Gellis, Allen; Fuller, Christopher C.; Van Metre, Peter C.
2017-01-01
Fallout radionuclides, 7Be and 210Pbex, sampled in bed sediment for 99 watersheds in the Midwestern region of the United States and in 15 samples of suspended sediment from 3 of these watersheds were used to partition upland from channel sources and to estimate the age or the time since the surface-derived portion of sediment was on the land surface (0–∼1 year). Channel sources dominate: 78 of the 99 bed material sites (79%) have >50% channel-derived sediment, and 9 of the 15 suspended-sediment samples (60%) have >50% channel-derived sediment. 7Be was detected in 82 bed sediment samples and all 15 suspended-sediment samples. The surface-derived portion of 54 of the 80 (68%) streams with detectable 7Be and 210Pbex were ≤ 100 days old and the surface-derived portion of all suspended-sediment samples were ≤ 100 days old, indicating that surface-derived fine-grained sediment moves rapidly though these systems. The concentrations of two hydrophobic pesticides–DDE and bifenthrin–are correlated with the proportion of surface-derived sediment, indicating a link between geomorphic processes and particle-associated contaminants in streams. Urban areas had the highest pesticide concentrations and the largest percentage of surface-derived sediment. Although the percentage of surface-derived sediment is less than channel sources at most of the study sites, the relatively young age of the surface-derived sediment might indicate that management actions to reduce sediment contamination where the land surface is an important source could have noticeable effects.
The Research of Correlation of Water Surface Spectral and Sediment Parameters
NASA Astrophysics Data System (ADS)
Li, J.; Gong, G.; Fang, W.; Sun, W.
2018-04-01
In the method of survey underwater topography using remote sensing, and the water surface spectral reflectance R, which remote sensing inversion results were closely related to affects by the water and underwater sediment and other aspects, especially in shallow nearshore coastal waters, different sediment types significantly affected the reflectance changes. Therefore, it was of great significance of improving retrieval accuracy to explore the relation of sediment and water surface spectral reflectance. In this study, in order to explore relationship, we used intertidal sediment sand samples in Sheyang estuary, and in the laboratory measured and calculated the chroma indicators, and the water surface spectral reflectance. We found that water surface spectral reflectance had a high correlation with the chroma indicators; research result stated that the color of the sediment had an very important impact on the water surface spectral, especially in Red-Green chroma a*. Also, the research determined the sensitive spectrum bands of the Red-Green chroma a*, which were 636-617 nm, 716-747 nm and 770-792 nm.
Juracek, Kyle E.; Ziegler, Andrew C.
2007-01-01
In Kansas and nationally, stream and lake sediment is a primary concern as related to several important issues including water quality and reservoir water-storage capacity. The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. To investigate sources of sediment within the Perry Lake and Lake Wabaunsee Basins of northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, analyzed, and compared. Subbasins sampled within the Perry Lake Basin included Atchison County Lake, Banner Creek Reservoir, Gregg Creek, Mission Lake, and Walnut Creek. The samples were sieved to isolate the less than 63-micron fraction (that is, the silt and clay) and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). To determine which of the 30 constituents provided the best ability to discriminate between channel-bank and surface-soil sources in the two basins, four selection criteria were used. To be selected, it was required that the candidate constituent (1) was detectable, (2) had concentrations or activities that varied substantially and consistently between the sources, (3) had concentration or activity ranges that did not overlap between the sources, and (4) had concentration or activity differences between the sources that were statistically significant. On the basis of the four selection criteria, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected. Of the four selected constituents, 137Cs likely is the most reliable indicator of sediment source because it is known to be conservative in the environment. Trace elements were not selected because concentrations in the channel-bank and surface-soil sources generally were similar or did not vary in a consistent manner. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment prior to the sediment-source estimations, constituent ratio and clay-normalization techniques were used. Computed ratios included the ratio of TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators (that is, three constituent ratios and the clay-normalized concentration or activity for four constituents). Sediment-source estimation for each reservoir was based on a comparison between the reservoir bottom sediment and the end member channel-bank and surface-soil sources. Within the Perry Lake Basin, the seven-indicator consensus indicated that both channel-bank and surface-soil sources were important contributors of the sediment deposited in Atchison County Lake and Banner Creek Reservoir, whereas channel-bank sources were the dominant source of sediment for Mission Lake. On the sole basis of 137Cs activity, surface-soil sources contributed the most sediment to Atchison County Lake, and channel-bank sources contributed the most sediment to Banner Creek Reservoir and Mission Lake. For Perry Lake, both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant and that channel-bank sources increased in importance with distance downstream in the Perry Lake Basin. For Lake Wabaunsee, the seven-indicator consensus and 137Cs indicated that both channel-bank and surface-soil sources were important. Given that the relative contribution of sediment from channel-bank and surface-soil sources can vary within and between basins and over time, basin-specific strategies for sediment management and monitoring are appropriate.
NASA Astrophysics Data System (ADS)
Yamashita, S.; Nakajo, T.; Naruse, H.
2009-12-01
In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.
Tomasek, Abigail A.; Lee, Kathy E.; Hansen, Donald S.
2012-01-01
The results of this study indicate that aquatic biota in the St. Croix River are exposed to a wide variety of organic contaminants that originate from diverse sources including WWTP effluent. The data on wastewater indicator compounds indicate that exposures are temporally and spatially variable and that OWCs may accumulate in bed sediment. These results also indicate that OWCs in water and bed sediment increase downstream from discharges of wastewater effluent to the St. Croix River; however, the presence of OWCs in surface water and bed sediment at the Sunrise site indicates that potential sources of compounds, such as WWTPs or other sources, are upstream from the Taylors Falls-St. Croix Falls area.
Matsuguma, Yukari; Takada, Hideshige; Kumata, Hidetoshi; Kanke, Hirohide; Sakurai, Shigeaki; Suzuki, Tokuma; Itoh, Maki; Okazaki, Yohei; Boonyatumanond, Ruchaya; Zakaria, Mohamad Pauzi; Weerts, Steven; Newman, Brent
2017-08-01
Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
Upward movement of plutonium to surface sediments during an 11-year field study.
Kaplan, D I; Demirkanli, D I; Molz, F J; Beals, D M; Cadieux, J R; Halverson, J E
2010-05-01
An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The (240)Pu/(239)Pu and (242)Pu/(239)Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei
2016-06-01
Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the amphipod Hyalella azteca. However, low TU values were found for the samples from rural areas. These results indicate that the bottom sediments were exposed to high risk largely by the residual SPs from urban areas. The summed TUs were mostly attributable to cypermethrin, followed by λ-cyhalothrin and es/fenvalerate. Despite permethrin contributing ∼28.7 % of the Σ12SP concentration, it only represented 6.34 % of the summed TUs. Therefore, our results suggest that high levels of urbanization can increase the accumulation of SPs in aquatic environments.
Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.
Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian
2012-09-01
Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Measured and Predicted Burial of Cylinders During the Indian Rocks Beach Experiment
2007-01-01
in shallow water (15-16 m) with fine-sand (133-/xm) and coarse-sand (566-/xm) sediments off Indian Rocks Beach (IRB), FL. Scour pits developed...eter) relative to the sediment- water interface, but only 20%-50% relative to surface area covered. The difference was caused by the lack of...sensors intended to indicate the surface area of the cylinder covered by sediment or water (i.e., percent surface area exposed during burial) and
Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel
2016-06-01
Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun
2017-06-01
Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and k f -iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in k f -iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, k f -iodate value increases in several H 2 O 2 -treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest k f -iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun
2017-06-01
Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.
Pan, Ying; Chen, Juan; Zhou, Haichao; Farzana, Shazia; Tam, Nora F Y
2017-11-30
The removal and degradation of polybrominated diphenyl ethers (PBDEs) in sediments are not clear. The vertical distribution of total and dehalogenating bacteria in sediment cores collected from a typical mangrove swamp in South China and their intrinsic degradation potential were investigated. These bacterial groups had the highest abundances in surface sediments (0-5cm). A 5-months microcosm experiment also showed that surface sediments had the highest rate to remove BDE-47 than deeper sediments (5-30cm) under anaerobic condition. The deeper sediments, being more anaerobic, had lower population of dehalogenating bacteria leading to a weaker BDE-47 removal potential than surface sediments. Stepwise multiple regression analysis indicated that Dehalococcoides spp. were the most important dehalogenating bacteria affecting the anaerobic removal of BDE-47 in mangrove sediments. This is the first study reporting that mangrove sediments harbored diverse groups of dehalogenating bacteria and had intrinsic potential to remove PBDE contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial and temporal variations of Rb/Sr ratios of the bulk surface sediments in Lake Qinghai
2010-01-01
The Rb/Sr ratios of lake sediments have been suggested as indicators of weathering intensity by increasing work. However, the geochemistry of Rb/Sr ratios of lake sediments is variable between different lakes. In this study, we investigated the spatial and temporal patterns of Rb/Sr ratios, as well as those of other major elements in surface sediments of Lake Qinghai. We find that the spatial pattern of Rb/Sr ratios of the bulk sediments correlates well with that of the mass accumulation rate, and those of the terrigenous fractions, e.g., SiO2, Ti, and Fe. The temporal variations of Rb/Sr ratios also synchronize with those of SiO2, Ti, and Fe of each individual core. These suggest that Rb/Sr ratios of the surface sediments are closely related to terrigenous input from the catchment. Two out of eight cores show similar trends between Rb/Sr ratios and precipitation indices on decadal scales; however, the other cores do not show such relationship. The result of this study suggests that physical weathering and chemical weathering in Lake Qinghai catchment have opposite influence on Rb/Sr ratios of the bulk sediments, and they compete in dominating the Rb/Sr ratios of lake sediments on different spatial and temporal scales. Therefore, it is necessary to study the geochemistry of Rb/Sr ratio of lake sediments (especially that on short term timescales) particularly before it is used as an indicator of weathering intensity of the catchment. PMID:20615264
Zhang, Daolai; Liu, Jinqing; Jiang, Xuejun; Cao, Ke; Yin, Ping; Zhang, Xunhua
2016-01-15
The distribution, sources and risk assessment of 16 polycyclic aromatic hydrocarbons (PAHs) of surface sediments in the Luan River Estuary, China, have been investigated in the research. The results indicated that the total concentrations of 16 PAHs in surface sediments of the Luan River Estuary ranged from 5.1 to 545.1 ng g(-1)dw with a mean value of 120.8 ng g(-1)dw, which is relatively low in comparison with other estuaries around the world. The PAHs in the study area were mainly originated from pyrogenic sources. Besides, PAHs may be contaminated by petrogenic PAHs as indicated by the selected ratios of PAHs, the 2-tailed Pearson correlation analysis and principal components analysis at different sites. The result of the ecological risk assessment shows little negative effect for most individual PAHs in surface sediments of the Luan River Estuary, China. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selenium in irrigated agricultural areas of the western United States
Nolan, B.T.; Clark, M.L.
1997-01-01
A logistic regression model was developed to predict the likelihood that Se exceeds the USEPA chronic criterion for aquatic life (5 ??g/L) in irrigated agricultural areas of the western USA. Preliminary analysis of explanatory variables used in the model indicated that surface-water Se concentration increased with increasing dissolved solids (DS) concentration and with the presence of Upper Cretaceous, mainly marine sediment. The presence or absence of Cretaceous sediment was the major variable affecting Se concentration in surface-water samples from the National Irrigation Water Quality Program. Median Se concentration was 14 ??g/L in samples from areas underlain by Cretaceous sediments and < 1 ??g/L in samples from areas underlain by non-Cretaceous sediments. Wilcoxon rank sum tests indicated that elevated Se concentrations in samples from areas with Cretaceous sediments, irrigated areas, and from closed lakes and ponds were statistically significant. Spearman correlations indicated that Se was positively correlated with a binary geology variable (0.64) and DS (0.45). Logistic regression models indicated that the concentration of Se in surface water was almost certain to exceed the Environmental Protection Agency aquatic-life chronic criterion of 5 ??g/L when DS was greater than 3000 mg/L in areas with Cretaceous sediments. The 'best' logistic regression model correctly predicted Se exceedances and nonexceedances 84.4% of the time, and model sensitivity was 80.7%. A regional map of Cretaceous sediment showed the location of potential problem areas. The map and logistic regression model are tools that can be used to determine the potential for Se contamination of irrigated agricultural areas in the western USA.
Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA
Juracek, K.E.; Ziegler, A.C.
2009-01-01
The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the <63 ?? m fraction and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources increased in importance with distance downstream in the basin. ?? 2009 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.
N, Anbuselvan; D, Senthil Nathan; M, Sridharan
2018-06-01
The present study investigates the distribution of heavy metals (Fe, Cd, Co, Cr, Cu, Ni, Zn and Pb) in the surface sediments along the Coromandel Coast of Bay of Bengal as an indicator of marine pollution. Pollution indices such as Contamination factor (CF), Enrichment factor (EF) and Geo-accumulation index (I) were performed to assess the spatial distribution and pollution status of the study area. The heavy metal concentration in the study area is closely associated with grain size and organic matter. Both geoaccumulation index and metal contamination factor indicate that the sediments are free from contamination with regards to the metals Cr and Ni, followed by uncontamination to moderate contamination of Co, Cu and Zn. However, sediments are found to be extremely polluted with respect to Cd and Pb. Factor analysis reveals that the accumulation of these heavy metals in the shelf sediments are due to anthropogenic inputs from the adjacent land area. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.
2001-01-01
Mineralization of [U-14C] methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.
Lu, Xiao-Ming; Lu, Peng-Zhen
2014-11-01
The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.
Hong, Wen-Jun; Jia, Hongliang; Li, Yi-Fan; Sun, Yeqing; Liu, Xianjie; Wang, Luo
2016-06-01
A total of 46 polycyclic aromatic hydrocarbons (PAHs, 21 parent and 25 alkylated) were determined in seawater, surface sediment and oyster from coastal area of Dalian, North China. The concentration of Σ46PAHs in seawater, sediment, and oyster were 136-621 ng/L, 172-4700 ng/g dry weight (dw) and 60.0-129 ng/g wet weight (ww) in winter, and 65.0-1130 ng/L, 71.1-1090 ng/g dw and 72.8-216 ng/g ww in summer, respectively. High PAH levels were found in industrial area both in winter and summer. Selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL, TEL-PEL indexes) for evaluation probable toxic effects on marine organism and the results indicate that surface sediment from all sampling sites have a low to medium ecotoxicological risk. Daily intake of PAHs via oyster as seafood by humans were estimated and the results indicated that oyster intake would not pose a health risk to humans even 30 days after a oil spill accident near by. Water-sediment exchange analysis showed that, both in winter and summer, the fluxes for most high molecular weight PAHs were from seawater to sediment, while for low molecular weight PAHs, an equilibrium was reached between seawater and sediment. Copyright © 2016 Elsevier Inc. All rights reserved.
Tang, Wenzhong; Zhang, Chao; Zhao, Yu; Shan, Baoqing; Song, Zhixin
2017-05-01
A comprehensive and detailed investigation of heavy metal pollution, toxicity, and ecological risk assessment was conducted for the surface river sediments of the Haihe Basin in China based on 220 sampling sites selected in 2013. The average concentrations of Cr, Cu, Ni, Pb, and Zn in the sediments were 129 mg/kg, 63.4 mg/kg, 36.6 mg/kg, 50.0 mg/kg, and 202 mg/kg, respectively. As indicated by the geoaccumulation and pollution load indices, most surface river sediments of the Haihe Basin were contaminated with the investigated metals, especially in the junction region of the Zi Ya He and Hei Long Gang watersheds. The 5 heavy metals in the sediments all had anthropogenic sources, and the enrichment degrees followed the order Cu > Pb > Zn > Cr > Ni, with mean enrichment factors of 3.27, 2.77, 2.58, 1.81, and 1.44, respectively. According to the mean index of comprehensive potential ecological risk (38.9), the studied sediments of the Haihe Basin showed low potential ecological risk, but the sediments were potentially biologically toxic based on the mean probable effect concentration quotient (0.547), which may be the result of speciation of the 5 metals in the sediments. The results indicate that heavy metal pollution should be considered during the development of ecological restoration strategies in the Haihe Basin. Environ Toxicol Chem 2017;36:1149-1155. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Stattegger, K.; Nittrouer, C.; Phung, P. V.; Liu, P.; DeMaster, D. J.; Bui, D. V.; Le, A. D.; Nguyen, T. N.
2016-02-01
Collected surface-sediment samples in coastal water around Mekong Delta (from distributary channels to Ca Mau Peninsula) were analyzed to determine surface-sediment grain-size distribution and sediment-transport trend in the subaqueous Mekong Delta. The grain-size data set of 238 samples was obtained by using the laser instrument Mastersizer 2000 and LS Particle Size Analyzer. Fourteen samples were selected for geochemical analysis (total-organic and carbonate content). These geochemical results were used to assist in interpreting variations of granulometricparamenters along the cross-shore transects. Nine transects were examined from CungHau river mouth to Ca Mau Peninsula and six thematic maps on the whole study area were made. The research results indicate that: (1) generally, the sediment becomes finer from the delta front downwards to prodelta and becomes coarser again and poorer sorted on the adjacent inner shelf due to different sources of sediment; (2) sediment-granulometry parameters vary among sedimentary sub-environments of the underwater part of Mekong Delta, the distance from sediment source and hydrodynamic regime controlling each region; (3) the net sediment transport is southwest toward the Ca Mau Peninsula.
Surface sediment quality relative to port activities: A contaminant-spectrum assessment.
Yu, Shen; Hong, Bing; Ma, Jun; Chen, Yongshan; Xi, Xiuping; Gao, Jingbo; Hu, Xiuqin; Xu, Xiangrong; Sun, Yuxin
2017-10-15
Ports are facing increasing environmental concerns with their importance to the global economy. Numerous studies indicated sediment quality deterioration in ports; however, the deterioration is not discriminated for each port activity. This study investigated a spectrum of contaminants (metals and organic pollutants) in surface sediments at 20 sampling points in Port Ningbo, China, one of the top five world ports by volume. The spectrum of contaminants (metals and organic pollutants) was quantified following marine sediment quality guidelines of China and USA and surface sediment quality was assessed according to thresholds of the two guidelines. Coupling a categorical matrix of port activities with the matrix of sedimentary contaminants revealed that contaminants were highly associated with the port operations. Ship repair posed a severe chemical risk to sediment. Operations of crude oil and coal loadings were two top activities related to organic pollutants in sediments while port operations of ore and container loadings discharged metals. Among the 20 sampling points, Cu, Zn, Pb, and DDT and its metabolites were the priority contaminants influencing sediment quality. Overall, surface sediments in Port Ningbo had relatively low environmental risks but ship repair is an environmental concern that must be addressed. This study provides a practical approach for port activity-related quality assessment of surface sediments in ports that could be applicable in many world sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.
2006-01-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E
2006-09-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang
2014-04-15
This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo
2017-04-01
Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Increasing the soil moisture had no important additional effect to warming, although an increase in thermal offset was indicated. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can influence the deep permafrost within a short time scale, and that differences in snow depth affect surface temperatures. Sediment type and the type of precipitation should thus be considered when estimating future High Arctic deep permafrost sensitivity.
NASA Astrophysics Data System (ADS)
Rasmussen, L. H.; Zhang, W.; Elberling, B.; Cable, S.
2016-12-01
Permafrost affected areas in Greenland are expected to experience large temperature increases within the 21st century. Most previous studies on permafrost consider near-surface soil, where changes will happen first. However, how sensitive the deep permafrost temperature is to near-surface conditions through changes in soil thermal properties, snow depth and soil moisture, is not known. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed deep permafrost sediments from deltaic, alluvial and fluvial depositional environments in the Zackenberg valley, NE Greenland. We also calibrated a coupled heat and water transfer model, the "CoupModel", for the two closely situated deltaic sites, one with average snow depth and the other with topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four scenarios with changes in surface forcing: a. 3 °C warming and 20 % increase in precipitation; b. 3 °C warming and 100 % increase in precipitation; c. 6 °C warming and 20 % increase in precipitation; d. 6 °C warming and 100 % increase in precipitation.Our results indicated that frozen sediments had higher TC than thawed sediments. All sediments showed a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Fluvial sediments had high sensitivity, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments were less sensitive to soil moisture than deltaic and fluvial sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher annual mean ground temperature than the average snow site. The soil temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Precipitation had no significant additional effect to warming. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can significantly affect the deep permafrost within a short period, and that differences in snow depth affect surface temperatures. Geology, pedology and precipitation should thus be considered if estimating future High arctic deep permafrost sensitivity.
NASA Astrophysics Data System (ADS)
Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong
2018-06-01
Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.
Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK.
Spencer, Kate L
2002-09-01
Concentrations of major and trace metals were determined in eight sediment cores collected from the inter-tidal zone of the Medway Estuary, Kent, UK. Metal associations and potential sources have been investigated using principal component analysis. These data provide the first detailed geochemical survey of recent sediments in the Medway Estuary. Metal concentrations in surface sediments lie in the mid to lower range for UK estuarine sediments indicating that the Medway receives low but appreciable contaminant inputs. Vertical metal distributions reveal variable redox zonation across the estuary and historically elevated anthropogenic inputs. Peak concentrations of Cu, Pb and Zn can be traced laterally across the estuary and their positions indicate periods of past erosion and/or non-deposition. However, low rates of sediment accumulation do not allow these sub surface maxima to be used as accurate geochemical marker horizons. The salt marshes and inter-tidal mud flats in the Medway Estuary are experiencing erosion, however the erosion of historically contaminated sediments is unlikely to re-release significant amounts of heavy metals to the estuarine system.
Shifts in microbial community composition following surface application of dredged river sediments.
Baniulyte, Dovile; Favila, Emmanuel; Kelly, John J
2009-01-01
Sediment input to the Illinois River has drastically decreased river depth and reduced habitats for aquatic organisms. Dredging is being used to remove sediment from the Illinois River, and the dredged sediment is being applied to the surface of a brownfield site in Chicago with the goal of revegetating the site. In order to determine the effects of this drastic habitat change on sediment microbial communities, we examined sediment physical, chemical, and microbial characteristics at the time of sediment application to the soil surface as well as 1 and 2 years after application. Microbial community biomass was determined by measurement of lipid phosphate. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, and clone library sequencing of 16S rRNA genes. Results indicated that the moisture content, organic carbon, and total nitrogen content of the sediment all decreased over time. Total microbial biomass did not change over the course of the study, but there were significant changes in the composition of the microbial communities. PLFA analysis revealed relative increases in fungi, actinomycetes, and Gram positive bacteria. T-RFLP analysis indicated a significant shift in bacterial community composition within 1 year of application, and clone library analysis revealed relative increases in Proteobacteria, Gemmatimonadetes, and Bacteriodetes and relative decreases in Acidobacteria, Spirochaetes, and Planctomycetes. These results provide insight into microbial community shifts following land application of dredged sediment.
USDA-ARS?s Scientific Manuscript database
Fecal indicator organisms (FIOs) are generally believed to be present in surface waters due solely to direct deposition of feces or through transport in runoff. However, emerging evidence points toward hyporheic exchange between sediment pore water and the overlying water column during baseflow peri...
Kang, Lei; He, Qi-Shuang; He, Wei; Kong, Xiang-Zhen; Liu, Wen-Xiu; Wu, Wen-Jing; Li, Yi-Long; Lan, Xin-Yu; Xu, Fu-Liu
2016-12-01
The temporal-spatial distributions of DDT-related contaminants (DDXs), including DDT (dichlorodiphenyltrichloroethane), DDE (dichlorodiphenyldichloroethylene) and DDD (dichlorodiphenyldichloroethane), in the sediments of Lake Chaohu and their influencing factors were studied. p,p-DDE and p,p-DDD were found to be the two dominant components of DDXs in both surface and core sediments. The parent DDT compounds were still detectable in sediment cores after the late 1930s. Historical usage of technical DDT was identified as the primary source of DDXs in sediments, as indicated by DDT/(DDD + DDE) ratios of less than one. The residual levels of DDXs were higher in the surface and core sediments in the western lake area than in other lake areas, which might be due to the combined inflow effects of municipal sewage, industrial wastewater and agricultural runoff. The DDX residues in the sediment cores reached peak values in the late 1970s or early 1980s. There were significant positive relationships between DDX residues in sediment cores with annual DDT production and with fine particulate sizes (<4.5 μm). The relationship between the DDXs and TOC in sediment was complex, as indicated by the significant differences among the surface and core sediments. The algae-derived organic matter significantly influenced the amount of residue, composition and distribution of DDXs in the sediments. The DDD/DDE ratios responded well to the anaerobic conditions in the sediments that were caused by algal blooms after the late 1970s in the western lake area. This suggests that the algae-derived organic matter was an important factor and served as a biomarker of eutrophication and also affected the DDX residues and lifecycle in the lake ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, L.; Ramial, K.; Wilkinson, P.
Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less
Subramanian, V; Madhavan, N; Saxena, Rajinder; Lundin, Lars-Christer
2003-06-01
Suspended Particulate Matter (SPM), surface (bed sediments) and short length cores of sediments collected from the largest tributary of the river Ganges, namely the river Yamuna, were analysed for total mercury as well as its fractionation in various size and chemical sites in the sediments following standard procedures. Also, attempts were made to determine the vertical distribution in sediments in relation to the recent timescale of a few decades. Our observations indicate that the SPM in general showed higher levels of total mercury compared to the surface sediments while at places the enhancement could be by a factor of 10, say around 25 microg g(-1) in the downstream region that integrates the industrial midstream and agricultural downstream terrain near its confluence with the Ganges. Surface sediments in the upstream direction near the Himalayan foothills and SPM in the lower reaches showed significant high Index of Geoaccumulation (Igeo) as defined by Müller. Size fractionation studies indicate that the finer fraction preferentially showed higher levels of mercury while in the lower reaches of the river, the total mercury is equitably distributed among all size fractions. The proportion of the residual fraction of mercury in relation to mobile fractions, in general decreases downstream towards its confluence with the Ganges river. In sediment cores, the vertical distribution show systematic peaks of mercury indicating that addition of this toxic metal to the aquatic system is in direct proportion to the increase in various types of human activities such as thermal power plants, land use changes (urbanisation) in the midstream region and intensive fertiliser application in lower reaches of this vast river basin.
Lasier, Peter J.; Washington, John W.; Hassan, Sayed M.; Jenkins, Thomas M.
2011-01-01
Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.
Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender
2016-05-01
Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.
NASA Astrophysics Data System (ADS)
Khim, Boo-Keun; Otosaka, Shigeyoshi; Park, Kyung-Ae; Noriki, Shinichiro
2018-03-01
Investigation of sediment-trap deployments in the East/Japan Sea (EJS) showed that distinct seasonal variations in particulate organic carbon (POC) fluxes of intermediate-water sediment-traps clearly corresponded to changes in chlorophyll a concentrations estimated from SeaWiFS data. The prominent high POC flux periods (e.g., March) were strongly correlated with the enhanced surface-water phytoplankton blooms. Deep-water sedimenttraps exhibited similar variation patterns to intermediate-water sediment-traps. However, their total flux and POC flux were higher than those of intermediate-water sediment-traps during some months (e.g., April and May), indicating the lateral delivery of some particles to the deep-water sediment-traps. Distinct seasonal δ13C and δ15N variations in settling particles of the intermediate-water sediment-traps were observed, strongly supporting the notion of seasonal primary production. Seasonal variations in δ13C and δ15N values from the deep-water sediment-traps were similar to those of the intermediate-water sediment-traps. However, the difference in δ13C and δ15N values between the intermediate-water and the deepwater sediment-traps may be attributed to degradation of organic matter as it sank through the water column. Comparison of fluxweighted δ13C and δ15N mean values between the deep-water sediment-traps and the core-top sediments showed that strong selective loss of organic matter components (lipids) depleted in 13C and 15N occurred during sediment burial. Nonetheless, the results of our study indicate that particles in the deep-water sediment-trap deposited as surface sediments on the seafloor preserve the record of surface-water conditions, highlighting the usefulness of sedimentary δ13C and δ15N values as a paleoceanographic application in the EJS.
Signs of Soft-Sediment Deformation at 'Slickrock'
NASA Technical Reports Server (NTRS)
2004-01-01
Geological examination of bedding textures indicates three stratigraphic units in an area called 'Slickrock' located in the martian rock outcrop that NASA's Opportunity examined for several weeks. This is an image Opportunity took from a distance of 2.1 meters (6.9 feet) during the rover's 45th sol on Mars (March 10, 2004) and shows a scour surface or ripple trough lamination. These features are consistent with sedimentation on a moist surface where wind-driven processes may also have occurred.
[figure removed for brevity, see original site] Figure 1 In Figure 1, interpretive blue lines indicate boundaries between the units. The upper blue line may coincide with a scour surface. The lower and upper units have features suggestive of ripples or early soft-sediment deformation. The central unit is dominated by fine, parallel stratification, which could have been produced by wind-blown ripples. [figure removed for brevity, see original site] Figure 2 In Figure 2, features labeled with red letters are shown in an enlargement of portions of the image. 'A' is a scour surface characterized by truncation of the underlying fine layers, or laminae. 'B' is a possible soft-sediment buckling characterized by a 'teepee' shaped structure. 'C' shows a possible ripple beneath the arrow and a possible ripple cross-lamination to the left of the arrow, along the surface the arrow tip touches. 'D' is a scour surface or ripple trough lamination. These features are consistent with sedimentation on a moist surface where wind-driven processes may also have occurred.NASA Astrophysics Data System (ADS)
Khiari, Nouha; Atoui, Abdelfattah; Khalil, Nadia; Charef, Abdelkrim; Aleya, Lotfi
2017-10-01
The authors report on two campaigns of high-resolution samplings along the shores of Monastir Bay in Tunisia: the first being a study of sediment dynamics, grain size and mineral composition in surface sediment, and the second, eight months later, using four sediment cores to study grain-size distribution in bottom sediments. Particle size analysis of superficial sediment shows that the sand in shallow depths is characterized by S-shaped curves, indicating a certain degree of agitation, possible transport by rip currents near the bottom and hyperbolic curves illustrating heterogeneity of sand stock. The sediments settle in a relatively calm environment. Along the bay shore (from 0 to 2 m depth), the bottom is covered by medium sand. Sediment transport is noted along the coast; from north to south and from south to north, caused by longshore drift and a rip current in the middle of the bay. These two currents are generated by wind and swell, especially by north to northeast waves which transport the finest sediment. Particle size analysis of bottom sediment indicates a mean grain size ranging from coarse to very fine sands while vertical distribution of grain size tends to decrease from surface to depth. The increase in particle size of sediment cores may be due to the coexistence of terrigenous inputs along with the sedimentary transit parallel to the coast due to the effect of longshore drift. Mineralogical analysis shows that Monastir's coastal sands and bottom sediment are composed of quartz, calcite, magnesium calcite, aragonite and hematite. The existence of a low energy zone with potential to accumulate pollutants indicates that managerial action is necessary to help preserve Monastir Bay.
Xie, James Y; Wong, Jane C Y; Dumont, Clement P; Goodkin, Nathalie; Qiu, Jian-Wen
2016-07-15
Borehole density on the surface of Porites has been used as an indicator of water quality in the Great Barrier Reef. We assessed the relationship between borehole density on Porites and eight water quality parameters across 26 sites in Hong Kong. We found that total borehole densities on the surface of Porites at 16 of the studied sites were high (>1000individualsm(-2)), with polychaetes being the dominant bioeroders. Sedimentation rate was correlated positively with total borehole density and polychaete borehole density, with the latter relationship having a substantially higher correlation of determination. None of the environmental factors used were significantly correlated with bivalve borehole density. These results provide a baseline for assessing future changes in coral bioerosion in Hong Kong. This present study also indicates that polychaete boreholes can be used as a bioindicator of sedimentation in the South China Sea region where polychaetes are numerically dominant bioeroders. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, M.; Fan, D.; Han, Z.; Liao, Y.; Chen, B.; Yang, Z.
2016-02-01
The concentrations and speciations of heavy metals (Cu, Co, Ni, Zn, Pb, Cr and Cd) in surface and core sediments collected from the central Bohai Sea were analyzed by ICP-MS, to evaluate their distribution / fractionation, pollution status and sources. The results showed that Cd exhibited gradual increasing vertically, while others were stable or declined slightly in core sediments. Metals showed higher values in `central mud area of the Bohai Sea' and the coastal area of the Bohai Bay in surface sediments. Residual fractions were the dominant forms of Cu, Co, Ni, Zn and Cr in the surface sediments, while Cd and Pb had large proportions of the total concentration in the non-residual fractions. Both the contamination factors and the geo-accumulation index indicated that Cu, Co, Ni, Cr were not polluted, while Pb, Zn, Cd were in moderate contamination. The ecological risk assessment (by sepeciations) indicated that the sediments were unpolluted with respect to the heavy metals Co, Ni and Cr and unpolluted to moderately polluted with respect to Cu, Zn, Cd and Pb. Compared with sediment quality guidelines (SQGs), Cu, Zn, Cr, Pb, Cd were likely to produce occasional adverse biological effects, while Ni showed possible ecotoxicological risks. The combined levels of the metals have a 21% probability of being toxic. Elements Cr, Co and Ni were mainly natural origined and significantly affected by the composition of sediments. Cu, Zn, Pb and especially Cd may be influenced by human activities.
Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.
Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia
2013-04-01
Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.
The effects of trawling on the properties of surface sediments in the Lagoon of Venice, Italy.
NASA Astrophysics Data System (ADS)
Aspden, R.; Vardy, S.; Perkins, R.; Davidson, I.; Paterson, D. M.
2003-04-01
The effects of trawling for clams in two differently impacted areas of the Lagoon of Venice were investigated. The Lagoon has an area of 55,000 hectares and the trawling of clams (Tapes phippinarum) has important socio-economic and environmental implications for the area. Bottom trawling has been shown to have large disruptive effects on the structure of benthic communities but the relationship of this to the stability and structure of the surface sediments is still unclear. The sediment stability, grain size, bulk and colloidal carbohydrate content, total organic carbon, chlorophyll a content, and sediment dry bulk density were measured in order to determine the effects of dredging on the physical and biological properties of the lagoon surface sediments. The sediments were more stable at the less impacted site and biological measurements from the same site indicated a relatively low capacity for biogenic stabilisation of sediments. Measurements were taken before and after trawling had occurred. At the less impacted site all biological properties were significantly different before and after the disturbance event, the only physical property to be significantly different was water content. At the highly impacted site the disturbance event had only a small effect on the biological and physical properties of the sediments. Only chlorophyll a content was significantly different before and after the trawl. The results suggest that frequent trawling of the lagoon will reduce the stability of the surface sediments due to the effects on the bulk strength of the sediments and on the biological status of the surface sediments.
Fernandez, Mario; Hutchinson, C.B.
1993-01-01
An investigation of three detention ponds in Pinellas County, Florida indicated little potential for chemical contamination of surficial-aquifer ground water; however, concentrations of contami- nants in some sediments are sufficient to indicate possible hazardous levels of bioconcentration in benthic organisms. The general direction of ground- water movement at three pond sites indicates that the ponds are ground-water discharge points. Shallow ground water tends to move laterally toward these ponds, which have surface outflow, instead of from the ponds into the aquifer. Surface-water and pond-sediment samples from a 1-year-old pond were collected and analyzed for inorganic constituents and organic compounds. The concentrations were either near or below analytical detection limits. Surface-water and pond-sediment samples from the other two ponds, 20- and 30-years old, respectively, also were analyzed for inorganic constituents and organic compounds. The water quality of these older ponds was not significantly different from that of the 1-year-old pond. However, bottom sediments in the 20- and 30-year-old ponds contained 16 and 23 organic compounds, respectively. None of the organic compounds were in sufficient concentrations to cause concern about their chronic effects on aquatic life. Concentrations of dichlordiphenyl-trichlorethane, dieldrin, and heptachlor were above the hazardous level with respect to bioconcentration in the food chain.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W.
2018-01-01
Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were more finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution.
NASA Astrophysics Data System (ADS)
Xu, Shuang; Tao, Ping; Li, Yuxia; Guo, Qi; Zhang, Yan; Wang, Man; Jia, Hongliang; Shao, Mihua
2018-01-01
Sixteen polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from Liaodong Bay, northeast China. The concentration levels of total PAHs (Σ16PAHs) in sediment were 11.0˜249.6 ng·g-1 dry weight (dw), with a mean value of 89.9 ng·g-1 dry weight (dw). From the point of the spatial distribution, high PAHs levels were found in the western areas of Liaodong Bay. In the paper, sources of PAHs were investigated by diagnostic ratios, which indicated that pyrogenic sources were the main sources of PAHs in the sediment of Liaodong Bay. Therefore, selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL indexes) for evaluation probable toxic effects on marine organism.
Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.
1997-01-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.
1997-03-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.
Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H.
2007-01-01
Microbially catalyzed cleavage of the imadazole ring of caffeine was observed in stream sediments collected upstream and downstream of municipal wastewater treatment plants (WWTP) in three geographically separate stream systems. Microbial demethylation of the N-methyl component of cotinine and its metabolic precursor, nicotine, also was observed in these sediments. These findings indicate that stream sediment microorganisms are able to substantially alter the chemical structure and thus the analytical signatures of these candidate waste indicator compounds. The potential for in situ biotransformation must be considered if these compounds are employed as markers to identify the sources and track the fate of wastewater compounds in surface-water systems.
Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin
2016-05-01
The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.
Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces
NASA Astrophysics Data System (ADS)
Pfannkuche, Olaf; Lochte, Karin
1993-04-01
Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.
Zhao, Jian-Liang; Ying, Guang-Guo; Yang, Bin; Liu, Shan; Zhou, Li-Jun; Chen, Zhi-Feng; Lai, Hua-Jie
2011-10-01
This paper reports screening of multiple hormonal activities (estrogenic and androgenic activities, antiestrogenic and antiandrogenic activities) for surface water and sediment from the Pearl River system (Liuxi, Zhujiang, and Shijing rivers) in South China, using in vitro recombinant yeast bioassays. The detection frequencies for estrogenic and antiandrogenic activities were both 100% in surface water and 81 and 93% in sediment, respectively. The levels of estrogenic activity were 0.23 to 324 ng 17β-estradiol equivalent concentration (EEQ)/L in surface water and 0 to 101 ng EEQ/g in sediment. Antiandrogenic activities were in the range of 20.4 to 935 × 10(3) ng flutamide equivalent concentration (FEQ)/L in surface water and 0 to 154 × 10(3) ng FEQ/g in sediment. Moreover, estrogenic activity and antiandrogenic activity in sediment showed good correlation (R(2) = 0.7187), suggesting that the agonists of estrogen receptor and the antagonists of androgen receptor co-occurred in sediment. The detection frequencies for androgenic and antiestrogenic activities were 41 and 29% in surface water and 61 and 4% in sediment, respectively. The levels of androgenic activities were 0 to 45.4 ng dihydrotestosterone equivalent concentration (DEQ)/L in surface water, and the potency was very weak in the only detected sediment site. The levels of antiestrogenic activity were 0 to 1,296 × 10(3) ng tamoxifen equivalent concentration (TEQ)/L in surface water and 0 to 89.5 × 10(3) ng TEQ/g in sediment. The Shijing River displayed higher levels of hormonal activities than the Zhujiang and Liuxi rivers, indicating that the Shijing River had been suffering from heavy contamination with endocrine-disrupting chemicals. The equivalent concentrations of hormonal activities in some sites were greater than the lowest-observed-effect concentrations reported in the literature, suggesting potential adverse effects on aquatic organisms. Copyright © 2011 SETAC.
Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo
2013-03-01
The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.
Li, Ruili; Xu, Hualin; Chai, Minwei; Qiu, Guo Yu
2016-02-01
To investigate the influence of mangrove forest on heavy metal accumulation and storage in intertidal sediments, core sediments from natural mangrove, restored mangrove, and adjacent mud flat spanning the intertidal zone along the south coastline of the most heavily urbanized Deep bay, Guangdong province, China were analyzed. The average concentrations of mercury (Hg) in surface sediments of natural mangrove and restored mangrove were 172 and 151 ng g(-1), whereas those of copper (Cu) were 75 and 50 μg g(-1), respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Shenzhen were at median to high levels, which is consistent with the fact that Shenzhen is in high exploitation and its mangrove suffer intensive impact from human activities. Hg and Cu concentration profiles indicated a higher metal accumulation in surface layers of sediments, in agreement with enrichment of organic matter contents. Maximum concentration, enrichment factors, and excess (background-deducted) concentration inventories of metals (Hg and Cu) were substantially different between environments, decreasing from natural mangrove sediments to restored mangrove sediments to mud flat. Furthermore, metal inputs to Futian mangrove decreased in the order natural mangrove > restored mangrove > mud flat, indicating that mangrove facilitated the accumulation and storage of Hg and Cu in sediment layers.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
NASA Astrophysics Data System (ADS)
Tait, Karen; Airs, Ruth L.; Widdicombe, Claire E.; Tarran, Glen A.; Jones, Mark R.; Widdicombe, Stephen
2015-09-01
The impact of the seasonal deposition of phytoplankton and phytodetritus on surface sediment bacterial abundance and community composition was investigated at the Western English Channel site L4. Sediment and water samples were collected from January to September in 2012, increasing in frequency during periods of high water column phytoplankton abundance. Compared to the past two decades, the spring bloom in 2012 was both unusually long in duration and contained higher than average biomass. Within spring months, the phytoplankton bloom was well mixed through the water column and showed accumulations near the sea bed, as evidenced by flow cytometry measurements of nanoeukaryotes, water column chlorophyll a and the appearance of pelagic phytoplankton at the sediment. Measurements of chlorophyll and chlorophyll degradation products indicated phytoplankton material was heavily degraded after it reached the sediment surface: the nature of the chlorophyll degradation products (predominantly pheophorbide, pyropheophorbide and hydroxychlorophyllone) was indicative of grazing activity. The abundance of bacterial 16S rRNA genes g-1 sediment (used as a proxy for bacterial biomass) increased markedly with the onset of the phytoplankton bloom, and correlated with measurements of chlorophyll at the surface sediment. Together, this suggests that bacteria may have responded to nutrients released via grazing activity. In depth sequencing of the 16S rRNA genes indicated that the composition of the bacterial community shifted rapidly through-out the prolonged spring bloom period. This was primarily due to an increase in the relative sequence abundance of Flavobacteria.
Liu, Dan; Liu, Jining; Guo, Min; Xu, Huaizhou; Zhang, Shenghu; Shi, Lili; Yao, Cheng
2016-11-15
The occurrence and distribution of nine selected compounds were investigated in surface water, suspended particulate matter (SPM), and sediment in Taihu Lake and its tributaries. With the exception of 4-Butylphenol, all compounds were detected in at least two phases, and nonylphenol (NP) and 4-tert-Octylphenol (4-OP) were the predominant alkylphenols (APs) in the lake. A significant correlation was observed between NP and 4-OP, indicating that they may share the same source. Moreover, surface water phase was the dominant sink of Bisphenol A (BPA) in the aquatic environment. The concentrations of BPA between the surface water and SPM phases were closely related to each other. In addition, Tetrabromobisphenol A (TBBPA) exhibited relatively higher concentrations and detection frequencies in the SPM. Risk assessment revealed greater risk associated with the surface water than the sediment, indicating that the discharge of industrial wastewater and domestic sewage poses a serious threat to aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.
Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun
2010-02-01
At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.
Jia, Binyang; Tang, Ya; Yang, Bo; Huang, Jen-How
2017-01-01
Phosphorus (P) fractionations in the surface sediment of Sancha Lake in China's southwestern Sichuan Province were examined to assess the potential P release at the water-sediment interface and to understand its seasonal (2009-2010) and historical dynamics (1989-2010) in the surface water. Elevated P concentrations were detected in the sediment at main reservoir inflow, south canal of the Dujiangyan irrigation network, and intensive cage fish farming area, accounting for 32 and 40% of current total P discharges. The highest total P concentration (11,200 μg P g -1 ) was observed in the upper sediment below intensive fish farming area with a specific enrichment of HCl-P (51% of total P) mainly from fish feeds and feces. These sediments had larger MgCl 2 -P pools with higher diffusive P fluxes (0.43-0.47 mg m -2 d -1 ) from surface sediment than those from other areas (0.25-0.42 mg m -2 d -1 ). The general small proportion of MgCl 2 -P (5.7-10%) and low diffusive P fluxes from surface sediment (<0.02% of sediment P storage (0-1 cm)) indicate low mobility and slow release of P from sediments. The sediment as an internal P source led to a 3-4-year lag for P concentration decrease in the surface water after restriction of anthropogenic P discharges since 2005. Thus, the peak P concentration in April and September could be explained as a combined effect of supplementing internal loading via reductive processes in sediments and seasonal water vertical circulation in the early spring and fall. Policy played a crucial role in reducing P inputs to the lake.
NASA Astrophysics Data System (ADS)
Qiu, Yao-Wen; Zhang, Gan; Guo, Ling-Li; Cheng, Hai-Rong; Wang, Wen-Xiong; Li, Xiang-Dong; Wai, Onyx W. H.
2009-11-01
To characterize the current status and historical trends in organochlorine pesticides (OCPs) contamination in Deep Bay, an important water body between Hong Kong and mainland China with a Ramsar mangrove wetland (Maipo), samples from seawater, suspended particulate matter (SPM), surface sediment, sediment core and fish were collected to determine the OCPs concentrations. Sediment core dating was accomplished using the 210Pb method. The average concentrations of DDTs, HCHs and chlordanes in water were 1.96, 0.71, 0.81 ng l -1, while in SPM were 36.5, 2.5, 35.7 ng g -1 dry weight, in surface sediment were 20.2, 0.50, 2.4 ng g -1 dry weight, and in fish were 125.4, 0.43, 13.1 ng g -1 wet weight, respectively. DDTs concentrations in various matrices of Deep Bay were intermediate compared with those in other areas. Temporal trends of the targeted OCPs levels in sediment core generally increased from 1948 to 2004, with the highest levels in top or sub-surface sediment. Both DDT composition and historical trends indicated an ongoing fresh DDT input. A positive relationship between the bioconcentration factor (BCF) of target chemicals and the corresponding octanol-water partition coefficient ( Kow), and between the biota-sediment accumulation factors (BSAF) and the Kow were observed in the Bay. The risk assessment indicated that there were potential ecological and human health risks for the target OCPs in Deep Bay.
Methanogenesis in the sediment of the acidic Lake Caviahue in Argentina
NASA Astrophysics Data System (ADS)
Koschorreck, Matthias; Wendt-Potthoff, Katrin; Scharf, Burkhard; Richnow, Hans H.
2008-12-01
The biogeochemistry of methane in the sediments of Lake Caviahue was examined by geochemical analysis, microbial activity assays and isotopic analysis. The pH in the water column was 2.6 and increased up to a pH of 6 in the deeper sediment pore waters. The carbon isotope composition of CH 4 was between - 65 and - 70‰ which is indicative for the biological origin of the methane. The enrichment factor ɛ increased from - 46‰ in the upper sediment column to more than - 80 in the deeper sediment section suggesting a transition from acetoclastic methanogenesis to CO 2 reduction with depth. In the most acidic surface layer of the sediment (pH < 4) methanogenesis is inhibited as suggested by a linear CH 4 concentration profile, activity assays and MPN analysis. The CH 4 activity assays and the CH 4 profile indicate that methanogenesis in the sediment of Lake Caviahue was active below 40 cm depth. At that depth the pH was above 4 and sulfate reduction was sulfate limited. Methane was diffusing with a flux of 0.9 mmol m - 2 d - 1 to the sediment surface where it was probably oxidized. Methanogenesis contributed little to the sediments carbon budget and had no significant impact on lake water quality. The high biomass content of the sediment, which was probably caused by the last eruption of Copahue Volcano, supported high rates of sulfate reduction which probably raised the pH and created favorable conditions for methanogens in deeper sediment layers.
NASA Astrophysics Data System (ADS)
Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.
2016-12-01
Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.
Andrews, John T.; Eberl, D.D.
2007-01-01
Quantitative X-ray diffraction analyses on the < 2 mm sediment fraction from the Iceland shelves are reported for subglacial diamictons, seafloor surface sediments, and the last 2000 cal yr BP from two cores. The overall goal of the paper is to characterize the spatial variability of the mineralogy of the present-day surface sediments (18 non-clay minerals and 7 clay minerals), compare that with largely in situ erosional products typified by the composition of subglacial diamictons, and finally examine the late Holocene temporal variability in mineral composition using multi-mineral compositions. The subglacial diamictons are dominated in the non-clay-mineral fraction by the plagioclase feldspars and pyroxene with 36.7 ?? 6.1 and 17.9 ?? 3.5 wt % respectively, with smectites being the dominant clay minerals. The surface seafloor sediments have similar compositions although there are substantial amounts of calcite, plus there is a distinct band of sites from NW to N-central Iceland that contain 1-6 wt% of quartz. This latter distribution mimics the modern and historic pattern of drift ice in Iceland waters. Principal component analysis of the transformed wt% (log-ratio) non-clay minerals is used to compare the subglacial, surface, and down-core mineral compositions. Fifty-eight percent of the variance is explained by the first two axes, with dolomite, microcline, and quartz being important "foreign" species. These analyses indicate that today the NW-N-central Iceland shelf is affected by the import of exotic minerals, which are transported and released from drift ice. The down-core mineralogy indicates that this is a process that has varied over the last 2000 cal yr BP. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).
Rapid Redox Signal Transmission by “Cable Bacteria” beneath a Photosynthetic Biofilm
Meysman, F. J. R.
2014-01-01
Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774
Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.
Malkin, S Y; Meysman, F J R
2015-02-01
Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wang, Kui; Chen, Jianfang; Jin, Haiyan; Li, Hongliang; Zhang, Weiyan
2018-05-12
Organic matter degradation is a key component of the processes of carbon preservation and burial in seafloor sediments. The aim of this study was to explore organic matter degradation state within the open-shelf Changjiang Estuary of the East China Sea, using an amino acids-based degradation index (DI) in conjunction with information about organic matter source (marine versus terrestrial), bottom water oxygenation state, and sediment grain size. The relative molar percentages of 17 individual amino acids (characterized using principal component analysis) in surface sediments indicate that organic matter is degraded to varying extents across the estuary seabed. Sediments with DI >0 (relatively labile) were found mostly within a coastal hypoxic area. Sediments of DI less than -1 (relatively refractory) were found near the Changjiang River mouth and the northern and southern parts of the central shelf. We consider DI to be a more reliable indicator of degradation than simple ratios of AAs. DI was inversely correlated with the proportion of terrestrial organic material (F t ) in the sediments, indicating that relatively fresh/labile organic matter was generally associated with marine sources. DI was significantly correlated with F t and bottom water apparent oxygen utilization (AOU bot ) together. The parameter DI and the (labile) amino acid tyrosine were highest in hypoxic areas, suggesting the presence of relatively fresh organic matter, probably due to a combination of marine-source inputs and better preservation of organic matter in the silt and clay sediments of these areas (as compared to sandy sediments). Less degraded organic matter with high amino acids was also favorable to benthic animals. Overall, sedimentary estuarine organic matter was least degraded in areas characterized by marine sources of organic matter, low-oxygen conditions, and fine-grained sediments. Copyright © 2018 Elsevier B.V. All rights reserved.
Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia.
Ghaderpour, Aziz; Mohd Nasori, Khairul Nazrin; Chew, Li Lee; Chong, Ving Ching; Thong, Kwai Lin; Chai, Lay Ching
2014-06-15
The deltaic estuarine system of the Matang Mangrove Forest Reserve of Malaysia is a site where several human settlements and brackish water aquaculture have been established. Here, we evaluated the level of fecal indicator bacteria (FIB) and the presence of potentially pathogenic bacteria in the surface water and sediments. Higher levels of FIB were detected at downstream sampling sites from the fishing village, indicating it as a possible source of anthropogenic pollution to the estuary. Enterococci levels in the estuarine sediments were higher than in the surface water, while total coliforms and E. coli in the estuarine sediments were not detected in all samples. Also, various types of potentially pathogenic bacteria, including Klebsiella pneumoniae, Serratia marcescens and Enterobacter cloacae were isolated. The results indicate that the Matang estuarine system is contaminated with various types of potential human bacterial pathogens which might pose a health risk to the public. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huang, Ting-lin; Liu, Fei; Shi, Jian-chao
2016-01-15
The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.
Zhang, Yong; Gao, Xuelu; Arthur Chen, Chen-Tung
2014-07-01
Surface sediments from intertidal Bohai Bay were assessed using a four-step sequential extraction procedure to determine their concentrations of rare earth elements (REEs) and the chemical forms in which those elements were present. The normalized ratios La/Gd and La/Yb showed that LREE contents were not significantly higher than the middle REEs or HREE contents. A negative Ce anomaly and positive Eu were observed in sand and silty sand sediments, whereas no significant Ce or Eu anomaly was found in clayey silt sediments. Residual fraction of REEs accounted for the majority of their total concentrations. Middle REEs were more easily leached than other REEs, especially in clayey silt sediment. REEs contents in the surface sediment from the intertidal Bohai Sea were consistent with data from the upper continental crust and China shallow sea sediments, indicating that they were generally unaffected by heavily anthropogenic effects from adjacent areas. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, Lei; Wang, Qing-Mei; He, Qi-Shuang; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Jiang, Yu-Jiao; Xu, Fu-Liu
2016-06-01
The residual levels of phthalate esters (PAEs) in the surface and two core sediments from Lake Chaohu were measured with a gas chromatograph-mass spectrometer (GC-MS). The temporal-spatial distributions, compositions of PAEs, and their effecting factors were investigated. The results indicated that di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl) phthalate (DEHP) were three dominant PAE components in both the surface and core sediments. The residual level of total detected PAEs (∑PAEs) in the surface sediments (2.146 ± 2.255 μg/g dw) was lower than that in the western core sediments (10.615 ± 9.733 μg/g) and in the eastern core sediments (5.109 ± 4.741 μg/g). The average content of ∑PAEs in the surface sediments from the inflow rivers (4.128 ± 1.738 μg/g dw) was an order of magnitude higher than those from the lake (0.323 ± 0.093 μg/g dw), and there were similar PAE compositions between the lake and inflow rivers. This finding means that there were important effects of PAE input from the inflow rivers on the compositions and distributions of PAEs in the surface sediments. An increasing trend was found for the residual levels of ΣPAEs, DnBP, and DIBP from the bottom to the surface in both the western and eastern core sediments. Increasing PAE usage with the population growth, urbanization, and industrial and agricultural development in Lake Chaohu watershed would result in the increasing production of PAEs and their resulting presence in the sediments. The significant positive relationships were also found between the PAE contents and the percentage of sand particles, as well as TOC contents in the sediment cores.
Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto
2013-10-01
We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Dai, Lijun; Wang, Lingqing; Li, Lianfang; Liang, Tao; Zhang, Yongyong; Ma, Chuanxin; Xing, Baoshan
2018-04-15
Heavy metals in lake sediment have become a great concern because their remobilization has frequently occurred under hydrodynamic disturbance in shallow lakes. In this study, heavy metals (Cr, Cu, Cd, Pb, and Zn) concentrations in the surface and core sediments of the largest freshwater lake in China, Poyang Lake, were investigated. Geostatistical prediction maps of heavy metals distribution in the surface sediment were completed as well as further data mining. Based on the prediction maps, the ranges of Cr, Cu, Cd, Pb, and Zn concentrations in the surface sediments of the entire lake were 96.2-175.2, 38.3-127.6, 0.2-2.3, 22.5-77.4, and 72.3-254.4mg/kg, respectively. A self-organizing map (SOM) was applied to find the inner element relation of heavy metals in the sediment cores. K-means clustering of the self-organizing map was also completed to define the Euclidian distance of heavy metals in the sediment cores. The geoaccumulation index (I geo ) for Poyang Lake indicated a varying degree of heavy metal contamination in the surface sediment, especially for Cu. The heavy metal contamination in the sediment profiles had similar pollution levels as those of surface sediment, except for Cd. Correlation matrix mapping and principal component analysis (PCA) were used to support the idea that Cr, Pb, and Zn may be mainly derived from both lithogenic and human activities, such as atmospheric and river inflow transportation, whereas Cu and Cd may be mainly contributed from anthropogenic sources, such as mining activities and fertilizer application. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, J. P.; Aronovitz, A. C.
2012-12-01
We conducted laboratory flume experiments to quantify changes in multiple factors leading to mountain river bed stability (i.e., minimal bed changes in space and time), and to understand how stable beds respond to perturbations in sediment supply. Experiments were run in a small flume 4 m long by 0.1 m wide. We imposed an initial well-graded size distribution of sediment (from coarse sand to up to 4 cm clasts), a steady water discharge (0.9 L/s), and initial bed surface slopes (8% and 12%). We measured outlet sediment flux and size distribution, bed topography and surface size distributions, and water depths; from these we calculated total shear stress, form drag and skin friction stress partitioning, and hydraulic roughness. The bed was initially allowed to stabilize with no imposed upstream sediment flux. This stabilization occurred due to significant changes in all of the factors listed in the title, and resulted in incipient step-pool like bed morphologies. In addition, this study was designed to explore possible long-term effects of gravel augmentation on mountain channel morphology and surface grain size. While the short-term goal of gravel augmentation is usually to cause fining of surface sediment patches, we find that the long-term effects may be opposite. We perturbed the stabilized channels by temporarily imposing an upstream sediment flux of the finest sediment size fraction (sand to granules). Median surface sizes initially decreased due to fine sediment deposition, although transport rates of intermediate-sized grains increased. When the fine sediment supply was stopped, beds evolved to be both rougher and coarser than they had been previously, because the largest grains remained on the bed but intermediate-sized grains were preferentially transported out, leaving higher fractions of larger grains on the surface. Existing models for mixed grain size transport actually predict changes in mobilization reasonably well, but do not explicity account for surface roughness evolution. Our results indicate a nonlinear relationship between surface median grain size and bed roughness.
[Analysis of particle size characteristics of road sediments in Beijing Olympic Park].
Li, Hai-yan; Shi, An-bang; Qu, Yang-sheng; Yue, Jing-lin
2014-09-01
Particle size analysis of road sediment collected in October and November in Beijing Olympic Park indicates that most of the sediments are 76-830 μm; the grain size of the sediments in the area of large population flow is mainly coarse but the grain size in the area of large traffic volume is fine relatively while most of the sediments are <300 p.m. Moreover, sediments of size range <300 μm can be easily accumulated on the road with moderate traffic density. The results demonstrate that the effect of pedestrian flow on the composition of the particles is unobvious and the main influences are the traffic density, extensive construction. With the length of dry period increasing, the content of sediments of size range >300 μm decreases and the content of sediments of size range < 150 μm increases, however, the change of the content of sediments of size range 150-300 μm is not obvious. The results indicate that the effectiveness of the road sediment removal depends on the length of dry period, and the accumulation of different size particles varies differently under the different dry days. Compared with the stone road, surface particles can accumulate on the asphalt road more easily as the accumulation of particles is affected by the road material significantly. Therefore, to reduce the urban surface water pollution, it is necessary to improve the design of park road such as using the stone road, which can decrease the roughness of the road.
Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W
2018-06-01
Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.
McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.
1995-01-01
More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.
