NASA Astrophysics Data System (ADS)
Barnard, P. E.; Terblans, J. J.; Swart, H. C.
2015-12-01
The article takes a new look at the process of atomic segregation by considering the influence of surface relaxation on the segregation parameters; the activation energy (Q), segregation energy (ΔG), interaction parameter (Ω) and the pre-exponential factor (D0). Computational modelling, namely Density Functional Theory (DFT) and the Modified Darken Model (MDM) in conjunction with Auger Electron Spectroscopy (AES) was utilized to study the variation of the segregation parameters for S in the surface region of Fe(100). Results indicate a variation in each of the segregation parameters as a function of the atomic layer under consideration. Values of the segregation parameters varied more dramatically as the surface layer is approached, with atomic layer 2 having the largest deviations in comparison to the bulk values. This atomic layer had the highest Q value and formed the rate limiting step for the segregation of S towards the Fe(100) surface. It was found that the segregation process is influenced by two sets of segregation parameters, those of the surface region formed by atomic layer 2, and those in the bulk material. This article is the first to conduct a full scale investigation on the influence of surface relaxation on segregation and labelled it the "surface effect".
Improving the Thermodynamic Stability of Aluminate Spinel Nanoparticles with Rare Earths
Hasan, M. M.; Dey, Sanchita; Nafsin, Nazia; ...
2016-06-29
Surface energy is a key parameter to understand and predict the stability of catalysts. In this work, the surface energy of MgAl 2O 4, an important base material for catalyst support, was reduced by using dopants prone to form surface excess (surface segregation): Y 3+, Gd 3+, and La 3+. The energy reduction was predicted by atomistic simulations of spinel surfaces and experimentally demonstrated by using microcalorimetry. The surface energy of undoped MgAl 2O 4 was directly measured as 1.65 ± 0.04 J/m 2 and was reduced by adding 2 mol % of the dopants to 1.55 ± 0.04 J/mmore » 2 for Y-doping, 1.45 ± 0.05 J/m 2 for Gd-doping, and 1.26 ± 0.06 J/m 2 for La-doping. Atomistic simulations are qualitatively consistent with the experiments, reinforcing the link between the role of dopants in stabilizing the surface and the energy of segregation. Surface segregation was experimentally assessed using electron energy loss spectroscopy mapping in a scanning transmission electron microscopy image. Finally, the reduced energy resulted in coarsening inhibition for the doped samples and, hence, systematically smaller particle sizes (larger surface areas), meaning increased stability for catalytic applications. Moreover, both experiment and modeling reveal preferential dopant segregation to specific surfaces, which leads to the preponderance of {111} surface planes and suggests a strategy to enhance the area of desired surfaces in nanoparticles for better catalyst support activity.« less
Heats of Segregation of BCC Metals Using Ab Initio and Quantum Approximate Methods
NASA Technical Reports Server (NTRS)
Good, Brian; Chaka, Anne; Bozzolo, Guillermo
2003-01-01
Many multicomponent alloys exhibit surface segregation, in which the composition at or near a surface may be substantially different from that of the bulk. A number of phenomenological explanations for this tendency have been suggested, involving, among other things, differences among the components' surface energies, molar volumes, and heats of solution. From a theoretical standpoint, the complexity of the problem has precluded a simple, unified explanation, thus preventing the development of computational tools that would enable the identification of the driving mechanisms for segregation. In that context, we investigate the problem of surface segregation in a variety of bcc metal alloys by computing dilute-limit heats of segregation using both the quantum-approximate energy method of Bozzolo, Ferrante and Smith (BFS), and all-electron density functional theory. In addition, the composition dependence of the heats of segregation is investigated using a BFS-based Monte Carlo procedure, and, for selected cases of interest, density functional calculations. Results are discussed in the context of a simple picture that describes segregation behavior as the result of a competition between size mismatch and alloying effects
Point defects at the ice (0001) surface
Watkins, Matthew; VandeVondele, Joost; Slater, Ben
2010-01-01
Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938
Stabilization of MgAl 2O 4 spinel surfaces via doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.
Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less
Stabilization of MgAl2O4 spinel surfaces via doping
NASA Astrophysics Data System (ADS)
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.
2016-07-01
Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.
Stabilization of MgAl 2O 4 spinel surfaces via doping
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; ...
2016-02-06
Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
Effect of Various Material Properties on the Adhesive Stage of Fretting
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1974-01-01
Various properties of metals and alloys were studied with respect to their effect on the initial stage of the fretting process, namely adhesion. Crystallographic orientation, crystal structure, interfacial binding energies of dissimiliar metal, segregation of alloy constituents and the nature and structure of surface films were found to influence adhesion. High atomic density, low surface energy grain orientations exhibited lower adhesion than other orientations. Knowledge of interfacial surface binding energies assists in predicting adhesive transfer and wear. Selective surface segregation of alloy constituents accomplishes both a reduction in adhesion and improved surface oxidation characteristics. Equivalent surface coverages of various adsorbed species indicate that some are markedly more effective in inhibiting adhesion than others.
From HADES to PARADISE—atomistic simulation of defects in minerals
NASA Astrophysics Data System (ADS)
Parker, Stephen C.; Cooke, David J.; Kerisit, Sebastien; Marmier, Arnaud S.; Taylor, Sarah L.; Taylor, Stuart N.
2004-07-01
The development of the HADES code by Michael Norgett in the 1970s enabled, for the first time, the routine simulation of point defects in inorganic solids at the atomic scale. Using examples from current research we illustrate how the scope and applications of atomistic simulations have widened with time and yet still follow an approach readily identifiable with this early work. Firstly we discuss the use of the Mott-Littleton methodology to study the segregation of various isovalent cations to the (00.1) and (01.2) surfaces of haematite (agr-Fe2O3). The results show that the size of the impurities has a considerable effect on the magnitude of the segregation energy. We then extend these simulations to investigate the effect of the concentration of the impurities at the surface on the segregation process using a supercell approach. We consider next the effect of segregation to stepped surfaces illustrating this with recent work on segregation of La3+ to CaF2 surfaces, which show enhanced segregation to step edges. We discuss next the application of lattice dynamics to modelling point defects in complex oxide materials by applying this to the study of hydrogen incorporation into bgr-Mg2SiO4. Finally our attention is turned to a method for considering the surface energy of physically defective surfaces and we illustrate its approach by considering the low index surfaces of agr-Al2O3.
Segregation Phenomena in Size-Selected Bimetallic CuNi Nanoparticle Catalysts
Pielsticker, Lukas; Zegkinoglou, Ioannis; Divins, Nuria J.; ...
2017-10-25
Surface segregation, restructuring, and sintering phenomena in size-selected copper–nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile ofmore » the elemental composition of the particles was determined under operando CO 2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. In conclusion, this leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.« less
NASA Technical Reports Server (NTRS)
Ferrante, J.
1972-01-01
Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.
Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol
2015-10-01
We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.
Analysis of Surface and Bulk Behavior in Ni-Pd Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Rondald D.
2003-01-01
The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.
Segregation at the surfaces of CuxPd1-x alloys in the presence of adsorbed S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, James B.; Priyadarshini, Deepika; Gellman, Andrew J.
2012-10-01
The influence of adsorbed S on surface segregation in Cu{sub x}Pd{sub 1 - x} alloys (S/Cu{sub x}Pd{sub 1 - x)} was characterized over a wide range of bulk alloy compositions (x = 0.05 to 0.95) using high-throughput Composition Spread Alloy Film (CSAF) sample libraries. Top-surface and near-surface compositions of the CSAFs were measured as functions of bulk Cu composition, x, and temperature using spatially resolved low energy ion scattering spectroscopy (LEISS) and X-ray photoemission spectroscopy (XPS). Preferential segregation of Cu to the top-surface of the S/Cu{sub x}Pd{sub 1 - x} CSAF was observed at all bulk compositions, x, but themore » extent of Cu segregation to the S/Cu{sub x}Pd{sub 1 - x} surface was lower than the Cu segregation to the surface of a clean Cu{sub x}Pd{sub 1 - x} CSAF, clear evidence of an S-induced “segregation reversal.” The Langmuir–McLean formulation of the Gibbs isotherm was used to estimate the enthalpy and entropy of Cu segregation to the top-surface, ΔH{sub seg}(x) and ΔS{sub seg}(x), at saturation sulfur coverages. While Cu segregation to the top-surface of the clean Cu{sub x}Pd{sub 1 - x} is exothermic (ΔH{sub seg} < 0) for all bulk Cu compositions, it is endothermic (ΔH{sub seg} > 0) for S/Cu{sub x}Pd{sub 1 - x}. Segregation to the S/Cu{sub x}Pd{sub 1 - x} surface is driven by entropy. Changes in segregation patterns that occur upon adsorption of S onto Cu{sub x}Pd{sub 1 - x} appear to be related to formation of energetically favored Pd{single bond}S bonds at the surface, which counterbalance the enthalpic driving forces for Cu segregation to the clean surface.« less
NASA Astrophysics Data System (ADS)
Dai, Zongbei; Borghetti, Patrizia; Mouchaal, Younes; Chenot, Stéphane; David, Pascal; Jupille, Jacques; Cabailh, Gregory; Lazzari, Rémi
2018-06-01
By combining Scanning Tunnelling Microscopy, Low Energy Electron Diffraction and X-ray Photoelectron Spectroscopy, it was found that the surface of A2 random alloy Fe0.85Al0.15(1 1 0) is significantly influenced by the segregation of aluminium but also of carbon bulk impurities. Below ∼ 900 K, carbon segregates in the form of self-organized protruding stripes separated by ∼ 5 nm that run along the [ 0 0 1 ] B bulk direction and cover up to 34% of the surface. Their C 1s spectroscopic signature that is dominated by graphitic carbon peaks around 900 K. Above this temperature, the surface carbon concentration decays by redissolution in the bulk, whereas an intense aluminium segregation is observed giving rise to a hexagonal superstructure. The present findings is interpreted by a competitive segregation between the two elements.
Huang, Jiajia; Liu, Haodong; Zhou, Naixie; An, Ke; Meng, Ying Shirley; Luo, Jian
2017-10-25
Spontaneous and anisotropic surface segregation of W cations in LiMn 1.5 Ni 0.5 O 4 particles can alter the Wulff shape and improve surface stability, thereby significantly improving the electrochemical performance. An Auger electron nanoprobe was employed to identify the anisotropic surface segregation, whereby W cations prefer to segregate to {110} surface facets to decrease its relative surface energy according to Gibbs adsorption theory and subsequently increase its surface area according to Wulff theory. Consequently, the rate performance is improved (e.g., by ∼5-fold at a high rate of 25C) because the {110} facets have more open channels for fast lithium ion diffusion. Furthermore, X-ray photoelectron spectroscopy (XPS) depth profiling suggested that the surface segregation and partial reduction of W cation inhibit the formation of Mn 3+ on surfaces to improve cycling stability via enhancing the cathode electrolyte interphase (CEI) stability at high charging voltages. This is the first report of using anisotropic surface segregation to thermodynamically control the particle morphology as well as enhancing CEI stability as a facile, and potentially general, method to significantly improve the electrochemical performance of battery electrodes. Combining neutron diffraction, an Auger electron nanoprobe, XPS, and other characterizations, we depict the underlying mechanisms of improved ionic transport and CEI stability in high-voltage LiMn 1.5 Ni 0.5 O 4 spinel materials.
Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys
NASA Astrophysics Data System (ADS)
De Clercq, A.; Giorgio, S.; Mottet, C.
2016-02-01
The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.
The influence of CO adsorption on the surface composition of cobalt/palladium alloys
NASA Astrophysics Data System (ADS)
Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.
2016-04-01
Segregation induced by the adsorption of gas phase species can strongly influence the composition of bimetallic surfaces and can therefore play an important role in influencing heterogeneous catalytic reactions. The addition of palladium to cobalt catalysts has been shown to promote Fischer Tropsch catalysis. We investigate the adsorption of CO onto bimetallic CoPd surfaces on Pd{111} using a combination of reflection absorption infrared spectroscopy and medium energy ion scattering. The vibrational frequency of adsorbed CO provides crucial information on the adsorption sites adopted by CO and medium energy ion scattering probes the surface composition before and after CO exposure. We show that cobalt segregation is induced by CO adsorption and rationalise these observations in terms of the strength of adsorption of CO in various surface adsorption sites.
Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings
NASA Astrophysics Data System (ADS)
Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu
2010-06-01
Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.
Luo, Dong; Fang, Shaohua; Tamiya, Yu; Yang, Li; Hirano, Shin-Ichi
2016-08-01
High-voltage layered lithium transition-metal oxides are very promising cathodes for high-energy Li-ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large-scale application of layered lithium transition-metal oxides. In this work, an ultralong life LiMn1/3 Co1/3 Ni1/3 O2 microspherical cathode is prepared by constructing an Mn-rich surface. Its capacity retention ratio at 700 mA g(-1) is as large as 92.9% after 600 cycles. The energy dispersive X-ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as-prepared cathode is attributed to the mitigation of TM-ions segregation. Additionally, it is discovered that layered lithium transition-metal oxide cathodes with an Mn-rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition-metal oxides and will help to the design and development of high-energy cathodes with ultralong life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles.
Wang, Lin-Lin; Johnson, Duane D
2009-10-07
Transition-metal alloyed nanoparticles with core-shell features (shell enrichment by one of the metals) are becoming ubiquitous, from (electro-)catalysis to biomedical applications, due to their size control, performance, biocompatibility, and cost. We investigate 132 binary-alloyed nanoparticle systems (groups 8 to 11 in the Periodic Table) using density functional theory (DFT) and systematically explore their segregation energies to determine core-shell preferences. We find that core-shell preferences are generally described by two independent factors: (1) cohesive energy (related to vapor pressure) and (2) atomic size (quantified by the Wigner-Seitz radius), and the interplay between them. These independent factors are shown to provide general trends for the surface segregation preference for atoms in nanoparticles, as well as semi-infinite surfaces, and give a simple correlation (a "design map") for the alloying and catalytic behavior. Finally, we provide a universal description of core-shell preference via tight-binding theory (band-energy differences) that (i) quantitatively reproduces the DFT segregation energies and (ii) confirms the electronic origins and correlations for core-shell behavior.
