
2008-01-01
GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.
2012-01-01
mind." ECBC views the ILIR as a critical part of its efforts at ensuring a high level of basic science, to foster innovation in the areas of...program solicits innovative proposals from the center’s principal investigators that correspond to ECBC’s critical core capability areas: Inhalation...are compiled and used, with the numerical score, as a critical assessment of the proposal. This written feedback is essential for ECBC’s mentoring
Why we should build a Moon Village
NASA Astrophysics Data System (ADS)
Crawford, Ian A.
2017-12-01
A human-robotic "Moon Village" would offer significant scientific opportunities by providing an infrastructure on the lunar surface. An analogy would be the way in which human outposts in Antarctica facilitate research activities across multiple scientific disciplines on that continent. Scientific fields expected to benefit from a Moon Village will include: planetary science, astronomy, astrobiology, life sciences, and fundamental physics. In addition, a Moon Village will help develop the use of lunar resources, which will yield additional longer-term scientific benefits.
Coordinated field study for CaPE: Analysis of energy and water budgets
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Duchon, Claude; Kanemasu, Edward T.; Smith, Eric A.; Crosson, William; Laymon, Chip; Luvall, Jeff
1993-01-01
The objectives of this hydrologic cycle study are to understand and model (1) surface energy and land-atmosphere water transfer processes, and (2) interactions between convective storms and surface energy fluxes. A surface energy budget measurement campaign was carried out by an interdisciplinary science team during the period July 8 - August 19, 1991 as part of the Convection and Precipitation/Electrification Experiment (CaPE) in the vicinity of Cape Canaveral, FL. Among the research themes associated with CaPE is the remote estimation of rainfall. Thus, in addition to surface radiation and energy budget measurements, surface mesonet, special radiosonde, precipitation, high-resolution satellite (SPOT) data, geosynchronous (GOES) and polar orbiting (DMSP SSM/I, OLS; NOAA AVHRR) satellite data, and high altitude airplane data (AMPR, MAMS, HIS) were collected. Initial quality control of the seven surface flux station data sets has begun. Ancillary data sets are being collected and assembled for analysis. Browsing of GOES and radar data has begun to classify days as disturbed/undisturbed to identify the larger scale forcing of the pre-convective environment, convection storms and precipitation. The science analysis plan has been finalized and tasks assigned to various investigators.
Surface nanocrystalline and hardening effects of Ti-Al-V alloy by electropulsing ultrasonic shock
NASA Astrophysics Data System (ADS)
Ye, Xiaoxin; Tang, Guoyi
2015-03-01
The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It's indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It's different from conventional experiments and theory. It's discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it's supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management. The work is supported by National Natural Science Foundation of China (No. 50571048) and Shenzhen science and technology research funding project of China (No. SGLH20121008144756946).
NASA Technical Reports Server (NTRS)
Schmidt, Greg; Bailey, Brad; Gibbs, Kristina
2015-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and community development efforts, and SSERVI can further serve as a model for joint international scientific efforts through its creation of bridges across disciplines and between countries. Since the inception of the NASA Lunar Science Institute (SSERVIs predecessor), it has and will continue to contribute in many ways toward the advancement of lunar science and the eventual human exploration of the Moon.
NASA Technical Reports Server (NTRS)
1984-01-01
The Global Modeling and Simulation Branch (GMSB) of the Laboratory for Atmospheric Sciences (GLAS) is engaged in general circulation modeling studies related to global atmospheric and oceanographic research. The research activities discussed are organized into two disciplines: Global Weather/Observing Systems and Climate/Ocean-Air Interactions. The Global Weather activities are grouped in four areas: (1) Analysis and Forecast Studies, (2) Satellite Observing Systems, (3) Analysis and Model Development, (4) Atmospheric Dynamics and Diagnostic Studies. The GLAS Analysis/Forecast/Retrieval System was applied to both FGGE and post FGGE periods. The resulting analyses have already been used in a large number of theoretical studies of atmospheric dynamics, forecast impact studies and development of new or improved algorithms for the utilization of satellite data. Ocean studies have focused on the analysis of long-term global sea surface temperature data, for use in the study of the response of the atmosphere to sea surface temperature anomalies. Climate research has concentrated on the simulation of global cloudiness, and on the sensitivities of the climate to sea surface temperature and ground wetness anomalies.
Theorizing and Researching Levels of Processing in Self-Regulated Learning
ERIC Educational Resources Information Center
Winne, Philip H.
2018-01-01
Background: Deep versus surface knowledge is widely discussed by educational practitioners. A corresponding construct, levels of processing, has received extensive theoretical and empirical attention in learning science and psychology. In both arenas, lower levels of information and shallower levels of processing are predicted and generally…
USDA-ARS?s Scientific Manuscript database
Measurement of geomorphic change may be of interest to researchers and practitioners in a variety of fields including geology, geomorphology, hydrology, engineering, and soil science. Landscapes are often represented by digital elevation models. Surface models generated of the same landscape over a ...
A Neo-Kohlbergian Approach to Morality Research.
ERIC Educational Resources Information Center
Rest, James R.; Narvaez, Darcia; Thoma, Stephen J.; Bebeau, Muriel J.
2000-01-01
Proposes a model of moral judgment that builds on Lawrence Kohlberg's core assumptions. Addresses the concerns that have surfaced related to Kohlberg's work in moral judgment. Presents an overview of this model using Kohlberg's basic starting points, ideas from cognitive science, and developments in moral philosophy. (CMK)
Overview of GNSS-R Research Program for Ocean Observations at Japan
NASA Astrophysics Data System (ADS)
Ichikawa, Kaoru; Ebinuma, Takuji; Akiyama, Hiroaki; Kitazawa, Yukihito
2015-04-01
GNSS-R is a new remote-sensing method which uses reflected GNSS signals. Since no transmitters are required, it is suitable for small satellites. Constellations of GNSS-R small satellites have abilities on revolutionary progress on 'all-time observable' remote-sensing methods . We have started a research program for GNSS-R applications on oceanographic observations under a contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) as a'Space science research base formation program'. The duration of research program is 3 years (2015-2017). The one of important focuses of this program is creation of a new community to merge space engineering and marine science through establishment on application plans of GNSS-R. Actual GNSS-R data acquisition experiments using multi-copters, ships, and/or towers are planned, together with in-situ sea truth data such as wave spectrum, wind speed profiles and sea surface height. These data are compared to determine the accuracy and resolution of the estimates based on GNSS-R observations. Meanwhile, preparation of a ground station for receiving GNSS-R satellite data will be also established. Whole those data obtained in this project will be distributed for public. This paper introduces the overview of research plan..
Report of the panel on the land surface: Process of change, section 5
NASA Technical Reports Server (NTRS)
Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.
1991-01-01
The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.
Optimal Semi-Adaptive Search With False Targets
2017-12-01
we do not execute a full experimental design to attempt to build a response surface for the performance of these model under various combinations of...the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH from the NAVAL POSTGRADUATE SCHOOL December 2017 Approved by: Johannes O. Royset, Ph.D. Thesis...Advisor Dashi I. Singham, Ph.D. Second Reader Patricia A. Jacobs, Ph.D. Chair, Department of Operations Research iii THIS PAGE INTENTIONALLY LEFT
Detection of meso-micro scale surface features based on microcanonical multifractal formalism
NASA Astrophysics Data System (ADS)
Yang, Yuanyuan; Chen, Wei; Xie, Tao; Perrie, William
2018-01-01
Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFC1401007), the Global Change Research Program of China (Grant No. 2015CB953901), the National Natural Science Foundation of China (Grant No. 41776181), the Canadian Program on Energy Research and Development (OERD), Canadian Space Agency’s SWOT Program, and the Canadian Marine Environmental Observation Prediction and Response Network (MEOPAR).
Multi-sensor Efforts to Detect Oil slicks at the Ocean Surface — An Applied Science Project
NASA Astrophysics Data System (ADS)
Gallegos, S. C.; Pichel, W. G.; Hu, Y.; Garcia-Pineda, O. G.; Kukhtarev, N.; Lewis, D.
2012-12-01
In 2008, The Naval Research Laboratory at Stennis Space Center (NRL-SSC), NASA-Langley Space Center (LaRC) and NOAA Center for Satellite Applications and Research (STAR) with the support of the NASA Applied Science Program developed the concept for an operational oil detection system to support NOAA's mission of oil spill monitoring and response. Due to the current lack of a spaceborne sensor specifically designed for oil detection, this project relied on data and algorithms for the Synthetic Aperture Radar (SAR) and the Moderate Resolution Imaging Spectroradiometer (MODIS). NOAA/Satellite Analyses Branch (NOAA/SAB) was the transition point of those algorithms. Part of the research also included the evaluation of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) capabilities for detection of surface and subsurface oil. In April 2010, while conducting the research in the Gulf of Mexico, the Deep Water Horizon (DWH) oil spill, the largest accidental marine oil spill in the history of the petroleum industry impacted our area. This incident provided opportunities to expand our efforts to the field, the laboratory, and to the data of other sensors such as the Hyperspectral Imager of the Coastal Zone (HICO). We summarize the results of our initial effort and describe in detail those efforts carried out during the DWH oil spill.
Partnership of Environmental Education and Research-A compilation of student research, 1999-2008
Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.
2011-01-01
The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.
Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society
NASA Astrophysics Data System (ADS)
Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad
2015-04-01
This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.
NASA Astrophysics Data System (ADS)
Tsai, Hui-Chen; Chang, Chun-Fang; Chen, Bi-Chang; Cheng, Ji-Yen; Chu, Chih-Wei; Han, Hsieh-Cheng; Hatanaka, Koji; Hsieh, Tung-Han; Lee, Chau-Hwang; Lin, Jung-Hsin; Tung, Yi-Chung; Wei, Pei-Kuen; Yang, Fu-Liang; Tsai, Din Ping
2015-12-01
Development of imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS) of Academia Sinica in Taiwan is progressing rapidly. The research on advanced lattice light sheet microscopy for temporal visualization of cells in three dimensions at sub-cellular resolution shows novel imaging results. Label-free observation on filopodial dynamics provides a convenient assay on cancer cell motility. The newly-developed software enables us to track the movement of two types of particles through different channels and reconstruct the co-localized tracks. Surface plasmon resonance (SPR) for detecting urinary microRNA for diagnosis of acute kidney injury demonstrates excellent sensitivity. A fully automated and integrated portable reader was constructed as a home-based surveillance system for post-operation hepatocellular carcinoma. New microfluidic cell culture devices for fast and accurate characterizations prove various diagnosis capabilities.
Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries
Hammond, Jules L.; Bhalla, Nikhil; Rafiee, Sarah D.; Estrela, Pedro
2014-01-01
The discovery of the phenomena known as localized surface plasmon resonance (LSPR) has provided the basis for many research areas, ranging from materials science to biosensing. LSPR has since been viewed as a transduction platform that could yield affordable, portable devices for a multitude of applications. This review aims to outline the potential applications within developing countries and the challenges that are likely to be faced before the technology can be effectively employed. PMID:25587417
NASA Technical Reports Server (NTRS)
Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.;
1998-01-01
An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.
Surface effects on the thermal conductivity of silicon nanowires
NASA Astrophysics Data System (ADS)
Li, Hai-Peng; Zhang, Rui-Qin
2018-03-01
Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).
NASA Astrophysics Data System (ADS)
Zhang, Yang; Yu, Da-Peng
2009-08-01
Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.
Solid State Division progress report for period ending March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1997-12-01
This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, S.C.; Cardelino, B.H.; Hall, J.H. Jr.
1990-04-30
The objectives of this research program are to expose students in minority institutions to energy and fossil fuels research, to stimulate their interest in the sciences and engineering, and to encourage them to pursue graduate studies, thereby ensuring the necessary supply of manpower for the industrial and energy sectors of the national economy. This report describes a project focused on the surface chemical properties of coal and their influence on the adsorption of aqueous soluble catalyst metals, and research on the characterization of coal liquids. 2 refs., 1 fig.
NASA Technical Reports Server (NTRS)
1975-01-01
A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.
Suborbital Science Program: Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
DelFrate, John
2008-01-01
This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.
2012-08-16
This patch represents the essential elements associated with pressurized Earth science research aboard the International Space Station. At the top of the patch Klingon script spells out the acronym WORF making reference to the famed Star Trek character of the same name. In doing so it attests to the foresight, honor, integrity, and persistence of all those who made the WORF possible. To the right of the Klingon script is a single four pointed star in the form of a cross to honor the late Dr. Jack Estes and Dr. Dave Amsbury, the individuals most responsible for seeing to it that an optical quality, Earth science research window was added to the United States laboratory module, Destiny. The "flying eyeball" represents the ability of the ISS to allow scientists and astronauts to make and record continuous observations of natural and manmade processes on the surface of the Earth. The Destiny laboratory is depicted on the right of the patch above the Flag of the United States of America and highlights the position of the nadir looking, optical quality, science window in the module. The light emanating from the window from the lighted interior of the module appropriately illuminates the National Ensign for display during both day and night time. In the center of the patch, below the flying eyeball is a graphic representation of the WORF rack. A science instrument is mounted on the WORF payload shelf and is recording data of the Earth's surface through the nadir looking, science window over which the WORF rack is mounted. An astronaut represented by Mario Runco Jr., a designer, developer, and manager of the WORF and depicted as Star Trek's Mr. Spock, is to the left of the WORF rack and is shown in his flight suit with his STS-44 mission patch operating an imaging instrument, emphasizing the importance of astronaut participation to achieve the maximum scientific return from orbital research.
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, D.; Garry, W. B.; McAdam, A.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.
2015-12-01
The Remote, In Situ, and Synchrotron Studies for Science (RIS4E) team represents one node of the Solar System Exploration Research Virtual Institute (SSERVI) program. While the RIS4E team consists of four themes, each dedicated to a different aspect of airless body exploration, this submission details the RIS4E work underway to maximize an astronaut's effectiveness while conducting surface science. The next generation of surface science operations will look quite different than the EVAs (extravehicular activities) conducted during Apollo. Astronauts will possess data of much higher resolution than the Apollo reconnaissance data, and the EVAs will thus be designed to answer targeted science questions. Additionally, technological advancements over the last several decades have made it possible to conduct in situ analyses of a caliber much greater than was achievable during Apollo. For example, lab techniques such as x-ray fluorescence, x-ray diffraction, and multi-spectral imaging are now available in field portable formats, meaning that astronauts can gain real-time geochemical awareness during sample collection. The integration of these instruments into EVA operations, however, has not been widely tested. While these instruments will provide the astronaut with a high-resolution look at regional geochemistry and structure, their implementation could prove costly to the already constrained astronaut EVA timeline. The RIS4E team, through fieldwork at the December 1974 lava flow at Kilauea Volcano, HI, investigates the incorporation of portable technologies into planetary surface exploration and explores the relationship between science value added from these instruments and the cost associated with integrating them into an EVA timeline. We also consider what an appropriate instrumentation suite would be for the exploration of a volcanic terrain using this ideal terrestrial analog (see Rogers et al., Young et al., Bleacher et al., and Yant et al., this meeting).
Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science
NASA Astrophysics Data System (ADS)
Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.
2017-12-01
The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.
More than Meets the Eye--Infrared Cameras in Open-Ended University Thermodynamics Labs
ERIC Educational Resources Information Center
Melander, Emil; Haglund, Jesper; Weiszflog, Matthias; Andersson, Staffan
2016-01-01
Educational research has found that students have challenges understanding thermal science. Undergraduate physics students have difficulties differentiating basic thermal concepts, such as heat, temperature, and internal energy. Engineering students have been found to have difficulties grasping surface emissivity as a thermal material property.…
The US EPA, Environmental Sciences Division-Las Vegas is using a variety of geopspatical and statistical modeling approaches to locate and assess the complex functions of wetland ecosystems. These assessments involve measuring landscape characteristrics and change, at multiple s...
2018-03-01
of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for...mannose binding both experimentally and in molecular dynamics simulation ............................................................ 6 Fig. 3 COMSOL...Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science
INTRODUCTION CONTROLS ON ARSENIC TRANSPORT IN NEAR-SURFACE AQUATIC SYSTEMS
This special issue developed as a result of two concurrent topical sessions held at the annual meetings of the Geological Society of America and the Soil Science Society of America held during November 2003. The focus of these sessions was recent research conducted to build on o...
Quantitative biological surface science: challenges and recent advances.
Höök, Fredrik; Kasemo, Bengt; Grunze, Michael; Zauscher, Stefan
2008-12-23
Biological surface science is a broad, interdisciplinary subfield of surface science, where properties and processes at biological and synthetic surfaces and interfaces are investigated, and where biofunctional surfaces are fabricated. The need to study and to understand biological surfaces and interfaces in liquid environments provides sizable challenges as well as fascinating opportunities. Here, we report on recent progress in biological surface science that was described within the program assembled by the Biomaterial Interface Division of the Science and Technology of Materials, Interfaces and Processes (www.avs.org) during their 55th International Symposium and Exhibition held in Boston, October 19-24, 2008. The selected examples show that the rapid progress in nanoscience and nanotechnology, hand-in-hand with theory and simulation, provides increasingly sophisticated methods and tools to unravel the mechanisms and details of complex processes at biological surfaces and in-depth understanding of biomolecular surface interactions.
NEEMO 20: Science Training, Operations, and Tool Development
NASA Technical Reports Server (NTRS)
Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.
2016-01-01
The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.
Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules
NASA Astrophysics Data System (ADS)
Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus
2016-06-01
Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.
Improving an Atlantic Fisheries DSS using Sea Surface Salinity Data from NASA's Aquarius Mission
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
This report assesses the capacity of incorporating NASA#s Aquarius SSS (sea surface salinity) data into the SMAST (School of Marine Science and Technology) DSS for Fisheries Science. This data will enhance the SMAST DSS by providing SSS over a large area. Aquarius is a focused satellite mission designed to measure global SSS. SSS mapping is limited because conventional in situ SSS sampling is too sparse to give a large-scale view of the salinity variability. Aquarius will resolve missing physical processes that link the water cycle, the climate, and the ocean. The SMAST Fisheries program provides a DSS for fisheries science. It collects fisheries and environmental data, integrates them into a suite of data assimilation ocean models, and provides hindcasts, nowcasts, and forecasts for fisheries research, fisheries management, and the fishery industry. Currently, SMAST is using SSS data from the National Oceanic and Atmospheric Administration#s National Data Buoy Center. The SMAST DSS would be enhanced with SSS data from the Aquarius mission.
Small Body Science via Swarms of Nano-Satellites
NASA Astrophysics Data System (ADS)
Ernst, Sebastian M.; Lewis, John S.
2015-04-01
Imagine you had a fleet of nano-satellites deployed around an asteroid or comet, or directly on its surface. What things could you do with it that you could not do any other way? Missions which transport a number of small spacecraft and deploy it near small bodes, moons or planets are becoming ever more feasible and realistic. While constellations of nano-satellites already carry a significant weight in terrestrial remote sensing, the potential of similar concepts for planetary science missions has not yet been extensively explored. There have been proposals for such scenarios for the past decades, though only now is there the technology to make them happen. Multiple types of sensor networks can be deployed around planetary bodies or onto their surface while they can interact with each other if required. Furthermore, individual spacecraft become expendable. We wish to call attention to all the research in this field which has been conducted so far and inspire the planetary science community to further investigate the possibies of such mission architechtures.
Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector
NASA Astrophysics Data System (ADS)
Wei, Ming; Xu, Chun-Xiang; Qin, Fei-Fei; Gowri Manohari, Arumugam; Lu, Jun-Feng; Zhu, Qiu-Xiang
2017-07-01
ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the Al nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration of Al NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of Al NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, Al NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors. Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054, the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177, and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
Urban heat island research from 1991 to 2015: a bibliometric analysis
NASA Astrophysics Data System (ADS)
Huang, Qunfang; Lu, Yuqi
2018-02-01
A bibliometric analysis based on the Science Citation Index-Expanded (SCI-Expanded) database from the Web of Science was performed to review urban heat island (UHI) research from 1991 to 2015 and statistically assess its developments, trends, and directions. In total, 1822 papers published in 352 journals over the past 25 years were analyzed for scientific output; citations; subject categories; major journals; outstanding keywords; and leading countries, institutions, authors, and research collaborations. The number of UHI-related publications has continuously increased since 1991. Meteorology atmospheric sciences, environmental sciences, and construction building technology were the three most frequent subject categories. Building and Environment, International Journal of Climatology, and Theoretical and Applied Climatology were the three most popular publishing journals. The USA and China were the two leading countries in UHI research, contributing 49.56% of the total articles. Chinese Academy of Science, Arizona State University, and China Meteorological Administration published the most UHI articles. Weng QH and Santamouris M were the two most prolific authors. Author keywords were classified into four major groups: (1) research methods and indicators, e.g., remote sensing, field measurement, and models; (2) generation factors, e.g., impervious urban surfaces, urban geometry, waste heat, vegetation, and pollutants; (3) environmental effects, e.g., urban climate, heat wave, ecology, and pollution; and (4) mitigation and adaption strategies, e.g., roof technology cooling, reflective cooling, vegetation cooling, and urban geometry cooling. A comparative analysis of popular issues revealed that UHI determination (intensity, heat source, supporting techniques) remains the central topic, whereas UHI impacts and mitigation strategies are becoming the popular issues that will receive increasing scientific attention in the future. Modeling will continue to be the leading research method, and remote sensing will be used more widely. Additionally, a combination of remote sensing and field measurements with models is expected.
Problems in merging Earth sensing satellite data sets
NASA Technical Reports Server (NTRS)
Smith, Paul H.; Goldberg, Michael J.
1987-01-01
Satellite remote sensing systems provide a tremendous source of data flow to the Earth science community. These systems provide scientists with data of types and on a scale previously unattainable. Looking forward to the capabilities of Space Station and the Earth Observing System (EOS), the full realization of the potential of satellite remote sensing will be handicapped by inadequate information systems. There is a growing emphasis in Earth science research to ask questions which are multidisciplinary in nature and global in scale. Many of these research projects emphasize the interactions of the land surface, the atmosphere, and the oceans through various physical mechanisms. Conducting this research requires large and complex data sets and teams of multidisciplinary scientists, often working at remote locations. A review of the problems of merging these large volumes of data into spatially referenced and manageable data sets is presented.
Surfing with capillary waves: a survival strategy for trapped bees
NASA Astrophysics Data System (ADS)
Roh, Chris; Gharib, Morteza
2017-11-01
Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.
STDCE, Payload Specialist Fred Leslie works at the STDCE rack in USML-2 Spacelab
1995-11-05
STS073-103-015 (20 October-5 November 1995) --- Payload specialist Fred W. Leslie works with the Surface Tension Driven Convection Experiment (STDCE) aboard the science module in the cargo bay of the Earth-orbiting Space Shuttle Columbia. Leslie joined another guest researcher and five NASA astronauts for 16 full days of in-space research in support of the United States Microgravity Laboratory (USML-2) mission.
NASA Technical Reports Server (NTRS)
Heydorn, R. D.