Paramasivam, K; Ramasamy, V; Suresh, G
2015-02-25
The distributions of the metals (Al, Fe, Mg, Cd, Cr, Cu, Ni, Pb and Zn) were measured for the surface sediments of the Vaigai river, Tamilnadu, India. These values are compared with different standard values to assess the level of toxicity of the heavy metals in the sediments. Risk indices (CF, PLI and PER) are also calculated to understand the level of toxicity of the metals. Multivariate statistical analyses (Pearson's correlation analysis, cluster analysis and factor analysis) are carried out to know the inter-relationship between sediment characteristics and the heavy metals. From this analysis, it is confirmed that the contents of clay and organic matter play an important role to raise the level of heavy metal contents as well as PLI and PER (level of toxicity). Heavy metal concentrations of the samples (after removing silt and clay fractions from bulk samples) show decrease in their concentrations and risk indices compared to the level of bulk samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Ma, Xindong; Chen, Chen; Zhang, Haijun; Gao, Yuan; Wang, Zhen; Yao, Ziwei; Chen, Jiping; Chen, Jingwen
2014-02-15
Short-chain chlorinated paraffins (SCCPs) are a new type of persistent organic pollutants that are of great environmental concern because of their wide distribution. In this study, surface sediments and bivalve samples were collected from the coastal area of the Bohai Sea in China. Total SCCP (ΣSCCP) concentrations in surface sediments and bivalves ranged from 97.4 ng g(-1) dry weight (dw) to 1756.7 ng g(-1) dw and 476.4-3269.5 ng g(-1) dw, respectively. C10-CPs and C11-CPs were the predominant homologue groups in all sediments and bivalves. Specific congener composition analysis and correspondence analysis indicated that the local SCCP source mainly came from CP-42 and CP-52 products, and riverine input had an important function. The biota-sediment accumulation factors of ΣSCCPs for bivalves ranged from 1.08 to 1.61, and a significant correlation indicated that the SCCP congener with higher chlorination degree was more likely to be accumulated in bivalves. Copyright © 2014. Published by Elsevier Ltd.
Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao
2014-09-01
The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr
Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea.
Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298
Coppola, Laurent; Gustafsson, Orjan; Andersson, Per; Axelsson, Pär
2005-05-01
In traditional sediment grain-size separation using sieve technique, the bulk of the organic matter passes through the smallest mesh size (generally 38 microm) and is not further fractionated. In this study, a common sieve separation has therefore been coupled with an extra high capacity split flow thin cell fractionation (EHC-SPLITT) instrument to separate the bulk surface sediment not only into size-based sieve fractions (> 100, 63-100, 38-63 and < 38 microm) but particularly to further fractionate hydrodynamically the fine fraction (< 38 microm) using the EHC-SPLITT. Compared to the few previous studies using a smaller high capacity (HC) SPLITT cell, the EHC-SPLITT evaluated in detail here has several advantages (e.g., 23 times higher throughput and allowance for large particle diameters). First, the EHC-SPLITT was calibrated with particle standards. Then, its ability to fractionate fine surface sediments hydrodynamically was demonstrated with material from biogeochemically distinct regimes using two cutoff velocities (1 and 6 m d(-1)). The results from particle standards indicated a good agreement between theory and experiment and a satisfactory mass recovery for the sieve-SPLITT method (80-97%) was observed for sediment samples. The mass distributions revealed that particles < 38 microm were predominant (70-90%), indicating the large need for a technique such as the EHC-SPLITT to further fractionate the fine particles. There were clearly different compositions in the EHC-SPLITT-mediated sub-fractions of the sediment fines as indicated by analyses of organic and inorganic parameters (POC, Si, Fe and Al). The EHC-SPLITT technique has the potential to provide information of great utility to studies of benthic boundary layer transport and off-shelf export and how such processes fractionate geochemical signals.
Anthropogenic platinum and palladium in the sediments of Boston Harbor
Tuit, C.B.; Ravizza, G.E.; Bothner, Michael H.
2000-01-01
Anthropogenic activity has increased recent sediment concentrations of Pt and Pd in Boston Harbor by approximately 5 times background concentrations. Surface sediments and downcore profiles were investigated to evaluate Pt and Pd accumulation and behavior in urban coastal sediments. There is no clear correlation between temporal changes in Pt and Pd consumption and sediment concentration. However, Pt/Pb and Pd/Pb ratios suggest that Pt and Pd flux into the Harbor may not be decreasing with cessation of sludge input as rapidly as other metals. This is supported by the large discrepancy between fluxes associated with sludge and effluent release and those calculated from surface sediment concentrations. This evidence supports catalytic converters as a major source of Pd and Pt to Boston Harbor but cannot preclude other sources. Pd does not exhibit signs of post-burial remobilization below the mixed layer in the sediment cores, although near-surface variability in Pd concentrations may indicate a labile Pd component. Pt displays an inverse correlation with Mn above the oxic/suboxic transition, similar to behavior seen in pristine sediments where Pt is thought to be chemically mobile. This study does not support the use of Pd and Pt as tracers of recent contaminated sedimentation. However, the possibility of a labile Pt and Pd in these sediments highlights the need for further study of the biological uptake of these metals.
Impact of Polymer Colonization on the Fate of Organic Contaminants in Sediment.
Wu, Chen-Chou; Bao, Lian-Jun; Liu, Liang-Ying; Shi, Lei; Tao, Shu; Zeng, Eddy Y
2017-09-19
Plastic pellets and microbes are important constitutes in sediment, but the significance of microbes colonizing on plastic pellets to the environmental fate and transport of organic contaminants has not been adequately recognized and assessed. To address this issue, low-density polyethylene (LDPE), polyoxymethylene (POM) and polypropylene (PP) slices were preloaded with dichlorodiphenyltrichloroethanes (DDTs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and incubated in abiotic and biotic sediment microcosms. Images from scanning electron microscope, Lysogeny Broth agar plates and confocal laser scanning microscope indicated that all polymer slices incubated in biotic sediments were colonized by microorganisms, particularly the LDPE slices. The occurrence of biofilms induced higher dissipation rates of DDTs and PAHs from the LDPE slice surfaces incubated in the biotic sediments than in the abiotic sediments. Plastic colonization on LDPE slice surfaces enhanced the biotransformation of DDT and some PAHs in both marine and river sediments, but had little impact on PCBs. By comparison, PP and POM with unique properties were shown to exert different impacts on the physical and microbial activities as compared to LDPE. These results clearly demonstrated that the significance of polymer surface affiliated microbes to the environmental fate and behavior of organic contaminants should be recognized.
NASA Astrophysics Data System (ADS)
He, Jiang; Yang, Yajing; Zhang, Lugang; Luo, Yushuang; Liu, Fei; Yang, Pinhong
2018-04-01
In this paper, 18 and 12 surface sediment samples were collected from Datong Lake and Shanpo Lake, respectively, and the 16 USEPA priority Polycyclic aromatic hydrocarbons (PAHs) in these samples were detected. The result indicated that the Σ16PAHs ranged from 206.56 to 1058.98 ng.g-1 with an average concentration of 667.22 ng.g-1 in sediments from Datong Lake, whereas it ranged from 90.62 to 900.70 ng.g-1 with an average concentration of 364.97 ng.g-1 in sediments from Shanpo Lake. The concentrations of individual PAHs in sediments ranged from 5.50 to 85.23 and from 4.39 to 52.74 ng.g-1 in Datong Lake and Shanpo Lake, respectively. According to the indexes such as HMW/LMW, Ant/(Ant+Phe), Flua/(Flua+Pyr), IcdP/(IcdP+BghiP), and BaA/(BaA+Chr), the PAHs in sediments from both lakes are mainly of pyrogenic origin. The total BaP equivalent in the surface sediment samples from Datong Lake and Shanpo Lake is 42.77 and 33.35 ng.g-1, respectively.
Xu, Gang; Liu, Jian; Pei, Shaofeng; Hu, Gang; Kong, Xianghuai
2015-12-01
Surface sediment grain size as well as the spatial distribution, pollution status, and source identification of heavy metals in the west Zhoushan Fishing Ground (ZFG) of the East China Sea were analyzed to study the geochemical background concentrations of heavy metals and to assess their potential ecological risk. Our results show that surface sediments in the eastern part of study area were mainly composed of sand-sized components. Spatial distributions of heavy metals were mainly controlled by grain size and terrigenous materials, and their concentrations in the coarsest grain sediments formed primarily during the Holocene transgressive period could represent the element background values of our study area. Contamination factor suggests that there was no pollution of Pb, Zn, and Cr generally in our study area and slight pollution of Cu, Cd, and As (especially Cu) at some stations. In addition, ecological harm coefficient indicates that the ecological risk of each heavy metal, except for Cd, at two stations was low as well. These results are consistent with the pollution load index and ecological risk index, which suggest both the overall level of pollution and the overall ecological risk of six studied metals in sediment were relatively low in our study area. Enrichment factor indicates that the heavy metals came mostly from the natural source. Summarily, the quality level of sediment in our study area was relatively good, and heavy metals in sediments could not exert threat to aquatic lives in the ZFG until now.
Sant'Anna, B S; Santos, D M; Marchi, M R R; Zara, F J; Turra, A
2014-05-01
Butyltin (BT) contamination was evaluated in hermit crabs from 25 estuaries and in sediments from 13 of these estuaries along about 2,000 km of the Brazilian coast. BT contamination in hermit crabs ranged from 2.22 to 1,746 ng Sn g(-1) of DBT and 1.32 to 318 ng Sn g(-1) of TBT. In sediment samples, the concentration also varied widely, from 25 to 1,304 ng Sn g(-1) of MBT, from 7 to 158 ng Sn g(-1) of DBT, and from 8 to 565 ng Sn g(-1) of TBT. BTs are still being found in surface sediments and biota of the estuaries after the international and Brazilian bans, showing heterogeneous distribution among and within estuaries. Although hermit crabs were previously tested as an indicator of recent BT contamination, the results indicate the presence of contamination, probably from resuspension of BTs from deeper water of the estuary.
Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream
Flanders, J.R.; Turner, R.R.; Morrison, T.; Jensen, R.; Pizzuto, J.; Skalak, K.; Stahl, R.
2010-01-01
Concentrations of Hg remain elevated in physical and biological media of the South River (Virginia, USA), despite the cessation of the industrial use of Hg in its watershed nearly six decades ago, and physical characteristics that would not seem to favor Hg(II)-methylation. A 3-a study of inorganic Hg (IHg) and methylmercury (MeHg) was conducted in physical media (soil, sediment, surface water, porewater and soil/sediment extracts) to identify non-point sources, transport mechanisms, and potential controls on Hg(II)-methylation. Data collected from surface water and sediment indicate that the majority of the non-point sources of IHg to the South River are within the first 14. km downstream from the historic point source. Partitioning data indicate that particle bound IHg is introduced in this reach, releasing dissolved and colloidal bound IHg, which is transported downstream. Extraction experiments revealed that floodplain soils released a higher fraction of their IHg content in aqueous extractions than fine-grained sediment (FGS). Based on ultrafiltration [<5000 nominal molecular weight cutoff (NMWC)] the majority of soil IHg released was colloidal in nature, providing evidence for the continued evolution of IHg for Hg(II)-methylation from soil. Strong seasonal patterns in MeHg concentrations were observed in surface water and sediment. The highest concentrations of MeHg in surface water were observed at moderate temperatures, suggesting that other factors limit net Hg(II)-methylation. Seasonal changes in sediment organic content and the fraction of 1. N KOH-extractable THg were also observed and may be important factors in controlling net Hg(II)-methylation rates. Sulfate concentrations in surface water are low and the evidence suggests that Fe reduction may be an important Hg(II)-methylation process. The highest sediment MeHg concentrations were observed in habitats with large amounts of FGS, which are more prevalent in the upper half of the study area due to the lower hydrologic gradient and agricultural impacts. Past and present land use practices and other geomorphologic controls contribute to the erosion of banks and accumulation of fine-grained sediment in this section of the river, acting as sources of IHg. ?? 2010 Elsevier Ltd.
Barreto, Cintia F; Vilela, Claudia G; Baptista-Neto, José A; Barth, Ortrud M
2012-09-01
Aiming to investigate the deposition of pollen grains and spores in Guanabara Bay, Rio de Janeiro State, 61 surface sediment samples were analyzed. The results showed that the current deposition of palynomorphs in surface sediments of Guanabara Bay represents the regional vegetation of this hydrographic basin. The differential distribution of palynomorphs followed a pattern influenced by bathymetry, tidal currents speed, discharge of numerous rivers, and by human activity. The dominance of representatives of Field Vegetation reflects the changes of the original flora caused by intense human activities in the region. The continued presence and richness of pollen types of rain forest in the samples indicates that their source area might be the vegetation from riparian border of rivers in the western sector of the Bay, where the mangrove vegetation is being preserved. The large amount of damaged palynomorphs may be related to abrasion that occurs during river transport, indicating removal or reworking from their areas of origin.
Wang, Hongqing; Steyer, Gregory D.; Couvillion, Brady R.; John M. Rybczyk,; Beck, Holly J.; William J. Sleavin,; Ehab A. Meselhe,; Mead A. Allison,; Ronald G. Boustany,; Craig J. Fischenich,; Victor H. Rivera-Monroy,
2014-01-01
Large sediment diversions are proposed and expected to build new wetlands to alleviate the extensive wetland loss (5,000 km2) affecting coastal Louisiana during the last 78 years. Current assessment and prediction of the impacts of sediment diversions have focused on the capture and dispersal of both water and sediment on the adjacent river side and the immediate outfall marsh area. However, little is known about the effects of sediment diversions on existing wetland surface elevation and vertical accretion dynamics in the receiving basin at the landscape scale. In this study, we used a spatial wetland surface elevation model developed in support of Louisiana's 2012 Coastal Master Plan to examine such landscape-scale effects of sediment diversions. Multiple sediment diversion projects were incorporated in the model to simulate surface elevation and vertical accretion for the next 50 years (2010-2060) under two environmental (moderate and less optimistic) scenarios. Specifically, we examined landscape-scale surface elevation and vertical accretion trends under diversions with different geographical locations, diverted discharge rates, and geomorphic characteristics of the receiving basin. Model results indicate that small diversions (< 283 m3 s-1) tend to have limited effects of reducing landscape-scale elevation loss (< 3%) compared to a future without action (FWOA) condition. Large sediment diversions (> 1,500 m3 s-1) are required to achieve landscape-level benefits to promote surface elevation via vertical accretion to keep pace with rising sea level.
The geochemistry of coprostanol in waters and surface sediments from Narragansett Bay
NASA Astrophysics Data System (ADS)
LeBlanc, Lawrence A.; Latimer, James S.; Ellis, John T.; Quinn, James G.
1992-05-01
A geochemical study of coprostanol (5β-Cholestan-3β-ol) was undertaken, to examine the transport and fate of a compound of moderate polarity and reactivity in the marine environment, and also because of the interest in coprostanol for use as a sewage tracer. During 1985-86, 20 sites in Narragansett Bay, including the major point sources and rivers discharging into the bay estuary, were sampled at four different times. In addition, surface sediments from 26 stations in the bay were collected. The large number and diversity of samples allowed for an assessment of major inputs of sewage into the bay as well as the recent fate of sewage-derived particles in surface sediments. Results from the study revealed that 50% of the total particulate coprostanol entering the bay was discharged into the Providence River, primarily due to inputs from the wastewater treatment facility (WWTF) at Fields Point, as well as input from the Pawtuxet and Blackstone Rivers. In the lower bay, the Newport WWTF was the largest single source of coprostanol (37% of the total particulate coprostanol) to the bay. Effluent concentrations of coprostanol from secondary WWTFs were consistently lower than those of primary treatment facilities, demonstrating the usefulness of corporstanol as an indicator of treatment plant efficiency. The distribution of coprostanol in waters and surface sediments showed a gradient of decreasing concentration downbay. When coprostanol concentrations in surface sediments were normalized to organic carbon (OC) concentrations, elevated levels were seen only in the Providence River, with a more or less even distribution throughout the rest of the bay. Results also suggest that coprostanol degrades more rapidly in the water column compared to the petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), however, it is relatively stable once it is buried in the sediments. Coprostanol concentrations in waters (0·02-0·22 μg 1 -1) and surface sediments (0·22-33 μg g -1) were as high or higher than values reported in the literature, indicating that the estuary is impacted by sewage.
Shen, Aihua; Lee, Sunggyu; Ra, Kongtae; Suk, Dongwoo; Moon, Hyo-Bang
2018-03-01
Information is scarce on historical trends of perfluoroalkyl substances (PFASs) in the coastal environment. In this study, four sediment cores were collected from semi-enclosed bays of Korea to investigate the pollution history, contamination profiles, and environmental burden of PFASs. The total PFAS concentrations in sediment cores ranged from 6.61 to 821 pg/g dry weight. The highest concentrations of PFASs were found in surface or sub-surface sediments, indicating on-going contamination by PFASs. Historical trends in PFASs showed a clear increase since the 1980s, which was consistent with the global PFAS consumption pattern. Concentrations of PFASs were dependent on the organic carbon content in sediment cores. PFOS and longer-chain PFASs were predominant in all of the sediment cores. In particular, a large proportion of longer-chain PFASs was observed in the upper layers of the sediment cores from industrialized coastal regions. Inventories and fluxes estimated for PFASs were similar to those for PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei
2015-03-01
This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.
E. coli transport from bottom sediments to the stream water column in base flow conditions
USDA-ARS?s Scientific Manuscript database
E. coli as an indicator bacterium is commonly used to characterize microbiological water quality, to evaluate surface water sources for microbiological impairment, and to assess management practices that lead to the decrease of pathogens and indicator influx in surface water sources for recreation a...
Dust emission from wet and dry playas in the Mojave Desert, USA
Reynolds, R.L.; Yount, J.C.; Reheis, M.; Goldstein, H.; Chavez, P.; Fulton, R.; Whitney, J.; Fuller, C.; Forester, R.M.
2007-01-01
The interactions between playa hydrology and playa-surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near-surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic - surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water-table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt-rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health.
Trace metal concentrations in tropical mangrove sediments, NE Brazil.
Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza
2016-01-15
Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clostridium perfringens in Long Island Sound sediments: An urban sedimentary record
Buchholtz ten Brink, Marilyn R.; Mecray, E.L.; Galvin, E.L.
2000-01-01
Clostridium perfringens is a conservative tracer and an indicator of sewage-derived pollution in the marine environment. The distribution of Clostridium perfringens spores was measured in sediments from Long Island Sound, USA, as part of a regional study designed to: (1) map the distribution of contaminated sediments; (2) determine transport and dispersal paths; (3) identify the locations of sediment and contaminant focusing; and (4) constrain predictive models. In 1996, sediment cores were collected at 58 stations, and surface sediments were collected at 219 locations throughout the Sound. Elevated concentrations of Clostridium perfringens in the sediments indicate that sewage pollution is present throughout Long Island Sound and has persisted for more than a century. Concentrations range from undetectable amounts to 15,000 spores/g dry sediment and are above background levels in the upper 30 cm at nearly all core locations. Sediment focusing strongly impacts the accumulation of Clostridium perfringens spores. Inventories in the cores range from 28 to 70,000 spores/cm2, and elevated concentrations can extend to depths of 50 cm. The steep gradients in Clostridium perfringens profiles in muddier cores contrast with concentrations that are generally constant with depth in sandier cores. Clostridium perfringens concentrations rarely decrease in the uppermost sediment, unlike those reported for metal contaminants. Concentrations in surface sediments are highest in the western end of the Sound, very low in the eastern region, and intermediate in the central part. This pattern reflects winnowing and focusing of Clostridium perfringens spores and fine-grained sediment by the hydrodynamic regime; however, the proximity of sewage sources to the westernmost Sound locally enhances the Clostridium perfringens signals.
E. coli Surface Properties Differ between Stream Water and Sediment Environments.
Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M
2016-01-01
The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .
Widespread potential for microbial MTBE degradation in surface-water sediments
Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.
2001-01-01
Microorganisms indigenous to stream and lake bed sediments, collected from 11 sites throughout the United States, demonstrated significant mineralization of the fuel oxygenate, methyl-tert-butyl ether (MTBE). Mineralization of [U-14C]MTBE to 14CO2 ranged from 15 to 66% over 50 days and did not differ significantly between sediments collected from MTBE contaminated sites and from sites with no history of MTBE exposure. This result suggests that even the microbial communities indigenous to newly contaminated surface water systems will exhibit some innate ability to attenuate MTBE under aerobic conditions. The magnitude of MTBE mineralization was related to the sediment grain size distribution. A pronounced, inverse correlation (p < 0.001; r2 = 0.73) was observed between the final recovery of 14CO2 and the percentage content of silt and clay sized grains (grain diameter < 0.125 mm). The results of this study indicate that the microorganisms that inhabit the bed sediments of streams and lakes can degrade MTBE efficiently and that this capability is widespread in the environment. Thus aerobic bed sediment microbial processes may provide a significant environmental sink for MTBE in surface water systems throughout the United States and may contribute to the reported transience of MTBE in some surface waters.
Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian
2018-04-15
A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Prem; Ankit, Yadav; Mishra, Praveen K.; Jha, Deepak Kumar; Anoop, Ambili
2017-04-01
In the present study we have focussed on the surface sediments of Ashtamudi Estuary (southern India) to understand (i) the fate and sources of organic matter by investigating lipid biomarker (n-alkanes) distribution in modern sediments and vegetation samples and (ii) the processes controlling the sediment distribution into the lake basin using end-member modelling approach. The sediment n-alkanes from the Ashtamudi Estuary exhibit a pronounced odd over even predominance with maxima at C29 and C31 chain length indicative of a dominant terrestrial contribution. A number of n-alkane indices have been calculated to illustrate the variability in space by considering separately the river dominated northern reaches and tidal influenced southern part of Ashtamudi Estuary. The highest terrigenous organic contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The Paq and TAR (terrigenous/aquatic ratio) indices demonstrate maximum aquatic productivity (plankton growth and submerged macrophytes) in the tidal dominated region of the Ashtamudi Estuary. The carbon preference index (CPI) and average chain length (ACL) provide evidence for high petrogenic organic inputs in the tidal zone, whereas dominant biogenic contribution have been observed in the riverine zone. In addition, the end member modeling of the grain size distribution of the surface sediment samples enabled us to decipher significant sedimentological processes affecting the sediment distribution in the estuarine settings. The end-member distribution showing highest loading with the coarser fraction is maximum where estuary debouches into the sea. However, the samples near the mouth of the river shows finer fraction of the end-member.
Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud
2016-09-01
The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.
NASA Astrophysics Data System (ADS)
Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun
2012-09-01
Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.
The nature and function of microbial enzymes in subsurface marine sediments
NASA Astrophysics Data System (ADS)
Steen, A. D.; Schmidt, J.
2016-02-01
Isotopic and genomic evidence indicates that marine sediments contain populations of active heterotrophic microorganisms which appear to metabolize old, detrital, apparently recalcitrant organic matter. In surface communities, heterotrophs use extracellular enzymes to access complex organic matter. In subsurface sediments, in which microbial doubling times can be on the order of hundreds or thousands of years, it is not clear whether extracellular enzymes could remain stable and active long enough to constitute a 'profitable' stragtegy for accessing complex organic carbon. Here we present evidence that a wide range of extracellular enzyme are active in subsurface sediments from two different environments: the White Oak River, NC, and deep (up to 80 m) sediments of the Baltic Sea Basin recovered from IODP Expedition 347. In the White Oak River, enzymes from deeper sediments appear to be better-adapted to highly-degraded organic matter than enzymes from surface sediments. In the Baltic Sea, preliminary data suggest that enzymes related to nitrogen acquisition are preferentially expressed. By characterizing the extracellular enzymes present in marine sediments, we hope to achieve a better understanding of the mechanisms that control sedimentary organic matter remineralization and preservation.
Zhuang, Wen; Gao, Xuelu
2013-11-15
Surface sediments were collected from the coastal waters of southwestern Laizhou Bay and the rivers it connects with during summer and autumn 2012. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) were measured to assess the sediment quality. The results showed that not all sediments with [SEM]-[AVS]>0 were capable of causing toxicity because the organic carbon is also an important metal-binding phase in sediments. Suppose the sediments had not been disturbed and the criteria of US Environmental Protection Agency had been followed, heavy metals in this area had no adverse biological effects in both seasons except for few riverine samples. The major ingredient of SEM was Zn, whereas the contribution of Cd - the most toxic metal studied - to SEM was <1%. The distributions of AVS and SEM in riverine sediments were more easily affected by anthropogenic activity compared with those in marine sediments. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elmore, Aurora C.; Thunell, Robert C.; Styles, Richard; Black, David; Murray, Richard W.; Martinez, Nahysa; Astor, Yrene
2009-02-01
The varved sediments that accumulate in the Cariaco Basin provide a detailed archive of the region's climatic history, including a record of the quantity of fluvial and wind-transported material. In this study, we examine the sedimentological characteristics (clay mineralogy and grain size) of both surface sediments and sinking lithogenic material collected from sediment trap samples over a three-year period from 1997 to 2000. Data from biweekly sediment trap samples show a tri-modal particle size distribution, with prominent peaks at 2, 22 and 80 μm, indicating sediment contributions from both eolian and fluvial sources. The clay mineralogy of the water column samples collected from 1997 to 1999 also shows distinctive characteristics of eolian and fluvial material. An examination of surface sediment samples from the Cariaco Basin indicates that the Unare River is the main source of riverine sediments to the eastern sub-basin. By combining these sedimentological proxies, we estimate that ˜10% of the terrigenous material delivered to the Cariaco Basin is eolian, while ˜90% is fluvial. This represents an annual dust accumulation rate of ˜0.59 mg/cm 2/yr. Since aerosols are closely linked to climate variability, the ability to quantify paleo-dust fluxes using sedimentological characteristics will be a useful tool for future paleoclimate studies looking at sub-Saharan aridity and latitudinal migration of the Intertropical Convergence Zone.
Diatom assemblages were selected as indicators of lake condition and to assess historical lake water quality changes in 257 lakes in the northeastern United States. The "top" (surface sediments, present-day) and "bottom" (generally from >30 cm deep, representing historical condit...
Distribution of Technetium-99 in sub-tidal sediments of the Irish Sea
NASA Astrophysics Data System (ADS)
McCubbin, David; Leonard, Kinson S.; McDonald, Paul; Bonfield, Rachel; Boust, Dominique
2006-03-01
To date, relatively little attention has been given to the accumulation of 99Tc discharged from Sellafield in the subtidal sediments of the Irish Sea. The potential implications for secondary seafood contamination from contaminated sediment has driven the UK Food Standards Agency to commission further research into this pathway. The work reported here reviews existing data and provides new measurements of 99Tc specific activity in surface and sub-surface sediments of the Irish Sea, together with environmental Kd values. The results are used to assess the spatial and temporal evolution of 99Tc in the seabed after 8 years of enhanced Sellafield discharges (between 1994 and 2002), of the aforementioned radionuclide. The information is discussed with reference to other studies, in an attempt to infer the processes controlling 99Tc uptake and release from seabed sediments. The average environmental Kd value for 99Tc in the Irish Sea (1.9×10 3) was more than an order of magnitude greater than the presently recommended value of 10 2 [IAEA, 2004. Sediment distribution coefficients and concentration factors for biota in the marine environment. Technical Report Series No. 422, IAEA, Vienna]. Comparison with results from laboratory studies indicates that the observed distribution may represent metastable binding rather than thermodynamic equilibrium. Activities in surface sediments decreased with increasing distance from Sellafield but were also dependent upon the nature of the underlying substrate, being greater on muddy material. Preliminary measurements of grain-size distribution indicated that the observed variation in activities was probably not due to surface area effects. There is an emerging body of evidence from other studies that indicate the differences were most likely due to variations in redox regimes between the different substrates. Vertical profiles were significantly irregular, probably due to the effects of variable sediment mixing processes. Comparison of profiles, close to the Sellafield pipeline, with a core taken over 20 years earlier (pre-EARP) indicated that the increase in the cumulative Sellafield discharge and redissolution from surficial sediment were required to explain the temporal variation. Since the surveys reported here were completed, substantial progress has been made in reducing 99Tc discharges from Sellafield. Assuming that the rate and extent of 99Tc remobilisation follows a similar pattern to that previously observed for caesium ( 137Cs), then the half-time for redissolution of 99Tc bound to sedimentary material in the Irish Sea is likely to be of the order of several tens of years. It is probable that small but nevertheless measurable 99Tc contamination of local seafood will persist for several decades, due to this secondary source.
Wang, Ai-Jun; Kawser, Ahmed; Xu, Yong-Hang; Ye, Xiang; Rani, Seema; Chen, Ke-Liang
2016-01-01
Heavy metal contamination of aquatic environment has attracted global attention owing to its abundance, persistence, and environmental toxicity, especially in developing countries like Bangladesh. Five heavy metals, namely chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) were investigated in surface and core sediments of the Karnaphuli River (KR) estuary in Chittagong, Bangladesh, in order to reveal the heavy metal contamination history in estuarine sediments and its response to catastrophic events and human activities. The surface sediment was predominantly composed of silt and sand, and the surface sediment was contaminated with Cr and Pb. Based on the 210 Pb chronology, the sedimentation rate in the inter-tidal zone of KR estuary was 1.02 cm/a before 2007, and 1.14 cm/a after 2008. The core sediment collected from 8 to 20 cm below the surface mainly originated from terrestrial materials induced by catastrophic events such as cyclone, heavy rainfall and landslides in 2007 and 2008. The values of contamination factor ( CF ) showed that the sediment became moderately contaminated with Cr and Pb in the last 30 years. The variation and accumulation of heavy metals in core sediment before 2000 was mainly related to natural variations in sediment sources; however, in subsequent years, the anthropogenic inputs of heavy metals have increased due to rapid physical growth of urban and industrial areas in the Chittagong city. In general, the accumulation pattern of heavy metals after normalization to Aluminum in sediments of KR estuary indicated an accelerated rate of urbanization and industrialization in the last 30 years, and also suggested the influence of natural catastrophic event on estuarine environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santschi, P.H.; Allison, M.A.; Asbill, S.
1999-02-01
Mercury was released in the late 1960s from a chloralkali facility managed by ALCOA and deposited into sediments of Lavaca Bay, TX. Sediments have recorded this event as a well-defined subsurface concentration maximum. Radionuclide, mercury, X-radiography, and grain size data from sediment cores taken in 1997 at 15 stations in Lavaca bay were used to assess sediment and Hg movements in the bay. Sediment accumulation rates were calculated from bomb fallout nuclide ({sup 137}Cs, {sup 239,240}Pu) peaks in 1963 and from the steady-state delivery of {sup 210}Pb from the atmosphere. Sedimentation rates are highest at near-shore sites near the ALCOAmore » facility and generally decrease away from shore. Sedimentation rates in some areas are likely influenced by anthropogenic activities such as dredging. Particle reworking, as assessed from {sup 7}Be measurements, is generally restricted to the upper 2--7 cm of sediments. Numerical simulations of Hg profiles using measured sedimentation and mixing parameters indicate that at most sites high remnant mercury concentrations at 15--60 cm depth cannot supply substantial amounts of Hg to surface sediments. Assuming no future Hg supplies, Hg concentrations in surface sediments are predicted to decrease exponentially with a recovery half-time of 4 {+-} 2 years.« less
NASA Astrophysics Data System (ADS)
Schoellhamer, D. H.; Manning, A. J.; Work, P. A.
2015-12-01
Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.
Trawling-induced alterations of deep-sea sediment accumulation rates during the Anthropocene
NASA Astrophysics Data System (ADS)
Puig, P.; Paradis, S.; Masque, P.; Martin, J.; Juan, X.; Palanques, A.
2015-12-01
Commercial bottom trawling causes direct physical disturbance of the marine sedimentary environments by scraping and ploughing the seabed, generating periodic resuspension of surface sediments. However, the quantification of the sediment that is removed by trawling and exported across the continental margin remains largely unaddressed, and the preservation of the signal of such impacts in the geological record have been mostly overlooked. The analysis of sediment cores collected along the Catalan margin (NW Mediterranean) has allowed evaluating the contribution of this anthropogenic activity to the present-day sediment dynamics. Sediment cores at intensively trawled sites are characterized by over-consolidated sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sedimentary deposits. In turn, combined 210Pb and 137Cs chronologies indicate a significant increase of sediment accumulation rates within submarine canyon environments since the 1970s, coincidently with a strong impulse in the industrialization of the trawling fleets of this region. Two sampling sites that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied 1-2 decades after the first studies and revealed a second and even larger increase of sediment accumulation rates (>2 cm/y) occurring at the beginning of the XXI century. This recent change has been attributed to a preferential displacement of the trawling fleet towards fishing grounds surrounding submarine canyons and, also, to technical improvements in trawling vessels, presumably related to financial subsidies provided to the fishing sector. The alteration of sediment accumulation rates described in this continental margin may occur in many regions of the World's oceans given the wide geographical distribution of this human activity, and therefore, it could represent a potential marker of the Anthropocene in deep-sea environments.
NASA Astrophysics Data System (ADS)
Yu, Fengling; Zong, Yongqiang; Lloyd, Jeremy M.; Huang, Guangqing; Leng, Melanie J.; Kendrick, Christopher; Lamb, Angela L.; Yim, Wyss W.-S.
2010-05-01
Preservation of organic matter in estuarine and coastal areas is an important process in the global carbon cycle. This paper presents bulk δ 13C and C/N of organic matter from source to sink in the Pearl River catchment, delta and estuary, and discusses the applicability of δ 13C and C/N as indicators for sources of organic matter in deltaic and estuarine sediments. In addition to the 91 surface sediment samples, other materials collected in this study cover the main sources of organic material to estuarine sediment. These are: terrestrial organic matter (TOM), including plants and soil samples from the catchment; estuarine and marine suspended particulate organic carbon (POC) from both summer and winter. Results show that the average δ 13C of estuarine surface sediment increases from -25.0 ± 1.3‰ in the freshwater environment to -21.0 ± 0.2‰ in the marine environment, with C/N decreasing from 15.2 ± 3.3 to 6.8 ± 0.2. In the source areas, C 3 plants have lower δ 13C than C 4 plants (-29.0 ± 1.8‰ and -13.1 ± 0.5‰ respectively). δ 13C increases from -28.3 ± 0.8‰ in the forest soil to around -24.1‰ in both riverbank soil and mangrove soil due to increasing proportion of C 4 grasses. The δ 13C POC increases from -27.6 ± 0.8‰ in the freshwater areas to -22.4 ± 0.5‰ in the marine-brackish-water areas in winter, and ranges between -24.0‰ in freshwater areas and -25.4‰ in brackish-water areas in summer. Comparison of the δ 13C and C/N between the sources and sink indicates a weakening TOM and freshwater POC input in the surface sedimentary organic matter seawards, and a strengthening contribution from the marine organic matter. Thus we suggest that bulk organic δ 13C and C/N analysis can be used to indicate sources of sedimentary organic matter in estuarine environments. Organic carbon in surface sediments derived from anthropogenic sources such as human waste and organic pollutants from industrial and agricultural activities accounts for less than 10% of the total organic carbon (TOC). Although results also indicate elevated δ 13C of sedimentary organic matter due to some agricultural products such as sugarcane, C 3 plants are still the dominant vegetation type in this area, and the bulk organic δ 13C and C/N is still an effective indicator for sources of organic matter in estuarine sediments.
Sources of mercury in sediments, water, and fish of the lakes of Whatcom County, Washington
Paulson, Anthony J.
2004-01-01
Concerns about mercury (Hg) contamination in Lake Whatcom, Washington, were raised in the late 1990s after a watershed protection survey reported elevated concentrations of Hg in smallmouth bass. The U.S. Geological Survey, the Whatcom County Health Department, and the Washington State Department of Ecology (Ecology) cooperated to develop a study to review existing data and collect new data that would lead to a better understanding of Hg deposition to Lake Whatcom and other lakes in Whatcom County, Washington. A simple atmospheric deposition model was developed that allowed comparisons of the deposition of Hg to the surfaces of each lake. Estimates of Hg deposition derived from the model indicated that the most significant deposition of Hg would have occurred to the lakes north of the City of Bellingham. These lakes were in the primary wind pattern of two municipal waste incinerators. Of all the lakes examined, basin 1 of Lake Whatcom would have been most affected by the Hg emissions from the chlor-alkali plant and the municipal sewage-sludge incinerator in the City of Bellingham. The length-adjusted concentrations of Hg in largemouth and smallmouth bass were not related to estimated deposition rates of Hg to the lakes from local atmospheric sources. Total Hg concentrations in the surface sediments of Lake Whatcom are affected by the sedimentation of fine-grained particles, whereas organic carbon regulates the concentration of methyl-Hg in the surface sediments of the lake. Hg concentrations in dated sediment core samples indicate that increases in Hg sedimentation were largest during the first half of the 20th century. Increases in Hg sedimentation were smaller after the chlor-alkali plant and the incinerators began operating between 1964 and 1984. Analysis of sediments recently deposited in basin 1 of Lake Whatcom, Lake Terrell, and Lake Samish indicates a decrease in Hg sedimentation. Concentrations of Hg in Seattle precipitation and in tributary waters were used to calculate current (2002-03) loadings of Hg to Lake Whatcom. Hg in tributaries contributed 59 percent of the total Hg, whereas non-local atmospheric deposition was estimated to have contributed 41 percent of the 303 grams of Hg entering Lake Whatcom each year. However, these inputs cannot be verified without a better understanding of the sources of sediment to Lake Whatcom.
Landmeyer, James E.; Garigen, Thomas J.
2016-06-24
The positive relation observed between turbidity and Enterococcus concentrations in surface water at the water-quality data collection station located in the channel that drains a freshwater swamp may be attributed to bacterial survival in the abundant channel bed sediments that characterized this more naturalized area. Surface-water bed sediments collected near each water-quality data collection station and the surf zone were incubated in static microcosms in the laboratory and analyzed for Enterococcus concentrations over time. Enterococcus concentrations continued to persist in bed sediments collected in the channel that drains the swamp even after almost 4 months of incubation. Conversely, enterococci were not observed to persist in bed sediments characterized by high specific conductance. Although it is currently (2016) unknown whether this persistence of enterococci demonstrates growth or viability, the data indicate that enterococci can exist in channel bed-sediment environments outside of a host for a long time. This observation confirms previous reports that challenge the use of Enterococcus concentrations as an indicator of the recent introduction of fecal-related material and the associated acute risk to other pathogens.
Zhang, Ting; Yang, Wen-Long; Chen, She-Jun; Shi, Dian-Long; Zhao, Hu; Ding, Yi; Huang, Ye-Ru; Li, Nan; Ren, Yue; Mai, Bi-Xian
2014-08-01
Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.
NASA Astrophysics Data System (ADS)
Hu, Yanbing; Sun, Shan; Song, Xiukai; Ma, Jianxin; Ru, Shaoguo
2015-04-01
The distribution of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in the surface seawater and sediment of Jincheng Bay mariculture area were investigated in the present study. The concentration of total HCHs and DDTs ranged from 2.98 to 14.87 ng L-1 and were < 0.032 ng L-1, respectively, in surface seawater, and ranged from 5.52 to 9.43 and from 4.11 to 6.72 ng g-1, respectively, in surface sediment. It was deduced from the composition profile of HCH isomers and DDT congeners that HCH residues derived from a mixture of technical-grade HCH and lindane whereas the DDT residues derived from technical-grade DDT and dicofol. Moreover, both HCH and DDT residues may mainly originate from historical inputs. The hazard quotient of α-HCH, β-HCH, γ-HCH and δ-HCH to marine species was 0.030, 0.157, 3.008 and 0.008, respectively. It was estimated that the overall probability of adverse biological effect from HCHs was less than 5%, indicating that its risk to seawater column species was low. The threshold effect concentration exceeding frequency of γ-HCH, p, p'-DDD, p, p'-DDE and p, p'-DDT in sediment ranged from 8.3% to 100%, and the relative concentration of the HCH and DDT mixture exceeded their probable effect level in sediment. These findings indicated that the risk to marine benthos was high and potentially detrimental to the safety of aquatic products, e.g., sea cucumber and benthic shellfish.
Agunbiade, Foluso O; Moodley, Brenda
2016-01-01
The paucity of information on the occurrence of pharmaceuticals in the environment in African countries led the authors to investigate 8 acidic pharmaceuticals (4 antipyretics, 3 antibiotics, and 1 lipid regulator) in wastewater, surface water, and sediments from the Msunduzi River in the province of KwaZulu-Natal, South Africa, using solid-phase extraction (SPE) and liquid chromatography-mass spectrometry (LC/MS). The method recoveries, limits of detection (LOD), and limits of quantification were determined. The method recoveries were 58.4% to 103%, and the LODs ranged between 1.16 ng/L and 29.1 ng/L for water and between 0.58 ng/g and 14.5 ng/g for sediment. The drugs were all present in wastewater and in most of the surface water and sediment samples. Aspirin was the most abundant pharmaceutical observed, 118 ± 0.82 μg/L in wastewater influent, and the most observed antibiotic was nalidixic acid (25.2-29.9 μg/L in wastewater); bezafibrate was the least observed. The distribution pattern of the antipyretic in water indicates more impact in suburban sites. The solid-liquid partitioning of the pharmaceuticals between sediment and water, measured as the distribution coefficient (log KD ) gave an average accumulation magnitude of 10× to 32× in sediments than in water. The downstream distribution patterns for both water and sediment indicate discharge contributions from wastewater, agricultural activities, domestic waste disposal, and possible sewer system leakages. Although concentrations of the pharmaceuticals were comparable with those obtained from some other countries, the contamination of the present study site with pharmaceuticals has been over time and continues at present, making effective management and control necessary. © 2015 SETAC.
The effects of clam fishing on the properties of surface sediments in the lagoon of Venice, Italy
NASA Astrophysics Data System (ADS)
Aspen, R. J.; Vardy, S.; Perkins, R. G.; Davidson, I. R.; Bates, R.; Paterson, D. M.
Harvesting of clams(Tapes philippinarum) has important socio-economic and environmental implications for the Venice lagoon area, Italy. Clam harvesting disrupts the structure of benthic communities but the effects upon sediment stability and surface structure remain unclear. The effect of clam fishing on the sediment properties of the lagoon bed was investigated at two different sites, a heavily fished site (San Angelo) and an infrequently fished site (San Giaccomo). Both sites were assessed for immediate impacts of fishing, using indicators of biogenic sediment stabilisation. Samples were taken at three points along three 100 m linear transects at each site prior to and post fishing. Paired samples were also taken parallel to each transect at a distance of 5m, to allow for temporal variation. Sediment stability, measured with a cohesive strength meter (CSM), was significantly higher at the less impacted site (F1,34 = 6.23, p < 0.018), was correlated with indicators of biogenic sediment stabilisation and decreased by approximately 50% following the trawling event. Concomitant decreases in chlorophyll a (chl a), colloidal-S carbohydrate and dry bulk density were observed on the transect after fishing but not adjacent to the fishing path. At the heavily impacted site, clam fishing by trawling had, in general, no significant effect on the biological and physical properties (although chl a did decrease significantly after fishing). The lack of a significant impact from fishing at the impacted site was attributed to the higher frequency of fishing occurring in this area. Hence, frequent fishing of the lagoon prevents establishment of biotic communities, preventing biostabilisation and thus reduces the stability of the surface sediment.
Farooq, S H; Chandrasekharam, D; Berner, Z; Norra, S; Stüben, D
2010-11-01
In the wake of the idea that surface derived dissolved organic carbon (DOC) plays an important role in the mobilization of arsenic (As) from sediments to groundwater and may provide a vital tool in understanding the mechanism of As contamination (mobilization/fixation) in Bengal delta; a study has been carried out. Agricultural fields that mainly cultivate rice (paddy fields) leave significantly large quantities of organic matter/organic carbon on the surface of Bengal delta which during monsoon starts decomposing and produces DOC. The DOC thus produced percolates down with rain water and mobilizes As from the sediments. Investigations on sediment samples collected from a paddy field clearly indicate that As coming on to the surface along with the irrigation water accumulates itself in the top few meters of sediment profile. The column experiments carried out on a 9 m deep sediment profile demonstrates that DOC has a strong potential to mobilize As from the paddy fields and the water recharging the aquifer through such agricultural fields contain As well above the WHO limit thus contaminating the shallow groundwater. Experiment also demonstrates that decay of organic matter induces reducing condition in the sediments. Progressively increasing reducing conditions not only prevent the adsorption of As on mineral surfaces but also cause mobilization of previously sorbed arsenic. There seems to be a cyclic pattern where As from deeper levels comes to the surface with irrigational water, accumulates itself in the sediments, and ultimately moves down to the shallow groundwater. The extensive and continual exploitation of intermediate/deep groundwater accelerates this cyclic process and helps in the movement of shallow contaminated groundwater to the deeper levels. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Wei
2018-05-01
The temporal and spatial distribution of total petroleum hydrocarbons (TPH) and four heavy metals in the surface sediments of Caofeidian Sea Area during 2011–2016 was investigated. The sediment concentration of TPH, Cu, Zn, Pb and Cd were 10.07-186.4 mg/L, 16.5-84.9 mg/L, 11.1-135 mg/L, 6.8-24.6 mg/L, and 0.07-0.199 mg/L, respectively. The pollution level in Caofeidian sea area is lower than those in other area in China. These results reached the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. In addition, TPH at all stations decreased during 2011-2016. The highest values obtained were at stations near the port areas and estuary region.
Swept Away: Resuspension of Bacterial Mats Regulates Benthic-Pelagic Exchange of Sulfur
NASA Astrophysics Data System (ADS)
Grant, Jonathan; Bathmann, Ulrich V.
1987-06-01
Filaments and extracellular material from colorless sulfur bacteria (Beggiatoa spp.) form extensive white sulfur mats on surface sediments of coastal, oceanic, and even deep-sea environments. These chemoautotrophic bacteria oxidize soluble reduced sulfur compounds and deposit elemental sulfur, enriching the sulfur content of surface sediment fivefold over that of deeper sediments. Laboratory flume experiments with Beggiatoa mats from an intertidal sandflat (Nova Scotia) demonstrated that even slight erosion of sediment causes a flux of 160 millimoles of sulfur per square meter per hour, two orders of magnitude greater than the flux produced by sulfur transformations involving either sulfate reduction or sulfide oxidation by benthic bacteria. These experiments indicate that resuspension of sulfur bacterial mats by waves and currents is a rapid mechanism by which sediment sulfur is recycled to the water column. Benthic communities thus lose an important storage intermediate for reduced sulfur as well as a high-quality bacterial food source for benthic grazers.
Hou, Dekun; He, Jiang; Lü, Changwei; Sun, Ying; Zhang, Fujin; Otgonbayar, Khureldavaa
2013-01-01
Surface sediment and water samples were collected from Daihai Lake to study the biogeochemical characteristics of nitrogen and phosphorus, to estimate the loads of these nutrients, and to assess their effects on water quality. The contents and spatial distributions of total phosphorus (TP), total nitrogen (TN), and different nitrogen forms in sediments were analyzed. The results showed that concentrations of TN and TP in surface sediments ranged from 0.27 to 1.78 g/kg and from 558.31 to 891.29 mg/kg, respectively. Ratios of C : N ranged between 8.2 and 12.1, which indicated that nitrogen accumulated came mainly from terrestrial source. Ratios of N : P in all sampling sites were below 10, which indicated that N was the limiting nutrient for algal growth in this lake. Effects of environment factors on the release of nitrogen and phosphorus in lake sediments were also determined; high pH values could encourage the release of nitrogen and phosphorus. Modified Carlson's trophic state index (TSIM) and comprehensive trophic state index (TSIC) were applied to ascertain the trophic classification of the studied lake, and the values of TSIM and TSIC ranged from 53.72 to 70.61 and from 47.73 to 53.67, respectively, which indicated that the Daihai Lake was in the stage of hypereutropher. PMID:24023535
NASA Astrophysics Data System (ADS)
Christanto, N.; Sartohadi, J.; Setiawan, M. A.; Shrestha, D. B. P.; Jetten, V. G.
2018-04-01
Land use change influences the hydrological as well as landscape processes such as runoff and sediment yields. The main objectives of this study are to assess the land use change and its impact on the runoff and sediment yield of the upper Serayu Catchment. Land use changes of 1991 to 2014 have been analyzed. Spectral similarity and vegetation indices were used to classify the old image. Therefore, the present and the past images are comparable. The influence of the past and present land use on runoff and sediment yield has been compared with field measurement. The effect of land use changes shows the increased surface runoff which is the result of change in the curve number (CN) values. The study shows that it is possible to classify previously obtained image based on spectral characteristics and indices of major land cover types derived from recently obtained image. This avoids the necessity of having training samples which will be difficult to obtain. On the other hand, it also demonstrates that it is possible to link land cover changes with land degradation processes and finally to sedimentation in the reservoir. The only condition is the requirement for having the comparable dataset which should not be difficult to generate. Any variation inherent in the data which are other than surface reflectance has to be corrected.
Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia
Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.
2012-01-01
Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.
Mangrove sedimentation and response to relative sea-level rise
Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.
2016-01-01
Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.
Muddy marine sediments are gels
NASA Astrophysics Data System (ADS)
Dorgan, K. M.; Clemo, W. C.; Barry, M. A.; Johnson, B.
2016-02-01
Marine sediments cover 70% of the earth's surface, are important sites of carbon burial and nutrient regeneration, and provide habitat for diverse and abundant infaunal communities. The majority of these sediments are muds, in which bioturbation affects sediment structure and geochemical gradients. How infaunal activites result in particle mixing depends on the mechanical properties of muddy sediments. At the scale of burrowing animals, muds are elastic solids. Animals move through these elastic muds by extending crack-shaped burrows by fracture. The underlying mechanism driving this elasticity, however, has not been explicitly illustrated. Here, we test the hypothesis that the elastic behavior of muddy sediments is disrupted by removal of organic material by measuring fracture toughness and stiffness of manipulated and control sediments. Our results indicate that the mechanical responses of sediments to forces are governed by the muco-polymeric matrix of organic material. Similar effects of organic material oxidation were not observed in sands, indicating a clear mechanical distinction between fine- and coarse-grained sediments. Muddy sediments are gels, not fluids or granular materials, and models of how sediments respond to forces imposed by, e.g., organisms, gases, and ambient water should explicitly consider the role of organic material.
Dynamics of the Sediment Plume Over the Yangtze Bank in the Yellow and East China Seas
NASA Astrophysics Data System (ADS)
Luo, Zhifa; Zhu, Jianrong; Wu, Hui; Li, Xiangyu
2017-12-01
A distinct sediment plume exists over the Yangtze Bank in the Yellow and East China Seas (YECS) in winter, but it disappears in summer. Based on satellite color images, there are two controversial viewpoints about the formation mechanism for the sediment plume. One viewpoint is that the sediment plume forms because of cross-shelf sediment advection of highly turbid water along the Jiangsu coast. The other viewpoint is that the formation is caused by local bottom sediment resuspension and diffused to the surface layer through vertical turbulent mixing. The dynamic mechanism of the sediment plume formation has been unclear until now. This issue was explored by using a numerical sediment model in the present paper. Observed wave, current, and sediment data from 29 December 2016 to 16 January 2017 were collected near the Jiangsu coast and used to validate the model. The results indicated that the model can reproduce the hydrodynamic and sediment processes. Numerical experiments showed that the bottom sediment could be suspended by the bottom shear stress and diffuse to the surface layer by vertical mixing in winter; however, the upward diffusion is restricted by the strong stratification in summer. The sediment plume is generated locally due to bottom sediment resuspension primarily via tide-induced bottom shear stress rather than by cross-shelf sediment advection over the Yangtze Bank.
Indicators of sewage contamination in sediments beneath a deep-ocean dump site off New York
Bothner, Michael H.; Takada, H.; Knight, I.T.; Hill, R.T.; Butman, B.; Farrington, J.W.; Colwell, R.R.; Grassle, J. F.
1994-01-01
The world's largest discharge of municipal sewage sludge to surface waters of the deep sea has caused measurable changes in the concentration of sludge indicators in sea-floor sediments, in a spatial pattern which agrees with the predictions of a recent sludge deposition model. Silver, linear alkylbenzenes, coprostanol, and spores of the bacterium Clostridium perfringens, in bottom sediments and in near-bottom suspended sediment, provide evidence for rapid settling of a portion of discharged solids, accumulation on the sea floor, and biological mixing beneath the water sediment interface. Biological effects include an increase in 1989 of two species of benthic polychaete worm not abundant at the dump site before sludge dumping began in 1986. These changes in benthic ecology are attributed to the increased deposition of utilizable food in the form of sludge-derived organic matter.
Codling, Garry; Sturchio, Neil C; Rockne, Karl J; Li, An; Peng, H; Tse, Timothy J; Jones, Paul D; Giesy, John P
2018-06-01
The temporal and spatial trends in sediment of 22 poly- and perfluorinated (PFAS) compounds were investigated in the southern Great Lakes Erie and Ontario as well as Lake St. Clair. Surface concentrations measured by Ponar grab samples indicated a trend for greater concentrations near to urban sites. Mean concentrations ∑ 22 PFAS were 15.6, 18.2 and 19 ng g -1 dm for Lakes St. Clair, Erie and Ontario, respectively. Perfluoro-n-butanoic acid (PFBA) and Perfluoro-n-hexanoic acid (PFHxA) were frequently determined in surface sediment and upper core samples indicating a shift in use patterns. Where PFBA was identified it was at relatively great concentrations typically >10 ng g -1 dm. However as PFBA and PFHxA are less likely to bind to sediment they may be indicative of pore water concentrations Sedimentation rates between Lake Erie and Lake Ontario differ greatly with greater rates observed in Lake Erie. In Lake Ontario, in general concentrations of PFAS observed in core samples closely follow the increase in use along with an observable change due to regulation implementation in the 1970s for water protection. However some of the more water soluble PFAS were observed in deeper core layers than the time of production could account for, indicating potential diffusion within the sediment. Given the greater sedimentation rates in Lake Erie, it was hoped to observe in greater resolution changes since the mid-1990s. However, though some decrease was observed at some locations the results are not clear. Many cores in Lake Erie had clearly observable gas voids, indicative of gas ebullition activity due to biogenic production, there were also observable mussel beds that could indicate mixing by bioturbation of core layers. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.
2013-09-01
As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (<2 cm) of Mn oxihydroxides. We found strong regional differences in inorganic carbon concentrations, with sites from the Canadian Archipelago and Lancaster Sound displaying elevated values (2-7 wt %) and highly depleted 14C compositions consistent with inputs from bedrock carbonates. Organic carbon:nitrogen ratios, stable carbon isotopes, and terrigenous organic biomarkers (lignin phenols and cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.
Multipolarization P-, L-, and C-band radar for coastal zone mapping - The Louisiana example
NASA Technical Reports Server (NTRS)
Wu, Shih-Tseng
1989-01-01
Multipolarization P-, L-, and C-band airborne SAR data sets were acquired over a coastal zone and a forested wetland of southern Louisiana. The data sets were used with field-collected surface-parameter data in order to determine the value of SAR systems in assessing and mapping coastal-zone surface features. The coastal-zone surface features in this study are sediments, sediment distribution, and the formation of new isles and banks. Results of the data analysis indicate that the P-band radar with 68-cm wavelength is capable of detecting the submerged sediment if the area is very shallow (i.e., a water depth of less than one meter). The penetration capability of P-band radar is also demonstrated in the forested wetland area. The composition and condition of the ground surface can be detected, as well as the standing water beneath dense tree leaves.
NASA Astrophysics Data System (ADS)
Krahforst, C.; Hartman, S.; Sherman, L.; Kehm, K.
2014-12-01
The distribution of trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W, Pb and U) along with Al and Fe and other sediment characteristics in surface sediment and sediment cores from the Chester River - a sub estuary of the Chesapeake Bay located in a predominantly agricultural watershed of Maryland's upper Eastern Shore, USA - have been determined in order to add to the understanding of contaminant transport and fate and inform management strategies designed to maintain or improve the ecological condition of estuaries. These analyses coupled with the comparison of elemental analysis of 210Pb - dated sediment cores, main stem water quality surveys, and a review of recent EPA National Coastal Condition Assessment sediment data from Chesapeake Bay provide added information about the roles of local and region scale processes on ecosystem condition. The high amount of suspended sediment in the Chester River (5-20 mg L-1) is an important factor controlling water quality conditions of the Chester River and a prime focus for environmental management of this system. Sources of suspended matter include local runoff, atmospheric deposition, local resuspension, and exchange with the Chesapeake Bay. In principle, each of these sources could be distinguished on the basis of chemical composition of surface sediment. Preliminary results from multivariate analytic models indicate that many of the elements investigated display significant covariance with Al (and other predominantly crustal signatures) which may indicate limited exogenic sources of contamination for sediments of this watershed. For example total Pb concentrations are mostly below the NOAA's low toxic effects level and lower than the median value of NCCA data for the upper Chesapeake suggesting that sediments have significant sources from within the watershed. Further, significant higher concentrations of Sn and Cu coincide with sediment collected in or near marinas and point to localized anthropogenic sources for these elements. Elemental enrichment values relative to Al of Chester River sediments are significantly lower than observations in sediments from Chesapeake Bay overall and may indicate that local watershed management strategies may be effective for improving water and habitat quality of the Chester River.
NASA Astrophysics Data System (ADS)
Yu, Mingjing; Rhoads, Bruce L.
2018-05-01
The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.
NASA Astrophysics Data System (ADS)
Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.
2014-02-01
Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ≤ 1 wt % at 2000 m. Major variability (~ 5 wt %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution) on the shelf and progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to OM enrichment at some sites within the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution.
Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland
NASA Astrophysics Data System (ADS)
Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.
2018-07-01
In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.
Organic carbon burial in fjords: Terrestrial versus marine inputs
NASA Astrophysics Data System (ADS)
Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.
2016-10-01
Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.
NASA Astrophysics Data System (ADS)
Spencer, Kate; Harvey, Gemma; James, Tempest; Simon, Carr; Michelle, Morris
2014-05-01
Saltmarsh restoration undoubtedly provides environmental enhancement, with vegetation quickly re-establishing following the breach of sea walls and subsequent tidal inundation of previously defended areas. Yet evidence increasingly suggests that the restored saltmarshes do not have the same biological characteristics as their natural counterparts (Mossman et al. 2012) and this may be in part be due to physicochemical parameters at the site including anoxia and poor drainage. Hence, restored saltmarshes may not offer the range and quality of ecosystem services anticipated. These environments will have been 'disturbed' by previous land use and there is little understanding of the impacts of this disturbance on the wider hydrogeomorphic and biogeochemical functioning in restored saltmarshes and the implications for saltmarsh vegetation development. This study examines linkages between physical sediment characteristics, sediment structure (using X-ray microtomography), sub-surface hydrology (using pressure transducers and time series analysis), and sediment and porewater geochemistry (major and trace elements, major anions) in sediment cores collected from undisturbed saltmarshes and those restored by de-embankment. Sub-surface sediments in restored saltmarshes have lower organic matter content, lower moisture content and higher bulk density than undisturbed sites. Using X-ray tomography a clear horizon can be observed which separates relict agricultural soils at depth with less dense and structureless sediments deposited since de-embankment. Ratios of open to closed pore space suggest that while undisturbed saltmarshes have the highest porosity, restored saltmarshes have larger void spaces, but limited pore connectivity. Sub-surface hydrological response to tidal flooding was subdued in the restored compared to the undisturbed site, suggesting that porewater flow may be impeded. Time series analysis indicated that flow pathways differ in restored saltmarsh sediments with preferential horizontal flows. The undisturbed saltmarsh displayed typical vertical geochemical sediment profiles. However, in the restored sites total Fe and Mn are elevated at depth indicating an absence of diagenetic cycling, whilst porewater sulphate and nitrate increased at depth suggesting that vertical solute transport is impeded in restored sites. In surface sediments, though total Hg concentrations are similar, Hg methylation rates are significantly higher than in the undisturbed saltmarsh suggesting that surface anoxia and poor drainage may result in increased mobilization and bioavailability of Hg. These findings have implications for the wider biogeochemical ecosystem services offered by saltmarsh restoration and the water-logged, anoxic conditions produced are unsuitable for seedling germination and plant growth. This highlights the need for integrated understanding of physical and biogeochemical processes.
Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke
2014-01-01
To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.
El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla
2015-12-30
In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metal concentrations in surface sediments of Boston Harbor: Changes with time
Bothner, Michael H.; Buchholtz ten Brink, Marilyn R.; Manheim, F.T.
1998-01-01
The concentrations of metals in surface sediments of Boston Harbor have decreased during the period 1977–1993. This conclusion is supported by analysis of: (1) surface sediments collected at monitoring stations in the outer harbor between 1977 and 1993; (2) metal concentration profiles in sediment cores from depositional areas of the harbor; and (3) historical data from a contaminated-sediment database, which includes information on metal and organic contaminants and sediment texture. The background and matrix-corrected concentrations of lead (Pb) measured in the surficial layer (0–2 cm) of cores decreased by an average of 46%±12% among four locations in the outer harbor during the 16 y period. Chromium (Cr), copper (Cu), mercury (Hg), silver (Ag), and zinc (Zn) exhibited similar trends. Results from our sediment sampling are supported by historical data that were compiled from diverse sources into a regional sediment database. This sediment database contains approximately 3000 samples; of these, about 460 samples were collected and analyzed for Cu, Hg, or Zn and many other sediment parameters in Boston Harbor surface sediments between 1971–1993. The database indicates that the concentrations of these three metals also decreased with time in Boston’s Inner Harbor. The decreases in metal concentrations that are observed in more recent years parallel a general decrease in the flux of metals to the harbor, implemented by: (1) ending the sewage sludge discharge to the Harbor in December, 1991; (2) greater source reduction (e.g. recovery of silver from photographic processing) and closing or moving of industries; (3) improvements in wastewater handling and sewage treatment; and (4) diminishing use of lead in gasoline beginning about 1973. Despite the general decrease in metal concentrations in Boston Harbor surface sediments, the concentrations of Ag and Hg measured at some outer harbor stations in 1993 were still at, or above, the level associated with frequent adverse effects to marine organisms (guidelines are: Ag 3.7 μg g−1, Hg 1.17 μg g−1, from Long et al., 1995). Concentrations of the other metals listed were in the range considered to occasionally induce adverse biological effects.
Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout
Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; Romero, Isabel; Moore, Christopher; Reichart, Gert-Jan; Jilbert, Tom; Chanton, Jeff P.; Hastings, David W.; Overholt, Will A.; Marks, Kala P.; Kostka, Joel E.; Holmes, Charles W.; Hollander, David
2015-01-01
The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. Further, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge. PMID:26172639
Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.
Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S
2014-01-01
Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.
Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.
2007-01-01
Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water-ground water connectivity, will be required to develop effective nitrate management strategies. ?? 2007 American Water Resources Association.
Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó
2016-02-16
Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.
Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise
NASA Astrophysics Data System (ADS)
Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung
2010-06-01
The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.
Effect of abalone farming on sediment geochemistry in the Shallow Sea near Wando, South Korea
NASA Astrophysics Data System (ADS)
Kang, Jeongwon; Lee, Yeon Gyu; Jeong, Da Un; Lee, Jung Sick; Choi, Yang Ho; Shin, Yun Kyung
2015-12-01
Wando County has grown up to 93% of the total abalone produced in South Korea since the late 1990s; however, this production has been decreasing in recent years. The objectives of this study were to understand the potential contamination risks of abalone farming and to examine the influence of intensive abalone farming on sediment quality by analyzing grain-size composition, organic matter (total organic carbon (TOC), total nitrogen (TN), total sulfur (TS)) and heavy metal content, pH, and 210Pb geochronology. The results of organic matter analysis from surface and core sediment (length: 64 cm) showed that the area around the abalone farm had oxic marine-to-brackish conditions, but that the area directly below an abalone cage (location 7) had reductive conditions, with a C/S ratio of ~2. The average TN levels in the surface and core sediments were 0.25% and 0.29%, respectively, and this was predominantly due to the use of seaweed for feed. The low sediment pH (surface, 7.23; core, 7.04), indicates that acidification of the bottom sediment has gradually increased since the initiation of abalone farming and is likely due to the continuous accumulation of uneaten feed and feces. Heavy metal pollution was not apparent based on the examination of EF and Igeo, although the excess metal flux of Ni, Pb, Cu, Co, As, and Cd increased toward surface of the sediment core. These sediment changes may be caused by the rapid accumulation (sedimentation rate: 1.45 cm/year) of sludge discharged from the abalone farm and may be controlled by tidal currents, physiography, water depth, and tidal ranges.
Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun
2016-09-01
Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive phosphate, and thereby facilitating phytoplankton growth in water column.
Tracking the Recent and late Pleistocene Azores front by the distribution of planktic foraminifers
NASA Astrophysics Data System (ADS)
Schiebel, Ralf; Schmuker, Barbara; Alves, Mário; Hemleben, Christoph
2002-11-01
South of the Azores Islands, the population dynamics and sedimentation of planktic foraminifers are significantly influenced by the hydrography of the Azores Front Current System (AFCS). Planktic foraminifers collected from the water column during seasonal cruises across the Azores Front, record the temporal and spatial scale of hydrographic and faunal dynamics within this area. Surface sediment analysis reveals the presence of a large number of pteropod shells indicating preservation of aragonite and, therefore, little alteration of the calcitic foraminiferal tests. Consequently, most of the seasonal and spatial variability of the Azores Front is expected to be recorded by the planktic foraminiferal assemblages present within the surface sediment. In particular, Globorotalia scitula, a subsurface-dwelling species, decreases significantly in abundance to the south of the Azores Front, and shows fine-scale changes at the glacial/interglacial time scale. Enhanced faunal proportions of G. scitula in a sediment core that is located to the south of the modern Azores Current indicate a southward shift of the Azores Front Current System during the glacials and the presence of a transitional water mass at the Azores region.
Hydroxyatrazine in soils and sediments
Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.
1999-01-01
Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
NASA Astrophysics Data System (ADS)
Williams, Gwyneth; Marcantonio, Franco; Turekian, Karl K.
1997-04-01
The Os concentration and 187Os/ 186Os distributions in surface sediments of Long Island Sound (eastern U.S.) provide a way of determining the sources and estuarine transport of Os. The contribution of anthropogenic Os from sewer outfalls from the New York City region supplies a tracer with a characteristic 187Os/ 186Os of about 1. The Os concentration of the bulk surface sediment increases steeply moving toward New York City in the westernmost Sound and generally follows the concentration of organic carbon. The 187Os/ 186Os ratio of bulk surface sediment increases from west to east in the westernmost part of the Sound and is effectively constant in the central Sound. We interpret these results as indicating that the surface bulk sediments of the Sound contain a low 187Os/ 186Os component, perhaps as a reduced coating associated with organic remains from sewer outfalls. The acid hydrogen peroxide leach fraction has an average 187Os/ 186Os of 9.5 in the central Sound, significantly higher than both the bulk sediment value and the probable sea water value of about 8. The leach fraction in the westernmost part of the traverse is less radiogenic than the central Sound and follows the Os wsotope trend of the bulk sediment. Liquid effluent from a New York City sewer outfall contains 30 pg l -1 of dissolved Os with a 187Os/ 186Os of about 2.5, consistent with its being an end-member of the west-east sediment pattern recorded in the leach fractions of the westernmost cores. The leachable Os from the central Sound predominantly reflects Os in ferromanganese oxyhydroxide coatings from continentally derived sediments with 187Os/ 186Os ratios more radiogenic than seawater. The distribution patterns of anthropogenic and natural Os, with their characteristic isotopic signatures in the Sound, and the insights gained from the behavior of other particle-reactive species, indicates that very little Os in solution may pass through the estuarine gauntlet.
Modeling grain size adjustments in the downstream reach following run-of-river development
NASA Astrophysics Data System (ADS)
Fuller, Theodore K.; Venditti, Jeremy G.; Nelson, Peter A.; Palen, Wendy J.
2016-04-01
Disruptions to sediment supply continuity caused by run-of-river (RoR) hydropower development have the potential to cause downstream changes in surface sediment grain size which can influence the productivity of salmon habitat. The most common approach to understanding the impacts of RoR hydropower is to study channel changes in the years following project development, but by then, any impacts are manifest and difficult to reverse. Here we use a more proactive approach, focused on predicting impacts in the project planning stage. We use a one-dimensional morphodynamic model to test the hypothesis that the greatest risk of geomorphic change and impact to salmon habitat from a temporary sediment supply disruption exists where predevelopment sediment supply is high and project design creates substantial sediment storage volume. We focus on the potential impacts in the reach downstream of a powerhouse for a range of development scenarios that are typical of projects developed in the Pacific Northwest and British Columbia. Results indicate that increases in the median bed surface size (D50) are minor if development occurs on low sediment supply streams (<1 mm for supply rates 1 × 10-5 m2 s-1 or lower), and substantial for development on high sediment supply streams (8-30 mm for supply rates between 5.5 × 10-4 and 1 × 10-3 m2 s-1). However, high sediment supply streams recover rapidly to the predevelopment surface D50 (˜1 year) if sediment supply can be reestablished.
Adsorption behavior of lead on aquatic sediments contaminated with cerium dioxide nanoparticles.
Wang, Chao; Fan, Xiulei; Wang, Peifang; Hou, Jun; Ao, Yanhui; Miao, Lingzhan
2016-12-01
Aquatic sediments serve as an important sink for engineered nanomaterials (ENMs), such as metal oxide nanoparticles (MeO NPs) and carbon nanotubes (CNTs). Owing to their remarkable properties, ENMs demonstrate significant potential to disturb the adsorption behavior of other contaminants in aquatic sediments, thereby altering the bioavailability and toxicity of these contaminants. Thus far, most studies have investigated the effect of CNTs on the adsorption of other contaminants on sediments. Cerium dioxide nanoparticles (CeO 2 NPs), as one of the important MeO NPs, are also inevitably discharged into aquatic sediments because of their widespread use. In this study, we investigated the adsorption behavior of Pb 2+ on sediments spiked with CeO 2 NPs at a weight ratio of 5.0%. The results showed that the adsorption rates at three stages occurring during adsorption clearly increase for sediments contaminated with CeO 2 NPs. Moreover, the results obtained from the adsorption isotherms indicated that the Langmuir isotherm model best fits the isotherm data for both sediments and those contaminated with CeO 2 NPs. After spiking the sediments with CeO 2 NPs, the theoretical maximum monolayer adsorption capacity (Q max ) for Pb 2+ increased from 4.433 to 4.995 mg/g and the Langmuir isotherm coefficient (K L ) decreased from 8.813 to 7.730 L/g. The effects of CeO 2 NPs on the surface charge and pore surface properties of sediments were also studied as these properties affect the adsorption of several chemicals in sediments. The results showed that pH zpc , S BET , S ext , and average pore size of sediments clearly decrease for sediments contaminated with CeO 2 NPs. Hence, the strong adsorption capacity of CeO 2 NPs and the changes of sediment surface charge and pore surface properties caused by CeO 2 NPs are important factors affecting the adsorption behavior of Pb 2+ . The potential risk of Pb 2+ in aquatic environment may increase with CeO 2 NPs buried in sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Behavior of medically-derived 131I in the tidal Potomac River.
Rose, Paula S; Smith, Joseph P; Cochran, J Kirk; Aller, Robert C; Swanson, R Lawrence
2013-05-01
Iodine-131 (t1/2=8.04 d) is administered to patients for treatment of thyroid disorders, excreted by patients and discharged to surface waters via sewage effluent. Radionuclides generally behave like their stable analogs; therefore, medically-derived (131)I is useful as a transport-reaction tracer of anthropogenic inputs and the aquatic biogeochemistry of iodine. Iodine-131 was measured in Potomac River water and sediments in the vicinity of the Blue Plains Water Pollution Control Plant (WPCP), Washington, DC, USA. Concentrations measured in sewage effluent from Blue Plains WPCP and in the Potomac River suggest a relatively continuous source of this radionuclide. The range of (131)I concentrations detected in surface water was 0.076±0.006 to 6.07±0.07 Bq L(-1). Iodine-131 concentrations in sediments ranged from 1.3±0.8 to 117±2 Bq kg(-1) dry weight. Partitioning in the sewage effluent from Blue Plains and in surface waters indicated that (131)I is associated with colloidal and particulate organic material. The behavior of medically-derived (131)I in the Potomac River is consistent with the nutrient-like behavior of natural iodine in aquatic environments. After discharge to the river via sewage effluent, it is incorporated into biogenic particulate material and deposited in sediments. Solid phase sediment profiles of (131)I indicated rapid mixing or sedimentation of particulate debris and diagenetic remineralization and recycling on short time scales. Copyright © 2013. Published by Elsevier B.V.
Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007
Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.
2009-01-01
The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Canelas, Ricardo B.; Huhn, Katrin
2017-04-01
With experimental techniques it is difficult to measure flow characteristics, e.g. the velocity of pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the effect of fluid flow at the surface and in the interior of a sediment bed on particle motion is not yet fully understood. Numerical models may help to overcome these problems. In this study Smoothed Particle Hydrodynamics (SPH) was chosen since it is ideally suited to simulate flows in sediment beds, at a high temporal and spatial resolution. The solver chosen is DualSPHysics 4.0 (www.dual.sphysics.org), since this is validated for a range of flow conditions. For the present investigation a 3D numerical flow channel was generated with a length of 15.0 cm, a width of 0.5 cm and a height of 4.0 cm. The entire domain was flooded with 8 million fluid particles, while 400 mobile sediment particles were deposited under applied gravity (grain diameter D50=10 mm) to generate randomly packed beds. Periodic boundaries were applied to the sidewalls to mimic an endless flow. To drive the flow, an acceleration perpendicular to the bed was applied to the fluid, reaching a target value of 0.3 cm/s, simulating 12 seconds of real time. Comparison of the model results to the law of the wall showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid surrounding the sediment particles revealed critical threshold velocities, subsequently resulting in the initiation of motion due to drag. Sediment flux measurements indicated that with increasing simulation time a larger quantity of sediment particles was transported at the direct vicinity of the bed, whereas the amount of transported particles along with flow speed values, within the pore spaces, decreased with depth. Moreover, sediment - sediment particle collisions at the sediment surface lead to the opening of new pore spaces. As a result, higher quantities of fluid particles infiltrated through the larger interstices between the sediment particles, which successively increased the potential for the initiation of motion of sediment particles located in the deeper horizons. This effect has been underestimated in prior studies and highlights the importance of sediment - sediment particle collision and fluid infiltration as an important characteristic that can eventually help to better understand the development of the shear layer but also various sediment morphological features.
NASA Astrophysics Data System (ADS)
Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung
2017-04-01
The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.
NASA Astrophysics Data System (ADS)
Kaminski, Michael; Frank, Niessen
2015-04-01
The Hovgård Ridge is situated in Fram Strait, west of Spitsbergen. The ridge either represents a submerged fragment of continental crust or an upwarped fragmant of ocean crust within the Fram Strait. Its crest rises to a water depth of approx. 1170 m. During Expedition 87 of the Icebreaker POLARSTERN in August 2014, a sediment-echosounding profile was recorded and a boxcore station was collected from the crest of Hovgård Ridge at 1169 m water depth. The surficial sediment at this station consists of dark yellowish brown pebbly-sandy mud with a minor admixture of biogenic components in the coarse fraction. Patches of large tubular foraminifera and isolated pebbles were clearly visible on the sediment surface. The sediment surface of the boxcore was covered with patches of large (>1 mm diameter) large tubular astrorhizids belonging mostly to the species Astrorhiza crassatina Brady, with smaller numbers of Saccorhiza, Hyperammina, and Psammosiphonella. Non-tubular species consist mainly of opportunistic forms such as Psammosphaera and Reophax. The presence of large suspension-feeding tubular genera as well as opportunistic forms, as well as sediment winnowing, point to the presence of a deep current at this locality that is strong enough to disturb the benthic fauna. This is confirmed by data obtained from sediment echosounding, which exhibit lateral variation of relative sedimentation rates within the Pleistocene sedimentary drape covering the ridge indicative of winnowing in a south-easterly direction.
Yan, Zhengyu; Liu, Yanhua; Yan, Kun; Wu, Shengmin; Han, Zhihua; Guo, Ruixin; Chen, Meihong; Yang, Qiulian; Zhang, Shenghu; Chen, Jianqiu
2017-10-01
Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQ t < 1.0, and EEQ t < 1.0 ng E 2 /L). Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
NASA Astrophysics Data System (ADS)
Blake, Will H.; Haley, Steve; Smith, Hugh G.; Taylor, Alex; Goddard, Rupert; Lewin, Sean; Fraser, David
2013-04-01
Many sediment fingerprinting studies adopt a black box approach to source apportionment whereby the properties of downstream sediment are compared quantitatively to the geochemical fingerprints of potential catchment sources without consideration of potential signature development or modification during transit. Working within a source-pathway-receptor framework, this study aimed to undertake sediment source apportionment within 6 subcatchments of an agricultural river basin with specific attention to the potential role of contaminants (vehicle emissions and mine waste) in development of stream sediment signatures. Fallout radionuclide (FRN) and geochemical fingerprinting methods were adopted independently to establish source signatures for primary sediment sources of surface and subsurface soil materials under various land uses plus reworked mine and 'secondary' soil material deposited, in transit, along road networks. FRN data demonstrated expected variability between surface soil (137Cs = 14 ± 3 Bq kg-1; 210Pbxs = 40 ± 7 Bq kg-1) and channel bank materials (137Cs = 3 ± 1 Bq kg-1; 210Pbxs = 24 ± 5 Bq kg-1) but road transported soil material was considerably elevated in 210Pbxs (up to 673 ± 51 Bq kg-1) due to sediment interaction with pluvial surface water within the road network. Geochemical discrimination between surface and subsurface soil materials was dominated by alkaline earth and alkali metals e.g. Ba, Rb, Ca, K, Mg which are sensitive to weathering processes in soil. Magnetic susceptibility and heavy metals were important discriminators of road transported material which demonstrated transformation of the signatures of material transported via the road network. Numerical unmixing of stream sediment indicated that alongside channel bank erosion, road transported material was an important component in some systems in accord with FRN evidence. While mining spoil also ranked as a significant source in an affected catchment, perhaps related to legacy sediment, the potential role of dissolved metal leaching and subsequent sediment-water interaction within the channel on signature modification remained unclear. Consideration of sediment signature modification en route from primary source to stream elucidated important information regarding sediment transfer pathways and dynamics relevant to sediment management decisions. Further work on sediment-water interactions and potential for signature transformation in the channel environment is required.
The influence of badland surfaces and erosion processes on vegetation cover
NASA Astrophysics Data System (ADS)
Hardenbicker, Ulrike; Matheis, Sarah
2014-05-01
To assess the links between badland geomorphology and vegetation cover, we used detailed mapping in the Avonlea badlands, 60 km southwest of Regina, Saskatchewan Canada. Three badlands surfaces are typical in the study area: a basal pediment surface, a mid-slope of bentonitic mudstone with typical popcorn surface, and an upper slope with mud-cemented sandstone. Badland development was triggered by rapid post Pleistocene incision of a meltwater channel in Upper Cretaceous marine and lagoonal sediments. After surveying and mapping of a test area, sediment samples were taken to analyze geophysical parameters. A detailed geomorphic map and vegetation map (1:1000) were compared and analyzed in order to determine the geomorphic environment for plant colonization. The shrink-swell capacity of the bentonitic bedrock, slaking potential and dispersivity are controlled by soil texture, clay mineralogy and chemistry, strongly influencing the timing and location of runoff and the relative significance of surface and subsurface erosional processes. The absence of shrink-swell cracking of the alluvial surfaces of the pediments indicates a low infiltration capacity and sheetflow. The compact lithology of the sandstone is responsible for its low permeability and high runoff coefficient. Slope drainage of steep sandstone slopes is routed through a deep corrasional pipe network. Silver sagebrush (Artemisia cana) is the only species growing on the popcorn surface of the mudrock, which is in large parts vegetation free. The basal pediment shows a distinct 2 m band surrounding the mudrock outcrop without vegetation as a result of high sedimentation rate due to slope wash. Otherwise the typical pioneer vegetation of this basal pediment are grasses. In the transition zone below the steep sandstone cliffs and above the gentle bentonitic mudrock surfaces patches of short-grass vegetation are found, marking slumped blocks with intact vegetation and soil cover. These patches are surrounded by less dense pioneer vegetation consisting of grasses and sage bushes indicating minimal surface erosion or sedimentation. Geomorphic mapping documented a high density of active pipes in this area, transporting silt and fine sand from the sandstone cliffs to lower and basal pediments. Vegetation cover alone is a poor indicator of badland surfaces and erosion processes because of the three-dimensional nature of badland erosion processes, and the shrink-swell capacity of the bentonitic bedrock. A combination of geomorphic and vegetation mapping is needed to identify badland surfaces and processes in the study area.
NASA Astrophysics Data System (ADS)
Hanna, Andrea J. M.; Shanahan, Timothy M.; Allison, Mead A.
2016-07-01
Significant climate fluctuations in the Arctic over the recent past, and additional predicted future temperature changes, highlight the need for high-resolution Arctic paleoclimate records. Arctic coastal environments supplied with terrigenous sediment from Arctic rivers have the potential to provide annual to subdecadal resolution records of climate variability over the last few millennia. A potential tool for paleotemperature reconstructions in these marine sediments is the revised methylation index of branched tetraethers (MBT')/cyclization ratio of branched tetraethers (CBT) proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs). In this study, we examine the source of brGDGTs in the Colville River, Alaska, and the adjacent Simpson Lagoon and reconstruct temperatures from Simpson Lagoon sediments to evaluate the applicability of this proxy in Arctic estuarine environments. The Colville catchment soils, fluvial sediments, and estuarine sediments contain statistically similar brGDGT distributions, indicating that the brGDGTs throughout the system are soil derived with little alteration from in situ brGDGT production in the river or coastal waters. Temperatures reconstructed from the MBT'/CBT indices for surface samples show good agreement with regional summer (June through September) temperatures, suggesting a seasonal bias in Arctic temperature reconstructions from the Colville system. In addition, we reconstruct paleotemperatures from an estuarine sediment core that spans the last 75 years, revealing an overall warming trend in the twentieth century that is consistent with trends observed in regional instrumental records. These results support the application of this brGDGT-based paleotemperature proxy for subdecadal-scale summer temperature reconstructions in Arctic estuaries containing organic material derived from sediment-laden, episodic rivers.
Sea level and turbidity controls on mangrove soil surface elevation change
Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.
2015-01-01
Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.
Characterising and classifying agricultural drainage channels for sediment and phosphorus management
NASA Astrophysics Data System (ADS)
Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice
2016-04-01
In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were over-engineered, which likely reduces downstream P transfer. Streams had the greatest potential to convey fine sediment and associated P during event flows. Optimising these linear features for eutrophication management in headwaters, periodic removal of fine sediment and maintenance of channel vegetation in net attenuating and transferring channels, respectively, would help to minimise sediment and P transfers from these catchments.
Zhang, Wenqiang; Jin, Xin; Zhu, Xiaolei; Shan, Baoqing
2016-01-01
Phosphorus (P) is an essential nutrient for aquatic organisms; however, excessive P inflow to limnetic ecosystems can induce eutrophication. P concentrations in the rivers, wetlands and lakes of Eastern China have been amplified by fertilizer and sewage inputs associated with the development of industry and agriculture. Yet, knowledge of the distribution and speciation of P is lacking at the regional scale. We determined the distribution and speciation of P in limnetic ecosystems in Eastern China using Standards, Measurements and Testing (SMT) and phosphorus nuclear magnetic resonance (31P-NMR). The results indicate that P pollution in surface sediments was serious. Inorganic P (Pi) was the primary drive of variation in total P (TP) among different river systems, and Pi accounted for 71% to 90% of TP in surface sediment in Eastern China. Also, the concentrations of TP and Pi varied among watersheds and Pi primarily drove the variation in TP in different watersheds. Sediments less than 10-cm deep served as the main P reservoir. Environmental factors affect the speciation and origin of P. NaOH-Pi, HCl-Pi and organic P (Po) were related to pH accordingly at the regional scale. The physicochemical properties of sediments from different limnetic ecosystems affect the P speciation. HCl-Pi was higher in wetland sediments than in riverine and lake sediments in Eastern China. Conversely, NaOH-Pi was lowest in wetland sediments. Total Po concentration was lower in riverine sediments than in other sediments, but Mono-P was higher, with an average concentration of 48 mg kg−1. Diesters-P was highest in lake sediments. By revealing the regional distribution of TP, Pi and Po, this study will support eutrophication management in Eastern China. PMID:27281191
Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun
2016-01-01
Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709
Dispersal of suspended sediments in the turbid and highly stratified Red River plume
NASA Astrophysics Data System (ADS)
van Maren, D. S.; Hoekstra, P.
2005-03-01
The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.
NASA Astrophysics Data System (ADS)
Natter, M.; Keevan, J.; Lee, M.; Keimowitz, A.; Savrda, C.; Son, A.; Okeke, B.; Wang, Y.
2011-12-01
The devastating explosion and subsequent sinking of the oil platform Deepwater Horizon at the British Petroleum Macondo-1 well in the Northern Gulf of Mexico on April 20, 2010, released approximately 4.9 million barrels of crude oil into the Gulf before the well was capped on July 15, 2010. Although most light compounds of oil may be easily degraded by natural microbes on the short term, saturated heavy oil (e.g., asphaltenes, resins, polycyclic aromatics, etc.) and those adsorbed by sediments could persist in the environment for decades. The long-term effects of high levels of persistent oil compounds on biogeochemical evolution and ecosystems of salt marshes remain unclear. This research investigates the spatial range and changes in levels of oil and their biogeochemical impacts. A total of ten marsh sampling sites that varied from pristine, non-effected marshes (e.g., Weeks Bay and Wolf Bay, Alabama) to heavily oiled wetlands (e.g., Bay Jimmy and Bayou Dulac, Louisiana) were utilized for this study. Sediment cores, bulk sediments, surface water samples, degraded oil, oiled dead marsh grass, and live marsh grass were collected from these sites in an attempt to study the source, distribution, and evolution of organic compounds and oil present in sediments and pore-waters. Geochemical analyses show alarmingly high organic carbon loads in pore-waters and sediments at heavily contaminated sites months after the influx of oil ceased. Very high levels (10-28%) of total organic carbon (TOC) within the heavily oiled sediments (down to 30 cm) are clearly distinguished from those found in pristine wetland sediments (generally < 5%). TOC levels are elevated in the deeper sediments while being depleated in the uppermost ones at certain locations. The TOC contents in uppermost sediments may be reduced by microbial degradation, water mixing, and the use of oil dispersants. Furthermore, dissolved organic carbon (DOC) levels of pore-waters extracted from oiled sediments, ranging up to hundreds of mg/kg, are on the order of one to two magnitudes higher than those at pristine and slightly contaminated sites. These DOC levels also interestingly increase with depth, possibly indicating saltwater-freshwater mixing near the sediment surface or freshwater recharge from rainfall. The spatial changes in DOC indicate that seawater and oil invaded along the deeper portion of the marsh sediments due to their higher density with respect to freshwater. TOC and DOC data clearly indicate that not all the spilled oil rose to the water surface and washed on-shore. Plumes of partially degraded oil could be spreading at various levels of the water column and feeding the underlying sediments. Geochemical biomarkers and stable isotopes (carbon and nitrogen) analyses of wetland plants, oiled sediments, and initial crude oils are underway to trace the sources of oil and the extent of oil degradation in impacted wetlands.
Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe
2017-01-01
Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life. PMID:28327661
Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms
Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.
1999-01-01
Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.
Suzdalev, Sergej; Gulbinskas, Saulius; Blažauskas, Nerijus
2015-02-01
The current research paper presents the results of contamination by tributyltin (TBT) compounds in Klaipėda Port, which is situated in a unique marine-lagoon water interaction zone. One hundred fifty-four surface sediment samples have been taken along the whole transition path from lagoon to the sea and analysed in order to quantify the contamination rate in specific environment of high anthropogenic pressure. The detected TBT concentrations ranged from 1 to 5,200 ng Sn g(-1) of dry weight of sediment. The back-trace of horizontal distribution of TBT-contaminated sediments show obvious increase of tributyltin concentrations closer to port areas dealing with ship repair and places of dry-docking facilities. This is a clear indication that those activities are the main source of contamination in the study area. The estimated correlation of TBT concentration in sediments with total organic carbon and the amount of fine fraction (<0.063 mm) was significant for most of the stations. The TBT concentration in those sites varies from 1 to 100 ng Sn g(-1). This fact indicates that the most intensive accumulation of tributyltin is related to potential contamination source areas (ship repairing, dockyards) due to direct input of hazardous substances into the water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, E.Y.; Vista, C.L.
1997-02-01
Samples collected in January and June 1994 from the Point Loma Wastewater Treatment Plant (PLWTP) effluent, Tijuana River runoff, and microlayer, sediment trap, and surface sediment at several locations adjacent to the PLWTP outfall, mouth of the Tijuana River, and San Diego Bay were analyzed in an attempt to identify and assess the sources of hydrocarbon inputs into the coastal marine environment off San Diego. Several compositional indices of polycyclic aromatic hydrocarbons (PAHs), for example, alkyl homologue distributions, parent compound distributions, and other individual PAH ratios, were used to identify the sources of PAHs. Partially due to the decline ofmore » PAH emission from the PLWTP outfall, PAHs found in the sea surface microlayer, sediments, and water column particulates near the PLWTP outfall were predominantly derived from nonpoint sources. The sea microlayer near the mouth of the Tijuana River appeared to accumulate enhanced amounts of PAHs and total organic carbon and total nitrogen, probably discharged from the river, although they were in extremely low abundance in the sediments at the same location. Surprisingly, PAHs detected in the microlayer and sediments in San Diego Bay were mainly derived from combustion sources rather than oil spills, despite the heavy shipping activities in the area.« less
NASA Astrophysics Data System (ADS)
Myrbo, A.; Swain, E. B.; Johnson, N. W.; Engstrom, D. R.; Pastor, J.; Dewey, B.; Monson, P.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.
2017-11-01
Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water.
NASA Astrophysics Data System (ADS)
Wang, Chuanyuan; Lv, Yingchun; Li, Yuanwei
2018-04-01
The temporal-spatial distribution of the carbon and nitrogen contents and their isotopic compositions of suspended matter and sediments from the Yellow River estuary reach (YRER), the estuary to the offshore area were measured to identify the source of organic matter. The higher relative abundances of suspended and sedimentary carbon and nitrogen (POC, TOC, PN and TN) in the offshore marine area compared to those of the riverine and estuarine areas may be due to the cumulative and biological activity impact. The organic matter in surface sediments of YRER, the estuary and offshore area of Bohai Sea is basically the mixture of continental derived material and marine material. The values of δ13Csed fluctuate from values indicative of a land source (- 22.50‰ ± 0.31) to those indicative of a sea source (- 22.80‰ ± 0.38), which can be attributed to the fine particle size and decrease in terrigenous inputs to the offshore marine area. Contrary to the slight increase of POC and PN during the dry season, TOC and TN contents of the surface sediments during the flood season (October) were higher than those during the dry season (April). The seasonal differences in water discharge and suspended sediment discharge of the Yellow River Estuary may result in seasonal variability in TOC, POC, TN and PN concentrations in some degree. Overall, the surface sediments in the offshore area of Bohai Sea are dominated by marine derived organic carbon, which on average, accounts for 58-82% of TOC when a two end-member mixing model is applied to the isotopic data.
McPherson, Kelly R.; Freeman, Lawrence A.; Flint, Lorraine E.
2011-01-01
In 2009, the U.S. Geological Survey, in cooperation with the City of Santa Cruz, conducted bathymetric and topographic surveys to determine the water storage capacity of, and the loss of capacity owing to sedimentation in, Loch Lomond Reservoir in Santa Cruz County, California. The topographic survey was done as a supplement to the bathymetric survey to obtain information about temporal changes in the upper reach of the reservoir where the water is shallow or the reservoir may be dry, as well as to obtain information about shoreline changes throughout the reservoir. Results of a combined bathymetric and topographic survey using a new, state-of-the-art method with advanced instrument technology indicate that the maximum storage capacity of the reservoir at the spillway altitude of 577.5 feet (National Geodetic Vertical Datum of 1929) was 8,646 ±85 acre-feet in March 2009, with a confidence level of 99 percent. This new method is a combination of bathymetric scanning using multibeam-sidescan sonar, and topographic surveying using laser scanning (LiDAR), which produced a 1.64-foot-resolution grid with altitudes to 0.3-foot resolution and an estimate of total water storage capacity at a 99-percent confidence level. Because the volume of sedimentation in a reservoir is considered equal to the decrease in water-storage capacity, sedimentation in Loch Lomond Reservoir was determined by estimating the change in storage capacity by comparing the reservoir bed surface defined in the March 2009 survey with a revision of the reservoir bed surface determined in a previous investigation in November 1998. This revised reservoir-bed surface was defined by combining altitude data from the 1998 survey with new data collected during the current (2009) investigation to fill gaps in the 1998 data. Limitations that determine the accuracy of estimates of changes in the volume of sedimentation from that estimated in each of the four previous investigations (1960, 1971, 1982, and 1998) are a result of the limitations of the survey equipment and data-processing methods used. Previously used and new methods were compared to determine the recent (1998-2009) change in storage capacity and the most accurate and cost-effective means to define the reservoir bed surface so that results can be easily replicated in future surveys. Results of this investigation indicate that the advanced method used in the 2009 survey accurately captures the features of the wetted reservoir surface as well as features along the shoreline that affect the storage capacity calculations. Because the bathymetric and topographic data are referenced to a datum, the results can be easily replicated or compared with future results. Comparison of the 2009 reservoir-bed surface with the surface defined in 1998 indicates that sedimentation is occurring throughout the reservoir. About 320 acre-feet of sedimentation has occurred since 1998, as determined by comparing the revised 1998 reservoir-bed surface, with an associated maximum reservoir storage capacity of 8,965 acre-feet, to the 2009 reservoir bed surface, with an associated maximum capacity of 8,646 acre-feet. This sedimentation is more than 3 percent of the total storage capacity that was calculated on the basis of the results of the 1998 bathymetric investigation.
Hassard, Francis; Gwyther, Ceri L.; Farkas, Kata; Andrews, Anthony; Jones, Vera; Cox, Brian; Brett, Howard; Jones, Davey L.; McDonald, James E.; Malham, Shelagh K.
2016-01-01
The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments. PMID:27847499
Depositional environment of near-surface sediments, King George Basin, Bransfield Strait, Antarctica
NASA Astrophysics Data System (ADS)
Yoon, H. I.; Park, B. K.; Chang, S. K.; Han, M. W.; Oh, J. K.
1994-03-01
Four sediment cores were collected to determine the depositional environments of the King George Basin northeast of Bransfield Strait, Antarctica. The cored section revealed three distinct lithofacies: laminated siliceous ooze derived from an increased paleoproductivity near the receding sea-ice edges, massive muds that resulted from hemipelagic sedimentation in open water, and graded sediments that originated from nearby local seamounts by turbidity currents. Clay mineral data of the cores indicate a decreasing importance of volcanic activity through time. Active volcanism and hydrothermal activity appear to be responsible for the enrichment of smectite near the Penguin and Bridgeman Islands.
Hu, Guocheng; Luo, Xiaojun; Li, Fengchao; Dai, Jiayin; Guo, Jianyang; Chen, Shejun; Hong, Cao; Mai, Bixian; Xu, Muqi
2010-01-01
Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in nineteen surface sediment samples collected from Baiyangdian Lake and its inflowing river (Fuhe River) in North China. Total concentrations of OCPs, PCBs and PAHs in sediments ranged from 5.4 to 707.6 ng/g, 2.3 to 197.8 ng/g, and 101.3 to 6360.5 ng/g, respectively. The levels of contaminants in Fuhe River were significantly higher than those in Baiyandian Lake. For hexachlorocyclohexane (HCHs) and dichlorodiphenytrichloroethanes (DDTs), alpha-HCH and p,p'-DDT were predominant isomers; while for PCBs, PCB 28/31, PCB 40/103, PCB 60, PCB 101, and PCB 118 were predominant congeners. Possible sources derived from historical usage for OCPs and incomplete combustion fuel, wood, and coal and exhaustion of boats or cars for PAHs. Risk assessment of sediment indicated that sediments in Fuhe River were likely to pose potential biological adverse impact.
Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments
NASA Astrophysics Data System (ADS)
Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.
2003-04-01
The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows of an increase flux of metals, nutrients and hydrogen sulfide. Acknowledgements: The study was supported by German Science Foundation within the DFG-research group "BioGeoChemistry of the Waddensea" and Max Planck Society.
Blazejak, Anna; Schippers, Axel
2010-05-01
Sequences of members of the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi are frequently found in 16S rRNA gene clone libraries obtained from marine sediments. Using a newly designed quantitative, real-time PCR assay, these bacterial groups were jointly quantified in samples from near-surface and deeply buried marine sediments from the Peru margin, the Black Sea, and a forearc basin off the island of Sumatra. In near-surface sediments, sequences of the JS-1 as well as Anaerolineae- and Caldilineae-related Bacteria were quantified with significantly lower 16S rRNA gene copy numbers than the sequences of total Bacteria. In contrast, in deeply buried sediments below approximately 1 m depth, similar quantities of the 16S rRNA gene copies of these specific groups and Bacteria were found. This finding indicates that JS-1 and Anaerolineae- and Caldilineae-related Bacteria might dominate the bacterial community in deeply buried marine sediments and thus seem to play an important ecological role in the deep biosphere.
Malve, Olli; Salo, Simo; Verta, Matti; Forsius, John
2003-08-01
River Kymijoki, the fourth largest river in Finland, has been heavily polluted by pulp mill effluents as well as by chemical industry. Loading has been reduced considerably, although remains of past emissions still exist in river sediments. The sediments are highly contaminated with polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated diphenyl ethers (PCDEs), and mercury originating from production of the chlorophenolic wood preservative (Ky-5) and other sources. The objective of this study was to simulate the transport of these PCDD/F compounds with a one-dimensional flow and transport model and to assess the impact of restoration dredging. Using the estimated trend in PCDD/F loading, downstream concentrations were calculated until 2020. If contaminated sediments are removed by dredging, the temporary increase of PCDD/F concentrations in downstream water and surface sediments will be within acceptable limits. Long-term predictions indicated only a minor decrease in surface sediment concentrations but a major decrease if the most contaminated sediments close to the emission source were removed. A more detailed assessment of the effects is suggested.
Organic sedimentation in modern lacustrine systems: A case study from Lake Malawi, East Africa
Ellis, Geoffrey S.; Barry J. Katz,; Christopher A. Scholz,; Peter K. Swart,
2015-01-01
This study examines the relationship between depositional environment and sedimentary organic geochemistry in Lake Malawi, East Africa, and evaluates the relative significance of the various processes that control sedimentary organic matter (OM) in lacustrine systems. Total organic carbon (TOC) concentrations in recent sediments from Lake Malawi range from 0.01 to 8.80 wt% and average 2.83 wt% for surface sediments and 2.35 wt% for shallow core sediments. Hydrogen index (HI) values as determined by Rock-Eval pyrolysis range from 0 to 756 mg HC g−1 TOC and average 205 mg HC g−1 TOC for surface sediments and 228 mg HC g−1 TOC for shallow core samples. On average, variations in primary productivity throughout the lake may account for ~33% of the TOC content in Lake Malawi sediments (as much as 1 wt% TOC), and have little or no impact on sedimentary HI values. Similarly, ~33% to 66% of the variation in TOC content in Lake Malawi sediments appears to be controlled by anoxic preservation of OM (~1–2 wt% TOC), although some component of the water depth–TOC relationship may be due to physical sediment transport processes. Furthermore, anoxic preservation has a minimal effect on HI values in Lake Malawi sediments. Dilution of OM by inorganic sediment may account for ~16% of variability in TOC content in Lake Malawi sediments (~0.5 wt% TOC). The effect of inputs of terrestrial sediment on the organic character of surface sediments in these lakes is highly variable, and appears to be more closely related to the local depositional environment than the regional flux of terrestrial OM. Total nitrogen and TOC content in surface sediments collected throughout the lake are found to be highly correlated (r2 = 0.95), indicating a well-homogenized source of OM to the lake bottom. The recurring suspension and deposition of terrestrial sediment may account for significant amounts of OM deposited in offshore regions of the lake. This process effectively separates denser inorganic sediment from less dense OM and allows terrestrial OM to preferentially be transported farther offshore. The conclusion is that for the organic carbon content in these regions to be elevated a mixed terrestrial-lacustrine origin is required. The hydrodynamic separation of mineral and organic constituents is most pronounced in regions with shallow bathymetric gradients, consistent with previous findings from Lake Tanganyika.
The Relationship between the Distribution of Common Carp and Their Environmental DNA in a Small Lake
Eichmiller, Jessica J.; Bajer, Przemyslaw G.; Sorensen, Peter W.
2014-01-01
Although environmental DNA (eDNA) has been used to infer the presence of rare aquatic species, many facets of this technique remain unresolved. In particular, the relationship between eDNA and fish distribution is not known. We examined the relationship between the distribution of fish and their eDNA (detection rate and concentration) in a lake. A quantitative PCR (qPCR) assay for a region within the cytochrome b gene of the common carp (Cyprinus carpio or ‘carp’), an ubiquitous invasive fish, was developed and used to measure eDNA in Lake Staring (MN, USA), in which both the density of carp and their distribution have been closely monitored for several years. Surface water, sub-surface water, and sediment were sampled from 22 locations in the lake, including areas frequently used by carp. In water, areas of high carp use had a higher rate of detection and concentration of eDNA, but there was no effect of fish use on sediment eDNA. The detection rate and concentration of eDNA in surface and sub-surface water were not significantly different (p≥0.5), indicating that eDNA did not accumulate in surface water. The detection rate followed the trend: high-use water > low-use water > sediment. The concentration of eDNA in sediment samples that were above the limit of detection were several orders of magnitude greater than water on a per mass basis, but a poor limit of detection led to low detection rates. The patchy distribution of eDNA in the water of our study lake suggests that the mechanisms that remove eDNA from the water column, such as decay and sedimentation, are rapid. Taken together, these results indicate that effective eDNA sampling methods should be informed by fish distribution, as eDNA concentration was shown to vary dramatically between samples taken less than 100 m apart. PMID:25383965
Eichmiller, Jessica J; Bajer, Przemyslaw G; Sorensen, Peter W
2014-01-01
Although environmental DNA (eDNA) has been used to infer the presence of rare aquatic species, many facets of this technique remain unresolved. In particular, the relationship between eDNA and fish distribution is not known. We examined the relationship between the distribution of fish and their eDNA (detection rate and concentration) in a lake. A quantitative PCR (qPCR) assay for a region within the cytochrome b gene of the common carp (Cyprinus carpio or 'carp'), an ubiquitous invasive fish, was developed and used to measure eDNA in Lake Staring (MN, USA), in which both the density of carp and their distribution have been closely monitored for several years. Surface water, sub-surface water, and sediment were sampled from 22 locations in the lake, including areas frequently used by carp. In water, areas of high carp use had a higher rate of detection and concentration of eDNA, but there was no effect of fish use on sediment eDNA. The detection rate and concentration of eDNA in surface and sub-surface water were not significantly different (p≥0.5), indicating that eDNA did not accumulate in surface water. The detection rate followed the trend: high-use water > low-use water > sediment. The concentration of eDNA in sediment samples that were above the limit of detection were several orders of magnitude greater than water on a per mass basis, but a poor limit of detection led to low detection rates. The patchy distribution of eDNA in the water of our study lake suggests that the mechanisms that remove eDNA from the water column, such as decay and sedimentation, are rapid. Taken together, these results indicate that effective eDNA sampling methods should be informed by fish distribution, as eDNA concentration was shown to vary dramatically between samples taken less than 100 m apart.
Assessing temporal variations in connectivity through suspended sediment hysteresis analysis
NASA Astrophysics Data System (ADS)
Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; Melland, Alice; Mellander, Per-Erik; hUallacháin, Daire Ó.
2016-04-01
Connectivity provides a valuable concept for understanding catchment-scale sediment dynamics. In intensive agricultural catchments, land management through tillage, high livestock densities and extensive land drainage practices significantly change hydromorphological behaviour and alter sediment supply and downstream delivery. Analysis of suspended sediment-discharge hysteresis has offered insights into sediment dynamics but typically on a limited selection of events. Greater availability of continuous high-resolution discharge and turbidity data and qualitative hysteresis metrics enables assessment of sediment dynamics during more events and over time. This paper assesses the utility of this approach to explore seasonal variations in connectivity. Data were collected from three small (c. 10 km2) intensive agricultural catchments in Ireland with contrasting morphologies, soil types, land use patterns and management practices, and are broadly defined as low-permeability supporting grassland, moderate-permeability supporting arable and high-permeability supporting arable. Suspended sediment concentration (using calibrated turbidity measurements) and discharge data were collected at 10-min resolution from each catchment outlet and precipitation data were collected from a weather station within each catchment. Event databases (67-90 events per catchment) collated information on sediment export metrics, hysteresis category (e.g., clockwise, anti-clockwise, no hysteresis), numeric hysteresis index, and potential hydro-meteorological controls on sediment transport including precipitation amount, duration, intensity, stream flow and antecedent soil moisture and rainfall. Statistical analysis of potential controls on sediment export was undertaken using Pearson's correlation coefficient on separate hysteresis categories in each catchment. Sediment hysteresis fluctuations through time were subsequently assessed using the hysteresis index. Results showed the numeric hysteresis index varied over time in all three catchments. The exact response was catchment specific reflecting changing sediment availability and connectivity through time as indicated by dominant controls. In the low-permeability grassland catchment, proximal sources dominated which was consistent with observations of active channel bank erosion. Seasonal increases in rainfall increased the erosion potential but continuous grassland cover mitigated against hillslope sediment contributions despite high hydrological connectivity and surface pathways. The moderate-permeability arable catchment was dominated by events with a distal source component but those with both proximal and distal sediment sources yielded the highest sediment quantities. These events were driven by rainfall parameters suggesting sediment were surface derived and the hillslope was hydrologically connected during most events. Through time, a sustained period of rainfall increased the magnitude of negative hysteresis, likely demonstrating increasing surface hydrological connectivity due to increased groundwater saturation. Where increased hydrological connectivity coincided with low groundcover, the largest sediment exports were recorded. Events in the high permeability catchment indicated predominantly proximal sediments despite abundant distal sources from tilled fields. The infiltration dominated high permeability soils hydrologically disconnected these field sources and limited sediment supply. However, the greatest sediment export occurred in this catchment suggesting thresholds existed, which when exceeded during higher magnitude events, resulted in efficient conveyance of sediments. Hysteresis analysis offers wider utility as a tool to understand sediment pathways and connectivity issues with applications to catchment management strategies.
NASA Astrophysics Data System (ADS)
Kinsman-Costello, L. E.; Dick, G.; Sheik, C.; Burton, G. A.; Sheldon, N. D.
2015-12-01
Submerged groundwater seeps in Lake Huron establish ecosystems with distinctive geochemical conditions. In the Middle Island Sinkhole (MIS), a 23-m deep seep, groundwater seepage establishes low O2 (< 4 mg L-1), high sulfate (6 mM) conditions, in which a purple cyanobacteria-dominated mat thrives. The mat is capable of anoxygenic photosynthesis, oxygenic photosynthesis, and chemosynthesis. Within the top 3 cm of the mat-water interface, hydrogen sulfide concentrations increase to 1-7 mM. Little is known about the structure and function of microbes within organic-rich, high-sulfide sediments beneath the mat. Using pore water and sediment geochemical characterization along with microbial community analysis, we elucidated relationships between microbial community structure and ecosystem function along vertical gradients. In sediment pore waters, biologically reactive solutes (SO42-, NH4+, PO43-, and CH4) displayed steep vertical gradients, reflecting biological and geochemical functioning. In contrast, more conservative ions (Ca+2, Mg+2, Na+, and Cl-), did not change significantly with depth in MIS sediments, indicating groundwater influence in the sediment profile. MIS sediments contained more organic matter than typical Lake Huron sediments, and were generally higher in nutrients, metals, and sulfur (acid volatile sulfide). Using the Illumina MiSeq platform we detected 14,127 unique operational taxonomic units across sediment and surface mat samples. Microbial community composition in the MIS was distinctly different from non-groundwater affected areas at similar depth nearby in Lake Huron (ANOSIM, R= 0.74, p=0.002). MIS sediment communities were more diverse that MIS surface mat communities and changed with depth into sediments. MIS sediment community composition was related to several geochemical variables, including organic matter and multiple indicators of phosphorus availability. Elucidating the structure and function of microbial consortia in MIS, a highly unique and environmentally vulnerable ecosystem, provides a rare opportunity to understand relationships between microbial species and their environment and may provide insights into the evolution of life under ancient low-oxygen, high-sulfur conditions.
NASA Astrophysics Data System (ADS)
Ong, M. C.; Menier, D.; Noor Azhar, M. S.; Dupont, V.; Révillon, S.
2012-04-01
In order to avoid the pollution of heavy metals in South Brittany water, it is necessary to establish the data and understand the mechanisms influencing the distribution of heavy metals of the area. One of the aims of this work was to assess heavy metals contamination in Gulf of Morbihan and Quiberon Bay. Another aim was to use interpolation surfaces per metals to assess the contamination separately per metal. A total of 196 bottom sediment samples were collected from the coastal waters in order to determine the spatial concentration of Cr, Mn, Co, Cu, Zn, Cd and Pb by Inductively Coupled Plasma Mass Spectrometry (ICPMS) after acid digestion. The average heavy metal concentrations are ranked as follows: Mn>Zn>Cr>Pb>Cu>Cu>Cd. In the gulf, metal enrichments observed compared to the bay environment may due river run-off from three major river (Auray, Le Marle and Novalo rivers) which carried municipal waste and maritime activities along the coastal area within the gulf. Beside those factors, the natural factors such as the sheltered basin morphology itself, fine sediment and low hydrodynamic regime which favour the in situ accumulation of pollutants. The level of pollution levels attributed to heavy metals was evaluated using several pollution indicators in order to determine anthropogenically derived sediment contamination. Comparison to sediment quality guidelines (SQGs), enrichment factors (EFs), index of geoaccumulation (Igeo) and contamination factors (CF) based on reference element and background value to compensate for the influence of the natural variability in sediment mineralogy and to assess whether the concentration observed in surface sediment represent background and contaminated levels and visualize using ArcGIS software. These analyses validated that the bottom sediment only enriched in Pb and the other metals in most sample are not due to artificial contamination. Overall, geochemistry of the samples show the effect of both natural and anthropogenic inputs to the catchment, however, natural processes are more dominant than anthropogenic inputs in concentrating metals in the sediment.
Brumbaugh, William G.; May, Thomas W.; Besser, John M.; Allert, Ann L.; Schmitt, Christopher J.
2007-01-01
Concerns about possible effects of lead-mining activities on the water quality of federally protected streams located in southeastern Missouri prompted a suite of multidisciplinary studies to be conducted by the U.S. Geological Survey. As part of this investigation, a series of biological studies were initiated in 2001 for streams in the current mining region and the prospecting area. In this report, results are examined for trace elements and other selected chemical measurements in sediment, surface water, and sediment interstitial (pore) water sampled between 2002 and 2005 in association with these biological studies. Compared to reference sites, fine sediments collected downstream from mining areas were enriched in metals by factors as large as 75 for cadmium, 62 for cobalt, 171 for nickel, 95 for lead, and 150 for zinc. Greatest metal concentrations in sediments collected in 2002 were from sites downstream from mines on Strother Creek, Courtois Creek, and the West Fork Black River. Sediments from sites on Bee Fork, Logan Creek, and Sweetwater Creek also were noticeably enriched in lead. Sediments in Clearwater Lake, at least 75 kilometers downstream from mining activity, had metal concentrations that were 1.5 to 2.1 times greater than sediments in an area of the lake with no upstream mining activity. Longitudinal sampling along three streams in 2004 indicated that sediment metal concentrations decreased considerably a few kilometers downstream from mining activities; however, in Strother Creek some metals were still enriched by a factor of five or more as far as 13 kilometers downstream from the Buick tailings impoundment. Compared with 2002 samples, metals concentrations were dramatically lower in sediments collected in 2004 at an upper West Fork Black River site, presumably because beneficiation operations at the West Fork mill ceased in 2000. Concentrations of metals and sulfate in sediment interstitial (pore) waters generally tracked closely with metal concentrations in sediments. Metals, including cobalt, nickel, lead, and zinc, were elevated substantially in laboratory-produced pore waters of fine sediments collected near mining operations in 2002 and 2004. Passive diffusion samplers (peepers) buried 4 to 6 centimeters deep in riffle-run stream sediments during 2003 and 2005 had much lower pore-water metal concentrations than the laboratory-produced pore waters of fine sediments collected in 2002 and 2004, but each sampling method produced similar patterns among sites. The combined mean concentration of lead in peeper samples from selected sites located downstream from mining activities for six streams was about 10-fold greater than the mean of the reference sites. In most instances, metals concentrations in surface water and peeper water were not greatly different, indicating considerable exchange between the surface water and pore water at the depths and locations where peepers were situated. Passive sampling probes used to assess metal lability in pore waters of selected samples during 2004 sediment toxicity tests indicated that most of the filterable lead in the laboratory-prepared pore water was relatively non-labile, presumably because lead was complexed by organic matter, or was present as colloidal species. In contrast, large percentages of cobalt and nickel in pore water appeared to be labile. Passive integrative samplers deployed in surface water for up to 3 weeks at three sites in July 2005 confirmed the presence of elevated concentrations of labile metals downstream from mining operations on Strother Creek and, to a lesser extent, Bee Fork. These samplers also indicated a considerable increase in metal loadings occurred for a few days at the Strother Creek site, which coincided with moderate increases in stream discharges in the area.
NASA Astrophysics Data System (ADS)
Goñi, Miguel A.; Ruttenberg, Kathleen C.; Eglinton, Timothy I.
1998-09-01
Organic matter in surface sediments from two onshore-offshore transects in the northwestern Gulf of Mexico was characterized by a variety of techniques, including elemental, stable carbon, radiocarbon, and molecular-level analyses. In spite of the importance of the Mississippi River as a sediment source, there is little evidence for a significant terrigenous input based on the low carbon:nitrogen ratios (8-5) and the enriched δ 13C values of bulk sedimentary organic carbon (-19.7‰ to -21.7‰). Radiocarbon analyses, on the other hand, yield depleted Δ 14C values (-277‰ to -572‰) which indicate that a significant fraction of the sedimentary organic carbon (OC) in all these surface sediments must be relatively old and most likely of allochthonous origin. CuO oxidations yield relatively low quantities of lignin products (0.4-1.4 mg/100 mg OC) along with compounds derived from proteins, polysaccharides, and lipids. Syringyl:vanillyl and cinnamyl:vanillyl ratios (averaging 1.6 and 0.5, respectively) and acid:aldehyde ratios for both vanillyl and syringyl phenols (averaging 0.8 and 1.2, respectively) indicate that the lignin present in sediments originates from nonwoody angiosperm sources and is highly degraded. The δ 13C values of lignin phenols in shelf sediments are relatively depleted in 13C (averaging -26.3‰) but are increasingly enriched in 13C at the slope sites (averaging -17.5‰ for the two deepest stations). We interpret these molecular and isotopic compositions to indicate that a significant fraction (≥50%) of the lignin and, by inference, the land-derived organic carbon in northwestern Gulf of Mexico sediments ultimately originated from C 4 plants. The source of this material is likely to be soil organic matter eroded from the extensive grasslands of the Mississippi River drainage basin. Notably, the mixed C 4 and C 3 source and the highly degraded state of this material hampers its recognition and quantification in shelf and slope sediments. Our data are consistent with higher than previously estimated inputs of land-derived organic carbon to regions of the ocean, such as the Gulf of Mexico, with significant sources of terrigenous C 4-derived organic matter.
Gao, S.; Goldberg, S.; Herbel, M.J.; Chalmers, A.T.; Fujii, R.; Tanji, K.K.
2006-01-01
Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg- 1 at pH 7.5 and 70 mg As kg- 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5-8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption-readsorption processes and differs from conventional hysteresis observed in adsorption-desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching in natural environments. ?? 2006 Elsevier B.V. All rights reserved.
Historical sediment record and levels of PCBs in sediments and mangroves of Jobos Bay, Puerto Rico.
Alegria, Henry; Martinez-Colon, Michael; Birgul, Askin; Brooks, Gregg; Hanson, Lindsey; Kurt-Karakus, Perihan
2016-12-15
Polychlorinated biphenyls (PCBs) were quantified in 18 surface sediment samples, 1 sediment core, and several mangrove tissue samples collected in Jobos Bay, Puerto Rico in September 2013. Total PCBs in surface sediments ranged from 0.42 to 1232ngg -1 dw. Generally, higher levels were observed near-shore close to urban and industrial areas. The levels suggest significant pollution in Jobos Bay with respect to PCBs. Two-thirds of the sites were dominated by lighter PCB congeners (tri- to penta-chlorinated PCBs) while one-third had heavy PCB congeners (hexa- to octa-chlorinated PCBs) dominant. Total PCBs in a sediment core indicated levels fluctuating according to historical usage patterns. Total PCBs were measured in mangal leaves (14-747ngg -1 dw), roots (0.26-120ngg -1 dw), and seeds (16-93ngg -1 dw), suggesting bioaccumulation from sediments. This is the first report of a historical profile of PCBs in the study area and of PCB bioaccumulation in mangroves. This article provides new and useful information on PCBs in the Caribbean area of the GRULAC region. Copyright © 2016 Elsevier B.V. All rights reserved.
Distribution and Risk Assessment of Antibiotics in a Typical River in North China Plain.
Li, Qingzhao; Gao, Junxia; Zhang, Qiuling; Liang, Lizhen; Tao, He
2017-04-01
We evaluated the occurrence and distribution of 12 antibiotics from the sulfonamide (SAs), fluoroquinolone (FQs) and tetracycline (TCs) groups in the Weihe River, North China. The total antibiotic concentrations in surface water, pore water, and sediment samples ranged from 11.1 to 173.1 ng/L, 5.8 to 103.9 ng/L, and 9.5 to 153.4 μg/kg, respectively. The values of the sediment-water partitioning coefficient in the Weihe River varied widely, from not detected to 943, 2213, and 2405 L/kg for SAs, FQs, and TCs, respectively. The values of the partitioning coefficients between sediment and surface water were generally lower than those between sediment and pore water, which indicated ongoing inputs to the water. The risk assessment showed that there were relatively high ecological risks to aquatic algae in this area from sulfamethoxazole, norfloxacin, tetracycline, ofloxacin, and ciprofloxacin.