First-Principles Study of Mo Segregation in MoNi(111): Effects of Chemisorbed Atomic Oxygen
Yu, Yanlin; Xiao, Wei; Wang, Jianwei; Wang, Ligen
2015-01-01
Segregation at metal alloy surfaces is an important issue because many electrochemical and catalytic properties are directly correlated to the surface composition. We have performed density functional theory calculations for Mo segregation in MoNi(111) in the presence of chemisorbed atomic oxygen. In particular, the coverage dependence and possible adsorption-induced segregation phenomena are addressed by investigating segregation energies of the Mo atom in MoNi(111). The theoretical calculated results show that the Mo atom prefers to be embedded in the bulk for the clean MoNi(111), while it segregates to the top-most layer when the oxygen coverage is thicker than 1/9 monolayer (ML). Furthermore, we analyze the densities of states for the clean and oxygen-chemisorbed MoNi(111), and see a strong covalent bonding between Mo d-band states and O p-states. The present study provides valuable insight for exploring practical applications of Ni-based alloys as hydrogen evolution electrodes. PMID:28787811
NASA Astrophysics Data System (ADS)
Gardella, Joseph A.; Mahoney, Christine M.
2004-06-01
While many XPS and SIMS studies of polymers have detected and quantified segregation of low surface energy blocks or components in copolymers and polymer blends [D. Briggs, in: D.R. Clarke, S. Suresh, I.M. Ward (Eds.), Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, Cambridge, 1998 (Chapter 5).], this paper reports ToF-SIMS studies of direct measurement of the segment length distribution at the surface of siloxane copolymers. These data allow insight into the segregation of particular portions of the oligomeric distribution; specifically, in this study, longer PDMS oligomers segregated at the expense of shorter PDMS chains. We have reported XPS analysis of competitive segregation effects for short PDMS chains [Macromolecules 35 (13) (2002) 5256]. In this study, a series of poly(ureaurethane)-poly(dimethylsiloxane) (PUU-PDMS) copolymers have been synthesized containing varying ratios of G-3 and G-9 (G- X describes the average segment length of the PDMS added), while maintaining a constant overall siloxane weight percentage (10, 30, and 60%). These copolymers were utilized as model systems to study the preferential segregation of certain siloxane segment lengths to the surface over others. ToF-SIMS analysis of PUU-PDMS copolymers has yielded high-mass range copolymer fragmentation patterns containing intact PDMS segments. For the first time, this information is utilized to determine PDMS segment length distributions at the copolymer surface as compared to the bulk. The results show that longer siloxane segment lengths are preferentially segregating to the surface over shorter chain lengths. These results also show the importance of ToF-SIMS and mass spectrometry in the development of new materials containing low molecular weight amino-propyl-terminated siloxanes.
NASA Astrophysics Data System (ADS)
Pereira, Gilberto J.; Castro, Ricardo H. R.; Hidalgo, Pilar; Gouvêa, Douglas
2002-07-01
Surface properties of ceramic powders frequently play an important role in producing high-quality, high-performance, and reliable ceramic products. These properties are related to the surface bond types and interactions with the surroundings. Oxide surfaces generally contain adsorbed hydroxyl groups and modifications in the chemical composition of the surface may be studied by infrared spectroscopy. In this work, we prepared SnO 2 containing Fe or Mg ions by organic chemical route derived from Pechini's method. The prepared powders were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic electrophoretic mobility and surface area determination. Results demonstrated that the studied additives segregate onto the oxide surface and modify the hydroxyl IR bands of the adsorbed hydroxyl groups. These surface modifications change some macroscopic properties of the powder such as the isoelectric point (IEP) in aqueous suspensions and the final specific surface area. The increase of the surface area with additive concentration is supposedly due to the reduction of surface energy of the powders when additives segregate on the powder surface.
NASA Astrophysics Data System (ADS)
Krawczyk, Jaroslaw; Croce, Salvatore; Chakrabarti, Buddhapriya; Tasche, Jos
The surface segregation in polymer mixtures remains a challenging problem for both academic exploration as well as industrial applications. Despite its ubiquity and several theoretical attempts a good agreement between computed and experimentally observed profiles has not yet been achieved. A simple theoretical model proposed in this context by Schmidt and Binder combines Flory-Huggins free energy of mixing with the square gradient theory of wetting of a wall by fluid. While the theory gives us a qualitative understanding of the surface induced segregation and the surface enrichment it lacks the quantitative comparison with the experiment. The statistical associating fluid theory (SAFT) allows us to calculate accurate free energy for a real polymeric materials. In an earlier work we had shown that increasing the bulk modulus of a polymer matrix through which small molecules migrate to the free surface causes reduction in the surface migrant fraction using Schmidt-Binder and self-consistent field theories. In this work we validate this idea by combining mean field theories and SAFT to identify parameter ranges where such an effect should be observable. Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
NASA Astrophysics Data System (ADS)
Lee, Hong-Sub; Park, Chang-Sun; Park, Hyung-Ho
2014-05-01
This study demonstrated that the resistive switching voltage of perovskite manganite material could be controlled by A-site cation substitution in "A" MnO3 perovskite manganite structure. A partial substitution of La3+ in La0.7Sr0.3MnO3 with smaller cation Gd3+ induced A-site vacancy of the largest Sr2+ cation with surface segregation of SrOy due to ionic size mismatch, and the induced vacancies reduced migration energy barrier. The operating voltage decreased from 3.5 V to 2.5 V due to a favorable condition for electrochemical migration and redox of oxygen ions. Moreover, surface-segregated SrOy was enhanced with Gd-substitution and the SrOy reduced Schottky-like barrier height and resistive switching ratio from the potential drop and screening effect. The relationship between A-site vacancy generation resulting in surface segregation of SrOy and resistive switching behavior was also investigated by energy resolved x-ray photoelectron spectroscopy, O 1s near edge x-ray absorption spectroscopy, and current voltage measurement.
Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites.
Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae
2017-06-28
In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn 2 O 5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution.
Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites
Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae
2017-01-01
In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn2O5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution. PMID:28656965
Guisbiers, Grégory; Mendoza-Cruz, Rubén; Bazán-Díaz, Lourdes; Velázquez-Salazar, J Jesús; Mendoza-Perez, Rafael; Robledo-Torres, José Antonio; Rodriguez-Lopez, José-Luis; Montejano-Carrizales, Juan Martín; Whetten, Robert L; José-Yacamán, Miguel
2016-01-26
The alloy Au-Ag system is an important noble bimetallic phase, both historically (as "Electrum") and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a "tilting" effect on the solidus-liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au-Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment.
Mechanism for selective growth in electrical steel
NASA Astrophysics Data System (ADS)
Oh, Eun Jee; Heo, Nam Hoe; Kwon, Se Kyun; Koo, Yang Mo
2018-01-01
Through the competitive selective growth process between {100}, {110}, and {111} grains during final annealing which is governed by the primary grain size and the surface segregation concentration of sulfur, the sharp {110}<001> annealing texture can be developed in a C-and Al-free Fe-3%Si-0.1%Mn electrical steel. Generally, the selective growth of the {110} grains occurs actively under the low surface segregation concentration of sulfur. In spite of the surface energy disadvantage, the selective growth of a {hkl} grain can however occur, if the {hkl} grain size is larger than the critical grain size linearly proportional to the strip thickness.
NASA Astrophysics Data System (ADS)
Varadharajan, Ramanathan; Leermakers, Frans A. M.
2018-01-01
Bending rigidities of tensionless balanced liquid-liquid interfaces as occurring in microemulsions are predicted using self-consistent field theory for molecularly inhomogeneous systems. Considering geometries with scale invariant curvature energies gives unambiguous bending rigidities for systems with fixed chemical potentials: the minimal surface I m 3 m cubic phase is used to find the Gaussian bending rigidity κ ¯, and a torus with Willmore energy W =2 π2 allows for direct evaluation of the mean bending modulus κ . Consistent with this, the spherical droplet gives access to 2 κ +κ ¯. We observe that κ ¯ tends to be negative for strong segregation and positive for weak segregation, a finding which is instrumental for understanding phase transitions from a lamellar to a spongelike microemulsion. Invariably, κ remains positive and increases with increasing strength of segregation.
NASA Astrophysics Data System (ADS)
Qiu, Huatan
A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on the temperature and surface removal rate. The Mo-Au GS alloy could be effective at elevated temperature as the potential grazing mirror as EUV collector optics.
Feng, Zhenxing; Hong, Wesley T; Fong, Dillon D; Lee, Yueh-Lin; Yacoby, Yizhak; Morgan, Dane; Shao-Horn, Yang
2016-05-17
Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal-air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1-xSrxCoO3-δ and (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1-ySry)2CoO4±δ/La1-xSrxCo0.2Fe0.8O3-δ. Sr enrichment in many electrocatalysts, such as La1-xSrxMO3-δ (M = Cr, Co, Mn, or Co and Fe) and Sm1-xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst's activity while maintaining stability to design efficient, cost-effective electrocatalysts.
Definition and effect of chemical properties of surfaces in friction, wear, and lubrication
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
Chemical properties relative to their role in adhesion, friction, wear and lubrication discussed in this paper will include: (1) adsorption, both physical and chemical; (2) orientation of the solid as well as the lubricant; (3) surface energy; (4) surface segregation; (5) surface versus bulk metallurgical effects; (6) electronic nature of the surface; and (7) bonding mechanisms.
Surface properties of functional polymer systems
NASA Astrophysics Data System (ADS)
Wong, Derek
Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was confined to the top 2--3 nm of the surface. Contact angle results showed also that the reorganization process proceeded as a function of (time) 1/2, indicating that it is likely diffusion controlled. The magnitudes of the activation energies determined from the experimental data according to the Arhenius equation, suggest that the process is possibly correlated with known bulk beta and gamma relaxations in the polymer.
Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco
2017-03-01
Observations by ISO and Spitzer toward young stellar objects showed that CO{sub 2} segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO{sub 2} along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO{sub 2} molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO{sub 2} diffuses significantly onmore » an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO{sub 2} on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 10{sup 12} s{sup −1}. This energy should also apply to the diffusion of CO{sub 2} on the wall of pores. The binding energy of CO{sub 2} from CO{sub 2} clusters and CO{sub 2} from H{sub 2}O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO{sub 2}–CO{sub 2} interaction is stronger than CO{sub 2}–H{sub 2}O interaction, in agreement with the experimental finding that CO{sub 2} does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H{sub 2}O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO{sub 2} on the icy mantles of dust grains.« less
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; Gago, R.; Palomares, F. J.; Mücklich, A.; Vinnichenko, M.; Vázquez, L.
2012-08-01
The formation and dynamics of nanopatterns produced on Si(100) surfaces by 40-keV Ar+ oblique (α = 60°) bombardment with concurrent Fe codeposition have been studied. Morphological and chemical analysis has been performed by ex situ atomic force microscopy, Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and scanning and transmission electron microscopies. During irradiation, Fe atoms incorporated into the target surface react with Si to form silicides, a process enhanced at this medium-ion energy range. The silicides segregate at the nanoscale from the early irradiation stages. As the irradiation proceeds, a ripple pattern is formed without any correlation with silicide segregation. From the comparison with the pattern dynamics reported previously for metal-free conditions, it is demonstrated that the metal incorporation alters both the pattern dynamics and the morphology. Although the pattern formation and dynamics are delayed for decreasing metal content, once ripples emerge, the same qualitative pattern of morphological evolution is observed for different metal content, resulting in an asymptotic saw-tooth-like facetted surface pattern. Despite the medium ion energy employed, the nanopatterning process with concurrent Fe deposition can be explained by those mechanisms proposed for low-ion energy irradiations such as shadowing, height fluctuations, silicide formation and segregation, ensuing composition dependent sputter rate, and ion sculpting effects. In particular, the interplay between the ion irradiation and metal flux geometries, differences in sputtering rates, and the surface pattern morphology produces a dynamic compositional patterning correlated with the evolving morphological one.
NASA Astrophysics Data System (ADS)
Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.
1996-03-01
Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.
SFG and AFM Studies of Polymer Surface Monolayers
NASA Astrophysics Data System (ADS)
Somorjai, Gabor A.
2003-03-01
Sum frequency generation vibrational spectroscopy and atomic force microscopy techniques were utilized to study the structure and composition of polymer surfaces ranging from polyethylene and polypropylene to copolymers of polyurethane and polystyrene. The surface methyl groups aligned perpendicular to the surface above the glass transition temperature of polypropylene. Large side groups such as the phenyl group on polystyrene is also near the surface normal at the polymer-air interface. At the air interface hydrophobic groups are dominant on the polymer surface while at solid-water interface hydrophilic groups segregate to the surface. Minimizing surface energy is the cause of readjusting the surface composition at polymer-water interfaces as compared to polymer-air interfaces. Upon stretching the soft component of two-component polymer systems segregates to the surface and both the surface structure and the surface composition undergo reversible or irreversible changes depending on the magnitude of the stretch. Since the heart beat forces bio-polymers to stretch over 40 million times a year the molecular behavior due to stretching has important physiological consequences.
NASA Astrophysics Data System (ADS)
Moseley, Michael; Lowder, Jonathan; Billingsley, Daniel; Doolittle, W. Alan
2010-11-01
The surface kinetics of InGaN alloys grown via metal-modulated epitaxy (MME) are explored in combination with transient reflection high-energy electron diffraction intensities. A method for monitoring and controlling indium segregation in situ is demonstrated. It is found that indium segregation is more accurately associated with the quantity of excess adsorbed metal, rather than the metal-rich growth regime in general. A modified form of MME is developed in which the excess metal dose is managed via shuttered growth, and high-quality InGaN films throughout the miscibility gap are grown.
Critical assessment of Pt surface energy - An atomistic study
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo
2018-04-01
Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.
NASA Astrophysics Data System (ADS)
Yakovenko, Victor
2010-03-01
We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).
NASA Astrophysics Data System (ADS)
Yoshitake, Michiko; Bera, Santanu; Yamauchi, Yasuhiro; Song, Weijie
2003-07-01
Cu-based alloys have been used for electric cables for long time. In the field of microelectronics, Al had been used for electrical wiring. However, it became clear that electromigration occurs in Al that causes breaking of wires in minute wirings. Due to this problem, Cu wiring is used in most advanced microprocessors. Cu metal is more corrosive than Al and Cu-based alloys with a small amount of Al is expected to solve problems both on electromigration and corrosion. The initial stage of corrosion is oxygen adsorption. We studied surface segregation of Al on Cu-9% Al(111) and oxygen adsorption on the surface with/without Al segregation in ultrahigh vacuum by low energy electron diffraction (LEED) and Auger electron spectroscopy. It was found that Al segregates on the surface to form (√3×√3)R30° structure and the structure vanishes above 595 K to give (1×1) structure while Al still segregates. The specimen was exposed to oxygen at different temperatures. The amount of oxygen uptake was not structure dependent but temperature dependent. Below 595 K, only a small amount of oxygen adsorbed. Between 595 and 870 K, oxygen adsorbed surface showed amorphous LEED pattern. The specimen was annealed at 1070 K after oxygen exposure. When the specimen was exposed oxygen below 870 K, the oxygen Auger intensity decreased significantly by annealing and the annealed surface showed (√3×√3)R30° structure at room temperature. When the specimen was exposed to oxygen at 870 K, diffused spots developed newly in LEED pattern but the pattern disappeared after 1070 K annealing while oxygen Auger intensity remained almost constant. Exposing the specimen to oxygen at 995 K resulted in clear spots in the LEED pattern, which were attributed to the (7/√3×7√3)R30° structure.