1984-01-01
The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.
Status and Direction of Tribology as a Science in the 80's. Understanding and Prediction
NASA Technical Reports Server (NTRS)
Tabor, D.
1984-01-01
The most challenging research problems in tribology for the next decade or beyond are classified horizontally into two categories: (1) understanding of basic mechanisms and (2) prediction of practical performance. Vertical classifications are in terms of particular themes or fields of interest. Areas where more fundamental work is required are: adhesion and friction of clean and contaminated surfaces; lubrication; new materials; surface characterization at the engineering level (topography) and at the atomic levels (various spectroscopies); and wear.
Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.
2000-04-01
the Air Force grant issued by the European Aerospace Office of Research and Development. The United States has a royalty free license throughout the...UNIVERSITY PRESS Nashville fl9 ~Oc -O i U.S. Government Rights License This work relates to Department of the Air Force Grant/rContract issued by the...in engineering , medicine, and the sciences. SERIES EDITOR: Larry L. Schumaker Stevenson Professor of Mathematics Vanderbilt University PREVIOUSLY
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
2013-01-01
The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.
NASA Technical Reports Server (NTRS)
Niemann, Hasso B.
2007-01-01
Probing the atmospheres and surfaces of the planets and their moons with fast moving entry probes has been a very useful and essential technique to obtain in situ or quasi in situ scientific data (ground truth) which could not otherwise be obtained from fly by or orbiter only missions and where balloon, aircraft or lander missions are too complex and costly. Planetary entry probe missions have been conducted successfully on Venus, Mars, Jupiter and Titan after having been first demonstrated in the Earth's atmosphere. Future missions will hopefully also include more entry probe missions back to Venus and to the outer planets. 1 he success of and science returns from past missions, the need for more and better data, and a continuously advancing technology generate confidence that future missions will be even more successful with respect to science return and technical performance. I'he pioneering and tireless work of Al Seiff and his collaborators at the NASA Ames Research Center had provided convincing evidence of the value of entry probe science and how to practically implement flight missions. Even in the most recent missions involving entry probes i.e. Galileo and Cassini/Huygens A1 contributed uniquely to the science results on atmospheric structure, turbulence and temperature on Jupiter and Titan.
Microgravity Combustion Science: 1995 Program Update
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)
1995-01-01
Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.
Free energy of steps using atomistic simulations
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.
Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications
Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman
2014-01-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."
Innovations from the "ivory tower": Wilhelm Barthlott and the paradigm shift in surface science.
Neinhuis, Christoph
2017-01-01
This article is mainly about borders that have tremendous influence on our daily life, although many of them exist and act mostly unrecognized. In this article the first objective will be to address more generally the relation between university and society or industry, borders within universities, borders in thinking and the huge amount of misunderstandings and losses resulting from these obvious or hidden borders. In the second part and in more detail, the article will highlight the impact of the research conducted by Wilhelm Barthlott throughout his scientific career during which not only one border was removed, shifted or became more penetrable. Among the various fields of interest not mentioned here (e.g., systematics of Cactaceae, diversity and evolution of epiphytes, the unique natural history of isolated rocky outcrops called inselbergs, or the global distribution of biodiversity), plant surfaces and especially the tremendous diversity of minute structures on leaves, fruits, seeds and other parts of plants represent a common thread through 40 years of scientific career of Wilhelm Barthlott. Based on research that was regarded already old-fashioned in the 1970s and 1980s, systematic botany, results and knowledge were accumulated that, some 20 years later, initiated a fundamental turnover in how surfaces were recognized not only in biology, but even more evident in materials science.
Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications
NASA Astrophysics Data System (ADS)
Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.
2014-12-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.
Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions
NASA Technical Reports Server (NTRS)
Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich
2013-01-01
Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.
Antarctica: A Keystone in a Changing World
NASA Astrophysics Data System (ADS)
Bell, Robin E.; Luyendyk, Bruce P.; Wilson, Terry J.
2008-01-01
10th International Symposium on Antarctic Earth Sciences; Santa Barbara, California, 26 August to 1 September 2007; The 10th International Symposium on Antarctic Earth Sciences was convened at the University of California, Santa Barbara, where 350 researchers presented talks and posters on topics including climate change, biotic evolution, magmatic processes, surface processes, tectonics, geodynamics, and the cryosphere. The symposium resulted in 335 peer-reviewed papers, 225 of which are published online (http://pubs.usgs.gov/of/2007/1047/). A proceedings book will also be published by the National Academies Press.
Elementary Chemical Reactions in Surface Photocatalysis
NASA Astrophysics Data System (ADS)
Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming
2018-04-01
Photocatalytic hydrogen evolution and organic degradation on oxide materials have been extensively investigated in the last two decades. Great efforts have been dedicated to the study of photocatalytic reaction mechanisms of a variety of molecules on TiO2 surfaces by using surface science methods under ultra-high vacuum (UHV) conditions, providing fundamental understanding of surface chemical reactions in photocatalysis. In this review, we summarize the recent progress in the study of photocatalysis of several important species (water, methanol, and aldehydes) on different TiO2 surfaces. The results of these studies have provided us deep insights into the elementary processes of surface photocatalysis and stimulated a new frontier of research in this area. Based on the results of these studies, a new dynamics-based photocatalysis model is also discussed.
CosmoQuest Year 2: Citizen Science Progress, Motivations, and Education
NASA Astrophysics Data System (ADS)
Gugliucci, Nicole E.; Gay, P. L.; Antonenko, I.; Bracey, G.; Costello, K.; Lehan, C.; Moore, J.; Reilly, E.; Robbins, S. J.; Schmidt, B. E.; CosmoQuest Collaboration
2014-01-01
The CosmoQuest citizen science virtual research facility has wrapped up its second year of operations. With projects mapping the surfaces of the Moon, Mercury, and asteroid Vesta, citizen scientists have marked over 2 million craters as well as other surface features. Analysis of the mapping results show that citizen scientists map high resolution features as well as expert crater markers within a small margin of error. We’ve undertaken a study of citizen science motivations with our users, and find that an interest in astronomy and a desire to contribute new knowledge as primary motivating factors. Ten percent of users surveyed list learning or teaching science as the primary motivating factor. A full analysis of this survey will be presented. Along those lines, the CosmoQuest education team has developed a second middle school educational unit to align with its citizen science projects. In-Vesta-Gate explores asteroid science and is in the trial stage, while we report on several teacher professional development opportunities with Terraluna, a Moon-focused educational unit developed last year. We’ve also taken the CosmoQuest citizen science on the road and outside the website, having a booth and activities at several public events. We present visitor survey results from a recent exhibition at Dragon*Con, a sci-fi/fantasy convention with over 50,000 attendees. We discuss future plans for the project, including the release of several mobile apps to be previewed here.
Recent Advances in Hyporheic Zone Science
NASA Astrophysics Data System (ADS)
Hester, E. T.
2017-12-01
The hyporheic zone exists beneath and adjacent to streams and rivers where surface water and groundwater interact. It provides unique habitat for aquatic organisms, can buffer surface water temperatures, and can be highly reactive, processing nutrients and improving water quality. The hyporheic zone is the subject of considerable research and the past year in WRR witnessed important conceptual advances. A key focus was rigorous evaluation of mixing between surface water and groundwater that occurs within hyporheic sediments. Field observations indicate that greater mixing occurs in the hyporheic zone than in deeper groundwater, and this distinction has been explored by recent numerical modeling studies, but more research is needed to fully understand the causes. A commentary this year in WRR proposed that hyporheic mixing is enhanced by a combination of fluctuating boundary conditions and multiscale physical and chemical spatial heterogeneity but confirmation is left to future research. This year also witnessed the boundaries of knowledge pushed back in a number of other key areas. Field quantification of hyporheic exchange and reactions benefited from advances including the use and interpretation of high frequency nutrient sensors, actively heater fiber optic sensors, isotope tracers, and geophysical methods such as electrical resistivity imaging. Conceptual advances were made in understanding the effects of unsteady environmental conditions (e.g., tides and storms) and preferential flow on hyporheic processes. Finally, hyporheic science is being brought increasingly to bear on applied issues such as informing nutrient removal crediting for stream restoration practices, for example in the Chesapeake Bay watershed.
First Lunar Outpost support study
NASA Technical Reports Server (NTRS)
Bartz, Christopher; Cook, John; Rusingizandekwe, Jean-Luc
1993-01-01
The First Lunar Outpost (FLO) is the first manned step in the accomplishment of the Space Exploration Initiative, the Vice President's directive to NASA on the 20th anniversary of the Apollo moon landing. FLO's broad objectives are the establishment of a permanent human presence on the moon, supporting the utilization of extraterrestrial resources in a long-term, sustained program. The primary objective is to emplace and validate the first elements of a man tended outpost on the lunar surface to provide the basis for: (1) establishing, maintaining and expanding human activities and influence across the surface; (2) establishing, maintaining and enhancing human safety and productivity; (3) accommodating space transportation operations to and from the surface; (4) accommodating production of scientific information; (5) exploiting in-situ resources. Secondary objectives are: (1) to conduct local, small scale science (including life science); (2) In-situ resource utilization (ISRU) demonstrations; (3) engineering and operations tests; (4) to characterize the local environment; and (5) to explore locally. The current work is part of ongoing research at the Sasakawa International Center for Space Architecture supporting NASA's First Lunar Outpost initiative. Research at SICSA supporting the First Lunar Outpost initiative has been funded through the Space Exploration Initiatives office at Johnson Space Center. The objectives of the current study are to further develop a module concept from an evaluation of volumetric and programmatic requirements, and pursue a high fidelity design of this concept, with the intention of providing a high fidelity design mockup to research planetary design issues and evaluate future design concepts.
NASA Astrophysics Data System (ADS)
Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-07-01
Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.
Landslides and impacts on comets.
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-07-01
The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108 Pa. We considered a simple model of two spheres (with radius 1400 m each) connected by cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shape of some comets. A few vibration modes are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. Let assume that comets are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The maximum values of acceleration of the surface resulting from this impact are given in Table 1. Note that these values are higher than acceleration of the gravity of the comet. Consequently, these vibrations could be an important factor of surface evolution, e.g. they could trigger landslides. It could be alternative mechanism to that presented in [4] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, J. Knollenberg, A. J. Ball, M. Ba-naszkiewicz, J. Benkhoff, M. Grott, J. Gry-gorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K. J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gera-simenko Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [3] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nu-cleus, Univ.of Kent U.K. [4] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1. Icarus 200 (2009) 280-291
Better Broader Impacts through National Science Foundation Centers
NASA Astrophysics Data System (ADS)
Campbell, K. M.
2010-12-01
National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study, this session showcases NCED’s materials, approaches and lessons learned. We will also introduce the work of our sister STCs, whose disciplines span the STEM fields.
Activities of the Center for Space Construction
NASA Technical Reports Server (NTRS)
1993-01-01
The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers.
Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.
2006-01-01
Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.
Recent Economic Perspectives on Political Economy, Part II*
Dewan, Torun; Shepsle, Kenneth A.
2013-01-01
In recent years some of the best theoretical work on the political economy of political institutions and processes has begun surfacing outside the political science mainstream in high quality economics journals. This two-part paper surveys these contributions from a recent five-year period. In Part I, the focus is on elections, voting and information aggregation, followed by treatments of parties, candidates, and coalitions. In Part II, papers on economic performance and redistribution, constitutional design, and incentives, institutions, and the quality of political elites are discussed. Part II concludes with a discussion of the methodological bases common to economics and political science, the way economists have used political science research, and some new themes and arbitrage opportunities. PMID:23606754
Click Chemistry, a Powerful Tool for Pharmaceutical Sciences
Hein, Christopher D.; Liu, Xin-Ming; Wang, Dong
2008-01-01
Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. While there are a number of reactions that fulfill the criteria, the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes has emerged as the frontrunner. It has found applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical sciences. In this manuscript, important aspects of the Huisgen cycloaddition will be reviewed, along with some of its many pharmaceutical applications. Bioconjugation, nanoparticle surface modification, and pharmaceutical-related polymer chemistry will all be covered. Limitations of the reaction will also be discussed. PMID:18509602
Recent Economic Perspectives on Political Economy, Part I*
Dewan, Torun; Shepsle, Kenneth A.
2013-01-01
In recent years some of the best theoretical work on the political economy of political institutions and processes has begun surfacing outside the political science mainstream in high quality economics journals. This two-part paper surveys these contributions from a recent five-year period. In Part I, the focus is on elections, voting and information aggregation, followed by treatments of parties, candidates, and coalitions. In Part II, papers on economic performance and redistribution, constitutional design, and incentives, institutions, and the quality of political elites are discussed. Part II concludes with a discussion of the methodological bases common to economics and political science, the way economists have used political science research, and some new themes and arbitrage opportunities. PMID:23990686
Plasmonic Films Can Easily Be Better: Rules and Recipes
2015-01-01
High-quality materials are critical for advances in plasmonics, especially as researchers now investigate quantum effects at the limit of single surface plasmons or exploit ultraviolet- or CMOS-compatible metals such as aluminum or copper. Unfortunately, due to inexperience with deposition methods, many plasmonics researchers deposit metals under the wrong conditions, severely limiting performance unnecessarily. This is then compounded as others follow their published procedures. In this perspective, we describe simple rules collected from the surface-science literature that allow high-quality plasmonic films of aluminum, copper, gold, and silver to be easily deposited with commonly available equipment (a thermal evaporator). Recipes are also provided so that films with optimal optical properties can be routinely obtained. PMID:25950012
NASA Astrophysics Data System (ADS)
Salavati-Fard, Taha; Jenness, Glen; Caratzoulas, Stavros; Doren, Douglas
Using computational methods, the catalytic effects of oxide surfaces on the Diels-Alder reaction between biomass-derived furan and methyl acrylate are investigated. The cycloadduct can be dehydrated later to produce methyl benzoic which is an important step toward benzoic acid production. Different systems such as clean, partially hydroxylated and fully hydroxylated ZrO2 are considered. The Langmuir and Eley-Rideal mechanisms are studied, as well. Our calculations show that the oxide surfaces catalyze the reaction significantly through the interaction of metal sites with the electron-poor reactant. The calculations are interpreted by making use of the total and projected electronic density of states and band structure of the catalyst. This material is based on work supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004.
Managing Science Operations During Planetary Surface: The 2010 Desert RATS Test
NASA Technical Reports Server (NTRS)
Eppler, Dean B.; Ming, D. W.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities. Desert RATS is a venue where new ideas can be tested, both individually and as part of an operation with multiple elements. By conducting operations over multiple yearly cycles, ideas that make the cut can be iterated and tested during follow-on years. This ultimately gives both the hardware and the personnel experience in the kind of multi-element integrated operations that will be necessary in future human planetary exploration.
Exploring Remote Sensing Products Online with Giovanni for Studying Urbanization
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina; Kempler, Steve
2012-01-01
Recently, a Large amount of MODIS land products at multi-spatial resolutions have been integrated into the online system, Giovanni, to support studies on land cover and land use changes focused on Northern Eurasia and Monsoon Asia regions. Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC) providing a simple and intuitive way to visualize, analyze, and access Earth science remotely-sensed and modeled data. The customized Giovanni Web portals (Giovanni-NEESPI and Giovanni-MAIRS) are created to integrate land, atmospheric, cryospheric, and social products, that enable researchers to do quick exploration and basic analyses of land surface changes and their relationships to climate at global and regional scales. This presentation documents MODIS land surface products in Giovanni system. As examples, images and statistical analysis results on land surface and local climate changes associated with urbanization over Yangtze River Delta region, China, using data in Giovanni are shown.
NASA Astrophysics Data System (ADS)
Wilson, J. L.; Dressler, K.; Hooper, R. P.
2005-12-01
The river basin is a fundamental unit of the landscape and water in that defined landscape plays a central role in shaping the land surface, in dissolving minerals, in transporting chemicals, and in determining species distribution. Therefore, the river basin is a natural observatory for examining hydrologic phenomena and the complex interaction of physical, chemical, and biological processes that control them. CUAHSI, incorporated in 2001, is a community-based research infrastructure initiative formed to mobilize the hydrologic community through addressing key science questions and leveraging nationwide hydrologic resources from its member institutions and collaborative partners. Through an iterative community-based process, it has been previously proposed to develop a network of hydrologic infrastructure that organizes around scales on the order of 10,000 km2 to examine critical interfaces such as the land-surface, atmosphere, and human impact. Data collection will characterize the stores, fluxes, physical pathways, and residence time distributions of water, sediment, nutrients, and contaminants coherently at nested scales. These fundamental properties can be used by a wide range of scientific disciplines to address environmental questions. This more complete characterization will enable new linkages to be identified and hypotheses to be tested more incisively. With such a research platform, hydrologic science can advance beyond measuring streamflow or precipitation input to understanding how the river basin functions in both its internal processes and in responding to environmental stressors. That predictive understanding is needed to make informed decisions as development and even natural pressures stress existing water supplies and competing demands for water require non-traditional solutions that take into consideration economic, environmental, and social factors. Advanced hydrologic infrastructure will enable research for a broad range of multidisciplinary science questions. The CUAHSI science agenda has evolved through community input and research into several unifying theme areas, or categories. Three example categories are: forcing, internal processing, and evolution. Within each category, coherent (integrated in space and time) physical, chemical and biological data are needed to answer specific science questions. For example, in the case of "forcing": How do patterns in rainfall influence predictability of floods and droughts? Floods and droughts have long been considered random events. However, we now know that there are decadal patterns in rainfall and that rainfall recycles within the basin thereby intensifying floods and droughts. How does the internal state of the system combine with external forcing to determine the occurrence of hydrologic extremes?
FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)
NASA Astrophysics Data System (ADS)
Das, A. K.
2010-01-01
The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development efforts on Tokamak technology and physics of magnetized fusion plasmas. Our industries have already adopted a large number of plasma processes related to manufacturing, lighting and surface engineering. Indian universities and National Institutes have successfully taken up research projects and building of demonstration equipment that are being used in strategic as well as other industrial applications. In addition, and more importantly, plasma science has triggered research and development effort in many related areas like power supplies, specialized instrumentation and controls, magnets, diagnostics and monitoring, lasers, electron beams, vacuum systems, thermal engineering, material science, fluid dynamics, molecular and nano engineering, molecular chemistry etc. In short, plasma science and technology in India has reached a stage of maturity that can be harnessed for industrial and societal use. The expertise and core competence developed over the years need to be sustained through interactions among researchers as well as nurturing of new research efforts. The Annual Plasma Symposiums have eminently worked towards achievement of that purpose. Like all years, Plasma - 2008 is built around the entire national effort in this field with a special focus on 'Plasmas in Nuclear Fuel Cycle (PANFC)'. The program includes several plenary lectures, invited talks and contributed papers. The manuscripts have been peer reviewed and compiled in the form of Conference Proceedings. I am sure that the online proceedings will be useful and serve as a valuable reference material for active researchers in this field. I would like to take this opportunity to gratefully acknowledge the help and guidance of the National Advisory Committee Chaired by Professor P K Kaw, Director, Institute of Plasma Research, Gandhinagar during the organization of this symposium. My sincere thanks to Dr S Banerjee, Director, Bhabha Atomic Research Center, an acknowledged expert in the field of Materials Science and Technology, for delivering the key note address to set the tenor of the symposium. I would also like to thank the Plasma Science Society of India (PSSI) for agreeing to hold this important event at BARC. Thanks are due to Dr L M Gantayet, Director, BTDG, BARC and chairman, Scientific Program Committee and all my colleagues in the Symposium Organizing Committee who have made this symposium possible. Finally, our thanks to all the Funding agencies, Board of Research in Nuclear Science, Department of Science and Technology, The Board of Fusion Research, and all industrial exhibitor and sponsors for their unstinted support and encouragement. Dr A K Das Chairman, Organizing Committee Bhabha Atomic Research Center, Mumbai
Recent Science Education Initiatives at the Princeton Plasma Physics Laboratory
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Dominguez, Arturo; Gershman, Sophia; Guilbert, Nick; Merali, Aliya; Ortiz, Deedee
2013-10-01
An integrated approach to program development and implementation has significantly enhanced a variety of Science Education initiatives for students and teachers. This approach involves combining the efforts of PPPL scientists, educators, research and education fellows, and collaborating non-profit organizations to provide meaningful educational experiences for students and teachers. Our undergraduate internship program continues to have outstanding success, with 72% of our participants going to graduate school and 45% concentrating in plasma physics. New partnerships have allowed us to increase the number of underrepresented students participating in mentored research opportunities. The number of participants in our Young Women's Conference increases significantly each year. Our Plasma Camp workshop, now in its 15th year, recruits outstanding teachers from around the country to create new plasma-centered curricula. Student research in the Science Education Laboratory concentrates on the development of a high-fidelity plasma speaker, a particle dropper for a dusty plasma experiment, microplasmas along liquid surfaces for a variety of applications, an Internet-controlled DC glow discharge source for students, and a Planeterrella for demonstrating the aurora and other space weather phenomenon for the general public.
Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N
2015-03-01
The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Desert Research and Technology Studies (DRATS) Traverse Planning
NASA Technical Reports Server (NTRS)
Horz, Friedrich
2012-01-01
Slide 1] The Desert Research and Technology Studies (DRATS) include large scale field tests of manned lunar surface exploration systems; these tests are sponsored by the Director s Office of Integration (DOI) [sic, Directorate Integration Office (DIO)] within the Constellation Program and they include geological exploration objectives along well designed traverses. These traverses are designed by the Traverse Team, an ad hoc group of some 10 geologists form NASA and academia, as well as experts in mission operation who define the operational constraints applicable to specific simulation scenarios. [Slide 2] These DRATS/DOI tests focus on 1) the performance of major surface systems, such as rovers, mobile habitats, communication architecture, navigation tools, earth-moving equipment, unmanned reconnaissance robots etc. under realistic field conditions and 2) the development of operational concepts that integrate all of these systems into a single, optimized operation. The participation of science is currently concentrating on geological sciences, with the objective of developing suitable tools and documentation protocols to sample representative rocks for Earth return, and to generate some conceptual understanding of the ground support structure that will be needed for the real time science-support of a lunar surface crew. [Slide 3] Major surface systems exercised in the June 2008 analog tests at the Moses Lake site, WA. [Upper left] The Chariot Rover (developed at Johnson Space Center) is an unpressurized vehicle driven by fully suited crews. [Upper right] Mobile Habitat provided by the Jet Propulsion Laboratory. Chariot is the more nimble and mobile vehicle and the idea is to drive the habitat remotely to some rendezvous place where Chariot would catch up - after a lengthy traverse - at the end of the day. [Lower left] The K-10 remotely operated robot (provided by NASA Ames Research Center) conducting scientific/geologic reconnaissance of the prospective traverse region, locating specific sites for more detailed exploration by Chariot and its crew. [Lower right] This earth-moving equipment (provided by NASA KSC) can be attached to Chariot and is envisioned to, for example, level an outpost site or to mine lunar soi
The role of the space station in earth science research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaye, Jack A.