Heavy metal concentration in mangrove surface sediments from the north-west coast of South America.
Fernández-Cadena, J C; Andrade, S; Silva-Coello, C L; De la Iglesia, R
2014-05-15
Mangrove ecosystems are coastal estuarine systems confined to the tropical and subtropical regions. The Estero Salado mangrove located in Guayaquil, Ecuador, has suffered constant disturbances during the past 20 years, due to industrial wastewater release. However, there are no published data for heavy metals present in its sediments and the relationship with anthropogenic disturbance. In the present study, metal concentrations were evaluated in surface sediment samples of the mangrove, showing that B, Cd, Cu, Pb, Se, V, and Zn levels exceeded those declared in international environmental quality standards. Moreover, several metals (Pb, Sn, Cd, Ag, Mo, Zn and Ni) could be linked to the industrial wastewater present in the studied area. In addition, heavy metal levels detected in this mangrove are higher than previous reports on mangrove sediments worldwide, indicating that this mangrove ecosystem is one of the most disrupted on earth. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Mehdinia, Ali; Safari, Omid
2014-01-01
Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait. PMID:24747349
Sediment Tracking Using Carbon and Nitrogen Stable Isotopes
NASA Astrophysics Data System (ADS)
Fox, J. F.; Papanicolaou, A.
2002-12-01
As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to the Finnigan MAT Delta Plus isotope ratio mass spectrometer. Results indicate distinct N isotopic signatures and C/N atomic ratios for forest and agriculture sediment sources. In addition, unique C and N isotopic signatures and C/N atomic ratios exist within floodplain and upland surfaces, and within the 10 centimeter profiles of erosion and deposition locations. Suspended sediment analyses are preliminary at this time. Conclusions indicate that sediment C and N isotopic signature and C/N atomic ratio are dependent upon land use and soil moisture conditions, and will serve as a useful technique in quantifying erosive source rates and understanding upland erosion processes.
Zhang, Shengyin; Li, Shuanglin; Dong, Heping; Zhao, Qingfang; Lu, Xinchuan; Shi, Ji'an
2014-11-15
By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sreekanth, Athira; Mrudulrag, S K; Cheriyan, Eldhose; Sujatha, C H
2015-12-30
The geochemical distribution and enrichment of trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) were determined in the surface sediments of Arabian Sea, along southwest India, Kerala coast. The results of geochemical indices indicated that surficial sediments of five transects are uncontaminated with respect to Mn, Zn and Cu, uncontaminated to moderately contaminated with Co and Ni, and moderately to strongly contaminated with Pb. The deposition of trace elements exhibited three different patterns i) Cd and Zn enhanced with settling biodetritus from the upwelled waters, ii) Pb, Co and Ni show higher enrichment, evidenced by the association through adsorption of iron-manganese nodules onto clay minerals and iii) Cu enrichment observed close to major urban sectors, initiated by the precipitation as Cu sulfides. Correlation, principal component analysis (PCA) and cluster analysis (CA) were used to confirm the origin information of metals and the nature of organic matter composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Atibu, Emmanuel K; Tshibanda, Joseph B; Ngelinkoto, Patience; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John
2014-10-01
This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65 × 10(3), 6.35 × 10(3), 3.27 × 10(3) and 3.60 × 10(8) CFU g(-1) of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.
Banks, William S.L.; Johnson, Carole D.
2011-01-01
This investigation focused on selected regions of the study area, particularly in the coves where sediment accumulations were presumed to be thickest. GPR was the most useful tool for interpreting sediment thickness, especially in these shallow coves. The radar profiles were interpreted for two surfaces of interest-the water bottom, which was defined as the "2007 horizon," and the interface between Lake sediments and the original Lake bottom, which was defined as the "1925 horizon"-corresponding to the year the Lake was impounded. The ground-penetrating radar data were interpreted on the basis of characteristics of the reflectors. The sediments that had accumulated in the impounded Lake were characterized by laminated, parallel reflections, whereas the subsurface below the original Lake bottom was characterized by more discontinuous and chaotic reflections, often with diffractions indicating cobbles or boulders. The reflectors were picked manually along the water bottom and along the interface between the Lake sediments and the pre-Lake sediments. A simple graphic approach was used to convert traveltimes to depth through water and depth through saturated sediments using velocities of the soundwaves through the water and the saturated sediments. Nineteen cross sections were processed and interpreted in 9 coves around Deep Creek Lake, and the difference between the 2007 horizon and the 1925 horizon was examined. In most areas, GPR data indicate a layer of sediment between 1 and 7 feet thick. When multiple cross sections from a single cove were compared, the cross sections indicated that sediment thickness decreased toward the center of the Lake.
Polycyclic aromatic hydrocarbons in Saccoglossus kowalewskyi (Agassiz)
NASA Astrophysics Data System (ADS)
Carey, D. A.; Farrington, J. W.
1989-08-01
Hydrocarbon extracts were analyzed from Saccoglossus kowalewskyi, a deposit-feeding enteropneust worm, and from surface sediments from Cape Cod, MA. Worms were held in experimental aquaria in sieved sediments and flowing seawater for four months and then fed sediments mixed with creosote, lampblack or clean sediment for two weeks as analogues of sediments containing degraded oil and pyrogenic compounds. Worms from all treatments contained polyaromatic hydrocarbons (PAHs) in amounts and composition that indicate that the worms were contaminated with weathered No. 2 fuel oil before our experimental treatment and that the contamination persisted for four months in clean conditions. The contamination was not detected in the clean sediments used in the experiment. The worms accumulated steroid transformation products in greater abundance than the odd chain n-alkanes that dominated the sediment extractions. This may indicate selective assimilation of algal detritus and microbial products over salt marsh detritus. Worms, actively feeding during the experiment, contained 1-3 × 10 -6 g g -1 dry weight of unknown brominated compounds which were not detected in the sediments. These compounds are similar to bromopyrroles found elsewhere in enteropneusts, polychaetes and bacteria and may cause substantial interference in analyses for some industrial pollutants.
Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.
2015-09-16
Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.
Viguri, J; Verde, J; Irabien, A
2002-07-01
Samples of intertidal surface sediments (0-2 cm) were collected in 17 stations of the Santander Bay, Cantabric Sea, Northern Spain. The concentrations of polycyclic aromatic hydrocarbons (PAHs), 16, were analysed by HPLC and MS detection. Surface sediments show a good linear correlation among the parameters of the experimental organic matter evaluation, where total carbon (TC) and loss on ignition (LOI) are approximately 2.5 and 5 times total organic carbon (TOC). A wide range of TOC from 0.08% to 4.1%, and a broad distribution of the sum of sigma16PAHs, from 0.02 to 344.6 microg/g d.w., which can be correlated by an exponential equation to the TOC, has been identified. A qualitative relationship may be established between the industrial input along the rivers and the concentration of sigma6PAHs in the sediments of the estuaries: Boo estuary (8404-4631 microg/g OC), Solia-San Salvador estuaries (305-113 microg/g OC) and Cubas estuary (31-32 microg/g OC). This work shows a dramatic change in the spatial distribution in the concentration of PAHs of intertidal surface sediments. The left edge of the Bay has the main traffic around the city and the major source of PAHs is from combustion processes and estuarine inputs, leading to medium values of PAHs in the sediments; the right edge of the Bay has much lesser anthropogenic activities leading to lower values of PAHs in sediments. The distribution of individual PAHs in sediments varies widely depending on their structure and molecular weight; the 4-6 ring aromatics predominate in polluted sediments due to their higher persistence. The isomer ratio does not allow any clear identification of the PAHs origin. Environmental evaluation according to Dutch guidelines and consensus sediment quality guidelines based on ecotoxicological data leads to the same conclusion, sediments in the Santander Bay show a very different environmental quality depending on the spatial position from heavily polluted/medium effects to non-polluted/below threshold effects. These results indicate that local sources of PAHs, especially estuary discharges, lead to very different qualities of sediments in coastal zones, where traffic and industrial activities take place.
Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.
2015-12-01
Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.
NASA Astrophysics Data System (ADS)
Weijers, J.; Schefuss, E.; Kim, J.; Sinninghe Damsté, J. S.; Schouten, S.
2012-12-01
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids synthesized by soil bacteria that, upon soil erosion, are transported by rivers to the ocean where they accumulate in the near shore sedimentary archive. The degrees of cyclisation (CBT) and methylation (MBT) of these compounds have been shown to relate to soil pH and annual mean air temperature [1]. Therefore, brGDGTs in near shore sedimentary archives can be used to estimate past continental air temperatures and enable a direct comparison of these to marine sea surface temperature estimates obtained from the same samples. In addition, brGDGT abundance relative to crenarchaeol, an isoprenoid GDGT synthesized by marine pelagic Thaumarchaeota, quantified in the branched vs. isoprenoid tetraether (BIT) index, is an indicator of the relative input of soil organic matter in near shore sediments [2]. High BIT values near river outflows testify of relative strong soil organic matter input and generally the BIT index will decrease off shore to values near 0, the marine end-member value. Even in remote open ocean sediments, however, the BIT index will rarely reach 0 as small amounts of brGDGTs are often present. The occurrence of these brGDGTs in open marine settings might be a result of i) dust input, ii) sediment dispersion from near coastal areas, or iii) in situ production in marine sediments. In order to constrain the origin of branched GDGTs in open marine sediments we analyzed i) atmospheric dust samples taken along an equatorial African coastal transect, ii) marine surface waters near and away of the Congo river outflow, iii) a series of surface sediments at and around the Congo deep sea fan, and iv) a series of open marine surface sediments from different oceans with BIT values < 0.08. Our results show that brGDGTs are present, though in relative low amounts, in dust. Their distribution resembles that of soil input as also found in the Congo deep sea fan, with MBT and CBT values that could be representative of tropical African soils. Strikingly, BIT indices are much lower than expected for soils (0.15-0.42), likely as a result of sea spray on the dust filters. Open ocean sediments, on the contrary, are typically characterized by relative high amounts of cyclopentane containing brGDGTs resulting in low CBT values ranging from -0.4 - 0.8. These values are similarly low as reported earlier in marine sediments near Svalbard [3] and in the East China Sea [4], for which in situ production was invoked. Thus, brGDGT transport by dust does seem possible, though quantities are low. Since open ocean brGDGT distributions are markedly different from those in soils and dust, the latter is most likely not a significant source. Our results indicate that production of brGDGTs in ocean sediments, though in relative low amounts, is much more widespread than previously thought. This emphasizes that the MBT-CBT proxy for continental air temperature should only be used at locations where soil organic matter input is significant as evidenced by high BIT indices. References: [1] Weijers J.W.H. et al. (2007) Geochmim. Cosmochim. Acta 71, 703-713. [2] Hopmans E.C. et al. (2004) Earth Planet. Sci. Lett. 224, 107-116. [3] Peterse F. et al. (2009) Org. Geochem. 40, 692-699. [4] Zhu C. Et al. (2011) Org. Geochem. 42, 376-386.
Chemical forms and ecological risk of arsenic in the sediment of the Daliao River System in China.
Wang, Shiliang; Wang, Ping; Men, Bin; Lin, Chunye; He, Mengchang
2012-04-01
The chemical forms and ecological risk of As were characterized in the sediment of the Daliao River System (DRS), which has been affected by long-term intensive industrial, urban, and agricultural activities. Twenty-seven samples of surface sediment were collected and analyzed for total As content and that of its chemical forms. The results indicated that the average total As content in the sediment was 9.83 mg kg(- 1) but that the levels ranged from 1.57 to 83.09 mg kg(- 1). At the sites near cities, mining sites, and the estuary of the DRS, it is likely that adverse effects on aquatic organisms occur, due to As levels in the sediment that are often higher than the threshold effect level and occasionally higher than the probable effect level. A selectively sequential extraction indicated that the majority of As in the sediment was bound to Fe oxides (62.1%), with moderate proportions of residual As (19.8%), specifically adsorbed As (17.9%), and a low proportion of non-specifically adsorbed As (1.1%). In addition, the content of Fe in the sediment was positively and significantly correlated with the contents of amorphous and crystalline Fe oxide-bound As, confirming the crucial role of Fe oxides in immobilizing high amounts of As in superficial environments. The average molar ratio of As to Fe was 1.18 × 10(- 4) in the surface sediment of the DRS, similar to that of natural Fe oxides, but much lower than that of synthesized Schwertmannite. Therefore, the release of As under reduced and low pH conditions can cause serious problems for water resources and for living organisms.
NASA Astrophysics Data System (ADS)
Gallart, Francesc; Latron, Jérôme; Vuolo, Diego; Martínez-Carreras, Núria; Pérez-Gallego, Nuria; Estrany, Joan; Ferrer, Laura
2015-04-01
At the Vallcebre Research Catchments (South Eastern Pyrenees), results obtained during over 20 years showed that badlands are the primary sources of sediments to the drainage network. Parent lutitic rocks are weathered during winter producing regoliths, which are eroded from badland surfaces mainly during summer intense rainstorms. Even if the produced sediments are mainly fine, due to the ephemeral nature of summer runoff events most of them are deposited on the stream beds, where may remain during some time (months to years). Within the MEDhyCON project, a fallout radionuclides (FRNs) tracing experiment (i.e., excess lead 210 (Pbx-210) and beryllium 7 (Be-7)) is being carried out in order to investigate sediment connectivity. A simplified Pbx-210 balance model on badland surfaces suggested a seasonal sawtooth-like activity pattern: FRN would be accumulated in regoliths from October to June and depleted in summer. Early summer erosion events would produce the sediments with the highest activity whereas late summer events would produce sediments with the least activity coming from the deeper regolith horizons. These findings lead us to intend two sediment connectivity indices analysing respectively the temporal and spatial variability of the Pb-210 activities within the fine sediments: (1) The temporal variability of activities in suspended sediments at the gauging stations, being a measure of sediment transfer, ergo connectivity; a high variability mimicking regolith activity temporal pattern would represent high connectivity, whereas a low variability would involve that the sediments were pooled in a large and slowly moving stock. (2) The ratio between fine sediment activities at the sources and fine stream sediment activities downstream; fine stream sediment activities higher than those at their sources and increasing downstream (ratio lower than the unity) may indicate long-term permanence (low connectivity) of sediments in the stream beds, because once deposited on stream beds, the fine sediments would have an increasing downstream time to receive radionuclide fallout. Results to date showed that Pbx-210 activities of fine bed and suspended sediments were usually below detectable levels or with large uncertainty bounds, confirming that they come mainly from fresh rocks but making difficult the hypotheses testing. A relevant decrease in Pbx-210 activity was observed in suspended sediments during summer 2013, confirming the temporal accumulation of FRN on badland regoliths and the subsequent depletion of FRN-rich horizons, along with a significant connectivity of sediment. Shorter-lived Be-7 activity was detectable only on badland regoliths and suspended sediments, with activities increasing downstream; this cannot be attributed to the accumulation of FRN in old sediments, because of the short life of Be-7. Instead, fine bed sediments might be brought into suspension by raindrop impacts, and most of the FRN content of these raindrops would be flushed with the suspended sediment, in partial conflict with the hypothesis supporting the second index.
Zhuang, Wen; Gao, Xuelu
2014-01-01
The total concentrations and chemical forms of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in the surface sediments of the Laizhou Bay and the surrounding marine area of the Zhangzi Island (hereafter referred to as Zhangzi Island for short) were obtained and multiple indices and guidelines were applied to assess their contamination and ecological risks. The sedimentary conditions were fine in both of the two studied areas according to the marine sediment quality of China. Whereas the probable effects level guideline suggested that Ni might cause adverse biological effects to occur frequently in some sites. All indices used suggested that Cd posed the highest environmental risk in both the Laizhou Bay and the Zhangzi Island, though Cd may unlikely be harmful to human and ecological health due to the very low total concentrations. The enrichment factor (EF) showed that a substantial portion of Cr was delivered from anthropogenic sources, whereas the risk assessment code (RAC) indicated that most Cr was in an inactive state that it may not have any adverse effect either. Moreover, the results of EF and geoaccumulation index were consistent with the trend of the total metal concentrations except for Cd, while the results of RAC and potential ecological risk factor did not follow the same trend of their corresponding total metal concentrations. We also evaluated the effects of using different indices to assess the environmental impact of these heavy metals. PMID:24709993
Late Oligocene to Recent Landscape Evolution in Atacama Desert: a Case for Episodic Pluvial Activity
NASA Astrophysics Data System (ADS)
Dunai, T. J.
2005-12-01
Depositional surfaces of early Miocene sediments are preserved in the Coastal Cordillera, Atacama Desert, northern Chile (Dunai et al. 2005). Measurement of cosmogenic 21Ne in clasts from erosion-sensitive sediment surfaces show that these surfaces have been barely affected by erosion since 25 Ma. Predominantly hyperarid conditions since 25 Ma are required to create and preserve these oldest continuously exposed surfaces on Earth (ibid). The next oldest continuously exposed surfaces, in the Dry Valleys region, Antarctica, have about half this age (e.g. Schafer et al. 1999); van der Wateren et al. 1999). Eighty additional vein-quartz clasts were collected from the surface studied earlier (Dunai et al. 2005). These clasts were shed onto the surface from surrounding hill slopes after deposition of the main sedimentary body (22-25 Ma, references: ibid). The clasts were collected at the inlet of the first in a series of salt carst depressions at the bottom of a wide `valley' on the sediment surface(ibid). The 21Ne ages of these clasts show distinct clusters at 3.5-4 Ma, 8-10 Ma, 13-15 Ma, 17-18 Ma, ~24 Ma and 33-35 Ma. The ages that are younger than the deposition age give the timing of pluvial phases, in which the runoff was strong enough to incise hardrock channels into the surrounding hill slopes, and deposit material onto the sediment surface that had little to no pre-exposure to cosmic rays. Ages concordant to the deposition age probably represent laterally dislocated material of the original sediment surface. Ages greater than the deposition age indicate that portions of the local source region of the clasts were very slowly eroding/stable prior to the pluvial episode that eroded and transported them onto the sediment surface. The inferred pluvial phases are age-concordant with episodes of supergene enrichment in porphyry copper deposits of the Pre-Cordillera and the Andes to the east of the study area (e.g. Quang et el. 2005, Sillitoe and McKee 1996). Every Stage in the landform chronology of the region (Tosdal 1984; as revised by Quang et al. 2005) has its counterpart in the inferred pluvial phases in the Coastal Cordillera. The timing of all inferred pluvial phases is age-concordant with periods global and/or regional climate change (global cooling, regional wet-phases; Zachos 2001, Vasconcelos et al. 1994). It is therefore indicated that episodic pluvial activity, rather than episodic tectonic uplift (Quang et al. 2005), is responsible for the episodic changes in the Antacama section of the western flank of the Andes.
Biomonitoring for deposited sediment using benthic invertebrates: A test on 4 Missouri streams
Zweig, L.D.; Rabeni, Charles F.
2001-01-01
The response of stream benthic invertebrates to surficially deposited fine sediment was investigated in 4 Missouri streams. Twenty to 24 sampling sites in each stream were selected based on similarities of substrate particle-size distributions, depths, and current velocities but for differences in amounts of deposited sediment, which ranged from 0 to 100% surface cover. Deposited sediment was quantified 2 ways: a visual estimate of % surface cover, and a measurement of substrate embeddedness, which were highly correlated with each other and with the amount of sand. Invertebrates were collected using a kicknet for a specified time in a 1-m2 area. Five commonly used biomonitoring metrics (taxa richness, density, Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness, EPT density, and EPT/Chironomidae richness) were consistently significantly correlated across streams to deposited sediment. Shannon diversity index, Chironomidae richness, Chironomidae density, a biotic index, and % dominant taxon did not relate to increasing levels of deposited sediment. Tolerance values representing taxa responses to deposited sediment were developed for 30 taxa. Deposited-sediment tolerance values were not correlated with biotic index tolerance values, indicating a different response by taxa to deposited sediment than to organic enrichment. Deposited-sediment tolerance values were used to develop the Deposited Sediment Biotic Index (DSBI). The DSBI was calculated for all samples (n = 85) to characterize sediment impairment of the sampled streams. DSBI values for each site were highly correlated with measures of deposited sediment. Model validation by a resampling procedure confirmed that the DSBI is a potentially useful tool for assessing ecological effects of deposited sediment.
Sayama, Mikio
2001-01-01
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at −30°C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 μM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments. PMID:11472923
Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A
2014-06-01
In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.
NASA Astrophysics Data System (ADS)
Fame, Michelle L.; Owen, Lewis A.; Spotila, James A.; Dortch, Jason M.; Caffee, Marc W.
2018-02-01
Beryllium-10 concentrations in samples of sediment and bedrock from five study sites across the Scottish Highlands trace paraglacial sediment sources and define the nature of glacial erosion for the late Quaternary. Exposure ages derived from 10Be concentrations in ridge and lower elevation bedrock range from 10 to 33 ka, which suggest that polythermal ice and warm based ice were primarily responsible for producing glacial sediment. Comparisons of 10Be concentrations between catchment-wide sediment (2.06 ± 0.34 × 104 to 11.24 ± 1.54 × 104 atoms g-1 SiO2; n = 33), near surface deposits (2.71 ± 0.33 × 104 to 3.48 ± 0.49 × 104 atoms g-1 SiO2; n = 6), 4-m-thick deep till (0.68 × 10410Be atoms g-1 SiO2; n = 1), ridge bedrock (8.93 ± 0.47 × 104 to 34.05 ± 1.66 × 104 atoms g-1 SiO2; n = 20), and lower elevation polished bedrock (6.74 ± 0.67 × 104 to 12.65 ± 0.7 × 104 atoms g-1 SiO2, n = 5) indicate that most sand fluxing through catchments in the Scottish Highlands is sourced from the remobilization and vertical mixing of near surface deposits. These findings indicate that glaciogenic material continues to dominate paraglacial sediment budgets more than 11 ka after deglaciation.
Effect of redox conditions on MTBE biodegradation in surface water Sediments
Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.
2001-01-01
Microbial degradation of methyl tert-butyl ether (MTBE) was observed in surface water-sediment microcosms under anaerobic conditions. The efficiency and products of anaerobic MTBE biodegradation were dependent on the predominant terminal electron-accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to the toxic product, tert-butyl alcohol (TBA). In the absence of significant methanogenic activity, accumulation of [14C]TBA generally decreased, and mineralization of [U-14C]MTBE to 14CO2 generally increased as the oxidative potential of the predominant terminal electron acceptor increased in the order of SO4, Fe(III), Mn(IV) < NO3 < O2. Microbial mineralization of MTBE to CO2 under Mn(IV)or SO4-reducing conditions has not been reported previously. The results of this study indicate that microorganisms inhabiting the sediments of streams and lakes can degrade MTBE effectively under a range of anaerobic terminal electron-accepting conditions. Thus, anaerobic bed sediment microbial processes may provide a significant environmental sink for MTBE in surface water systems throughout the United States.
The history of hexachlorobenzene accumulation in Svalbard fjords.
Pouch, A; Zaborska, A; Pazdro, K
2018-05-24
In the present study, we investigated the spatial and historical trends of hexachlorobenzene (HCB) contamination in dated sediments of three Svalbard fjords (Kongsfjorden, Hornsund, Adventfjorden) differing in environmental conditions and human impact. HCB concentrations ranging from below limit of quantification (6.86 pg/g d.w.) to 143.99 pg/g d.w. were measured. The highest concentrations were measured in two surface sediment layers of the core collected in Hornsund near the melting glacier. The lowest concentrations of HCB were measured in Adventfjorden, suggesting that local source of HCB is not significant and global transport processes are the major transport pathways. The history of HCB deposition did not fully reflect the history of HCB emission (largest in 1950s and 1960s). In case of several sediment cores, the HCB enrichment in surface (recent) sediments was noticed. This can indicate importance of secondary sources of HCB, e.g., the influx of HCB accumulated over decades on the surface of glaciers. Detected levels of HCB were generally low and did not exceed background concentration levels; thus, a negative effect on benthic organisms is not expected.
Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.
MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F
2014-01-21
Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.
NASA Astrophysics Data System (ADS)
Galović, Lidija
2016-03-01
In the Eastern Croatia impressive loess-paleosol successions up to 30 m thick are exposed. In the Zmajevac I section three paleosols are intercalated in loess while in the Zmajevac, Erdut and Šarengrad sections there are four paleosols are intercalated in loess. IRSL age estimates of 17.8 ± 1.9 and 217 ± 22 ka. In all investigated sections, alluvial sediments are intercalated in the loess deposits, indicating periods of fluvial activity. Strongly abraded typical aeolian spherical grains characterized by pitted well-rounded surface that was developed during transportation have original crystal surface almost destroyed. Surface of quartz grains preserves micro textures characteristic for all transport medias that it has been exposed to. However, muscovite grain surface enable successful distinguishing if the last transport was by wind or by aquatic media. Characteristic of all horizons with muscovite as a dominant mineral is recent settling of organisms. Beside the Danube, Drava and Sava River flood plains, part of the analyzed sediments also originates from regional Tertiary sediments which are rich in granite (as a muscovite-bearing rock), indicating the local influence. Enrichment of pyroxenes in the Šarengrad section points to the Dinaride Ophiolite Zone as its source of origin eroded by the Sava River southern tributaries. Šarengrad section is the southernmost among the analyzed sections and the southern edge of the Carpathian Basin. Thus, beside the Alpine region, the mineral composition is influenced by minerals from the Dinaride Ophiolite Zone in Bosnia. Warming periods are not represented just by paleosols, but also with laminated alluvial sediments.
Trace metal in sediment from a deep-sea floor of Makassar Strait
NASA Astrophysics Data System (ADS)
Budianto, F.; Lestari
2018-02-01
Makassar Strait is located in the entrance of Indonesian Through Flow (ITF). However, the geochemistry of metals in sediment within Makassar Strait remains unexplored. The aim of this study was to measure the concentration of metals in sediment and to assess the sediment quality based on those metals concentrations. The sediment was collected from 632-4730 m in depth using giant piston corer on R/V Baruna Jaya VIII in December 2014. In each observation point, three layers of sediment were sub-sampled from the core i.e. surface layer (0-5 cm), middle layer (45-55 cm) and bottom layer. The metals were analyzed using acid digestion procedure followed by Atomic Absorption Spectrophotometer. The result indicated that the metal has spatially insignificant differences in sediment and the increase of metal concentration by depth was noticed. The Enrichment factor presented as no enrichment to minor enrichment of metal in sediment.
Integrative investigations on sediments in the Belauer See catchment (northern Germany)
NASA Astrophysics Data System (ADS)
Dreibrodt, Stefan
2015-04-01
The Holocene history of lake development, catchment vegetation, soil formation and human impact since the onset of the Neolithic period was reconstructed via the analysis of sediment sequences at Lake Belau (northern Germany). The chronology of the annually laminated lake sediment sequence was established via varve counts, radiocarbon dating and tephra analysis. Sequences of colluvial sediments and buried soils studied in 19 large exposures and supplementing auger cores within the lake catchment area were dated via radiocarbon dating and archaeological dating of embedded artifacts. The long term development of the lake status was found to be strongly influenced by local human activity. This is indicated by coincidence of phases of landscape openness deduced from pollen data with input of detritus and solutes into the lake. A comparison with palaeo-climate reconstructions reveals that calcite precipitation in the lake reflects climate variability at least to a certain degree. Calibrating the sediment record of the sub-recent lake sediments (micro-facies) on limnological and meteorological records discovered the influence of the NAO as well as solar activity on the limnological processes during the last century reflected by distinguished sedimentation patterns. A comparative study of additional laminated surface sediment sequences from northern Germany corroborates the results. A high resolution reconstruction of Neolithic weather conditions in northern Germany based on the varves of Lake Belau and Lake Poggensee was facilitated by the calibration. The quantitative records of sediments originating from soil erosion (colluvial sediments, allochthonous input into the lake) illustrate the dominance of short distance surface processes (slopes) acting in Holocene mid-latitude landscapes. Coincidence of gully incision in the lake catchment area and increased allochthonous input into the lake indicates the former occurrence of hydrological high energy runoff events (e. g. in the 14th century or at ca. 200 cal BC) whose regional significance is testable via comparative investigations in additional lake catchments.
Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary
Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu
2016-01-01
Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904
Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing
2013-11-01
It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P < 0.01), which indicated that they possibly came from the same sources. Moreover, the contents of Cr, Cu, Ni and Zn in sediment also had significant correlations with the populations of sub-river basins with correlation coefficients of 0.855, 0.806, 0.867 and 0.855 (P < 0.01), respectively. The contents of Cd and Pb had smaller spatial differences in sediment from different estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0.051-0.200 mg x kg(-1). Contents of the two heavy metals had no significant correlation with the other heavy metals or with the populations of sub-river basins, indicating that Cd and Pb had little connection with the in-land polluted sources. The results of ecological risk assessment showed that estuaries of the Haihe River Basin had the potential ecological risk at lower levels (RI were 33.7-116) and the most important contaminating element was Cd with a middle-level potential ecological risk (Er(i) were 18.0-48.9).
NASA Astrophysics Data System (ADS)
Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2017-08-01
The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.
Manion, N C; Campbell, L; Rutter, A
2010-04-01
The waterfront of historic Kingston, Ontario (pop: 113,000) has been used for industrial activities for over a century. More than 40 industries have existed within the inner harbour, and while many of these industries are no longer present, the properties that they operated on remain as potential sources of persistent contamination to the present day, including mercury. To assess the extent and distribution of total mercury (THg) contamination, 21 sediment cores as well as pore water samples were collected within the inner harbour of Kingston. The spatial distribution of THg in the surface sediment is not homogenous; with concentrations in the surface sediment along the southwestern shoreline, adjacent to the former industrial properties, are significantly greater (p<0.01) than the rest of the inner harbour, and were above the Federal severe effect limit (>2000 microg/kg;) guideline for sediment. MeHg was detected in some sediment cores, and was found to have a significant, positive correlation with [THg] in the surface sediment (0-5 cm). THg was not found in storm sewer discharges, but was detected in terrestrial soil near the Kingston Rowing Club at a concentration of more than 4000 microg/kg. Significant [THg] was detected in runoff draining from contaminated shoreline soils, indicating that erosion from terrestrial sources may be an ongoing source of Hg to the sediment. It can be concluded that there is an increased risk over time to surrounding ecosystems where properties with historical contamination are not remediated until they are developed. (c) 2010 Elsevier B.V. All rights reserved.
Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.
2013-01-01
Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico
Natural thorium isotopes in marine sediment core off Labuan port
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.
2014-02-12
Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. Themore » sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.« less
On the origin of saline soils at Blackspring Ridge, Alberta, Canada
NASA Astrophysics Data System (ADS)
Stein, Richard; Schwartz, Franklin W.
1990-09-01
Problems of soil salinity occur at Blackspring Ridge, Alberta, in four different settings. The most seriously affected area is at the base of the ridge where salinity appears as severe salt crusting on the surface, salt-tolerant vegetation, and areas of poor or no crop production. Blackspring Ridge is a structural bedrock high that is underlain by Upper Cretaceous sediment of the Horseshoe Canyon Formation. Bedrock is overlain by fluvial, glacial, lacustrine, and aeolian sediment. Piezometric data indicate that groundwater is recharged on and along the upper flanks of Blackspring Ridge and discharges in southern parts of a lacustrine plain that surrounds the ridge. Hydraulic conductivity data, water-level fluctuations, stable isotopes, and hydrochemical data indicate that the fractured near-surface bedrock and overlying thin-drift sediment constitute a zone of active groundwater flow within which salts are generated and transported. Water discharging from this shallow system evaporates and forms saline areas at the base of the ridge. The most seriously affected areas on the lacustrine plain coincide with places where the water table is less than 1.5m from the ground surface. A high water table occurs locally because of the changing topology of geologic units, and lows in the topographic surface that focus groundwater and surface water flows. Some proportion of the shallow groundwater salinized by evaporation is also transported down the flow system where it mixes with unevaporated water. Surface water, from snowmelt and precipitation events, dissolves salt that was deposited at the surface by evaporating groundwater and redistributes the salt to areas of lower elevation.
Authigenesis of trace metals in energetic tropical shelf environments
Breckel, E.J.; Emerson, S.; Balistrieri, L.S.
2005-01-01
We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be removed from the oxide surfaces. Because a much greater percentage of Mn than Fe becomes remobilized in these shelf sediments, metals closely associated with Mn oxides (like Cd) are more likely to show losses during deposition. ?? 2005 Elsevier Ltd. All rights reserved.
Tang, Zhi; Guo, Jianyang; Liao, Haiqing; Zhao, Xiaoli; Wu, Fengchang; Zhu, Yuanrong; Zhang, Liang; Giesy, John P
2015-04-01
Spatial and temporal distributions of concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and dated sediment core from Taihu Lake in eastern China were determined. The sum of concentrations of PAHs (sum of total 16 USEPA priority PAH (∑PAHs)) of the entire Taihu Lake ranged from 2.9 × 10(2) to 8.4 × 10(2) ng/g dry mass (dm). Concentrations of ∑PAHs in surface sediments near more urbanized regions of the lake shore were greater than those in areas more remote from the urban centers. Temporal trends in concentrations of ∑PAHs ranged from 5.1 × 10(2) to 1.5 × 10(3) ng/g dm, increasing from deeper layers to surface sediments with some fluctuations, especially in the past three decades after the inception of China's Reform and Opening Up Policy, in which China's economy and urbanization underwent rapid development. Forensic analysis of surface sediments indicates that PAHs originated primarily from combustion of grass/wood/coal except for the special function water area, which was most likely influenced by petroleum products of traveling vessels. Vertical profiles of relative concentrations of PAHs suggested that the contribution of lesser-molecular-weight PAHs was gradually decreasing, while due to the heavier consumption of petroleum products, the proportion of greater-molecular-weight PAHs was increasing. When assessed by use of the rather conservative, apparent effect threshold method, concentrations of ∑PAHs in sediments from most locations in Taihu Lake are predicted to pose little risk of harm to benthic invertebrates.
Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale
MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah
2000-01-01
Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.
Metge, D W; Harvey, R W; Aiken, G R; Anders, R; Lincoln, G; Jasperse, J
2010-02-01
This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7-13.9 m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3 microm) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D(50)) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8 mg L(-1)) of the 2.2 mg L(-1) dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2 mg L(-1) of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2 microM) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.
The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The resultmore » indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Chen, Liang; Wang, Weiping; Li, Tuanjie; Zu, Tingting
2017-04-01
We analyzed heavy metal concentrations in a number of surface sediments and cores from the Qiongzhou Strait and surrounding marine areas. The areas of high concentrations are primarily outside the eastern mouth of the Qiongzhou Strait and on the west side of the Leizhou Peninsula, whereas the areas of low concentrations are located primarily in the eastern Qiongzhou Strait. The maximum Cd, Pb and Zn concentrations in the samples collected in our study do not exceed the official standards for marine sediments, whereas the concentrations of Cr and Cu slightly exceed the standards. Correlations exist between the concentrations of Cu, Pb, Zn, Cr and Cd, and the concentrations of these metals are positively correlated with the mean particle size (φ value), indicating that the finer sediments have adsorbed greater amounts of heavy metal elements than the coarser sediments. An evaluation of the potential environmental risks demonstrates that certain indices of heavy metal pollution and environmental risks are relatively low and may be assigned low risk levels, thereby indicating that, in terms of heavy metals, the marine sedimentary environment in this region is only mildly impacted. Our analysis of the contaminant origins shows that the heavy metals in this region primarily originate in the Pearl River Estuary and that a small amount of them is derived from local runoff. The elevated heavy metal concentrations from the upper sections of the cores started 130 years ago, which indicats that heavy metals in the surface sediments are primarily due to human activities associated with industrialization.
Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments
NASA Astrophysics Data System (ADS)
Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.
2011-12-01
The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at pH < 5.0. These results suggested that the contaminated sediments might either contain other more reactive clay minerals such as smectite, or that the long-term acid-leaching process might have altered the surface reactivity of the original sediments. Further studies are needed to identify more reactive mineral facies and understand the effects of acid leaching on the surface reactivity of the sediments.
Doran, P T; Wharton, R A; Lyons, W B; Des Marais, D J; Andersen, D T
2000-01-01
A process-oriented study was carried out in White Smoke lake, Bunger Hills, East Antarctica, a perennially ice-covered (1.8 to 2.8 m thick) epishelf (tidally-forced) lake. The lake water has a low conductivity and is relatively well mixed. Sediments are transferred from the adjacent glacier to the lake when glacier ice surrounding the sediment is sublimated at the surface and replaced by accumulating ice from below. The lake bottom at the west end of the lake is mostly rocky with a scant sediment cover. The east end contains a thick sediment profile. Grain size and delta 13C increase with sediment depth, indicating a more proximal glacier in the past. Sedimentary 210Pb and 137Cs signals are exceptionally strong, probably a result of the focusing effect of the large glacial catchment area. The post-bomb and pre-bomb radiocarbon reservoirs are c. 725 14C yr and c. 1950 14C yr, respectively. Radiocarbon dating indicates that the east end of the lake is >3 ka BP, while photographic evidence and the absence of sediment cover indicate that the west end has formed only over the last century. Our results indicate that the southern ice edge of Bunger Hills has been relatively stable with only minor fluctuations (on the scale of hundreds of metres) over the last 3000 years.
Assessment of metal contamination in surface sediments from Zhelin Bay, the South China Sea.
Wang, Zhao-Hui; Feng, Jie; Jiang, Tao; Gu, Yang-Guang
2013-11-15
Metals and biogenic elements were analyzed from surface sediments collected from Zhelin Bay in the South China Sea in December 2008. The high concentrations of TOC, TN and BSi indicate the high nutrient level and diatom productivity in Zhelin Bay. The concentrations of metals were generally far lower than the effects-range-low (ERL) values that define pollutant levels. Enrichment factors (EF) and geoaccumulation indices (Igeo) suggest there are pollution levels of Cd, Cu and Zn at some stations. As, Cu, and Pb are potentially biotoxic in some stations. Correlation and principal component analyses indicate that most of the metals primarily originate from natural sources, and from maricultural activities as well. Mariculture contributes considerable Cd and Cu contamination. As and Pb comes primarily from combustion of gasoline and diesel fuel by ships. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sherwood, C.R.
2000-01-01
A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.
Measurement of Sediment Deposition Rates using an Optical Backscatter Sensor
NASA Astrophysics Data System (ADS)
Ridd, P.; Day, G.; Thomas, S.; Harradence, J.; Fox, D.; Bunt, J.; Renagi, O.; Jago, C.
2001-02-01
An optical method for measuring siltation of sediment has been developed using an optical fibre backscatter (OBS) nephelometer. Sediment settling upon the optical fibre sensor causes an increase in the backscatter reading which can be related to the settled sediment surface density (SSSD) as measured in units of mg cm -2. Calibration and laboratory tests indicate that the resolution of measurements of SSSD is 0·01 mg cm -2and an accuracy of 5% in still water. In moving water it is more difficult to determine the accuracy of the method because other methods with suitable resolution are unavailable. However, indirect methods using measurements of changing suspended sediment concentration in a ring flume, indicate that the OBS method under-predicts deposition. The series of siltation from three field sites are presented. This sensor offers considerable advances over other methods of measuring settling because time series of settling may be taken and thus settling events may be related to other hydrodynamic parameters such as wave climate and currents.
Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing
2013-05-01
The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.
NASA Astrophysics Data System (ADS)
Gallart, Francesc; Latron, Jérôme; Vuolo, Diego; Martínez-Carreras, Núria; Pérez-Gallego, Nuria; Ferrer, Laura; Estrany, Joan
2016-04-01
In the Vallcebre Research Catchments (NE Spain), results obtained during over 20 years showed that badlands are the primary sources of sediments to the drainage network. Parent lutitic rocks are weathered during winter producing regoliths, which are eroded from badland surfaces mainly during summer intense rainstorms. Even if the produced sediments are mainly fine, due to the ephemeral nature of summer runoff events most of them are deposited on the stream beds, where they may remain during some time (months to years). Within the MEDhyCON project, a fallout radionuclides (FRNs) tracing experiment (i.e., excess lead 210 (Pbx-210) and beryllium 7 (Be-7)) is being carried out in order to investigate sediment connectivity. A simplified Pbx-210 balance model on badland surfaces suggested a seasonal sawtooth-like activity pattern: FRN being accumulated in regoliths from October to June and depleted in summer. Early summer erosion events would produce the sediments with the highest activity whereas late summer events would produce sediments with the lowest activity coming from the deeper regolith horizons. These findings lead us to launch two sediment transfer connectivity hypotheses analysing respectively the temporal and spatial variability of the Pb-210 activities within the fine sediments at the small catchment scale: (1) The temporal variability of suspended sediment activities at the gauging stations is a measure of sediment transfer immediacy, ergo connectivity. Hence, a high variability in suspended sediment activities, mimicking regolith activity temporal pattern would indicate high connectivity, whereas a low variability, meaning that sediments are mostly pooled in a large and slowly moving stock, would indicate low connectivity. (2) In a drainage system where fine sediments temporarily remain on the dry stream bed, the ratio between fine sediment activities at the sources and fine in-stream sediment activities downstream is a measure of sediment connectivity. Indeed, long residence time of stream bed sediments allowing FRN accumulation is suggested by (i) fine in-stream sediment activities higher than those measured at their sources and (ii) increasing activities downstream. Results showed a more intricate behaviour than expected. Pbx-210 activities of fine bed and suspended sediments were usually below detectable levels or had large uncertainty bounds, confirming that they come mainly from fresh rocks but making difficult the hypotheses testing. Fine sediments on the stream beds had low activities in contradiction with hypothesis 2. Activities of in-stream suspended sediments partly followed hypothesis 1 but they decreased with the increasing capacity of runoff events to mobilise low-activity sediments from the stream bed. Shorter-lived Be-7 activity was detectable only on badland regoliths and suspended sediments, with activities increasing downstream; this cannot be attributed to the accumulation of FRN in old sediments, because of the short life of Be-7. Instead, fine bed sediments might be brought into suspension by raindrop impacts, and most of the FRN content of these raindrops would be flushed with the suspended sediment, impeding its accumulation on bed sediments and disabling hypothesis 2. Overall, several lines of evidence suggest that FRNs were quickly sequestered by the more dynamic sediment particles, preventing its accumulation on coarser sediment particles and surfaces exposed to overland or stream flow.
Kim, Dong Won; Kim, Seung Kyu; Lee, Dong Soo
2009-06-01
This study compared the contamination levels and compositional characteristics of PAHs in soil, SS and sediment to understand the cross media characteristics among the three solid media and ecological risk implications for the purpose to help manage in a more integrated manner the environmental quality objectives or the ecological risk in the media. The study area included urban (metropolis and industrial zone), suburban and rural sites. Seasonal samples were concurrently collected in surface soils, surface waters (dissolved and suspended solid (SS) phases separately) and sediments. The emission estimate and source characterizing PAH indices consistently indicated that PAHs were from pyrogenic sources. The level of total PAHs in soil declined along the wind direction from the urban areas to the rural areas. The sorption power of soil appeared distinctly different between the urban and rural areas. The contamination levels and PAH profiles in soil and sediment were closely related to each other while no such correlation was observed between SS and sediment or SS and soil. Comparisons of the observed partitioning coefficients with three different partitioning equilibrium models strongly suggested that PAHs in water appeared to undergo partitioning among the dissolved phase in water, dissolved organic matter, and organic and soot carbons in SS, which might account for the level and profile of PAHs in SS that were not correlated with those in soil or sediment. The observed results suggested that PAHs of pyrogenic origins entered into soil, sediment, and water by the atmospheric deposition and subsequent other cross-media transfers of PAHs. The results also evidenced that sediments were principally contaminated with PAHs delivered via surface run-off from soil although in the urban areas the run-off influence appeared less immediate than in the rural areas. Environmental quality objectives for PAHs in soil and sediment should be set in a coherent manner and the protection efforts for the sediment quality should be made with the consideration of the soil quality particularly where the river bottom sediment is renewed periodically with eroded soil due to heavy rain and/or large river regime coefficient. In spite of the difference in PAH profiles among the three solid media, BaP commonly appeared to present the greatest TEQ, suggesting that strict regulation of BaP is necessary to efficiently and substantially minimize the total risk of the environmental PAHs.
NASA Astrophysics Data System (ADS)
Florsheim, J. L.; Ulrich, C.; Hubbard, S. S.; Borglin, S. E.; Rosenberry, D. O.
2013-12-01
An important problem in geomorphology is to differentiate between abiotic and biotic fine sediment deposition on coarse gravel river beds because of the potential for fine sediment to infiltrate and clog the pore space between gravel clasts. Infiltration of fines into gravel substrate is significant because it may reduce permeability; therefore, differentiation of abiotic vs. biotic sediment helps in understanding the causes of such changes. We conducted a geomorphic field experiment during May to November 2012 in the Russian River near Wohler, CA, to quantify biotic influence on riverbed sedimentation in a small temporary reservoir. The reservoir is formed upstream of a small dam inflated during the dry season to enhance water supply pumping from the aquifer below the channel; however, some flow is maintained in the reservoir to facilitate fish outmigration. In the Russian River field area, sediment transport dynamics during storm flows prior to dam inflation created an alternate bar-riffle complex with a coarser gravel surface layer over the relatively finer gravel subsurface. The objective of our work was to link grain size distribution and topographic variation to biotic and abiotic sediment deposition dynamics in this field setting where the summertime dam annually increases flow depth and inundates the bar surfaces. The field experiment investigated fine sediment deposition over the coarser surface sediment on two impounded bars upstream of the reservoir during an approximately five month period when the temporary dam was inflated. The approach included high resolution field surveys of topography, grain size sampling and sediment traps on channel bars, and laboratory analyses of grain size distributions and loss on ignition (LOI) to determine biotic content. Sediment traps were installed at six sites on bars to measure sediment deposited during the period of impoundment. Preliminary results show that fine sediment deposition occurred at all of the sample sites, and is spatially variable--likely influenced by topographic differences that moderate flow over the bars. Traps initially filled with coarse gravel from the bar's surface trapped more fine sediment than traps initially filled with material from the bar's subsurface sediment, suggesting that a gravel bar's armor layer may enhance the source of material available to infiltrate into the channel substrate. LOI analysis indicates that both surface and subsurface samples have organic content ranging between 2 and 4%, following winter storm flows prior to impoundment. In contrast, samples collected after the 5-month impoundment have higher organic content ranging between 5 and 11%. This work aids in differentiating between abiotic and biotic fine sediment deposition in order to understand their relative potential for clogging gravel substrate.
NASA Astrophysics Data System (ADS)
Yu, M.; Rhoads, B. L.; Stumpf, A.
2017-12-01
The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.
NASA Astrophysics Data System (ADS)
Moreno de las Heras, Mariano; Gallart, Francesc; Latron, Jérôme; Martínez-Carreras, Núria; Ferrer, Laura; Estrany, Joan
2017-04-01
Analysis of sediment dynamics in Mediterranean environments is fundamental to basin management, particularly for mountain catchments with badlands, which affect water bodies and freshwater ecosystems. Connectivity has emerged in Environmental and Earth Sciences as an evolution of the sediment delivery concept, providing a useful framework for understanding how sediments are transferred between geomorphic zones of the catchment. This study explores the feasibility of excess lead-210 (210Pbex) to analyse sediment connectivity in a 4-km2 Mediterranean mountain basin with badlands (the Vallcebre research catchments, Eastern Pyrenees) by applying simple 210Pbex mass-balance models for hypothesis generation and experimental testing in the field. Badland surfaces in the basin are weathered by freezing during the winter and are further eroded in summer by the effect of high-intensity storms. The eroded sediments may remain deposited within the catchment streams from months to years. Application of 210Pbex balance models in our basin proposes: (i) a saw-tooth seasonal pattern of badland surface 210Pbex activities (increasing from October to May, and depleted in summer) and (ii) a downstream increase in sediment activity due to fallout lead-210 accumulation in streambed sediment deposits. Both deposited and suspended sediments collected at the Vallcebre catchments showed, in general, low sediment 210Pbex concentrations, illustrating their fresh-rock origin at the badland sites, but also hampering the understanding of sediment 210Pbex patterns due to high measurement uncertainty (particularly for sediments with d50>20µm) and to strong dependence on sediment sampling methodology. Suspended sediment 210Pbex activity reproduced the simulated seasonal activity patterns for the badland surfaces. Contrary to the in-stream transit increases of sediment 210Pbex activity that were predicted by our model simulations, fallout lead-210 concentrations in the suspended sediments decreased towards the basin outlet, suggesting that fine sediment flushing by flooding prevented 210Pbex accumulation in the coarser streambed sediment deposits. These results indicate a high fine-sediment connectivity between the badlands, streams and basin outlet of the Vallcebre catchments, as well as the sequestration and fast transmission of fallout lead-210 by the finest and most dynamic fraction of sediments.
Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin, Inner Mongolia
Deng, Y.; Wang, Y.; Ma, T.; Yang, H.; He, J.
2011-01-01
Understanding the mechanism of arsenic mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Hetao Basin in Inner Mongolia, northern China. Aquifer geochemistry was characterized at three field sites (SH, HF, TYS) in Hangjinhouqi County of northwestern Hetao Basin. The results of bulk geochemistry analysis of sediment samples indicated that total As concentrations have a range of 6. 8-58. 5 mg/kg, with a median of 14. 4 mg/kg. The highest As concentrations were found at 15-25 m depth. In the meanwhile, the range of As concentration in the sediments from background borehole is 3-21. 8 mg/kg, with a median value of 9 mg/kg. The As sediments concentrations with depth from the SH borehole were correlated with the contents of Fe, Sb, B, V, total C and total S. Generally, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments. Distinct lithology profile and different geochemical characteristics of aquifer sediments indicate the sediments are associated with different sources and diverse sedimentary environments. Up to one third of arsenic in the sediments could be extracted by ammonium oxalate, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. Sequential extraction results indicate that arsenic occurs as strongly adsorbed on and/or co-precipitated with amorphous Fe oxyhydroxides in sediments accounting for 35 and 20%, respectively, of the total contents of arsenic. The release of As into groundwater may occur by desorption from the mineral surface driven by reductive dissolution of the Fe oxide minerals. Furthermore, small proportions of As associated with iron sulfides occur in the reductive sediments. ?? 2011 Springer-Verlag.
Mercury pollution in Doha (Qatar) coastal environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Madfa, H.; Dahab, O.A.; Holail, H.
Surface water and sediment samples were collected from the Doha coastal area and analyzed for content of physico-chemical forms of mercury. Dissolved reactive Hg represented 81.0% of the total dissolved Hg. Organic Hg contributed only 5.0% of total Hg. Mercury showed a strong tendency to be associated with suspended matter in Doha coastal waters, as it represented about 73.0% of the total. Total Hg in bulk Doha surface sediments fluctuated between 0.14 and 1.75 [mu]g g[sup [minus]1] dry weight, with an average of 0.54 [+-] 0.46 [mu]g g[sup [minus]1] dry weight. The sediment fraction past 63 [mu]m contained 0.73 [+-]more » 0.60 [mu]g g[sup [minus]1] dry weight total Hg. Leachable and methyl Hg averaged 0.10 [+-] 0.11 and 0.02 [+-] 0.03 [mu]g g[sup [minus]1] dry weight, respectively, in the < 63-[mu]m sediment fraction. There is a general trend for all Hg species determined in water and sediments to decrease seaward. The significantly elevated Hg levels at certain locations indicated that the main Hg sources to Doha coastal environment are leachate from the solid waste disposal site, the two harbors, and surface-water discharge.« less
NASA Astrophysics Data System (ADS)
Kok, Marika D.; Rijpstra, W. Irene C.; Robertson, Lisette; Volkman, John K.; Sinninghe Damstéé, Jaap S.
2000-04-01
Surface sediments (0-25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C 27-C 29 steroids. These steroid moieties were identified by GC-MS analysis of the apolar fractions after cleavage of polysulfide linkages using MeLi and MeI and after desulfurisation. The polar fractions contained the oligomeric analogues. The S-bound steroids are most likely formed by sulfur incorporation into steroidal ketones formed from Δ 5 sterols by biohydrogenation by anaerobic bacteria. The concentrations of these sulfurised steroids increased with depth in the sediment. The sulfurisation reaction is completed in 1000-3000 years. Despite a wide range of functionalised lipids present in these sediments that are potentially available for sulfurisation, there is a very strong preference for the incorporation of sulfur into steroidal compounds. A predominance of sulfurised C 27 steroids contrasted with the distribution of free sterols, which showed a strong predominance of C 29 sterols. This indicates that the incorporation of sulfur is biased towards C 27 sterols. The results demonstrate that intermolecular sulfurisation of organic matter can occur in surface sediments at low temperatures and in the absence of light.
NASA Astrophysics Data System (ADS)
Shrivastava, Prakash K.; Asthana, Rajesh; Roy, Sandip K.; Swain, Ashit K.; Dharwadkar, Amit
2012-07-01
The scientific study of quartz grains is a powerful tool in deciphering the depositional environment and mode of transportation of sediments, and ultimately the origin and classification of sediments. Surface microfeatures, angularity, chemical features, and grain-size analysis of quartz grains, collectively reveal the sedimentary and physicochemical processes that acted on the grains during different stages of their geological history. Here, we apply scanning electron microscopic (SEM) analysis to evaluating the sedimentary provenance, modes of transport, weathering characteristics, alteration, and sedimentary environment of selected detrital quartz grains from the peripheral part of two epi-shelf lakes (ESL-1 and ESL-2) of the Schirmacher Oasis of East Antarctica. Our study reveals that different styles of physical weathering, erosive signatures, and chemical precipitation variably affected these quartz grains before final deposition as lake sediments. Statistical analysis (central tendencies, sorting, skewness, and kurtosis) indicates that these quartz-bearing sediments are poorly sorted glaciofluvial sediments. Saltation and suspension seem to have been the two dominant modes of transportation, and chemical analysis of these sediments indicates a gneissic provenance.
Sharifi, Reza; Moore, Farid; Keshavarzi, Behnam
2016-04-01
Arsenic (As) and antimony (Sb) concentrations in water and sediments were determined along flow paths in the Sarouq River, Zarshuran and Agh Darreh streams. The results indicate high As and Sb concentrations in water and sediment samples. Raman spectroscopy shows hematite (α-Fe2O3), goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)] in sediment samples. Calculated saturation indices (SI) indicate oversaturation with respect to amorphous Fe(OH)3 for all samples, but undersaturation with respect to Al and Mn mineral and amorphous phases. Therefore, ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic and antimony attenuation by adsorption/co-precipitation processes. The considerable difference between As and Sb concentration in sediment is due to strong adsorption of As(V) into the solid phase. Also, lower affinity of Sb(V) for mineral surfaces suggests a greater potential for aqueous transport. The adsorption of arsenic and antimony was examined using the Freundlich adsorption isotherm to determine their distribution model in water-sediment system and its compatibility with the existing theoretical model. The results showed that the adsorption behavior of both elements complies with the Freundlich adsorption isotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detecting and characterizing unroofed caves by ground penetrating radar
NASA Astrophysics Data System (ADS)
Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej
2018-02-01
The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to survey unroofed caves worldwide and the first detailed study of such karst features in Croatia. The low-frequency GPR proved to be an efficient method not only for detecting underground continuations but also for distinguishing and identifying surface features and transition zones between surface and subsurface segments of unroofed caves and can therefore be used for recognizing similar geomorphological features.
NASA Astrophysics Data System (ADS)
Khim, B.; Ikehara, K.; Sagawa, T.; Shibahara, A.; Yamamoto, M.
2010-12-01
Laminated sediments during the last deglaciation in the subarctic North Pacific indicate significant depletion of dissolved oxygen concentration at intermediate water depths. Such a strong oxygen minimum zone results primarily from a combination of high surface water productivity and poor ventilation of intermediate waters. We investigated a variety of paleoclimatic proxies using about 8-m long piston core sediment (GH02-1030; 42o13.770N, 144o12.530E; water depth, 1212 m) obtained from the continental slope off Tokachi (eastern Hokkaido Island), which is the main path of the southwestward Oyashio Current in the subarctic Northwest Pacific. Laminated sediments were identified at the two horizons in the core GH02-1030; the upper one at 11.4-12.2 cal.kyr BP and the lower one at 14.1-14.7 cal.kyr BP, corresponding to Bølling-Allerød (B/A) and Preboreal (PB), respectively. Between these laminated layers, Younger Dryas occurred. Both laminated sediment layers are characterized by Bolivina tumida, B. pacifica, and Buliminella tenuata, indicating dysoxic bottom water conditions. Increased Mg/Ca-derived intermediate-water temperature and δ18OW values at B/A and PB periods suggest the poor ventilation of intermediate water because of the surface water freshening (i.e., decrease of surface-water salinity). UK'37-derived temperature record also supports the increase of surface-water temperature during B/A and PB intervals. During the last deglaciation, short-chain C14-C18 n-fatty acids, derived mainly from marine organisms, showed higher concentrations, indicating the increased surface-water production, and at the same time, abundant lignin reflected more contribution of terrigenous organic matter, supporting increased freshwater discharge. Variation of CaCO3 contents show remarkable double peaks, corresponding to B/A and PB periods, respectively, leading to the increase of TOC contents. Opal contents also follow similar pattern to CaCO3 contents, but are much less than the Holocene values. Interesting are the remarkable double peaks of δ15N values, also corresponding to B/A and PB intervals, respectively. Such increased δ15N values indicated the enhanced nitrate utilization through the promoted phytoplankton production. Otherwise, the high δ15N records could be indicative of water column denitrification in the source region. Thus, our study area possibly experienced high surface water productivity at times of reduced intermediate ventilation in the subarctic Northwest Pacific during the last deglaciation.
Li, Pingyang; Xue, Rui; Wang, Yinghui; Zhang, Ruijie; Zhang, Gan
2015-01-15
Fifteen polycyclic aromatic hydrocarbons (PAHs) in 41 surface sediment samples and a sediment core (50 cm) from the Beibu Gulf, a significant low-latitude developing gulf, were analyzed. PAHs concentrations were 3.01-388 ng g(-)(1) (mean 95.5 ng g(-)(1)) in the surface sediments and 10.5-87.1 ng g(-)(1) (average 41.1 ng g(-)(1)) in the sediment core. Source apportionment indicated that PAHs were generated from coke production and vehicular emissions (39.4%), coal and biomass combustion (35.8%), and petrogenic sources (24.8%). PAHs were mainly concentrated in the industrialized and urbanized regions and the harbor, and were transported by atmospheric deposition to the marine matrix. The mass inventory (1.57-2.62t) and probability risk showed sediments here served as an important reservoir but low PAH risk. Different from oil and natural gas in developed regions, coal combustion has always been a significant energy consumption pattern in this developing region for the past 30 years (56 ± 5%). Copyright © 2014 Elsevier Ltd. All rights reserved.
Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106
Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.
1994-01-01
Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.