Effects of He implantation on radiation induced segregation in Cu-Au and Ni-Si alloys
NASA Astrophysics Data System (ADS)
Iwase, A.; Rehn, L. E.; Baldo, P. M.; Funk, L.
Effects of He implantation on radiation induced segregation (RIS) in Cu-Au and Ni-Si alloys were investigated using in situ Rutherford backscattering spectrometry during simultaneous irradiation with 1.5-MeV He and low-energy (100 or 400-keV) He ions at elevated temperatures. RIS during single He ion irradiation, and the effects of pre-implantation with low-energy He ions, were also studied. RIS near the specimen surface, which was pronounced during 1.5-MeV He single-ion irradiation, was strongly reduced under low-energy He single-ion irradiation, and during simultaneous irradiation with 1.5-MeV He and low-energy He ions. A similar RIS reduction was also observed in the specimens pre-implanted with low-energy He ions. The experimental results indicate that the accumulated He atoms cause the formation of small bubbles, which provide additional recombination sites for freely migrating defects.
Theoretical study of high temperature behavior of Pb and Pb-base alloy surfaces
NASA Astrophysics Data System (ADS)
Landa, Alexander Ilyich
1998-11-01
A recent study of a Pb-Bi-Ni alloy reported a strong co-segregation of Bi and Ni at the alloy surface. The nature of this surface phenomenon has been studied by means of modern ab initio and classical simulation techniques. It was useful to begin by a study of the underlying binaries. We have performed ab initio calculations of the segregation profiles at the (111), (100) and (110) surfaces of random Pbsb{95}Bisb{05} alloys by means of the coherent potential approximation within the context of a tight-binding linear muffin-tin-orbitals method. We have found the segregation profiles to be oscillatory (this effect is most pronounced for the (111) surface) with a strong preference for Bi to segregate to the first atom layer. We have performed Monte Carlo simulations, employing Finnis-Sinclair-type empirical many-body potentials and computed the solubility limits of Pb-Bi and Pb-Ni alloys, as well as the segregation profiles at the (111) surfaces of Pbsb{95}Bisb{05} and Pb-Ni alloys. For Pb-Bi alloys, the concentration profiles have also been found to be oscillatory. Calculations on Pb-Ni showed that within the solubility limit of Ni in Pb, Ni did not segregate to the Pb(111) outermost surface layer. In the ternary Pbsb{95}Bisb{05}{+}Ni alloy ab initio calculations detected a tendency for Ni to segregate to the subsurface from layer due its strong interaction with Bi. Calculations on Pb-Bi-Ni showed strong segregation of Ni to the subsurface atom layer, accompanied by co-segregation of Bi to several of the outermost atom layers. We have also focused our attention on the high temperature behavior of the pure Pb(110) metal surface. Molecular dynamics simulations incorporating a many-body potential have been used to investigate the atomic structure and dynamics of the Pb(110) surface in the range from room temperature up to the bulk melting point. The surface starts to disorder approximately at 360 K via the generation of vacancies and the formation of an adlayer. At about 520 K, the onset of a quasiliquid region at the surface has been observed. The disordering of the surface beyond 520 K was described as premelting with a gradually developing liquid-like film, the thickness of which increased proportionally to 1n(1-T/Tsb{M}) as the bulk melting temperature (Tsb{M}) was approached. The dynamics of the equilibrium crystal-melt interface at the bulk melting point has been also studied: the interface exhibits fluctuating atomic-scale (111) facets, and, the two outermost quasiliquid layers retain a considerable degree of short range order (surface layering). The roughening transition on the Pb(110) surface has been studied using a combination of lattice-gas Monte Carlo and molecular-dynamics methods in conjunction with the same many-body glue potential. Lattice-gas Monte Carlo simulations yield a roughening transition temperature or approximately Tsbsp{R}{LGMC}≈ 1100 K. Molecular-dynamics simulations. which account for surface relaxation and lattice vibrations, detected the roughening transition at Tsbsp{R}{MD}≈ 545 K, above the high-resolution low-energy diffraction measurements of Tsbsp{R}{EXP} ≈ 415 K. The anisotropic body-centered solid-on-solid model has been used in the interpretation of these results. The time scale of local roughening was estimated approximately {˜}0.6 ns at the calculated roughening transition temperature. (Abstract shortened by UMI.)
Li, Yifeng; Zhang, Wenqiang; Zheng, Yun; Chen, Jing; Yu, Bo; Chen, Yan; Liu, Meilin
2017-10-16
Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal-air batteries.
Theoretical investigation of stabilities and optical properties of Si12C12 clusters
NASA Astrophysics Data System (ADS)
Duan, Xiaofeng F.; Burggraf, Larry W.
2015-01-01
By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si-C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C-C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si-C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galati, Elizabeth; Tebbe, Moritz; Querejeta-Fernández, Ana
Chemically and topographically patterned nanoparticles (NPs) with dimensions on the order of tens of nanometers have a diverse range of applications and are a valuable system for fundamental research. Recently, thermodynamically controlled segregation of a smooth layer of polymer ligands into pinned micelles (patches) offered an approach to nanopatterning of polymer-functionalized NPs. Control of the patch number, size, and spatial distribution on the surface of spherical NPs has been achieved, however, the role of NP shape remained elusive. Here, we report the role of NP shape, namely, the effect of the local surface curvature, on polymer segregation into surface patches.more » For polymer-functionalized metal nanocubes, we show experimentally and theoretically that the patches form preferentially on the high-curvature regions such as vertices and edges. An in situ transformation of the nanocubes into nanospheres leads to the change in the number and distribution of patches; a process that is dominated by the balance between the surface energy and the stretching energy of the polymer ligands. The experimental and theoretical results presented in this work are applicable to surface patterning of polymer-capped NPs with different shapes, which then enables the exploration of patch-directed self-assembly, as colloidal surfactants, and as templates for the synthesis of hybrid nanomaterials.« less
Investigation Of A Tin-Lithium Alloy As A Liquid Plasma-Facing Material
NASA Astrophysics Data System (ADS)
Sandefur, Heather; Ruzic, David; Kolasinski, Robert; Buchenauer, Dean; Sandia National Laboratories Collaboration; University of Illinois Collaboration
2017-10-01
Sn-Li is a low melting-point alloy that has been identified as a material with favorable performance in plasma material interaction studies. While lithium is a low Z material with a demonstrated ability to absorb impinging ions, pure lithium is plagued by high evaporation rates in the liquid phase. The Sn-Li alloy is a more stable alternative that provides a lower rate of evaporative flux due to the high vapor pressure of tin. In the liquid phase, the bulk segregation of lithium to the surface of the material has also been observed. While the alloy is of considerable interest, little data has been collected on its surface chemistry in a plasma environment. In order to expand the existing body of knowledge in this area, samples of an 80 percent Sn-20 percent Li alloy were prepared and analyzed in order to assess the surface composition and degree of lithium segregation in the liquid phase. The Angle-Resolved Ion Energy Spectrometer (ARIES) at Sandia National Laboratories was used to probe the surfaces of the alloy using the low energy ion scattering method. The lithium coverage at the surface was measured, and the material's affinity for hydrogen chemisorption was investigated.
A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface
NASA Astrophysics Data System (ADS)
Hoppe, Sandra; Müller, Stefan
2017-12-01
The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... LVRWB10B3980] Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy...) application for the Ocotillo Express Wind Project. The public land contained in this segregation totals approximately 12,436 acres. DATES: Effective Date: This segregation is effective on February 13, 2012. FOR...
NASA Technical Reports Server (NTRS)
Ferrante, J.
1973-01-01
Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhenxing; Yacoby, Yuzhak; Gadre, Milind
2014-01-01
Heterostructured materials have shown unusual physiochemical properties at the interfaces such as two dimensional electron gas systems, high-temperature superconductivity, and enhanced catalysis. Here we report the first atomic-scale evidence of the microscopic structure of a perovskite/Ruddlesden-Popper heterostructure (having La1-xSrxCoO3- /(La1-ySry)2CoO4 ), and anomalous strontium segregation at the interface and in the Ruddlesden-Popper structure using direct X-ray methods combined with ab initio calculations. The remarkably enhanced activity of such heterostructured surfaces relative to bulk perovskite and Ruddlesden-Popper oxides previously shown for oxygen electrocatalysis at elevated temperatures can be attributed to reduced thermodynamic penalty of oxygen vacancies in the oxide structure associatedmore » with Sr segregation observed in the heterostructure. Our findings provide insights for the design of highly active catalysts for energy conversion and storage applications.« less
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; Vázquez, L.; Alves, L. C.; Corregidor, V.; Romero, M. F.; Pantellini, A.; Lanzieri, C.; Muñoz, E.
2014-05-01
The lateral and in-depth metal segregation of Au/Ni/Al/Ti ohmic contacts for GaN-based high electron mobility transistors were analysed as a function of the Al barrier's thickness (d). The surface of the contacts, characterized by atomic force and scanning electron microscopy, shows a transition from a fractal network of rough and complex island-like structures towards smoother and cauliflower-like fronts with increasing d. Rutherford backscattering spectrometry and energy dispersive x-ray spectroscopy (EDXS) at different energies were used to confirm the in-depth intermixing of the metals relevant for the final contact resistance. EDXS mapping reveals a significant lateral segregation too, where the resulting patterns depend on two competing NiAlx and AuAlx phases, the intermixing being controlled by the available amount of Al. The optimum ohmic resistance is not affected by the patterning process, but is mainly dependent on the partial interdiffusion of the metals.
Two critical periods in early visual cortex during figure-ground segregation.
Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F
2012-11-01
The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.
Two critical periods in early visual cortex during figure–ground segregation
Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F
2012-01-01
The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure–ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure–ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure–ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure–ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96–119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236–259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure–ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure–ground segregation such as surface segregation. PMID:23170239
Subsurface segregation of yttria in yttria stabilized zirconia
NASA Astrophysics Data System (ADS)
de Ridder, M.; van Welzenis, R. G.; van der Gon, A. W. Denier; Brongersma, H. H.; Wulff, S.; Chu, W.-F.; Weppner, W.
2002-09-01
The segregation behavior in 3 and 10 mol % polycrystalline yttria stabilized zirconia (YSZ), calcined at temperatures ranging from 300 to 1600 degC, is characterized using low-energy ion scattering (LEIS). In order to be able to separate the Y and Zr LEIS signals, YSZ samples have been prepared using isotopically enriched 94ZrO2 instead of natural zirconia. The samples are made via a special precipitation method at a low temperature. The segregation to the outermost surface layer is dominated by impurities. The increased impurity levels are restricted to this first layer, which underlines the importance of the use of LEIS for this study. For temperatures of 1000 degC and higher, the oxides of the impurities Na, Si, and Ca even cover the surface completely. The performance of a device like the solid oxide fuel cell which has an YSZ electrolyte and a working temperature around 1000 degC, will, therefore, be strongly hampered by these impurities. The reduction of impurities, to prevent accumulation at the surface, will only be effective if the total impurity bulk concentration can be reduced below the 10 ppm level. Due to the presence of the impurities, yttria cannot accumulate in the outermost layer. It does so, in contrast to the general belief, in the subsurface layer and to much higher concentrations than the values reported previously. The difference in the interfacial free energies of Y2O3 and ZrO2 is determined to be -21plus-or-minus3 kJ/mol.
Segregation effects during solidification in weightless melts
NASA Technical Reports Server (NTRS)
Li, C.
1973-01-01
Two types of melt segregation effects were studied: (1) evaporative segregation, or segregation due to surface evaporation; and (2) freezing segregation, or segregation due to liquid-solid phase transformation. These segregation effects are closely related. In fact, evaporative segregation always precedes freezing segregation to some degree and must often be studied prior to performing meaningful solidification experiments. This is particularly true since evaporation may cause the melt composition, at least at the critical surface regions or layers to be affected manyfold within seconds so that the surface region or layer melting point and other thermophysical properties, nucleation characteristics, base for undercooling, and critical velocity to avoid constitutional supercooling, may be completely unexpected. An important objective was, therefore, to develop the necessary normal evaporation equations for predicting the compositional changes within specified times at temperature and to correlate these equations with actual experimental data collected from the literature.
Shape-Specific Patterning of Polymer-Functionalized Nanoparticles
Galati, Elizabeth; Tebbe, Moritz; Querejeta-Fernández, Ana; ...
2017-05-01
Chemically and topographically patterned nanoparticles (NPs) with dimensions on the order of tens of nanometers have a diverse range of applications and are a valuable system for fundamental research. Recently, thermodynamically controlled segregation of a smooth layer of polymer ligands into pinned micelles (patches) offered an approach to nanopatterning of polymer-functionalized NPs. Control of the patch number, size, and spatial distribution on the surface of spherical NPs has been achieved, however, the role of NP shape remained elusive. Here, we report the role of NP shape, namely, the effect of the local surface curvature, on polymer segregation into surface patches.more » For polymer-functionalized metal nanocubes, we show experimentally and theoretically that the patches form preferentially on the high-curvature regions such as vertices and edges. An in situ transformation of the nanocubes into nanospheres leads to the change in the number and distribution of patches; a process that is dominated by the balance between the surface energy and the stretching energy of the polymer ligands. The experimental and theoretical results presented in this work are applicable to surface patterning of polymer-capped NPs with different shapes, which then enables the exploration of patch-directed self-assembly, as colloidal surfactants, and as templates for the synthesis of hybrid nanomaterials.« less
Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A
2018-05-29
In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.
Helium segregation on surfaces of plasma-exposed tungsten
Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; ...
2016-01-21
Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less
Helium segregation on surfaces of plasma-exposed tungsten
NASA Astrophysics Data System (ADS)
Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.
2016-02-01
We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1 ⩽ n ⩽ 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.
Ditto, Jeffrey; Merrill, Devin R.; Mitchson, Gavin; ...