1999-01-22
The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments,more » provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.« less
NASA Astrophysics Data System (ADS)
Tsang, C.; Caspi, A.; DeForest, C. E.; Durda, D. D.; Steffl, A.; Lewis, J.; Wiseman, J.; Collier, J.; Mallini, C.; Propp, T.; Warner, J.
2017-12-01
The Great American Eclipse of 2017 provided an excellent opportunity for heliophysics research on the solar corona and dynamics that encompassed a large number of research groups and projects, including projects flown in the air and in space. Two NASA WB-57F Canberra high altitude research aircraft were launched from NASA's Johnson Space Center, Ellington Field into the eclipse path. At an altitude of 50,000ft, and outfitted with visible and near-infrared cameras, these aircraft provided increased duration of observations during eclipse totality, and much sharper images than possible on the ground. Although the primary mission goal was to study heliophysics, planetary science was also conducted to observe the planet Mercury and to search for Vulcanoids. Mercury is extremely challenging to study from Earth. The 2017 eclipse provided a rare opportunity to observe Mercury under ideal astronomical conditions. Only a handful of near-IR thermal images of Mercury exist, but IR images provide critical surface property (composition, albedo, porosity) information, essential to interpreting lower resolution IR spectra. Critically, no thermal image of Mercury currently exists. By observing the nightside surface during the 2017 Great American Eclipse, we aimed to measure the diurnal temperature as a function of local time (longitude) and attempted to deduce the surface thermal inertia integrated down to a few-cm depth below the surface. Vulcanoids are a hypothesized family of asteroids left over from the formation of the solar system, in the dynamically stable orbits between the Sun and Mercury at 15-45 Rs (4-12° solar elongation). Close proximity to the Sun, plus their small theoretical sizes, make Vulcanoid searches rare and difficult. The 2017 eclipse was a rare opportunity to search for Vulcanoids. If discovered these unique, highly refractory and primordial bodies would have a significant impact on our understanding of solar system formation. Only a handful of deep searches have been conducted. Our observations will only be the second time ever a search for Vulcanoids will have been conducted in the NIR. In this presentation, I will review our NASA flight program, and focus on the planetary science observations that came from the Great American Eclipse of 2017.
Options for a lunar base surface architecture
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.
Welcome to NASA's Earth Science Enterprise. Version 3
NASA Technical Reports Server (NTRS)
2001-01-01
There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.
An Overview of the NASA P-3B Airborne Laboratory
NASA Technical Reports Server (NTRS)
Guillory, Anthony R.; Postell, George W.
2009-01-01
The National Aeronautics and Space Administration (NASA) Wallops Flight Facility (WFF) P-3B Orion is a medium-lift, four engine turbo-prop aircraft that has been reconfigured from a military aircraft to an Earth Science research platform. The aircraft has a long history of supporting science missions, flying on average over 200 hours per year. Examples of research missions that have been flown aboard the aircraft are remote sensing flights to study geophysical parameters including ice-sheet topography and periodic change, soil moisture content, atmospheric aerosol constituents, and beach erosion. Missions are conducted for the purposes of calibration/validation of various NASA and international satellites that monitor climate change as well as process studies and the test of new prototype remote sensing instruments. In recent y ears the focus has been on ice surveys of the Arctic and Antarctic, soil moisture research, and measurements of atmospheric chemistry and radiation sciences. The aircraft has been conducting ice surveys of Greenland since 1993 for the purposes of topographic mapping of both the surface and basal topography. Another application of the aircraft has been for soil moisture research. Research has also been conducted using microwave radiometers and radars over various agricultural and forest lands. Recently, a mission was flown in the spring over the High-Arctic to collect air samples of haze and boreal forest fires in an effort to determine anthropogenic amounts and sources of pollution. This pa per will provide an overview of the P-3B platform and highlight recent science missions.
Earth-Science Research for Addressing the Water-Energy Nexus
NASA Astrophysics Data System (ADS)
Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.
2013-12-01
In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.
Materials Physics | Materials Science | NREL
capabilities in this area. Electronic Raman scattering as an ultra-sensitive probe of strain effects in research capabilities in this area. Effects of incident UV light on surface morphology of MBE grown GaAs example, we seek to predict the effects of soiling for different environmental conditions. We are working
Students' Problem-Solving in Mechanics: Preference of a Process Based Model.
ERIC Educational Resources Information Center
Stavy, Ruth; And Others
Research in science and mathematics education has indicated that students often use inappropriate models for solving problems because they tend to mentally represent a problem according to surface features instead of referring to scientific concepts and features. The objective of the study reported in this paper was to determine whether 34 Israeli…
Augmentation Award for Surface Science Research Training.
1996-11-01
atomic force microscopy facility. In particular, he designed an anechoic chamber for minimizing acoustical noise in our air and electrochemistry imaging...well as our new air/electochemical STM/AFM. In addition to the UHV-STM, the 11/20/96 10:43 e773 702 5863 J.F.I. I•On7 new air- levitated vactium rhnrher
Monitoring and Depth of Strategy Use in Computer-Based Learning Environments for Science and History
ERIC Educational Resources Information Center
Deekens, Victor M.; Greene, Jeffrey A.; Lobczowski, Nikki G.
2018-01-01
Background: Self-regulated learning (SRL) models position metacognitive monitoring as central to SRL processing and predictive of student learning outcomes (Winne & Hadwin, 2008; Zimmerman, 2000). A body of research evidence also indicates that depth of strategy use, ranging from surface to deep processing, is predictive of learning…
Flipped Classrooms and Student Learning: Not Just Surface Gains
ERIC Educational Resources Information Center
McLean, Sarah; Attardi, Stefanie M.; Faden, Lisa; Goldszmidt, Mark
2016-01-01
The flipped classroom is a relatively new approach to undergraduate teaching in science. This approach repurposes class time to focus on application and discussion; the acquisition of basic concepts and principles is done on the students' own time before class. While current flipped classroom research has focused on student preferences and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai
2013-05-20
Molecular adsorption of formate and carboxyl on the stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory (DFT+U) calculations. Two distinguishable adsorption modes (strong and weak) of formate are identified. The bidentate configuration is more stable than the monodentate adsorption configuration. Both formate and carboxyl bind at the more open CeO2(110) surface are stronger. The calculated vibrational frequencies of two adsorbed species are consistent with experimental measurements. Finally, the effects of U parameters on the adsorption of formate and carboxyl over both CeO2 surfaces were investigated. We found that the geometrical configurations of two adsorbed species aremore » not affected by using different U parameters (U=0, 5, and 7). However, the calculated adsorption energy of carboxyl pronouncedly increases with the U value while the adsorption energy of formate only slightly changes (<0.2 eV). The Bader charge analysis shows the opposite charge transfer occurs for formate and carboxyl adsorption where the adsorbed formate is negatively charge whiled the adsorbed carboxyl is positively charged. Interestingly, with the increasing U parameter, the amount of charge is also increased. This work was supported by the Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL) and by a Cooperative Research and Development Agreement (CRADA) with General Motors. The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. Part of the computing time was also granted by the National Energy Research Scientific Computing Center (NERSC)« less
Remote Sensing Product Verification and Validation at the NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Stanley, Thomas M.
2005-01-01
Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.
NASA Technical Reports Server (NTRS)
Wilkins, Richard
2010-01-01
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
NASA Astrophysics Data System (ADS)
Wilkins, Richard
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
NASA Astrophysics Data System (ADS)
Hersh, E. S.; James, E. W.; Banner, J. L.
2014-12-01
The Research Experience for Undergraduates (REU) in "The Science of Global Change and Sustainability" at the University of Texas at Austin Environmental Science Institute (ESI) has just completed its twelfth summer. The program has 113 REU alumni plus 5 Research Experience for Teachers (RET) alumni, selected from a competitive pool of 976 applicants (~14% acceptance rate), 68% from 61 smaller colleges and universities (of 79 schools represented), 40% of those who self-reported coming from demographics underrepresented in STEM, and with nearly 70% women. Students conduct independent research under the supervision of a faculty mentor in four major interdisciplinary themes: Impacts on Ecosystems, Impacts on Watersheds and the Land Surface, Campus Sustainability, and Reconstructing Past Global Change. These themes bridge chemistry, biology, ecology, environmental policy, civil and environmental engineering, marine science, and geological science. The summer cohort participates in weekly research and professional development seminars along with group field exercises. Topics include graduate school, career preparation, research ethics, sustainability, global change, environmental justice, and research communication. These activities plus the student's individual research comprise a portfolio that culminates in a reflection essay integrating the concepts, methods, and perspectives gained over the 10-week program. Program alumni were surveyed in 2014 to gauge long-term impact and outcomes. Of the 76 surveyed from 2006-2013, 39% responded. 67% have earned or are working on a graduate degree, and 94% of the graduate programs are in STEM. 93% of the responding alumni felt that the program "influenced my job and educational choices" and 97% felt that the program "helped me better understand scientific research." 40% presented their findings at a conference and 17% authored or co-authored a peer-reviewed publication. This presentation will include a discussion of best practices and lessons learned over twelve years, such as strategies to increase cohort diversity, innovative activities, and results from long-term program evaluation on attitudes toward STEM careers and program outcomes.
NASA Astrophysics Data System (ADS)
Whitehurst, A.; Murphy, K. J.
2017-12-01
The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Waltman, Ludo; van Raan, Anthony F J; Smart, Sue
2014-01-01
We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.
Waltman, Ludo; van Raan, Anthony F. J.; Smart, Sue
2014-01-01
We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the ‘EPS-HLS interface’ is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade. PMID:25360616
Water security and the science agenda
NASA Astrophysics Data System (ADS)
Wheater, Howard S.; Gober, Patricia
2015-07-01
The freshwater environment is facing unprecedented global pressures. Unsustainable use of surface and groundwater is ubiquitous. Gross pollution is seen in developing economies, nutrient pollution is a global threat to aquatic ecosystems, and flood damage is increasing. Droughts have severe local consequences, but effects on food can be global. These current pressures are set in the context of rapid environmental change and socio-economic development, population growth, and weak and fragmented governance. We ask what should be the role of the water science community in addressing water security challenges. Deeper understanding of aquatic and terrestrial environments and their interactions with the climate system is needed, along with trans-disciplinary analysis of vulnerabilities to environmental and societal change. The human dimension must be fully integrated into water science research and viewed as an endogenous component of water system dynamics. Land and water management are inextricably linked, and thus more cross-sector coordination of research and policy is imperative. To solve real-world problems, the products of science must emerge from an iterative, collaborative, two-way exchange with management and policy communities. Science must produce knowledge that is deemed to be credible, legitimate, and salient by relevant stakeholders, and the social process of linking science to policy is thus vital to efforts to solve water problems. The paper shows how a large-scale catchment-based observatory can be used to practice trans-disciplinary science integration and address the Anthropocene's water problems.
Telling a Compelling Tale, Scientifically Speaking
NASA Astrophysics Data System (ADS)
Unger, M.; Hauser, R.; Backlund, P.
2009-12-01
We will examine three strategies for conveying science effectively to a broad audience: making science relevant, accessible, and intriguing. Through an analysis of the dissemination strategy for three research-related stories at the National Center for Atmospheric Research, we explore methods for successful communication of societally relevant science. We will discuss both time-honored and new means of conveying authentic science in a rapidly changing media landscape. This visualization from the Hayden Planetarium's Journey to the Stars shows the generation of magnetic field in the solar convection zone and its connection to a sunspot at the visible surface of the Sun. Note that the sunspot (with a size slightly larger than Earth) is enlarged for better visibility and not in proper scale relative to the Sun. (© 2009, American Museum of Natural History) New research shows that the Arctic reversed a long-term cooling trend and began warming rapidly in recent decades. The graph shows estimates of Arctic temperatures over the last 2,000 years, based on proxy records, the long-term cooling trend, and the recent warming based on actual observations. A 2000-year transient climate simulation with NCAR's Community Climate System Model shows the same overall temperature decrease as does the proxy temperature reconstruction, which gives scientists confidence that their estimates are accurate.
The Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for Solar Water Splitting and CO2 Reduction
NASA Astrophysics Data System (ADS)
Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi; Wee, Kyung-Ryang; Gish, Melissa; Meyer, Jerry; Papanikolas, John
The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates molecular level light absorption and catalysis with the bandgap properties of stable oxide materials such as TiO2 and NiO. Excitation of surface-bound chromophores leads to excited state formation and rapid electron or hole injection into the conduction or valence bands of n or p-type oxides. Addition of thin layers of TiO2 or NiO on the surfaces of mesoscopic, nanoparticle films of semiconductor or transparent conducting oxides to give core/shell structures provides a basis for accumulating multiple redox equivalents at catalysts for water oxidation or CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.
2018-03-01
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).
Nanocrystalline Anatase Titania Supported Vanadia Catalysts: Facet-dependent Structure of Vanadia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei-Zhen; Gao, Feng; Li, Yan
2015-07-09
Titania supported vanadia, a classic heterogeneous catalyst for redox reactions, typically has nonhomogeneous vanadia species on various titania facets, making it challenging not only to determine and quantify each species but also to decouple their catalytic contributions. We prepared truncated tetragonal bipyramidal (TiO2-TTB) and rod-like (TiO2-Rod) anatase titania with only {101} and {001} facets at ratios of about 80:20 and 93:7, respectively, and used them as supports of sub-monolayer vanadia. The structure and redox properties of supported vanadia were determined by XRD, TEM, XPS, EPR, Raman, FTIR and TPR, etc. It was found that vanadia preferentially occupy TiO2 {001} facetsmore » and form isolated O=V4+(O-Ti)2 species, and with further increase in vanadia surface coverage, isolated O=V5+(O-Ti)3 and oligomerized O=V5+(O-M)3 (M = Ti or V) species form on TiO2 {101} facets. The discovery on support facet-dependent structure of vanadia on anatase titania is expected to enable the elucidation of structure-function correlations on high surface area TiO2 supported vanadia catalysts. This work was supported by U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle.« less
Progress in Preparation of Monodisperse Polymer Microspheres
NASA Astrophysics Data System (ADS)
Zhang, Hongyan
2017-12-01
The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.
Avenues for crowd science in Hydrology.
NASA Astrophysics Data System (ADS)
Koch, Julian; Stisen, Simon
2016-04-01
Crowd science describes research that is conducted with the participation of the general public (the crowd) and gives the opportunity to involve the crowd in research design, data collection and analysis. In various fields, scientists have already drawn on underused human resources to advance research at low cost, with high transparency and large acceptance of the public due to the bottom up structure and the participatory process. Within the hydrological sciences, crowd research has quite recently become more established in the form of crowd observatories to generate hydrological data on water quality, precipitation or river flow. These innovative observatories complement more traditional ways of monitoring hydrological data and strengthen a community-based environmental decision making. However, the full potential of crowd science lies in internet based participation of the crowd and it is not yet fully exploited in the field of Hydrology. New avenues that are not primarily based on the outsourcing of labor, but instead capitalize the full potential of human capabilities have to emerge. In multiple realms of solving complex problems, like image detection, optimization tasks, narrowing of possible solutions, humans still remain more effective than computer algorithms. The most successful online crowd science projects Foldit and Galaxy Zoo have proven that the collective of tens of thousands users could clearly outperform traditional computer based science approaches. Our study takes advantage of the well trained human perception to conduct a spatial sensitivity analysis of land-surface variables of a distributed hydrological model to identify the most sensitive spatial inputs. True spatial performance metrics, that quantitatively compare patterns, are not trivial to choose and their applicability is often not universal. On the other hand humans can quickly integrate spatial information at various scales and are therefore a trusted competence. We selected zooniverse, the most popular crowd science platform where over a million registered users contribute to various research projects, to build a survey of the human perception. The survey will be shown during the interactive discussion, but moreover for building future avenues of crowd science in Hydrology the following questions should be discussed: (1) What hydrological problems are suitable for an internet based crowd science application? (2) How to abstract the complex problem to a medium that appeals to the crowd? (3) How to secure good science with reliable results? (4) Can the crowd replace existing and established computer based applications like parameter optimization or forecasting at all?
Collecting, Managing, and Visualizing Data during Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.
2017-12-01
While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.
Pareto Joint Inversion of Love and Quasi Rayleigh's waves - synthetic study
NASA Astrophysics Data System (ADS)
Bogacz, Adrian; Dalton, David; Danek, Tomasz; Miernik, Katarzyna; Slawinski, Michael A.
2017-04-01
In this contribution the specific application of Pareto joint inversion in solving geophysical problem is presented. Pareto criterion combine with Particle Swarm Optimization were used to solve geophysical inverse problems for Love and Quasi Rayleigh's waves. Basic theory of forward problem calculation for chosen surface waves is described. To avoid computational problems some simplification were made. This operation allowed foster and more straightforward calculation without lost of solution generality. According to the solving scheme restrictions, considered model must have exact two layers, elastic isotropic surface layer and elastic isotropic half space with infinite thickness. The aim of the inversion is to obain elastic parameters and model geometry using dispersion data. In calculations different case were considered, such as different number of modes for different wave types and different frequencies. Created solutions are using OpenMP standard for parallel computing, which help in reduction of computational times. The results of experimental computations are presented and commented. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 238416-2013, and by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.
Dong, Cheng; Snyder, Alan J.; Jones, A. Daniel; Sheets, Erin D.
2008-01-01
Summer undergraduate research programs in science and engineering facilitate research progress for faculty and provide a close-ended research experience for students, which can prepare them for careers in industry, medicine, and academia. However, ensuring these outcomes is a challenge when the students arrive ill-prepared for substantive research or if projects are ill-defined or impractical for a typical 10-wk summer. We describe how the new Bioengineering and Bioinformatics Summer Institutes (BBSI), developed in response to a call for proposals by the National Institutes of Health (NIH) and the National Science Foundation (NSF), provide an impetus for the enhancement of traditional undergraduate research experiences with intense didactic training in particular skills and technologies. Such didactic components provide highly focused and qualified students for summer research with the goal of ensuring increased student satisfaction with research and mentor satisfaction with student productivity. As an example, we focus on our experiences with the Penn State Biomaterials and Bionanotechnology Summer Institute (PSU-BBSI), which trains undergraduates in core technologies in surface characterization, computational modeling, cell biology, and fabrication to prepare them for student-centered research projects in the role of materials in guiding cell biology. PMID:18316807
PREFACE: Fourth International Workshop on Inelastic Ion-Surface Collisions
NASA Astrophysics Data System (ADS)
Sigmund, Peter
1983-01-01
The Fourth International Workshop on Inelastic Ion-Surface Collisions was held at Hindsgavl Manor near Middelfart, Denmark from 21 to 24 September 1982, following previous workshops held in Murray Hill, New Jersey (1976), Hamilton, Ontario (1978) and Feldkirchen-Westerham, Bavaria (1980). Like in the previous meetings, the underlying idea was to gather a moderately small group of researchers to discuss fundamental physical and chemical problems in a number of areas that are related, but are normally represented at separate conferences focusing on different aspects. The area of inelastic ion-surface collisions has a wide diversity of applications ranging from surface analysis by particle impact through microelectronic and controlled thermonuclear fusion devices to biomolecule identification and solar wind effects in planetary space. There are strong links to surface science and atomic collision physics and their respective applications. The present series of workshops is an attempt to focus on fundamental problems common to all these areas and thus to provide a forum for fruitful interaction. At Middelfart, we were lucky to have an exceptional number of well-presented and stimulating summary talks covering a rather broad range of fundamental processes with the emphasis shifting back and forth between collisional and surface aspects. Moreover, there was a wealth of short contributions on current research, of which many were submitted to the present proceedings. Thanks to the speakers, an active audience, and considerate session chairmen, we had extensive and lively but friendly discussions in an always stimulating atmosphere. This volume contains 11 of 13 invited papers and 15 of the 30 contributions presented orally at the workshop. It should, like the proceedings of the previous workshops, give a balanced survey of the current status of the field, with a slight bias toward recent developments like those in the theory of charge states of sputtered atoms, and others. All papers have undergone a normal, and occasionally extensive, refereeing procedure. In the midst of the editing process, I received the news that one of the invited speakers, Morton Traum of Bell Laboratories, had died at age 41 on 1 December, 1982 in Stoughton, Wisconsin. Mort had delivered a superb talk on Desorption and Sputtering by Electronic Processes and had been one of the most active participants and perhaps the most broadly oriented one of the workshop. His intense curiosity and serene charm, combined with a solid background in all parts of surface science, contributed stimulating ideas to most of the topics discussed. In preparing the workshop, I got much useful advice and constructive criticism from the members of the international committee. The assistance of the members of the local committee, Nils Andersen, Flemming Besenbacher, Jens Nørskov and Jens Onsgaard, as well as Erling Hartmann, Tove Nyberg and my wife Pia was instrumental at various stages before, during and after the workshop. Generous funding was received from the Office of Naval Research, the Danish Natural Science Research Council, NORDITA, the Nordic Accelerator Committee, the Research Foundation of Odense University and the Danish Provincial Bank. It is a pleasure to acknowledge the professional service of the Hindsgavl Conference Center and the smooth cooperation with Dr N R Nilsson, executive editor of Physica Scripta.
NASA Technical Reports Server (NTRS)
Boyce, Joseph (Technical Monitor); Mustard, John
2004-01-01
Reflectance spectroscopy has demonstrated that high albedo surfaces on Mars contain heavily altered materials with some component of hematite, poorly crystalline ferric oxides, and an undefined silicate matrix. The spectral properties of many low albedo regions indicate crystalline basalts containing both low and high calcium pyroxene, a mineralogy consistent with the basaltic SNC meteorites. The Thermal Emission Spectrometer (TES) experiment on the Mars Geochemical Surveyor has acquired critical new data relevant to surface composition and mineralogy, but in a wavelength region that is complementary to reflectance spectroscopy. The essence of the completed research was to analyze TES data in the context of reflectance data obtained by the French ISM imaging spectrometer experiment in 1989. This approach increased our understanding of the complementary nature of these wavelength regions for mineralogic determinations using actual observations of the martian surface. The research effort focused on three regions of scientific importance: Syrtis Major-Isidis Basin, Oxia Palus-Arabia, and Valles Marineris. In each region distinct spatial variations related to reflectance, and in derived mineralogic information and interpreted compositional units were analyzed. In addition, specific science questions related to the composition of volcanics and crustal evolution, soil compositions and pedogenic processes, and the relationship between pristine lithologies and weathering provided an overall science-driven framework for the work. The detailed work plan involved colocation of TES and ISM data, extraction of reflectance and emissivity spectra from areas of known reflectance variability, and quantitative analysis using factor analysis and statistical techniques to determine the degree of correspondence between these different wavelength regions. Identified coherent variations in TES spectroscopy were assessed against known atmospheric effects to validate that the variations are due to surface properties. With this new understanding of reflectance and emission spectroscopy, mineralogic interpretations were derived and applied to the science objectives of the three regions.
Differences between urban and rural hedges in England revealed by a citizen science project.