Selvam, A Paneer; Priya, S Laxmi; Banerjee, Kakolee; Hariharan, G; Purvaja, R; Ramesh, R
2012-10-01
The geochemical distribution and enrichment of ten heavy metals in the surface sediments of Vembanad Lake, southwest coast of India was evaluated. Sediment samples from 47 stations in the Lake were collected during dry and wet seasons in 2008 and examined for heavy metal content (Al, Fe, Mn, Cr, Zn, Ni, Pb, Cu, Co, Cd), organic carbon, and sediment texture. Statistically significant spatial variation was observed among all sediment variables, but negligible significant seasonal variation was observed. Correlation analysis showed that the metal content of sediments was mainly regulated by organic carbon, Fe oxy-hydroxides, and grain size. Principal component analysis was used to reduce the 14 sediment variables into three factors that reveal distinct origins or accumulation mechanisms controlling the chemical composition in the study area. Pollution intensity of the Vembanad Lake was measured using the enrichment factor and the pollution load index. Severe and moderately severe enrichment of Cd and Zn in the north estuary with minor enrichment of Pb and Cr were observed, which reflects the intensity of the anthropogenic inputs related to industrial discharge into this system. The results of pollution load index reveal that the sediment was heavily polluted in northern arm and moderately polluted in the extreme end and port region of the southern arm of the lake. A comparison with sediment quality guideline quotient was also made, indicating that there may be some ecotoxicological risk to benthic organisms in these sediments.
Storm-induced redistribution of deepwater sediments in Lake Ontario
Halfman, J.D.; Dittman, D.E.; Owens, R.W.; Etherington, M.D.
2006-01-01
High-resolution seismic reflection profiles, side-scan sonar profiles, and surface sediment analyses for grain size (% sand, silt & clay), total organic carbon content, and carbonate content along shore-perpendicular transects offshore of Olcott and Rochester in Lake Ontario were utilized to investigate cm-thick sands or absence of deep-water postglacial sediments in water depths of 130 to 165 m. These deepwater sands were observed as each transect approached and occupied the "sills," identified by earlier researchers, between the three deepest basins of the lake. The results reveal thin (0 to 5-cm) postglacial sediments, lake floor lineations, and sand-rich, organic, and carbonate poor sediments at the deepwater sites (> 130 m) along both transects at depths significantly below wave base, epilimnetic currents, and internal wave activity. These sediments are anomalous compared to shallower sediments observed in this study and deeper sediments reported by earlier research, and are interpreted to indicate winnowing and resuspension of the postglacial muds. We hypothesize that the mid-lake confluence of the two-gyre surface current system set up by strong storm events extends down to the lake floor when the lake is isothermal, and resuspends and winnows lake floor sediment at these locations. Furthermore, we believe that sedimentation is more likely to be influenced by bottom currents at these at these sites than in the deeper basins because these sites are located on bathymetric highs between deeper depositional basins of the lake, and the bathymetric constriction may intensify any bottom current activity at these sites.
NASA Astrophysics Data System (ADS)
Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer
2017-04-01
Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.
Häuselmann, Philipp; Mihevc, Andrej; Pruner, Petr; Horáček, Ivan; Čermák, Stanislav; Hercman, Helena; Sahy, Diana; Fiebig, Markus; Hajna, Nadja Zupan; Bosák, Pavel
2015-01-01
Caves are important markers of surface evolution, since they are, as a general rule, linked with ancient valley bottoms by their springs. However, caves can only be dated indirectly by means of the sediments they contain. If the sediment is older than common dating methods, one has to use multiple dating approaches in order to get meaningful results. U/Th dating, palaeomagnetic analysis of flowstone and sediment profiles, cosmogenic dating of quartz pebbles, and mammalian dating allowed a robust estimate of speleogenesis, sediment deposition, climatic change at the surface, and uplift history on the Periadriatic fault line during the Plio-Pleistocene. Our dates indicate that Snežna jama was formed in the (Upper) Miocene, received its sedimentary deposits during the Pliocene in a rather low-lying, hilly landscape, and became inactive due to uplift along the Periadriatic and Sava faults and climatic changes at the beginning of the Quaternary. Although it is only a single cave, the information contained within it makes it an important site of the Southern Alps. PMID:26516294
Häuselmann, Philipp; Mihevc, Andrej; Pruner, Petr; Horáček, Ivan; Čermák, Stanislav; Hercman, Helena; Sahy, Diana; Fiebig, Markus; Hajna, Nadja Zupan; Bosák, Pavel
2015-10-15
Caves are important markers of surface evolution, since they are, as a general rule, linked with ancient valley bottoms by their springs. However, caves can only be dated indirectly by means of the sediments they contain. If the sediment is older than common dating methods, one has to use multiple dating approaches in order to get meaningful results. U/Th dating, palaeomagnetic analysis of flowstone and sediment profiles, cosmogenic dating of quartz pebbles, and mammalian dating allowed a robust estimate of speleogenesis, sediment deposition, climatic change at the surface, and uplift history on the Periadriatic fault line during the Plio-Pleistocene. Our dates indicate that Snežna jama was formed in the (Upper) Miocene, received its sedimentary deposits during the Pliocene in a rather low-lying, hilly landscape, and became inactive due to uplift along the Periadriatic and Sava faults and climatic changes at the beginning of the Quaternary. Although it is only a single cave, the information contained within it makes it an important site of the Southern Alps.
Lewis, M A; Russell, M J
2015-06-15
Contaminant concentrations are reported for surface water, sediment, flora and fauna collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay, Florida. Concentrations of trace metals, chlorinated pesticides, atrazine, total polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were species-, chemical- and location-specific. Contaminants in sediments did not exceed proposed individual sediment quality guidelines. Most sediment quality assessment quotients were less than one indicating the likelihood of no inhibitory effect based on chemical measurements alone. Faunal species typically contained more contaminants than plant species; seagrass usually contained more chemicals than mangroves. Bioconcentration factors for marine angiosperms were usually less than 10 and ranged between 1 and 31. Mercury concentrations (ppm) in blue crabs and fish did not exceed the U.S. Environmental Protection Agency fish tissue criterion of 0.3 and the U.S. Food and Drug Administration action level of 1.0. In contrast, total mercury concentrations in faunal species often exceeded guideline values for wildlife consumers of aquatic biota. Published by Elsevier Ltd.
Benthic foraminifera as indicators of pollution in high latitude marine environments
NASA Astrophysics Data System (ADS)
Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Klitgaard-Kristensen, D.; Hald, M.
2012-04-01
An increasing number of studies demonstrate the potential of benthic foraminifera to characterize ecological status. However, the use of benthic foraminifera as bio-indicators has previously not been tested in high latitudes. This research contributes to the development of foraminifera as a bio-monitoring technique for the Arctic region, as industrial activities in this region will increase in the coming years. Surface sediments (0-1 cm) from sites close to gas fields in the SW Barents Sea were studied. In addition, to elucidate the range from less to very affected, surface sediments from the harbor of the town of Hammerfest (70° N) were studied. At least 300 living benthic foraminifera from the size fraction 100 µm-1 mm were counted and identified at species level. Pollution levels (heavy metals and persistent organic pollutants) and sediment properties (grainsize and TOC) were also analyzed. Pollution levels at the sea floor in the SW Barents Sea are of background to good level (level I-II) according to the definitions by the Water Framework Directorate (WFD). Benthic foraminiferal assemblages are influenced by natural environmental parameters such as water mass properties, water depth, nutrient availability, bottom current strength, and grain size. Surface sediments from the Hammerfest harbor are of moderate environmental status (WFD level II-III) based on heavy metal concentrations and of bad environmental status (WFD IV-V) based on persistent organic pollutant concentrations. Opportunistic benthic foraminifera are dominating the assemblages. The most polluted areas in the harbor are barren for foraminifera or have high amounts of deformed shells. In both environments the foraminiferal diversity of the samples, does not correspond to expected environmental status based on the pollution levels of the sediments. Environmental status classes, based on benthic foraminifera instead of macrofauna, would allow rapid analyses of the environmental impact of pollution.
Alkenone temperature and salinity: An evaluation of long chain C37 alkenone in Lake Qinghai, China
NASA Astrophysics Data System (ADS)
Liu, W.; Liu, Z.; Fu, M.; An, Z.
2007-12-01
In recently years, the alkenone unsaturation index (Uk'37=C37:.2/(C37:2+ C37:3)) has been used to reconstructed paleo-temperature for lacustrine sediments. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (C37:4 percent) can reflect surface salinity changes in lake systems. Here we present the distribution of C37 long chain alkenone of modern lake sediments in Qinghai Lake, Qing-Tibet Plateau, to evaluate significance of abundance change of long chain C37 alkenone as an indicator of lake paleo-enviromental evolution. A group of surface sediments from different locations in the lake have been analyzed in this study. The results of long chain C37 alkenone from 28 surface sediments analyses shown relative abundance of C37:4 alkenone to total C37 production (C37:4 percent) change from 14.5 to 48.6 percent and the abundance of C37:4 alkenone is increasing with decreasing salinity of lake water. For the salinity lake in land, we suggested the relative abundance of C37:4 alkenone in lake sediments may be a indicator of paleo-silinity; We have also found that Uk'37 values are weakly correlated with salinity and C37:4 percent changes, implying that potential minor contributions of temperature and salinity effects to C37:4 percent and Uk'37 respectively cannot be excluded in this study. However, since these contributions are weak, we suggest that the C37:4 percent proxy can be used to reconstruct paleo-salinity changes at a regional scale, especially in lake systems, while Uk'37 remains as a powerful tool for reconstructions of paleo-temperature changes in the lake systems.
Hu, Ying; Yan, Xue; Shen, Yun; Di, Mingxiao; Wang, Jun
2018-08-15
Thirteen antibiotics including sulfonamides (SAs), tetracyclines (TETs) and fluoroquinolones (FQs) were measured in Hanjiang River (HR) during two periods. The total concentrations of 13 antibiotics in surface water and sediments ranged from 3.1 to 109 ng/l and from 10 to 45 ng/g dry weight, respectively. SAs were dominant in water while the concentrations of TETs were the highest in sediments in two seasons. For their spatial distribution, total concentrations of 13 antibiotics in both matrices were significantly higher in the lower section of HR (p < 0.02, F > 5.15) due to wastewater release, agricultural activities and water transfer project. Obvious seasonal variations of sulfadiazine, sulfameter, trimethoprim and oxytetracycline in water were observed (p < 0.05, F > 4.62). Phase partition of antibiotics between water and sediments suggested a greater affinity of TETs and FQs to sediments. In addition, significantly positive relationships were found between SAs (sulfameter, sulfamethoxazole and trimethoprim) and sediment TOC (p < 0.05). Risk assessment indicated that the hazard quotients of antibiotics were higher in the sediment than those in the water. Moreover, antibiotic mixtures posed higher ecological risks to aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rau, Gabriel C.; Halloran, Landon J. S.; Cuthbert, Mark O.; Andersen, Martin S.; Acworth, R. Ian; Tellam, John H.
2017-09-01
Ephemeral and intermittent flow in dryland stream channels infiltrates into sediments, replenishes groundwater resources and underpins riparian ecosystems. However, the spatiotemporal complexity of the transitory flow processes that occur beneath such stream channels are poorly observed and understood. We develop a new approach to characterise the dynamics of surface water-groundwater interactions in dryland streams using pairs of temperature records measured at different depths within the streambed. The approach exploits the fact that the downward propagation of the diel temperature fluctuation from the surface depends on the sediment thermal diffusivity. This is controlled by time-varying fractions of air and water contained in streambed sediments causing a contrast in thermal properties. We demonstrate the usefulness of this method with multi-level temperature and pressure records of a flow event acquired using 12 streambed arrays deployed along a ∼ 12 km dryland channel section. Thermal signatures clearly indicate the presence of water and characterise the vertical flow component as well as the occurrence of horizontal hyporheic flow. We jointly interpret thermal signatures as well as surface and groundwater levels to distinguish four different hydrological regimes: [A] dry channel, [B] surface run-off, [C] pool-riffle sequence, and [D] isolated pools. The occurrence and duration of the regimes depends on the rate at which the infiltrated water redistributes in the subsurface which, in turn, is controlled by the hydraulic properties of the variably saturated sediment. Our results have significant implications for understanding how transitory flows recharge alluvial sediments, influence water quality and underpin dryland ecosystems.
Oremland, R.S.; Miller, L.G.; Dowdle, P.; Connell, T.; Barkay, T.
1995-01-01
Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [14C]MeHg was detected at all sites as indicated by the formation of 14CO2 and 14CH4. Oxidative demethylation was indicated by the formation of 14CO2 and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., 14CO2/14CH4 ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of 14CO2 was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and 14CO2 accounted for 98% of the product formed from [14C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of 14CO2 from [14C]MeHg, while 2-bromoethanesulfonic acid blocked production of 14CH4. These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.
Bi, Chunjuan; Wang, Xueping; Jia, Jinpu; Chen, Zhenlou
2018-06-15
The concentrations and distribution of polycyclic aromatic hydrocarbons (PAHs) in urbanized river networks are strongly influenced by intensive land use, industrial activities and population density. The spatial variations and their influencing factors of 16 priority PAHs were investigated in surface water, suspended particulate matter (SPM) and sediments among areas under different intensive land uses (industrial areas, agricultural areas, inner city, suburban towns and island areas) in the Shanghai river network, East China. Source apportionment was carried out using isomer ratios of PAHs and Positive Matrix Factorization (PMF). Total concentrations of 16 PAHs ranged from 105.2 to 400.5 ng/L, 108.1 to 1058.8 ng/L and 104.4 to 19,480.0 ng/g in water, SPM and sediments, respectively. The concentrations of PAHs in SPM and sediments varied significantly among areas (p < 0.05), with the highest concentrations in inner city characterized by highly intensive land use and high population density. The PAH concentrations in sediments were positively correlated with those in SPM and were more strongly correlated with black carbon than with total organic carbon, indicating a stronger influence of prolonged anthropogenic contamination than the recent surface input in sediments. Biomass and coal combustion contributed strongly to total PAHs, followed by natural gas combustion in water and SPM, and vehicular emissions in sediments. Vehicular emissions were the strongest contributors in SPM and sediments of the inner city, indicating the strong influence of vehicular transportation to PAHs pollution in the urbanized river network. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Westbrook, S. J.; Rayner, J. L.; Davis, G. B.; Clement, T. P.; Bjerg, P. L.; Fisher, S. J.
2005-02-01
This paper presents findings from a 2-year field investigation of a dissolved hydrocarbon groundwater plume flowing towards a tidally and seasonally forced estuarine river system in Perth, Western Australia. Samples collected from transects of multiport wells along the riverbank and into the river, enabled mapping of the fine scale (0.5 m) vertical definition of the hydrocarbon plume and its longitudinal extent. Spear probing beneath the river sediments and water table, and transient monitoring of multiport wells (electrical conductivity) was also carried out to define the zone of mixing between river water and groundwater (the hyporheic zone) and its variability. The results showed that groundwater seepage into the estuarine surface sediments occurred in a zone less than 10 m from the high tide mark, and that this distance and the hyporheic transition zone were influenced by tidal fluctuations and infiltration of river water into the sediments. The dissolved BTEXN (benzene, toluene, ethylbenzene, the xylene isomers and naphthalene) distributions indicated the behaviour of the hydrocarbon plume at the groundwater/surface water transition zone to be strongly influenced by edge-focussed discharge. Monitoring programs and risk assessment studies at similar contaminated sites should therefore focus efforts within the intertidal zone where contaminants are likely to impact the surface water and shallow sediment environments.
Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang
2016-05-15
Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutkiewicz, Adriana; Müller, Dietmar; O'Callaghan, Simon
2017-04-01
World's ocean basins contain a rich and nearly continuous record of environmental fluctuations preserved as different types of deep-sea sediments. The sediments represent the largest carbon sink on Earth and its largest geological deposit. Knowing the controls on the distribution of these sediments is essential for understanding the history of ocean-climate dynamics, including changes in sea-level and ocean circulation, as well as biological perturbations. Indeed, the bulk of deep-sea sediments comprises the remains of planktonic organisms that originate in the photic zone of the global ocean implying a strong connection between the seafloor and the sea surface. Machine-learning techniques are perfectly suited to unravelling these controls as they are able to handle large sets of spatial data and they often outperform traditional spatial analysis approaches. Using a support vector machine algorithm we recently created the first digital map of seafloor lithologies (Dutkiewicz et al., 2015) based on 14,400 surface samples. This map reveals significant deviations in distribution of deep-sea lithologies from hitherto hand-drawn maps based on far fewer data points. It also allows us to explore quantitatively, for the first time, the relationship between oceanographic parameters at the sea surface and lithologies on the seafloor. We subsequently coupled this global point sample dataset of 14,400 seafloor lithologies to bathymetry and oceanographic grids (sea-surface temperature, salinity, dissolved oxygen and dissolved inorganic nutrients) and applied a probabilistic Gaussian process classifier in an exhaustive combinatorial fashion (Dutkiewicz et al., 2016). We focused on five major lithologies (calcareous sediment, diatom ooze, radiolarian ooze, clay and lithogenous sediment) and used a computationally intensive five-fold cross-validation, withholding 20% of the data at each iteration, to assess the predictive performance of the machine learning method. We find that the occurrence of five major lithologies in the world's ocean can be predicted on the basis of just two or three parameters, notably sea-surface salinity and sea-surface temperature. These parameters control the growth and composition of plankton and specific salinities and temperatures are also associated with the influx of non-aerosol terrigenous material into the ocean. Bathymetry is an important parameter for discriminating the occurrence of calcareous sediment, clay and coarse lithogenous sediment from each other but it is not important for biosiliceous oozes. Consequently, radiolarian and diatom oozes are poor indicators of palaeo-depth. Contrary to widely held view, we find that calcareous and siliceous oozes are not linked to high surface productivity. Our analysis shows that small shifts in surface ocean conditions significantly affect the lithology of modern seafloor sediments on a global scale and that these relationships need to be incorporated into interpretations of the geological record of ocean basins. Dutkiewicz, A., Müller, R. D., O'Callaghan, S., and Jónasson, H., 2015, Census of seafloor sediments in the world's ocean: Geology, v. 43, no. 9, p. 795-798. Dutkiewicz, A., O'Callaghan, S., and Müller, R. D., 2016, Controls on the distribution of deep-sea sediments: Geochem. Geophys. Geosyst., v. 17, p. 1-24.
Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana
2015-10-01
The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.
NASA Astrophysics Data System (ADS)
Gao, Bo; Gao, Li; Zhou, Yang; Xu, Dongyu; Zhao, Xingjuan
2017-08-01
The Three Gorges Reservoir (TGR) is the largest water resource protection zone in China, and environmental safety is crucial to its operation. For both aqueous and sediment phases, diffusive gradients in thin films (DGT), total vanadium (V) concentration (CTotal-V), and community Bureau of Reference (BCR) sequential extraction data were used to measure the pollution characteristics, horizontal and vertical distributions of DGT-labile V, and the dynamic mobilization of V in a typical tributary (the Meixi River) of the TGR. The results showed that CTotal-V in the surface sediments were obviously higher than the background values in sediment and soil, indicating a potential anthropogenic input of V in this area. A positive relationship was found between total organic carbon (TOC) and CTotal-V in the sediments, indicating that the pollution characteristics of V were associated with TOC. In addition, horizontal and vertical distributions of the fluxes of DGT-labile V (FDGT-V) varied among the four DGT probes. In the same DGT probe, the horizontal distributions (0-6 mm, 6-12 mm and 12-18 mm) of FDGT-V were similar in the overlying water; however, the values showed a poor coincidence with those recorded in the sediment. The vertical distribution of FDGT-V in the same DGT probe showed similar tendencies. In fact, CDGT-V is significantly negatively correlated with CDGT-Fe, demonstrating that V had an inversely diffusive tendency with Fe. Moreover, diffusion fluxes of V at the sediment-water interface illustrated that the release characteristics of V varied among the sampling sites. In addition, the BCR fraction of V in the surface sediments of the four sampling sites showed that V mainly existed in the residual fraction (88.04-88.57%). The concentrations of DGT-labile V (CDGT-V) were considerably lower than the non-residual fractions (the sum of exchangeable, reducible, and oxidizable fractions) measured by BCR sequential extraction. Correlation analysis showed that CDGT-V had no correlation with non-residual V fractions, indicating that it is doubtful whether BCR extraction alone can be used to predict the bioavailability of V in this study.
Sun, Shiyong; Fan, Shenglan; Shen, Kexuan; Lin, Shen; Nie, Xiaoqin; Liu, Mingxue; Dong, Faqin; Li, Jian
2017-10-01
Eutrophic sediment is a serious problem in ecosystem restoration, especially in shallow lake ecosystems. We present a novel bioleaching approach to treat shallow eutrophic sediment with the objective of preventing the release of nitrate, phosphate, and organic compounds from the sediment to the water column, using porous mineral-immobilized photosynthetic bacteria (PSB). Bioactivity of bacteria was maintained during the immobilization process. Immobilized PSB beads were directly deposited on the sediment surface. The deposited PSB utilized pollutants diffused from the sediment as a nutritive matrix for growth. We evaluated the effects of light condition, temperature, initial pH, amount of PSB beads, and frequency of addition of PSB beads for contaminant removal efficiency during bioleaching operations. The presented study indicated that immobilized PSB beads using porous minerals as substrates have considerable application potential in bioremediation of shallow eutrophic lakes.
Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.
Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.
2001-01-01
Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There is a clear trend of decreasing PAH and trace metal contaminant concentrations with distance from the STP outfall.Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2>0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ??PAHs and ??PCBs are potentially toxic and/or bi
Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M
2018-04-11
The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.
Gray, John E.; Hines, Mark E.; Higueras, Pablo L.; Adatto, Isaac; Lasorsa, Brenda K.
2004-01-01
Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almade??n District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almade??n area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almade??n are among the highest found at Hg mines worldwide. Mine wastes from Almade??n contain highly elevated Hg concentrations, ranging from 160 to 34 000 ??g/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almade??n mine is also contaminated, containing Hg as high as 13 000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 ??g/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almade??n mine and significant conversion to methyl-Hg in the surface environment.
Effects of surface and groundwater interactions on phosphorus transport within streambank sediments.
Thompson, Carol A; McFarland, Anne M S
2010-01-01
Understanding internal stream P transfers is important in controlling eutrophication. To determine the direction of groundwater and surface water interactions and evaluate P retention within streambank sediments, groundwater well pairs, about 5-m deep, were installed at three locations along a second-order, eutrophic stream in north-central Texas. Well cores were analyzed for P, and groundwater levels were monitored for about 2 yr. Water levels in wells furthest upstream always indicated a losing stream, while wells further downstream showed a gaining stream except during flow reversals with storm events and periods with reservoir backwater. Total-P from well cores ranged from 54 to 254 mg kg(-1) and was typically high near surface, decreased downward until redoximorphic features were encountered and then increased notably with depth to near or above surface concentrations. Very little extractable P occurred in sediments from the two upstream well sets; however, the set furthest downstream showed extractable P throughout with a high of 21 mg kg(-1) near the bottom. Repeated wetting-drying at sites A and B as noted by redoximorphic features may have shifted P into more stable sediment-bound forms. The decrease in extractable P at sites A and B compared to site C may be explained by conditions at C that were wetter and potentially anaerobic. Because the overall stream reach was more often losing than gaining, there appears to be a mass flow of P into streambank sediments. Streambank erosion may then transport this P downstream if not controlled.
Response of the Indian Creek alluvial fan, Nevada, to glacial-interglacial climate change
NASA Astrophysics Data System (ADS)
D'Arcy, Mitch; Roda-Boluda, Duna; Whittaker, Alexander; Brooke, Sam
2017-04-01
Alluvial fans have been shown to record signals of glacial-interglacial climate changes. Specifically, it has been suggested that their down-system grain size fining patterns may record changes in sediment flux. However, very few field studies have tested this because they require (i) robust fan chronologies, (ii) constraints on basin subsidence and 3D fan geometry, and (iii) a suitable model for inverting grain size fining for sediment flux. Here, we present a case study from the fluvially-dominated Indian Creek fan system in Fish Lake Valley, Nevada, which satisfies these criteria. We measure grain size fining patterns on a surface dating to the mid-glacial period ˜71 kyr ago, and a surface dating to the Holocene, which between them represent an overall warming (˜3 ˚ C) and drying (˜30%) of the regional climate. We use constraints on basin subsidence and a self-similar model of grain size fining to reconstruct sediment fluxes to the alluvial fan during the time periods captured by the two surfaces. Our results indicate a decline in sediment flux of ˜38% between the deposition of the ˜71 kyr and Holocene surfaces, implying significant sensitivity to climatic forcing over time periods of >10 kyr. This could represent a decrease in catchment erosion rates and/or a decrease in sediment export as the climate dried. Our results offer quantitative new constraints on how simple landscapes react to known glacial-interglacial climate shifts.
Geomicrobiology of Fe-rich crusts in Lake Superior sediment
NASA Astrophysics Data System (ADS)
Dittrich, M.; Monreau, L.; Quazi, S.; Raoof, B.; Chesnyuk, A.; Katsev, S.; Fulthorpe, R.
2012-04-01
The limnological puzzles of Lake Superior are increasingly attracting scientists, and very little is known about the sediments and their associated microflora. The sediments are organic poor (less than 5%C) and the lake is deep oligotrophic, with water temperatures at the bottom around 3C. Previous studies reveal Fe-rich layers in the sediments at multiple loccations around the lake. The origin and mechanisms of formation of this layer remain unknown. In this study we investigated geochemical and microbiological processes that may lead to the formation of a two cm thick iron layer about 10 cm below the sediment surface. Sediment cores from two stations (EM, 230m water depth and ED, 310m water depth) in the East Basin were used. We monitored oxygen and pH depth profiles with microsensors, porewater and sediment solid matter were analyzed for nutrient and metal contents. Furthermore, phosphorus and iron sequantial extractions of sediment cores have been perfomed. The total cell count was determined using DAPI epifluoresence microscopy. DNA was extracted from the sediment samples and 16S ribosonal RNA amplicons were analyzed with denaturing gradient gel electrophoresis (DGGE). For a more in depth analysis, DNA samples from 8-10 cm and 10-12 cm were sent to the Research and Testing Lab (Texas) for pyrosequencing of 16S rRNA gene amplicons amplified using barcoded universal primers 27f-519r. The scanning electron microscope (SEM) images from the iron layer 10-12cm show filaments that were encrusted with spheres ca. 20 nm in diameter. SEM observations of thin sections also indicate the presence of very fine particles showing various morphologies. Analyses of the deposit material by SEM and energy dispersive X-ray spectroscopy (EDS) indicate that bacteria cells surfaces served as nucleation surfaces for Fe-oxide formation. EDS line-scans through bacterial cells covered with precipitates reveal phosphorus and carbon peaks at interface between cell surface and Fe-particles. The cluster analysis performed on the DGGE separation of ribosomal RNA gene fragments revealed that the two iron layers were not highly similar to each other. We obtained a total of 26,062 16S rRNA gene sequence reads from the two iron layers and the layers directly above them, which were clustered into operational taxonomic units sharing 80% similarity or more. 64-70% of these clusters could not be classified below the phylum level. While the 8-10 cm sediment layers were dominated (46.5% of reads) by relatives of Paenisporosarcina, the iron layers contained far fewer gram positive organisms, far more proteobacteria, and an a high proportion of Nitrospira species which show relatively high similarity to organisms found in an iron II rich seep.
NASA Astrophysics Data System (ADS)
Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2016-04-01
In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.
Ke, L; Wong, Teresa W Y; Wong, Y S; Tam, Nora F Y
2002-01-01
The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m x 10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2,135 ng g(-1), and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2,135 (30 days) to 1,196 ng g(-1) (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3-0.4).
Surface sediment remobilization triggered by earthquakes in the Nankai forearc region
NASA Astrophysics Data System (ADS)
Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.
2017-12-01
Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained around 2 mbsf of PC03 core also indicates similar sedimentary process. However, we also obtained large age gap in a thick turbidite layer, indicating remobilization of deeper sediments by landslide. Our results revealed that the studied basin recorded various scales and styles of sediment remobilizations by earthquake shakings.
MacDonald, D D; Ingersoll, C G; Smorong, D E; Lindskoog, R A; Sparks, D W; Smith, J R; Simon, T P; Hanacek, M A
2002-08-01
This article is the first in a series of three that describe the results of a Natural Resource Damage Assessment (NRDA) conducted in the Grand Calumet River and Indiana Harbor Area of Concern (IHAOC). The assessment area is located in northwest Indiana and was divided into nine reaches to facilitate the assessment. This component of the NRDA was undertaken to determine if sediments and sediment-dwelling organisms have been injured due to exposure to contaminants that have accumulated in sediments as a result of discharges of oil or releases of other hazardous substances from industrial, municipal, and nonpoint sources. To support this assessment, information was compiled on the chemical composition of sediment and pore water; on the toxicity of whole sediments, pore water, and elutriates; and on the status of benthic invertebrate communities. The data on each of these indicators were compared to regionally relevant benchmarks to assess the presence and extent of injury to surface water resources ( i.e., sediments) or biological resources ( i.e., sediment-dwelling organisms). The results of this assessment indicate that sediment injury has occurred throughout the assessment area, with up to four distinct lines of evidence demonstrating injury within the various reaches. The primary contaminants of concern ( i.e., those substances that are present at concentrations that are sufficient to cause or substantially contribute to sediment injury) include metals, polycyclic aromatic hydrocarbons, and total polychlorinated biphenyls.
Dean, Walter E.; Gardner, James V.; Anderson, Roger Y.
1994-01-01
The present upper water mass of the northeastern Pacific Ocean off California has a well-developed oxygen minimum zone between 600 and 1200 m wherein concentrations of dissolved oxygen are less than 0.5 mL/L. Even at such low concentrations of dissolved oxygen, benthic burrowing organisms are abundant enough to thoroughly bioturbate the surface and near-surface sediments. These macro organisms, together with micro organisms, also consume large quantities of organic carbon produced by large seasonal stocks of plankton in the overlying surface waters, which are supported by high concentrations of nutrients within the California Current upwelling system. In contrast to modern conditions of bioturbation, laminated sediments are preserved in upper Pleistocene sections of cores collected on the continental slope at water depths within the present oxygen minimum zone from at least as far north as the California-Oregon border and as far south as Point Conception. Comparison of sediment components in the laminae with those delivered to sediment traps as pelagic marine “snow” demonstrates that the dark-light lamination couplets are indeed annual (varves). These upper Pleistocene varved sediments contain more abundant lipid-rich “sapropelic” (type II) organic matter than the overlying bioturbated, oxidized Holocene sediments. The baseline of stable carbon isotopic composition of the organic matter in these slope cores does not change with time, indicating that the higher concentrations of type II organic matter in the varved sediments represent better preservation of organic matter rather than any change in the source of organic matter.
Harvey, J.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; McPhillips, L.E.
2011-01-01
Flow interactions with aquatic vegetation and effects on sediment transport and nutrient redistribution are uncertain in shallow aquatic ecosystems. Here we quantified sediment transport in the Everglades by progressively increasing flow velocity in a field flume constructed around undisturbed bed sediment and emergent macrophytes. Suspended sediment 100 μm became dominant at higher velocity steps after a threshold shear stress for bed floc entrainment was exceeded. Shedding of vortices that had formed downstream of plant stems also occurred on that velocity step which promoted additional sediment detachment from epiphyton. Modeling determined that the potentially entrainable sediment reservoir, 46 g m−2, was similar to the reservoir of epiphyton (66 g m−2) but smaller than the reservoir of flocculent bed sediment (330 g m−2). All suspended sediment was enriched in phosphorus (by approximately twenty times) compared with bulk sediment on the bed surface and on plant stems, indicating that the most easily entrainable sediment is also the most nutrient rich (and likely the most biologically active).
Zhu, Zongmin; Xue, Junhui; Deng, Yuzhen; Chen, Lin; Liu, Jiangfeng
2016-04-15
Based on geochemical and magnetic approaches, the distribution, sources, and health risk of trace metals in surface sediments from a seashore tourist city were investigated. A significant correlation was found between magnetic susceptibility (χ) and trace metals, which suggested that levels of trace metals in the sediments can be effectively depicted by the magnetic approach. The spatial distribution of χ and trace metals matched well with the city layout with relatively higher values being found in the port and busy tourist areas. This result, together with enrichment factors (EFs) and Tomlinson pollution load index (PLI) of metals, suggested that the influence of human activities on the coastal environment was noticeable. Principal component analysis (PCA) indicated that trace metals in the sediments were derived from both anthropogenic and natural sources. Noncarcinogenic risk assessment showed that there was no potential health risk of exposure to metals by means of ingestion or inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia).
Youssef, Mohamed; El-Sorogy, Abdelbaset; Al Kahtany, Khaled; Al Otiaby, Naif
2015-07-15
Thirty eight surface sediments samples have been collected in the area around Tarut Island, Saudi Arabian Gulf to determine the spatial distribution of metals, and to assess the magnitude of pollution. Total concentrations of Fe, Mn, As, B, Cd, Co, Cr, Cu, Hg, Mo, Pb, Se, and Zn in the sediments were measured using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Nature of sediments and heavy metals distribution reflect marked changes in lithology, biological activities in Tarut bay. Very high arsenic concentrations were reported in all studied locations from Tarut Island. The concentrations of Mercury are generally high comparing to the reported values from the Gulf of Oman, Red Sea. The concentrations of As and Hg exceeded the wet threshold safety values (MEC, PEC) indicating possible As and Hg contamination. Dredging and land filling, sewage, and oil pollution are the most important sources of pollution in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nethaji, S; Kalaivanan, R; Arya Viswam; Jayaprakash, M
2017-02-15
Surface sediments were collected from Vellar and Coleroon estuaries for determine sediment texture, calcium carbonate, organic matter and heavy metals. Pollution indices such as pollution load index (PLI), contamination factor (CF), enrichment factor (EF) and geo-accumulation index (I geo ) were done for this study to know the level of heavy metals pollution in the estuarine ecosystem. Pearson correlation matrix and factor were used to assess the relationship and source of heavy metals in the estuarine sediments. The results of PLI values reveal that the study area was polluted by all the heavy metals. The calculated values of CF and I geo followed the decreasing order Cu>Ni>Pb>Co>Cr>Zn>Mn>Fe and illustrate that Cu, Ni and Pb are contaminated due to anthropogenic sources in both estuaries. Correlation and factor analysis suggest that FeMn oxyhydroxides, organic matter and fine particles are responsible for high concentration of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rogowska, Justyna; Wolska, Lidia; Namieśnik, Jacek
2010-11-01
In 1943 the German hospital ship s/s Stuttgart (Lazaretschiff "C") was sunk close to the port of Gdynia (Gulf of Gdańsk - Polish coast). This and other actions (undertaken after the war to remove the wreck) led to pollution of the sea bottom with oil derivatives. During our studies (2009) 11 surface sediment and water samples were collected as well as sediment core samples at 4 locations in order to determine the concentration levels of priority pollutants belonging to polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB). The concentrations of 16 PAH and 7 PCB were analysed with GC-MS. ΣPAH varied between 11.54 ± 0.39 and 206.7 ± 6.5mg/kg dry weight in the surface sediments, and from 0.686 ± 0.026 to 1291 ± 53 mg/kg dry weight in the core samples. Contamination in the core samples collected may reach a depth of at least 230-240 cm (deepest sample studied). The PAH-group profiles in all surface sediment samples suggest a pyrolytic source of PAH, while the results obtained for core samples indicate a mixed pattern of pyrolytic and petrogenic inputs of PAH. Results obtained may suggest also that fuel residues being present at sea bottom is not crude oil derived but results from coal processing (synthetic fuel). The sum of PCB in surface sediments ranged from 0.761 ± 0.068 to 6.82 ± 0.28 μg/kg dry weight (except for sampling point W2, where ΣPCB was 108.8 ± 4.4 μg/kg dry weight). The strong correlation between PAH and PCB levels, and the fact that PCB are present only in the surface sediments, suggest that the compounds in these sediments got there as a result of emission from urban areas, entering the aquatic environment via atmospheric deposition. PCB levels in the sediment core samples were generally very low and in most cases did not exceed the method quantification limit. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Shengbo; Qu, Jianjun; Mu, Yanhu; Xu, Xiangtian
Mechanical control of drifting sand used to protect the Qinghai-Tibet Railway from sand damage inevitably results in sand deposition, and the change in radiation and heat flux after the ground surface is covered with sandy sediments remains unclear. These variations were studied in this work through field observations along with laboratory analyses and tests. After the ground surface was covered with sandy sediments produced by the mechanical control of sand in the Qinghai-Tibet Railway, the reflectivity increased, and the annual average reflectivity on the surface covered with sandy sediments was higher than that without sandy sediments, with the value increasing by 0.043. Moreover, the surface shortwave radiation increased, whereas the surface net radiation decreased. The annual average value of the surface shortwave radiant flux density on the sandy sediments was higher than that without sandy sediments, with the value increasing by 7.291 W·m-2. The annual average value of the surface net radiant flux density on the sandy sediments decreased by 9.639 W·m-2 compared with that without sandy sediments. The soil heat flux also decreased, and the annual average value of the heat flux in the sandy sediments decreased by 0.375 W·m-2 compared with that without sandy sediments. These variations caused the heat source on the surface of sandy sediments underground to decrease, which is beneficial for preventing permafrost from degradation in the section of sand control of the railway.
Dunes on Titan observed by Cassini Radar
Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,
2008-01-01
Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.
Vallejo Toro, Pedro Pablo; Vásquez Bedoya, Luis Fernando; Correa, Iván Darío; Bernal Franco, Gladys Rocío; Alcántara-Carrió, Javier; Palacio Baena, Jaime Alberto
2016-10-15
The Gulf of Urabá (northwestern Colombia) is a geostrategic region, rich in biodiversity and natural resources. Its economy is mainly based on agribusinesses and mining activities. In this research is determined the impact of these activities in bottom surface sediments of the estuary. Thus, grain size, total organic carbon, total nitrogen, carbonates, Ag, Al, Ca, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb and Zn concentrations from 17 surface sediment samples were obtained and enrichment factors (EF) as well as geo-accumulation indices (Igeo) were calculated to determine the contamination level in the gulf. EF and Igeo values revealed that the estuary is extremely contaminated with Ag and moderately contaminated with Zn. Therefore, the observed enrichment of Ag may be explained as a residue of the extraction of gold and platinum-group metals and the enrichment with Zn associated mainly to pesticides used in banana plantations. Copyright © 2016 Elsevier Ltd. All rights reserved.
O'Connor, B.L.; Hondzo, Miki; Harvey, J.W.
2009-01-01
Traditionally, dissolved oxygen (DO) fluxes have been calculated using the thin-film theory with DO microstructure data in systems characterized by fine sediments and low velocities. However, recent experimental evidence of fluctuating DO concentrations near the sediment-water interface suggests that turbulence and coherent motions control the mass transfer, and the surface renewal theory gives a more mechanistic model for quantifying fluxes. Both models involve quantifying the mass transfer coefficient (k) and the relevant concentration difference (??C). This study compared several empirical models for quantifying k based on both thin-film and surface renewal theories, as well as presents a new method for quantifying ??C (dynamic approach) that is consistent with the observed DO concentration fluctuations near the interface. Data were used from a series of flume experiments that includes both physical and kinetic uptake limitations of the flux. Results indicated that methods for quantifying k and ??C using the surface renewal theory better estimated the DO flux across a range of fluid-flow conditions. ?? 2009 ASCE.
Anomalous topography on the continental shelf around Hudson Canyon
Knebel, H.J.
1979-01-01
Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.
Sediment pollution characteristics and in situ control in a deep drinking water reservoir.
Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai
2017-02-01
Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.
Source tracking of leaky sewers: a novel approach combining fecal indicators in water and sediments.
Guérineau, Hélène; Dorner, Sarah; Carrière, Annie; McQuaid, Natasha; Sauvé, Sébastien; Aboulfadl, Khadija; Hajj-Mohamad, Mariam; Prévost, Michèle
2014-07-01
In highly urbanized areas, surface water and groundwater are particularly vulnerable to sewer exfiltration. In this study, as an alternative to Microbial Source Tracking (MST) methods, we propose a new method combining microbial and chemical fecal indicators (Escherichia coli (E. coli)) and wastewater micropollutants (WWMPs) analysis both in water and sediment samples and under different meteorological conditions. To illustrate the use of this method, wastewater exfiltration and subsequent infiltration were identified and quantified by a three-year field study in an urban canal. The gradients of concentrations observed suggest that several sources of fecal contamination of varying intensity may be present along the canal, including feces from resident animal populations, contaminated surface run-off along the banks and under bridge crossings, release from contaminated banks, entrainment of contaminated sediments, and most importantly sewage exfiltration. Calculated exfiltration-infiltration volumes varied between 0.6 and 15.7 m(3)/d per kilometer during dry weather, and between 1.1 and 19.5 m(3)/d per kilometer during wet weather. WWMPs were mainly diluted and degraded below detection limits in water. E. coli remains the best exfiltration indicator given a large volume of dilution and a high abundance in the wastewater source. WWMPs are effective for detecting cumulated contamination in sediments from a small volume source and are particularly important because E. coli on its own does not allow source tracking. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.
2017-12-01
Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system. For the first time to our knowledge, results shed light on sediment processes that help control nutrient retention in phreatic karst conduits and tend to suggest that the karst systems behave as an intermediate N conveyor relative to surface agricultural streams and porous media aquifers.
NASA Astrophysics Data System (ADS)
Le Baron, Joel C.; Grab, Stefan W.; Kuman, Kathleen
2011-03-01
The Hackthorne 1 site (southern Tuli Basin, South Africa) is situated on a sand-covered plateau adjacent to the Limpopo River Valley. Although the site is well known for its Stone Age archaeology, the past environmental contexts (particularly sedimentological/geomorphological) are not well known. We examine the Hackthorne sand grain surface textures, so as to provide some insight on the site specific and regional depositional history. Quartz sands at Hackthorne were collected from surface sands and from underlying weathered calcrete. SEM analysis was performed on sand grains, through which several mechanical and chemical microtextures were identified. Microtextures typical of fluvial environments were found only on grains derived from the plateau calcrete host sediment, whilst the surface sands exhibited only textures associated with aeolian environments. The results indicate that the calcrete host sediment is composed of alluvium, and that the surface sands mantling the Hackthorne Plateau are not deflated from the alluvial deposits in the Limpopo Valley, but may rather be derived from distant aeolian sources. The deposition of aeolian sands is consistent with OSL dates which place sand deposition, or remobilization, at 23 and 15 kya, periods in southern Africa associated with increased aridity.
Sediment dynamics in an overland flow-prone forest catchment
NASA Astrophysics Data System (ADS)
Zimmermann, Alexander; Elsenbeer, Helmut
2010-05-01
Vegetation controls erosion in many respects, and it is assumed that forest cover is an effective control. Currently, most literature on erosion processes in forest ecosystems support this impression and estimates of sediment export from forested catchments serve as benchmarks to evaluate erosion processes under different land uses. Where soil properties favor near-surface flow paths, however, vegetation may not mitigate surface erosion. In the forested portion of the Panama Canal watershed overland flow is widespread and occurs frequently, and indications of active sediment transport are hard to overlook. In this area we selected a 9.7 ha catchment for a high-resolution study of suspended sediment dynamics. We equipped five nested catchments to elucidate sources, drivers, magnitude and timing of suspended sediment export by continuous monitoring of overland flow and stream flow and by simultaneous, event-based sediment sampling. The support program included monitoring throughfall, splash erosion, overland-flow connectivity and a survey of infiltrability, permeability, and aggregate stability. This dataset allowed a comprehensive view on erosion processes. We found that overland flow controls the suspended-sediment dynamics in channels. Particularly, rainfalls of high intensity at the end of the rainy season have a superior impact on the overall sediment export. During these events, overland flow occurs catchment-wide up to the divide and so does erosion. With our contribution we seek to provide evidence that forest cover and large sediment yields are no contradiction in terms even in the absence of mass movements.
Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong
2017-08-15
Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.
Redox processes as revealed by voltammetry in the surface sediments of the Gotland Basin, Baltic Sea
NASA Astrophysics Data System (ADS)
Yücel, Mustafa; Dale, Andy; Sommer, Stefan; Pfannkuche, Olaf
2014-05-01
Sulfur cycling in marine sediments undergoes dramatic changes with changing redox conditions of the overlying waters. The upper sediments of the anoxic Gotland Basin, central Baltic Sea represent a dynamic redox environment with extensive mats of sulfide oxidizing bacteria covering the seafloor beneath the chemocline. In order to investigate sulfur redox cycling at the sediment-water interface, sediment cores were sampled over a transect covering 65 - 174 m water depth in August-September 2013. High resolution (0.25 mm minimum) vertical microprofiles of electroactive redox species including dissolved sulfide and iron were obtained with solid state Au-Hg voltammetric microelectrodes. This approach enabled a fine-scale comparison of porewater profiles across the basin. The steepest sulfide gradients (i.e. the highest sulfide consumption) occurred within the upper 10 mm in sediments covered by surficial mats (2.10 to 3.08 mmol m-2 day-1). In sediments under permanently anoxic waters (>140m), voltammetric signals for Fe(II) and aqueous FeS were detected below a subsurface maximum in dissolved sulfide, indicating a Fe flux originating from older, deeper sedimentary layers. Our results point to a unique sulfur cycling in the Gotland basin seafloor where sulfide accumulation is moderated by sulfide oxidation at the sediment surface and by FeS precipitation in deeper sediment layers. These processes may play an important role in minimizing benthic sulfide fluxes to bottom waters around the major basins of the Baltic Sea.
Zeng, Lixi; Zhao, Zongshan; Li, Huijuan; Wang, Thanh; Liu, Qian; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin
2012-09-18
Short chain chlorinated paraffins (SCCPs) are high production volume chemicals in China and found to be widely present in the environment. In this study, fifty-one surface sediments and two sediment cores were collected from the East China Sea to study their occurrence, distribution patterns and potential transport in the marginal sea. SCCPs were found in all surface sediments and ranged from 5.8 to 64.8 ng/g (dry weight, d.w.) with an average value of 25.9 ng/g d.w. A general decreasing trend with distance from the coast was observed, but the highest value was found in a distal mud area far away from the land. The C10 homologue was the most predominant carbon chain group, followed by C11, C12, and C13 homologue groups. Significant linear relationship was found between total organic carbon (TOC) and total SCCP concentrations (R(2) = 0.51, p < 0.05). Spatial distributions and correlation analysis indicated that TOC, riverine input, ocean current, and atmospheric deposition played an important role in controlling SCCP accumulation in marine sediments. Vertical profiles of sediment cores showed that SCCP concentrations decreased from surface to the depth of 36 cm, and then slightly increased again with depth, which showed a significant positive correlation with TOC and chlorine contents (Cl%). The results suggest that SCCPs are being regionally or globally distributed by long-range atmospheric or ocean current transport.
Sun, Ya-jun; Wang, Tie-yu; Peng, Xia-wei; Wang, Pei
2015-07-01
In order to reveal the relationship between Perfluoroalkyl substances (PFASs) contamination and the bacterial community composition, surface sediment samples were collected along the Xiaoqing River in Shandong Province in April and July 2014 (XQ1-XQ10), where many PFASs manufacturers were located. PFASs were quantified by HPLC/MS-MS, related environmental factors affecting the microbial community structure were measured, and the microbial community structure in surface sediments was measured by the second-generation sequencing technology Illumina MiSeq. The results not only revealed the degree of PFASs pollution in the sediments of Xiaoqing River, but also illustrated the relationship between PFASs pollution and the microbial community structure. Among the twelve kinds of PFASs detected in this study, PFOA was the predominant compound, and the highest PFOA concentrations were detected in the sample of XQ5 (April: 456. 2 ng. g-1; July: 748.7 ng . g-1) located at the downstream of Xiaoqing River with many fluoropolymer producing facilities. PFOA contamination was the main factor affecting the microbial community structure in April, accordingly community richness and evenness were significantly negatively correlated with PFOA levels. The abundance of Thiobacillus increased with the increasing PFOA concentration in the sediment PFOA. This suggested that Thiobacillus was sensitive to PFOA pollution and might be the potential indicator to reveal the degree of PFOA pollution in sediment. When the concentrations of PFOA were below 100 ng . g-1, no significant effects on the microbial community structure were observed.
Effect of grain-coating mineralogy on nitrate and sulfate storage in the unsaturated zone
Reilly, T.J.; Fishman, N.S.; Baehr, A.L.
2009-01-01
Unsaturated-zone sediments and the chemistry of shallow groundwater underlying a small (???8-km2) watershed were studied to identify the mechanisms responsible for anion storage within the Miocene Bridgeton Formation and weathered Coastal Plain deposits in southern New Jersey. Lower unsaturated-zone sediments and shallow groundwater samples were collected and concentrations of selected ions (including NO3- and SO42-) from 11 locations were determined. Grain size, sorting, and color of the lower unsaturated-zone sediments were determined and the mineralogy of these grains and the composition of coatings were analyzed by petrographic examination, scanning electron microscopy and energy dispersive analysis of x-rays, and quantitative whole-rock x-ray diffraction. The sediment grains, largely quartz and chert (80-94% w/w), are coated with a very fine-grained (<20 ??m), complex mixture of kaolinite, halloysite, goethite, and possibly gibbsite and lepidocrocite. The mineral coatings are present as an open fabric, resulting in a large surface area in contact with pore water. Significant correlations between the amount of goethite in the grain coatings and the concentration of sediment-bound SO42- were observed, indicative of anion sorption. Other mineral-chemical relations indicate that negatively charged surfaces and competition with SO 42- results in exclusion of NO3- from inner sphere exchange sites. The observed NO3- storage may be a result of matrix forces within the grain coatings and outer sphere complexation. The results of this study indicate that the mineralogy of grain coatings can have demonstrable effects on the storage of NO 3- and SO42- in the unsaturated zone. ?? Soil Science Society of America. All rights reserved.
Belnap, J.; Phillips, S.L.; Herrick, J.E.; Johansen, J.R.
2007-01-01
Recently disturbed and 'control' (i.e. less recently disturbed) soils in the Mojave Desert were compared for their vulnerability to wind erosion, using a wind tunnel, before and after being experimentally trampled. Before trampling, control sites had greater cyanobacterial biomass, soil surface stability, threshold friction velocities (TFV, i.e. the wind speed required to move soil particles), and sediment yield than sites that had been more recently disturbed by military manoeuvres. After trampling, all sites showed a large drop in TFVs and a concomitant increase in sediment yield. Simple correlation analyses showed that the decline in TFVs and the rise in sediment yield were significantly related to cyanobacterial biomass (as indicated by soil chlorophyll a). However, chlorophyll a amounts were very low compared to chlorophyll a amounts found at cooler desert sites, where chlorophyll a is often the most important factor in determining TFV and sediment yield. Multiple regression analyses showed that other factors at Fort Irwin were more important than cyanobacterial biomass in determining the overall site susceptibility to wind erosion. These factors included soil texture (especially the fine, medium and coarse sand fractions), rock cover, and the inherent stability of the soil (as indicated by subsurface soil stability tests). Thus, our results indicate that there is a threshold of biomass below which cyanobacterial crusts are not the dominant factor in soil vulnerability to wind erosion. Most undisturbed soil surfaces in the Mojave Desert region produce very little sediment, but even moderate disturbance increases soil loss from these sites. Because current weathering rates and dust inputs are very low, soil formation rates are low as well. Therefore, soil loss in this region is likely to have long-term effects.
Zientek, Michael L.; Bliss, James D.; Broughton, David W.; Christie, Michael; Denning, Paul; Hayes, Timothy S.; Hitzman, Murray W.; Horton, John D.; Frost-Killian, Susan; Jack, Douglas J.; Master, Sharad; Parks, Heather L.; Taylor, Cliff D.; Wilson, Anna B.; Wintzer, Niki E.; Woodhead, Jon
2014-01-01
This study estimates the location, quality, and quantity of undiscovered copper in stratabound deposits within the Neoproterozoic Roan Group of the Katanga Basin in the Democratic Republic of the Congo and Zambia. The study area encompasses the Central African Copperbelt, the greatest sediment-hosted copper-cobalt province in the world, containing 152 million metric tons of copper in greater than 80 deposits. This study (1) delineates permissive areas (tracts) where undiscovered sediment-hosted stratabound copper deposits may occur within 2 kilometers of the surface, (2) provides a database of known sediment-hosted stratabound copper deposits and prospects, (3) estimates numbers of undiscovered deposits within these permissive tracts at several levels of confidence, and (4) provides probabilistic estimates of amounts of copper and mineralized rock that could be contained in undiscovered deposits within each tract. The assessment, conducted in January 2010 using a three-part form of mineral resource assessment, indicates that a substantial amount of undiscovered copper resources might occur in sediment-hosted stratabound copper deposits within the Roan Group in the Katanga Basin. Monte Carlo simulation results that combine grade and tonnage models with estimates of undiscovered deposits indicate that the mean estimate of undiscovered copper in the study area is 168 million metric tons, which is slightly greater than the known resources at 152 million metric tons. Furthermore, significant value can be expected from associated metals, particularly cobalt. Tracts in the Democratic Republic of the Congo (DRC) have potential to contain near-surface, undiscovered deposits. Monte Carlo simulation results indicate a mean value of 37 million metric tons of undiscovered copper may be present in significant prospects.
Spatio-temporal patterns of sediment particle movement on 2D and 3D bedforms
NASA Astrophysics Data System (ADS)
Tsubaki, Ryota; Baranya, Sándor; Muste, Marian; Toda, Yuji
2018-06-01
An experimental study was conducted to explore sediment particle motion in an open channel and its relationship to bedform characteristics. High-definition submersed video cameras were utilized to record images of particle motion over a dune's length scale. Image processing was conducted to account for illumination heterogeneity due to bedform geometric irregularity and light reflection at the water's surface. Identification of moving particles using a customized algorithm was subsequently conducted and then the instantaneous velocity distribution of sediment particles was evaluated using particle image velocimetry. Obtained experimental results indicate that the motion of sediment particles atop dunes differs depending on dune geometry (i.e., two-dimensional or three-dimensional, respectively). Sediment motion and its relationship to dune shape and dynamics are also discussed.
Modern deposition rates and patterns of organic carbon burial in Fiordland, New Zealand
NASA Astrophysics Data System (ADS)
Ramirez, Michael T.; Allison, Mead A.; Bianchi, Thomas S.; Cui, Xingqian; Savage, Candida; Schüller, Susanne E.; Smith, Richard W.; Vetter, Lael
2016-11-01
Fjords are disproportionately important for global organic carbon (OC) burial relative to their spatial extent and may be important in sequestering atmospheric CO2, providing a negative climate feedback. Within fjords, multiple locally variable delivery mechanisms control mineral sediment deposition, which in turn modulates OC burial. Sediment and OC sources in Fiordland, New Zealand, include terrigenous input at fjord heads, sediment reworking over fjord-mouth sills, and landslide events from steep fjord walls. Box cores were analyzed for sedimentary texture, sediment accumulation rate, and OC content to evaluate the relative importance of each delivery mechanism. Sediment accumulation was up to 3.4 mm/yr in proximal and distal fjord areas, with lower rates in medial reaches. X-radiograph and 210Pb stratigraphy indicate mass wasting and surface-sediment bioturbation throughout the fjords. Sediment accumulation rates are inversely correlated with %OC. Spatial heterogeneity in sediment depositional processes and rates is important when evaluating OC burial within fjords.
Zhang, Dainan; Duan, Dandan; Huang, Youda; Xiong, Yongqiang; Yang, Yu; Ran, Yong
2016-12-01
To better understand interaction mechanism of sediment organic matter with hydrophobic organic compounds, sorption of phenanthrene (Phen) and nonylphenol (NP) by bulk sediments and their fractions was investigated. Three surface sediments were selectively fractionated into different organic fractions, including the demineralized carbon (DM), lipid free carbon (LF), lipid (LP), and nonhydrolyzable carbon (NHC) fractions. The structure and microporosity of the isolated fractions were characterized by NMR and CO 2 adsorption techniques, and used as sorbents for Phen and NP. The calculated micropore volumes (V o ) and specific surface area (SSA) values are positively related to the concentrations of aromatic C and char for the DM, LF and NHC fractions, suggesting that aromatic moieties and char component significantly contribute to the microporosity. The LF fractions exhibit greater sorption affinity than the DM fractions do, indicating that the presence of LP could block the accessibility of sorption sites for Phen and NP. Significant and positive correlations among log K' FOC values for Phen and NP and aromatic carbon and char contents, and V o and SSA values suggest the aromatic moieties and microporosity dominate their sorption of HOCs by sediment organic matter (SOM). As the NHC fractions have much stronger sorption than other fractions do, they dominate the overall sorption by the bulk samples. This study indicated that the important roles of aromatic moieties, accessibility, and microporosity in the sorption of HOCs by SOM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plant-mediated Sediment Oxygenation in Coastal Wetlands
NASA Astrophysics Data System (ADS)
Koop-Jakobsen, K.
2016-02-01
Belowground sediment oxygenation by wetland plants is an important mechanism controlling many microbial processes and chemical fluxes in coastal wetlands. Although transport of oxygen via the arenthyma tissue and subsequent oxygen loss across root surfaces is well-documented for Spartina grasses, only few studies have measured the oxygenation of sediment surrounding roots and rhizomes. In this study, the degree of sediment oxygenation in Spartina anglica rhizospheres was assessed in situ using a novel multifiber optode system inserting 100 oxygen sensing fiber optodes directly into the rhizosphere. Two closely located, but morphologically different, S. anglica populations growing in permeable sandy sediment and tidal flat deposit, respectively, were investigated. No oxygen was detected inside the rhizospheres at any depth in either location indicating that plant-mediated sediment oxygenation in S. anglica had a limited impact on the bulk anoxic sediment. This was substantiated by planar optode studies showing that sediment oxygenation was confined to the immediate vicinity of the root tips of adventitious root and root hairs stretching only up to 1.5mm away from the roots surface in permeable sandy sediment and 0.4mm in tidal flat deposit, which had a substantially higher oxygen demand. This contrasts previous studies estimating that more than half of the S. anglica rhizosphere volume may be oxygenated, and thereby suggests a high variability in the degree of sediment oxygenation among different S. anglica populations. Furthermore, there may be a significant difference in the degree of sediment oxygenation among different Spartina species; our recent in situ investigation of oxygen profiles in a Spartina alterniflora-dominated marsh suggested that oxygen leakage here may keep the bulk sediment at low oxygen concentration ranging from 0.5-4μM.
Water quality of the Crescent River basin, Lake Clark National Park and Preserve, Alaska, 2003-2004
Brabets, Timothy P.; Ourso, Robert T.