2017-09-06
The discovery of emergent phenomena in 2D materials has sparked substantial research efforts in the materials community. A significant experimental challenge for this field is exerting atomistic control over the structure and composition of the constituent 2D layers and understanding how the interactions between layers drive both structure and properties. While no segregation for single bilayers was observed, segregation of Pb to the surface of three bilayer thick PbSe–SnSe alloy layers was discovered within [(Pb xSn 1–xSe) 1+δ] n(TiSe 2) 1 heterostructures using electron microscopy. This segregation is thermodynamically favored to occur when Pb xSn 1–xSe layers are interdigitated withmore » TiSe 2 monolayers. DFT calculations indicate that the observed segregation depends on what is adjacent to the Pb xSn 1–xSe layers. As a result, the interplay between interface- and volume-free energies controls both the structure and composition of the constituent layers, which can be tuned using layer thickness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditto, Jeffrey; Merrill, Devin R.; Mitchson, Gavin
The discovery of emergent phenomena in 2D materials has sparked substantial research efforts in the materials community. A significant experimental challenge for this field is exerting atomistic control over the structure and composition of the constituent 2D layers and understanding how the interactions between layers drive both structure and properties. While no segregation for single bilayers was observed, segregation of Pb to the surface of three bilayer thick PbSe–SnSe alloy layers was discovered within [(Pb xSn 1–xSe) 1+δ] n(TiSe 2) 1 heterostructures using electron microscopy. This segregation is thermodynamically favored to occur when Pb xSn 1–xSe layers are interdigitated withmore » TiSe 2 monolayers. DFT calculations indicate that the observed segregation depends on what is adjacent to the Pb xSn 1–xSe layers. As a result, the interplay between interface- and volume-free energies controls both the structure and composition of the constituent layers, which can be tuned using layer thickness.« less
NASA Astrophysics Data System (ADS)
Schulthess, T.; Monnier, R.; Crampin, S.
1994-12-01
First-principles results are presented for the effective cluster interactions at the surface of a random Ni-10 at. % Al alloy. The derivation is based on an extension of the generalized perturbation method to semi-infinite inhomogeneous binary alloys, using a layer version of the Korringa-Kohn-Rostocker multiple-scattering approach in conjunction with the single-site coherent potential approximation to compute the self-consistent electronic structure of the system. When applied to the bulk, the method yields effective pair interactions that have the full point-group symmetry of the lattice to a very high level of numerical accuracy, despite the fact that intra- and interlayer couplings (scattering-path operators) are treated differently, and which are in perfect agreement with those of a recent three-dimensional treatment. Besides the pair terms, a selected class of triplet and quadruplet interactions are calculated, as well as the point interactions induced by the presence of the surface. The value of the latter in the first lattice plane is strongly exaggerated in our approach, leading to a complete segregation of the minority species to the surface. Using a value corresponding to the difference in the surface energies of the pure components for this term leads to the observed Al concentration of ~=25% at the surface. Possible reasons for the shortcomings of the theory are analyzed, and test calculations for the well studied Cu-Ni system show that the free energy of the semi-infinite alloy cannot be approximated by the sum over the single-particle band energies, once charge self-consistency is enforced at the surface.
Surface segregation on Fe3%Si0.04%VC(100) single crystal surfaces
NASA Astrophysics Data System (ADS)
Uebing, C.; Viefhaus, H.
1990-10-01
Surface segregation phenomena on (100) oriented single crystal surfaces of the ferritic Fe-3%Si-0.04%V-C alloy were investigated by AES and LEED. At temperatures below 635 °C vanadium and carbon cosegregation is observed after prolonged heating. At thermodynamic equilibrium the substrate surface is saturated with the binary surface compound VC. The two-dimensional VC is epitaxially arranged on the substrate surface as indicated by LEED investigations. Its structure corresponds to the (100) plane of the three-dimensional VC with rocksalt structure. Sharp above 635 °C the surface compound VC is dissolved into the bulk. At higher temperatures the substrate surface is covered with segregated silicon forming a c(2 × 2) structure. This surface phase transition is reversible. Because of the low concentration and slow diffusion of vanadium, non-equilibrium surface states are formed as intermediates upon segregation of silicon and carbon. Below 500 °C a disordered graphite layer with a characteristical asymmetrical C Auger peak is observed on the substrate surface. Above 500 °C carbon segregation leads to the formation of an ordered c(2 × 2) structure with a symmetrical C Auger peak being characteristic for carbidic or atomically adsorbed species. At increasing temperatures silicon segregation takes place leading to a c(2 × 2) structure. Between silicon and carbon site competition is effective.
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
Surface segregation in binary mixtures of imidazolium-based ionic liquids
NASA Astrophysics Data System (ADS)
Souda, Ryutaro
2010-09-01
Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf 2N -) is enriched at the surface relative to hexafluorophosphate (PF 6-). The surface of an equimolar mixture of Li[Tf 2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6]) has a nominal composition of [bmim][Tf 2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yang; Ludwig, Karl F.; Woicik, Joseph C.
2016-10-12
Strontium doped lanthanum cobalt ferrite (LSCF) is a widely used cathode material due to its high electronic and ionic conductivity, and reasonable oxygen surface exchange coefficient. However, LSCF can have long-term stability issues such as surface segregation of Sr during solid oxide fuel cell (SOFC) operation, which can adversely affect the electrochemical performance. Thus, understanding the nature of the Sr surface segregation phenomenon, and how it is affected by the composition of LSCF and strain are critical. In this research, heteroepitaxial thin films of La 1-x Sr xCo 0.2Fe 0.8O 3 - with varying Sr content (x = 0.4, 0.3,more » 0.2) were deposited by pulsed laser deposition (PLD) on single crystal NdGaO 3, SrTiO 3 and GdScO 3 substrates, leading to different levels of strain in the films. The extent of Sr segregation at the film surface was quantified using synchrotron-based total reflection x-ray fluorescence (TXRF), and atomic force microscopy (AFM). The electronic structure of the Sr-rich phases formed on the surface was investigated by hard X-ray photoelectron spectroscopy (HAXPES). The extent of Sr segregation was found to be a function of the Sr content in bulk. Lowering the Sr content from 40% to 30% reduced the surface segregation, but further lowering the Sr content to 20% increased the segregation. The strain of LSCF thin films on various substrates was measured using high-resolution x-ray diffraction (HRXRD) and the Sr surface segregation was found to be reduced with compressive strain and enhanced with tensile strain present within the thin films. A model was developed correlating the Sr surface segregation with Sr content and strain effects to explain the experimental results.« less
Surface Composition of NiPd Alloys
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Khalil, Joe; Bozzolo, Guillermo; Gray, Hugh R. (Technical Monitor)
2002-01-01
Surface segregation in Ni-Pd alloys has been studied using the BFS method for alloys. Not only does the method predict an oscillatory segregation profile but it also indicates that the number of Pd-enriched surface planes can vary as a function of orientation. The segregation profiles were computed as a function of temperature, crystal face, and composition. Pd enrichment of the first layer is observed in (111) and (100) surfaces, and enrichment of the top two layers occurs for (110) surfaces. In all cases, the segregation profile shows oscillations that are actually related to weak ordering tendencies in the bulk. An atom-by-atom analysis was performed to identify the competing mechanisms leading to the observed surface behaviors. Large-scale atomistic simulations were also performed to investigate the temperature dependence of the segregation profiles as well as for analysis of the bulk structures. Finally, the observed surface behaviors are discussed in relation to the bulk phase structure of Ni-Pd alloys, which exhibit a tendency to weakly order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhifallah, Marwa; Université de Gabes, Unité de recherche environnement, Catalyse et Analyse des Procédés, 6072 Gabes; Dhouib, Adnene
2016-07-14
The surface composition of bimetallics can be strongly altered by adsorbing molecules where the metal with the strongest interaction with the adsorbate segregates into the surface. To investigate the effect of reactive gas on the surface composition of Au–Cu alloy, we examined by means of density functional theory to study the segregation behavior of copper in gold matrices. The adsorption mechanisms of CO, NO, and O{sub 2} gas molecules on gold, copper, and gold-copper low index (111), (100), and (110) surfaces were analyzed from energetic and electronic points of view. Our results show a strong segregation of Cu toward themore » (110) surface in the presence of all adsorbed molecules. Interestingly, the Cu segregation toward the (111) and (100) surface could occur only in the presence of CO and at a lower extent in the presence of NO. The analysis of the electronic structure highlights the different binding characters of adsorbates inducing the Cu segregation.« less
NASA Technical Reports Server (NTRS)
Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.
1991-01-01
Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-11-12
Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configurationmore » was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.« less
NASA Astrophysics Data System (ADS)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-11-01
Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to τ=1.38(0.21)h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeters, Bob, E-mail: bob.schoeters@uantwerpen.be; IMEC, Kapeldreef 75, B-3001 Leuven; Leenaerts, Ortwin, E-mail: ortwin.leenaerts@uantwerpen.be
We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO{sub 2} core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the hostmore » atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO{sub 2} NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO{sub 2} core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.« less
NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films
2010-01-01
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...and compared with those of homopolymer and random copolymer controls . The carbon atoms from the relatively high surface energy phenyl groups were...e Chimica Industriale and UdR Pisa INSTM, Universita di Pisa, 56126 Pisa, Italy, ^Department of Materials, University of California, Santa Barbara
Surface Characterization of Polymer Blends by XPS and ToF-SIMS
Chan, Chi Ming; Weng, Lu-Tao
2016-01-01
The surface properties of polymer blends are important for many industrial applications. The physical and chemical properties at the surface of polymer blends can be drastically different from those in the bulk due to the surface segregation of the low surface energy component. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary mass spectrometry (ToF-SIMS) have been widely used to characterize surface and bulk properties. This review provides a brief introduction to the principles of XPS and ToF-SIMS and their application to the study of the surface physical and chemical properties of polymer blends. PMID:28773777
Growth model and structure evolution of Ag layers deposited on Ge films.
Ciesielski, Arkadiusz; Skowronski, Lukasz; Górecka, Ewa; Kierdaszuk, Jakub; Szoplik, Tomasz
2018-01-01
We investigated the crystallinity and optical parameters of silver layers of 10-35 nm thickness as a function 2-10 nm thick Ge wetting films deposited on SiO 2 substrates. X-ray reflectometry (XRR) and X-ray diffraction (XRD) measurements proved that segregation of germanium into the surface of the silver film is a result of the gradient growth of silver crystals. The free energy of Ge atoms is reduced by their migration from boundaries of larger grains at the Ag/SiO 2 interface to boundaries of smaller grains near the Ag surface. Annealing at different temperatures and various durations allowed for a controlled distribution of crystal dimensions, thus influencing the segregation rate. Furthermore, using ellipsometric and optical transmission measurements we determined the time-dependent evolution of the film structure. If stored under ambient conditions for the first week after deposition, the changes in the transmission spectra are smaller than the measurement accuracy. Over the course of the following three weeks, the segregation-induced effects result in considerably modified transmission spectra. Two months after deposition, the slope of the silver layer density profile derived from the XRR spectra was found to be inverted due to the completed segregation process, and the optical transmission spectra increased uniformly due to the roughened surfaces, corrosion of silver and ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge-Ge bonds are still present.
Nishimori, Keisuke; Kitahata, Shigeru; Nishino, Takashi; Maruyama, Tatsuo
2018-05-10
Controlling the surface properties of solid polymers is important for practical applications. We here succeeded in controlling the surface segregation of polymers to display carboxy groups on an outermost surface, which allowed the covalent immobilization of functional molecules via the carboxy groups on a substrate surface. Random methacrylate-based copolymers containing carboxy groups, in which carboxy groups were protected with perfluoroacyl (Rf) groups, were dip-coated on acrylic substrate surfaces. X-ray photoelectron spectroscopy and contact-angle measurements revealed that the Rf groups were segregated to the outermost surface of the dip-coated substrates. The Rf groups were removed by hydrolysis of the Rf esters in the copolymers, resulting in the display of carboxy groups on the surface. The quantification of carboxy groups on a surface revealed that the carboxy groups were reactive to a water-soluble solute in aqueous solution. The surface segregation was affected by the molecular structure of the copolymer used for dip-coating.
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
NASA Astrophysics Data System (ADS)
Kurban, Mustafa; Erkoç, Şakir
2017-04-01
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.
Zhou, Guoli; Li, Pan; Ma, Qingmin; Tian, Zhixue; Liu, Ying
2018-03-14
Grain boundaries (GBs) can be used as traps for solute atoms and defects, and the interaction between segregants and GBs is crucial for understanding the properties of nanocrystalline materials. In this study, we have systematically investigated the Pt segregation and Pt-oxygen vacancies interaction at the ∑3 (111) GB in ceria (CeO 2 ). The Pt atom has a stronger tendency to segregate to the ∑3 (111) GB than to the (111) and (110) free surfaces, but the tendency is weaker than to (112) and (100). Lattice distortion plays a dominant role in Pt segregation. At the Pt-segregated-GB (Pt@GB), oxygen vacancies prefer to form spontaneously near Pt in the GB region. However, at the pristine GB, oxygen vacancies can only form under O-poor conditions. Thus, Pt segregation to the GB promotes the formation of oxygen vacancies, and their strong interactions enhance the interfacial cohesion. We propose that GBs fabricated close to the surfaces of nanocrystalline ceria can trap Pt from inside the grains or other types of surface, resulting in the suppression of the accumulation of Pt on the surface under redox reactions, especially under O-poor conditions.
Surface Segregation in Multicomponent Systems: Modeling of Surface Alloys and Alloy Surfaces
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Good, Brian; Honecy, Frank S.; Abel, Phillip
1999-01-01
The study of surface segregation, although of great technological importance, has been largely restricted to experimental work due to limitations associated with theoretical methods. However, recent improvements in both first-particle and semi-empirical methods are opening, the doors to an array of new possibilities for surface scientists. We apply one of these techniques, the Bozzolo, Ferrante and Smith (BFS) method for alloys, which is particularly suitable for complex systems, to several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces, and the formation of surface alloys. We conclude with the study of complex NiAl-based binary, ternary and quaternary thin films (with Ti, Cr and Cu additions to NiAl). Differences and similarities between bulk and surface compositions are discussed, illustrated by the results of Monte Carlo simulations. For some binary and ternary cases, the theoretical predictions are compared to experimental results, highlighting the accuracy and value of this developing theoretical tool.
Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten
NASA Astrophysics Data System (ADS)
Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian
2015-11-01
We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.
2013-11-01
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Erikat, I A; Hamad, B A
2013-11-07
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...
2015-02-03
Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F
2008-11-01
In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.
NASA Astrophysics Data System (ADS)
Jalali Dil, Ebrahim; Kim, Samuel C.; Saffar, Amir; Ajji, Abdellah; Zare, Richard N.; Sattayapiwat, Annie; Esguerra, Vanessa; Bowen, Raffick A. R.