Gosling, Laura; Sparks, Tim H; Araya, Yoseph; Harvey, Martin; Ansine, Janice
2016-07-22
Hedges are both ecologically and culturally important and are a distinctive feature of the British landscape. However the overall length of hedges across Great Britain is decreasing. Current challenges in studying hedges relate to the dominance of research on rural, as opposed to urban, hedges, and their variability and geographical breadth. To help address these challenges and to educate the public on the importance of hedge habitats for wildlife, in 2010 the Open Air Laboratories (OPAL) programme coordinated a hedge-focused citizen science survey. Results from 2891 surveys were analysed. Woody plant species differed significantly between urban and rural areas. Beech, Holly, Ivy, Laurel, Privet and Yew were more commonly recorded in urban hedges whereas Blackthorn, Bramble, Dog Rose, Elder and Hawthorn were recorded more often in rural hedges. Urban and rural differences were shown for some groups of invertebrates. Ants, earwigs and shieldbugs were recorded more frequently in urban hedges whereas blowflies, caterpillars, harvestmen, other beetles, spiders and weevils were recorded more frequently in rural hedges. Spiders were the most frequently recorded invertebrate across all surveys. The presence of hard surfaces adjacent to the hedge was influential on hedge structure, number and diversity of plant species, amount of food available for wildlife and invertebrate number and diversity. In urban hedges with one adjacent hard surface, the food available for wildlife was significantly reduced and in rural hedges, one adjacent hard surface affected the diversity of invertebrates. This research highlights that urban hedges may be important habitats for wildlife and that hard surfaces may have an impact on both the number and diversity of plant species and the number and diversity of invertebrates. This study demonstrates that citizen science programmes that focus on hedge surveillance can work and have the added benefit of educating the public on the importance of hedgerow habitats.
Alexander, Robert H.
1964-01-01
Space science has been called “the collection of scientific problems to which space vehicles can make some specific contributions not achievable by ground-based experiments.” Geography, the most spatial of the sciences, has now been marked as one of these “space sciences.” The National Aeronautics and Space Administration (NASA) is sponsoring an investigation to identify the Potential geographic benefits from the nation’s space program. This is part of NASA’s long-range inquiry to determine the kinds of scientific activities which might profitably be carried out on future space missions. Among such future activities which are now being planned by NASA are a series of manned earth orbital missions, many of which would be devoted to research. Experiments in physics, astronomy, geophysics, meteorology, and biology are being discussed for these long-range missions. The question which is being put to geographers is, essentially, what would it mean to geographic research to have an observation satellite (or many such satellites) orbiting the earth, gathering data about earth-surface features and environments?
Special Issue: European Conference on Surface Science 2014
NASA Astrophysics Data System (ADS)
Opila, Robert L.; Ertas, Gulay
2015-11-01
The present Special Issue of Applied Surface Science is intended to provide a collection of peer-reviewed contributions presented at the Symposium "European Conference on Surface Science" held in Antalya (Turkey), August 31-September 5, 2014. This conference is organized annually through the joint efforts of the Surface Science Division of IUVSTA and the Surface and Interface Section of the European Physical Society (EPS). The ECOSS conference series started in 1978 in Amsterdam, Netherlands, and has been held in various cities throughout Europe during the past years. This is the first time that an ECOSS conference was held in Turkey, with the chairmanship of Prof. Sefik Suzer of Bilkent University, Ankara.
Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.
2016-12-01
Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.
Birth of an intense pulsed muon source, J-PARC MUSE
NASA Astrophysics Data System (ADS)
Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Strasser, Patrick; Makimura, Shunsuke; Koda, Akihiro; Fujimori, Hiroshi; Nakahara, Kazutaka; Kadono, Ryosuke; Kato, Mineo; Takeshita, Soshi; Nishiyama, Kusuo; Higemoto, Wataru; Ishida, Katsuhiko; Matsuzaki, Teiichiro; Matsuda, Yasuyuki; Nagamine, Kanetada
2009-04-01
The muon science facility (MUSE), along with neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC (Japan Proton Accelerator Research Complex) project, which was approved for construction between 2001 and 2008. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008. For Phase 1, we are planning to install one superconducting decay/surface channel with a modest-acceptance (about 40 mSr) pion injector, with an estimated surface muon (μ+) rate of 3×107/s and a beam size of 25 mm diameter, and a corresponding decay muon (μ+/μ-) rate of 106/s for 60 MeV/ c (up to 107/s for 120 MeV/ c) with a beam size of 50 mm diameter. These intensities correspond to more than 10-times what is available at the RIKEN/RAL muon facility, which currently possess the most intense pulsed muon beams in the world. In addition to Phase 1, we are planning to install, a surface muon channel with a modest-acceptance (about 50 mSr), mainly for experiments related to material sciences, and a super-omega muon channel with a large acceptance of 400 mSr. In the case of the super-omega muon channel, the goal is to extract 4×108 surface muons/s for the generation of ultra-slow muons and 1×107 negative cloud muons/s with a momentum of 30-60 MeV/ c. One of the important goals for this beamline is to generate intense ultra-slow muons at MUSE, utilizing an intense pulsed VUV laser system. 104-106 ultra-slow muons/s are expected, which will allow for an extension of μSR into the area of thin film and surface science. At this symposium, the current status of J-PARC MUSE will be reported.
NASA/Ames Research Center's science and applications aircraft program
NASA Technical Reports Server (NTRS)
Hall, G. Warren
1991-01-01
NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.
Lunar exploration and the advancement of biomedical research: a physiologist's view.
Piantadosi, Claude A
2006-10-01
Over the next few years, it will become apparent just how important lunar exploration is to biomedical research and vice versa, and how critical both are to the future of human spaceflight. NASA's Project Constellation should put a new lunar-capable vehicle into service by 2014 that will rely on proven Space Shuttle components and allow four astronauts to spend 7 d on the lunar surface. A modern space transportation system opens up a unique opportunity in the space sciences--the establishment of a permanent lunar laboratory for the physical and life sciences. This commentary presents a rationale for focusing American efforts in space on such a Moon base in order to promote understanding of the long-term physiological effects of living on a planetary body outside the Van Allen belts.
Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation
2016-05-01
identifying and mapping flaw size distributions on glass surfaces for predicting mechanical response. International Journal of Applied Glass ...ARL-TN-0756 ● MAY 2016 US Army Research Laboratory Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation...Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation by Clayton M Weiss Oak Ridge Institute for Science and Education
Nonlinear Dynamics of Electroelastic Dielectric Elastomers
2018-01-30
research will significantly advance the basic science and fundamental understanding of how rate- dependent material response couples to large, nonlinear...experimental studies of constrained dielectric elastomer films, a transition in the surface instability mechanism depending on the elastocapillary number...fundamental understanding of how rate- dependent material response couples to large, nonlinear material deformation under applied electrostatic loading to
Applications of spatially offset Raman spectroscopy to defense and security
NASA Astrophysics Data System (ADS)
Guicheteau, Jason; Hopkins, Rebecca
2016-05-01
Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.
Hands-On Data Analysis: Using 3D Printing to Visualize Reaction Progress Surfaces
ERIC Educational Resources Information Center
Higman, Carolyn S.; Situ, Henry; Blacklin, Peter; Hein, Jason E.
2017-01-01
Advances in 3D printing technology over the past decade have led to its expansion into all subfields of science, including chemistry. This technology provides useful teaching tools that facilitate communication of difficult chemical concepts to students and researchers. Presented here is the use of 3D printing technology to create tangible models…
Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array
NASA Astrophysics Data System (ADS)
Xun, Meng; Sun, Yun; Xu, Chen; Xie, Yi-Yang; Jin, Zhi; Zhou, Jing-Tao; Liu, Xin-Yu; Wu, De-Xin
2018-03-01
Not Available Supported by the ‘Supporting First Action’ Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001, the National Natural Science Foundation of China under Grant No 61434006, and the National Key Basic Research Program of China under Grant No 2017YFB0102302.
A New Use for New Journalism: Humanizing the Case Report.
ERIC Educational Resources Information Center
Zeller, Nancy
It is argued that expressive writing strategies, particularly those used by New Journalists, may eventually serve as models for case reporting in social science research. New Journalism refers to a movement begun in the 1960's that strives to reveal the story hidden beneath surface facts. It involves the use of fictive techniques applied to the…
My Martian Moment - Episode 02 - Chris McKay and Perchlorates
2015-10-06
NASA Ames' Chris McKay is a planetary scientist, whose research includes planetary atmospheres and on the origins and evolution of life in the Solar System and the Universe. His work also includes planning the next generation of science instruments needed to better understand the chemicals and composition of the dirt on the surface of Mars.
CAN-DOO: The Climate Action Network through Direct Observations and Outreach
NASA Astrophysics Data System (ADS)
Taubman, B.; Sherman, J. P.; Perry, L. B.; Markham, J.; Kelly, G.
2011-12-01
The urgency of climate change demands a greater understanding of our climate system, not only by the leaders of today, but by the scientists, policy makers, and citizens of tomorrow. Unfortunately, a large segment of the population currently possesses inadequate knowledge of climate science. In direct response to a need for greater scientific literacy with respect to climate science, researchers from Appalachian State University's Appalachian Atmospheric Interdisciplinary Research (AppalAIR) group, with support from NASA, have developed CAN-DOO: the Climate Action Network through Direct Observations and Outreach. CAN-DOO addresses climate science literacy by 1) Developing the infrastructure for sustaining and expanding public outreach through long-term climate measurements capable of complementing existing NASA measurements, 2) Enhancing public awareness of climate science and NASA's role in advancing our understanding of the Earth System, and 3) Introducing Science, Technology, Engineering, and Mathematics principles to homeschooled, public school, and Appalachian State University students through applied climate science activities. Project partners include the Grandfather Mountain Stewardship Foundation, Pisgah Astronomical Research Institute, and local elementary schools. In partnership with Grandfather Mountain, climate science awareness is promoted through citizen science activities, interactive public displays, and staff training. CAN-DOO engages students by involving them in the entire scientific investigative process as applied to climate science. We introduce local elementary and middle school students, homeschooled students throughout North Carolina, and undergraduate students in a new Global Climate Change course and select other courses at Appalachian State University to instrument assembly, measurement techniques, data collection, hypothesis testing, and drawing conclusions. Results are placed in the proper context via comparisons with other student data products, local research-grade measurements, and NASA measurements. Several educational modules have been developed that address specific topics in climate science. The modules are scalable and have been successfully implemented at levels ranging from 2nd grade through first-year graduate as well as with citizen science groups. They also can be applied in user-desired segments to a variety of Earth Science units. In this paper, we will introduce the project activities and present results from the first year of observations and outreach, with a special emphasis on two of the developed modules, the surface energy balance and aerosol optical depth module.
Earth Survey Applications Division. [a bibliography
NASA Technical Reports Server (NTRS)
Carpenter, L. (Editor)
1981-01-01
Accomplishments of research and data analysis conducted to study physical parameters and processes inside the Earth and on the Earth's surface, to define techniques and systems for remotely sensing the processes and measuring the parameters of scientific and applications interest, and the transfer of promising operational applications techniques to the user community of Earth resources monitors, managers, and decision makers are described. Research areas covered include: geobotany, magnetic field modeling, crustal studies, crustal dynamics, sea surface topography, land resources, remote sensing of vegetation and soils, and hydrological sciences. Major accomplishments include: production of global maps of magnetic anomalies using Magsat data; computation of the global mean sea surface using GEOS-3 and Seasat altimetry data; delineation of the effects of topography on the interpretation of remotely-sensed data; application of snowmelt runoff models to water resources management; and mapping of snow depth over wheat growing areas using Nimbus microwave data.
NASA Astrophysics Data System (ADS)
2017-10-01
Preface Dear ladies and gentlemen, On 6th and 7th of April 2017 took place the “International Materials Research Meeting in the Greater Region” at the Saarland University, Saarbrücken, Germany. This meeting corresponded to the 9th EEIGM International Conference on Advanced Materials Research and it was intended as a meeting place for researchers of the Greater Region as well as their partners of the different cooperation activities, like the EEIGM program, the ‘Erasmus Mundus’ Advanced Materials Science and Engineering Master program (AMASE), the ‘Erasmus Mundus’ Doctoral Program in Materials Science and Engineering (DocMASE) and the CREATe-Network. On this meeting, 72 participants from 15 countries and 24 institutions discussed and exchanged ideas on the latest trends in the characterization of materials and surface modifications. Different aspects of the material research of metals, ceramics, polymers and biomaterials were presented. As a conclusion of the meeting, the new astronaut of the European Space Agency Dr. Matthias Maurer, who is an alumni of the Saarland University and the EEIGM, held an exciting presentation about his activities. Following the publication of selected papers of the 2009 meeting in Volume 5 and 2012 meeting in Volume 31 of this journal, it is a great pleasure to present this selection of 9 articles to the readers of the IOP Conference Series: Materials Science and Engineering. The editors are thankful to all of the reviewers for reviewing the papers. Special praise is also given to the sponsors of the conference: European Commission within the program Erasmus Mundus (AMASE and DocMASE), Erasmus+ (AMASE), and Horizon2020 (CREATe-Network, Grant agreement No 644013): the DAAD (Alumni Program), and the German-French University (PhD-Track). List of Author signatures, Conference topics, Organization, Conference impressions and list of the participants are available in this PDF.
The Sensor Management for Applied Research Technologies (SMART) Project
NASA Technical Reports Server (NTRS)
Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil;
2007-01-01
NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.
Perspectives of hyperpolarized noble gas MRI beyond 3He
Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas
2013-01-01
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)
2012-01-01
Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.
1984-12-13
Center for Surface and Coatings Research4 LAJ Lehigh University Bethlehem, PA 18015 December 13, 1984 ’rhi do’.1~’ o~ e~ pptC" dltiution is Unlxne... coating on a metal; (c) chemical modification of the surface of a metal; (d) the detection of I water in a coating ; and (e) the transport of species...Svetozar MusiC!, and J. F. McIntyre, Corrosion Science 24, 197-208 (1984). "Corrosion and Coating Delamination Properties of Steel Ion- Implanted with
Surface physics-materials science research possibilities on a lunar base
NASA Astrophysics Data System (ADS)
Ignatiev, A.
1990-03-01
The benefits of experimental investigations are discussed in terms of the vacuum environment and low-gravity conditions which can be made possible by a lunar base. The proposed experiments address the interaction of UV and cosmic radiation with the atomic surfaces and bulk properties of materials, the study of microclusters, and the development of epitaxial films in a lunar environment. The interaction of low- and high-energy charged particles and radiation with materials can potentially be studied to analyze the use of the materials in space.
Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula
2012-01-01
AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.
Polar Research with Unmanned Aircraft and Tethered Balloons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivey, M; Petty, R; Desilets, D
2014-01-24
The Arctic is experiencing rapid climate change, with nearly double the rate of surface warming observed elsewhere on the planet. While various positive feedback mechanisms have been suggested, the reasons for Arctic amplification are not well understood, nor are the impacts to the global carbon cycle well quantified. Additionally, there are uncertainties associated with the complex interactions between Earth’s surface and the atmosphere. Elucidating the causes and consequences of Arctic warming is one of the many goals of the Climate and Environmental Sciences Division (CESD) of the U.S. Department of Energy’s (DOE) Biological and Environmental Research (BER) program, and ismore » part of the larger CESD initiative to develop a robust predictive understanding of Earth’s climate system.« less
Experiential learning in soil science: Use of an augmented reality sandbox
NASA Astrophysics Data System (ADS)
Vaughan, Karen; Vaughan, Robert; Seeley, Janel; Brevik, Eric
2017-04-01
It is known widely that greater learning occurs when students are active participants. Novel technologies allow instructors the opportunity to create interactive activities for undergraduate students to gain comprehension of complex landscape processes. We incorporated the use of an Augmented Reality (AR) Sandbox in the Introductory Soil Science course at the University of Wyoming to facilitate an experiential learning experience in pedology. The AR Sandbox was developed by researchers at the University of California, Davis as part of a project on informal science education in freshwater lakes and watershed science. It is a hands-on display that allows users to create topography models by shaping sand that is augmented in real-time by a colored elevation maps, topographic contour lines, and simulated water. It uses a 3-dimensional motion sensing camera that detects changes to the distance between the sand surface and the camera sensor. A short-throw projector then displays the elevation model and contour lines in real-time. Undergraduate students enrolled in the Introductory Soil Science course were tasked with creating a virtual landscape and then predicting where particular soils would form on the various landforms. All participants reported a greater comprehension of surface water flow, erosion, and soil formation as a result of this exercise. They provided suggestions for future activities using the AR Sandbox including its incorporation into lessons of watershed hydrology, land management, soil water, and soil genesis.
A Surface Science Perspective on TiO2 Photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2011-06-15
The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.
Coal and Open-pit surface mining impacts on American Lands (COAL)
NASA Astrophysics Data System (ADS)
Brown, T. A.; McGibbney, L. J.
2017-12-01
Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research.This work documents the original design and development of COAL and provides insight into continuing research efforts which have potential applications beyond the project to environmental data science and other fields.
Agnes Pockels: Life, Letters and Papers
NASA Astrophysics Data System (ADS)
Helm, Christiane A.
2004-03-01
Agnes Pockels (1862 - 1935) was a German woman, whose studies pioneered surface science. She was born in malaria infected North Italy while her father served in the Austrian army. Because he suffered adverse health effects, the family moved in1871 to Braunschweig (North Germany). There, Pockels went to high school. She was interested in science, but formal training was not available for girls. She took on the role of household manager and nurse as her parents' health deteriorated further. Her diary illustrates the difficulties she faced in trying to maintain her own health, the health of her parents and her scientific research at the same time. When Pockels was 18 or 19, she designed a ring tensiometer. Additionally, she found a new method to introduce water-insoluble compounds to the water surface by dissolving them in an organic solvent, and applying drops of the solution. Her surface film balance technique from 1882 is the basis for the method later developed by Langmuir. Since her experimental work was highly original and in a new field, she failed to get it recognized in her own country. When she was 28, she wrote to Lord Rayleigh, since she had read about his recent experiments in surface physics. Rayleigh was so impressed with her experimental methods and results that he had her letter translated from German and published it in Nature (1891). She continued her research on surface films, interactions of solutions and contact angles (more papers, 3 in Nature). Still, she did all experiments at home. With the death of her brother in 1913 and the onset of the war, she retired into private life. Thus she was surprised when she was awarded in her late 60ies with a honorary doctorate by the TU Braunschweig (1932) and the annual prize of the German Colloid Society (1931).
Researches on tungsten carbide
NASA Astrophysics Data System (ADS)
1994-11-01
This paper summarizes results of the researches on tungsten carbide (WC), carried out in the 5-year period starting 1989 by the Science and Technology Agency's National Institute for Researches in Inorganic Materials. The high-frequency heating, floating zone technique, generally suited for growth of large-size, single crystals of high melting materials, is inapplicable to the hexagonal WC system, which is decomposed. This problem has been solved by adding boron to the system, to allow it to exist with the W-C-B melt at an equilibrium. The computer-aided control techniques have enabled automatic growth of the single crystals of carbides and borides. The de Haas-Van Alphen effect of the single WC crystals has been observed, to establish the Fermi surface model. The single crystals of transition metal carbides, such as WC, have been coated with the monolayer of graphite at high repeatability, to create the surface layer materials. An attempt has been done to produce the halite type structure by substituting Ti as the atom in the outermost layer of TiC by W. The new method, based on the low-speed deuterium ion scattering, has been developed to analyze the surface bonding conditions, clarifying the conditions of alkalis adsorbed on and bonded to metallic surfaces, and their surface reactivities.
Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science
2017-01-01
This article is mainly about borders that have tremendous influence on our daily life, although many of them exist and act mostly unrecognized. In this article the first objective will be to address more generally the relation between university and society or industry, borders within universities, borders in thinking and the huge amount of misunderstandings and losses resulting from these obvious or hidden borders. In the second part and in more detail, the article will highlight the impact of the research conducted by Wilhelm Barthlott throughout his scientific career during which not only one border was removed, shifted or became more penetrable. Among the various fields of interest not mentioned here (e.g., systematics of Cactaceae, diversity and evolution of epiphytes, the unique natural history of isolated rocky outcrops called inselbergs, or the global distribution of biodiversity), plant surfaces and especially the tremendous diversity of minute structures on leaves, fruits, seeds and other parts of plants represent a common thread through 40 years of scientific career of Wilhelm Barthlott. Based on research that was regarded already old-fashioned in the 1970s and 1980s, systematic botany, results and knowledge were accumulated that, some 20 years later, initiated a fundamental turnover in how surfaces were recognized not only in biology, but even more evident in materials science. PMID:28326228
NASA's Student Airborne Research Program (2009-2013)
NASA Astrophysics Data System (ADS)
Schaller, E. L.; Shetter, R. E.
2013-12-01
The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.
Advanced and applied remote sensing of environmental conditions
Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.
2013-01-01
"Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.
Spectroscopic Visualization of Inversion and Time-Reversal Symmetry Breaking Weyl Semi-metals
NASA Astrophysics Data System (ADS)
Beidenkopf, Haim
A defining property of a topological material is the existence of surface bands that cannot be realized but as the termination of a topological bulk. In a Weyl semi-metal these surface states are in the form of Fermi-arcs. Their open-contour Fermi-surface curves between pairs of surface projections of bulk Weyl cones. Such Dirac-like bulk bands, as opposed to the gapped bulk of topological insulators, land a unique opportunity to examine the deep notion of bulk to surface correspondence. We study the intricate properties both of inversion symmetry broken and of time-reversal symmetry broken Weyl semimetals using scanning tunneling spectroscopy. We visualize the Fermi arc states on the surface of the non-centrosymmetric Weyl semi-metal TaAs. Using the distinct structure and spatial distribution of the wavefunctions associated with the different topological and trivial bands we detect the scattering processes that involve Fermi arcs. Each of these imaged scattering processes entails information on the unique nature of Fermi arcs and their correspondence to the topological bulk. We further visualize the magnetic response of the candidate magnetic Weyl semimetal GdPtBi in which the magnetic order parameter is coupled to the topological classification. European Research Council (ERC-StG no. 678702, TOPO-NW\\x9D), the Israel Science Foundation (ISF), and the United States-Israel Binational Science Foundation (BSF).
Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study
NASA Astrophysics Data System (ADS)
Xiao-Jun, Zhang; Chang-Le, Chen
2016-01-01
Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions , and X¯M¯ are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X¯ and M¯ by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301 and 61078057), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1301), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).