2006-01-01
The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Crescent River Basin in Lake Clark National Park and Preserve from May 2003 through September 2004. The Crescent River Basin was studied because it has a productive sockeye salmon run that is important to the Cook Inlet commercial fishing industry. Water-quality, biology, and limnology characteristics were assessed. Glacier-fed streams that flow into Crescent Lake transport suspended sediment that is trapped by the lake. Suspended sediment concentrations from the Lake Fork Crescent River (the outlet stream of Crescent Lake) were less than 10 milligrams per liter, indicating a high trapping efficiency of Crescent Lake. The North Fork Crescent River transports suspended sediment throughout its course and provides most of the suspended sediment to the main stem of the Crescent River downstream from the confluence of the Lake Fork Crescent River. Three locations on Crescent Lake were profiled during the summer of 2004. Turbidity profiles indicate sediment plumes within the water column at various times during the summer. Turbidity values are higher in June, reflecting the glacier-fed runoff into the lake. Lower values of turbidity in August and September indicate a decrease of suspended sediment entering Crescent Lake. The water type throughout the Crescent River Basin is calcium bicarbonate. Concentrations of nutrients, major ions, and dissolved organic carbon are low. Alkalinity concentrations are generally less than 20 milligrams per liter, indicating a low buffering capacity of these waters. Streambed sediments collected from three surface sites analyzed for trace elements indicated that copper concentrations at all sites were above proposed guidelines. However, copper concentrations are due to the local geology, not anthropogenic factors. Zooplankton samples from Crescent Lake indicated the main taxa are Cyclops sp., a Copepod, and within that taxa were a relatively small number of ovigerous (egg-bearing) individuals. Cyclops sp. are one of the primary food sources for rearing sockeye salmon juveniles and were most prevalent in the July sampling. Qualitative-Multi-Habitat algae samples were collected from two surface-water sites. A total of 59 taxa were found and were comprised of 4 phyla: Rhodophyta (red algae), Cyanophyta (blue-green algae), Chlorophyta (green algae), and Chrysophyta (diatoms). Twenty-two algal taxa were collected from the upper site, North Fork Crescent River, whereas twice as many taxa were collected from the downstream site, Crescent River near the mouth.
Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments
NASA Astrophysics Data System (ADS)
Randall, M.; Carling, G. T.; Nelson, S.; Bickmore, B.; Miller, T.
2016-12-01
An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to nutrient inputs. Utah Lake, located in northern Utah, is a eutrophic freshwater lake that is unique because it is naturally shallow, turbid, and alkaline with high dissolved oxygen levels. Recently, the Utah Division of Water Quality has proposed a new rule to limit phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study is to characterize the fate and mobility of P in Utah Lake to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 9 locations across Utah Lake. P concentrations in sediment ranged from 1120 to 1610 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Likewise, P concentrations in sediment pore water were highest in Provo Bay with concentrations up to 4 mg/L. Sequential leach tests indicate that 30-45% of P is bound to apatite and another 40-55% is adsorbed onto the surface of redox sensitive Fe/Mn hydroxides. This was confirmed by SEM images, which showed the highest P concentrations correlating with both Ca (apatite) and Fe (Fe hydroxides). The apatite-bound P fraction is likely immobile, but the P fraction sorbed to Fe/Mn hydroxides is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% of P from spiked surface water with concentrations ranging from 1-10 mg/L. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond reducing nutrient loads to the water body and requires a better understanding of internal P cycling.
1988-11-01
surface about 5 feet. A-2 * SEDIMENT CONDITIONS Historical records of past sedimentation rates are essentially nonexistent. A paper by J. Roger McHenry...dated March 1981 entitled "Recent Sedimentation Rates in Two Backwater Channel Lakes, Pool 14, Mississippi River" indicates widely varying deposition... rates , with an average of about 0.1 foot per year. Diversion of the upland drainage from the refuge area and the proposed levee with 2-year flood
Jin, G; Onodera, S; Saito, M; Maruyama, Y; Hayakawa, A; Sato, T; Ota, Y; Aritomi, D
2016-01-13
The focus of this work is the change in sediment properties and chemical characteristics that occur after land reclamation projects. The results indicate a higher sedimentation rate in Lake Hachirogata after reclamation, with the rate increasing with proximity to the agricultural zone. In the west-side water samples, higher levels of dissolved total nitrogen and dissolved total phosphorus (DTP) were found in both surface and bottom waters. The increase in P (39-80%) was generally greater than that for N (12-16%), regarding the nutrient supply from reclaimed farmland in the western part of the lake. In the eastern part of the lake, the pore-water Cl - profile showed a decreasing vertical gradient in the sediment core. This indicates desalination of the lake water after construction of a sluice gate in 1961. In the western sediment-core sample, a uniform Cl - profile indicates the mixing of lake water and pore water after reclamation. Considering the sedimentation of P in the last 100 years, there is a trend of increasing accumulation of P and P-activities after the reclamation project. This appears to be an impact from change in the lake environment as a result of increased agricultural nutrients, desalination, and residence. A large amount of mobile phosphorus (42-72% of TP in the western core sample) trapped in sediment increases the risk of phosphorus release and intensification of algal blooms. High sediment phosphorus and phosphorus mobility should be considered a source of pollution in the coastal environment.
COLLECTION OF UNDISTURBED SURFACE SEDIMENTS
The National Resource Council identified the need for a capability to collect undisturbed surface sediments. Surface sediments are an important source for most exposure of fish to polychlorinated biphenyls via direct uptake from water in contact with sediments. An innovative sedi...
NASA Astrophysics Data System (ADS)
Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.
2016-02-01
This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.
Mercury in Long Island Sound sediments
Varekamp, J.C.; Buchholtz ten Brink, Marilyn R.; Mecray, E.I.; Kreulen, B.
2000-01-01
Mercury (Hg) concentrations were measured in 394 surface and core samples from Long Island Sound (LIS). The surface sediment Hg concentration data show a wide spread, ranging from 600 ppb Hg in westernmost LIS. Part of the observed range is related to variations in the bottom sedimentary environments, with higher Hg concentrations in the muddy depositional areas of central and western LIS. A strong residual trend of higher Hg values to the west remains when the data are normalized to grain size. Relationships between a tracer for sewage effluents (C. perfringens) and Hg concentrations indicate that between 0-50 % of the Hg is derived from sewage sources for most samples from the western and central basins. A higher percentage of sewage-derived Hg is found in samples from the westernmost section of LIS and in some local spots near urban centers. The remainder of the Hg is carried into the Sound with contaminated sediments from the watersheds and a small fraction enters the Sound as in situ atmospheric deposition. The Hg-depth profiles of several cores have well-defined contamination profiles that extend to pre-industrial background values. These data indicate that the Hg levels in the Sound have increased by a factor of 5-6 over the last few centuries, but Hg levels in LIS sediments have declined in modern times by up to 30 %. The concentrations of C. perfringens increased exponentially in the top core sections which had declining Hg concentrations, suggesting a recent decline in Hg fluxes that are unrelated to sewage effluents. The observed spatial and historical trends show Hg fluxes to LIS from sewage effluents, contaminated sediment input from the Connecticut River, point source inputs of strongly contaminated sediment from the Housatonic River, variations in the abundance of Hg carrier phases such as TOC and Fe, and focusing of sediment-bound Hg in association with westward sediment transport within the Sound.
Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling
2014-05-01
The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.
NASA Technical Reports Server (NTRS)
Happell, James D.; Chanton, Jeffrey P.; Whiting, Gary J.; Showers, William J.
1993-01-01
The stable carbon isotopic composition of CH4 is used to study the processes that affect it during transport through plants from sediment to the atmosphere. The enhancement of CH4 flux from Cladium and Eleocharis over the flux from open water or clipped sites indicated that these plants served as gas conduits between the sediments and the atmosphere. Lowering of the water table below the sediment surface caused an Everglades sawgrass marsh to shift from emission of CH4 to consumption of atmospheric CH4. Cladium transported gases passively mainly via molecular diffusion and/or effusion instead of actively via bulk flow. Stable isotropic data gave no evidence that CH4 oxidation was occurring in the rhizosphere of Cladium. Both CH4 stable carbon isotope and flux data indicated a lack of CH4 oxidation at the sediment-water interface in Everglades marl soils and its presence in peat soils where 40 to 92 percent of the flux across the sediment-water interface was oxidized.
Butyltin compounds in sediments from the commercial harbor of Alexandria City, Egypt.
Barakat, A O; Kim, M; Qian, Y; Wade, T L
2001-12-01
Tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) compounds were quantitatively determined in surface-sediment samples collected from 23 sites in the commercial harbor of Alexandria City, Egypt. Butyltin concentrations in sediments varied widely depending on the sample location, ranging from less than 0.1 to 186 ng g(-1) of Sn for MBT, less than 0.1 to 379 ng g(-1) of Sn for DBT, and 1 to 2,067 ng g(-1) of Sn for TBT Elevated TBT concentrations, ranging from 727 to 2,067 ng g(-1) of Sn were observed in harbors, marinas, and near ship-repair facilities, indicating that the butyltin-containing, antifouling paints of boats and vessels are the major source of butyltin contamination. The TBT concentration decreased rapidly away from potential source areas of boat docking and repair facilities. The high relative concentrations of TBT in the sediments indicated that degradation processes in the sediments are minor, probably due to the anoxic sedimentary conditions at the sampling sites and/or relatively fresh input of TBT to these sites.
Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria
Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban
2016-01-01
The deep ocean floor covers more than 60% of the Earth’s surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000–5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe. PMID:26814838
Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont
Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.
2013-01-01
The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM-based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic metal-rich location, likely due to the low lability of copper in that sediment, as indicated by a low proportion of extractable copper (simultaneously extracted metal (SEM) copper only 5 percent of total copper) and due to the flushing of acidic metal-rich pore water from experimental chambers as overlying test water was introduced before and replaced periodically during the toxicity tests. Depositional habitat invertebrate richness and abundance data generally agreed with the results of toxicity tests and with the extent of impact in the watersheds on the basis of sediment and pore waters. The information was used to develop an overall assessment of the impact of mine drainage on the aquatic system downstream from the Pike Hill copper mines. Most of Pike Hill Brook, including several wetland areas that are all downstream from the Eureka and Union mines, was found to be impaired on the basis of water-quality data and biological assessments of fish or benthic invertebrate communities. In contrast, only one location in the tributary to Cookville Brook, downstream from the Smith mine, is definitively impaired. The biological community begins to recover at the most downstream locations in both brooks due to natural attenuation from mixing with unimpaired streams. On the basis of water quality and biological assessment, the reference locations were of good quality. The sediment toxicity, chemistry, and aquatic community survey data suggest that the sediments could be a source of toxicity in Pike Hill Brook and the tributary to Cookville Brook. On the basis of water quality, sediment quality, and biologic communities, the impacts of mine drainage on the aquatic ecosystem health of the watersheds in the study area are generally consistent with the toxicity suggested from laboratory toxicity testing on pore water and sediments.
The impact of human activities on sediments of San Francisco Bay, California: an overview
van Geen, Alexander; Luoma, Samuel N.
1999-01-01
This note introduces a set of eight papers devoted to a detailed study of two sediment cores from San Francisco Bay with an overview of the region and a chronology of human activities. Data used in this study to constrain the range of sediment ages at different depths include , and concentrations in the sediment and the age of shell fragments. In order of first detectable appearance in the record, the indicators of contamination that were analyzed include PAHs>Hg>Ag, Cu, Pb, Zn>DDT, PCB>foraminiferal Cd/Ca. This study also documents a large memory effect for estuarine contamination caused by sediment mixing and resuspension. Once an estuary such as San Francisco Bay has been contaminated, decades must pass before contaminant levels in surface sediment will return to background levels, even if external contaminant inputs have been entirely eliminated.
Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments
Iversen, Niels; Blackburn, T. Henry
1981-01-01
Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum. PMID:16345784
The Study of Heavy Metals on Sediment Quality of Kuala Perlis Coastal Area
NASA Astrophysics Data System (ADS)
Zubir, A. A. Ahmad; Saad, F. N. Mohd; Dahalan, F. A.
2018-03-01
The contamination of heavy metals gives bad implications to the aquatic environment. Thus, a study was conducted to assess the sediment quality by using different contamination indices such as Enrichment Factor (EF), Geo-accumulation Index (Igeo), and Pollution Load Index (PLI). Each sediment sample was collected at the surface (0-15cm) at 5 locations based on the land use activity; jetty port (A), seaside restaurant (B), roadside area (C), power plant (D) and residential area (E). All samples were undergoes acid digestion and analyzed with AAS. Four elements identified from the sediment samples which are Cr, Cu, Pb and Zn were used to calculate the respective indices. Results show that, the highest EF value of Pb which categorized as very severe enrichment was at point E. Meanwhile minor enrichment was detected at point B for Cu while Cr and Zn at point A. Based on Igeo value the sediment quality along Kuala Perlis was in the unpolluted-moderately polluted condition (class 1). As for PLI it shows that the sediment of the coastal area is unpolluted (PLI<1). Therefore, this study revealed that, the main contributor of heavy metals in this area is Pb while the sediment quality of Kuala Perlis was in minor pollution condition.
Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette
2018-03-01
This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut
2018-02-01
Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic.
Mackowiak, Martin; Leifels, Mats; Hamza, Ibrahim Ahmed; Jurzik, Lars; Wingender, Jost
2018-06-01
Fecal contamination of surface water is commonly evaluated by quantification of bacterial or viral indicators such as Escherichia coli and coliphages, or by direct testing for pathogens such as enteric viruses. Retention of fecally derived organisms in biofilms and sediments is less frequently considered. In this study, we assessed the distribution of E. coli, somatic coliphages, and enteric viruses including human adenovirus (HAdV), enterovirus (EV), norovirus genogroup GII (NoV GII) and group A rotavirus (RoV) in an urban river environment in Germany. 24 samples each of water, epilithic biofilms and sediments were examined. E. coli and somatic coliphages were prevalent not only in the flowing water, but also in epilithic biofilms and sediments, where they were accumulated compared to the overlying water. During enhanced rainfall, E. coli and coliphage concentrations increased by approximately 2.5 and 1 log unit, respectively, in the flowing water, whereas concentrations did not change significantly in epilithic biofilms and sediments. The occurrence of human enteric viruses detected by qPCR was higher in water than in biofilms and sediments. 87.5% of all water samples were positive for HAdV. Enteric viruses found less frequently were EV, RoV and NoV GII in 20.8%, 16.7% and 8.3% of the water samples, respectively. In epilithic biofilms and sediments, HAdV was found in 54.2% and 50.0% of the samples, respectively, and EV was found in 4.2% of both biofilm and sediment samples. RoV and NoV GII were not detected in any of the biofilms and sediments. Overall, the prevalence of enteric viruses was in the order of HAdV > EV > RoV ≥ NoV GII. In conclusion, epilithic biofilms and sediments can be reservoirs for fecal indicators and enteric viruses and thus should be taken into consideration when assessing microbial pollution of surface water environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Pope, Ian C; Odhiambo, Ben K
2014-03-01
Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha(-1) year(-1) in the same time period. (210)Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm(-2) year(-1) respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year(-1). These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.
Shift in the microbial community composition of surface water and sediment along an urban river.
Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu
2018-06-15
Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO 3 - (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Guolian; Xie, Fazhi; Zhang, Jin; Wang, Jingrou; Yang, Ying; Sun, Ruoru
2016-09-01
Phosphorus (P) in a water body is mainly controlled by the interaction between surface sediment and the overlying water column after the complete control of external pollution. Significant enhancement of P in a water body would cause eutrophication of lakes. Thus, a better understanding is needed of the occurrences of P between the sediment and water column in eutrophic lakes. Here, we measured total phosphorus (TP) and major elements (Fe, Al, Ca, Mn, Si) in the water column, and total nitrogen, organic matter, TP and major oxides (Fe 2 O 3 , Al 2 O 3 , CaO, SiO 2 ) in surface sediment of Chaohu Lake, a continuously eutrophic lake. The results showed that the rank of TP levels was western lake > eastern lake > southern lake. There were significantly positive correlations between TP (including water TP and sedimentary TP) and Fe, Al, Mn, while the correlation coefficients between water TP and sedimentary TP were -0.43, -0.41 and 0.18 for the western, eastern and southern lake respectively. The negative and significant correlations of water TP and sedimentary TP may indicate that the risk of sedimentary P release was great in the western and eastern lake during algae bloom sedimentation, while the southern lake showed weak P exchange between the sediment and water column.
El-Said, Ghada F; Draz, Suzanne E O; El-Sadaawy, Manal M; Moneer, Abeer A
2014-01-01
Spatial distribution of heavy metals (Co, Cu, Ni, Cr, Mn, Zn and Fe) was studied on Lake Edku's surface sediments in relation to sedimentology and geochemistry characteristics and their contamination status on the ecological system. Lake Edku's sediments were dominated by sandy silt and silty sand textures and were enriched with carbonate content (9.83-58.46%). Iron and manganese were the most abundant heavy metals with ranges of 1.69 to 8.06 mg g(-1) and 0.88 to 3.27 mg g(-1), respectively. Cobalt and nickel showed a harmonic distribution along the studied sediments. The results were interpreted by the statistical means. The heavy metal pollution status and their ecological risk in Lake Edku was evaluated using the sediment quality guidelines and the contamination assessment methods (geoaccumulation, pollution load and potential ecological risk indices, enrichment factor, contamination degree as well as effect range median (ERM) and probable effect level (PEL) quotients). Amongst the determined heavy metals, zinc had the most ecological risk. Overall, the heavy metals in surface sediments showed ecological effect range from moderate to considerable risk, specially, in the stations in front of the seawater and in drain sources that had the highest toxic priority.
Zhang, Nai-Sheng; Liu, You-sheng; Van den Brink, Paul J; Price, Oliver R; Ying, Guang-Guo
2015-12-01
Home and personal care products (HPCPs) including biocides, benzotriazoles (BTs) and ultraviolet (UV) filters are widely used in our daily life. After use, they are discharged with domestic wastewater into the receiving environment. This study investigated the occurrence of 29 representative HPCPs, including biocides, BTs and UV filters, in the riverine environment of a rural region of South China where no wastewater treatment plants were present, and assessed their potential ecological risks to aquatic organisms. The results showed the detection of 11 biocides and 4 BTs in surface water, and 9 biocides, 3 BTs and 4 UV filters in sediment. In surface water, methylparaben (MeP), triclocarban (TCC), and triclosan (TCS) were detected at all sites with median concentrations of 9.23 ng/L, 2.64 ng/L and 5.39 ng/L, respectively. However, the highest median concentrations were found for clotrimazole (CLOT), 5-methyl-1H-benzotriazole (MBT) and carbendazim (CARB) at 55.6 ng/L, 33.7 ng/L and 13.8 ng/L, respectively. In sediment, TCC, TCS, and UV-326 were detected with their maximum concentrations up to 353 ng/g, 155 ng/g, and 133 ng/g, respectively. The concentrations for those detected HPCPs in surface water and sediment were generally lower in the upper reach (rural area) of Sha River than in the lower reach of Sha River with close proximity to Dongjiang River (Pt-test<0.05), indicating other input sources of HPCPs in the lower reach. Biocides showed significantly higher levels in surface water in the wet season than in the dry and intermediate seasons. Preliminary risk assessment demonstrated that the majority of HPCPs monitored represented low risk in surface waters. There are potentially greater risks to aquatic organisms from the use of TCS and TCC in the wet season than in dry and intermediate seasons in surface waters. This preliminary assessment also indicates potential concerns associated with TCC, TCS, DEET, CARB, and CLOT in sediments, although additional data should be generated to assess this fully. Thus future research is needed to investigate ecological effects of these HPCPs on benthic organisms in sediment of rural rivers receiving untreated wastewater discharge. Copyright © 2015 Elsevier Inc. All rights reserved.
Babcock-Adams, Lydia; Chanton, Jeffrey P; Joye, Samantha B; Medeiros, Patricia M
2017-10-01
In April of 2010, the Macondo well blowout in the northern Gulf of Mexico resulted in an unprecedented release of oil into the water column at a depth of approximately 1500 m. A time series of surface and subsurface sediment samples were collected to the northwest of the well from 2010 to 2013 for molecular biomarker and bulk carbon isotopic analyses. While no clear trend was observed in subsurface sediments, surface sediments (0-3 cm) showed a clear pattern with total concentrations of n-alkanes, unresolved complex mixture (UCM), and petroleum biomarkers (terpanes, hopanes, steranes) increasing from May to September 2010, peaking in late November 2010, and strongly decreasing in the subsequent years. The peak in hydrocarbon concentrations were corroborated by higher organic carbon contents, more depleted Δ 14 C values and biomarker ratios similar to those of the initial MC252 crude oil reported in the literature. These results indicate that at least part of oil discharged from the accident sedimented to the seafloor in subsequent months, resulting in an apparent accumulation of hydrocarbons on the seabed by the end of 2010. Sediment resuspension and transport or biodegradation may account for the decrease in sedimented oil quantities in the years following the Macondo well spill. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E
2016-10-01
Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.
Metge, D.W.; Harvey, R.W.; Aiken, G.R.; Anders, R.; Lincoln, G.; Jasperse, James
2010-01-01
This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7–13.9 m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3 μm) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D50) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8 mg L−1) of the 2.2 mg L−1dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2 mg L−1 of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2 μM) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations.
Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary
Roy, M.; Martin, J.B.; Cherrier, J.; Cable, J.E.; Smith, C.G.
2010-01-01
Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250. m offshore. Porewater Fe concentrations range from 0.5 ??M at the shoreline and 250. m offshore to about 286 ??M at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1. cm/day, while bioirrigation exchange deepens with distance from about 10. cm at the shoreline to about 40. cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 ??M at the shoreline to as much as 700 ??M at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 ??M Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments. ?? 2010 Elsevier Ltd.
Deposition, Alteration, and Resuspension of Colorado River Delta Sediments, Lake Powell, Utah
NASA Astrophysics Data System (ADS)
Kramer, N. M.; Parnell, R.
2002-12-01
Current drought conditions in the southwest United States have resulted in lowering water levels in Lake Powell, Utah. Delta sediments forming at the Colorado River inflow for the past 39 years are becoming exposed and reworked as lake levels continue to fall to over 22 meters below full pool level. Fine sediments act as a sink for pollutants by adsorbing contaminants to their surfaces. Reworking these sediments may pose a risk to water quality in the lake. We examine whether burial and time have sufficiently altered fine sediments in the delta and affected materials adsorbed on their surfaces. Fifteen lake cores and six sediment traps were collected from the sediment delta forming at the Colorado River inflow in Lake Powell. This research characterizes fine sediment mineralogy, the composition of exchangeable materials, and organic matter content within delta sediments to determine the type and amount of alteration of these sediments with cycles of burial and resuspension. We hypothesize that as sediments are reworked, organic carbon is degraded and organic nitrogen is released forming ammonium in these reducing conditions. Sediment trap samples will be used to test this hypothesis. Trap samples will be compared to subsamples from sediment cores to determine the amount of alteration of fine sediments. All samples are analyzed for organic carbon, organic nitrogen, ammonium, cation exchange capacity, exchangeable cation composition, and clay mineralogy. Organic carbon and nitrogen are analyzed using a Leco CN analyzer. Ammonium is analyzed using a Lachet ion chromatograph. Clay mineralogy is characterized using a Siemens D500 powder X-ray diffractometer. Cation exchange capacity and exchangeable cations are measured using standard soil chemical techniques. Clay mineral analyses indicate significant spatial and temporal differences in fine sediment entering the Lake Powell delta which complicates the use of a simple deposition/alteration/resuspension model using a single starting material.
NASA Astrophysics Data System (ADS)
Ikeuchi, Yoshihiro
2003-09-01
90Sr and 137Cs concentrations were determined in surface water and bottom sediments collected at 11 sites offshore from Japan during the period 1974-1998, to investigate their temporal variations and behaviour in the coastal marine environment. The concentrations of 90Sr and 137Cs in surface water have decreased with time since 1974. After the period of atmospheric nuclear weapons tests, the mean residence times of 90Sr and 137Cs were about 41 and 51 years, respectively. The 137Cs/ 90Sr activity ratios in coastal seawater during the atmospheric nuclear weapons tests (up until 1980) were lower than those after the tests due to the inflow of 90Sr in river water. A sharp increase in 137Cs levels was observed in airborne dust, in precipitation on the Japanese islands, and in coastal surface seawater in 1986 following the Chernobyl accident. However, the 137Cs levels in surface water returned to pre-1986 levels quickly, indicating rapid removal of Cs from the surface to deeper water. Concentrations of 90Sr in sediments were generally much lower than those for 137Cs, reflecting the more effective scavenging of Cs from the water column. In Ca-rich sediments, consisting of corals and shells, higher 90Sr levels and 90Sr/ 137Cs activity ratios were found, reflecting higher accumulation of Sr than Cs in marine organisms. Higher accumulation of 90Sr than 137Cs was also found in seaweed (gulfweed and wakame).
NASA Astrophysics Data System (ADS)
Wang, L.; Shi, Z. H.; Wang, J.; Fang, N. F.; Wu, G. L.; Zhang, H. Y.
2014-05-01
Rainfall kinetic energy (KE) can break down aggregates in the soil surface. A better understanding of sediment sorting associated with various KEs is essential for the development and verification of soil erosion models. A clay loam soil was used in the experiments. Six KEs were obtained (76, 90, 105, 160, 270, and 518 J m-2 h-1) by covering wire screens located above the soil surface with different apertures to change the size of raindrops falling on the soil surface, while maintaining the same rainfall intensity (90 ± 3.5 mm h-1). For each rainfall simulation, runoff and sediment were collected at 3-min intervals to investigate the temporal variation of the sediment particle size distribution (PSD). Comparison of the sediment effective PSD (undispersed) and ultimate PSD (dispersed) was used to investigate the detachment and transport mechanisms involved in sediment mobilization. The effective-ultimate ratios of clay-sized particles were less than 1, whereas that of sand-sized particles were greater than 1, suggesting that these particles were transported as aggregates. Under higher KE, the effective-ultimate ratios were much closer to 1, indicating that sediments were more likely transported as primary particles at higher KE owing to an increased severity of aggregate disaggregation for the clay loam soil. The percentage of clay-sized particles and the relative importance of suspension-saltation increased with increasing KE when KE was greater than 105 J m-2 h-1, while decreased with increasing KE when KE was less than 105 J m-2 h-1. A KE of 105 J m-2 h-1 appeared to be a threshold level beyond which the disintegration of aggregates was severe and the influence of KE on erosion processes and sediment sorting may change. Results of this study demonstrate the need for considering KE-influenced sediment transport when predicting erosion.
Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.
2016-01-01
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716
Bukin, Sergei V; Pavlova, Olga N; Manakov, Andrei Y; Kostyreva, Elena A; Chernitsyna, Svetlana M; Mamaeva, Elena V; Pogodaeva, Tatyana V; Zemskaya, Tamara I
2016-01-01
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.
Sources of suspended sediment in the Lower Roanoke River, NC
NASA Astrophysics Data System (ADS)
Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.
2015-12-01
The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and nutrient budgets.
Effects of carbon nanotubes on phosphorus adsorption behaviors on aquatic sediments.
Qian, Jin; Li, Kun; Wang, Peifang; Wang, Chao; Shen, Mengmeng; Liu, Jingjing; Tian, Xin; Lu, Bianhe
2017-08-01
Aquatic sediments are believed to be an important sink for carbon nanotubes (CNTs). With novel properties, CNTs can potentially disturb the fate and mobility of the co-existing contaminants in the sediments. Only toxic pollutants have been investigated previously, and to the best of our knowledge, no data has been published on how CNTs influence phosphorus (P) adsorption on aquatic sediments. In this study, multi-walled carbon nanotubes (MWCNTs) were selected as model CNTs. Experimental results indicated that compared to pseudo-first order and intraparticle diffusion models, the pseudo-second-order model is better for describing the adsorption kinetics of sediments and MWCNT-contaminated sediments. Adsorption isotherm studies suggested that the Langmuir model fits the isotherm data well. With the increase in the MWCNT-to-sediment ratio from 0.0% to 5.0%, the theoretical maximum monolayer adsorption capacity (Q max ) for P increased from 0.664 to 0.996mg/g. However, the Langmuir isotherm coefficient (K L ) significantly decreased from 4.231L/mg to 2.874L/mg, indicating the decrease in the adsorption free energy of P adsorbed on the sediments after MWCNT contamination. It was suggested that P was released more easily to the overlying water after the re-suspension of sediments. Moreover, the adsorption of sediments and sediment-MWCNT mixture was endothermic and physical in nature. Results obtained herein suggested that the change in the specific surface area and zeta potential of sediments is related to MWCNT contamination, and the large adsorption capacity of MWCNTs is probably the main factor responsible for the variation in the adsorption of P on aquatic sediments. Copyright © 2017 Elsevier Inc. All rights reserved.
Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.
Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R
2015-01-01
When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
MacKenzie, A B; Cook, G T; Barth, J; Gulliver, P; McDonald, P
2004-05-01
The distribution of contaminant radionuclides from the Sellafield nuclear fuel reprocessing plant was used to establish chronologies for three saltmarsh sediment cores from south west Scotland. delta(13)C and (14)C analyses indicated that the cores provided a useful archive record of variations in input of organic matter and carbonate. The results imply that prior to major releases of contaminant (14)C from Sellafield, the (14)C specific activity of organic matter in Irish Sea offshore sediments was about 24 Bq kg(-1) C, while that of the carbonate component was below the limit of detection. These results provide baseline data for modelling the uptake of contaminant (14)C by the Irish Sea sediment system. The study confirmed that small(13)C analyses provide a sensitive means of apportioning the origin of saltmarsh organic matter between C(3) terrigenous plants, C(4) terrigenous plants and suspended particulate marine organic matter. For the <2 mm fraction of sediment, a clear pattern of decreasing marine organic input was observed in response to increasing elevation of the marsh surface as a result of sediment accumulation. Bulk sediment, including detrital vegetation, had a dominant input from terrigenous plants. The combined use of delta(13)C and (14)C data revealed that organic matter in the marine organic component of the <2 mm fraction of contemporary surface sediments of the saltmarshes is dominated by recycled old organic material.
The carbon cycle and biogeochemical dynamics in lake sediments
Dean, W.E.
1999-01-01
The concentrations of organic carbon (OC) and CaCO3 in lake sediments are often inversely related. This relation occurs in surface sediments from different locations in the same lake, surface sediments from different lakes, and with depth in Holocene sediments. Where data on accumulation rates are available, the relation holds for organic carbon and CaCO3 accumulation rates as well. An increase of several percent OC is accompanied by a decrease of several tens of percent CaCO3 indicating that the inverse relation is not due to simple dilution of one component by another. It appears from core data that once the OC concentration in the sediments becomes greater than about 12%, the CO2 produced by decomposition of that OC and production of organic acids lowers the pH of anoxic pore waters enough to dissolve any CaCO3 that reaches the sediment-water interface. In a lake with a seasonally anoxic hypolimnion, processes in the water column also can produce an inverse relation between OC and CaCO3 over time. If productivity of the lake increases, the rain rate of OC from the epilimnion increases. Biogenic removal of CO2 and accompanying increase in pH also may increase the production of CaCO3. However, the decomposition of organic matter in the hypolimnion will decrease the pH of the hypolimnion causing greater dissolution of CaCO3 and therefore a decrease in the rain rate of CaCO3 to the sediment-water interface.
Dong, Cheng-Di; Chen, Chiu-Wen; Chen, Chih-Feng
2013-07-01
The distribution, enrichment, accumulation, and potential ecological risk of chromium (Cr) in the surface sediments of northern Kaohsiung Harbor, Taiwan, China were investigated. Sediment samples from ten locations located between the river mouths and harbor entrance of northern Kaohsiung Harbor were collected quarterly in 2011 and characterized for Cr, aluminum, water content, organic matter, total nitrogen, total phosphorous, total grease, and grain size. Results showed that the Cr concentrations varied from 27.0 to 361.9 mg/kg with an average of (113.5 +/- 87.0) mg/kg. High Cr concentration was observed near the Jen-Gen River mouth. The mean Cr concentration was high at 255.5 mg/kg, which was at least 2 to 7 times than that of other sites. This might imply significant Cr contribution from upstream receiving tanneries wastewater into the Jen-Gen River. The spatial distribution of Cr reveals relatively high in the river mouth region, especially in Jen-Gen River, and gradually diminishes toward the harbor entrance region. This indicates that the major sources of Cr pollution from upstream industrial and municipal wastewaters discharged along the river bank; and Cr may drift with sea current and be dispersed into open sea. Moreover, Cr concentrations correlated closely to the physical-chemical properties of the sediments, which suggested the influence of industrial and municipal wastewaters discharged from the neighboring industrial parks and river basins. Results from the enrichment factor and geo-accumulation index analyses imply that the Jen-Gen River sediments can be characterized as moderate enrichment and none to medium accumulation of Cr, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk. The results can provide valuable information to developing future strategies for the management of river mouth and harbor.
A model for assessing water quality risk in catchments prone to wildfire
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Smith, Hugh; Chong, Derek; Nyman, Petter; Lane, Patrick; Sheridan, Gary
2017-04-01
Post-fire debris flows can have erosion rates up to three orders of magnitude higher than background rates. They are major sources of fine suspended sediment, which is critical to the safety of water supply from forested catchments. Fire can cover parts or all of these large catchments and burn severity is often heterogeneous. The probability of spatial and temporal overlap of fire disturbance and rainfall events, and the susceptibility of hillslopes to severe erosion determine the risk to water quality. Here we present a model to calculate recurrence intervals of high magnitude sediment delivery from runoff-generated debris flows to a reservoir in a large catchment (>100 km2) accounting for heterogeneous burn conditions. Debris flow initiation was modelled with indicators of surface runoff and soil surface erodibility. Debris flow volume was calculated with an empirical model, and fine sediment delivery was calculated using simple, expert-based assumptions. In a Monte-Carlo simulation, wildfire was modelled with a fire spread model using historic data on weather and ignition probabilities for a forested catchment in central Victoria, Australia. Multiple high intensity storms covering the study catchment were simulated using Intensity-Frequency-Duration relationships, and the runoff indicator calculated with a runoff model for hillslopes. A sensitivity analysis showed that fine sediment is most sensitive to variables related to the texture of the source material, debris flow volume estimation, and the proportion of fine sediment transported to the reservoir. As a measure of indirect validation, denudation rates of 4.6 - 28.5 mm ka-1 were estimated and compared well to other studies in the region. From the results it was extrapolated that in the absence of fire management intervention the critical sediment concentrations in the studied reservoir could be exceeded in intervals of 18 - 124 years.
NASA Astrophysics Data System (ADS)
Ma, S.
2011-12-01
Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.
Zhou, Ran; Qin, Xuebo; Peng, Shitao; Deng, Shihuai
2014-06-15
Surface sediments collected from 2001 to 2011 were analyzed for total petroleum hydrocarbons (TPH) and five heavy metals. The sediment concentration ranges of TPH, Zn, Cu, Pb, Cd and Hg were 6.3-535 μg/g, 58-332 μg/g, 7.2-63 μg/g, 4.3-138 μg/g, 0-0.98μg/g, and 0.10-0.68 μg/g, respectively. These results met the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. However, based on the effects range-median (ERM) quotient method, the calculated values for all of the sampling sites were higher than 0.10, suggesting that there was a potential adverse biological risk in Bohai Bay. According to the calculated results, the biological risk decreased from 2001 to 2007 and increased afterwards. High-risk sites were mainly distributed along the coast. This study suggests that anthropogenic influences might be responsible for the potential risk of adverse biological effects from TPH and heavy metals in Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aschenbroich, Adélaïde; Marchand, Cyril; Molnar, Nathalie; Deborde, Jonathan; Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik
2015-04-15
In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ(13)C and δ(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
Salas, P M; Sujatha, C H; Ratheesh Kumar, C S; Cheriyan, Eldhose
2018-02-01
Surface sediments from three zones (fresh water, estuarine, and riverine/industrial zones) of the Cochin estuary, Southwest coast of India, were seasonally analyzed to understand the nature and degradation status of organic matter. Amino acid-based indices such as total hydrolyzable amino acids (THAAs), percentage contributions of amino acid carbon to total organic carbon (THAA-C%) and those of amino acid nitrogen to total nitrogen (THAA-N%), and degradation index (DI) were calculated. Elevated levels of amino acids in the sediments of the estuary were attributed to river runoff, autochthonous production, allochthonous inputs, and industrial and domestic effluent discharges. Higher levels of THAA-C%, THAA-N%, THAA, and positive DI found in most of the stations suggest the fresh deposition of organic matter. Multivariate statistical analyses revealed that the dispersal pattern of amino acids depends on the sediment texture, organic matter, redox state, and microbial processes in the study region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Klitzke, Sondra; Fastner, Jutta
2012-04-01
One possible consequence of increasing water temperatures due to global warming in middle Europe is the proliferation of cylindrospermopsin-producing species from warmer regions. This may lead to more frequent and increased cylindrospermopsin (CYN) concentrations in surface waters. Hence, efficient elimination of CYN is important where contaminated surface waters are used as a resource for drinking water production via sediment passage. Sediments are often characterized by a lack of oxygen and low temperature (i.e. approx. 10 °C). The presence of dissolved organic carbon (DOC) is not only known to enhance but also to retard contaminant degradation by influencing the extent of lag phases. So far CYN degradation has only been investigated under oxic conditions and at room temperature. Therefore, the aim of our experiments was to understand CYN degradation, focusing on the effects of i) anoxic conditions, ii) low temperature (i.e. 10 °C) in comparison to room temperature (23±4 °C) and iii) DOC on lag phases. We used two natural sandy sediments (virgin and preconditioned) and surface water to conduct closed-loop column experiments. Anoxic conditions either inhibited CYN degradation completely or retarded CYN breakdown in comparison to oxic conditions (T(1/2) (oxic)=2.4 days, T(1/2) (anoxic)=23.6 days). A decrease in temperature from 20 °C to 10 °C slowed down degradation rates by a factor of 10. The presence of DOC shortened lag phases in virgin sediments at room temperature but induced a lag phase in preconditioned sediments at 10 °C, indicating potential substrate competition. These results show that information on physico-chemical conditions in sediments is crucial to assess the risk of CYN breakthrough. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L
2016-07-01
Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.
Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data
NASA Astrophysics Data System (ADS)
Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.
2018-01-01
Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.
Bastami, Kazem Darvish; Bagheri, Hossein; Haghparast, Sarah; Soltani, Farzaneh; Hamzehpoor, Ali; Bastami, Mousa Darvish
2012-12-01
We investigated heavy metal concentrations of zinc (Zn), copper (Cu), chromium (Cr), and lead (Pb), their spatial distribution and enrichment factor index in surface sediments of the Gorgan Bay. Sediment Quality Guidelines were also applied to assess adverse biological effects of these metals. Heavy metals were determined by inductively coupled plasma-mass spectroscopy (ICP-MS). The results indicated mean concentrations (ppm) of heavy metals were (mean±S.D.) Pb: 11.5±4.88, Cu: 18±8.83, Zn: 42±22.15 and Cr: 32±15.19. Based on Enrichment index, the Gorgan Bay is a low-enriched to non-enriched bay. Heavy metal contents were lower than the standard limits of PEL, ERL, and ERM that reveal no threatening influence of the metals in the Bay. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China.
Sun, Qiyao; Sheng, Yanqing; Yang, Jian; Di Bonito, Marcello; Mortimer, Robert J G
2016-12-01
The cycling of sulfur (S), iron (Fe) and phosphorus (P) in sediments and pore water can impact the water quality of overlying water. In a heavily polluted river estuary (Yantai, China), vertical profiles of fluxes of dissolved sulfide, Fe 2+ and dissolved reactive phosphorus (DRP) in sediment pore water were investigated by the Diffusive Gradients in Thin films technique (DGT). Vertical fluxes of S, Fe, P in intertidal sediment showed the availability of DRP increased while the sulfide decreased with depth in surface sediment, indicating that sulfide accumulation could enhance P release in anoxic sediment. In sites with contrasting salinity, the relative dominance of iron and sulfate reduction was different, with iron reduction dominant over sulfate reduction in the upper sediment at an intertidal site but the reverse true in a freshwater site, with the other process dominating at depth in each case. Phosphate release was largely controlled by iron reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Junyi; Zhu, Congming; Guan, Rui; Xiong, Zhipeng; Zhang, Wen; Shi, Junzhe; Sheng, Yi; Zhu, Bingchuan; Tu, Jing; Ge, Qinyu; Chen, Ting; Lu, Zuhong
2017-05-01
Understanding of the bacterial community structure in drinking water resources helps to enhance the security of municipal water supplies. In this study, bacterial communities were surveyed in water and sediment during a heavy cyanobacterial bloom in a drinking water resource of Lake Taihu, China. A total of 325,317 high-quality sequences were obtained from different 16S ribosomal RNA (rRNA) regions (V3, V4, and V6) using the Miseq sequencing platform. A notable difference was shown between the water and sediment samples, as predominated by Cyanobacteria, Proteobacteria, and Actinobacteria in the water and Proteobacteria, Chloroflexi, and Verrucomicrobia in the sediment, respectively. The LD12 family dominated the water surface and was tightly associated with related indicators of cyanobacterial propagation, indicating involvement in the massive proliferation of cyanobacterial blooms. Alternatively, the genus Nitrospira dominated the sediment samples, which indicates that nitrite oxidation was very active in the sediment. Although pathogenic bacteria were not detected in a large amount, some genera such as Mycobacterium, Acinetobacter, and Legionella were still identified but in very low abundance. In addition, the effects of different V regions on bacterial diversity survey were evaluated. Overall, V4 and V3 were proven to be more promising V regions for bacterial diversity survey in water and sediment samples during heavy water blooms in Lake Taihu, respectively. As longer, cheaper, and faster DNA sequencing technologies become more accessible, we expect that bacterial community structures based on 16S rRNA amplicons as an indicator could be used alongside with physical and chemical indicators, to conduct comprehensive assessments for drinking water resource management.
Arsenic Redistribution Between Sediments and Water Near a Highly Contaminated Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keimowitz,A.; Zheng, Y.; Chillrud, S.
2005-01-01
Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic >10 000 {micro}g L{sup -1} or >130 {micro}M in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and theymore » indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, >99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides.« less
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
R, C. K.; Bhushan, R.; Agnihotri, R.; Sawlani, R.; Jull, A. J. T.
2016-12-01
Seawaters and underlying sediments off Sri Lanka provide a unique marine realm affected by both branches of Northern Indian Ocean i.e. Arabian Sea (AS) and Bay of Bengal (BOB). AS and BOB are known for their distinct response to southwest monsoon. AS experiencing mainly winds and upwelling while BOB receives precipitation driven surface runoff from the Indian sub-continent. Multiple proxies were measured on a radiocarbon dated sediment core raised off Sri Lanka; their down core variations were used to understand oceanic history (nutrient utilisation, surface productivity, nature of organic matter) spanning last glacial-interglacial cycle ( 26 to 2.5 ka BP). Variations in CaCO3, biogenic silica (BSi) and δ15N from 26 ka to 12.5 ka BP indicate the region was experiencing high surface productivity with probably reduced surface nutrient utilisation efficiency. Sedimentary δ15N depth profile is decoupled from down core variations of major productivity indices (e.g. CaCO3, OC), hinting plausibly partial utilization of nutrients in the mixed layer (photic zone). δ13C of OC and C/N (wt. ratio) clearly reveal the terrestrial origin of organic matter at 15 ka BP, a period known for witnessing onset of deglaciation in northern hemisphere. δ13C minimum at 9 ka BP indicates intense monsoonal activity during this time coinciding well with solar insolation (June) maximum of the northern hemisphere. With the onset of Holocene ( 11 ka BP), δ15N variations appear to correlate with BSi and Ba/Ti indicating enhanced utilization of available nutrients at surface. Suggesting surface productivity over the region was probably micro-nutrient limited. The increased inventory of terrestrial runoff in Holocene probably demonstrates enhanced carbon sequestration capability of the region.
Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport
NASA Astrophysics Data System (ADS)
Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.
2009-04-01
Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.
NASA Astrophysics Data System (ADS)
Najamuddin; Surahman
2017-10-01
Surface sediments were collected from seventeen stations in Jeneberang waters (riverine, estuarine, and marine). Lead (Pb) and zinc (Zn) concentrations were determined by atomic absorption spectrometry, and the speciation of metals was obtained by a sequential extraction procedure. Dispersion of Pb and Zn were found higher in the riverine and marine samples than the estuarine samples. Following speciation, the metals were found similar composition of fraction in the riverine and estuarine samples but any different in the marine samples. The results indicated that there is a change of dispersion pattern and speciation composition of metals due to the presence of the dam that lies at the boundary between the estuary and the river. The toxicity unit was indicated low toxicity level; pollution level was in weakly to moderately polluted while the aquatic environment risk attributed were no risky to light risk.
Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A
Griffiths, P.G.; Hereford, R.; Webb, R.H.
2006-01-01
Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.
Characterization of a Louisiana Bay Bottom
NASA Astrophysics Data System (ADS)
Freeman, A. M.; Roberts, H. H.
2016-02-01
This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.
Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea
Gardner, J.V.; Dean, W.E.; Vallier, T.L.
1980-01-01
Present-day sediment dynamics, combined with lowerings of sea level during the Pleistocene, have created a mixture of sediments on the outer continental shelf of the southern Bering Sea that was derived from the Alaskan Mainland, the Aleutian Islands, and the Pribilof ridge. Concentrations of finer-grained, higher-organic sediments in the region of the St. George basin have further modified regional distribution patterns of sediment composition. Q-mode factor analysis of 58 variables related to sediment size and composition - including content of major, minor, and trace elements, heavy and light minerals, and clay minerals - reveals three dominant associations of sediment: 1. (1) The most significant contribution, forming a coarse-grained sediment scattered over most of the shelf consists of felsic sediment derived from the generally quartz-rich rocks of the Alaskan mainland. This sediment contains relatively high concentrations of Si, Ba, Rb, quartz, garnet, epidote, metamorphic rock fragments, potassium feldspar, and illite. 2. (2) The next most important group, superimposed on the felsic group consists of andesitic sediment derived from the Aleutian Islands. This more mafic sediment contains relatively high concentrations of Na, Ca, Ti, Sr, V, Mn, Cu, Fe, Al, Co, Zn, Y, Yb, Ga, volcanic rock fragments, glass, clinopyroxene, smectite, and vermiculite. 3. (3) A local group of basaltic sediment, derived from rocks of the Pribilof Islands, is a subgroup of the Aleutian andesite group. Accumulation of fine-grained sediment in St. George basin has created a sediment group containing relatively high concentrations of C, S, U, Li, B, Zr, Ga, Hg, silt, and clay. Sediment of the Aleutian andesite group exhibits a strong gradient, or "plume", with concentrations decreasing away from Unimak Pass and toward St. George basin. The absence of present-day currents sufficient to move even clay-size material as well as the presence of Bering submarine canyon between the Aleutian Islands and the outer continental shelf and slope, indicates that Holocene sediment dynamics cannot be used to explain the observed distribution of surface sediment derived from the Aleutian Islands. We suggest that this pattern is relict and resulted from sediment dynamics during lower sea levels of the Pleistocene. ?? 1980.
Juracek, Kyle E.; Rasmussen, Patrick P.
2008-01-01
The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects. The largest copper, lead, silver, and zinc concentrations, measured for a sample collected from Sand Creek downstream from Newton, Kansas, likely were related to urban sources of contamination. Radionuclide activities and bacterial densities in the streambed sediment varied throughout the basin. Variability in the former may be indicative of subbasin differences in the contribution of sediment from surface-soil and channel-bank sources. Streambed sediment may be useful for reconnaissance purposes to determine sources of particulate nitrogen, phosphorus, organic carbon, and other sediment-associated constituents in the basin. If flow conditions prior to streambed-sediment sampling and during water-quality sampling are considered, it may be possible to use streambed sediment as an indicator of water quality for nitrogen, phosphorus, and organic carbon. Flow conditions affect sediment-associated constituent concentrations in streambed-sediment and water samples, in part, because the sources of sediment (surface soils, channel banks) can vary with flow as can the size of the particles transported.
Sundaramanickam, Arumugam; Shanmugam, Nadanasabesan; Cholan, Shanmugam; Kumaresan, Saravanan; Madeswaran, Perumal; Balasubramanian, Thangavel
2016-11-01
An elaborate survey on the contamination of heavy metals was carried out in surface sediments of different ecosystems such as Vellar-Coleroon estuarine, Pichavaram mangrove and coastal region of Parangipettai, Southeast coast of India. The study was intended since, the coal based thermal power plant and oil refinery plant are proposed to set up along this coast and aquaculture industries and dredging activities are developing. The parameters such as soil texture, pH, total organic carbon (TOC) and heavy metal (Fe, Mn, Cu, Cd, Zn and Ni) concentrations were analyzed for the surface sediments during pre and postmonsoon seasons. Among the metals analyzed, Fe and Mn were found to have dominant as the levels were recorded as 11,804 μg g - 1 and 845.2 μg g - 1 respectively. A significant correlation was observed between total organic carbon (TOC) and heavy metals. In the mangrove ecosystem, the levels of heavy metals found to be maximum indicating that the rich organic matter acts as an efficient binding agent for metals. The overall finding of the present study indicated that the sediments from the entire Vellar-Coleroon estuarine and Pichavaram mangrove ecosystems were found moderately polluted with cadmium metal. The result of cluster analysis indicated disparity in accumulation of heavy metals in sediments of different ecosystems due to the variations in organic matter. The heavy metals were transported from land to coastal through flood during monsoon season reflecting the variations in their levels in different ecosystems at postmonsoon season. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of triclosan in Minnesota lakes and rivers: Part I - ecological risk assessment.
Lyndall, Jennifer; Barber, Timothy; Mahaney, Wendy; Bock, Michael; Capdevielle, Marie
2017-08-01
Triclosan, an antimicrobial compound found in consumer products, may be introduced into the aquatic environment via residual concentrations in municipal wastewater treatment effluent. We conducted an aquatic risk assessment that incorporated the available measured triclosan data from Minnesota lakes and rivers. Although only data reported from Minnesota were considered in the risk assessment, the developed toxicity benchmarks can be applied to other environments. The data were evaluated using a series of environmental fate models to ensure the data were internally consistent and to fill any data gaps. Triclosan was not detected in over 75% of the 567 surface water and sediment samples. Measured environmental data were used to model the predicted environmental exposures to triclosan in surface water, surface sediment, and biota tissues. Toxicity benchmarks based on fatty acid synthesis inhibition and narcosis were determined for aquatic organisms based, in part, on a species sensitivity distribution of chronic toxicity thresholds from the available literature. Predicted and measured environmental concentrations for surface water, sediment, and tissue were below the effects benchmarks, indicating that exposure to triclosan in Minnesota lakes and rivers would not pose an unacceptable risk to aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Andrews, John T.; Jennings, Anne E.; Coleman, George C.; Eberl, Dennis D.
2010-01-01
Quantitative X-Ray Diffraction (qXRD) analysis of the <2 mm sediment fraction from surface (sea floor) samples, and marine sediment cores that span the last 10-12 cal ka BP, are used to describe spatial and temporal variations in non-clay mineral compositions for an area between Kangerlussuaq Trough and Scoresby Sund (???67??-70??N), East Greenland. Bedrock consists primarily of an early Tertiary alkaline complex with high weight% of pyroxene and plagioclase. Farther inland and to the north, the bedrock is dominantly felsic with a high fraction of quartz and potassium feldspars. Principal Component (PC) analysis of the non-clay sediment compositions indicates the importance of quartz and pyroxene as compositional end members, with an abrupt shift from quartz and k-feldspar dominated sediments north of Scoresby Sund to sediments rich in pyroxene and plagioclase feldspars offshore from the early Tertiary basaltic outcrop. Coarse (<2 mm or <1 mm) ice-rafted sediments are largely absent from the trough sediments between ???8 and 5 cal ka BP, but then increase in the last 4 cal ka BP. Compositional unmixing of the sediments in Grivel Basin and Kangerlussuaq Trough indicate the dominance of local over long distance sediment sources, with pulses of sediment from tidewater glaciers in Kangerlussuaq and Nansen fjords reaching the inner shelf during the Neoglaciation. The change in IRD is more dramatic in the sediment grain-size proxies than in the quartz wt%. Forty to seventy percent of the variance in the quartz records from either side of Denmark Strait is explained by low frequency trends, but the data from the Grivel Basin, East Greenland, are distinctly different, with an approximate 2500 yr periodicity. ?? 2010 Elsevier Ltd.
Kayen, R.E.; Schwab, W.C.; Lee, H.J.; Torresan, M.E.; Hein, J.R.; Quinterno, P.J.; Levin, L.A.
1989-01-01
Mass movement and erosion have been identified on the pelagic sediment cap of Horizon Guyot, a seamount in the Mid-Pacific Mountains. Trends in the size, shape and preservation of bedforms and sediment textural trends on the pelagic cap indicate that bottom-current-generated sediment transport direction is upslope. Slumping of the sediment cap occurred on and that the net bedload transport direction is upslope. Slumping of the sediment cap occurred on the northwest side of the guyot on a 1.6?? to 2.0?? slope in the zone of enhanced bottom-current activity. Submersible investigations of these slump blocks show them to be discrete and to have a relief of 6-15 m, with nodular chert beds cropping out along the headwall of individual rotated blocks. An evaluation of the stability of the sediment cap suggests that the combination of the current-induced beveling of the sea floor and infrequent earthquake loading accompanied by cyclic strength reduction is responsible for the initiation of slumps. The sediment in the area of slumping moved short distances in relatively coherent masses, whereas sediment that has moved beyond the summit cap perimeter has fully mobilized into sediment gravity flows and traveled large distances. A steady-state geotechnical analysis of Horizon Guyot sediment indicates the predisposition of deeply buried sediment towards disintegrative flow failure on appropriately steep slopes. Thus, slope failure in this deeper zone would include large amounts of internal deformation. However, gravitational stress in the near-surface sediment of the summit cap (sub-bottom depth < 14 m) is insufficient to maintain downslope movement after initial failure occurs. The predicted morphology of coherent slump blocks displaced and rafted upon a weakened zone at depth corresponds well with seismic-reflection data and submersible observations. ?? 1990.
Ricker, M C; Donohue, S W; Stolt, M H; Zavada, M S
2012-03-01
Understanding the effects of land use on riparian systems is dependent upon the development of methodologies to recognize changes in sedimentation related to shifts in land use. Land use trends in southern New England consist of shifts from forested precolonial conditions, to colonial and agrarian land uses, and toward modern industrial-urban landscapes. The goals of this study were to develop a set of stratigraphic indices that reflect these land use periods and to illustrate their applications. Twenty-four riparian sites from first- and second-order watersheds were chosen for study. Soil morphological features, such as buried surface horizons (layers), were useful to identify periods of watershed instability. The presence of human artifacts and increases in heavy metal concentration above background levels, were also effective indicators of industrial-urban land use periods. Increases and peak abundance of non-arboreal weed pollen (Ambrosia) were identified as stratigraphic markers indicative of agricultural land uses. Twelve 14C dates from riparian soils indicated that the rise in non-arboreal pollen corresponds to the start of regional deforestation (AD 1749 +/- 56 cal yr; mean +/- 2 SD) and peak non-arboreal pollen concentration corresponds to maximum agricultural land use (AD 1820 +/- 51 cal yr). These indices were applied to elucidate the impact of land use on riparian sedimentation and soil carbon (C) dynamics. This analysis indicated that the majority of sediment and soil organic carbon (SOC) stored in regional riparian soils is of postcolonial origins. Mean net sedimentation rates increased -100-fold during postcolonial time periods, and net SOC sequestration rates showed an approximate 200-fold increase since precolonial times. These results suggest that headwater riparian zones have acted as an effective sink for alluvial sediment and SOC associated with postcolonial land use.
Oceanographic effects of the 1992 Point Loma sewage pipe spill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, R.; Ciccateri, A.; Dougherty, K.
Early in early 1992, 180 million gallons of advanced primarily treated sewage emptied into 10 meters of water from the broken Point Loma sewage pipe, San Diego. For about two months a sewage boil about the size of a football field existed at the surface and within the Point Loma kelp bed. Sampling and observations taken during the spill indicated the surface waters at the spill site were grayish and smelling of sewage. The sewage water had mixed with the marine waters reducing salinity to about one-half normal (or 15 ppt.). The sediment load of the sewage coated the bladesmore » of the giant kelp and the kelp was limp and withdrawn from the surface. At the site of the main boil the kelp appeared to have dropped to the bottom. Sediments on the bottom in the boil area were mainly coarse sands as compared to the surrounding sandy-muds. Preliminary results using laboratory analysis suggest: one month into the spill no infauna were observed in the sediments or planktons in the water of the boil area, but were in the surrounding sediments and water; the observed phytoplankton were dominated by dinoflagellates and suggested red tide conditions surrounding the boil. The site has been monitored monthly since the spill to observe further impact and recovery.« less
Anthropogenic tritium in the Loire River estuary, France
NASA Astrophysics Data System (ADS)
Péron, O.; Gégout, C.; Reeves, B.; Rousseau, G.; Montavon, G.; Landesman, C.
2016-12-01
This work is carried out in the frame of a radioecological monitoring of anthropogenic tritium from upstream and downstream of several nuclear power plants along the Loire River to its estuary. This paper studies the variation of anthropogenic tritium species in the Loire River system from upstream to the mouth of the estuary. Tritiated water (HTO and HTO in sediment pore water) and organically bound tritium (OBT) forms were analysed after dedicated pre-treatments. The collected environmental samples consist in (i) surface-sediment and core samples from the river floor, (ii) surface and water column samples. A maximum 3H activity concentration of 26 ± 3 Bq·L- 1 in the Loire River estuary is obtained whereas an environmental background level around 1 Bq·L- 1 is determined for a non influenced continental area by anthropogenic activities. The European follow-up indicator used as a screening value is 100 Bq·L- 1. The conservative tritium behaviour was used in order to characterize the tidal regime and river flow influences in the mixing zone of the Loire River estuary. Furthermore, OBT levels and total organically carbon (TOC) content are explored. Finally, ratios of OBT relative to HTO in sediment pore water in surface-sediment and core samples are also discussed.
Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout
Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; ...
2015-07-14
The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicatesmore » a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. In addition, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.« less
de Rezende, Júlia Rosa; Kjeldsen, Kasper Urup; Hubert, Casey R J; Finster, Kai; Loy, Alexander; Jørgensen, Bo Barker
2013-01-01
Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 °C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer-enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca. 10(4) per cm(3) at the surface and decreased exponentially to 10(0) per cm(3) at 6.5 m depth, corresponding to 4500 years of sediment age. Thus, a half-life of ca. 300 years was estimated for the thermophilic SRB endospores deposited in Aarhus Bay sediments. These endospores were similarly detected in the overlying water column, indicative of passive dispersal in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments.
de Rezende, Júlia Rosa; Kjeldsen, Kasper Urup; Hubert, Casey R J; Finster, Kai; Loy, Alexander; Jørgensen, Bo Barker
2013-01-01
Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 °C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer-enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca. 104 per cm3 at the surface and decreased exponentially to 100 per cm3 at 6.5 m depth, corresponding to 4500 years of sediment age. Thus, a half-life of ca. 300 years was estimated for the thermophilic SRB endospores deposited in Aarhus Bay sediments. These endospores were similarly detected in the overlying water column, indicative of passive dispersal in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments. PMID:22832348
Wang, Jundong; Peng, Jinping; Tan, Zhi; Gao, Yifan; Zhan, Zhiwei; Chen, Qiuqiang; Cai, Liqi
2017-03-01
While large quantities of studies on microplastics in the marine environment have been widely carried out, few were available in the freshwater environment. The occurrence and characteristics, including composition, abundance, surface texture and interaction with heavy metals, of microplastics in the surface sediments from Beijiang River littoral zone were investigated. The concentrations of microplastics ranged from 178 ± 69 to 544 ± 107 items/kg sediment. SEM images illustrated that pits, fractures, flakes and adhering particles were the common patterns of degradation. Chemical weathering of microplastics was also observed and confirmed by μ-FTIR. EDS spectra displayed difference in the elemental types of metals on the different surface sites of individual microplastic, indicating that some metals carried by microplastics were not inherent but were derived from the environment. The content of metals (Ni, Cd, Pb, Cu, Zn and Ti) in microplastics after ultrasonic cleaning has been analyzed by ICP-MS. Based on data from the long-term sorption of metals by microplastics and a comparison of metal burden between microplastics, macroplastics and fresh plastic products, we suggested that the majority of heavy metals carried by microplastics were derived from inherent load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin
2011-11-01
The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sediment pollution by heavy metals in the Strymonikos and Ierissos Gulfs, North Aegean Sea, Greece.