2018-06-01
The surface chemistry and surface energy of chemically modified polyethylene terephthalate (PET) blood collection tubes (BCTs) were studied and the results showed a significant increase in hydrophilicity and polarity of modified PET surface. The surface modification created nanometer-sized, needle-like asperities through molecular segregation at the surface. The surface dynamics of the modified PET was examined by tracking its surface properties over a 280-day period. The results showed surface rearrangement toward a surface with lower surface energy and fewer nanometer-sized asperities. Thromboelastography (TEG) was used to evaluate and compare the thrombogenicity of the inner walls of various types of BCTs. The TEG tracings and data from various types of BCTs demonstrated differences in the reactionand coagulation times but not in clot strength. The performance of the modified tubes in free triiodothyronine (FT3) and free thyroxine (FT4) hormone tests was examined, and it was found that the interference of modified PET tubes was negligible compared to that of commercially available PET BCTs.
10 CFR 9.19 - Segregation of exempt information and deletion of identifying details.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Segregation of exempt information and deletion of identifying details. 9.19 Section 9.19 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Freedom of Information Act Regulations § 9.19 Segregation of exempt information and deletion of identifying details. (a...
10 CFR 9.19 - Segregation of exempt information and deletion of identifying details.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Segregation of exempt information and deletion of identifying details. 9.19 Section 9.19 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Freedom of Information Act Regulations § 9.19 Segregation of exempt information and deletion of identifying details. (a...
Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...
2016-01-11
Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi 0.4Mn 0.4Co 0.2O 2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. Themore » subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less
Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten
NASA Astrophysics Data System (ADS)
Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.
2018-01-01
Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.
78 FR 58555 - Notice of Segregation of Public Lands for the Proposed Stateline Solar Farm, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... Solar Energy right-of-way (ROW) application and provide for the orderly administration of public lands... solar energy project on a portion of its ROW-application area. The BLM is segregating the following...; CACA-048669] Notice of Segregation of Public Lands for the Proposed Stateline Solar Farm, CA AGENCY...
NASA Astrophysics Data System (ADS)
Christien, F.; Le Gall, R.
2011-09-01
Phosphorus surface segregation was measured by Auger Electron Spectroscopy on a 17-4 PH martensitic stainless steel at 450, 550 and 600 °C. Surface segregation was shown to be much faster than expected which was attributed to a high contribution of phosphorus diffusion along the former austenitic grain boundaries. A model of surface segregation was developed following the Darken-du Plessis approach and taking account of both bulk and grain boundary solute diffusion. The phosphorus grain boundary diffusion coefficient in 17-4 PH was estimated: DGB< = 6.2 10 4 exp(- 157 kJ mol - 1 /RT)cm 2 s - 1 . It is found to be more than three orders of magnitude higher in 17-4 PH steel than in α-iron.
Texture segregation, surface representation and figure-ground separation.
Grossberg, S; Pessoa, L
1998-09-01
A widespread view is that most texture segregation can be accounted for by differences in the spatial frequency content of texture regions. Evidence from both psychophysical and physiological studies indicate, however, that beyond these early filtering stages, there are stages of 3-D boundary segmentation and surface representation that are used to segregate textures. Chromatic segregation of element-arrangement patterns--as studied by Beck and colleagues--cannot be completely explained by the filtering mechanisms previously employed to account for achromatic segregation. An element arrangement pattern is composed of two types of elements that are arranged differently in different image regions (e.g. vertically on top and diagonally on the bottom). FACADE theory mechanisms that have previously been used to explain data about 3-D vision and figure-ground separation are here used to simulate chromatic texture segregation data, including data with equiluminant elements on dark or light homogeneous backgrounds, or backgrounds composed of vertical and horizontal dark or light stripes, or horizontal notched stripes. These data include the fact that segregation of patterns composed of red and blue squares decreases with increasing luminance of the interspaces. Asymmetric segregation properties under 3-D viewing conditions with the equiluminant elements close or far are also simulated. Two key model properties are a spatial impenetrability property that inhibits boundary grouping across regions with non-collinear texture elements and a boundary-surface consistency property that uses feedback between boundary and surface representations to eliminate spurious boundary groupings and separate figures from their backgrounds.
Copoly(Imide Siloxane) Abhesive Materials with Varied Siloxane Oligomer Length
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.
2010-01-01
Incorporation of PDMS moieties into a polyimide matrix lowered the surface energy resulting in enhanced adhesive interactions. Polyimide siloxane materials were generated using amine-terminated PDMS oligomers of different lengths to study changes in surface migration behavior, phase segregation, mechanical, thermal, and optical properties. These materials were characterized using contact angle goniometry, tensile testing, and differential scanning calorimetry. The surface migration behavior of the PDMS component depended upon the siloxane molecular weight as indicated by distinct relationships between PDMS chain length and advancing water contact angles. Similar correlations were observed for percent elongation values obtained from tensile testing, while the addition of PDMS reduced the modulus. High fidelity topographical modification via laser ablation patterning further reduced the polyimide siloxane surface energy. Initial particulate adhesion testing experiments demonstrated that polyimide siloxane materials exhibited greater abhesive interactions relative to their respective homopolyimides.
Suzuki segregation in a binary Cu-Si alloy.
Mendis, Budhika G; Jones, Ian P; Smallman, Raymond E
2004-01-01
Suzuki segregation to stacking faults and coherent twin boundaries has been investigated in a Cu-7.15 at.% Si alloy, heat-treated at temperatures of 275, 400 and 550 degrees C, using field-emission gun transmission electron microscopy. Silicon enrichment was observed at the stacking fault plane and decreased monotonically with increasing annealing temperature. This increase in the concentration of solute at the fault is due to the stacking fault energy being lowered at higher values of the electron-to-atom ratio of the alloy. From a McLean isotherm, the binding energy for segregation was calculated to be -0.021 +/- 0.019 eV atom(-1). Hardly any segregation was observed to coherent twin boundaries in the same alloy. This is because a twin has a lower interfacial energy than a stacking fault, so that the driving force for segregation is diminished.
Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys
NASA Astrophysics Data System (ADS)
Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin
2013-08-01
Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of C in Alloy 690 is higher than in 304 SS, due to the higher bulk C concentration and the site competition of P atoms which segregate at grain boundary [29,30]. It is imply that the segregation tendency is influenced by the bulk concentration of the segregates. Si atoms slightly segregate at grain boundaries in Alloy 690, but do not segregate at grain boundaries in 304 SS. N and P atoms segregate at grain boundary in 304 SS, and their segregation Gibbs free energy are similar. N atoms may be exhausted by the TiN precipitated in the matrix and can not be observed in the grain boundary of Alloy 690 [19]. Mn atoms deplete at grain boundary in 304 SS. This phenomenon is similar to that of proton irradiation induced segregation in 304 SS [32]. B, C, N, P segregation Gibbs energies are similar both in 304 SS and Alloy 690. B and C atoms segregate at grain boundary both in Alloy 690 and 304 SS, P and N segregate at grain boundary in 304 SS. Si atoms segregate at grain boundary in Alloy 690, but do not segregate at grain boundary in 304 SS. Cr enriches at grain boundary both in Alloy 690 and 304 SS, although carbide does not nucleate. Ni and Fe may segregate, deplete or homogeneously distribute at grain boundary in Alloy 690, but they deplete at grain boundary in 304 SS. C and Cr atoms co-segregate at grain boundaries before carbide nucleation in Alloy 690 and 304 SS. Combination with other results in literatures, the evolution of Cr concentration at grain boundary should be enrichment at grain boundary before carbide nucleation, depletion at grain boundary after carbide precipitation, and healing after obvious growth of carbide. After aging treatment at 500 °C for 0.5 h, the total reduction of grain boundary free energy due to segregation is 27.489 kJ/mol for Alloy 690 and 45.207 kJ/mol for 304.
78 FR 25204 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
....L13400000] RIN 1004-AE19 Segregation of Lands--Renewable Energy AGENCY: Bureau of Land Management, Interior... pending solar or wind renewable energy generation project, or for public lands identified by the BLM under... consideration of renewable energy ROWs. As explained below, the BLM seeks to avoid the delays and uncertainty...
The formation of the smallest fullerene-like carbon cages on metal surfaces
NASA Astrophysics Data System (ADS)
Ben Romdhane, F.; Rodríguez-Manzo, J. A.; Andrieux-Ledier, A.; Fossard, F.; Hallal, A.; Magaud, L.; Coraux, J.; Loiseau, A.; Banhart, F.
2016-01-01
The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure.The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08212a
Generation and oxidation of aerosol deposited PdAg nanoparticles
NASA Astrophysics Data System (ADS)
Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H.; Lundgren, E.
2013-10-01
PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces.
Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy
Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.
2015-01-01
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096
Generalized stacking fault energies of alloys.
Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente
2014-07-02
The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.
The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
2016-07-27
Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less
Bombardment-induced segregation and redistribution
NASA Astrophysics Data System (ADS)
Lam, N. Q.; Wiedersich, H.
During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilibrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. Considerable progress has been made recently in identifying and understanding the relative contributions from the individual processes under various irradiation conditions. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed.
Surface Segregation in Ternary Alloys
NASA Technical Reports Server (NTRS)
Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.
2000-01-01
Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.
Growth of germanium on Au(111): formation of germanene or intermixing of Au and Ge atoms?
Cantero, Esteban D; Solis, Lara M; Tong, Yongfeng; Fuhr, Javier D; Martiarena, María Luz; Grizzi, Oscar; Sánchez, Esteban A
2017-07-19
We studied the growth of Ge layers on Au(111) under ultra-high vacuum conditions from the submonolayer regime up to a few layers with Scanning Tunneling Microscopy (STM), Direct Recoiling Spectroscopy (DRS) and Low Energy Electron Diffraction (LEED). Most STM images for the thicker layers are consistent with a commensurate 5 × 8 arrangement. The high surface sensitivity of TOF-DRS allows us to confirm the coexistence of Au and Ge atoms in the top layer for all stages of growth. An estimation of the Au to Ge ratio at the surface of the thick layer gives about 1 Au atom per 2 Ge ones. When the growth is carried out at sample temperatures higher than about 420 K, a fraction of the deposited Ge atoms migrate into the bulk of Au. This incorporation of Ge into the bulk reduces the growth rate of the Ge films, making it more difficult to obtain films thicker than a few layers. After sputtering the Ge/Au surface, the segregation of bulk Ge atoms to the surface occurs for temperatures ≥600 K. The surface obtained after segregation of Ge reaches a stable condition (saturation) with an n × n symmetry with n on the order of 14.
Grain-size segregation and levee formation in geophysical mass flows
Johnson, C.G.; Kokelaar, B.P.; Iverson, Richard M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.
2012-01-01
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.
Grain-size segregation and levee formation in geophysical mass flows
Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.
2012-01-01
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ~80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ~2 m s-1 during most of the runout. Segregation was measured by placing ~600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ~6–7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.
Dislocation nucleation facilitated by atomic segregation
NASA Astrophysics Data System (ADS)
Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen
2018-01-01
Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.
Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten
Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei
2016-01-01
The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from −2.61 eV to −0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors. PMID:27874047
NASA Astrophysics Data System (ADS)
Kawai, Hiroki; Nakasaki, Yasushi; Kanemura, Takahisa; Ishihara, Takamitsu
2018-04-01
Dopant segregation at Si/SiO2 interface has been a serious problem in silicon device technology. This paper reports a comprehensive density-functional study on the segregation mechanisms of boron, phosphorous, and arsenic at the Si/SiO2 interface. We found that three kinds of interfacial defects, namely, interstitial oxygen, oxygen vacancy, and silicon vacancy with two oxygen atoms, are stable in the possible chemical potential range. Thus, we consider these defects as trap sites for the dopants. For these defects, the dopant segregation energies, the electrical activities of the trapped dopants, and the kinetic energy barriers of the trapping/detrapping processes are calculated. As a result, trapping at the interstitial oxygen site is indicated to be the most plausible mechanism of the dopant segregation. The interstitial oxygen works as a major trap site since it has a high areal density at the Si/SiO2 interface due to the low formation energy.
Stochastic phase segregation on surfaces
Gera, Prerna
2017-01-01
Phase separation and coarsening is a phenomenon commonly seen in binary physical and chemical systems that occur in nature. Often, thermal fluctuations, modelled as stochastic noise, are present in the system and the phase segregation process occurs on a surface. In this work, the segregation process is modelled via the Cahn–Hilliard–Cook model, which is a fourth-order parabolic stochastic system. Coarsening is analysed on two sample surfaces: a unit sphere and a dumbbell. On both surfaces, a statistical analysis of the growth rate is performed, and the influence of noise level and mobility is also investigated. For the spherical interface, it is also shown that a lognormal distribution fits the growth rate well. PMID:28878994
Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer
Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram
2016-08-23
A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-30
... protecting potential sites for future solar energy development. DATES: Effective Date: This segregation is... public lands that have been identified by the BLM as having the potential for solar energy generation...
Study of the Formation Mechanism of A-Segregation Based on Microstructural Morphology
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Bao, Yuchong; Liu, Lin; Pian, Song; Li, Ri
2018-04-01
A model that combines a cellular automaton (CA) and lattice Boltzmann method (LBM) is presented. The mechanism of A-segregation in an Fe-0.34 wt pct C alloy ingot is analyzed on the basis of microstructural morphology calculations. The CA is used to capture the solid/liquid interface, while the LBM is used to calculate the transport phenomena. (1) The solidification of global columnar dendrites was simulated, and two obvious A-segregation bands appeared in the middle-radius region between the ingot wall surface and the centerline. In addition, the angle of deflection to the centerline increased with the increasing heat dissipation rate of the wall surface. When natural convection was ignored, the A-segregation disappeared, and only positive segregation was present in the center and bottom corner of the ingot. (2) Mixed columnar-equiaxed solidification was simulated. Many A-segregation bands appeared in the ingot. (3) Global equiaxed solidification was simulated, and no A-segregation bands were found. The results show that the upward movement of the high-concentration melt is the key to the formation of A-segregation bands, and remelting and the emergence of equiaxed grains are not necessary conditions to develop these bands. However, the appearance of equiaxed grains accelerates the formation of vortexes; thus, many A-segregation bands appear during columnar-equiaxed solidification.
Opposing dorsal/ventral stream dynamics during figure-ground segregation.
Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F
2014-02-01
The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... Quartzsite Solar Energy Project, La Paz County, AZ AGENCY: Bureau of Land Management, Interior. ACTION... connection with the BLM's processing of a right-of-way (ROW) application for Quartzsite Solar Energy, LLC's Quartzsite Solar Energy Project (Proposed Project). This segregation covers approximately 2,013.76 acres of...
Properties of model atomic free-standing thin films.