A study on the distribution of adsorbed nanoparticles
NASA Astrophysics Data System (ADS)
Li, Ding
2008-02-01
We use Monte Carlo simulation to calculate the distributions of particles under adsorption force near planar and cylindrical surfaces, respectively. Both hard sphere interaction and repulsive Yukawa (screened coulomb) interaction are employed in our simulations. We study the influence of the inter-particle potentials. The difference between the MC simulation results and the analytical results of ideal gas model shows that the interaction between particles plays an important role in the density distribution under external fields. Moreover, the 2-dimensional constructions of particles close to the surface are studied and show relations of the interaction between particles. These results may indicate us how to improve the methods of building nanoparticle coatings and nano-scale patterns. Supported by 100 Persons Project of Chinese Academy of Sciences, National Natural Science Foundation of China (10474109, 10674146) and Major State Research Development Programme of China (2006CB933000, 2006CB708612)
NASA Astrophysics Data System (ADS)
Berczi, Sz.; Hargitai, H.; Horvath, A.; Illes, E.; Kereszturi, A.; Mortl, M.; Sik, A.; Weidinger, T.; Hegyi, S.; Hudoba, Gy.
Planetary science education needs new forms of teaching. Our group have various initiatives of which a new atlas series about the studies of the Solar System materials, planetary surfaces and atmospheres, instrumental field works with robots (landers, rovers) and other beautiful field work analog studies. Such analog studies are both used in comparative planetology as scientific method and it also plays a key role in planetary science education. With such initiatives the whole system of the knowledge of terrestrial geology can be transformed to the conditions of other planetary worlds. We prepared both courses and their textbooks in Eötvös University in space science education and edited the following educational materials worked out by the members of our space science education and research group: (1): Planetary and Material Maps on: Lunar Rocks, Meteorites (2000); (2): Investigating Planetary Surfaces with the Experimental Space Probe Hunveyor Constructed on the Basis of Surveyor (2001); (3): Atlas of Planetary Bodies (2001); (4): Atlas of Planetary Atmospheres (2002); (5): Space Research and Geometry (2002); (6): Atlas of Micro Environments of Planetary Surfaces (2003); (7): Atlas of Rovers and Activities on Planetary Surfaces (2004); (8): Space Research and Chemistry (2005); (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (2005); References: [1] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köll˝ Z., Roskó F., Balogh Zs., Koris A., o 1 Imrek Gy. (Bérczi Sz., Kabai S. Eds.) (2002): Concise Atlas of the Solar System (2): From Surveyor to Hunveyor. How we constructed an experimental educational planetary lander model. UNICONSTANT. Budapest-Pécs-Szombathely-Püspökladány. [2] Bérczi Sz., Hargitai H., Illés E., Kereszturi Á., Sik A., Földi T., Hegyi S., Kovács Zs., Mörtl M., Weidinger T. (2004): Concise Atlas of the Solar System (6): Atlas of Microenvironments of Planetary surfaces. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány; [3] Szaniszló Bérczi, Henrik Hargitai, Ákos Kereszturi, András Sik (2005): Concise Atlas on the Solar System (3): Atlas of Planetary Bodies. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport. Budapest, [4] Szaniszló Bérczi, Tivadar Földi, Péter Gadányi, Arnold Gucsik, Henrik Hargitai, Sándor Hegyi, György Hudoba, Sándor Józsa, Ákos Kereszturi, János Rakonczai, András Sik, György Szakmány, Kálmán Török (2005): Concise Atlas on the Solar System (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (Szaniszló Bérczi, editor) ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány. 2
Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H
2013-09-01
Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Dalbotten, D. M.; Pellerin, H.; Steiner, M.
2004-12-01
The National Center for Earth-surface Dynamics, an NSF-sponsored Science and Technology Center, through a partnership between the University of Minnesota, the Science Museum of Minnesota, and the Fond du Lac Tribal and Community College, has created gidakiimanaaniwigamig (Seek to Know), where students in middle and high school participate in hands-on research projects on topics in environmental science through a series of four yearly seasonal camps combined with field trips and after school programming. Through meetings with Native elders, community leaders and educators, we know that the major issues that must be addressed are student retention, gaps in programming that allow students who have been performing successfully in math and science to drift away from their interest in pursuing STEM careers, and concern about moving away from the community to pursue higher education. After-school and summer programs are an effective means of creating interest in STEM careers, but single-contact programs don't have the long-term impact that will create a bridge from grade school to college and beyond. Often children who have learned to love science in grade school gradually move away from this interest as they enter middle and high school. While a single intervention offered by a science camp or visit to a laboratory can be life-altering, once the student is back in their everyday life they may forget that excitement and get sidetracked from the educational goals they formed based on this single experience. We want to build on the epiphany (science is fun!) with continued interaction that allows the students to grow in their ability to understand and enjoy science. In order to foster STEM careers for underrepresented youths we need to create a sustained, long-term, program that takes youths through programs that stimulate that initial excitement and gradually become more intensive and research-oriented as the youths get older. NCED's approach to these challenges is to bring youths into a long-lasting program with repeat contacts; to involve community leaders they trust, such as elders, parents, and teachers; to make connections to traditional Native culture; to provide high-quality hands-on science and involve scientists working on NCED research; and to keep it fun!
Universities Earth System Scientists Program
NASA Technical Reports Server (NTRS)
Estes, John E.
1995-01-01
This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.
Interactions between groundwater and surface water: The state of the science
Sophocleous, M.
2002-01-01
The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facting this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW-SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.
Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.
Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P
2017-09-13
The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.
Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist?
Peng, Hong; Birkett, Greg R; Nguyen, Anh V
2015-08-01
Interfaces between aqueous solutions and hydrophobic solid surfaces are important in various areas of science and technology. Many researchers have found that forces between hydrophobic surfaces in aqueous solution are significantly different from the classical DLVO theory. Long-range attractive forces (non-DLVO forces) are thought to be affected by nanoscopic gaseous domains at the interfaces. This is a review of the latest research on nanobubbles at hydrophobic surfaces from experimental and simulation studies. The review focusses on non-intrusive optical view of surface nanobubbles and gas enrichment on solid surfaces by imaging and force mapping. By use of these recent experimental data in conjunction with molecular simulation work, all major theories on surface nanobubble formation and stability are critically reviewed. Even though the current body of research cannot comprehensively explain all properties of surface nanobubbles observed, the fundamental understanding has been significantly improved. Line tension has been shown to be incapable of explaining the contact angle of nanobubbles. Dense gas layer theory provides a new explanation on both large contact angle and long-time stability. The high density of gas in these domains may significantly affect the gas-water interface which is in line with some observation made on bulk nanobubbles. Along this line of inquiry, experimental and simulation effort should be focussed on measuring the density within surface nanobubbles and the properties of the gas water interface which may be the key to explaining the stability of these nanobubbles. Copyright © 2014 Elsevier B.V. All rights reserved.
Adhesion, friction, wear, and lubrication research by modern surface science techniques.
NASA Technical Reports Server (NTRS)
Keller, D. V., Jr.
1972-01-01
The field of surface science has undergone intense revitalization with the introduction of low-energy electron diffraction, Auger electron spectroscopy, ellipsometry, and other surface analytical techniques which have been sophisticated within the last decade. These developments have permitted submono- and monolayer structure analysis as well as chemical identification and quantitative analysis. The application of a number of these techniques to the solution of problems in the fields of friction, lubrication, and wear are examined in detail for the particular case of iron; and in general to illustrate how the accumulation of pure data will contribute toward the establishment of physiochemical concepts which are required to understand the mechanisms that are operational in friction systems. In the case of iron, LEED, Auger and microcontact studies have established that hydrogen and light-saturated organic vapors do not establish interfaces which prevent iron from welding, whereas oxygen and some oxygen and sulfur compounds do reduce welding as well as the coefficient of friction. Interpretation of these data suggests a mechanism of sulfur interaction in lubricating systems.
Preparation of MgO/B₂O₃ coatings by plasma spraying on SUS304 surface and effects of heat-resistant.
Song, Bo; Zhou, Ningning; Ju, Dongying
2013-12-01
This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Teaching and Research with Accelerators at Tarleton State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marble, Daniel K.
2009-03-10
Tarleton State University students began performing both research and laboratory experiments using accelerators in 1998 through visitation programs at the University of North Texas, US Army Research Laboratory, and the Naval Surface Warfare Center at Carderock. In 2003, Tarleton outfitted its new science building with a 1 MV pelletron that was donated by the California Institution of Technology. The accelerator has been upgraded and supports a wide range of classes for both the Physics program and the ABET accredited Engineering Physics program as well as supplying undergraduate research opportunities on campus. A discussion of various laboratory activities and research projectsmore » performed by Tarleton students will be presented.« less
Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd
2005-01-01
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.
Design of measurement system of 3D surface profile based on chromatic confocal technology
NASA Astrophysics Data System (ADS)
Wang, An-su; Xie, Bin; Liu, Zi-wei
2018-01-01
Chromatic confocal 3D profilometer has widely used in science investigation and industry fields recently for its high precision, great measuring range and numerical surface characteristic. It can provide exact and omnidirectional solution for manufacture and research by 3D non-contact surface analysis technique. The article analyzes the principle of surface measurement with chromatic confocal technology, and provides the designing indicators and requirements of the confocal system. As the key component, the dispersive objective used to achieve longitudinal focus vibration with wavelength was designed. The objective disperses the focus of wavelength between 400 700 nm to 15 mm longitudinal range. With selected spectrometer, the resolution of chromatic confocal 3D profilometer is no more than 5 μm, which can meet needs for the high precision non-contact surface profile measurement.
NASA Technical Reports Server (NTRS)
Lucero, John M.
2003-01-01
A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.
Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Di; Hua, Xin; Xiu, Guang-Li
Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization of PM is important since the chemical heterogeneity between the surface and bulk may vary its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, capable of high spatial chemical imaging and depth profiling. Recent research shows that SIMS holds great potential in analyzing both surface and bulk chemical information of PM. In this review, we presented the working principal of SIMS in PMmore » characterization, summarized recent applications in PM analysis from different sources, discussed its advantages and limitations, and proposed the future development of this technique with a perspective in environmental sciences.« less
ATLAS-3 correlative measurement opportunities with UARS and surface observations
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.
1995-01-01
The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.
NASA Technical Reports Server (NTRS)
Moore, Robert C.
1998-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities that serves as a bridge between NASA and the academic community. Under a five-year co-operative agreement with NASA, research at RIACS is focused on areas that are strategically enabling to the Ames Research Center's role as NASA's Center of Excellence for Information Technology. The primary mission of RIACS is charted to carry out research and development in computer science. This work is devoted in the main to tasks that are strategically enabling with respect to NASA's bold mission in space exploration and aeronautics. There are three foci for this work: (1) Automated Reasoning. (2) Human-Centered Computing. and (3) High Performance Computing and Networking. RIACS has the additional goal of broadening the base of researcher in these areas of importance to the nation's space and aeronautics enterprises. Through its visiting scientist program, RIACS facilitates the participation of university-based researchers, including both faculty and students, in the research activities of NASA and RIACS. RIACS researchers work in close collaboration with NASA computer scientists on projects such as the Remote Agent Experiment on Deep Space One mission, and Super-Resolution Surface Modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomenamore » in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.« less
Reaction: Chemistry Driven by the Harsh Space Environment
NASA Technical Reports Server (NTRS)
Farrell, William M.
2018-01-01
The studies by Solar System Exploration Research Virtual Institute (SSERVI) teams such as REVEALS and DREAM2 not only connect back to the highest planetary science decadal goals regarding volatiles but also feed forward to understanding the chemical origins of potential resources at the surface useful for human exploration. See https://sservi.nasa.gov for more about SSERVI and its dynamic teams.
Quantum Information Science Research and Technical Assessment Project
2010-08-01
parameter space. This system incorporates heaters, deposition monitors, temperature sensors , and adjustable substrate holders and masks under high...thickness monitor; G = glass surfaces for transmission measurements; PD = photodiode; TC = thermocouple temperature sensors . Substrate Preparation...crystal due to the mass of material deposited on the crystal. By adjusting the distance of the sensor relative to the source and employing the ~1/R2
Examining Learning Approaches of Science Student Teachers According to the Class Level and Gender
ERIC Educational Resources Information Center
Tural Dincer, Guner; Akdeniz, Ali Riza
2008-01-01
There are many factors influence the level of students' achievement in education. Studies show that one of these factors is "learning approach of a student". Research findings generally have identified two approaches of learning: deep and surface. When a student uses the deep approach, he/she has an intrinsic interest in subject matter and is…
Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission
NASA Astrophysics Data System (ADS)
Lee, G.; Sen, B.; Ross, F.; Sokol, D.
2016-12-01
Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.
NASA Astrophysics Data System (ADS)
Groemer, Gernot; Losiak, Anna; Soucek, Alexander; Plank, Clemens; Zanardini, Laura; Sejkora, Nina; Sams, Sebastian
2016-12-01
We report on the AMADEE-15 mission, a 12-day Mars analog field test at the Kaunertal Glacier in Austria. Eleven experiments were conducted by a field crew at the test site under simulated martian surface exploration conditions and coordinated by a Mission Support Center in Innsbruck, Austria. The experiments' research fields encompassed geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. A Remote Science Support team analyzed field data in near real time, providing planning input for a flight control team to manage a complex system of field assets in a realistic work flow, including: two advanced space suit simulators; and four robotic and aerial vehicles. Field operations were supported by a dedicated flight planning group, an external control center tele-operating the PULI-rover, and a medical team. A 10-min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, with a focus on the mission's communication infrastructure. We report on the operational workflows and the experiments conducted, as well as a novel approach of measuring mission success through the introduction of general analog mission transferrable performance indicators.
NASA Astrophysics Data System (ADS)
Taylor, G. J.; Martel, L. M. V.
2018-04-01
Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.
The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2002-05-01
Water is perhaps the most important and most pervasive chemical on our planet. The influence of water permeates virtually all areas of biochemical, chemical and physical importance, and is especially evident in phenomena occurring at the interfaces of solid surfaces. Since 1987, when Thiel and Madey (TM) published their review titled "The Interaction of Water with Solid Surfaces: Fundamental Aspects" in Surface Science Reports, there has been considerable progress made in further understanding the fundamental interactions of water with solid surfaces. In the decade and a half, the increased capability of surface scientists to probe at the molecular-level has resultedmore » in more detailed information of the properties of water on progressively more complicated materials and under more stringent conditions. This progress in understanding the properties of water on solid surfaces is evident both in areas for which surface science methodology has traditionally been strong (catalysis and electronic materials) and also in new areas not traditionally studied by surface scientists, such as electrochemistry, photoconversion, mineralogy, adhesion, sensors, atmospheric chemistry, and tribology. Researchers in all these fields grapple with very basic questions regarding the interactions of water with solid surfaces, such as how is water adsorbed, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated, and how do coadsorbates influence these properties of water. The attention paid to these and other fundamental questions in the past decade and a half has been immense. In this review, experimental studies published since the TM review are assimilated with those covered by TM to provide a current picture of the fundamental interactions of water with solid surfaces.« less
Mars Environmental Survey (MESUR): Science objectives and mission description
NASA Technical Reports Server (NTRS)
Hubbard, G. Scott; Wercinski, Paul F.; Sarver, George L.; Hanel, Robert P.; Ramos, Ruben
1992-01-01
In-situ observations and measurements of Mars are objectives of a feasibility study beginning at the Ames Research Center for a mission called the Mars Environmental SURvey (MESUR). The purpose of the MESUR mission is to emplace a pole-to-pole global distribution of landers on the Martian surface to make both short- and long-term observations of the atmosphere and surface. The basic concept is to deploy probes which would directly enter the Mars atmosphere, provide measurements of the upper atmospheric structure, image the local terrain before landing, and survive landing to perform meteorology, seismology, surface imaging, and soil chemistry measurements. MESUR is intended to be a relatively low-cost mission to advance both Mars science and human presence objectives. Mission philosophy is to: (1) 'grow' a network over a period of years using a series of launch opportunities, thereby minimizing the peak annual costs; (2) develop a level-of-effort which is flexible and responsive to a broad set of objectives; (3) focus on science while providing a solid basis for human exploration; and (4) minimize project cost and complexity wherever possible. In order to meet the diverse scientific objectives, each MESUR lander will carry the following strawman instrument payload consisting of: (1) Atmospheric structure experiment, (2) Descent and surface imagers, (3) Meteorology package, (4) Elemental composition instrument, (5) 3-axis seismometer, and (6) Thermal analyzer/evolved gas analyzer. The feasibility study is primarily to show a practical way to design an early capability for characterizing Mars' surface and atmospheric environment on a global scale. The goals are to answer some of the most urgent questions to advance significantly our scientific knowledge about Mars, and for planning eventual exploration of the planet by robots and humans.
NSF Lower Atmospheric Observing Facilities (LAOF) in support of science and education
NASA Astrophysics Data System (ADS)
Baeuerle, B.; Rockwell, A.
2012-12-01
Researchers, students and teachers who want to understand and describe the Earth System require high quality observations of the atmosphere, ocean, and biosphere. Making these observations requires state-of-the-art instruments and systems, often carried on highly capable research platforms. To support this need of the geosciences community, the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences (AGS) provides multi-user national facilities through its Lower Atmospheric Observing Facilities (LAOF) Program at no cost to the investigator. These facilities, which include research aircraft, radars, lidars, and surface and sounding systems, receive NSF financial support and are eligible for deployment funding. The facilities are managed and operated by five LAOF partner organizations: the National Center for Atmospheric Research (NCAR); Colorado State University (CSU); the University of Wyoming (UWY); the Center for Severe Weather Research (CSWR); and the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). These observational facilities are available on a competitive basis to all qualified researchers from US universities, requiring the platforms and associated services to carry out various research objectives. The deployment of all facilities is driven by scientific merit, capabilities of a specific facility to carry out the proposed observations, and scheduling for the requested time. The process for considering requests and setting priorities is determined on the basis of the complexity of a field campaign. The poster will describe available observing facilities and associated services, and explain the request process researchers have to follow to secure access to these platforms for scientific as well as educational deployments. NSF/NCAR GV Aircraft
NASA Astrophysics Data System (ADS)
Twelve small businesses who are developing equipment and computer programs for geophysics have won Small Business Innovative Research (SBIR) grants from the National Science Foundation for their 1989 proposals. The SBIR program was set up to encourage the private sector to undertake costly, advanced experimental work that has potential for great benefit.The geophysical research projects are a long-path intracavity laser spectrometer for measuring atmospheric trace gases, optimizing a local weather forecast model, a new platform for high-altitude atmospheric science, an advanced density logging tool, a deep-Earth sampling system, superconducting seismometers, a phased-array Doppler current profiler, monitoring mesoscale surface features of the ocean through automated analysis, krypton-81 dating in polar ice samples, discrete stochastic modeling of thunderstorm winds, a layered soil-synthetic liner base system to isolate buildings from earthquakes, and a low-cost continuous on-line organic-content monitor for water-quality determination.
NASA Astrophysics Data System (ADS)
Ying, Wu; Jing, Wang; Yunfang, Huang; Yuelin, Wei; Zhixian, Sun; Xuanqing, Zheng; Chengkun, Zhang; Ningling, Zhou; Leqing, Fan; Jihuai, Wu
2016-08-01
Novel, three-dimensional, flower-like Bi2O3/BiVO4 heterojunction photocatalysts have been prepared by the combination of homogeneous precipitation and two-step solvothermal method followed by thermal solution of NaOH etching process. The as-obtained samples were fully characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Brunauer-Emmett-Teller surface area, and UV—vis diffuse-reflectance spectroscopy in detail. The crystallinity, microstructure, specific surface area, optical property and photocatalytic activity of samples greatly changed depending on solvothermal reaction time. The photocatalytic activities of samples were evaluated on the degradation of methyl orange (MO) under visible-light irradiation. The Bi2O3/BiVO4 exhibited much higher photocatalytic activities than pure BiVO4 and conventional TiO2 (P25). The result revealed that the three-dimensional heterojunction played a critical role in the separation of the electron and hole pairs and enhancement of the interfacial charge transfer efficiency, which was responsible for the enhanced photocatalytic activity. Project supported by the National Natural Science Foundation of China (Nos. 61306077, 21301060), the Fundamental Research Funds for the Central Universities (Nos. JB-ZR1109, JB-ZR1212), the National Science Foundation of Quanzhou City (No. 2014Z108), the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University (No. ZQN-PY207), Discipline Innovation Team Project of Huaqiao University (No. 201320), and the Instrumental Analysis Center Huaqiao University.
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Lofgren, G. E.; Bluethmann, W. J.; Bell, E. R.
2011-01-01
The National Aeronautics and Space Administration (NASA) is working with international partners to develop the space architectures and mission plans necessary for human spaceflight beyond earth orbit. These mission plans include the exploration of planetary surfaces with significant gravity fields. The Apollo missions to the Moon demonstrated conclusively that surface mobility is a key asset that improves the efficiency of human explorers on a planetary surface. NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series tests of hardware and operations carried out annually in the high desert of Arizona. Conducted since 1998, these activities are designed to exercise planetary surface hardware and operations in relatively harsh climatic conditions where long-distance, multi-day roving is achievable
Towards predictive models for transitionally rough surfaces
NASA Astrophysics Data System (ADS)
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
Manufactured Porous Ambient Surface Simulants
NASA Technical Reports Server (NTRS)
Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul
2016-01-01
The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).
Science Syllabus for Middle and Junior High Schools. Block D, The Earth's Changing Surface.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of General Education Curriculum Development.
This syllabus begins with a list of program objectives and performance criteria for the study of three general topic areas in earth science and a list of 22 science processes. Following this information is a listing of concepts and understandings for subtopics within the general topic areas: (1) the earth's surface--surface features, rock…
NASA Technical Reports Server (NTRS)
Guinn, Joseph R.; Kerridge, Stuart J.; Wilson, Roby S.
2012-01-01
Mars sample return is a major scientific goal of the 2011 US National Research Council Decadal Survey for Planetary Science. Toward achievement of this goal, recent architecture studies have focused on several mission concept options for the 2018/2020 Mars launch opportunities. Mars orbiters play multiple roles in these architectures such as: relay, landing site identification/selection/certification, collection of on-going or new measurements to fill knowledge gaps, and in-orbit collection and transportation of samples from Mars to Earth. This paper reviews orbiter concepts that combine these roles and describes a novel family of relay orbits optimized for surface operations support. Additionally, these roles provide an intersection of objectives for long term NASA science, human exploration, technology development and international collaboration.
NASA Astrophysics Data System (ADS)
Kleber, E.; Crosby, C. J.; Arrowsmith, R.; Robinson, S.; Haddad, D. E.