Stamatis, Nikolaos; Ioannidouw, Despina; Christoforidis, Achilleas; Koutrakis, Emmanouil
2002-11-01
Surface sediment samples from Strymonikos and Ierissos Gulfs were analyzed for Cu, Pb, Zn, Cr and Ni. The results showed that the sediment of Ierissos Gulf is more polluted with Cu, Pb, and Zn as compared to that of Strymonikos Gulf. The benthal area located off the load-out facility of the mining operations in the town of Stratoni, in Ierissos Gulf is established as the most polluted region. The distribution of Cr and Ni in both gulfs indicates the natural origin of these metals with the weathering of Strymon River and of other smaller rivers rocks being responsible for their enrichment.
Horowitz, Arthur J.; Elrick, Kent A.; Cook, Robert B.
1993-01-01
During the summer of 1989 surface sediment samples were collected in Lake Coeur d'Alene, the Coeur d'Alene River and the St Joe River, Idaho, at a density of approximately one sample per square kilometre. Additional samples were collected from the banks of the South Fork of the Coeur d'Alene and the Coeur d'Alene Rivers in 1991. All the samples were collected to determine trace element concentrations, partitioning and distribution patterns, and to relate them to mining, mining related and discharge operations that have occurred in the Coeur d'Alene district since the 1880s, some of which are ongoing.Most of the surface sediments in Lake Coeur d'Alene north of Conkling Point and Carey Bay are substantially enriched in Ag, As, Cu, Cd, Hg, Pb, Sb and Zn relative to unaffected sediments in the southern portion of the lake near the St Joe River. All the trace element enriched sediments are extremely fine grained (mean grain sizes « 63 μm). Most of the enriched trace elements, based on both the chemical analyses of separated heavy and light mineral fractions and a two step sequential extraction procedure, are associated with an operationally defined Fe oxide phase; much smaller percentages are associated either with operationally defined organics/sulphides or refractory phases.The presence, concentration and distribution of the Fe oxides and heavy minerals indicates that a substantial portion of the enriched trace elements are probably coming from the Coeur d'Alene River, which is serving as a point source. Within the lake, this relatively simple point source pattern is complicated by a combination of (1) the formation of trace element rich authigenic Fe oxides that appear to have reprecipitated from material solubilized from anoxic bed sediments and (2) physical remobilization by currents and wind driven waves. The processes that have caused the trace element enrichment in the surface sediments of Lake Coeur d'Alene are likely to continue for the foreseeable future.
Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong
2015-01-01
According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing.
NASA Astrophysics Data System (ADS)
Vaddella, V. K.; Pandey, P.; Biswas, S.; Lewis, D. J.
2014-12-01
Mitigating pathogen levels in surface water is crucial for protecting public health. According to the U.S. Environmental Protection Agency (US EPA), approximately 480,000 km of rivers/streams are contaminated in the U.S., and a major cause of contamination is elevated levels of pathogen/pathogen indicator. Many of past studies showed considerably higher pathogen levels in sediment bed than that of the stream water column in rivers. In order to improve the understanding of pathogen levels in rivers in California, we carried out an extensive pathogen monitoring study in four different watersheds (Bear Creek, Ingalsbe, Maxwell, and Yosemite watersheds) of Merced River. Stream water and streambed sediment samples were collected from 17 locations. Pathogen levels (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were enumerated in streambed sediment and water column. In addition, the impacts of heat stress on pathogen survival were assessed by inoculating pathogens into the water and sediment samples for understanding the pathogen survival in stream water column and streambed sediment. The pathogen enumeration (in water column and sediment bed) results indicated that the E. coli O157:H7, Salmonella spp. and Listeria monocytogenes levels were non-detectable in the water column and streambed sediment. The results of heat stress (50◦ C for 180 minutes) test indicated a pathogen decay at one order of magnitude (108 cfu/ml to 107 cfu/ml). Nonetheless, higher pathogen levels (1.13 × 107 cfu/ml) after the heat stress study showed potential pathogen survival at higher temperature. Preliminary results of this study would help in understanding the impacts of elevated temperature on pathogen in stream environment. Further studies are required to test the long-term heat-stress impacts on pathogen survival.
Revisit of rare earth element fractionation during chemical weathering and river sediment transport
NASA Astrophysics Data System (ADS)
Su, Ni; Yang, Shouye; Guo, Yulong; Yue, Wei; Wang, Xiaodan; Yin, Ping; Huang, Xiangtong
2017-03-01
Although rare earth element (REE) has been widely applied for provenance study and paleoenvironmental reconstruction, its mobility and fractionation during earth surface processes from weathering to sediment deposition remain more clarification. We investigated the REE fractionations during chemical weathering and river sediment transport based on the systematic observations from a granodiorite-weathering profile and Mulanxi River sediments in southeast China. Two chemical phases (leachates and residues) were separated by 1 N HCl leaching and the leachates account for 20-70% of the bulk REE concentration. REEs in the weathering profile have been mobilized and fractionated to different extents during chemical weathering and pedogenesis. Remarkable cerium anomalies (Ce/Ce* = 0.1-10.6) occur during weathering as a result of coprecipitation with Mn (hydro)oxides in the profile, while poor or no Ce anomalies in the river sediments were observed. This contrasting feature sheds new light on the indication of Ce anomaly for redox change. The hydraulic sorting-induced mineral redistribution can further homogenize the weathering and pedogenic alterations and thus weaken the REE fractionations in river sediments. The mineral assemblage is the ultimate control on REE composition, and the Mn-Fe (hydro)oxides and secondary phosphate minerals are the main hosts of acid-leachable REEs while the clay minerals could be important reservoirs for residual REEs. We thus suggest that the widely used REE proxies such as (LREE/HREE)UCC ratio in the residues is reliable for the indication of sediment provenance, while the ratio in the leachates can indicate the total weathering process to some extent.
Jang, Jeonghwan; Di, Doris Y W; Han, Dukki; Unno, Tatsuya; Lee, Jeom-Ho; Sadowsky, Michael J; Hur, Hor-Gil
2015-11-01
Although Escherichia coli has been used as an indicator to examine fecal contamination of aquatic environment, it also has been reported to become naturalized to secondary habitats, including soil, water and beach sand. A total of 2880 E. coli isolates obtained from surface water and sediment samples from the Yeongsan River in 2013 were genotyped by using the horizontal fluorophore-enhanced rep-PCR DNA fingerprinting technique. Although different E. coli genotypic groups were observed between surface water and sediments in the dry season, they were mingled and undifferentiated from each other in the rainy season. This indicates that there are frequent sediment resuspension events in the river basin. Moreover, the genotypic composition of the E. coli population in the Yeongsan River basin changes over months and years, implying that genotypic structure of E. coli populations dynamically fluctuates in the river environment. Consequently, our data suggests that the use of E. coli libraries for fecal source tracking needs to be reassessed to account for the changing structure of riverine E. coli populations. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effects of humic acids on the aggregation and sorption of nano-TiO2.
Li, Yanjie; Yang, Chen; Guo, Xuetao; Dang, Zhi; Li, Xiaoqin; Zhang, Qian
2015-01-01
In this study, humic acids (HAs) from three sources, peat, sediment and straw, used to coat nano-TiO2 were investigated. The results indicated that HAs isolated from peat were aromatic-rich, whereas those isolated from sediment and straw were aliphatic-rich. The nano-TiO2 sedimentation experiments indicated that the presence of aromatic-rich HAs was more capable of stabilizing nano-TiO2 particles than was the presence of aliphatic-rich HAs. This result is because the deionized phenolic groups in the HAs were preferentially adsorbed on the nano-TiO2 surfaces, which generated a higher charge density on the nano-TiO2 surfaces and caused stronger repulsive forces among particles. Furthermore, the aromatic-rich TiO2-HA complexes exhibited a greater sorption capacity than the aliphatic-rich TiO2-HAs complexes and nonlinear phenanthrene sorption because of their higher affinity and the condensed state of aromatic fractions. Note that natural organic matters, such as humic acids, in aquatic environments can not only increase the stability of nanoparticles but can also influence the mobility of hydrophobic organic compounds (HOCs). Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.
2014-12-01
Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.
Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics
NASA Astrophysics Data System (ADS)
Anderson, W.
2015-12-01
Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.
NASA Astrophysics Data System (ADS)
Mackens, Sonja; Klitzsch, Norbert; Grützner, Christoph; Klinger, Riccardo
2017-09-01
Detailed information on shallow sediment distribution in basins is required to achieve solutions for problems in Quaternary geology, geomorphology, neotectonics, (geo)archaeology, and climatology. Usually, detailed information is obtained by studying outcrops and shallow drillings. Unfortunately, such data are often sparsely distributed and thus cannot characterise entire basins in detail. Therefore, they are frequently combined with remote sensing methods to overcome this limitation. Remote sensing can cover entire basins but provides information of the land surface only. Geophysical methods can close the gap between detailed sequences of the shallow sediment inventory from drillings at a few spots and continuous surface information from remote sensing. However, their interpretation in terms of sediment types is often challenging, especially if permafrost conditions complicate their interpretation. Here we present an approach for the joint interpretation of the geophysical methods ground penetrating radar (GPR) and capacitive coupled resistivity (CCR), drill core, and remote sensing data. The methods GPR and CCR were chosen because they allow relatively fast surveying and provide complementary information. We apply the approach to the middle Orkhon Valley in central Mongolia where fluvial, alluvial, and aeolian processes led to complex sediment architecture. The GPR and CCR data, measured on profiles with a total length of about 60 km, indicate the presence of two distinct layers over the complete surveying area: (i) a thawed layer at the surface, and (ii) a frozen layer below. In a first interpretation step, we establish a geophysical classification by considering the geophysical signatures of both layers. We use sedimentological information from core logs to relate the geophysical classes to sediment types. This analysis reveals internal structures of Orkhon River sediments, such as channels and floodplain sediments. We also distinguish alluvial fan deposits and aeolian sediments by their distinct geophysical signature. With this procedure we map aeolian sediments, debris flow sediments, floodplains, and channel sediments along the measured profiles in the entire basin. We show that the joint interpretation of drillings and geophysical profile measurements matches the information from remote sensing data, i.e., the sediment architecture of vast areas can be characterised by combining these techniques. The method presented here proves powerful for characterising large areas with minimal effort and can be applied to similar settings.
NASA Astrophysics Data System (ADS)
Audette, Yuki; O'Halloran, Ivan P.; Nowell, Peter M.; Congreves, Katelyn; Voroney, R. Paul
2017-04-01
Water chemistry and phosphorus (P) forms were analyzed to determine the nature of legacy P in sediments of the West Holland River and the adjacent drainage canals of the Holland Marsh drainage system, located in southern Ontario, Canada. The river and canals route water from the intensively cropped muck polders of the Holland Marsh and drain Lake Simcoe. Sediment samples were characterized for mineralogy using X-ray diffraction techniques (XRD); total P (TP); and Ca, Fe, Mn, and Mg contents, as well as cation exchange capacity and organic matter (OM) content. Forms of sediment P in five depth sections (ranging from 0-15 cm depth) were characterized and quantified by sequential P fractionation chemistry. At all study sites, mobile P forms including organic P forms were found to be higher in surface sediments than in deeper sediments. The major P form within the sediments of the two canal sites, where the concentration of TP in the surface water was within the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1, was Ca-bound P, indicating a low risk of soluble reactive P (SRP) release. A trace of apatite (a stable Ca-P mineral) was also detected in these sediments. Conversely, sediments collected from the West Holland River at sites located within the Holland Marsh exhibited a high risk of SRP release, and redox-sensitive P was the dominant P form in the sediment despite the surface water exhibiting higher concentration of Ca and alkaline pH. In addition, the concentrations of TP as measured in surface water samples taken from the site were 8 times greater than PWQO. In the sediments where the risk of SRP release was high, OM contents were also relatively high and traces of brushite (a labile Ca-P mineral) were detected. The formation of OM and cation complexes, such as OM-Fe complexes, may play an important role in regulating the fate of sediment-P forms through the adsorption of SRP. These OM-Fe complexes may inhibit the formation of more stable Ca-P minerals, even under neutral to alkaline conditions. Thus, where OM-Fe-P forms predominate, we predict a high risk of SRP release from sediments when water chemistry changes. In addition, OM may inhibit the transformation of labile Ca-P forms to more stable Ca-P minerals. Loading of OM affects the development of hypoxia in aquatic systems, and the accumulation of OM can promote the release of both SRP and dissolved organic C to downstream environments. This study provides evidence that the presence of OM in stream sediments influences P sorption mechanisms and is critical in understanding P biogeochemistry in freshwater environments.
Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea.
Zaghden, Hatem; Kallel, Monem; Louati, Afifa; Elleuch, Boubaker; Oudot, Jean; Saliot, Alain
2005-11-01
The Semi-enclosed Mediterranean Sea records various signals of high anthropic pressures from surrounding countries and the industrialized European countries. This is particularly true for oil pollution. Although accounting for 1% of the world's ocean surface, it receives about 25% of the petroleum inputs to the ocean. To achieve a global budget we need to collect information from different parts of the Mediterranean. Particularly, we focus in this paper on the Southern Mediterranean, where data are presently very scarce. In this context, the University of Sfax has undertaken an estimation of hydrocarbon pollution along the coasts of Sfax and Gabès Gulf. Non-aromatic hydrocarbons were analysed in 8 surface sediments by FT/IR and GC/MS. Non-aromatic hydrocarbon concentrations vary in the range 310-1406 microg g(-1) sediments dry weight, which is high, compared to other Mediterranean sites. GC/MS data indicate a large group of unresolved compounds suggesting a petroleum contamination, confirmed by the identification of hopanes with predominant C29 and C30alpha,beta compounds and steranes with predominance of C27 over C28) and C29 compounds.
Gireeshkumar, T R; Deepulal, P M; Chandramohanakumar, N
2015-03-01
Surface sediments samples from the Cochin estuary were measured for elemental, stable isotopic and molecular biomarkers (aliphatic hydrocarbons and fatty acids) to study the sources and distribution of sedimentary organic matter. Concentrations of total organic carbon (TOC), total nitrogen (TN) and stable isotopic ratios of carbon (δ(13)C) ranged from 0.62 to 2.74 %, 0.09 to 0.25 % and -27.5 to 21.7 ‰, respectively. Sedimentary n-alkanes ranged from 6.03 to 43.23 μg g(-1) with an average of 16.79 μg g(-1), while total fatty acids varied from 22.55 to 440.69 μg g(-1). The TOC/TN ratios and δ(13)C suggest a mixture of marine- and terrestrial-derived organic matter in the surface sediments with increasing contributions from marine-derived organic matter towards the seaward side. Long-chain n-alkanes derived from higher plants predominated the inner part of the estuary, while short-chain n-alkanes derived from planktonic sources predominated the bar mouth region. The even carbon preference of the C12-C22 n-alkanes may refer to the direct biogenic contribution from bacteria, fungi and yeast species and to the potential direct petroleum inputs. The presence of odd mid-chain n-alkanes in the sediments indicates the organic matter inputs from submerged and floating macrophytes (water hyacinth). Various molecular indices such as carbon preference index, terrestrial to aquatic ratio, average chain length and the ratios of mid-chain n-alkanes support the aforementioned inferences. The high contribution of odd and branched chain fatty acids along with very low contribution of polyunsaturated fatty acids, suggest the effective utilisation of algae-derived organic matter by bacteria and the effective recycling of labile organic matter in whole settling and deposition processes. The distributional variability of n-alkanes and fatty acids reveals the preferential utilisation of marine-derived organic matter and the selective preservation of terrestrial-derived organic matter in surface sediments of the Cochin estuary.
NASA Astrophysics Data System (ADS)
Bell, James B.; Aquilina, Alfred; Woulds, Clare; Glover, Adrian G.; Little, Crispin T. S.; Reid, William D. K.; Hepburn, Laura E.; Newton, Jason; Mills, Rachel A.
2016-09-01
Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe-metazoan interactions.
Aquilina, Alfred; Woulds, Clare; Glover, Adrian G.; Little, Crispin T. S.; Hepburn, Laura E.; Newton, Jason; Mills, Rachel A.
2016-01-01
Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe–metazoan interactions. PMID:27703692
Goyal, S M; Gerba, C P; Melnick, J L
1977-08-01
Increased construction of residential canal communities along the southern coastline of the United States has led to a concern about their impact on water quality. Pollution of such dead-end canals is potentially hazardous because of their heavy usage for recreational activities. Coliforms, fecal coliforms, and salmonellae in the surface water and bottom sediments of six selected residential coastal canals were monitored over a period of 17 months. No statistically significant relationship was observed between the organism concentrations and temperature, pH, turbidity, and suspended solids content of water. An inverse relationship between the concentration of indicator organism and salinity of water was found, however, to occur at a 99.9% level of significance. All of the microorganisms studied were found to be present in greater numbers in sediments than in the overlying water, often by a factor of several logs. Heavy rainfall resulted in large increases in the number of organisms in both water and sediment samples. Our results indicate that bottom sediments in the shallow canal systems can act as reservoirs of enteric bacteria, which may be resuspended in response to various environmental factors and recreational activities.
Geomorphic Response to Significant Sediment Loading Along Tahoma Creek on Mount Rainier, WA
NASA Astrophysics Data System (ADS)
Anderson, S.; Kennard, P.; Pitlick, J.
2012-12-01
Increased sediment loading in streams draining the flanks of Mt. Rainier has caused significant damage to National Park Service infrastructure and has prompted concern in downstream communities. The processes driving sedimentation and the controls on downstream response are explored in the 37 km2 Tahoma Creek basin, using repeat LiDAR surveys supplemented with additional topographic datasets. DEM differencing between 2003 and 2008 LiDAR datasets shows that over 2.2 million cubic meters of material was evacuated from the upper reaches of the basin, predominately in the form of debris flows. These debris flows were sourced in recently exposed lateral moraines, bulking through the broad collapse of unstable hillslopes. 40% of this material was deposited in the historic debris fan 4-6 km downstream of the terminus, while 55% completely exited the system at the downstream point of the surveys. Distinct zones of aggradation and incision of up to one meter are present along the lower channel and appear to be controlled by valley constrictions and inflections. However, the lower channel has shown remarkable long-term stability in the face of significant sediment loads. Alder ages suggest fluvial high stands in the late 70's and early 90's, immediately following periods of significant debris flow activity, yet the river quickly returned to pre-disturbance elevations. On longer time scales, the presence of old-growth forest on adjacent floodplain/terrace surfaces indicates broad stability on both vertical and horizontal planes. More than a passive indicator, these forested surfaces play a significant role in maintaining channel stability through increased overbank roughness and the formation of bank-armoring log jams. Sediment transport mechanics along this lower reach are explored using the TomSED sediment transport model, driven by data from an extensive sediment sampling and stream gaging effort. In its current state, the model is able to replicate the stability of the channel but significantly under predicts total loads when compared to the LiDAR differencing.
Codling, Garry; Hosseini, Soheil; Corcoran, Margaret B; Bonina, Solidea; Lin, Tian; Li, An; Sturchio, Neil C; Rockne, Karl J; Ji, Kyunghee; Peng, Hui; Giesy, John P
2018-05-01
Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g -1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from
Sediment exchange to mitigate pollutant exposure in urban soil.
Walsh, Daniel; Glass, Katherine; Morris, Samantha; Zhang, Horace; McRae, Isabel; Anderson, Noel; Alfieri, Alysha; Egendorf, Sara Perl; Holberton, Shana; Owrang, Shahandeh; Cheng, Zhongqi
2018-05-15
Urban soil is an ongoing source for lead (Pb) and other pollutant exposure. Sources of clean soil that are locally-available, abundant and inexpensive are needed to place a protective cover layer over degraded urban soil to eliminate direct and indirect pollutant exposures. This study evaluates a novel sediment exchange program recently established in New York City (NYC Clean Soil Bank, CSB) and found that direct exchange of surplus sediment extracted from urban construction projects satisfies these criteria. The CSB has high total yield with 4.2 × 10 5 t of sediment exchanged in five years. Average annual yield (8.5 × 10 4 t yr -1 ) would be sufficient to place a 15-cm (6-in.) sediment cover layer over 3.2 × 10 5 m 2 (80 acres) of impacted urban soil or 1380 community gardens. In a case study of sediment exchange to mitigate community garden soil contamination, Pb content in sediment ranged from 2 to 5 mg kg -1 . This sediment would reduce surface Pb concentrations more than 98% if it was used to encapsulate soil with Pb content exceeding USEPA residential soil standards (400 mg kg -1 ). The maximum observed sediment Pb content is a factor of 42 and 71 lower than median surface soil and garden soil in NYC, respectively. All costs (transportation, chemical testing, etc.) in the CSB are paid by the donor indicating that urban sediment exchange could be an ultra-low-cost source for urban soil mitigation. Urban-scale sediment exchange has advantages over existing national- or provincial-scale sediment exchanges because it can retain and upcycle local sediment resources to attain their highest and best use (e.g. lowering pollutant exposure), achieve circular urban materials metabolism, improve livability and maximize urban sustainability. Published by Elsevier Ltd.
In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology.
Patmont, Clayton R; Ghosh, Upal; LaRosa, Paul; Menzie, Charles A; Luthy, Richard G; Greenberg, Marc S; Cornelissen, Gerard; Eek, Espen; Collins, John; Hull, John; Hjartland, Tore; Glaza, Edward; Bleiler, John; Quadrini, James
2015-04-01
This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC-globally recognized as one of the most effective sorbents for organic contaminants-were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when applied correctly, in situ treatment via contaminant sequestration and immobilization using a sorbent material such as AC has progressed from an innovative sediment remediation approach to a proven, reliable technology. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.
Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL
Klerks, P.L.; Felder, D.L.; Strasser, K.; Swarzenski, P.W.
2007-01-01
This study investigated the effects that ghost shrimp have on the distribution of metals in sediment. We measured levels of HNO3-extractable zinc and cadmium in surface sediment, in ghost shrimp burrow walls and in sediment ejected by the ghost shrimp from their burrows, at five sandy intertidal sites in Tampa Bay. Ghost shrimp densities and their rate of sediment ejection were also quantified, as were sediment organic content and silt + clay content. Densities of ghost shrimp (Sergio trilobata and Lepidophthalmus louisianensis) averaged 33/m2 at our sites, and they ejected sediment at an average rate of 28 g/burrow/day. Levels of both Zn and Cd were significantly higher in burrow walls than in surface sediments. Sediment ejected by the shrimp from their burrows had elevated levels of Zn (relative to surface sediments) at one of the sites. Sediment organic content and silt + clay content were higher in burrow-wall sediments than in ejected sediment, which in turn tended to have values above those of surface sediments. Differences in levels of HNO3-extractable Zn and Cd among sediment types may be a consequence of these sediments differing in other physiochemical characteristics, though the differences in metal levels remained statistically significant for some sites after correcting for differences in organic content and silt + clay content. We conclude that the presence of ghost shrimp burrows contributes to spatial heterogeneity of sedimentary metal levels, while the ghost shrimp bioturbation results in a significant flux of metals to the sediment surface and is expected to decrease heterogeneity of metal levels in sedimentary depth profiles.
Earth Surface Processes, Landforms and Sediment Deposits
NASA Astrophysics Data System (ADS)
Bridge, John; Demicco, Robert
Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.
Keshavarzifard, Mehrzad; Zakaria, Mohamad Pauzi; Sharifi, Reza
2017-10-01
The distribution, sources, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediment and the edible tissue of short-neck clam (Paphia undulata) from mudflat ecosystem in the west coast of Malaysia were investigated. The concentrations of ∑ 16 PAHs varied from 347.05 to 6207.5 and 179.32 to 1657.5 ng g -1 in sediment and short-neck clam samples, respectively. The calculations of mean PEL quotients (mean-PELQs) showed that the ecological risk of PAHs in the sediment samples was low to moderate-high level, whereas the total health risk through ingestion and dermal contact was considerably high. The PAHs biota sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. The source apportionment of PAHs in sediment using positive matrix factorization model indicated that the highest contribution to the PAHs was from diesel emissions (30.38%) followed by oil and oil derivate and incomplete coal combustion (23.06%), vehicular emissions (16.43%), wood combustion (15.93%), and natural gas combustion (14.2%). A preliminary evaluation of human health risk using chronic daily intake, hazard index, benzo[a]pyrene-equivalent (BaP eq ) concentration, and the incremental lifetime cancer risk indicated that PAHs in short-neck clam would induce potential carcinogenic effects in the consumers.
NASA Astrophysics Data System (ADS)
Shen, Q.; Gao, Q.; Yu, C.; Zhang, L.; Wang, Z.
2016-12-01
Water column hypoxia is one of the most serious threats from eutrophication to large water bodies. In the past several years, black bloom phenomenon has become a serious ecosystem disaster in some important severe eutrophic lakes in China, which caused not only environment degradation but also drinking water crisis. Black color and offensive odour of the water column are two notorious sensory features. High Fe2+ and ΣH2S (ΣS2-=S2-+HS-+H2S) were typical characteristics of the black bloom water. Analysis of the black substances of the black bloom water using X-ray photoelectron spectroscopy indicated that abundant FeS were included in these particulates. The black color of the black bloom water could be attributed to the formation of FeS in the anoxic/anaerobic water column. Field investigation and laboratory incubation experiment indicated that the formation of black bloom was closely related to the Fe2+ and ΣH2S in surface sediments. The Fe2+ concentration in surface sediment pore water was high and showed a release tendency from the sediment water interface to the overlying water during the formation of black bloom, while the similar trend was found in ΣH2S production at sediment water micro-interface. Both Fe2+ and ΣS2- affected by oxic and redox conditions, respectively, contributed to the formation of black bloom significantly. However, ΣS2- was found to be the limiting factor directly controlling the outbreak of black bloom. Analysis of microbioal community diversity demonstrated that sulfate reducing bacteria (SRB) were abundant in the surface sediment of black bloom, which strongly influenced the production and accumulation of ΣH2S and drove the formation of black bloom.
Speciation and isotopic composition of sulfur in sediments from Jellyfish Lake, Palau
Bates, A.L.; Spiker, E. C.; Orem, W.H.; Burnett, W.C.
1993-01-01
Jellyfish Lake, Palau, is a meromictic marine lake with high organic productivity, low reactive Fe content, and anoxic bottom waters. Sediment samples from Jellyfish Lake were examined for the distribution of sulfur species and their isotopic signatures in order to gain a better understanding of sedimentary sulfur incorporation in Fe-poor environments. Surface samples were taken along a transect from a near-shore site to the center of the lake, and include a sample below oxic water, a sample below the chemocline layer, and samples below anoxic waters. Three additional samples were taken from a core, 2 m long, collected near the lake center. Sulfur to organic carbon weight ratios in all samples were lower than the expected value of 0.36 for normal marine sediment, probably because the lake water is deficient in reactive Fe to form iron sulfides. Total sulfur contents in the surface sediments indicated no changes with distance from shore; however, the sulfur content of the surface sample at the chemocline layer may be slightly higher. Total sulfur content increased with depth in the core and is inversely related to organic carbon content. Organic sulfur is the major sulfur species in the samples, followed in descending order by sulfate, disulfides and monosulfides. Sulfate sulfur isotope ??34S-values are positive (from +20.56 to +12.04???), reflecting the marine source of sulfate in Jellyfish Lake. Disulfide and monosulfide ??34S-values are negative (from -25.07 to -7.60???), because of fractionation during bacterial reduction of sulfate. Monosulfide ??34S-values are somewhat higher than those of disulfides, and they are close to the ??34S-values of organic sulfur. These results indicate that most of the organic sulfur is formed by reaction of bacteriogenic monosulfides, or possibly monosulfide-derived polysulfides, with organic matter in the sediment. ?? 1993.
Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian
2017-02-01
The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.
Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.
2017-09-29
Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. Geochemical signatures distinguished the fine fraction (<0.063 millimeter, mm) of Puyallup River sediment—which originates from Mount Rainier, a Cascade volcano—from glacial fine sediment in lowland bluffs that supply sediment to beaches. In combination with activities of beryllium-7 (7Be), a short-lived radionuclide, geochemical signatures showed that winter 2013–14 sediment runoff from the Puyallup River was transported to and deposited along the north shore of Commencement Bay, then mixed downward into the sediment column. The three Commencement Bay sites at which organic contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the <0.063-mm fraction compared to the <2-mm fraction, in winter compared to summer, in river suspended sediment compared to river bar and bank sediment, and in marine sediment compared to river sediment. The geochemical property barium/aluminum (Ba/Al) showed that the median percentage of Puyallup River derived fine surface sediment along the shoreline of Commencement Bay was 77 percent. This finding, in combination with higher concentrations of organic contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow marine habitats of Commencement Bay. The retention of earlier inputs complicates efforts to identify recent inputs and sources. Understanding modern sources and fates of riverborne sediment and contaminants and their potential ecological impacts will therefore require a suite of targeted geochemical studies in such marine depositional environments.
Marvin-DiPasquale, M. C.; Agee, J.L.; Bouse, R.M.; Jaffe, B.E.
2003-01-01
San Pablo Bay is an estuary, within northern San Francisco Bay, containing elevated sediment mercury (Hg) levels because of historic loading of hydraulic mining debris during the California gold-rush of the late 1800s. A preliminary investigation of benthic microbial Hg cycling was conducted in surface sediment (0-4 cm) collected from one salt-marsh and three open-water sites. A deeper profile (0-26 cm) was evaluated at one of the open-water locations. Radiolabeled model Hg-compounds were used to measure rates of both methylmercury (MeHg) production and degradation by bacteria. While all sites and depths had similar total-Hg concentrations (0.3-0.6 ppm), and geochemical signatures of mining debris (as eNd, range: -3.08 to -4.37), in-situ MeHg was highest in the marsh (5.4??3.5 ppb) and ??? 0.7 ppb in all open-water sites. Microbial MeHg production (potential rate) in 0-4 surface sediments was also highest in the marsh (3.1 ng g-1 wet sediment day-1) and below detection (<0.06 ng g-1 wet sediment day-1) in open-water locations. The marsh exhibited a methylation/demethylation (M/D) ratio more than 25x that of all open-water locations. Only below the surface 0-4-cm horizon was significant MeHg production potential evident in the open-water sediment profile (0.2-1.1 ng g-1 wet sediment day-1). In-situ Hg methylation rates, calculated from radiotracer rate constants, and in-situ inorganic Hg(II) concentrations compared well with potential rates. However, similarly calculated in-situ rates of MeHg degradation were much lower than potential rates. These preliminary data indicate that wetlands surrounding San Pablo Bay represent important zones of MeHg production, more so than similarly Hg-contaminated adjacent open-water areas. This has significant implications for this and other Hg-impacted systems, where wetland expansion is currently planned.
An at-grade stabilization structure impact on runoff and suspended sediment
Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.
2012-01-01
In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p < 0.001) larger proportion of clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby surface waters. The cost of an AGSS can range from US$3,500 to US$8,000, depending on size. Thus, these structures provide a cheap and effective means of improving water quality in highly erosive landscapes.
Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Birane, Niane; de Alencastro, Luiz Felippe; Grandjean, Dominique; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John
2014-09-01
This paper discusses the occurrence and spatial distribution of metals and persistent organic pollutants (POPs: including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in sediments from a river-reservoir system. Surface sediments were sampled from thirteen sites of the Congo River Basin and Lake Ma Vallée, both situated in the vicinity of the capital city Kinshasa (Congo Democratic Republic). Sediment qualities were evaluated using toxicity test based on exposing Ostracods to the sediment samples. The highest metal concentrations were observed in sediments subjected to anthropogenic influences, urban runoff and domestic and industrial wastewaters, discharge into the Congo River basin. Ostracods exposed to the sediments resulted in 100% mortality rates after 6d of incubation, indicating the ultimate toxicity of these sediments as well as potential environmental risks. The POPs and PAHs levels in all sediment samples were low, with maximum concentration found in the sediments (area of pool Malebo): OCP value ranged from 0.02 to 2.50 with ∑OCPs: 3.3μgkg(-1); PCB ranged from 0.07 to 0.99 with Total PCBs (∑7×4.3): 15.31μgkg(-1); PAH value ranged from 0.12 to 9.39 with ∑PAHs: 63.89μgkg(-1). Our results indicate that the deterioration of urban river-reservoir water quality result mainly from urban stormwater runoff, untreated industrial effluents which discharge into the river-reservoirs, human activities and uncontrolled urbanization. This study represents useful tools incorporated to evaluate sediment quality in river-reservoir systems which can be applied to similar aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Resuspension and settling of helminth eggs in water: Interactions with cohesive sediments.
Sengupta, Mita E; Andersen, Thorbjørn J; Dalsgaard, Anders; Olsen, Annette; Thamsborg, Stig M
2012-08-01
Helminth parasite eggs in low quality water represent main food safety and health hazards and are therefore important indicators used to determine whether such water can be used for irrigation. Through sedimentation helminth eggs accumulate in the sediment, however resuspension of deposited helminth eggs will lead to increased concentration of suspended eggs in the water. Our study aimed to determine the erodibility (erosion rate and erosion threshold) and settling velocity of Ascaris and Trichuris eggs as well as cohesive sediment at different time points after incorporation into the sediment. Cohesive sediment collected from a freshwater stream was used to prepare a sediment bed onto which helminth eggs were allowed to settle. The erodibility of both sediment and helminth eggs was found to decrease over time indicating that the eggs were incorporated into the surface material of the bed and that this material was stabilized through time. This interaction between eggs and bulk sediment was further manifested in an increased settling velocity of suspended eggs when sediment was present in the suspension as compared to a situation with settling in clean water. The incorporation into the sediment bed and the aggregation with sediment particles decrease the mobility of both helminth egg types. Our findings document that helminth eggs should not be viewed as single entities in water systems when modelling the distribution of eggs since both erodibility and settling velocity of eggs are determined by mobility of the sediment present in the water stream. Recalculation of the erosion threshold for helminth eggs and sediment showed that even at relatively low current velocities i.e. 0.07-0.12ms(-1) newly deposited eggs will be mobile in open irrigation channels. These environmental factors affecting resuspension must be taken into account when developing models for sedimentation of helminth eggs in different water systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Götz, Joachim; Buckel, Johannes; Heckmann, Tobias
2013-04-01
The analysis of alpine sediment cascades requires the identification, differentiation and quantification of sediment sources, storages, and transport processes. This study deals with the origin of alpine sediment transfer and relates primary talus deposits to corresponding rockwall source areas within the Gradenbach catchment (Schober Mountains, Austrian Alps). Sediment storage landforms are based on a detailed geomorphological map of the catchment which was generated to analyse the sediment transfer system. Mapping was mainly performed in the field and supplemented by post-mapping analysis using LIDAR data and digital orthophotos. A fundamental part of the mapping procedure was to capture additional landform-based information with respect to morphometry, activity and connectivity. The applied procedure provides a detailed inventory of sediment storage landforms including additional information on surface characteristics, dominant and secondary erosion and deposition processes, process activity and sediment storage coupling. We develop the working hypothesis that the present-day surface area ratio between rockfall talus (area as a proxy for volume, backed by geophysical analysis of selected talus cones) and corresponding rockwall source area is a measure of rockfall activity since deglaciation; large talus cones derived from small rockwall catchments indicate high activity, while low activity can be inferred where rockfall from large rock faces has created only small deposits. The surface area ratio of talus and corresponding rockwalls is analysed using a landform-based and a process-based approach. For the landform-based approach, we designed a GIS procedure which derives the (hydrological) catchment area of the contact lines of talus and rockwall landforms in the geomorphological map. The process-based approach simulates rockfall trajectories from steep (>45°) portions of a DEM generated by a random-walk rockfall model. By back-tracing those trajectories that end on a selected talus landform, the 'rockfall contributing area' is delineated; this approach takes account of the stochastic nature of rockfall trajectories and is able to identify, for example, rockfall delivery from one rockwall segment to multiple talus landforms (or from multiple rockfall segments to the same deposit, respectively). Using both approaches, a total of 290 rockwall-talus-subsystems are statistically analysed indicating a constant relationship between rockfall source areas and corresponding areas of talus deposits of almost 1:1. However, certain rockwall-talus-subsystems deviate from this correlation since sediment storage landforms of similar size originate from varying rockwall source areas and vice versa. This varying relationship is assumed to be strongly controlled by morphometric parameters, such as rockwall slope, altitudinal interval, and aspect. The impact of these parameters on the surface area ratio will be finally discussed.
Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf
2014-12-13
Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Conditions affecting the release of phosphorus from surface lake sediments.
Christophoridis, Christophoros; Fytianos, Konstantinos
2006-01-01
Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.
Reimnitz, E.; Marincovich, L.; McCormick, M.; Briggs, W.M.
1992-01-01
No evidence was seen for entrainment by bottom adfreezing, bluff slumping, river flooding, dragging ice keels, or significant eolian transport from land to sea. Muddy sediment with pebbles and cobbles, algae with holdfasts, ostracodes with appendages, and well-preserved mollusks and sea urchins were collected from two sites in a 50 km long stretch of turbid ice. These materials indicate that suspension freezing reaching to a water depth of 25-30 m during the previous fall was responsible for entrainment. This mechanism requires rapid ice formation in open, shallow water during a freezing storm, when the ocean becomes supercooled, and frazil and anchor ice attach to and ultimately lift sediment and living organisms to the sea surface. -from Authors
Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.
Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju
2011-03-01
Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.
Sedimentation in Goose Pasture Tarn, 1965-2005, Breckenridge, Colorado
Elliott, John G.; Char, Stephen J.; Linhart, Samuel M.; Stephens, V. Cory; O'Neill, Gregory B.
2006-01-01
Goose Pasture Tarn, a 771-acre-foot reservoir in Summit County, Colorado, is the principal domestic water-storage facility for the Town of Breckenridge and collects runoff from approximately 42 square miles of the upper Blue River watershed. In the 40 years since the reservoir was constructed, deltaic deposits have accumulated at the mouths of two perennial streams that provide most of the inflow and sediment to the reservoir. The Blue River is a low-gradient braided channel and transports gravel- to silt-size sediment. Indiana Creek is a steep-gradient channel that transports boulder- to silt-size sediment. Both deltas are composed predominantly of gravel, sand, and silt, but silt has been deposited throughout the reservoir. In 2004, the U.S. Geological Survey, in cooperation with the Town of Breckenridge, began a study to determine the volume of accumulated sediment in Goose Pasture Tarn, the long-term sedimentation rate for the reservoir, and the particle-size and chemical characteristics of the sediment. Exposed delta deposits occupied 0.91 acre and had an estimated volume of 0.6 acre-foot in 2005. Aerial photographic analysis indicated both the Blue River and Indiana Creek deltas grew rapidly during time intervals that included larger-than-average annual flood peaks on the Blue River. Sediment-transport relations could not be developed for the Blue River or Indiana Creek because of minimal streamflow and infrequently observed sediment transport during the study; however, suspended-sediment loads ranged from 0.02 to 1.60 tons per day in the Blue River and from 0.06 to 1.55 tons per day in Indiana Creek. Bedload as a percentage of total load ranged from 9 to 27 percent. New reservoir stage-area and stage-capacity relations were developed from bathymetric and topographic surveys of the reservoir bed. The original 1965 reservoir bed topography and the accumulated sediment thickness were estimated from a seismic survey and manual probing. The surface area of Goose Pasture Tarn in 2005 was 66.4 acres, and the reservoir capacity was 771.1 acre-feet at a full-pool elevation of 9,886.4 feet. The 1965 surface area was 67.1 acres, and the reservoir capacity was 818.0 acre-feet, indicating that the reservoir surface area has decreased by 0.7 acre, or about 1.1 percent, and the reservoir capacity has decreased by 46.9 acre-feet, or about 5.7 percent over a 40-year period. Sediment thickness determined with seismic profiling ranged from 0 to 4.0 feet and averaged 0.7 foot, with lesser thicknesses in the deeper parts of the reservoir and greater thicknesses near the deltas. Probe-determined sediment thickness ranged from 1.0 to 4.4 feet and averaged 2.8 feet near the Blue River delta and ranged from 0.3 to 6.0 feet and averaged 3.6 feet near the Indiana Creek delta. Approximately 47.5 acre-feet of sediment has accumulated in Goose Pasture Tarn and in the Blue River and Indiana Creek deltas, or an average of 1.19 acre-feet per year. Sediment cores from several locations in the reservoir showed stratification, which is indicative of different depositional dates or mechanisms. Metal and trace-constituent levels from the cores were compared with three standards. Silver, cadmium, europium, lead, and zinc were present in greater concentrations than Southern Rocky Mountain background levels in four sediment cores, and cadmium, lead, and zinc levels also were equal to or exceeded the Threshold Effect Concentration standards. Lead exceeded the Probable Effect Concentration standard in silt from the Blue River delta and deep water near the north shore. Tin was present in greater concentrations than Southern Rocky Mountain background levels in deep water near the east shore, and chromium and copper levels were equal to or exceeded the Threshold Effect Concentration standards in these cores.
Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.
Stewart, Brandy D; Cismasu, A Cristina; Williams, Kenneth H; Peyton, Brent M; Nico, Peter S
2015-09-01
Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.
Benthic prokaryotic community dynamics along the Ardencaple Canyon, Western Greenland Sea
NASA Astrophysics Data System (ADS)
Quéric, Nadia-Valérie; Soltwedel, Thomas
2012-07-01
The Ardencaple Canyon, emanating from the Eastern Greenland continental rise over a distance of about 200 km towards the Greenland Basin, was investigated to determine the effect of enhanced down-slope transport mechanisms on deep-sea benthic prokaryotic communities. The concentration of viable bacterial cells (Live/Dead®BacLight) and prokaryotic incorporation rates (3H-thymidine, 14C-leucine) increased with increasing distance from the continental shelf. Multidimensional scaling (MDS) results from terminal restriction fragment length polymorphism (T-RFLP) analysis indicated a spatial coherence between the benthic bacterial community structure, prokaryotic incorporation rates, water content, protein concentration and the total organic matter in the sediments. The community complexity in sediments at 4-5 cm depth was lower in the central parts of the channel compared with the northern and the southern levees, while richness in surface sediments of all stations was similar. Lacking any clear indications for a recent mass sediment transport or funneled shelf drainage flows, high similarities between bacterial assemblages in sediments along the canyon course may thus be governed by a combination of an ice-edge induced particle flux, episodic down-slope and canyon-guided transport mechanisms.
Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.
1998-01-01
Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.
Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol
Writer, J.H.; Leenheer, J.A.; Barber, L.B.; Amy, G.L.; Chapra, S.C.
1995-01-01
The molecular sewage indicator, coprostanol, was measured in bed sediments of the Mississippi River for the purpose of determining sewage contamination. Coprostanol is a non-ionic, non-polar, organic molecule that associates with sediments in surface waters, and concentrations of coprostanol in bed sediments provide an indication of long-term sewage loads. Because coprostanol concentrations are dependent on particle size and percent organic carbon, a ratio between coprostanol (sewage sources) and cholestanol + cholesterol (sewage and non-sewage sources) was used to remove the biases related to particle size and percent organic carbon. The dynamics of contaminant transport in the Upper Mississippi River are influenced by both hydrologic and geochemical parameters. A mass balance model incorporating environmental parameters such as river and tributary discharge, suspended sediment concentration, fraction of organic carbon, sedimentation rates, municipal discharges and coprostanol decay rates was developed that describes coprostanol concentrations and therefore, expected patterns of municipal sewage effects on the Upper Mississippi River. Comparison of the computed and the measured coprostanol concentrations provides insight into the complex hydrologic and geochemical processes of contaminant transport and the ability to link measured chemical concentrations with hydrologic characteristics of the Mississippi River.
Chromium distribution in an Amazonian river exposed to tannery effluent.
de Sousa, Eduardo Araujo; Luz, Cleber Calado; de Carvalho, Dario Pires; Dorea, Caetano Chang; de Holanda, Igor Bruno Barbosa; Manzatto, Ângelo Gilberto; Bastos, Wanderley Rodrigues
2016-11-01
This study aims to evaluate the Cr concentrations in surface water, suspended particles, and bottom sediments exposed to tannery effluent releases in the Candeias River. Cr concentrations were compared in relation to environmental thresholds imposed by United States Environmental Protection Agency (USEPA) and the Brazilian Environmental Council (CONAMA), and the geoaccumulation index (Igeo) was calculated in bottom sediment. Samples were collected in flood and dry seasons. Cr extraction was done by an acid extraction and quantified by flame atomic absorption spectrometry. Most samples were found to be below the environmental thresholds imposed by CONAMA and USEPA, except in the one from the discharge zone sampled during the dry season, showing values 1.5 and 6.1 higher than CONAMA in water and bottom sediment, respectively. Cr concentrations were significantly higher (P < 0.001) in suspended particles during dry season than flood season. Surface water and bottom sediment did not show significant differences between the seasons. The Igeo revealed an enrichment of Cr in bottom sediments after discharge zone, indicating that the effluent may be contributing to metal accumulation in the sediment. Apparently, the Candeias River shows a wash behavior on the river bottom, leaching the accumulated metal deposited on the riverbed to other areas during the flood pulses, which decreases Cr concentration in the discharge zone during dry seasons. Thus, this behavior can promote Cr dispersion to unpolluted areas.
Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia
NASA Astrophysics Data System (ADS)
Guzman, C. D.; Castro, A.; Morales, A.; Hoyos, F.; Moreno, P.; Steenhuis, T. S.
2014-12-01
A main goal of this study was to improve prediction of sediment and solute transport using soil surface and soil nutrient changes, based on field measurements, within small watersheds receiving conservation measures. Sediment samples and solute concentrations were measured from two streams in the southwestern region of the Colombian Andes. Two modeling approaches for stream discharge and sediment transport predicted were used with one of these being used for nutrient transport prediction. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations. Lateral transects in the upper, middle, and lower part of the hillsides in the Aguaclara watershed of the Rio Bolo watershed network showed differences in soil nutrient status and soil surface depth changes. The model based on semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used model indicating available options for comparison of conservation changes in the future.
Brenner, Richard C; Magar, Victor S; Ickes, Jennifer A; Foote, Eric A; Abbott, James E; Bingler, Linda S; Crecelius, Eric A
2004-04-15
Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at approximately 30-60 cm below the sediment-water interface, ca. 1960-1980. Maximum t-PCB concentrations were followed by progressively decreasing concentrations with depth until the t-PCB concentrations approached the detection limit, where sediments were likely deposited before the onset of PCB use at the Sangamo-Weston plant. The sediments containing the maximum PCB concentrations are associated with the period of maximum PCB release into the watershed. Sedimentation rates averaged 2.1 +/- 1.5 g/(cm2 yr) for 12 of 18 cores collected. The 1994 Record of Decision cleanup requirement is 1.0 mg/kg; two more goals (0.4 and 0.05 mg/kg t-PCBs) also were identified. Average surface sedimentation requirements to meet the three goals were 1.4 +/- 3.7, 11 +/- 4.2, and 33 +/- 11 cm, respectively. Using the age dating results, the average recovery dates to meet these goals were 2000.6 +/- 2.7, 2007.4 +/- 3.5, and 2022.7 +/- 11 yr, respectively. (The 95% prediction limits for these values also are provided.) Despite the reduction in surface sediment PCB concentrations, PCB concentrations measured in largemouth bass and hybrid bass filets continue to exceed the 2.0 mg/kg FDA fish tolerance level.
Oestreicher, Jordan Sky; Lucotte, Marc; Moingt, Matthieu; Bélanger, Émilie; Rozon, Christine; Davidson, Robert; Mertens, Frédéric; Romaña, Christina A
2017-01-01
In the Tapajós River region of the Brazilian Amazon, mercury (Hg) is a prevalent contaminant in the aquatic ecosystem. Few studies have used comprehensive chronological analyses to examine the combined effects of environmental and anthropogenic factors on Hg accumulation in sediments. Total mercury (THg) content was measured in sediments from eight floodplain lakes and Pb 210 isotope analysis was used to develop a timeline of THg accumulation. Secondary data representing environmental and anthropogenic factors were analyzed using geo-spatial analyses. These include land-cover change, hydrometeorological time-series data, lake morphology, and watershed biophysical characteristics. The results indicate that THg accumulation and sedimentation rates have increased significantly at the surface of most sediment cores, sometimes doubling since the 1970s. Human-driven land-cover changes in the watershed correspond closely to these shifts. Tropical deforestation enhances erosion, thereby mobilizing the heavy metal that naturally occurs in soils. Environmental factors also contribute to increased THg content in lacustrine sediments. Climate shifts since the 1980s are further compounding erosion and THg accumulation in surface sediments. Furthermore, variations in topography, soil types, and the level of hydrological connectivity between lakes and the river explain observed variations in THg fluxes and sedimentation. Although connectivity naturally varies among sampled lakes, deforestation of sensitive floodplain vegetation has changed lake-river hydrology in several sites. In conclusion, the results point to a combination of anthropogenic and environmental factors as determinants of increased THg accumulation in tropical floodplain sediments in the Tapajós region.
Xu, Daoquan; Wang, Yinghui; Zhang, Ruijie; Guo, Jing; Zhang, Wei; Yu, Kefu
2016-05-01
The distribution and speciation of several heavy metals, i.e., As, Cd, Cr, Cu, Hg, Pb, and Zn, in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China, were studied comparatively. The mean contents of Cd, Cu, Hg, Pb, and Zn were 1.72, 38.07, 0.18, 51.54, and 142.16 mg/kg, respectively, which were about 1.5-6 times higher than their corresponding regional sediment background values. Metal speciation obtained by the optimized BCR protocol highlighted the bioavailable threats of Cd, Cu, and Zn, which were highly associated with the exchangeable fraction (the labile phase). Hierarchical cluster analysis indicated that in sediments, As and Cr were mainly derived from natural and industrial sources, whereas fertilizer application might lead to the elevated level of Cd. Besides, Cu, Hg, Pb, and Zn were related to traffic activities. The effects-based sediment quality guidelines (SQGs) showed that Hg, Pb, and Zn could pose occasional adverse effects on sediment-dwelling organisms. However, based on the potential ecological risk assessment (PER) and risk assessment code (RAC), Cd was the most outstanding pollutant and posed the highest ecological hazard and bioavailable risk among the selected metals. Moreover, the metal partitioning between water and sediments was quantified through the calculation of the pseudo-partitioning coefficient (K P), and result implied that the sediments in this karst aquatic environment cannot be used as stable repositories for the metal pollutants.
Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A
2010-12-01
Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing bacterial diversity in surface sediments and resulting in distinct bacterial communities even at depth within the burrow. In an area of high macrofaunal abundance, this could lead to alterations in the microbial transformations of important nutrients at the sediment-water interface.
NASA Astrophysics Data System (ADS)
Nikitina, Daria; Kemp, Andrew; Horton, Benjamin; Van, Christopher; Potapova, Marina; Culver, Stephen; Repkina, Tatyana; Hill, David
2017-04-01
We investigated the utility of foraminifera, diatoms and bulk-sediment geochemistry (δ13C and parameters measured by RockEval pyrolysis) as sea-level indicators in Eurasian sub-Arctic salt marshes. At three salt marshes in Dvina Bay (White Sea, Russia), we collected surface sediment samples along transects sequentially crossing sub-tidal, tidal-flat, salt-marsh and Taiga forest environments. Foraminifera formed bipartite assemblages, where elevations below mean high higher water (MHHW) were dominated by Miliammina spp. and elevations between MHHW and the highest occurrence of foraminifera were dominated by Jadammina macrescens and Balticammina pseudomacrescens. Both assemblages existed on all three transects and we conclude that foraminifera are sea-level indicators in Eurasian sub-Arctic salt marshes. Five, high-diversity groups of diatoms were identified and they displayed geographic variability among the study sites (<15 km apart). RockEval pyrolysis and δ13C measurements recognized two groups (clastic-dominated environments below MHHW and organic-rich environments above MHHW). Since one group included sub-tidal elevations and the other supra-tidal elevations, we conclude that the measured geochemical parameters do not meet the criteria for being stand-alone sea-level indicators. Core JT2012 captured a regressive sediment sequence of clastic, tidal-flat sediment overlain by salt-marsh organic silt and freshwater peat. The salt-marsh sediment accumulated at 2804 ± 52 years BP years before present and preserved foraminifera (J. macrescens and B. pseudomacrescens) with a high degree of analogy to modern assemblages indicating that relative sea level was 2.60 ± 0.47 m above present at this time. Diatoms confirm that marine influence decreased through time, but the lack of analogy between modern and core assemblages limits their utility as sea-level indicators in this setting.
Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D
2017-02-01
This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Kazemi, Ali; Mohamadi, Mohsen; Kheirabadi, Nabiallah
2012-06-01
A total of 174 individuals of rocky oysters (Saccostrea cucullata) and 35 surface sediment samples were collected from seven stations off the intertidal zones of Qeshm Island, Persian Gulf, in order to study the concentration of mercury in oysters' tissues, and to investigate whether mercury concentrations in the edible soft tissues are within the permissible limits for public health. The average mercury concentrations were found as 3.44, 50.66 and 2.29 μg kg(-1) dw in the sediments, soft tissues and shells of the oysters, respectively. Results indicated that the levels of mercury in sediment differed significantly between the stations. In addition, results confirmed that the soft tissues of oysters could be a good indicator of mercury in the aquatic system. In comparison with food safety standards, mercury levels in oysters were well within the permissible limits for human consumption.
Role of urban surface roughness in road-deposited sediment build-up and wash-off
NASA Astrophysics Data System (ADS)
Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing
2018-05-01
Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.
Spectral Characteristics of Titan's Surface
NASA Astrophysics Data System (ADS)
Griffith, Caitlin A.; Turner, Jake D.; Penteado, Paulo; Khamsi, Tymon B.; Soderblom, Jason M.
2014-11-01
Cassini/Huygens and ground-based measurements of Titan reveal an eroded surface, with lakes, dunes, and sinuous washes. These features, coupled with measurements of clouds and rain, indicate the transfer of methane between Titan’s surface and atmosphere. The presence of methane-damp lowlands suggests further that the atmospheric methane (which is continually depleted through photolysis) may be supplied by sub-surface reservoirs. The byproducts of methane photolysis condense onto the surface, leaving layers of organic sediments that record Titan’s past atmospheres.Thus knowledge of the source and history of Titan's atmosphere requires measurements of the large scale compositional makeup of Titan's surface, which is shrouded by a thick and hazy atmosphere. Towards this goal, we analyzed roughly 100,000 spectra recorded by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Our study is confined to the latitude region (20S—20N) surrounding the landing site of the Huygens probe (at 10S, 192W), which supplied only measurement of the vertical profiles of the methane abundance and haze scattering characteristics. VIMS near-IR spectral images indicate subtle latitudinal and temporal variations in the haze characteristics in the tropics. We constrain these small changes with full radiative transfer analyses of each of the thousands of VIMS spectra, which were recorded of different terrains and at different lighting conditions. The resulting models of Titan’s atmosphere as a function of latitude and year indicate the seasonal migration of Titan’s tropical haze and enable the derivation of Titan’s surface albedo at 8 near-IR wavelength regions where Titan’s atmosphere is transparent enough to allow visibility to the surface. The resultant maps of Titan’s surface indicate a number of terrain types with distinct spectral characteristics that are suggestive of atmospheric and surficial processes, including the deposition of organic material, erosion of sediments and potential sources of methane.
NASA Astrophysics Data System (ADS)
Cornée, Jean-Jacques; Münch, Philippe; Achalhi, Mohammed; Merzeraud, Gilles; Azdimousa, Ali; Quillévéré, Frédéric; Melinte-Dobrinescu, Mihaela; Chaix, Christian; Moussa, Abdelkhalak Ben; Lofi, Johanna; Séranne, Michel; Moissette, Pierre
2016-03-01
New investigations in the Neogene Boudinar basin (Morocco) provide new information about the Messinian Salinity Crisis (MSC) and Zanclean reflooding in the southern part of the Alboran realm (westernmost Mediterranean). Based on a new field, sedimentological and palaeontological analyses, the age and the geometry of both the Messinian erosional surface (MES) and the overlying deposits have been determined. The MES is of late Messinian age and was emplaced in subaerial settings. In the Boudinar basin, a maximum of 200 m of Miocene sediments was eroded, including late Messinian gypsum blocks. The original geometry of the MES is preserved only when it is overlain by late Messinian continental deposits, conglomeratic alluvial fans or lacustrine marly sediments. These sediments are interpreted as indicators of the sea-level fall during the MSC. Elsewhere in the basin, the contact between late Messinian and early Pliocene deposits is a low-angle dipping, smooth surface that corresponds to the early Pliocene transgression surface that subsequently re-shaped the regressive MES. The early Pliocene deposits are characterized by: (i) their onlap onto either the basement of the Rif chain or the late Miocene deposits; (ii) lagoonal deposits at the base to offshore marls and sands at the top (earliest Pliocene; 5.33-5.04 Ma interval; foraminifer zone PL1); (iii) marine recovery occurring in the 5.32-5.26 Ma interval; and (iv) the change from lagoonal to offshore environments occurring within deposits tens of metres thick. This information indicates that at least the end of the reflooding period was progressive, not catastrophic as previously thought.
Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto
2016-12-01
Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be considered with caution and further investigated simulating the intrusion of CO 2 from a subsurface source, as occurring during real CO 2 leakages from CCS sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thi Hoa Mai, Nguyen; Postma, Dieke; Thi Kim Trang, Pham; Jessen, Søren; Hung Viet, Pham; Larsen, Flemming
2016-01-01
The adsorption of arsenic onto aquifer sediment from the Red River floodplain, Vietnam, was determined in a series of batch experiments. Due to water supply pumping, river water infiltrates into the aquifer at the field site and has leached the uppermost aquifer sediments. The leached sediments, remain anoxic but contain little reactive arsenic and iron, and are used in our experiments. The adsorption and desorption experiments were carried out by addition or removal of arsenic from the aqueous phase in sediment suspensions under strictly anoxic conditions. Also the effects of HCO3, Fe(II), PO4 and Si on arsenic adsorption were explored. The results show much stronger adsorption of As(V) as compared to As(III), full reversibility for As(III) adsorption and less so for As(V). The presence or absence of HCO3 did not influence arsenic adsorption. Fe(II) enhanced As(V) sorption but did not influence the adsorption of As(III) in any way. During simultaneous adsorption of As(III) and Fe(II), As(III) was found to be fully desorbable while Fe(II) was completely irreversibly adsorbed and clearly the two sorption processes are uncoupled. Phosphate was the only solute that significantly could displace As(III) from the sediment surface. Compiling literature data on arsenic adsorption to aquifer sediment in Vietnam and Bangladesh revealed As(III) isotherms to be almost identical regardless of the nature of the sediment or the site of sampling. In contrast, there was a large variation in As(V) adsorption isotherms between studies. A tentative conclusion is that As(III) and As(V) are not adsorbing onto the same sediment surface sites. The adsorption behavior of arsenic onto aquifer sediments and synthetic Fe-oxides is compared. Particularly, the much stronger adsorption of As(V) than of As(III) onto Red River as well as on most Bangladesh aquifer sediments, indicates that the perception that arsenic, phosphate and other species compete for the same surface sites of iron oxides in sediments with properties similar to those of, for example a synthetic goethite, probably is not correct. A simple two-component Langmuir adsorption model was constructed to quantitatively describe the reactive transport of As(III) and PO4 in the aquifer. PMID:27867209
Yu, Juhua; Ding, Shiming; Zhong, Jicheng; Fan, Chengxin; Chen, Qiuwen; Yin, Hongbin; Zhang, Lei; Zhang, Yinlong
2017-08-15
Sediment dredging is an effective restoration method to control the internal phosphorus (P) loading of eutrophic lakes. However, the core question is that the real mechanism of dredging responsible for sediment internal P release still remains unclear. In this study, we investigated the P exchange across the sediment-water interface (SWI) and the internal P resupply ability from the sediments after dredging. The study is based on a one-year field simulation study in Lake Taihu, China, using a Rhizon soil moisture sampler, high-resolution dialysis (HR-Peeper), ZrO-Chelex diffusive gradients in thin film (ZrO-Chelex DGT), and P fractionation and adsorption isotherm techniques. The results showed low concentration of labile P in the pore water with a low diffusion potential and a low resupply ability from the sediments after dredging. The calculated flux of P from the post-dredged sediments decreased by 58% compared with that of non-dredged sediments. Furthermore, the resupply in the upper 20mm of the post-dredged sediments was reduced significantly after dredging (P<0.001). Phosphorus fractionation analysis showed a reduction of 25% in the mobile P fractions in the post-dredged sediments. Further analysis demonstrated that the zero equilibrium P concentration (EPC 0 ), partitioning coefficient (K p ), and adsorption capacity (Q max ) on the surface sediments increased after dredging. Therefore, dredging could effectively reduce the internal P resupply ability of the sediments. The reasons for this reduction are probably the lower contributions of mobile P fractions, higher retention ability, and the adsorption capacity of P for post-dredged sediments. Overall, this investigation indicated that dredging was capable of effectively controlling sediment internal P release, which could be ascribed to the removal of the surface sediments enriched with total phosphorus (TP) and/or organic matter (OM), coupled with the inactivation of P to iron (Fe) (hydr)oxides in the upper 20mm active layer. Copyright © 2017 Elsevier B.V. All rights reserved.
Soliman, Y S; Al Ansari, E M S; Wade, T L
2014-08-30
Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g(-1) to 1025 ng g(-1). The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe+Ant), (Flt/Flt+Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions.
Garcia, Carlos Alexandre Borges; Passos, Elisangela de Andrade; Alves, José do Patrocínio Hora
2011-10-01
This paper presents the distributions of the investigation of trace metals geochemistry in surface sediments of the Sergipe river estuary, northeast Brazil. Analyses were carried out by Flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). Principal component analysis was applied to results to identify any groupings among the different sampling sites. In order to determine the extent of contamination, taking into account natural variability within the region, metal concentrations were normalized relative to aluminium. Cr, Cu, Ni and Zn contamination was observed in sediments from the area receiving highest inputs of domestic wastes, while cadmium contamination occurred in sediments from the region affected by highest inflows of industrial effluents. Possible toxicity related to these metals was examined using the relationship simultaneously extracted metals/acid volatile sulfide and by comparing sediment chemical data with sediment quality guidelines ERL-ERM values. Results obtained using the two methods were in agreement and indicated that adverse effects on aquatic biota should rarely occur.
Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contamin...
NASA Astrophysics Data System (ADS)
Laenen, B.; De Craen, M.
2004-01-01
Horizons with septarian concretions are a salient feature of the marine Boom Clay Formation. At most horizons, the concretions consist of ferroan calcite with variable amounts of pyrite, but at stratigraphic level S60 they also contain siderite. S60 is situated at the centre of an intensely bioturbated zone that is underlain by a pyrite-rich layer. Furthermore, the enclosing clay is strongly enriched in iron, manganese and phosphorous. The sedimentological and chemical zoning is indicative for low sedimentation rates, which allowed the concentration of iron in the aerobic zone of the sediment. Concentration of iron was the prerequisite for the formation of the siderite-containing concretions. The co-precipitation with pyrite is an argument for a formation in the sulphate reduction zone, and is indicative for a high rate of iron-reduction. The latter was due to the rapid burial of the iron-enriched layer below the redox boundary. The abrupt fluctuations in sedimentation rate were a response to the maximum flooding event of the second Rupelian third-order relative sea-level cycle, which caused a brief pushback of the detrital sediment wedge to its source areas. As this response is logically explained by the general sequence stratigraphic model [Spec. Publ.-Soc. Econ. Paleontol. Mineral. 42 (1988) 109], early diagenetic siderite may be widespread at maximum flooding surfaces in rapidly prograding marine mudstones.
Li, Deliang; Pi, Jie; Zhang, Ting; Tan, Xiang; Fraser, Dylan J
2018-05-16
Effective remediation of heavy metal pollution in aquatic systems is desired in many regions, but it requires integrative assessments of sediments, water, and biota that can serve as robust biomonitors. We assessed the effects of a 5-year metal contamination remediation along the Xiangjiang River, China, by comparing concentrations of trace metals in water and surface sediments between 2010-2011 and 2016. We also explored the trace metal biomonitoring potential of a freshwater gastropod (Bellamya aeruginosa). Metal concentrations in water (means and ranges) dropped over time to within permissible limits of drinking water guidelines set by China, USEPA, and WHO in 2016. Although sediment means and ranges of Cd, Pb, Zn, and Mn also diminished with remediation, those for Cr and Cu slightly increased, and all six metals retained concentrations higher than standards set by China. All metals in sediments could also be associated with anthropogenic inputs using a hierarchical clustering analysis, and they generate high potential ecological risks based on several indices, especially for Cd and As. The bio-sediment accumulation factors of all measured trace metals in gastropod soft tissues and shells were lower than 1.0, except for Ca. Trace metal contents in gastropods were positively correlated with those in water and surface sediments for As (soft tissues) and Cr (shells). Collectively, our results do not yet highlight strong beneficial effects of 5-year remediation and clearly illustrate the heavy metal pollution remaining in Xiangjiang River sediment. Additional physical, chemical, and biological measurements should be implemented to improve sediment quality. We further conclude that gastropod soft tissues and shells can be suitable biomonitors of spatial differences in some heavy metals found within river sediments (e.g., As, Cr).
NASA Astrophysics Data System (ADS)
Um, I. K.; Choi, M. S.
2017-12-01
The central South Sea mud (CSSM) is located between the Heuksan mud belt (HMB) in the Yellow Sea and Korea Strait shelf mud (KSSM) in the East Sea and developed along the eastward transport pathway in the South Sea. Major elements (Al, Fe, Mg, and Ti), trace elements (Li, Cs, Sc, and Rb), and rare earth elements (REEs) in the fine-grained sediments (<15 μm) of thirty-two surface sediment samples on the CSSM were analyzed to determine the fine-grained sediment provenance. The spatial distribution of the analyzed elements showed a clear separation of the western (W-CSSM) and eastern (E-CSSM) regions of the CSSM. Concentrations of Fe, Ti, Mg, Sc, and REEs were higher in the W-CSSM, whereas concentrations of Al, Cs, Li, and Rb were higher in the E-CSSM. The ratios of trace metals ((Cs+Sc)/Li and Rb/Li) can be successfully used as a provenance indicator in the study area but REEs compositions could not be used to track the provenance of fine-grained sediments because of a grain size effect. The mixing relationships of the provenance indicators showed that the fine-grained sediments of the CSSM comprise a mixture of the sediments discharged from the Seomjin River (SRS) and sediments eroded and transported from the Heuksan mud belt (HMBS) area by the Korean coastal current. Sediments originating from the HMB were deposited mostly in the W-CSSM, whereas those from the Seomjin River were deposited mostly in the E-CSSM
Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors.
Li, Jia; Zhang, Hua
2016-12-01
To reveal the kinetics and mechanisms of antibiotic adsorption/desorption processes, batch and stirred flow chamber (SFC) experiments were carried out with oxytetracycline (OTC) on two marine sediments. The OTC adsorption capacities of the marine sediments were relatively weak and related to their organic carbon (OC) and contents of fine particles. Sorption isotherms of OTC on marine sediment can be well described by both the Langmuir and Freundlich models. Langmuir adsorption maxima (q max ) and Freundlich distribution coefficients (K f ) increased with the decrease of salinity and pH, which indicated the importance of variable charged sites on sediment surfaces. A second order kinetic model successfully described adsorption and desorption kinetics of OTC and well reproduced the concentration change during stop-flow. The adsorption kinetic rates (k a ) for OTC under different experimental conditions ranged from 2.00 × 10 -4 to 1.97 × 10 -3 L (mg min) -1 . Results of SFC experiments indicated that diffusive mass transfer was the dominant mechanism of the time-dependent adsorption of OTC and its release from marine sediment was mildly hysteretic. The high desorption percentage (43-75% for LZB and 58-75% for BHB) implied that binding strength of OTC on two marine sediments was weak. In conclusion, marine sediment characteristics and environmental factors such as salinity, pH, and flow rate are critical factors determine extent of OTC sorption on marine sediment and need to be incorporated in modeling fate and transport of OTC in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.
2012-01-01
The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results demonstrate that a seasonal or streamflow-based groundwater pumping schedule can reduce the effects of pumping during periods of low flow.
Bioturbation enhances the aerobic respiration of lake sediments in warming lakes.
Baranov, Viktor; Lewandowski, Jörg; Krause, Stefan
2016-08-01
While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m(2) was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. © 2016 The Authors.
Bioturbation enhances the aerobic respiration of lake sediments in warming lakes
Krause, Stefan
2016-01-01
While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m2 was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. PMID:27484649
Zhang, Panwei; Zhou, Huaidong; Li, Kun; Zhao, Xiaohui; Liu, Qiaona; Li, Dongjiao; Zhao, Gaofeng
2018-01-13
Eighteen selected pharmaceuticals and personal care products (PPCPs), consisting of five non-antibiotic pharmaceuticals (N-APs), four sulfonamides (SAs), four tetracyclines (TCs), four macrolides (MCs), and one quinolone (QN) were detected in water, pore water, and sediment samples from Baiyangdian Lake, China. A total of 31 water samples and 29 sediment samples were collected in March 2017. Caffeine was detected with 100% frequency in surface water, pore water, and sediment samples. Carbamazepine was detected with 100% frequency in surface water and sediment samples. Five N-APs were prominent, with mean concentrations of 4.90-266.24 ng/l in surface water and 5.07-14.73 μg/kg in sediment samples. Four MCs were prominent, with mean concentrations of 0.97-29.92 ng/l in pore water samples. The total concentrations of the different classes of PPCPs followed the order: N-APs (53.26%) > MCs (25.39) > SAs (10.06%) > TCs (7.64%) > QNs (3.64%) in surface water; N-APs (42.70%) > MCs (25.43%) > TCs (14.69%) > SAs (13.90%) > QNs (3.24%) in sediment samples, and MCs (42.12%) > N-APs (34.80%) > SAs (11.71%) > TCs (7.48%) > QNs (3.88%) in pore water samples. The geographical differences of PPCP concentrations were largely due to anthropogenic activities. Sewage discharged from Baoding City and human activities around Baiyangdian Lake were the main sources of PPCPs in the lake. An environmental risk assessment for the upper quartile concentration was undertaken using calculated risk quotients and indicated a low or medium-high risk from 18 PPCPs in Baiyangdian Lake and its five upstream rivers.
Hittle, Elizabeth
2011-01-01
In small watersheds, runoff entering local waterways from large storms can cause rapid and profound changes in the streambed that can contribute to flooding. Wymans Run, a small stream in Cochranton Borough, Crawford County, experienced a large rain event in June 2008 that caused sediment to be deposited at a bridge. A hydrodynamic model, Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), which is incorporated into the U.S. Geological Survey Multi-Dimensional Surface-Water Modeling System (MD_SWMS) was constructed to predict boundary shear stress and velocity in Wymans Run using data from the June 2008 event. Shear stress and velocity values can be used to indicate areas of a stream where sediment, transported downstream, can be deposited on the streambed. Because of the short duration of the June 2008 rain event, streamflow was not directly measured but was estimated using U.S. Army Corps of Engineers one-dimensional Hydrologic Engineering Centers River Analysis System (HEC-RAS). Scenarios to examine possible engineering solutions to decrease the amount of sediment at the bridge, including bridge expansion, channel expansion, and dredging upstream from the bridge, were simulated using the FaSTMECH model. Each scenario was evaluated for potential effects on water-surface elevation, boundary shear stress, and velocity.
Syed, Jabir Hussain; Malik, Riffat Naseem; Li, Jun; Chaemfa, Chakra; Zhang, Gan; Jones, Kevin C
2014-02-15
Organochlorines (OCs) including organochlorine pesticides (OCPs) and polychlorinated biphenyl (PCBs) were analyzed in surface sediments from the Ravi River, Punjab, Pakistan. Among the OCPs, hexachlorocyclohexane (HCHs), dichlorodiphenyltrichloroethane (DDTs) and chlordane (cis- and trans-) were most abundant and their concentrations were ranged from n.d to 16.0 ng g(-1), 1.5 to 58.5 ng g(-1) and n.d to 29.0 ng g(-1), respectively. Concentrations of Σ31PCBs ranged from 4.6 to 424.3 ng g(-1) with a mean value of 48.9 ng g(-1). In general, the concentrations of all studied organochlorines (OCs) in sediments collected from the sampling sites in the vicinity of industrial areas were higher than those from the agricultural areas. Compositional analyses of PCBs indicated that penta- and tetra-PCBs homologues were dominant which was consistent with the previous studies. Compared with other areas around the world, levels of OCs in sediments from the Ravi River were within the range, but were found to be much higher than previously reported from Pakistan. According to established sediment quality guidelines (SQGs), screening-level risk assessment of OCPs and PCBs suggested that they have a potential for adverse effects on benthic organisms. Copyright © 2013 Elsevier B.V. All rights reserved.
Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao
2017-01-01
Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).
Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK
Love, Katherine B; Hallet, Bernard; Pratt, Thomas L.; O'Neel, Shad
2016-01-01
To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.
Whitman, Richard L.; Nevers, Meredith B.; Przybyla-Kelly, Katarzyna; Byappanahalli, Muruleedhara N.; Sadowsky, Michael J.; Whitman, Richard L.
2011-01-01
This paper describes the environmental populations of faecal indicator bacteria, and the processes by which these populations become nonpoint sources and influence nearshore water quality. The different possible sources of these indicator bacteria are presented. These include groundwater, springs and seeps, aquatic sediments, beach sand, birds, Cladophora and plant wrack. Also discussed are the environmental factors (moisture, sunlight, temperature and salinity) influencing their survival.
NASA Astrophysics Data System (ADS)
Dey, Saptarshi; Thiede, Rasmus C.; Schildgen, Taylor F.; Wittmann, Hella; Bookhagen, Bodo; Scherler, Dirk; Jain, Vikrant; Strecker, Manfred R.
2016-09-01
Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 103 to 105 yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic 10Be indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 ± 3.2 ka and 43.0 ± 2.7 ka (1σ). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 ± 1.2 ka and 15.3 ± 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 ± 0.4 ka (T3), 7.1 ± 0.4 ka (T4), 5.2 ± 0.4 ka (T5) and 3.6 ± 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision.
Panno, S.V.; Wiebel, C.P.; Heigold, P.C.; Reed, P.C.
1994-01-01
Three regolith-collapse sinkholes formed near the Dongola Unit School and the Pentecostal Church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The sinkholes appeared over a three-month period that coincided with development of a new municipal well. The new well was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating the presence of an upward hydraulic gradient in the valley and that the valley fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below the base of the valley fill. It is hypothesized that drainage of water from the sediments, the resulting loss of hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of groundwater flow toward the well resulted in rapid sediment transport, subsurface erosion, and collapse of the valley-fill sediment. The sinkholes follow an approximately east-west alignment, which is consistent with one of the two dominant alignments of passages of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a positive resistivity anomaly trending N75E in the southern part of the study area. The anomaly is linear, between 5 and 10 m wide, and its trend either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a preexisting crevice in the karstified bedrock limestone. ?? 1994 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weibel, C.P.; Panno, S.V.; Heigold, P.C.
1994-04-01
Three regolith-collapse sinkholes formed near a school and a church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The appearance of the sinkholes over a 3-month period coincided with development of a new municipal well, which was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating an upward hydraulic gradient in the valley and that the valley-fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below themore » base of the valley-fill. It is hypothesized that drainage of water from the sediments, the resulting loss of both hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of ground-water flow toward the well resulted in rapid sediment transport, subsurface erosion, and subsequent collapse of the valley-fill sediment. The sinkholes follow an approximately east-west alignment, which is consistent with one of the two dominant alignments of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a linear, positive resistivity anomaly, between 5 and 10 m wide, and with a trend that either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a pre-existing crevice in the karstified bedrock limestone.« less
Chai, Liyuan; Li, Huan; Yang, Zhihui; Min, Xiaobo; Liao, Qi; Liu, Yi; Men, Shuhui; Yan, Yanan; Xu, Jixin
2017-01-01
Here, we aim to determine the distribution, ecological risk and sources of heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan Province, China. Sixty-four surface sediment samples were collected in 16 sites of the Xiangjiang River, and the concentrations of ten heavy metals and metalloids (Mn, Zn, Cr, V, Pb, Cu, As, Ni, Co, and Cd) in the sediment samples were investigated using an inductively coupled plasma mass spectrometer (ICP-MS) and an atomic fluorescence spectrophotometer (AFS), respectively. The results showed that the mean concentrations of the ten heavy metals and metalloids in the sediment samples followed the order Mn > Zn > Cr > V > Pb > Cu > As ≈ Ni >Co > Cd. The geoaccumulation index (I geo ), enrichment factor (EF), modified degree of contamination (mC d ), and potential ecological risk index (RI) revealed that Cd, followed by Pb, Zn, and Cu, caused severely contaminated and posed very highly potential ecological risk in the Xiangjiang River, especially in Shuikoushan of Hengyang, Xiawan of Zhuzhou, and Yijiawan of Xiangtan. The Pearson's correlation coefficient (PCC) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA) indicated that the ten heavy metals and metalloids in the sampling sediments of the Xiangjiang River were classified into three groups: (1) Cd, Pb, Zn, and Cu which possibly originated from Shuikoushan, Xiawan, and Yijiawan clustering Pb-Zn mining and smelting industries; (2) Co, V, Ni, Cr, and Al from natural resources; and (3) Mn and As. Therefore, our results suggest that anthropogenic activities, especially mining and smelting, have caused severe contamination of Cd, Pb, Zn, and Cu and posed very high potential ecological risk in the Xiangjiang River.
Radionuclides deposition and fine sediment transport in a forested watershed, central Japan
NASA Astrophysics Data System (ADS)
Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.
2011-12-01
We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).
NASA Astrophysics Data System (ADS)
Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Czapiga, M. J.; Il'icheva, E.; Pavolv, M.; Parker, G.
2014-12-01
The Selenga River delta, Lake Baikal, Russia, is approximately 700 km2 in size and contains three active lobes that receive varying amounts of water and sediment discharge. This delta represents a unique end-member in so far that the system is positioned along the deep-water (~1500 m) margin of Lake Baikal and therefore exists as a shelf-edge delta. In order to evaluate the morphological dynamics of the Selenga delta, field expeditions were undertaken during July 2013 and 2014, to investigate the morphologic, sedimentologic, and hydraulic nature of this delta system. Single-beam bathymetry data, sidescan sonar data, sediment samples, and aerial survey data were collected and analyzed to constrain: 1) channel geometries within the delta, 2) bedform sizes and spatial distributions, 3) grain size composition of channel bed sediment as well as bank sediment, collected from both major and minor distributary channels, and 4) elevation range of the subaerial portion of the delta. Our data indicate that the delta possesses downstream sediment fining, ranging from predominantly gravel and sand near the delta apex to silt and sand at the delta-lake interface. Field surveys also indicate that the Selenga delta has both eroding and aggrading banks, and that the delta is actively incising into some banks that consist of terraces, which are defined as regions that are not inundated by typical 2- to 4-year flood discharge events. Therefore the terraces are distinct from the actively accreting regions of the delta that receive sedimentation via water inundation during regular river floods. We spatially constrain the regions of the Selenga delta that are inundated during floods versus terraced using a 1-D water-surface hydrodynamic model that produces estimates of stage for flood water discharges, whereby local water surface elevations produced with the model are compared to the measured terrestrial elevations. Our analyses show that terrace elevations steadily decrease downstream for all lobes, and that the delta is undergoing an active phase of erosion, characterized by channel incision and extensive lateral erosion of terraces; this process of delta 'self-cannibalization' contributes to the downstream sediment flux and morphological evolution of the delta.
NASA Astrophysics Data System (ADS)
Costa, P. J.; Andrade, C.; Cascalho, J.; Dawson, A. G.; Freitas, M. C.; Dawson, S.; Mahaney, W. C.
2013-12-01
The sedimentological record provides a database useful to characterize and evaluate recurrence of tsunamis, which contributes to assessing the vulnerability of any coastal area to this natural hazard. Thus, the enhancement of our ability to recognize signatures specific of tsunami activity imprinted in coastal sediments is of unquestionable interest. The aim of this study is to discuss and further contribute to the improvement of the characterization of (palaeo)tsunami deposits, and of their source materials. With that purpose the vertical and horizontal distribution of heavy mineral (HM) assemblages in sand-sized tsunamigenic deposits from six locations exhibiting a varied suite of coastal contexts and corresponding to three inundation events -(8200yrs BP - Scotland, 1500yrs BP - Scotland, AD 1755 - Portugal) were studied. In general, results from paleotsunami sediments show that site-specific effects prevent 'blind' extrapolations; instead, the bulk of the HM assemblages reflect local specificities related with the regional geology. In the Portuguese sediments (Martinhal, Boca do Rio and Salgados) ca. 90% of the non-opaque HM population consists of tourmaline, andalusite and staurolite, whereas amphiboles are dominant (> 90% of the assemblage) in the Scottish sediments (Scasta Voe, Basta Voe and Whale Firth). Principal Components Analyses revealed that the first 2 components explain more than 2/3 of the total variance found in each site. Horizontal and vertical variations in the HM were observed and especially in the heavier mineral species. Although, in some of the studied cases, the deposit was macroscopically massive, data on HM allowed the distinction of backwash layer(s), related with incorporation of inland materials. In what concerns sources, results indicate that palaeotsunami sediments share fewer compositional similarities with present-day inshore and offshore materials and more resemblances with dune and beach sediment, thus indicating these as the more likely source areas. In addition, preliminary results of SEM analysis of microtextural features imprinted in the surface of heavy minerals indicate an increase in the number of mechanical marks in the surface of palaeotsunami grains when compared with potential source materials (beach, dune, inshore and offshore samples). This work further reveals the potential to use heavy minerals as a complementary sedimentological tool in the study of palaeotsunami deposits.
Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay
Yates, K.K.; Halley, R.B.
2006-01-01
Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr-1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay. ?? 2006 Estuarine Research Federation.
Observations of sediment transport on the Amazon subaqueous delta
Sternberg, R.W.; Cacchione, D.A.; Paulson, B.; Kineke, G.C.; Drake, D.E.
1996-01-01
A 19-day time series of fluid, flow, and suspended-sediment characteristics in the benthic boundary layer is analyzed to identify major sedimentary processes active over the prodelta region of the Amazon subaqueous delta. Measurements were made by the benthic tripod GEOPROBE placed on the seabed in 65 m depth near the base of the deltaic foreset beds from 11 February to 3 March 1990, during the time of rising water and maximum sediment discharge of the Amazon River; and the observations included: hourly measurements of velocity and suspended-sediment concentration at four levels above the seabed; waves and tides; and seabed elevation. Results of the first 14-day period of the time series record indicate that sediment resuspension occurred as a result of tidal currents (91% of the time) and surface gravity waves (46% of the time). Observations of suspended sediment indicated that particle flux in this region is 0.4-2% of the flux measured on the adjacent topset deposits and is directed to the north and landward relative to the Brazilian coast (268??T). Fortnightly variability is strong, with particle fluxes during spring tides five times greater than during neap tides. On the 15th day of the data record, a rapid sedimentation event was documented in which 44 cm of sediment was deposited at the study site over a 14-h period. Evaluation of various mechanisms of mass sediment movement suggests that this event represents downslope migration of fluid muds from the upper foreset beds that were set in motion by boundary shear stresses generated by waves and currents. This transport mechanism appears to occur episodically and may represent a major source of sediment to the lower foreset-bottomset region of the subaqueous delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highly, A.B.; Donoghue, J.F.; Garrett, C.
1994-03-01
The St. Marks river of northwest Florida drains parts of the central panhandle of northwestern Florida, and a small area in southwestern Georgia. It traverses nearly 56.3 kilometers through a watershed of 1,711 square kilometers. The slow-moving river carries little sediment and terminates in Apalachee Bay, a low-energy embayment in the northeasternmost Gulf of Mexico. The coastal region is characterized by mudflats, seagrass beds, and an absence of sandy beaches and barrier islands. Clastic sediments of the coast and shelf rest on a shallow-dipping carbonate platform. The upper surface of the platform is locally karstic. As a result, like othermore » rivers in this region of northwest Florida, the St. Marks watershed is marked by sinkholes and disappearing streams. The fact that the river travels underground through part of its lower watershed serves to trap or sieve some of its clastic load. In the estuary, the undulating karst topography causes the estuarine sediments to vary in thickness from 0 to 4+ meters. The concave shape of the coastline and its orientation with respect to prevailing winds result in low average wave energy. Sedimentation is therefore controlled by riverine and tidal forces. The relatively low energy conditions result in good preservation of the sedimentary record in the St. Marks estuary. A suite of sediment cores has been collected in the lower river, estuary and adjacent Gulf of Mexico. Lead-210 dating results indicate a slow average sedimentation rate ([approximately] 1mm/yr). Investigation of sedimentation rates and sediment characteristics over time in the St. Marks estuary indicate that sedimentologic conditions in this low-energy environment have been relatively stable during the recent geologic history of the estuary.« less
Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments
Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.
2016-01-01
Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511
Sediment traps for measuring onslope surface sediment movement
Wade G. Wells; Peter M. Wohlgemuth
1987-01-01
Two types of small (30-cm aperture) sheet metal sediment traps were developed to monitor onslope surface sediment transport. Traditionally, sediment traps and erosion pins have been used to measure the onslope movement of surficial soil material. While pins may be appropriate for documenting landscape denudation, traps are more suitable for monitoring downslope...
Indicators of sediment and biotic mercury contamination in a southern New England estuary
Taylor, David L.; Linehan, Jennifer C.; Murray, David W.; Prell, Warren L.
2012-01-01
Total mercury (Hg) and methylmercury (MeHg) were analyzed in near surface sediments (0–2 cm) and biota (zooplankton, macro-invertebrates, finfish) collected from Narragansett Bay (Rhode Island/Massachusetts, USA) and adjacent embayments and tidal rivers. Spatial patterns in sediment contamination were governed by the high affinity of Hg for total organic carbon (TOC). Sediment MeHg and percent MeHg were also inversely related to summer bottom water dissolved oxygen (DO) concentrations, presumably due to the increased activity of methylating bacteria. For biota, Hg accumulation was influenced by inter-specific habitat preferences and trophic structure, and sediments with high TOC and percent silt-clay composition limited mercury bioavailability. Moreover, hypoxic bottom water limited Hg bioaccumulation, which is possibly mediated by a reduction in biotic foraging, and thus, dietary uptake of mercury. Finally, most biota demonstrated a significant positive relationship between tissue and TOC-normalized sediment Hg, but relationships were much weaker or absent for sediment MeHg. These results have important implications for the utility of estuarine biota as subjects for mercury monitoring programs. PMID:22317792
NASA Technical Reports Server (NTRS)
Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.
2000-01-01
This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.
Hwang, Hyun-Min; Green, Peter G; Young, Thomas M
2006-08-01
Surface sediment samples (0-5 cm) from five tidal marshes along the coast of California, USA were analyzed for organic pollutants to investigate their relationship to land use, current distribution within marshes, and possible sources. Among the study areas, Stege Marsh, located in San Francisco Bay, was the most contaminated. Compared to San Francisco Bay, Stege Marsh had much higher levels of organic contaminants such as PCBs (polychlorinated biphenyls), DDTs, and chlordanes. At reference marshes (Tom's Point and Walker Creek in Tomales Bay), organic contaminants in sediments were very low. While PAHs (polycyclic aromatic hydrocarbons) were found at all of the study areas (22-13,600 ng g(-1)), measurable concentrations of PCBs were found only in the sediments from Stege Marsh (80-9,940 ng g(-1)). Combustion related (pyrogenic) high molecular weight PAHs were dominant in sediments from Stege and Carpinteria Marshes, while in sediments from Tom's Point and Walker Creek petroleum related (petrogenic) low molecular weight PAHs and alkyl-substituted PAHs were much more abundant than pyrogenic PAHs. PCB congener patterns in all of the Stege Marsh samples were the same and revealed that Aroclor 1248 was a predominant source. In all marshes, the sum of DDE and DDD accounted for more than 90% of total DDTs, indicating that DDT has degraded significantly. The ratios of p,p'-DDE to p,p'-DDD in sediments from Stege Marsh provide evidence of possible previous use of technical DDD. Chlordane ratios indicated that chlordanes have degraded slightly. Bis(2-ethylhexyl)phthalate (280-32,000 ng g(-1)) was the most abundant phthalate. The data indicates that Stege Marsh may be a source of contaminants that continue to be discharged into San Francisco Bay.
LITERATURE REVIEW AND REPORT: SURFACE-SEDIMENT SAMPLER DATABASE
A literature review was conducted to identify available surface sediment sampling technologies with an ability to collect undisturbed sediments to depths of up to 1 meter below the water sediment interface. This survey was conducted using published literature and references, Envi...
Ouyang, Xiaoguang; Lee, Shing Yip; Connolly, Rod M
2017-02-01
Mangroves are blue carbon ecosystems that sequester significant carbon but release CO 2 , and to a lesser extent CH 4, from the sediment through oxidation of organic carbon or from overlying water when flooded. Previous studies, e.g. Leopold et al. (2015), have investigated sediment organic carbon (SOC) content and CO 2 flux separately, but could not provide a holistic perspective for both components of blue carbon. Based on field data from a mangrove in southeast Queensland, Australia, we used a structural equation model to elucidate (1) the biotic and abiotic drivers of surface SOC (10cm) and sediment CO 2 flux; (2) the effect of SOC on sediment CO 2 flux; and (3) the covariation among the environmental drivers assessed. Sediment water content, the percentage of fine-grained sediment (<63μm), surface sediment chlorophyll and light condition collectively drive sediment CO 2 flux, explaining 41% of their variation. Sediment water content, the percentage of fine sediment, season, landform setting, mangrove species, sediment salinity and chlorophyll collectively drive surface SOC, explaining 93% of its variance. Sediment water content and the percentage of fine sediment have a negative impact on sediment CO 2 flux but a positive effect on surface SOC content, while sediment chlorophyll is a positive driver of both. Surface SOC was significantly higher in Avicennia marina (2994±186gm -2 , mean±SD) than in Rhizophora stylosa (2383±209gm -2 ). SOC was significantly higher in winter (2771±192gm -2 ) than in summer (2599±211gm -2 ). SOC significantly increased from creek-side (865±89gm -2 ) through mid (3298±137gm -2 ) to landward (3933±138gm -2 ) locations. Sediment salinity was a positive driver of SOC. Sediment CO 2 flux without the influence of biogenic structures (crab burrows, aerial roots) averaged 15.4mmolm -2 d -1 in A. marina stands under dark conditions, lower than the global average dark flux (61mmolm -2 d -1 ) for mangroves. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheppard, P. R.; Speakman, R. J.; Ridenour, G.; Glascock, M. D.; Farris, C.; Witten, M. L.
2005-12-01
This paper describes spatial patterns of airborne exposures of heavy metals in Fallon, Nevada, where a cluster of childhood leukemia has been on-going since 1997. Lichen chemistry, the measurement and interpretation of element concentrations in lichens, and surface sediment chemistry were used. Lichens were collected from within as well as from well outside of Fallon. Surface sediments were collected in a gridded spatial pattern, also within and outside of Fallon. Both the lichen and the surface sediment samples were measured chemically for a large suite of metals and other elements. Lichens indicate that Fallon itself has a high dual airborne exposure of tungsten and cobalt relative to sites well away from the town. Surface sediments samples also show high peaks of tungsten and cobalt within Fallon with nothing more than background contents away from the town. The tungsten and cobalt peaks coincide spatially with one another, with the highest values located right at a "hard-metal" facility that processes these metals. This present research confirms earlier research on total suspended particulates showing that Fallon is distinct in Nevada for its high dual exposure of airborne tungsten and cobalt and that the source of these two metals can be pinpointed to the hard-metal industry that exists just north of Highway 50 and west of Highway 95. While it is still not possible to conclude that high airborne exposure of tungsten and/or cobalt causes childhood leukemia, it can now be concluded beyond reasonable doubt that Fallon is unique environmentally due to its high airborne concentrations of tungsten and cobalt. Given that Fallon's cluster of childhood leukemia is the "most convincing cluster ever reported," it stands to reason that additional biomedical research should directly test the leukogenecity of combined airborne exposures of tungsten and cobalt.
Post-depositional behavior of Cu in a metal-mining polishing pond (East Lake, Canada).
Martin, Alan J; Jambor, John L; Pedersen, Tom F; Crusius, John
2003-11-01
The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactorthat permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 microg L(-1) and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 microg cm(-2) yr(-1)) can account for the elevated levels of dissolved Cu in lake waters (approximately 50 microg L(-1)). Implications for lake recovery are discussed.
Post-Depositional Behavior of Cu in a Metal-Mining Polishing Pond (East Lake, Canada)
Martin, A.J.; Jambor, J.L.; Pedersen, Thomas F.; Crusius, John
2003-01-01
The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactor that permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 ??g L-1 and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 ??g cm-2 yr-1) can account for the elevated levels of dissolved Cu in lake waters (???50 ??g L-1). Implications for lake recovery are discussed.
NASA Astrophysics Data System (ADS)
McBeth, J. M.; Emerson, D.
2011-12-01
Microbiologically influenced corrosion (MIC) of mild steel is a complex process involving biogeochemical interactions between bacteria, steel surfaces, and biogenic and abiotically produced minerals. The role of neutrophilic iron-oxidizing bacteria (FeOB) in this process is poorly understood, and surprisingly, little is known about the microbial ecology of corroding steel in marine environments. Based on previous work (McBeth et al 2011), we hypothesized that coastal sediments act as reservoirs for marine FeOB of the candidatus class 'Zetaproteobacteria', and that these bacteria will colonize and become numerically abundant on steel surfaces. To test this, mild steel coupons were incubated in a salt marsh and sampled over 40 days in summer 2010. DNA extracted from the steel surfaces was analyzed for overall bacterial diversity by pyrosequencing of the V4 variable region of the 16S rRNA gene, and relevant communities were quantified using qPCR. The qPCR analyses were done using 16S primers specific to prokaryotes (Takai & Horikoshi 2000) and Zetaproteobacteria (Kato et al 2009), and a dsrA gene specific primer (Ben-Dov et al 2007) to assess the population of sulfate-reducing bacteria (SRB). Pyrosequencing data analyses showed Zetaproteobacteria were present on steel samples throughout the incubations and were also present in adjacent sediments; however, the diversity of Zetaproteobacteria was lower on the steel in comparison with sediments, indicating specific populations were enriched on the steel coupons. Iron oxyhydroxide stalk biosignatures were observed on the steel and in enrichment cultures, evidence that the Zetaproteobacteria identified using molecular techniques were likely FeOB. Relatives of the H2-oxidizing genus Hydrogenophaga and members of the family Rhodobacterales were also identified as important members of the biocorrosion community and were present both on steel and in sediments. The diversity of these organisms on steel surfaces increased with incubation time. The populations assessed with qPCR remained fairly constant in the sediments during the course of the study. The number of Zetaproteobacteria in the sediments was approximately 10 fold lower than the SRB numbers. In contrast, the proportion of Zetaproteobacteria present on the steel increased rapidly over the first 10 days, exceeding the copy numbers present in the sediment by an order of magnitude. The SRB numbers on the steel were 10 fold lower than in sediments during the first days of incubation, but increased with time to near the sediment numbers of SRB at 40 days. The proportion of SRB in sediments was relatively high and constant. This work illustrates that coastal sediments may be a hitherto unrecognized reservoir for Zetaproteobacteria who, though numerically low in the sediment, can quickly colonize environments where free Fe(II) is abundant.
Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.
1999-01-01
Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that geochemical cycling of lead between sediments and water accounts for persistently elevated lead concentrations in the water column despite 10-fold reduction of external source inputs to San Francisco Bay [Flegal, A.R., Rivera-Duarte, I., Ritson, P.I., Scelfo, G., Smith, G.J., Gordon, M., Sanudo-Wilhelmy, S.A., 1996. Metal contamination in San Francisco Waters: historic perturbations, contemporary concentrations, and future considerations in San Francisco Bay. In: Hollobaugh, J.T. (Ed.), The Ecosystem. AAAS, pp. 173-188].
Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.
2008-01-01
Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.
Jayaprakash, M; Kumar, R Senthil; Giridharan, L; Sujitha, S B; Sarkar, S K; Jonathan, M P
2015-10-01
Accumulation of trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were investigated in water, sediment (n=20) along with six fish of diverse feeding guilds (Sillago sihama, Liza parsia, Etroplus suratensis, Oreochromis mossambicus, Arius parkii and Gerres oyena) from the Ennore creek, northern part of Chennai metropolitan megacity, southeast coast of India. Dissolved trace metals (DTMs) in surface water samples and total trace metals (TTMs) in surface sediments (top 0-10cm) indicate that concentration pattern of metals was higher in the discharge point of the river/channels entering the main creek. The maximum mean values of DTMs exhibited the following decreasing order (expressed in µg/L): Fe (1698)>Mn (24)>Zn (14.50)>Pb (13.89)>Ni (6.73)>Cu (3.53)>Co (3.04)>Cr (2.01) whereas the trend is somewhat different in sediments (µgg(-1)): Fe (4300)>Mn (640)>Cr (383)>Zn (155)>Cu (102)>Ni (35)>Pb (32)>Cd (0.51) are mainly due to the industrial complexes right on the banks of the river/channels. Species-specific heterogeneous patterns of tissue metal loads were apparent and the overall metal enrichment exhibited the following decreasing order (expressed in µgg(-1)): Cu (7.33)>Fe (6.53)>Zn (4.91)>Cr (1.67)>Pb (1.33)>Ni (0.44)>Mn (0.43)>Co (0.36)>Cd (0.11). This indicates that metals are absorbed onto the different organs, which is also endorsed by the calculated values of bioaccumulation factor (BAFs) (avg. muscle 117, gill 126, liver 123, intestine 118) in fishes. The high calculated biota sediment accumulation factor (BSAF) (0.437) for the species Arius parkii is considered to be a potential bioindicator in this region. The enrichment of trace metals is also supported by the association of metals in water, sediments and different body organs (muscle, gill, liver, intestine) of fish samples. Comparative studies with other coastal regions indicate considerable enrichment of DTMs & TTMs in sediments as well as in various organs of fish samples. Holistic spatial, temporal monitoring and comprehensive regional strategies are required to prevent health risks and ensure nutritional safety conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Jiang, Haoyu; Zhou, Renjun; Zhang, Mengdi; Cheng, Zhineng; Li, Jun; Zhang, Gan; Chen, Baowei; Zou, Shichun; Yang, Ying
2018-05-30
To better understand the potential genic communication and dissemination of antibiotic resistance genes (ARGs) in different environmental matrices, the differences of ARG profiles between river surface water and sediments were explored. Metagenomic analysis was applied to investigate the comprehensive ARG profiles in water and sediment samples collected from the highly human-impacted catchment of the Beijiang River and its river source. A total of 135 ARG subtypes belonging to 18 ARG types were identified. Generally, ARGs in surface water were more diverse and abundant than those in sediments. ARG profiles in the surface water and sediment samples were distinct from each other, but some ARGs were shared by the surface water and sediments. Results revealed that multidrug and bacitracin resistance genes were the predominant ARGs types in both surface water (0.30, 0.17 copies/cell) and sediments (0.19, 0.15 copies/cell). 73 ARG subtypes were shared by the water and sediment samples and had taken over 90% of the total detected ARG abundance. Most of the shared ARGs are resistant to the clinically relevant antibiotics. Furthermore, significant correlations between the ARGs and 21 shared genera or mobile genetic elements (MGEs) (plasmids and integrons) were found in surface water and sediments, suggesting the important role of genera or MGEs in shaping ARGs profiles, propagation and distribution. These findings provide deeper insight into mitigating the propagation of ARGs and the associated risks to public health. Copyright © 2018 Elsevier Inc. All rights reserved.
Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.
2014-01-01
Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984
Liu, Jing L; Zhang, Jing; Liu, Feng; Zhang, Lu L
2014-05-01
Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic and mutagenic characteristics have been detected in many estuaries and bays around the world. To detect the contaminated level in typical estuaries in Haihe river basin, China, a comprehensive survey of 16 PAHs in surface sediment has been conducted and an ecological risk assessment has been taken. It showed that Haihe river estuary had the highest concentration, ranging from 92.91 to 15886.00 ng g(-1). And Luan river estuary has the lowest polluted level, ranging from 39.55 to 328.10 ng g(-1). PAHs in sediment were dominated by low and mid molecular weight PAHs in all the sampling sites. Most of the sampling sites in all sampling seasons indicated a rarely happened ecological risk of ΣPAHs, while the S6 in Haihe river estuary was in an occasionally anticipated risk. To illustrate the spatial distribution pattern of PAHs in surface sediment in Haihe river basin, the results were compared with previous research of the research team. Based on data of the comparison, it had been revealed that Haihe river had the most serious PAHs pollution, with an average concentration of 5884.86 ng g(-1), and showed the highest contamination level in all four ecological units. The ΣPAHs concentration showed in a rank of reservoir > estuary > rural area > city.
Park, Soo-Je; Park, Byoung-Joon; Pham, Vinh Hoa; Yoon, Dae-No; Kim, Si-Kwan; Rhee, Sung-Keun
2008-06-01
Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, K.; Mcroy, C. P.
1987-01-01
The distribution of near-surface, turbid water, discharged by the Yukon River, was studied based on analysis of satellite imagery. The interannual analyses indicates that the net flow of near-surface, turbid water is northward of the delta across the entrance to Norton Sound. Only turbid water to the east enters Norton Sound and consists of 25% of the total area. Approximately 10% of the water circulates into the sound along the southern coast and is lost to view in the vicinity of Unalakleet. Suspended sediments transported by this southern circulation are primarily deposited along the southern coast. Three distinct zones within the turbid water were identified based on relative brightness levels. These zones appear to be primarily related to differences in suspended-sediment concentrations and position of the sediments in the water column. The extent of turbid water varies seasonally. It is most extensive June through October even though discharge of the Yukon River decreases substantially after July.
Lu, Jian; Li, Anchun; Huang, Peng
2017-11-15
Surface sediment samples collected from the South Yellow Sea and northern part of the East China Sea during spring and autumn, respectively, were analyzed for grain size, aluminum, and heavy metals (Cr, Ni, Cu, Zn, and Pb) to evaluate heavy metal levels and the contamination status. The results showed that all of the heavy metal concentrations met the standard criteria of the Chinese National Standard Criteria for Marine Sediment Quality. Both the EFs and a multivariate analysis (PCA) indicated that Cr, Ni, Cu, and Zn were mainly from natural contributions, while Pb was influenced by anthropogenic inputs, especially during autumn. The geoaccumulation index of Pb near the mouth of the Yangtze River suggested that the pollution degree in autumn was heavier than that in spring, which might be caused by the greater river discharge in summer and more heavy metal adsorption with finer grain sizes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paradise Threatened: Land Use and Erosion on St. John, US Virgin Islands
Macdonald; Anderson; Dietrich
1997-11-01
/ Rapid development and the concomitant increases in erosion and sedimentation are believed to threaten the reefs and other marine resources that are a primary attraction of St. John and Virgin Islands National Park. Average annual sediment yields from undeveloped areas were estimated from a sediment pond and a mangrove swamp as less than 20 and less than 40 t/km2/yr, respectively. Geomorphic evidence indicates that plantation agriculture during the 18th and 19th centuries did not cause severe erosion. Since about 1950 there has been rapid growth in roads and development due to increasing tourism and second-home development. Our field investigations identified the approximately 50 km of unpaved roads as the primary source of anthropogenic sediment. Field measurements of the road network in two catchments led to the development of a vector-based GIS model to predict road surface erosion and sediment delivery. We estimate that road erosion has caused at least a fourfold increase in island-wide sediment yields and that current sedimentation rates are unprecedented. Paving the dirt roads and implementing standard sediment control practices can greatly reduce current sediment yields and possible adverse effects on the marine ecosystems surrounding St. John.KEY WORDS: Erosion; Sediment yield; Roads; Dry tropics; Development
NASA Astrophysics Data System (ADS)
Qiu, Yao-Wen; Zhang, Gan; Liu, Guo-Qing; Guo, Ling-Li; Li, Xiang-Dong; Wai, Onyx
2009-06-01
The levels of 15 polycyclic aromatic hydrocarbons (PAHs) were determined in seawater, suspended particulate matter (SPM), surface sediment and core sediment samples of Deep Bay, South China. The average concentrations Σ 15PAHs were 69.4 ± 24.7 ng l -1 in seawater, 429.1 ± 231.8 ng g -1 in SPM, and 353.8 ± 128.1 ng g -1 dry weight in surface sediment, respectively. Higher PAH concentrations were observed in SPM than in surface sediment. Temporal trend of PAH concentrations in core sediment generally increased from 1948 to 2004, with higher concentrations in top than in sub-surface, implying a stronger recent input of PAHs owing to the rapid economic development in Shenzhen. Compared with historical data, the PAH levels in surface sediment has increased, and this was further confirmed by the increasing trend of PAHs in the core sediment. Phenanthrene, fluoranthene and pyrene dominated in the PAH composition pattern profiles in the Bay. Compositional pattern analysis suggested that PAHs in the Deep Bay were derived from both pyrogenic and petrogenic sources, and diesel oil leakage, river runoff and air deposition may serve as important pathways for PAHs input to the Bay. Significant positive correlations between partition coefficient in surface sediment to that in water ( KOC) of PAH and their octanol/water partition coefficients ( KOW) were observed, suggesting that KOC of PAHs in sediment/water of Deep Bay may be predicted by the corresponding KOW.
Are wetlands the reservoir for avian cholera?
Samuel, M.D.; Shadduck, D.J.; Goldberg, Diana R.
2004-01-01
Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.
NASA Astrophysics Data System (ADS)
Muthusamy, Manoranjan; Tait, Simon; Schellart, Alma; Beg, Md Nazmul Azim; Carvalho, Rita F.; de Lima, João L. M. P.
2018-02-01
Among the urban aquatic pollutants, the most common is sediment which also acts as a transport medium for many contaminants. Hence there is an increasing interest in being able to better predict the sediment wash-off from urban surfaces. The exponential wash-off model is the most widely used method to predict the sediment wash-off. Although a number of studies proposed various modifications to the original exponential wash-off equation, these studies mostly looked into one parameter in isolation thereby ignoring the interactions between the parameters corresponding to rainfall, catchment and sediment characteristics. Hence in this study we aim (a) to investigate the effect of rainfall intensity, surface slope and initial load on wash-off load in an integrated and systematic way and (b) to subsequently improve the exponential wash-off equation focusing on the effect of the aforementioned three parameters. A series of laboratory experiments were carried out in a full-scale setup, comprising of a rainfall simulator, a 1 m2 bituminous road surface, and a continuous wash-off measuring system. Five rainfall intensities ranging from 33 to 155 mm/h, four slopes ranging from 2 to 16% and three initial loads ranging from 50 to 200 g/m2 were selected based on values obtained from the literature. Fine sediment with a size range of 300-600 μm was used for all of the tests. Each test was carried out for one hour with at least 9 wash-off samples per test collected. Mass balance checks were carried out for all the tests as a quality control measure to make sure that there is no significant loss of sand during the tests. Results show that the washed off sediment load at any given time is proportional to initial load for a given combination of rainfall intensity and surface slope. This indicates the importance of dedicated modelling of build-up so as to subsequently predict wash-off load. It was also observed that the maximum fraction that is washed off from the surface increases with both rainfall intensity and the surface slope. This observation leads to the second part of the study where the existing wash-off model is modified by introducing a capacity factor which defines this maximum fraction. This capacity factor is derived as a function of wash-off coefficient, making use of the correlation between the maximum fraction and the wash-off rate. Values of the modified wash-off coefficient are presented for all combinations of rainfall intensities and surface slopes, which can be transferred to other urban catchments with similar conditions.
Brosnahan, Michael L; Ralston, David K; Fischer, Alexis D; Solow, Andrew R; Anderson, Donald M
2017-11-01
New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella , a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya , is also discussed.
Garzon-Garcia, Alexandra; Laceby, J Patrick; Olley, Jon M; Bunn, Stuart E
2017-01-01
Understanding the sources of sediment, organic matter and nitrogen (N) transferred from terrestrial to aquatic environments is important for managing the deleterious off-site impacts of soil erosion. In particular, investigating the sources of organic matter associated with fine sediment may also provide insight into carbon (C) and N budgets. Accordingly, the main sources of fine sediment, organic matter (indicated by total organic carbon), and N are determined for three nested catchments (2.5km 2 , 75km 2 , and 3076km 2 ) in subtropical Australia. Source samples included subsoil and surface soil, along with C 3 and C 4 vegetation. All samples were analysed for stable isotopes (δ 13 C, δ 15 N) and elemental composition (TOC, TN). A stable isotope mixing model (SIAR) was used to determine relative source contributions for different spatial scales (nested catchments), climatic conditions and flow stages. Subsoil was the main source of fine sediment for all catchments (82%, SD=1.15) and the main N source at smaller scales (55-76%, SD=4.6-10.5), with an exception for the wet year and at the larger catchment, where surface soil was the dominant N source (55-61%, SD=3.6-9.9), though contributions were dependent on flow (59-680m 3 /s). C 3 litter was the main source of organic C export for the two larger catchments (53%, SD=3.8) even though C 4 grasses dominate the vegetation cover in these catchments. The sources of fine sediment, organic matter and N differ in subtropical catchments impacted by erosion, with the majority of C derived from C 3 leaf litter and the majority of N derived from either subsoil or surface soil. Understanding these differences will assist management in reducing sediment, organic matter and N transfers in similar subtropical catchments while providing a quantitative foundation for testing C and N budgets. Copyright © 2016 Elsevier B.V. All rights reserved.
Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.
1989-01-01
Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.
Compositional changes of surface sediments and variability of manganese nodules in the Peru Basin
NASA Astrophysics Data System (ADS)
Marchig, Vesna; von Stackelberg, Ulrich; Hufnagel, Heinz; Durn, Goran
Two types of manganese nodules were observed in the Peru Basin: large botryoidal nodules in basins and small ellipsoidal nodules on slope positions. The sediment in areas with large botryoidal nodules contains a thinner and weaker oxidation zone than the sediment under small ellipsoidal nodules, indicating that diagenetic processes in the sediment, which supply manganese nodules with metals for their growth, are stronger in sediments on which large botryoidal nodules grow. Organic matter, which activates remobilization of metals, occurs mostly in the form of refractory lipidic compounds in the inner capsule of radiolaria. This material needs bacterial degradation to act as a reducing agent. Easily oxidizable organic components could not be found in the sediments. Other changes in sediment composition do not have a link to manganese nodule growth. Biogenous components (radiolarians, organogenic barite and apatite) increase towards the equatorial high-productivity zone. Authigenous clay minerals (nontronite as well as montmorillonite with high Fe +3 incorporation on positions of ochtaedral Al) increase with distance from the continent. The assessment of environmental impacts will have to take into account the regional differences in sediment composition and the small-scale variability of manganese nodules.
30 CFR 816.45 - Hydrologic balance: Sediment control measures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate sediment...
30 CFR 816.45 - Hydrologic balance: Sediment control measures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate sediment...
Inferring sediment connectivity from high-resolution DEMs of Difference
NASA Astrophysics Data System (ADS)
Heckmann, Tobias; Vericat, Damià
2017-04-01
Topographic changes due to the erosion and deposition of bedrock, sediments and soil can be measured by differencing Digital Elevation Models (DEM) acquired at different points in time. So-called morphological sediment budgets can be computed from such DEMs of Difference (DoD) on an areal rather than a point basis. The advent of high-resolution and highly accurate surveying techniques (e.g. LiDAR, SfM), together with recent advances of survey platforms (e.g. UaVs) provides opportunities to improve the spatial and temporal scale (in terms of extent and resolution), the availability and quality of such measurements. Many studies have used DoD to investigate and interpret the spatial pattern of positive and negative vertical differences in terms of erosion and deposition, or of horizontal movement. Vertical differences can be converted to volumes, and negative (erosion) and positive (deposition) volumetric changes aggregated for spatial units (e.g., landforms, hillslopes, river channels) have been used to compute net balances. We argue that flow routing algorithms common in digital terrain analysis provide a means to enrich DoD-based investigations with some information about (potential) sediment pathways - something that has been widely neglected in previous studies. Where the DoD indicates a positive surface change, flow routing delineates the upslope area where the deposited sediment has potentially been derived from. In the downslope direction, flow routing indicates probable downslope pathways of material eroded/detached/entrained where the DoD shows negative surface change. This material has either been deposited along these pathways or been flushed out of the area of investigation. This is a question of sediment connectivity, a property of a system (i.e. a hillslope, a sub-/catchment) that describes its potential to move sediment through itself. The sediment pathways derived from the DEM are related to structural connectivity, while the spatial pattern of (net) erosion and deposition has emerged from sediment transfer between the two epochs of the DoD (i.e. functional connectivity). In this study, we use multitemporal raster DEMs generated (i) from terrestrial LiDAR surveys and (ii) by a landscape evolution model to compute DoDs. Flow accumulation is used to compute, for the contributing area of each raster cell, (i) the net balance and (ii) the total sum of material eroded. The net balance represents the sediment yield of the contributing area. In the case of a study area delimited by a catchment boundary, it is either negative (more sediment eroded than deposited within the contributing area, i.e. net export) or zero (eroded material has been re-deposited within the contributing area). Finally, the ratio of sediment yield and gross erosion is called the sediment delivery ratio (SDR). This number has been used as a "performance factor" indicating the degree of sediment connectivity, as it describes the proportion of material eroded on the local scale that is being delivered to the outlet of the contributing area. The evaluation of a DoD to compute the SDR overcomes one major criticism of the SDR, namely that gross erosion is generally estimated (e.g. by empirical USLE-type equations) rather than measured. Both our proposed approach and the concept of SDR are subject to a number of caveats, which we will discuss in our contribution. In any case, we advocate more detailed analyses of DoD using flow routing algorithms in order to include information on potential sediment pathways in morphological sediment budgets for hillslopes and catchments.
Witkowski, P.J.; Smith, J.A.; Fusillo, T.V.; Chiou, C.T.
1987-01-01
This paper reviews the suspended and surficial sediment fractions and their interactions with manmade organic compounds. The objective of this review is to isolate and describe those contaminant and sediment properties that contribute to the persistence of organic compounds in surface-water systems. Most persistent, nonionic organic contaminants, such as the chlorinated insecticides and polychlorinated biphenyls (PCBs), are characterized by low water solubilities and high octanol-water partition coefficients. Consequently, sorptive interactions are the primary transformation processes that control their environmental behavior. For nonionic organic compounds, sorption is primarily attributed to the partitioning of an organic contaminant between a water phase and an organic phase. Partitioning processes play a central role in the uptake and release of contaminants by sediment organic matter and in the bioconcentration of contaminants by aquatic organisms. Chemically isolated sediment fractions show that organic matter is the primary determinant of the sorptive capacity exhibited by sediment. Humic substances, as dissolved organic matter, contribute a number of functions to the processes cycling organic contaminants. They alter the rate of transformation of contaminants, enhance apparent water solubility, and increase the carrying capacity of the water column beyond the solubility limits of the contaminant. As a component of sediment particles, humic substances, through sorptive interactions, serve as vectors for the hydrodynamic transport of organic contaminants. The capabilities of the humic substances stem in part from their polyfunctional chemical composition and also from their ability to exist in solution as dissolved species, flocculated aggregates, surface coatings, and colloidal organomineral and organometal complexes. The transport properties of manmade organic compounds have been investigated by field studies and laboratory experiments that examine the sorption of contaminants by different sediment size fractions. Field studies indicate that organic contaminants tend to sorb more to fine-grained sediment, and this correlates significantly with sediment organic matter content. Laboratory experiments have extended the field studies to a wider spectrum of natural particulates and anthropogenic compounds. Quantitation of isotherm results allows the comparison of different sediment sorbents as well as the estimation of field partition coefficients from laboratory-measured sediment and contaminant properties. Detailed analyses made on the basis of particle-size classes show that all sediment fractions need to be considered in evaluating the fate and distribution of manmade organic compounds. This conclusion is based on observations from field studies and on the variety of natural organic sorbents that demonstrate sorptive capabilities in laboratory isotherm experiments.
Nilsen, E.B.; Delaney, M.L.
2005-01-01
This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.
Chaharlang, Behnam Heidari; Bakhtiari, Alireza Riyahi; Mohammadi, Jahangard; Farshchi, Parvin
2017-09-01
This research focuses on the fractionation and distribution patterns of heavy metals (Zn, Cu, and Fe) in surficial sediments collected from Shadegan Wildlife Refuge, the biggest wetland in southern part of Iran, to provide an overall classification for the sources of metals in the study area using a sequential extraction method. For this purpose, a four-step sequential extraction technique was applied to define the partitioning of the metals into different geochemical phases of the sediment. The results illustrated that the average total level of Zn, Cu, and Fe in surface sediments were 55.20 ± 16.04, 22.86 ± 5.68, and 25,979.01 ± 6917.91 μg/g dw, respectively. On the average, the chemical partitioning of all metals in most stations was in the order of residual >oxidizable-organic > acid-reducible > exchangeable. In the same way, the results of calculated geochemical indices revealed that Cu, Zn, and Fe concentrations are mainly influenced by lithogenic origins. Compared with consensus-based SQGs, Cu was likely to result in occasionally harmful biological effects on the biota.
Microbial community assembly and evolution in subseafloor sediment.
Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U
2017-03-14
Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
Lacombe, Pierre
1986-01-01
Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)