Shi, Zane; Debenedetti, Pablo G; Stillinger, Frank H
2011-03-21
We present a computational study of the thermodynamic, dynamic, and structural properties of free-standing thin films, investigated via molecular dynamics simulation of a glass-forming binary Lennard-Jones mixture. An energy landscape analysis is also performed to study glassy states. At equilibrium, species segregation occurs, with the smaller minority component preferentially excluded from the surface. The film's interior density and interface width depend solely on temperature and not the initialization density. The atoms at the surface of the film have a higher lateral diffusivity when compared to the interior. The average difference between the equilibrium and inherent structure energies assigned to individual particles, as a function of the distance from the center of the film, increases near the surface. A minimum of this difference occurs in the region just under the liquid-vapor interface. This suggests that the surface atoms are able to sample the underlying energy landscape more effectively than those in the interior, and we suggest a possible relationship of this observation to the recently reported formation of stable glasses by vapor phase deposition.
Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals
NASA Astrophysics Data System (ADS)
Aldén, M.; Johansson, B.; Skriver, H. L.
1995-02-01
The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green's-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify the occupied and unoccupied 4f energy level shifts as the surface segregation energy of a 4fn-1 and 4fn+1 impurity atom, respectively, in a 4fn host metal. The calculations include both initial- and final-state effects and give values that are considerably lower than those measured on polycrystalline samples as well as those found in previous initial-state model calculations. The present theory agrees well with very recent high-resolution, single-crystal film measurements for Gd, Tb, Dy, Ho, Er, Tm, and Lu. We furthermore utilize the unique possibility offered by the lanthanide metals to clarify the roles played by the initial and the different final states of the core-excitation process, permitted by the fact that the so-called initial-state effect is identical upon 4f removal and 4f addition. Surface energy and work function calculations are also reported.
An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.
Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem
2016-11-04
In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less
Hasan, Md M.; Dholabhai, Pratik P.; Dey, Sanchita; ...
2017-05-15
In this paper, grain growth inhibition in MgAl 2O 4 spinel nanostructure was achieved by grain boundary (GB) segregation of rare-earth dopants. Microcalorimetric measurements showed that dense spinel compacts doped with 3 mol% of R 2O 3 (R = Y, Gd, and La) had decreased GB energies as compared to the undoped spinel, representing reduction in the driving force for grain growth. Segregation energies of the three dopants to the Σ3 (111) GB were calculated by atomistic simulation. The dopants with higher ionic radius tend to segregate more strongly to GBs. The GB energies were calculated from atomistic simulation and,more » consistent with experiments, a systematic reduction in GB energy with dopant ionic size was found. Finally, high temperature grain growth experiments revealed a significant reduction of grain growth in the doped nanostructures as compared to the undoped one, which was attributed to increased metastability or possibly also a GB dragging originated from the dopant segregation.« less
Investigation of Material Problems for High Temperature, High Power Space Energy-Conversion Systems.
1986-07-01
Microplastic Deformation in Molybdenum with Grain-Boundary Segregations of Nickel, Phys. Met. Metall. 54, 180, 1982. 76. C. Lea, B. Muddle and D...8217-- *. ~a.-. ~ ~ ~ .. . ~ . ~ . .*.. -- ~ .. 25 93. T. Noda, T. Kainuma and M. Okada: Oxygen Desorption from Grain Boundaries of Molybdenum During Vacuu...behavior of this work function climb was explained by the desorption of atoms adsorbed or, the surface. The test result of the present W-Re samples showed
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
...; AZA34425] Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in... of up to 2 years. This is for the purpose of processing one solar energy right-of-way (ROW) application submitted by Pacific Solar Investments, LLC, to construct and operate the Hyder Valley Solar...
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Elasticity Dominated Surface Segregation of Small Molecules in Polymer Mixtures
NASA Astrophysics Data System (ADS)
Krawczyk, Jarosław; Croce, Salvatore; McLeish, T. C. B.; Chakrabarti, Buddhapriya
2016-05-01
We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. A wetting transition, observed for high values of the miscibility parameter can be prevented by increasing the matrix rigidity. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubberlike materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.
Atomistic Modeling of Surface and Bulk Properties of Cu, Pd and the Cu-Pd System
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Garces, Jorge E.; Noebe, Ronald D.; Abel, Phillip; Mosca, Hugo O.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The BFS (Bozzolo-Ferrante-Smith) method for alloys is applied to the study of the Cu-Pd system. A variety of issues are analyzed and discussed, including the properties of pure Cu or Pd crystals (surface energies, surface relaxations), Pd/Cu and Cu/Pd surface alloys, segregation of Pd (or Cu) in Cu (or Pd), concentration dependence of the lattice parameter of the high temperature fcc CuPd solid solution, the formation and properties of low temperature ordered phases, and order-disorder transition temperatures. Emphasis is made on the ability of the method to describe these properties on the basis of a minimum set of BFS universal parameters that uniquely characterize the Cu-Pd system.
Surface Segregation in Cu-Ni Alloys
NASA Technical Reports Server (NTRS)
Good, Brian; Bozzolo, Guillermo; Ferrante, John
1993-01-01
Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.
Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces
NASA Astrophysics Data System (ADS)
Mattson, E. C.; Michalak, D. J.; Veyan, J. F.; Chabal, Y. J.
2017-02-01
Cobalt-iron-boron (CoFeB) thin films are the industry standard for ferromagnetic layers in magnetic tunnel junction devices and are closely related to the relevant surfaces of CoFe-based catalysts. Identifying and understanding the composition of their surfaces under relevant processing conditions is therefore critical. Here we report fundamental studies on the interaction of nitrogen plasma with CoFeB surfaces using infrared spectroscopy, x-ray photoemission spectroscopy, and low energy ion scattering. We find that, upon exposure to nitrogen plasma, clean CoFeB surfaces spontaneously reorganize to form an overlayer comprised of Fe2N3 and BN, with the Co atoms moved well below the surface through a chemically driven process. Subsequent annealing to 400 °C removes nitrogen, resulting in a Fe-rich termination of the surface region.
NASA Astrophysics Data System (ADS)
Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong
2017-10-01
The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.
Solid/liquid interfacial free energies in binary systems
NASA Technical Reports Server (NTRS)
Nason, D.; Tiller, W. A.
1973-01-01
Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.
Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito
2009-12-09
We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.
Freely-migrating-defect production during irradiation at elevated temperatures
NASA Astrophysics Data System (ADS)
Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.
1988-12-01
Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.
Ion beam analysis of diffusion in heterogeneous materials
NASA Astrophysics Data System (ADS)
Clough, A. S.; Jenneson, P. M.
1998-04-01
Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.
NASA Astrophysics Data System (ADS)
Richter, J. H.; Karlsson, P. G.; Sandell, A.
2008-05-01
A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.
First principles study of surface stability and segregation of PdRuRh ternary metal alloy system
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki
2018-05-01
The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.
Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.
NASA Astrophysics Data System (ADS)
Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora
2013-03-01
The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390
Atomistic modeling of La3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia.
Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H R; Faller, Roland
2018-05-16
The effect of La3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations. The simulation revealed the segregation of La3+ at eight tilt grain boundary (GB) structures and predicted an average grain boundary (GB) energy decrease of 0.25 J m-2, which is close to the experimental values reported in the literature. Cation stabilization was found to be the main reason for the GB energy decrease, and energy fluctuations near the grain boundary are smoothed out with La3+ segregation. Both dynamic and energetic analysis on the Σ13(510)/[001] GB structure revealed La3+ doping hinders O2- diffusion in the GB region, where the diffusion coefficient monotonically decreases with increasing La3+ doping concentration. The effect was attributed to the increase in the site-dependent migration barriers for O2- hopping caused by segregated La3+, which also leads to anisotropic diffusion at the GB.
"Back-fire to lust": G. Stanley Hall, sex-segregated schooling, and the engine of sublimation.
Graebner, William
2006-08-01
G. Stanley Hall was an advocate of sex-segregated schooling long after most Americans had accepted coeducation. His position was based in part on personal experience: observations of his father and mother, a repressed and guilt-ridden boyhood sexuality, and his conviction that his own career success was a product of sublimated sexual desire, of erotic energy converted into mental energy. Hall theorized that coeducation put sublimation at risk, and that sex-segregated schools, by contributing to proper gendered development and by prolonging and sublimating the sexual tensions of adolescence, would produce social progress.
NASA Astrophysics Data System (ADS)
Yoshitake, Michiko; Nemšák, Slavomír; Skála, Tomáš; Tsud, Nataliya; Matolín, Vladimír; Prince, Kevin C.
2018-06-01
The influence of a small amount of Si in a Ni single crystal on the interface formation between aluminum oxide and Ni has been investigated. The interface was formed by in-situ growth of the oxide by simultaneous supply of Al and oxygen onto Ni(1 1 1) in an ultrahigh vacuum chamber equipped with XPS apparatus. The oxide growth and the interface formation were compared between Si-containing Ni(1 1 1) and pure Ni(1 1 1). It was revealed that Si segregated on the surface of Ni and oxidized, forming an epitaxial thin alumino-silicate film. Valence band spectra demonstrated that the band offset between the oxide and Ni (energy level difference between the valence band top and the Fermi level) is different due to the oxidized Si segregation at the interface.
Dopant Adsorption and Incorporation at Irradiated GaN Surfaces
NASA Astrophysics Data System (ADS)
Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan
2006-03-01
Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.
Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency.
Tsirlin, Inna; Allison, Robert S; Wilcox, Laurie M
2012-02-01
We describe a perceptual asymmetry found in stereoscopic perception of overlaid random-dot surfaces. Specifically, the minimum separation in depth needed to perceptually segregate two overlaid surfaces depended on the distribution of dots across the surfaces. With the total dot density fixed, significantly larger inter-plane disparities were required for perceptual segregation of the surfaces when the front surface had fewer dots than the back surface compared to when the back surface was the one with fewer dots. We propose that our results reflect an asymmetry in the signal strength of the front and back surfaces due to the assignment of the spaces between the dots to the back surface by disparity interpolation. This hypothesis was supported by the results of two experiments designed to reduce the imbalance in the neuronal response to the two surfaces. We modeled the psychophysical data with a network of inter-neural connections: excitatory within-disparity and inhibitory across disparity, where the spread of disparity was modulated according to figure-ground assignment. These psychophysical and computational findings suggest that stereoscopic transparency depends on both inter-neural interactions of disparity-tuned cells and higher-level processes governing figure ground segregation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Analysis of Minor Component Segregation in Ternary Powder Mixtures
NASA Astrophysics Data System (ADS)
Asachi, Maryam; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew
2017-06-01
In many powder handling operations, inhomogeneity in powder mixtures caused by segregation could have significant adverse impact on the quality as well as economics of the production. Segregation of a minor component of a highly active substance could have serious deleterious effects, an example is the segregation of enzyme granules in detergent powders. In this study, the effects of particle properties and bulk cohesion on the segregation tendency of minor component are analysed. The minor component is made sticky while not adversely affecting the flowability of samples. The segregation extent is evaluated using image processing of the photographic records taken from the front face of the heap after the pouring process. The optimum average sieve cut size of components for which segregation could be reduced is reported. It is also shown that the extent of segregation is significantly reduced by applying a thin layer of liquid to the surfaces of minor component, promoting an ordered mixture.
Heterogeneous Two-Phase Pillars in Epitaxial NiFe 2 O 4 -LaFeO 3 Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comes, Ryan B.; Perea, Daniel E.; Spurgeon, Steven R.
2017-07-10
Self-assembled epitaxial oxide nanocomposites have been explored for a wide range of applications, including multiferroic and magnetoelectric properties, plasmonics, and catalysis. These so-called “vertically aligned nanocomposites” form spontaneously during the deposition process when segregation into two phases is energetically favorable as compared to a solid solution. However, there has been surprisingly little work understanding the driving forces that govern the synthesis of these materials, which can include point defect energetics, surface diffusion, and interfacial energies. To explore these factors, La-Ni-Fe-O films have been synthesized by molecular beam epitaxy and it is shown that these phase segregate into spinel-perovskite nanocomposites. Usingmore » complementary scanning transmission electron microscopy and atom-probe tomography, the elemental composition of each phase is examined and found that Ni ions are exclusively found in the spinel phase. From correlative analysis, a model for the relative favorability of the Ni2+ and Ni3+ valences under the growth conditions is developed. It is shown that multidimensional characterization techniques provide previously unobserved insight into the growth process and complex driving forces for phase segregation.« less
NASA Astrophysics Data System (ADS)
Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki
2016-09-01
Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.
Surface segregation in HAYNES 230 alloy
NASA Astrophysics Data System (ADS)
Pop, D.; Wolski, K.
2006-12-01
The surface segregation in the Ni-based alloy HAYNES 230 was studied by Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy between 400 and 1100 °C. The qualitative variations of the surface contents of S, P, W, Mo, N, Si, and Mn were determined as a function of annealing temperature and time. It was found that at 925 °C the maximum coverage of sulphur at the alloy surface is in the range 0.06-0.15 monolayers. Chromium evaporation from the HAYNES 230 surface under UHV conditions is clearly evidenced for annealing at 1100 °C.
Atomically Visualizing Elemental Segregation-Induced Surface Alloying and Restructuring
Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri; ...
2017-12-01
Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.
NASA Astrophysics Data System (ADS)
Foo, Y. L.; Bratland, K. A.; Cho, B.; Soares, J. A. N. T.; Desjardins, P.; Greene, J. E.
2002-08-01
We have used in situ D 2 temperature-programmed desorption (TPD) to probe C incorporation and surface segregation kinetics, as well as hydrogen desorption pathways, during Si 1- yC y(0 0 1) gas-source molecular beam epitaxy from Si 2H 6/CH 3SiH 3 mixtures at temperatures Ts between 500 and 650 °C. Parallel D 2 TPD results from C-adsorbed Si(0 0 1) wafers exposed to varying CH 3SiH 3 doses serve as reference data. Si 1- yC y(0 0 1) layer spectra consist of three peaks: first-order β 1 at 515 °C and second-order β 2 at 405 °C, due to D 2 desorption from Si monodeuteride and dideuteride phases, as well as a new second-order C-induced γ 1 peak at 480 °C. C-adsorbed Si(0 0 1) samples with very high CH 3SiH 3 exposures yielded a higher-temperature TPD feature, corresponding to D 2 desorption from surface C atoms, which was never observed in Si 1- yC y(0 0 1) layer spectra. The Si 1- yC y(0 0 1) γ 1 peak arises due to desorption from Si monodeuteride species with C backbonds. γ 1 occurs at a lower temperature than β 1 reflecting the lower D-Si * bond strength, where Si * represents surface Si atoms bonded to second-layer C atoms, as a result of charge transfer from dangling bonds. The total integrated monohydride (β 1+γ 1) intensity, and hence the dangling bond density, remains constant with y indicating that C does not deactivate surface dangling bonds as it segregates to the second-layer during Si 1- yC y(0 0 1) growth. Si * coverages increase with y at constant Ts and with Ts at constant y. The positive Ts-dependence shows that C segregation is kinetically limited at Ts⩽650 °C. D 2 desorption activation energies from β 1, γ 1 and β 2 sites are 2.52, 2.22 and 1.88 eV.