2013-12-01
The use of Light Detection and Ranging (lidar) derived topography has become an indispensable tool in Earth science research. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be represented at sub-meter resolution and in three dimensions. In addition to its high value for scientific research, lidar derived topography has tremendous potential as a tool for Earth science education. Recent science education initiatives and a community call for access to research-level data make the time ripe to expose lidar data and derived data products as a teaching tool. High resolution topographic data fosters several Disciplinary Core Ideas (DCIs) of the Next Generation Science Standards (NGS, 2013), presents respective Big Ideas of the new community-driven Earth Science Literacy Initiative (ESLI, 2009), teaches to a number National Science Education Standards (NSES, 1996), and Benchmarks for Science Literacy (AAAS, 1993) for science education for undergraduate physical and environmental earth science classes. The spatial context of lidar data complements concepts like visualization, place-based learning, inquiry based teaching and active learning essential to teaching in the geosciences. As official host to EarthScope lidar datasets for tectonically active areas in the western United States, the NSF-funded OpenTopography facility provides user-friendly access to a wealth of data that is easily incorporated into Earth science educational materials. OpenTopography (www.opentopography.org), in collaboration with EarthScope, has developed education and outreach activities to foster teacher, student and researcher utilization of lidar data. These educational resources use lidar data coupled with free tools such as Google Earth to provide a means for students and the interested public to visualize and explore Earth's surface in an interactive manner not possible with most other remotely sensed imagery. The education section of the OpenTopography portal has recently been strengthened with the addition of several new resources and the re-organization of existing content for easy discovery. New resources include a detailed frequently asked questions (FAQ) section, updated 'How-to' videos for downloading data from OpenTopography and additional webpages aimed at students, educators and researchers leveraging existing and updated resources from OpenTopography, EarthScope and other organizations. In addition, the OpenLandform catalog, an online collection of classic geologic landforms depicted in lidar, has been updated to include additional tectonic landforms from EarthScope lidar datasets.
NASA Technical Reports Server (NTRS)
Niiler, Peran P.
2004-01-01
The scientific objective of this research program was to utilize drifter, Jason-1 altimeter data and a variety of wind data for the determination of time mean and time variable wind driven surface currents of the global ocean. To accomplish this task has required the interpolation of 6-hourly winds on drifter tracks and the computation of the wind coherent motions of the drifters. These calculations showed that the Ekman current model proposed by Ralph and Niiler for the tropical Pacific was valid for all the oceans south of 40N latitude. Improvements to RN99 model were computed and poster presentations of the results were given in several ocean science venues, including the November 2004 GODAY meeting in St. Petersburg, FL.
A Surface Science Paradigm for a Post-Huygens Titan Mission
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne F.; Lunine, Jonathan; Lorenz, Ralph
2005-01-01
With the Cassini-Huygens atmospheric probe drop-off mission fast approaching, it is essential that scientists and engineers start scoping potential follow-on surface science missions. This paper provides a summary of the first year of a two year design study which examines in detail the desired surface science measurements and resolution, potential instrument suite, and complete payload delivery system. Also provided are design concepts for both an aerial inflatable mobility platform and deployable instrument sonde. The tethered deployable sonde provides the capability to sample near surface atmosphere, sub-surface liquid (if it exists), and surface solid material. Actual laboratory tests of the amphibious sonde prototype are also presented.
Managing Sustainable Data Infrastructures: The Gestalt of EOSDIS
NASA Astrophysics Data System (ADS)
Behnke, J.; Lindsay, F. E.; Lowe, D. R.; Mitchell, A. E.; Lynnes, C.
2016-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. The data collected by NASA's remote sensing instruments represent a significant public investment in research. EOSDIS provides free and open access to this data to a worldwide public research community. From the very beginning, EOSDIS was conceived as a system built on partnerships between NASA Centers, US agencies and academia. EOSDIS manages a wide range of Earth science discipline data that include cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, among many others. Over the years, EOSDIS has evolved to support increasingly complex and diverse NASA Earth Science data collections. EOSDIS epitomizes a System of Systems, whose many varied and distributed parts are integrated into a single, highly functional organized science data system. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple scientific instruments. The EOSDIS is composed of system elements such as geographically distributed archive centers used to manage the stewardship of data. The infrastructure consists of underlying capabilities/connections that enable the primary system elements to function together. For example, one key infrastructure component is the common metadata repository, which enables discovery of all data within the EOSDIS system. . EOSDIS employs processes and standards to ensure partners can work together effectively, and provide coherent services to users. While the separation into domain-specific science archives helps to manage the wide variety of missions and datasets, the common services and practices serve to knit the overall system together into a coherent whole, with sharing of data, metadata, information and software making EOSDIS more than the simple sum of its parts. This paper will describe those parts and how the whole system works together to deliver Earth science data to millions of users.
Human Mars Surface Science Operations
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.
2014-01-01
Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.
A Web-Based Polar Firn Model to Motivate Interest in Climate Change
NASA Astrophysics Data System (ADS)
Harris, P. D.; Lundin, J.; Stevens, C.; Leahy, W.; Waddington, E. D.
2013-12-01
How long would you have to dig straight down in Greenland before you reached solid ice? This is one of many questions that could be answered by a typical high school student using our online firn model. Firn is fallen snow that compacts under its own weight and eventually turns into glacial ice. The Herron and Langway (1980) firn model describes this process. An important component of predicting future climate change is researching past climate change. Some details of our past climate are discovered by analyzing polar ice and the firn process. Firn research can also be useful for understanding how changes in ice surface levels reflect changes in the ice mass. We have produced an online version of the Herron and Langway model that provides a simple way for students to learn how polar snow turns into ice. As a user, you can enter some climatic conditions (accumulation rate, temperature, and surface density) into our graphical user interface and press 'Submit'. We take the numbers you enter in your internet browser, send them to the model written in Python that is running on our server, and provide links to your results, all within seconds. The model produces firn depth, density, and age data. The results appear on the webpage in both text and graphical format. We have developed an example lesson plan appropriate for a high-school physics or environmental science class. The online model offers students an opportunity to apply their scientific knowledge in order to understand real-world physical processes. Additionally, students learn about scientific research and the tools scientists use to conduct it. The model can be used as a standalone lesson or as a part of a larger climate-science unit. The online model was created with funding from the Washington NASA Space Grant Consortium and the National Science Foundation's Partnerships for International Research and Education program.
2014-04-11
CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., James Mantovani of the NASA Surface Systems Office at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper
2014-04-11
CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., James Mantovani of the NASA Surface Systems Office at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper
SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists
NASA Astrophysics Data System (ADS)
Méndez, B. J. H.
2008-06-01
In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.
NASA Astrophysics Data System (ADS)
Kim, Y.; Wang, Z.
2017-12-01
The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).
Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet
NASA Astrophysics Data System (ADS)
Freilich, Michael
2017-04-01
Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.
Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet
NASA Astrophysics Data System (ADS)
Freilich, Michael
2016-04-01
Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.
Manned Mars Missions. Working group papers, volume 1, section 1-4
NASA Technical Reports Server (NTRS)
Duke, Michael B. (Editor); Keaton, Paul W. (Editor)
1986-01-01
The papers presented by the working group on Manned Mars Missions are given. The purpose is to update earlier Mars missions study data, to examine the impact of new and emerging technologies on Mars mission capabilities, and to identify technological issues that would be useful in projecting scientific and engineering research in the coming decades. The papers are grouped into nine sections, which are: (1) rationale; (2) transportation trades and issues; (3) mission and configuration concepts; (4) surface infrastructure; (5) science investigations and issues; (6) life science/medical issues; (7) subsystems and technology development requirements; (8) political and economic issues; and (9) impact on other programs.
NASA Astrophysics Data System (ADS)
Filippov, Lev
2013-03-01
Franco-Russian NAMES Seminars are held for the purpose of reviewing and discussing actual developments in the field of materials science by researchers from Russia and from the Lorraine Region of France. In more precise terms, as set down by the organizers of the seminar (the Moscow Institute of Steel and Alloys and the Institut National Polytechnique de Lorraine), the mission of the seminars is as follows: the development of scientific and academic contacts, giving a new impulse to joint fundamental research and technology transfer the development and consolidation of scientific, technical and business collaboration between the regions of Russia and Lorraine through direct contact between the universities, institutes and companies involved The first Seminar took place on 27-29 October 2004, at the Institut National Polytechnique de Lorraine (on the premises of the Ecole Européenne d'Ingénieurs en Génie des Matériaux, Nancy, France). The number, variety and quality of the oral presentations given and posters exhibited at the first Seminar were of high international standard. 30 oral presentations were given and 72 posters were presented by 19 participants from five universities and three institutes of the Russian Academy of Sciences participants from 11 laboratories of three universities from the Lorraine region three industrial companies, including the European Aeronautic Defence and Space Company—EADS, and ANVAR (Agence Nationale de Valorisation de la Recherche) From 2005 onwards, it was decided to organize the Seminar every other year. The second Seminar convened on the occasion of the 75th Anniversary of the Moscow Institute of Steel and Alloys on 10-12 November 2005 in Moscow, Russia. The seminar demonstrated the efficiency of the scientific partnership founded between the research groups of Russia and France during the first Seminar. High productivity of the Franco-Russian scientific cooperation on the basis of the Research-Educational Franco-Russian International Centre was demonstrated. By the high standards of the reports presented, as well as by its overall organization, the second Seminar met the standards of an international conference. Reviews of state-of-the-art developments in materials science were given by leading scientists from Moscow and from the Lorraine region. The three days of the seminar were structured into four main themes: Functional Materials Coatings, Films and Surface Engineering Nanomaterials and Nanotechnologies The Environment and three Round Table discussions: Defining practical means of carrying out Franco-Russian collaborations in technology transfer and innovation Materials science ARCUS: Lorraine-Russian collaboration in materials science and the environment 32 oral and 25 poster presentations within four sections were given by a total of 110 participants. NAMES 2007, the 3rd Franco-Russian Seminar on New Achievements in Materials and Environmental Sciences, took place in Metz, France on 7-9 November 2007. The conference highlights fundamentals and development of the five main themes connected to the Lorraine-Russia ARCUS project with possible extension to other topics. The five main subjects included in the ARCUS project are: Bulk-surface-interface material sciences Nanomaterials and nanotechnologies Environment and natural resources Plasma physics—ITER project Vibrational dynamics The first, second and third NAMES conferences were financially supported by the following organizations: Ambassade de France à Moscou Communauté Urbaine du Grand Nancy Région Lorraine Conseil Général de Meurthe et Moselle Institut National Polytechnique de Lorraine Université de Metz Université Henry Poincaré CNRS ANVAR Federal Agency on Science and Innovations of the Ministry of Education and Science of the Russian Federation Moscow Committee on Science and Technologies Moscow Institute of Steel and Alloys (Technological University) The 4th conference is supported by the Ministry of Foreign Affairs of France and the Lorraine Region Council. The conferences have indicated directions for future research and stimulated the possibilities of cooperation between scientists from Lorraine and Russian universities and academic institutions. The participants of the conferences reviewed the remarkable worldwide progress with numerous breakthroughs in areas of fundamental research and industrial applications, specifically in the fields of nanomaterials and nanotechnologies, surface engineering, biomaterials and multifunctional coatings, functionally graded materials, new materials for microelectronics and optics, nanostructured thin films and nanodispersion strengthening coatings, combustion synthesis, new micro- and nanosystems and devices, natural resources, environmental sciences, clean technology, and recently, natural fibrous materials, etc. The participants consider that new fundamental knowledge, new materials, and industrial production methods generated as a result of international cooperation between both countries will be of interest to the industrial sector in Lorraine and Moscow, France and Russia. Professor Lev O Filippov Coordinator of NAMES conferences The PDF also contains details of the conference sponsors and organizing committees.
SweepSAR Sensor Technology for Dense Spatial and Temporal Coverage of Earth Change
NASA Astrophysics Data System (ADS)
Rosen, P. A.
2016-12-01
Since the 2007 National Academy of Science "Decadal Survey" report, NASA has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines - ecosystems, solid earth, and cryospheric sciences. NASA has joined forces with the Indian Space Research Organisation (ISRO) to fulfill these objectives. The NASA-ISRO SAR (NISAR) mission is now in development for a launch in 2021. The mission's primary science objectives are codified in a set of science requirements to study Earth land and ice deformation, and ecosystems, globally with 12-day sampling over all land and ice-covered surfaces throughout the mission life. The US and Indian science teams share global science objectives; in addition, India has developed a set of local objectives in agricultural biomass estimation, Himalayan glacier characterization, and coastal ocean measurements in and around India. Both the US and India have identified agricultural and infrastructure monitoring, and disaster response as high priority applications for the mission. With this range of science and applications objectives, NISAR has demanding coverage, sampling, and accuracy requirements. The system requires a swath of over 240 km at 3-10 m SAR imaging resolution, using full polarimetry where needed. Given the broad range of phenomena and wide range of sensitivities needed, NISAR carries two radars, one operating at L-band (24 cm wavelength) and the other at S-band (10 cm wavelength). The system uses a new "scan-on-receive" ("SweepSAR") technology at both L-band and S-band, that enables full swath coverage without loss of resolution or polarimetric diversity. Both radars can operate simultaneously. The L-band system is being designed to operate up to 50 minutes per orbit, and the S-band system up to 10 minutes per orbit. The orbit will be controlled to within 300 m for repeat-pass interferometry measurements. This unprecedented coverage in space, time, polarimetry, and frequency, will add a new and rich data set to the international constellation of sensors studying Earth surface change. In this talk, we will describe the mission's expected contributions to geodetic imaging in support of time-series analysis of dynamic changes of Earth's surface.
Råheim, Målfrid; Magnussen, Liv Heide; Sekse, Ragnhild Johanne Tveit; Lunde, Åshild; Jacobsen, Torild; Blystad, Astrid
2016-01-01
The researcher role is highly debated in qualitative research. This article concerns the researcher-researched relationship. A group of health science researchers anchored in various qualitative research traditions gathered in reflective group discussions over a period of two years. Efforts to establish an anti-authoritarian relationship between researcher and researched, negotiation of who actually "rules" the research agenda, and experiences of shifts in "inferior" and "superior" knowledge positions emerged as central and intertwined themes throughout the discussions. The dual role as both insider and outsider, characteristic of qualitative approaches, seemed to lead to power relations and researcher vulnerability which manifested in tangible ways. Shifting positions and vulnerability surfaced in various ways in the projects. They nonetheless indicated a number of similar experiences which can shed light on the researcher-researched relationship. These issues could benefit from further discussion in the qualitative health research literature.
Surface Modification of Intraocular Lenses
Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin
2016-01-01
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
NASA Astrophysics Data System (ADS)
Yue, Dewu; Yoo, Won Jong
Despite that the novel quantum mechanical properties of two-dimension (2D) materials are well explored theoretically, their electronic performance is limited by the contact resistance of the metallic interface and therefore their inherent novel properties are rarely realized experimentally. In this study, we demonstrate that we can largely reduce the contact resistance induced between metal and 2D materials, by controlling the surface condition of 2D materials, eg. surface flatness and van der Waals bonding. To induce the number of more effective carrier conducting modes, we engineer the surface roughness and dangling bonds of the 2D interface in contact with metal. As a result, electrical contact resistance of the metal interface is significantly reduced and carrier mobility in the device level is enhanced correspondingly. This work was supported by the Global Research Laboratory and Global Frontier R&D Programs at the Center for Hybrid Interface Materials, both funded by the Ministry of Science, ICT & Future Planning via the National Research Foundation of Korea (NRF).
Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály
2017-04-01
Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX15AP89G. Resources were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. Part of this work was inspired by discussions within International Team 336: "Plasma Surface Interactions with Airless Bodies in Space and the Laboratory" at the International Space Science Institute, Bern, Switzerland. The LRO-WAC data are publicly available from the NASA PDS Imaging Node. The Wind/MFI and Wind/SWE data used in this study are available via the NASA National Space Science Data Center, Space Physics Data Facility, and the MIT Space Plasma Group. The Chandrayaan-1/SARA data are available via the Indian Space Science Data Center.
Basic Research on Processing of Ceramics for Space Structures
1989-01-31
Surfaces, 9, 33-46 (1984). 5 18. R . H. Heistand, II, Y. Oguri, H. Okamura, W. C. Moffatt, B. Novich, E. A. Barringer , and H. K. Bowen, "Synthesis and...1983. E.A. Barringer , R . Brook, and H.K. Bowen, "The Sintering of Monodisperse TiO 2 " pp. 1-21 in Materials Science Research, Vol. 16. Edited by G.C...22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Donald R . Ulrich (202) 767-4963 1 Al 00 Form 1473, JUN 86
NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration
NASA Technical Reports Server (NTRS)
Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.
2016-01-01
NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and international partners, as well as information about outreach efforts and future opportunities to participate in SSERVI.
Planetary Science Education - Workshop Concepts for Classrooms and Internships
NASA Astrophysics Data System (ADS)
Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.
2014-12-01
In Germany, education in astronomy and planetary sciences is limited to very few schools or universities and is actively pursued by only selected research groups. Our group is situated at the Freie Universität Berlin and we are actively involved in space missions such as Mars Express, Cassini in the Saturnian system, and DAWN at Vesta and Ceres. In order to enhance communication and establish a broader basis for building up knowledge on our solar-system neighborhood, we started to offer educational outreach in the form of workshops for groups of up to 20 students from primary/middle schools to high schools. Small group sizes guarantee practical, interactive, and dialog-based working environments as well as a high level of motivation. Several topical workshops have been designed which are targeted at different age groups and which consider different educational background settings. One workshop called "Impact craters on planets and moons" provides a group-oriented setting in which 3-4 students analyze spacecraft images showing diverse shapes of impact craters on planetary surfaces. It is targeted not only at promoting knowledge about processes on planetary surfaces but it also stimulates visual interpretation skills, 3D viewing and reading of map data. A second workshop "We plan a manned mission to Mars" aims at fostering practical team work by designing simple space mission scenarios which are solved within a team by collaboration and responsibility. A practical outdoor activity called "Everything rotates around the Sun" targets at developing a perception of absolute - but in particular relative - sizes, scales and dimensions of objects in our solar system. Yet another workshop "Craters, volcanoes and co. - become a geologist on Mars" was offered at the annual national "Girls' Day" aiming at motivating primary to middle school girls to deal with topics in classical natural sciences. Small groups investigated and interpreted geomorphologic features in image data of the Martian surface and presented their results in the end. Extensive handouts and high-quality print material supplemented face-to-face exercises. For the future we plan to expand our workshop concepts, to give students the possibility of conducting a week-long internship with our Planetary Sciences research group.
Råheim, Målfrid; Magnussen, Liv Heide; Sekse, Ragnhild Johanne Tveit; Lunde, Åshild; Jacobsen, Torild; Blystad, Astrid
2016-01-01
Background The researcher role is highly debated in qualitative research. This article concerns the researcher-researched relationship. Methods A group of health science researchers anchored in various qualitative research traditions gathered in reflective group discussions over a period of two years. Results Efforts to establish an anti-authoritarian relationship between researcher and researched, negotiation of who actually “rules” the research agenda, and experiences of shifts in “inferior” and “superior” knowledge positions emerged as central and intertwined themes throughout the discussions. The dual role as both insider and outsider, characteristic of qualitative approaches, seemed to lead to power relations and researcher vulnerability which manifested in tangible ways. Conclusion Shifting positions and vulnerability surfaced in various ways in the projects. They nonetheless indicated a number of similar experiences which can shed light on the researcher-researched relationship. These issues could benefit from further discussion in the qualitative health research literature. PMID:27307132
Index for characterizing post-fire soil environments in temperate coniferous forests
Jain, Theresa B.; Pilliod, David S.; Graham, Russell T.; Lentile, Leigh B.; Sandquist, Jonathan E.
2012-01-01
Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available science and ecological thresholds. Using over 50 literature sources, we identified a minimum of five broad categories of post-fire outcomes: (a) unburned, (b) abundant surface organic matter ( > 85% surface organic matter), (c) moderate amount of surface organic matter ( ≥ 40 through 85%), (d) small amounts of surface organic matter ( < 40%), and (e) absence of surface organic matter (no organic matter left). We then subdivided each broad category on the basis of post-fire mineral soil colors providing a more fine-tuned post-fire soil index. We related each PFI category to characteristics such as soil temperature and duration of heating during fire, and physical, chemical, and biological responses. Classifying or describing post-fire soil conditions consistently will improve interpretations of fire effects research and facilitate communication of potential responses or outcomes (e.g., erosion potential) from fires of varying severities.
Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter
2015-04-01
Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377. Partial support is also provided from the STFC 'MSSL Consolidated Grant' ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., F. et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Warner, N. H., Gupta, S., Kim, J.-R., Muller, J.-P., Le Corre, L., Morley, J., et al. (2011). Constraints on the origin and evolution of Iani Chaos, Mars. Journal of Geophysical Research, 116(E6), E06003. doi:10.1029/2010JE003787; [5] Fok, H. S., Shum, C. K., Yi, Y., Araki, H., Ping, J., Williams, J. G., et al. (2011). Accuracy assessment of lunar topography models. Earth Planets Space, 63, 15-23. doi:10.5047/eps.2010.08.005; [6] Haase, I., Oberst, J., Scholten, F., Wählisch, M., Gläser, P., Karachevtseva, I., & Robinson, M. S. (2012). Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography - Haase - 2012 - Journal of Geophysical Research: Planets (1991-2012). Journal of Geophysical Research, 117, E00H20. doi:10.1029/2011JE003908; [7] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.
In this Article, we review the role of gas-phase, size-selected protonated water clusters, H+(H2O)n, in the analysis of the microscopic mechanics responsible for the behavior of the excess proton in bulk water. We extend upon previous studies of the smaller, two-dimensional sheet-like structures to larger (n≥10) assemblies with three-dimensional cage morphologies which better mimic the bulk environment. Indeed, clusters in which a complete second solvation shell forms around a surface-embedded hydronium ion yield vibrational spectra where the signatures of the proton defect display strikingly similar positions and breadth to those observed in dilute acids. We investigate effects of the localmore » structure and intermolecular interactions on the large red shifts observed in the proton vibrational signature upon cluster growth using various theoretical methods. We show that, in addition to sizeable anharmonic couplings, the position of the excess proton vibration can be traced to large increases in the electric field exerted on the embedded hydronium ion upon formation of the first and second solvation shells. MAJ acknowledges support from the U.S. Department of Energy under Grant No. DE-FG02- 06ER15800 as well as the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center, and by the National Science Foundation under Grant No. CNS 08-21132 that partially funded acquisition of the facilities. SMK and SSX acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.« less
2007-06-04
LCDR Greg Cook , PhD Date...Science Research Unit • Dr. Robert Mustacich of RVM Scientific • My thesis advisory committee: LtCol Peter LaPuma, LCDR Greg Cook , and Dr. Brian...which constitutes a mass spectrum. A computer compares the mass spectrum to a mass spectral library like a fingerprint. (McMaster and McMaster, 1997
Coordination and Data Management of the International Arctic Buoy Programme (IABP)
1998-01-01
estimate the mean surface wind, which can drive sea ice models , and for input into climate change studies. Recent research using the IABP databases includes...Coordination and Data Management of the International Arctic Buoy Programme ( IABP ) Ignatius G. Rigor Polar Science Center, Applied Physics Laboratory...the National Center for Environmental Projection underlayed. APPROACH Coordination of the IABP involves distribution of information, resource
Cooperative Localization for Autonomous Underwater Vehicles
2009-02-01
Another source of interference is the presence of background noise . Surface waves and marine mammals as well as the noise caused by the vehicle’s...opportunity to reach into other areas of ocean sciences by contributing to marine biology research. Her dedication along with the support from Mark Johnson...Algorithms 15 List of Acronyms 19 1 Introduction 23 1.1 Autonomous Marine Vehicles . . . . . . . . . . . . . . . . . . . . . . 25 1.1.1 Platforms
A method for establishing a long duration, stratospheric platform for astronomical research
NASA Astrophysics Data System (ADS)
Fesen, Robert; Brown, Yorke
2015-10-01
During certain times of the year at middle and low latitudes, winds in the upper stratosphere move in nearly the opposite direction than the wind in the lower stratosphere. Here we present a method for maintaining a high-altitude balloon platform in near station-keeping mode that utilizes this stratospheric wind shear. The proposed method places a balloon-borne science platform high in the stratosphere connected by a lightweight, high-strength tether to a tug vehicle located in the lower or middle stratosphere. Using aerodynamic control surfaces, wind-induced aerodynamic forces on the tug can be manipulated to counter the wind drag acting on the higher altitude science vehicle, thus controlling the upper vehicle's geographic location. We describe the general framework of this station-keeping method, some important properties required for the upper stratospheric science payload and lower tug platforms, and compare this station-keeping approach with the capabilities of a high altitude airship and conventional tethered aerostat approaches. We conclude by discussing the advantages of such a platform for a variety of missions with emphasis on astrophysical research.