Segregation of impurities at γ' (L12) / γ (fcc) interfaces in a Ni-based superalloy
NASA Astrophysics Data System (ADS)
Tafen, De Nyago; Gao, Michael
2011-03-01
One of the most technologically advanced energy conversion devices is the gas turbine used in aerospace jet engines and gas- fired land-based turbines for electricity generation, fabricated from Ni-based superalloys. However, these materials lack of long- term mechanical and microstructure stability, which is largely due to an excessive coarsening of γ ' that can cause substantial loss of creep resistance and mechanical instability at high temperatures. Theoretical prediction of the creep rate of these important compounds is very imperative, but yet is extremely challenging. Interfacial energy is one of the most important factors that control the coarsening kinetics of these important phases. It indirectly determines the creep resistance of the alloy through the coarsening rate of the strengthening precipitate phase. In this talk, we will present the results of various γ ' / γ interfaces of a Ni-based superalloy obtained using DFT calculations. Then, we will discuss the segregation of impurities at these interfaces. Minor alloying elements in superalloys can alter the interfacial energy between γ and γ ' , and change the strength behavior of the alloy. Alloying elements or impurity species can segregate to interfaces. A favorable segregation would result in enhancing the interfacial cohesion and thus lower the energy.
Li, Hui; Song, Hui; Liu, Wenqing; Xia, Shuang; Zhou, Bangxin; Su, Cheng; Ding, Wenyan
2015-12-01
The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jenkins, James T.; Louge, Michel Y.
1996-01-01
We are interested in collisional granular flows of dry materials in reduced gravity. Because the particles interact through collisions, the energy of the particle velocity fluctuations plays an important role in the physics. Here we focus on the separation of grains by properties - size, for example - that is driven by spatial gradients in the fluctuation energy of the grains. The segregation of grains by size is commonly observed in geophysical flows and industrial processes. Segregation of flowing grains can also take place based on other properties, e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism that is independent of gravity. This mechanism may be important but is often obscured in terrestrial grain flows. It is driven by gradients in fluctuation energy. In microgravity, the separation of grains by property will proceed slowly enough to permit flight observations to provide an unambiguous measurement of the transport coefficients associated with the segregation. In this context, we are planning a microgravity shear cell experiment that contains a mixture of two types of spherical grains. The grains will be driven to interact with two different types of boundaries on either sides of the cell. The resulting separation will be observed visually.
Elasticity dominated surface segregation of small molecules in polymer mixtures
NASA Astrophysics Data System (ADS)
Croce, Salvatore; Krawczyk, Jaroslaw; McLeish, Tom; Chakrabarti, Buddhapriya
When a binary polymer mixture with mobile components is left to equilibrate, the low molecular weight component migrates to the free surface. A balance between loss of translational entropy and gain in surface energy dictates the equilibrium partitioning ratio and the migrant fraction. Despite its ubiquity and several theoretical and experimental investigations, the phenomenon is not fully understood. Further, methods by which migration can be controlled are in its nascent stage of development. We propose a new phenomenological free energy functional that incorporates the elasticity of bulk polymer mixtures (reticulated networks and gels) and show (using mean field and self-consistent field theories) that the migrant fraction decreases with increasing the bulk modulus of the system. Further, a wetting transition observed otherwise for large values of miscibility parameter and polymerization index can be avoided by increasing the elastic modulus of the system. Estimated values of moduli (for the effect to be observable) are akin to those of rubbery polymers. Our work paves the way for controlling surface migration in complex industrial formulations with polymeric ingredients where this effect leads to decreased product stability and performance.
Diffusion induced atomic islands on the surface of Ni/Cu nanolayers
NASA Astrophysics Data System (ADS)
Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán
2018-05-01
Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.
NASA Astrophysics Data System (ADS)
Freitas, Andre L. M.; Souza, Flavio L.
2017-11-01
This work describes the design of a microwave-assisted method using hydrothermal conditions to fabricate pure and Sn-doped hematite photoelectrodes with varied synthesis time and additional thermal treatment under air and N2 atmosphere. The hematite photoelectrode formed under N2 atmosphere, with Sn deposited on its surface—which is represented by material synthesized at 4 h —exhibits the highest performance. Hence, Sn addition followed by high temperature annealing conducted in an oxygen-deficient atmosphere seems to create oxygen vacancies, and to prevent the segregation of dopant to form the SnO2 phase at the hematite crystal surface, reducing its energy and suppressing the grain growth. The increased donor number density provided by the oxygen vacancies (confirmed by x-ray photoelectron data), and a possible reduction in the grain boundary energy or hematite crystal interface might favor charge separation, and increase the electron transfer through the hematite into the back contact (FTO substrate). In consequence, the light-induced water oxidation reaction efficiency of Sn-hematite photoelectrodes was significantly increased in comparison with pure ones, even though the vertical rod morphology was not preserved. This finding provides a novel insight into intentional Sn addition, revealing that dopant segregation at the hematite crystal surface (or at the grain boundaries) could—by increasing the electron mobility—be the more relevant factor in developing active hematite photoelectrodes than the control of columnar morphology.
Transport properties of C and O in UN fuels
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär
2017-03-01
Uranium nitride fuel is considered for fast reactors (GEN-IV generation and space reactors) and for light water reactors as a high-density fuel option. Despite this large interest, there is a lack of information about its behavior for in-pile and out-of-pile conditions. From the present literature, it is known that C and O impurities have significant influence on the fuel performance. Here we perform a systematic study of these impurities in the UN matrix using electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. These quantities were calculated in the DFT +U approximation combined with the occupation matrix control scheme, to avoid convergence to metastable states for the 5 f levels. The transport coefficients of the system were evaluated with the self-consistent mean-field theory. It is demonstrated that carbon and oxygen impurities have different diffusion properties in the UN matrix, with O atoms having a higher mobility, and C atoms showing a strong flux coupling anisotropy. The kinetic interplay between solutes and vacancies is expected to be the main cause for surface segregation, as incorporation energies show no strong thermodynamic segregation preference for (001) surfaces compared with the bulk.
Performance monitoring pavements with thermal segregation in Texas.
DOT National Transportation Integrated Search
2012-04-01
This project conducted work to investigate the performance of asphalt surface mixtures that exhibited : thermal segregation during construction. From 2004 to 2009, a total of 14 construction projects were : identified for monitoring. Five of these pr...
NASA Astrophysics Data System (ADS)
Rák, Zs.; Brenner, D. W.
2017-04-01
The surface energetics of two austenitic stainless steel alloys (Type 304 and 316) and three Ni-based alloys (Alloy 600, 690, and 800) are investigated using theoretical methods within the density functional theory. The relative stability of the low index surfaces display the same trend for all alloys; the most closely packed orientation and the most stable is the (111), followed by the (100) and the (110) surfaces. Calculations on the (111) surfaces using various surface chemical and magnetic configurations reveal that Ni has the tendency to segregate toward the surface and Cr has the tendency to segregate toward the bulk. The magnetic frustration present on the (111) surfaces plays an important role in the observed segregation tendencies of Ni and Cr. The stability of the (111) surfaces in contact with aqueous solution are evaluated as a function of temperature, pH, and concentration of aqueous species. The results indicate that the surface stability of the alloys decrease with temperature and pH, and increase slightly with concentration. Under conditions characteristic to an operating pressurized water reactor, the Ni-based alloy series appears to be of better quality than the stainless steel series with respect to corrosion resistance and release of aqueous species when in contact with aqueous solutions.
Zhou, Jigang; Wang, Jian; Cutler, Jeffrey; ...
2016-07-26
We have employed scanning transmission X-ray microscopy (STXM) using the X-ray fluorescence mode in order to elucidate the chemical structures at Ni, Fe, Mn and O sites from the (111) and (100) facets of micron-sized LiNi 1/3Fe 1/3Mn 4/3O 4 energy material particles. Furthermore, STXM imaging using electron yield mode has mapped out the surface conductivity of the crystalline particles. Our study presents a novel approach that visualizes local element segregation, chemistry and conductivity variation among different crystal facets, which will assist further tailoring of the morphology and surface structure of this high voltage spinel lithium ion battery cathode material.
NASA Astrophysics Data System (ADS)
Jodar, B.; Loison, D.; Yokoyama, Y.; Lescoute, E.; Nivard, M.; Berthe, L.; Sangleboeuf, J.-C.
2018-02-01
Laser-shock experiments were performed on a ternary {Zr50{Cu}40{Al}10} bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy magnification of fracture surfaces revealed the presence of a peculiar feature known as cup-cone. Cups are found on sample fracture surface while cones are observed on spall. Two distinct regions can be observed on cups and cones: a smooth viscous-like region in the center and a flat one with large vein-pattern in the periphery. Energy dispersive spectroscopy measurements conducted on these features emphasized atomic distribution discrepancies both on the sample and spall. We propose a mechanism for the initiation and the growth of these features but also a process for atomic segregation during spallation. Cup and cones would originate from cracks arising from shear bands formation (softened paths). These shear bands result from a quadrupolar-shaped atomic disorder engendered around an initiation site by shock wave propagation. This disorder turns into a shear band when tensile front reaches spallation plane. During the separation process, temperature gain induced by shock waves and shear bands generation decreases material viscosity leading to higher atomic mobility. Once in a liquid-like form, atomic clusters migrate and segregate due to inertial effects originating from particle velocity variation (interaction of release waves). As a result, a high rate of copper is found in sample cups and high zirconium concentration is found on spall cones.
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
Core Formation: an Experimental Study of Metallic Melt-Silicate Segregation
NASA Astrophysics Data System (ADS)
Herpfer, M. A.; Larimer, J. W.
1993-07-01
To a large extent, the question of how metallic cores form reduces to the problem of understanding the surface tension between metallic melts and silicates [1]. This problem was addressed by performing experiments to determine the surface tensions between metallic melts with variable S contents and the silicate phases (olivine and orthopyroxene) expected in planetary mantles. The experiments were conducted in a piston-cylinder apparatus at P = 1GPa and T = 1250-1450 degrees C. Textural and chemical equilibration was confirmed in several ways: theoretical estimates were checked by conducting a series of experiments at progressively longer times (up to 72 hrs) until phase composition and dihedral angle ceased to change and the distribution of measured "apparent" angles matched the standard cumulative frequency curve. The dihedral "wetting" angles (theta) were measured from high resolution photomicrgraphs using a 10X optical protractor; 100-400 measurements were made for most experiments. The dihedral angle is related to the ratio of interfacial energies: gamma(sub)ss/gamma(sub)sl = 2 cos(theta/2), where gamma(sub)ss and gamma(sub)sl are the interfacial energies between solid-solid and liquid-solid. Since data exist for the pertinent solid-solid energies, the liquid-solid interfacial energies can be computed from measured theta values. However, the important relations are best expressed in terms of theta values. The extent to which a melt is interconnected along grain boundaries, and hence able to flow and segregate depends on the value of theta and the fraction of melt present. When theta < 60 degrees, the liquid can be interconnected at all melt fractions but when theta > 60 degrees, the melt fraction must be at least 1 vol% and increses as theta increases. Actually there is a predicted effect, analogous to a hysteresis effect, where for a given theta value the amount of melt that needs to be added for interconnection is greater than the amount left when the melt disconnects (pinches off). In our experiments, where dense metallic melt drained away, the disconnect theta values match the theoretical predictions. The composition of the metallic melt in the experiments was varied from stoichiometric FeS to Fe/S ratios near the the eutectic and on to more Fe rich compositons. The theta values vary in a systematic manner; for example, for melts in contact with olivine at 1300 degrees C the theta values range from 67 degrees for FeS to 55 degrees at the eutectic and back toward higher values at higher Fe contents. Theoretical considerations indicate that eutectic compositions are expected to have the lowest theta values, just as observed. The theta values indicate that melts with eutectic composition can interconnect and segregate at 1-2 vol% melt fraction at 1300 degrees C. Some previous estimates of the melt fraction required for interconnection are much higher [2,3], but the inferences were drawn from experiments that were not designed to test for textural equilibrium, fraction of melt present, etc. The present experiments clearly show that metallic melts can readily segregate from solid silicates. Simple extrapolations to other phases, compositions and PT conditions provide a rather complete picture of how the "plumbing" worked in the mantles of planetary objects during the initial stages of core segregation. References: [1] Stevenson D. J. (1990) In Origin of the Earth, 231-249. [2] Taylor G. J. (1989) LPSC XX, 1109. [3] Walker D. and Agee C. B. Meteor. 23, 81-91.
Impact of segregation energetics on oxygen conductivity at ionic grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidhy, Dilpuneet S; Zhang, Yanwen; Weber, William J
2014-01-01
In pursuit of whether nanocrystallinity could lead to higher anion conductivity, research has revealed contradicting results exposing the limited understanding of point defect energetics at grain boundaries (GBs)/interfaces. By disentangling and addressing key GB energetics issues, i.e., segregation, migration and binding energies of oxygen vacancies in the presence and absence of dopants at the GBs, and the segregation energetics of dopants, we elucidate, using atomic simulations of doped ceria, that dopant segregation is the key factor leading to degradation of oxygen conductivity in nanocrystalline materials. A framework for designing enhanced conducting nanocrystalline materials is proposed where the focus of dopingmore » strategies shifts from bulk to segregation at GBs.« less
Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.
Colombi, Andrea; Ageeva, Victoria; Smith, Richard J; Clare, Adam; Patel, Rikesh; Clark, Matt; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V
2017-07-28
Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400-600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales.
Compositional redistribution in alloy films under high-voltage electron microscope irradiation
NASA Astrophysics Data System (ADS)
Lam, Nghi Q.; Leaf, O. K.; Minkoff, M.