Bio-Inspired Self-Cleaning Surfaces
NASA Astrophysics Data System (ADS)
Liu, Kesong; Jiang, Lei
2012-08-01
Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.
The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael
Despite the huge extent of the ocean’s surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean’s surface, in particular involvingmore » the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.« less
The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael; ...
2017-05-30
Despite the huge extent of the ocean’s surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean’s surface, in particular involvingmore » the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.« less
NASA Astrophysics Data System (ADS)
Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira
2016-03-01
The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)
Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.
Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael
2015-10-14
Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.
2016-01-01
Background The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses. Objective The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique. Data, Sources, and Selection The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. Results Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups. Conclusions The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies. PMID:27441840
A Course in Colloid and Surface Science.
ERIC Educational Resources Information Center
Scamehorn, John F.
1984-01-01
Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)
Lunar Science Enabled by the Deep Space Gateway and PHASR Rover
NASA Astrophysics Data System (ADS)
Bakambu, J. N.; Shaw, A.; Fulford, P.; Osinski, G.; Bourassa, M.; Rehmatullah, F.; Zanetti, M.; Rembala, R.
2018-02-01
The Deep Space Gateway will be a tremendous boon to lunar surface science. It will enable the PHASR Rover, a concept for a Canadian rover system, with international contributions and the goal of sample acquisition and lunar surface science.
Developing Science Operations Concepts for the Future of Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.
2017-02-01
Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.
Engaging Communities to Understand and Adapt to Environmental Changes with The GLOBE Program
NASA Astrophysics Data System (ADS)
Wegner, K.; Malmberg, J. S.; Murphy, T.; Mauriello, H.
2015-12-01
During the past twenty years, The GLOBE Program (www.globe.gov) has connected scientists, K-12 students, teachers, and other stakeholders to "co-create" scientific understanding of their local, regional, and global environment in more than 110 countries. Through the support and collaboration of federal agencies- NASA, NSF, and NOAA- the community-driven GLOBE database has more than 130 million Earth science measurements (atmosphere, biosphere, hydrosphere, and pedosphere) that align with the USGCRP's indicators of climate change, such as air and surface temperature (Indicator: Global Surface Temperature), land cover (Indicators: 1) Forest Cover; 2) Grassland, Shrubland, and Pasture Cover), and plant phenology (Indicator: Start of Spring). GLOBE contributes to climate literacy while encouraging community members of all ages to enrich their scientific understanding, define issues of local relevance, and engage in broader action, such as regional and global science campaigns. In this session, we will present case studies of how GLOBE data has been used to inspire "homegrown" research campaigns such as the GLOBE Surface Temperature Campaign and European Aerosols Campaign, as well as solution-based action in response to environmental changes, including the development of a mosquito protocol in Thailand and across Africa and a toad service project in the Czech Republic. We will also discuss some of the initiatives we have led as a program in order to promote and share local and regional community-led efforts with our worldwide GLOBE community, as well as some of the challenges and opportunities presented by supporting climate research.
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
NASA Astrophysics Data System (ADS)
Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.
2007-12-01
University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.
NASA Technical Reports Server (NTRS)
Moore, Robert C.
1998-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities that serves as a bridge between NASA and the academic community. Under a five-year co-operative agreement with NASA, research at RIACS is focused on areas that are strategically enabling to the Ames Research Center's role as NASA's Center of Excellence for Information Technology. Research is carried out by a staff of full-time scientist,augmented by visitors, students, post doctoral candidates and visiting university faculty. The primary mission of RIACS is charted to carry out research and development in computer science. This work is devoted in the main to tasks that are strategically enabling with respect to NASA's bold mission in space exploration and aeronautics. There are three foci for this work: Automated Reasoning. Human-Centered Computing. and High Performance Computing and Networking. RIACS has the additional goal of broadening the base of researcher in these areas of importance to the nation's space and aeronautics enterprises. Through its visiting scientist program, RIACS facilitates the participation of university-based researchers, including both faculty and students, in the research activities of NASA and RIACS. RIACS researchers work in close collaboration with NASA computer scientists on projects such as the Remote Agent Experiment on Deep Space One mission, and Super-Resolution Surface Modeling.
The UKC2 regional coupled prediction system
NASA Astrophysics Data System (ADS)
Castillo, Juan; Lewis, Huw; Graham, Jennifer; Saulter, Andrew; Arnold, Alex; Fallmann, Joachim; Martinez de la Torre, Alberto; Blyth, Eleanor; Bricheno, Lucy
2017-04-01
It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather through the environment, requires a more integrated approach to forecasting. This approach also delivers research benefits through providing tools with which to explore the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land. This hypothesis is being tested in a UK regional context at km-scale through the UK Environmental Prediction Project. This presentation will provide an introduction to the UKC2 UK Environmental Prediction research system. This incorporates models of the atmosphere (Met Office Unified Model), land surface (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled (via OASIS3-MCT libraries) at unprecedentedly high resolution across the UK and the wider north-west European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a unique new research tool for UK environmental science. The presentation will highlight work undertaken to review and improve the computational cost of running these systems for efficient research application. Research will be presented highlighting case study evaluation on the sensitivity of the ocean and surface waves to the representation of feedbacks to the atmosphere, and on the sensitivity of weather systems and boundary layer cloud development to the exchange of heat and momentum at the ocean surface modified through sea surface temperature and wave-induced roughness. The presentation will discuss plans for future development through UKC3 and beyond.
NASA Technical Reports Server (NTRS)
2001-01-01
With the help of Small Business Innovation Research (SBIR) funding from NASA's Goddard Space Flight Center, of Greenbelt, Maryland, Clearwater Instrumentation, of Watertown, Massachusetts, created the ClearSat-Autonomous Drifting Ocean Station (ADOS). The multi-sensor array ocean drifting station was developed to support observations of Earth by NASA satellites. It is a low-cost device for gathering an assortment of data necessary to the integration of present and future satellite measurements of biological and physical processes. Clearwater Instrumentation developed its ADOS technology based on Goddard's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project, but on a scale that is practical for commercial use. ADOS is used for the in situ measuring of ocean surface layer properties such as ocean color, surface thermal structure, and surface winds. Thus far, multiple ADOS units have been sold to The Scripps Institution of Oceanography, where they are being applied in the field of academic science research. Fisheries can also benefit, because ADOS can locate prime cultivation conditions for this fast-growing industry.
Climate Research by K-12 Students: Can They Do It? Will Anybody Care?
NASA Astrophysics Data System (ADS)
Brooks, D. R.
2011-12-01
Starting from the premise that engaging students in authentic science research is an activity that benefits science education in general, it is first necessary to consider whether students, in collaboration with teachers and climate scientists, can do climate-related research that actually has scientific value. A workshop held in November 2010, co-sponsored by NSF and NOAA, addressed this question. It took as its starting point this "scientific interest" test: "If students conduct a climate-related research project according to protocols designed in collaboration with climate scientists, when they get done, will any of those scientists care whether they did it or not?" If the answer to this question is "yes," then the project may constitute authentic research, but if the answer is "no," then the project may have educational value, but it is not research. This test is important because only when climate scientists (and other stakeholders interested in climate and climate change) are invested in the outcomes of student research will meaningful student research programs with sustainable support be forthcoming. The absence of climate-related projects in high-level student science fair competitions indicates that, currently, the investment and infrastructure required to support student climate research is lacking. As a result, climate science is losing the battle for the "hearts and minds" of today's best students. The critical task for student climate research is to define projects that are theoretically and practically accessible. This excludes the "big questions" of climate science, such as "Is Earth getting warmer?", but includes many observationally based projects that can help to refine our understanding of climate and climate change. The characteristics of collaborative climate research with students include: 1. carefully drawn distinctions between inquiry-based "learning about" activities and actual research; 2. an identified audience of potential stakeholders who will care about the results of the research; 3. clearly defined expectations, logistics, and outcomes for all participants. Some examples of appropriate data-based research topics include: 1. monitoring black carbon, atmospheric aerosols, and water vapor; 2. pyranometry at sufficiently high temporal resolution to study cloud patterns; 3. urban heat island and other microclimate effects; 4. monitoring benthic habitats and seafloor temperatures; 5. monitoring free-floating ocean buoys to help in the establishment of mobile marine sanctuaries; 6. monitoring surface reflectivity to generate highly localized normalized difference vegetation indices; 7. tracking habitats for vector-borne disease carriers in developing countries. Both education and science communities need to work harder to support student climate research. Educational institutions must build authentic student research into their mission statements. Scientists need to be more aware of the constraints under which teachers and their students must operate on a day-to-day basis. But, students can participate in authentic climate research if educators and scientists expect them to do real research, are honest with them about what is required to do real research, and are willing to provide persistent ongoing support.
Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator
NASA Astrophysics Data System (ADS)
Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.
2012-12-01
Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)
NASA Astrophysics Data System (ADS)
Li, Zengcheng; Feng, Bo; Deng, Biao; Liu, Legong; Huang, Yingnan; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Sun, Qian; Wang, Huaibing; Yang, Xiaoli; Yang, Hui
2018-04-01
This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates. The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode, together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer. When operated at 350 mA, the via-TF-LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED). After covering with yellow phosphor that converts some blue photons into yellow light, the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times, as compared with the white TF-LED and the white LS-LED, respectively. The significant LOP improvement of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface. Project supported by the National Key R&D Program (Nos. 2016YFB0400100, 2016YFB0400104), the National Natural Science Foundation of China (Nos. 61534007, 61404156, 61522407, 61604168, 61775230), the Key Frontier Scientific Research Program of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC014), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences, the Key R&D Program of Jiangsu Province (No. BE2017079), the Natural Science Foundation of Jiangsu Province (No. BK20160401), and the China Postdoctoral Science Foundation (No. 2016M591944). This work was also supported by the Open Fund of the State Key Laboratory of Luminescence and Applications (No. SKLA-2016-01), the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Nos. IOSKL2016KF04, IOSKL2016KF07), and the Seed Fund from SINANO, CAS (No. Y5AAQ51001).
NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow
NASA Technical Reports Server (NTRS)
Ianson, Eric E.
2016-01-01
NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.
NASA Astrophysics Data System (ADS)
Harrison, M.; Cocco, M.
2017-12-01
EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under implementation, which will be validated and tested during 2018. Particular attention in this talk will be given to connecting EPOS with similar global initiatives and identifying common best practice and approaches.
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
Fundamentals of tribology at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, John; Pepper, Stephen V.
1989-01-01
Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.
Application of atomic force microscopy as a nanotechnology tool in food science.
Yang, Hongshun; Wang, Yifen; Lai, Shaojuan; An, Hongjie; Li, Yunfei; Chen, Fusheng
2007-05-01
Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies.
Geoinformatics in the public service: building a cyberinfrastructure across the geological surveys
Allison, M. Lee; Gundersen, Linda C.; Richard, Stephen M.; Keller, G. Randy; Baru, Chaitanya
2011-01-01
Advanced information technology infrastructure is increasingly being employed in the Earth sciences to provide researchers with efficient access to massive central databases and to integrate diversely formatted information from a variety of sources. These geoinformatics initiatives enable manipulation, modeling and visualization of data in a consistent way, and are helping to develop integrated Earth models at various scales, and from the near surface to the deep interior. This book uses a series of case studies to demonstrate computer and database use across the geosciences. Chapters are thematically grouped into sections that cover data collection and management; modeling and community computational codes; visualization and data representation; knowledge management and data integration; and web services and scientific workflows. Geoinformatics is a fascinating and accessible introduction to this emerging field for readers across the solid Earth sciences and an invaluable reference for researchers interested in initiating new cyberinfrastructure projects of their own.
Thematic Mapper research in the earth sciences
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.; Stuart, Locke
1989-01-01
This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.
A Surface Science Paradigm for a Post-Huygens Titan Mission
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Lunine, Jonathan; Lorenz, Ralph
2004-01-01
With the Cassini-Huygens atmospheric probe drop-off mission fast approaching, it is essential that scientists and engineers start scoping potential follow-on surface science missions. This paper provides a summary of the first year of a two year design study which examines in detail the desired surface science measurements and resolution, potential instrument suite, and complete payload delivery system. Also provided are design concepts for both an aerial inflatable mobility platform and deployable instrument sonde. The tethered deployable sonde provides the capability to sample nearsurface atmosphere, sub-surface liquid (if it exists), and surface solid material. Actual laboratory tests of the amphibious sonde prototype are also presented.
Microgravity Research: A Retrospective of Accomplishments
NASA Astrophysics Data System (ADS)
Voorhees, Peter
2005-03-01
During the early days of human spaceflight U.S. National Aeronautics and Space Administration (NASA) began giving researchers the ability to perform experiments under extremely low gravity conditions (microgravity). Early microgravity experiments were rudimentary and discovery driven. The limitations of such an approach were clear and in the early 1990s, NASA broadened its program significantly beyond those experiments that were destined to be flown to include a ground- based program that contained both experimental and theoretical investigations. The ground-based program provided a source of carefully designed microgravity experiments. This led to the program in the Physical Sciences Division that involved research in, for example, fluids, materials and low temperature physics. The impact of the microgravity research program has been the focus of a recent National Research Council report titled “Assessment of Directions in Microgravity and Physical Sciences Research at NASA.” We found that there have been numerous high impact ground-based and flight investigations. For example, NASA funding has been instrumental in elucidating the nature of surface-tension-driven fluid flows, dendritic crystal growth and the thermodynamics of phase transitions near critical points. Using this report as a basis, a discussion of the impact of microgravity research on the fields in which it is a part will be given.
Observation of two-dimensional Fermi surface and Dirac dispersion in the new material YbMnSb2
NASA Astrophysics Data System (ADS)
Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinead; John, Caolan; Doyle, Spencer; Neaton, Jeffrey; Analytis, James G.; Denlinger, J. D.; Benavides, Katherine; Chan, Julia
We present the synthesis, crystal structure, electronic structure, and transport properties of the new material YbMnSb2. Our measurements reveal that this system is a low-carrier-density semimetal with a 2D Fermi surface arising from a 3D Dirac dispersion. This Fermi surface is consistent with the predictions of antiferromagnetic density functional theory calculations and the Fermi surface observed via angle-resolved photoemission spectroscopy. The quantitative agreement between these measurements and calculations indicates that YbMnSb2 may be a new topological semimetal in the presence of magnetic order. R. K. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400. C. J., J. G. A., and much of this work received support from the Gordon and Betty Moore Foundation Grant No. GBMF4374.
Visualizing light with electrons
NASA Astrophysics Data System (ADS)
Fitzgerald, J. P. S.; Word, R. C.; Koenenkamp, R.
2014-03-01
In multiphoton photoemission electron microscopy (nP-PEEM) electrons are emitted from surfaces at a rate proportional to the surface electromagnetic field amplitude. We use 2P-PEEM to give nanometer scale visualizations of light of diffracted and waveguide fields around various microstructures. We use Fourier analysis to determine the phase and amplitude of surface fields in relation to incident light from the interference patterns. To provide quick and intuitive simulations of surface fields, we employ two dimensional Fresnel-Kirchhoff integration, a technique based on freely propagating waves and Huygens' principle. We find generally good agreement between simulations and experiment. Additionally diffracted wave simulations exhibit greater phase accuracy, indicating that these waves are well represented by a two dimensional approximation. The authors gratefully acknowledge funding of this research by the US-DOE Basic Science Office under Contract DE-FG02-10ER46406.
CosmoQuest Year 1.5: Citizen Scientist Behaviors and Site Usage Across Multiple Projects
NASA Astrophysics Data System (ADS)
Gugliucci, Nicole E.; Gay, P. L.; Bracey, G.; CosmoQuest Team
2013-06-01
CosmoQuest launched as a citizen science portal in January 2012 and has since expanded to include three projects in planetary surface mapping, one completed project searching for KBOs, and several more on the way with various astrophysical science goals. We take a close look at how our users move through the site, how much time they spend on various tasks, project retention rate, and how many use multiple projects on the site. We are also piloting a citizen science motivation survey given to random site users to find out why citizen scientists join new projects and continue to participate. This is part of a larger project using online and real-life interactions to study citizen scientist behaviors, motivations, and learning with a goal of building better community with researchers, volunteers, educators, and developers.
Preface: phys. stat. sol. (a) 201/5
NASA Astrophysics Data System (ADS)
Avelino Pasa, André
2004-04-01
This issue contains scientific contributions to the 4th German/Brazilian Workshop on Applied Surface Science. The workshop was held in Germany at the beautiful Castle Ringberg conference site of the Max Planck Society, located 60 km from Munich, from 21-26 September 2003. The meeting was attended by about 50 participants, with 21 invited talks and 18 contributed presentations (8 oral and 10 posters) on relevant topics of surface science.As in previous meetings (1995 in Portobello, RJ, Brazil, 1998 in Döllnsee, Berlin, Germany, and 2001 in Itapema, SC, Brazil), a significant number of important questions in surface science were covered from both the theoretical and the experimental point of view. In the field of materials science, emphasis was given to the description of the structural, physical and chemical properties of nanostructures and films of inorganic (metals, alloys and oxides) and organic (polymers and biological molecules) materials.A substantial part of the success of the meeting can be attributed to the relaxed atmosphere at the castle, near the lake Tegernsee, where excellent scientific presentations were mixed with intense discussions among both senior and younger researchers. The event also led to the development of new and ongoing collaborations between partners from Brazil and Germany.The organizers of the Workshop, Israel J. R. Baumvol (Porto Alegre, Brazil), Hajo Freund (Berlin, Germany), Wolfgang H. P. Losch (Natal, Brazil), Horst Niehus (Berlin, Germany), André A. Pasa (Florianópolis, Brazil) and Eberhard Umbach (Würzburg, Germany), are greatly indebted to the following organizations for financial support: Deutsche Forschungsgemeinschaft (DFG), Fritz-Haber-Institut Berlin (FHI), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Universidade Federal de Santa Catarina (UFSC) and the specially created intergovernmental agreement between CAPES and DFG to promote such meetings.
NASA Astrophysics Data System (ADS)
Herzfeld, U. C.; Mayer, H.
2009-12-01
In the course of research programs to develop a methodology for the study of microtopography of ice and snow surfaces, we placed a strong emphasis on the involvement of students. This project provided the opportunity to engage students in every step from building the instrument through development of the data processing, the actual field measurements, processing of the resultant data, their evaluation and interpretation to the final publication in scientific journals. The development of the Glacier Roughness Sensor (GRS) incorporating Global Positioning System (GPS) technology and the fieldwork on the Greenland Inland Ice were particularly fascinating and instructive for students. In a related snow-hydrological research project on Niwot Ridge in the Colorado Front Range, we involved students in two season-long measurement campaigns in a high alpine environment. Students from the Universität Trier, Germany, and the University of Colorado Boulder participated in this project to learn about the value of international collaboration in science. Funding was provided by Deutsche Forschungsgemeinschaft (Antarctic and Arctic Program) and the U.S. National Science Foundation (Hydrological Sciences Program). Students participated in preparatory classes and field camps, selected their own research projects and received university credit towards their degrees in geography or environmental sciences. All student participants in the MICROTOP projects have gone on to higher university education and become professionally exceptionally successful. Students setting up camp on the Greenland Ice Sheet during expedition MICROTOP 99.
Wang, Peng-Yuan; Thissen, Helmut; Kingshott, Peter
2016-11-01
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Enhancing Return from Lunar Surface Missions via the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Chavers, D. G.; Whitley, R. J.; Percy, T. K.; Needham, D. H.; Polsgrove, T. T.
2018-02-01
The Deep Space Gateway (DSG) will facilitate access to and communication with lunar surface assets. With a science airlock, docking port, and refueling capability in an accessible orbit, the DSG will enable high priority science across the lunar surface.
Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center
Garn, H.S.
2007-01-01
This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.
A microelectronics approach for the ROSETTA surface science package
NASA Technical Reports Server (NTRS)
Sandau, Rainer (Editor); Alkalaj, Leon
1996-01-01
In relation to the Rosetta surface science package, the benefits of the application of advanced microelectronics packaging technologies and other output from the Mars environmental survey (MESUR) integrated microelectronics study are reported on. The surface science package will be designed to operate for tens of hours. Its limited mass and power consumption make necessary a highly integrated design with all the instruments and subunits operated from a centralized control and information management subsystem.
Chapter 11: City-Wide Collaborations for Urban Climate Education
NASA Technical Reports Server (NTRS)
Snyder, Steven; Hoffstadt, Rita Mukherjee; Allen, Lauren B.; Crowley, Kevin; Bader, Daniel A.; Horton, Radley M.
2014-01-01
Although cities cover only 2 percent of the Earth's surface, more than 50 percent of the world's people live in urban environments, collectively consuming 75 percent of the Earth's resources. Because of their population densities, reliance on infrastructure, and role as centers of industry, cities will be greatly impacted by, and will play a large role in, the reduction or exacerbation of climate change. However, although urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies, education efforts on these strategies have not been comprehensive. To meet the needs of an informed and engaged urban population, a more systemic, multiplatform and coordinated approach is necessary. The Climate and Urban Systems Partnership (CUSP) is designed to explore and address this challenge. Spanning four cities-Philadelphia, New York, Pittsburgh, and Washington, DC-the project is a partnership between the Franklin Institute, the Columbia University Center for Climate Systems Research, the University of Pittsburgh Learning Research and Development Center, Carnegie Museum of Natural History, New York Hall of Science, and the Marian Koshland Science Museum of the National Academy of Sciences. The partnership is developing a comprehensive, interdisciplinary network to educate urban residents about climate science and the urban impacts of climate change.
Virtual Research Environments for Natural Hazard Modelling
NASA Astrophysics Data System (ADS)
Napier, Hazel; Aldridge, Tim
2017-04-01
The Natural Hazards Partnership (NHP) is a group of 17 collaborating public sector organisations providing a mechanism for co-ordinated advice to government and agencies responsible for civil contingency and emergency response during natural hazard events. The NHP has set up a Hazard Impact Model (HIM) group tasked with modelling the impact of a range of UK hazards with the aim of delivery of consistent hazard and impact information. The HIM group consists of 7 partners initially concentrating on modelling the socio-economic impact of 3 key hazards - surface water flooding, land instability and high winds. HIM group partners share scientific expertise and data within their specific areas of interest including hydrological modelling, meteorology, engineering geology, GIS, data delivery, and modelling of socio-economic impacts. Activity within the NHP relies on effective collaboration between partners distributed across the UK. The NHP are acting as a use case study for a new Virtual Research Environment (VRE) being developed by the EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution). The VRE is allowing the NHP to explore novel ways of cooperation including improved capabilities for e-collaboration, e-research, automation of processes and e-learning. Collaboration tools are complemented by the adoption of Research Objects, semantically rich aggregations of resources enabling the creation of uniquely identified digital artefacts resulting in reusable science and research. Application of the Research Object concept to HIM development facilitates collaboration, by encapsulating scientific knowledge in a shareable format that can be easily shared and used by partners working on the same model but within their areas of expertise. This paper describes the application of the VRE to the NHP use case study. It outlines the challenges associated with distributed partnership working and how they are being addressed in the VRE. A case study is included focussing on the application of Research Objects to development work for the surface water flooding hazard impact model, a key achievement for the HIM group.
NASA Astrophysics Data System (ADS)
Kautz, M.
2016-12-01
Microplastic research in aquatic environments has quickly evolved over the last decade. To have meaningful inter-study comparisons, it is necessary to define methodological criteria for both the sampling and sorting of microplastics. The most common sampling method used for sea surface samples has traditionally been a neuston net (NN) tow. Originally designed for plankton collection, neuston tows allow for a large volume of water to be sampled and can be coupled with phytoplankton monitoring. The widespread use of surface nets allows for easy comparison between data sets, but the units of measurement for calculating microplastic concentration vary, from surface area m2 and Km2, to volume of water sampled, m3. Contamination by the air, equipment, or sampler is a constant concern in microplastic research. Significant in-field contamination concerns for neuston tow sampling include air exposure time, microplastics in rinse water, sampler contact, and plastic net material. Seeking to overcome the lack of contamination control and the intrinsic instrumental size limitation associated with surface tow nets, we developed an alternative sampling method. The whole water (WW) method is a one-liter grab sample of surface water adapted from College of the Atlantic and Sea Education Association (SEA) student, Marina Garland. This is the only WW method that we are aware of being used to sample microplastic. The method addresses the increasing need to explore smaller size domains, to reduce potential contamination and to incorporate citizen scientists into data collection. Less water is analyzed using the WW method, but it allows for targeted sampling of point-source pollution, intertidal, and shallow areas. The WW methodology can easily be integrated into long-term or citizen science monitoring initiatives due to its simplicity and low equipment demands. The aim of our study was to demonstrate a practical and economically feasible method for sampling microplastic abundance at the micro (10-6m) and nano (10-8m) scale that can be used in a wide variety of environments, and for assessing spatial and temporal distributions. The method has been employed in a multi-year citizen science collaboration with Adventurers and Scientists for Conservation to study microplastic worldwide.
NASA Astrophysics Data System (ADS)
Druckenmiller, M. L.; Wiggins, H. V.; Eicken, H.; Francis, J. A.; Huntington, H.; Scambos, T. A.
2015-12-01
The Study of Environmental Arctic Change (SEARCH), ongoing since the early-2000s, aims to develop scientific knowledge to help society understand and respond to the rapidly changing Arctic. Through collaboration with the research community, funding agencies, national and international science programs, and other stakeholders, SEARCH facilitates research activities across local-to-global scales, with increasing emphasis on addressing the information needs of policy and decision-makers. This talk will explore the program's history, spanning its earliest efforts to understand interrelated atmospheric, oceanic, and terrestrial changes in the Arctic to more recent objectives of providing stakeholder-relevant information, such as community-wide summaries of the expected arctic summer sea ice minimum or up-to-date information on sea ice conditions to Alaska Native walrus hunters in the Bering and Chukchi Seas. We will discuss SEARCH's recent shift toward a "Knowledge to Action" vision and implementation of focused Action Teams to: (1) improve understanding, advance prediction, and explore consequences of changing arctic sea ice; (2) document and understand how degradation of near-surface permafrost will affect arctic and global systems; and (3) improve predictions of future land-ice loss and impacts on sea level. Tracking and evaluating how scientific information from such research reaches stakeholders and informs decisions are critical for interactions that allow the research community to keep pace with an evolving landscape of arctic decision-makers. Examples will be given for the new directions these Action Teams are taking regarding science communication and approaches for research community collaboration to synthesize research findings and promote arctic science and interdisciplinary scientific discovery.
A Preliminary Examination of Science Backroom Roles and Activities for Robotic Lunar Surface Science
NASA Astrophysics Data System (ADS)
Fong, T.; Deans, M.; Smith, T.; Lee, P.; Heldmann, J.; Pacis, E.; Schreckenghost, D.; Landis, R.; Osborn, J.; Kring, D.; Heggy, E.; Mishkin, A.; Snook, K.; Stoker, C.
2008-07-01
To understand the utility of a science backroom for the current lunar architecture, we are developing a new ground control structure for human and robot surface activity. In June 2008, we began examining this structure through a series of analog field tests.
All-dielectric frequency selective surface design based on dielectric resonator
NASA Astrophysics Data System (ADS)
Zheng-Bin, Wang; Chao, Gao; Bo, Li; Zhi-Hang, Wu; Hua-Mei, Zhang; Ye-Rong, Zhang
2016-06-01
In this work, we propose an all-dielectric frequency selective surface (FSS) composed of periodically placed high-permittivity dielectric resonators and a three-dimensional (3D) printed supporter. Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles, quadrupoles, and higher order terms. The re-radiated electric and magnetic fields by these multipoles interact with the incident fields, which leads to total reflection or total transmission in some special frequency bands. The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth (FBW) of 22.2%, which is consistent with the simulated result. Project supported by the National Natural Science Foundation of China (Grant Nos. 61201030, 61372045, 61472045, and 61401229), the Science and Technology Project of Jiangsu Province, China (Grant No. BE2015002), the Open Research Program of the State Key Laboratory of Millimeter Waves, China (Grant Nos. K201616 and K201622), and the Nanjing University of Posts and Telecommunications Scientific Foundation, China (Grant No. NY214148).
Proposal of a taste evaluating method of the sponge cake by using 3D range sensor
NASA Astrophysics Data System (ADS)
Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko
2002-10-01
Nowadays, the image processing techniques are while applying to the food industry in many situations. The most of these researches are applications for the quality control in plants, and there are hardly any cases of measuring the 'taste'. We are developing the measuring system of the deliciousness by using the image sensing. In this paper, we propose the estimation method of the deliciousness of a sponge cake. Considering about the deliciousness of the sponge cake, if the size of the bubbles on the surface is small and the number of them is large, then it is defined that the deliciousness of the sponge cake is better in the field of the food science. We proposed a method of detection bubbles in the surface of the sectional sponge cake automatically by using 3-D image processing. By the statistical information of these detected bubbles based on the food science, the deliciousness is estimated.
NASA Technical Reports Server (NTRS)
Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.;
2016-01-01
The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.
Interface induced ferromagnetism in topological insulator above room temperature
NASA Astrophysics Data System (ADS)
Tang, Chi; Chang, Cui-Zu; Liu, Yawen; Chen, Tingyong; Moodera, Jagadeesh; Shi, Jing
The quantum anomalous Hall effect (QAHE) observed in magnetic topological insulators (TI), an outcome of time reversal symmetry broken surface states, exhibits many exotic properties. However, a major obstacle towards high temperature QAHE is the low Curie temperature in the disordered magnetically doped TI systems. Here we report a study on heterostructures of TI and magnetic insulator in which the magnetic insulator, namely thulium iron garnet or TIG, has perpendicular magnetic anisotropy. At the TIG/TI interface, TIG magnetizes the surface states of the TI film by exchange coupling, as revealed by the anomalous Hall effect (AHE). We demonstrate that squared AHE hysteresis loops persist well above room temperature. The interface proximity induced high-temperature ferromagnetism in topological insulators opens up new possibilities for the realization of QAHE at high temperatures. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.
Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation
NASA Astrophysics Data System (ADS)
Morris, M.; Ruf, C. S.
2016-12-01
A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.
On the Attitude of Secondary 1 Students towards Science
NASA Astrophysics Data System (ADS)
Kuppan, L.; Munirah, S. K.; Foong, S. K.; Yeung, A. S.
2010-07-01
The understanding of students' attitude towards science will give a sense of direction when designing pedagogical approaches and lesson packages so that reasons for not liking science is arrested and eventually the nation's need for science oriented workforce is addressed in the future. This study is part of a 3-year research project entitled PbI1@School: A large scale study on the effect of "Physics by Inquiry" pedagogy on Secondary One students' attitude and aptitude in science, involving school, National Institute of Education (NIE) Singapore, University of Washington at Seattle and the Ministry of Education (MOE) of Singapore. The results from a survey conducted on a sample size of 215 secondary 1 students indicate that fun in studying science is a major reason for their interest towards the subject. Those who do not like science dislike the idea of surface learning such as memorizing facts and information. Besides, all these students in our sample appear to be inquisitive. We believe that the teaching and learning system needs to be modified to increase or at least sustain the students' interest in science and capitalize on students' inquisitiveness. Although the results obtained are interesting and give an insight on secondary 1 students' attitude towards science, we intend to carry out a more rigorous study to identify correlations between students' responses for different attitude questions to understand deeply their attitude towards science.
Lunar Riometry: Proof-of-Concept Instrument Package
NASA Astrophysics Data System (ADS)
Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.
2012-12-01
The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
Progress and prospects of GaN-based LEDs using nanostructures
NASA Astrophysics Data System (ADS)
Zhao, Li-Xia; Yu, Zhi-Guo; Sun, Bo; Zhu, Shi-Chao; An, Ping-Bo; Yang, Chao; Liu, Lei; Wang, Jun-Xi; Li, Jin-Min
2015-06-01
Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the recent achievements in our research group. Nano-patterned sapphire substrates have been used to grow an AlN template layer for deep-ultraviolet (DUV) LEDs. One efficient surface nano-texturing technology, hemisphere-cones-hybrid nanostructures, was employed to enhance the extraction efficiency of InGaN flip-chip LEDs. Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core. Based on the nanostructures, we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask. Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer, the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%. Furthermore, nanostructures have been used for the growth of GaN LEDs on amorphous substrates, the fabrication of stretchable LEDs, and for increasing the 3-dB modulation bandwidth for visible light communication. Project supported by the National Natural Science Foundation of China (Grant No. 61334009), the National High Technology Research and Development Program of China (Grant Nos. 2015AA03A101 and 2014BAK02B08), China International Science and Technology Cooperation Program (Grant No. 2014DFG62280), the “Import Outstanding Technical Talent Plan” and “Youth Innovation Promotion Association Program” of the Chinese Academy of Sciences.
Stabilization of the O p2x2 phase on Cu(001) sheltered by wrinkled BN over-layer
NASA Astrophysics Data System (ADS)
Kim, Yong-Sung; Ma, Chuanxu; Li, An-Ping; Yoon, Mina
The 2 √3x √3R45°phase of oxygen (O) on the Cu(001) surface has been observed in scanning tunneling microscopy (STM) measurements. Although the p2x2 phase of O on the Cu(001) surface has been proposed theoretically to be the most stable in O-lean conditions, it has not been observed in experiments for a long time. Recently, the O p2x2 phase has been found in STM on the Cu(001) surface with an overlying BN monolayer. In this theoretical study, we investigate what the role of BN over-layer is to stabilize the O p2x2 phase on the Cu(001) surface. The BN over-layer is lattice-matched with the Cu(001) surface and the BN mono-layer sheet is periodically wrinkled along the BN arm-chair direction and along the [100] or [010] direction on the Cu(001) surface. The interlayer space between the Cu(001) surface and the bulge of the wrinkled BN sheet is found to play as a preferential shelter for O to be adsorbed, and the boundary of the BN inner wall along the [010] or [100] direction makes the p2x2 phase more favorable against the 45°-tilted 2 √3x √3R45°phase of O on the Cu(001) surface. This was supported by Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility, and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, maaged by UT-Battelle, LLC, for the U. S. DOE.
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component
2008-01-01
Intergovernmental Panel on Climate Change (IPCC). RESULTS Temporal and Spatial Variations of Sea Surface Temperature and Chlorophyll a in Coastal Waters of...Duck, North Carolina [4] Climate change has affected the North Carolina coastal environments and coastal hazards have already taken place in the area...from geological materials (sands, dead and/or bleached corals ...etc) shifted by waves, tides, and currents moving sediments and eroding shorelines
NASA Ames Celebrates Curiosity Rover's Landing on Mars (Reporter Package)
2012-08-08
Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions with local Mars experts informed attendees about the contributions NASA Ames made to the mission. The highlight of the event was the live NASA TV broadcast of MSL's entry, descent and landing on the Martian surface.
JPRS Report, Science & Technology. China: Stealth/Counter-Stealth Research.
1992-11-19
Frequency-Selective Surfaces 92FE0801F Beijing DIANZIXUEBAO [ACTA ELECTRONICA SINICA] in Chinese Vol 20 No 6, Jun 92 pp 85-88 [Article by Shen...microwave devices and electromag- netic scattering. Motion Compensation Method in ISAR Imaging 92FE0801A Beijing DIANZIXUEBAO [ACTA ELECTRONICA ...Chinese Society of Electronics and an editor of DIANZI XUEBAO [ACTA ELECTRONICA SINICA]. Deng Wenbiao Born in February 1961, he graduated from the
The MARS2013 Mars analog mission.
Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja
2014-05-01
We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.
Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review
Cunningham, B.T.; Zhang, M.; Zhuo, Y.; Kwon, L.; Race, C.
2016-01-01
Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics. PMID:27642265
2016-01-01
The kinetics of proteins at interfaces plays an important role in biological functions and inspires solutions to fundamental problems in biomedical sciences and engineering. Nonetheless, due to the lack of surface-specific and structural-sensitive biophysical techniques, it still remains challenging to probe protein kinetics in situ and in real time without the use of spectroscopic labels at interfaces. Broad-bandwidth chiral sum frequency generation (SFG) spectroscopy has been recently developed for protein kinetic studies at interfaces by tracking the chiral vibrational signals of proteins. In this article, we review our recent progress in kinetic studies of proteins at interfaces using broad-bandwidth chiral SFG spectroscopy. We illustrate the use of chiral SFG signals of protein side chains in the C–H stretch region to monitor self-assembly processes of proteins at interfaces. We also present the use of chiral SFG signals from the protein backbone in the N–H stretch region to probe the real-time kinetics of proton exchange between protein and water at interfaces. In addition, we demonstrate the applications of spectral features of chiral SFG that are typical of protein secondary structures in both the amide I and the N–H stretch regions for monitoring the kinetics of aggregation of amyloid proteins at membrane surfaces. These studies exhibit the power of broad-bandwidth chiral SFG to study protein kinetics at interfaces and the promise of this technique in research areas of surface science to address fundamental problems in biomedical and material sciences. PMID:26196215
Landsat-8: Science and product vision for terrestrial global change research
Roy, David P.; Wulder, M.A.; Loveland, Thomas R.; Woodcock, C.E.; Allen, R. G.; Anderson, M. C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; Scambos, T.A.; Schaaf, Crystal B.; Schott, J.R.; Sheng, Y.; Vermote, E. F.; Belward, A.S.; Bindschadler, R.; Cohen, W.B.; Gao, F.; Hipple, J. D.; Hostert, Patrick; Huntington, J.; Justice, C.O.; Kilic, A.; Kovalskyy, Valeriy; Lee, Z. P.; Lymburner, Leo; Masek, J.G.; McCorkel, J.; Shuai, Y.; Trezza, R.; Vogelmann, James; Wynne, R.H.; Zhu, Z.
2014-01-01
Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new spectral bands in the blue and cirrus cloud-detection portion of the spectrum, two thermal bands, improved sensor signal-to-noise performance and associated improvements in radiometric resolution, and an improved duty cycle that allows collection of a significantly greater number of images per day. This paper introduces the current (2012–2017) Landsat Science Team's efforts to establish an initial understanding of Landsat 8 capabilities and the steps ahead in support of priorities identified by the team. Preliminary evaluation of Landsat 8 capabilities and identification of new science and applications opportunities are described with respect to calibration and radiometric characterization; surface reflectance; surface albedo; surface temperature, evapotranspiration and drought; agriculture; land cover, condition, disturbance and change; fresh and coastal water; and snow and ice. Insights into the development of derived ‘higher-level’ Landsat products are provided in recognition of the growing need for consistently processed, moderate spatial resolution, large area, long-term terrestrial data records for resource management and for climate and global change studies. The paper concludes with future prospects, emphasizing the opportunities for land imaging constellations by combining Landsat data with data collected from other international sensing systems, and consideration of successor Landsat mission requirements.
Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.
Wang, Z F; Liu, Feng
2015-07-10
Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6) m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.
Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics
NASA Astrophysics Data System (ADS)
Wang, Z. F.; Liu, Feng
2015-07-01
Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.
Geologic Traverse Planning for Apollo Missions
NASA Technical Reports Server (NTRS)
Lofgren, Gary
2012-01-01
The science on Apollo missions was overseen by the Science Working Panel (SWP), but done by multiple PIs. There were two types of science, packages like the Apollo Lunar Surface Experiment Package (ALSEP) and traverse science. Traverses were designed on Earth for the astronauts to execute. These were under direction of the Lunar Surface PI, but the agreed traverse was a cooperation between the PI and SWP. The landing sites were selected by a different designated committee, not the SWP, and were based on science and safety.
NASA Astrophysics Data System (ADS)
Radencic, S.; McNeal, K. S.; Pierce, D.
2012-12-01
The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in sediment analysis. INSPIRE is striving to create synergy with other education focused grants at MSU, including those that focus on climate literacy and Earth hazards. Graduate students create at least one lesson plan that links their STEM research to climate related topics to share in their assigned K-12 classrooms. They also assist with a science day sponsored at MSU centered on Earth hazards where local middle school students participate. In addition to the development of interactive experiences that bring current STEM research into the classroom, INSPIRE also creates and organizes inquiry activities for National GIS Day each year. Graduate students not only design the GIS explorations focused on hazards, but they also guide middle school students through these explorations. Additionally, all graduate students involved with INSPIRE are required to participate in at least one Science Fair event either at the local school level or at the regional competitions. Participating teachers have noted that several students had science fair projects that included some aspect of the STEM research topics they had learned about from the graduate students in the classroom.
Ions interacting in solution: Moving from intrinsic to collective properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.
A crucial determinant of Hofmeister effects is the direct interaction of ions in solution with the charged groups on the surface of larger particles. Understanding ion–ion interactions in solution is therefore a necessary first step to explaining Hofmeister effects. Here, we advocate an approach to modeling these types of properties where state of the art Ab Initio Molecular Dynamics (AIMD) simulation of ions in solution is used to establish benchmark values for the intrinsic properties of ions in solution such as solvation structures and ion–ion Potentials of Mean Force (PMFs). This information can then be combined with or used to parametrize and improve reduced models, which use approximations such as the continuum solvent model.(CSM) These reduced models can then be used to calculate collective and concentration dependent properties of electrolyte solution and so make accurate predictions about complex systems of relevance for direct applications. We provide an example of this approach using AIMD calculations of the sodium chloride dimer to calculate osmotic coefficients of all 20 alkali halide electrolytes. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TD and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MSmore » $$^{3}$$ (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Duley, A. R.; Sullivan, D.; Fladeland, M. M.; Myers, J.; Craig, M.; Enomoto, F.; Van Gilst, D. P.; Johan, S.
2011-12-01
The Common Operations and Management Portal for Airborne Science Systems (COMPASS) project is a multi-center collaborative effort to advance and extend the research capabilities of the National Aeronautics and Space Administration's (NASA) Airborne Science Program (ASP). At its most basic, COMPASS provides tools for visualizing the position of aircraft and instrument observations during the course of a mission, and facilitates dissemination, discussion, and analysis and of multiple disparate data sources in order to more efficiently plan and execute airborne science missions. COMPASS targets a number of key objectives. First, deliver a common operating picture for improved shared situational awareness to all participants in NASA's Airborne Science missions. These participants include scientists, engineers, managers, and the general public. Second, encourage more responsive and collaborative measurements between instruments on multiple aircraft, satellites, and on the surface in order to increase the scientific value of these measurements. Fourth, provide flexible entry points for data providers to supply model and advanced analysis products to mission team members. Fifth, provide data consumers with a mechanism to ingest, search and display data products. Finally, embrace an open and transparent platform where common data products, services, and end user components can be shared with the broader scientific community. In pursuit of these objectives, and in concert with requirements solicited by the airborne science research community, the COMPASS project team has delivered a suite of core tools intended to represent the next generation toolset for airborne research. This toolset includes a collection of loosely coupled RESTful web-services, a system to curate, register, and search, commonly used data sources, end-user tools which leverage web socket and other next generation HTML5 technologies to aid real time aircraft position and data visualization, and an extensible a framework to rapidly accommodate mission specific requirements and mission tools.
A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.
2007-01-01
The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.
Lunar and Planetary Science XXXV: Education Programs Demonstrations
NASA Technical Reports Server (NTRS)
2004-01-01
Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.
NASA Astrophysics Data System (ADS)
Roh, Chris; Gharib, Morteza
2016-11-01
When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.
Using Lunar Sample Disks and Resources to Promote Scientific Inquiry
NASA Technical Reports Server (NTRS)
Graff, Paige; Allen, Jaclyn; Runco, Susan
2014-01-01
This poster presentation will illustrate the use of NASA Lunar Sample Disks and resources to promote scientific inquiry and address the Next Generation Science Standards. The poster will present information on the Lunar Sample Disks, housed and managed by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center. The poster will also present information on an inquiry-based planetary sample and impact cratering unit designed to introduce students in grades 4-10 to the significance of studying the rocks, soils, and surfaces of a planetary world. The unit, consisting of many hands-on activities, provides context and background information to enhance the impact of the Lunar Sample Disks.
NASA Astrophysics Data System (ADS)
Chi, P. J.
2017-10-01
We discuss the science to be enabled by new magnetometer measurements on the lunar surface, based on results from Apollo and other lunar missions. Also discussed are approaches to deploying magnetometers on the lunar surface with today's technology.
Philae Descent and Science of the Surface
2014-11-07
This artist concept of the Rosetta mission Philae lander on the surface of comet 67P/Churyumov-Gerasimenko, is from an animation showing the upcoming deployment of Philae and its subsequent science operations on the surface of the comet. http://photojournal.jpl.nasa.gov/catalog/PIA18891