1983-10-01
The problem of nonequilibrium segregation in alloy films under high-voltage electron microscope (HVEM) irradiation at elevated temperatures is re-examined in the present work, taking into account the damage-rate gradients caused by radial variation in the electron flux. Axial and radial compositional redistributions in model solid solutions, representative of concentrated Ni-Cu, Ni-Al and Ni-Si alloys, were calculated as a function of time, temperature, and film thickness, using a kinetic theory of segregation in binary alloys. The numerical results were achieved by means of a new software package (DISPL2) for solving convection-diffusion-kinetics problems with general orthogonal geometries. It was found that HVEM irradiation-induced segregation in thin films consists of two stages. Initially, due to the proximity of the film surfaces as sinks for point defects, the usual axial segregation (to surfaces) occurs at relatively short irradiation times, and rapidly attains quasi-steady state. Then, radial segregation becomes more and more competitive, gradually affecting the kinetics of axial segregation. At a given temperature, the buildup time to steady state is much longer in the present situation than in the simple case of one-dimensional segregation with uniform defect production. Changes in the alloy composition occur in a much larger zone than the irradiated volume. As a result, the average alloy composition within the irradiated region can differ greatly from that of the unirradiated alloy. The present calculations may be useful in the interpretation of the kinetics of certain HVEM irradiation-induced processes in alloys.
Andersen, Julie M.; Skern-Mauritzen, Mette; Boehme, Lars; Wiersma, Yolanda F.; Rosing-Asvid, Aqqalu; Hammill, Mike O.; Stenson, Garry B.
2013-01-01
With the exception of relatively brief periods when they reproduce and moult, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behaviour during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during ice-bound fasting periods (2004−2008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyse how bathymetry, seasonality and FPT influence the hooded seals’ diving behaviour described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend >20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behaviour. We found that male and female hooded seals are spatially segregated and that diving behaviour varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-moult) and August–October (post-moult/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-moult/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods. PMID:24282541
Segregation Behavior of Sulfur and Other Impurities Onto the Free Surfaces of ED-Ni Deposits
NASA Technical Reports Server (NTRS)
Panda, Binayak; Jerman, Gregory; Gentz, Steven J. (Technical Monitor)
2000-01-01
Most researchers attribute grain boundary embrittlement in electro-deposited Nickel (ED-Ni) to the presence of small quantities of Sulfur as an impurity. It occurs in a highly mobile form that segregates to the grain boundaries. Evaluation of Sulfur segregation requires that a sample be fractured through the grain boundaries. However, this action may not always be possible. ED-Ni is inherently tough at ambient temperature, especially if a low level of Sulfur was intentionally maintained. A new method was developed to study Sulfur and other migrant species to the grain boundaries, which also migrate to free surfaces. A test specimen is heated by a quartz lamp within the sample preparation chamber, allowing the mobile species to migrate to polished free surfaces. There the mobile species are analyzed using X-ray photoelectron spectroscopy (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA).
Segregation Behavior of Sulfur and Other Impurities onto the Free Surfaces of ED-NI Deposits
NASA Technical Reports Server (NTRS)
Panda, B.; Jerman, G.
2001-01-01
Most researchers attribute grain boundary embrittlement in electro-deposited nickel (ED-Ni) to the presence of small quantities of sulfur as an impurity. It occurs in a highly mobile form that segregates to the grain boundaries. Evaluation of sulfur segregation requires that a sample be fractured through the grain boundaries. However, this action may not always be possible. ED-Ni is inherently tough at ambient temperature, especially if a low level of sulfur was intentionally maintained. A new method was developed to study sulfur and other migrant species to the grain boundaries, which also migrate to free surfaces. A test specimen is heated by a quartz lamp within the sample preparation chamber, allowing the mobile species to migrate to polished free surfaces. There the mobile species are analyzed using X-ray photoelectron spectroscopy (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA).
NASA Astrophysics Data System (ADS)
Andisheh-Tadbir, Mehdi; Orfino, Francesco P.; Kjeang, Erik
2016-04-01
Modern hydrogen powered polymer electrolyte fuel cells (PEFCs) utilize a micro-porous layer (MPL) consisting of carbon nanoparticles and polytetrafluoroethylene (PTFE) to enhance the transport phenomena and performance while reducing cost. However, the underlying mechanisms are not yet completely understood due to a lack of information about the detailed MPL structure and properties. In the present work, the 3D phase segregated nanostructure of an MPL is revealed for the first time through the development of a customized, non-destructive procedure for monochromatic nano-scale X-ray computed tomography visualization. Utilizing this technique, it is discovered that PTFE is situated in conglomerated regions distributed randomly within connected domains of carbon particles; hence, it is concluded that PTFE acts as a binder for the carbon particles and provides structural support for the MPL. Exposed PTFE surfaces are also observed that will aid the desired hydrophobicity of the material. Additionally, the present approach uniquely enables phase segregated calculation of effective transport properties, as reported herein, which is particularly important for accurate estimation of electrical and thermal conductivity. Overall, the new imaging technique and associated findings may contribute to further performance improvements and cost reduction in support of fuel cell commercialization for clean energy applications.
Heinen, Klaartje; Jolij, Jacob; Lamme, Victor A F
2005-09-08
Discriminating objects from their surroundings by the visual system is known as figure-ground segregation. This process entails two different subprocesses: boundary detection and subsequent surface segregation or 'filling in'. In this study, we used transcranial magnetic stimulation to test the hypothesis that temporally distinct processes in V1 and related early visual areas such as V2 or V3 are causally related to the process of figure-ground segregation. Our results indicate that correct discrimination between two visual stimuli, which relies on figure-ground segregation, requires two separate periods of information processing in the early visual cortex: one around 130-160 ms and the other around 250-280 ms.
Nucleation and growth of Ag on Sb-terminated Ge( 1 0 0 )
NASA Astrophysics Data System (ADS)
Chan, L. H.; Altman, E. I.
2002-06-01
The effect of Sb on Ag growth on Ge(1 0 0) was characterized using scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Silver was found to immediately form three-dimensional clusters on the Sb-covered surface over the entire temperature range studied (320-570 K), thus the growth was Volmer-Weber. Regardless of the deposition conditions, there was no evidence that Sb segregated to the Ag surface, despite Sb having a lower surface tension than either Ag or Ge. The failure of Sb to segregate to the surface could be understood in terms of the much stronger interaction between Sb and Ge versus Ag and Ge creating a driving force to maintain an Sb-Ge interface. Silver nucleation on Sb/Ge(1 0 0) was characterized by measuring the Ag cluster density as a function of deposition rate. The results revealed that the cluster density was nearly independent of the deposition rate below 420 K, indicating that heterogeneous nucleation at defects in the Sb-terminated surface competed with homogeneous nucleation. At higher temperatures, the defects were less effective in trapping diffusing Ag atoms and the dependence of the cluster density on deposition rate suggested a critical size of at least two. For temperatures above 420 K, the Ag diffusion barrier plus the dissociation energy of the critical cluster was estimated by measuring the cluster density as a function of temperature; the results suggested a value of 0.84±0.1 eV which is significantly higher than values reported for Ag nucleation on Sb-free surfaces. In comparison to the bare Ge surface, Ag formed a higher density of smaller, lower clusters when Sb was present. Below 420 K the higher cluster density could be attributed to nucleation at defects in the Sb layer while at higher temperatures the high diffusion barrier restricted the cluster size and density. Although Sb does not act as a surfactant in this system since it does not continuously float to the surface and the growth is not layer-by-layer, adding Sb was found to be useful in limiting the Ag cluster size and height which led to smoother, more continuous Ag films and in preventing the formation of metastable Ag-Ge surface alloys.
Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix
Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles
2016-01-01
Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659
Long-range effect of ion irradiation on Cu surface segregation in a Cu sbnd Ni system
NASA Astrophysics Data System (ADS)
Zhang, Li; Tang, Guangze; Ma, Xinxin; Russell, F. Michael; Cao, Xingzhong; Wang, Baoyi; Zhang, Peng
2011-05-01
Ni films were deposited on one side of single crystal Cu substrate discs of 1.0 and 1.5 mm thickness. These discs were irradiated on the Cu side with argon ions. Evidence for enhanced Cu segregation at the Ni surface was found for both thicknesses. This effect decreased with increasing distance between the diffusion zone and the irradiated surface. Slow positron annihilation results indicate lower vacancy-like defects at the subsurface layer after Ar irradiation on the other surface of Cu disks. Such long-range effect is here interpreted on the basis of a particular type of mobile discrete breather called quodon.
The formation of the smallest fullerene-like carbon cages on metal surfaces.
Ben Romdhane, F; Rodríguez-Manzo, J A; Andrieux-Ledier, A; Fossard, F; Hallal, A; Magaud, L; Coraux, J; Loiseau, A; Banhart, F
2016-02-07
The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure.
Segregation of asphalt mixes caused by surge silos : final report.
DOT National Transportation Integrated Search
1982-01-01
Segregation of asphalt mixes continues to be a problem in Virginia, particularly with base mixes and coarse surface mixes. Although the problem is encountered primarily on jobs using surge silos, it has been related to other factors such as mix desig...
Particle-size segregation and diffusive remixing in shallow granular avalanches
NASA Astrophysics Data System (ADS)
Gray, J. M. N. T.; Chugunov, V. A.
2006-12-01
Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.
Morello-Frosch, Rachel; Cushing, Lara
2013-01-01
Objective: We examined the distribution of heat risk–related land cover (HRRLC) characteristics across racial/ethnic groups and degrees of residential segregation. Methods: Block group–level tree canopy and impervious surface estimates were derived from the 2001 National Land Cover Dataset for densely populated urban areas of the United States and Puerto Rico, and linked to demographic characteristics from the 2000 Census. Racial/ethnic groups in a given block group were considered to live in HRRLC if at least half their population experienced the absence of tree canopy and at least half of the ground was covered by impervious surface (roofs, driveways, sidewalks, roads). Residential segregation was characterized for metropolitan areas in the United States and Puerto Rico using the multigroup dissimilarity index. Results: After adjustment for ecoregion and precipitation, holding segregation level constant, non-Hispanic blacks were 52% more likely (95% CI: 37%, 69%), non-Hispanic Asians 32% more likely (95% CI: 18%, 47%), and Hispanics 21% more likely (95% CI: 8%, 35%) to live in HRRLC conditions compared with non-Hispanic whites. Within each racial/ethnic group, HRRLC conditions increased with increasing degrees of metropolitan area-level segregation. Further adjustment for home ownership and poverty did not substantially alter these results, but adjustment for population density and metropolitan area population attenuated the segregation effects, suggesting a mediating or confounding role. Conclusions: Land cover was associated with segregation within each racial/ethnic group, which may be explained partly by the concentration of racial/ethnic minorities into densely populated neighborhoods within larger, more segregated cities. In anticipation of greater frequency and duration of extreme heat events, climate change adaptation strategies, such as planting trees in urban areas, should explicitly incorporate an environmental justice framework that addresses racial/ethnic disparities in HRRLC. PMID:23694846
Synchrotron X-ray studies of model SOFC cathodes, part I: Thin film cathodes
Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; ...
2017-10-14
In this work, we present synchrotron x-ray investigations of thin film La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) model cathodes for solid oxide fuel cells, grown on electrolyte substrates by pulse laser deposition, in situ during half-cell operations. We observed dynamic segregations of cations, such as Sr and Co, on the surfaces of the film cathodes. The effects of temperature, applied potentials, and capping layers on the segregations were investigated using a surfacesensitive technique of total external reflection x-ray fluorescence. We also studied patterned thin film LSCF cathodes using high-resolution micro-beam diffraction measurements. We find chemical expansion decreases for narrowmore » stripes. This suggests the expansion is dominated by the bulk pathway reactions. Lastly, the chemical expansion vs. the distance from the electrode contact was measured at three temperatures and an oxygen vacancy activation energy was estimated to be ~1.4 eV.« less
Segregation simulation of binary granular matter under horizontal pendulum vibrations
NASA Astrophysics Data System (ADS)
Ma, Xuedong; Zhang, Yanbing; Ran, Heli; Zhang, Qingying
2016-08-01
Segregation of binary granular matter with different densities under horizontal pendulum vibrations was investigated through numerical simulation using a 3D discrete element method (DEM). The particle segregation mechanism was theoretically analyzed using gap filling, momentum and kinetic energy. The effect of vibrator geometry on granular segregation was determined using the Lacey mixing index. This study shows that dynamic changes in particle gaps under periodic horizontal pendulum vibrations create a premise for particle segregation. The momentum of heavy particles is higher than that of light particles, which causes heavy particles to sink and light particles to float. With the same horizontal vibration parameters, segregation efficiency and stability, which are affected by the vibrator with a cylindrical convex geometry, are superior to that of the original vibrator and the vibrator with a cross-bar structure. Moreover, vibrator geometry influences the segregation speed of granular matter. Simulation results of granular segregation by using the DEM are consistent with the final experimental results, thereby confirming the accuracy of the simulation results and the reliability of the analysis.
The thermal stability of the nanograin structure in a weak solute segregation system.
Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren
2017-02-08
A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.
Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms
NASA Astrophysics Data System (ADS)
Wu, Genhua; Sun, Yan; Wu, Xia; Chen, Run; Wang, Yan
2017-10-01
The stable structures of Cu-Au-Pt clusters up to 147 atoms are optimized by using an improved adaptive immune optimization algorithm (AIOA-IC method), in which several motifs, such as decahedron, icosahedron, face centered cubic, sixfold pancake, and Leary tetrahedron, are randomly selected as the inner cores of the starting structures. The structures of Cu8AunPt30-n (n = 1-29), Cu8AunPt47-n (n = 1-46), and partial 75-, 79-, 100-, and 147-atom clusters are analyzed. Cu12Au93Pt42 cluster has onion-like Mackay icosahedral motif. The segregation phenomena of Cu, Au and Pt in clusters are explained by the atomic radius, surface energy, and cohesive energy.
Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces
NASA Astrophysics Data System (ADS)
Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica
2007-06-01
We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.
Continuum modelling of segregating tridisperse granular chute flow
NASA Astrophysics Data System (ADS)
Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.
2018-03-01
Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.
Brown, Edward J.; Baldasaro, Paul F.; Dziendziel, Randolph J.
1997-01-01
A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.
Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi
2014-07-29
The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.
Autosurfactant of the second kind: Bi enables δ-doping of Bi in Si
NASA Astrophysics Data System (ADS)
Murata, Koichi; Miki, Kazushi; Fukatsu, Susumu
2017-10-01
Surfactants in heteroepitaxy are catalytic elements that float up to the surface during growth to control the energetics/kinetics of adatoms. "Autosurfactants" are exceptional in that the surfactant action is self-contained without foreign species. So far, autosurfactants as surface smootheners are known. Here, we demonstrate a different class of autosurfactants as surface-segregation quenchers: Bi, a dopant with a strong surface-segregation tendency in Si, is utilized to lock otherwise elusive Bi adatoms themselves to the Si lattice underneath during molecular beam epitaxy. Quasi-1D δ-doping of Bi in Si up to 4 × 1020 cm-3 in terms of volume concentration is achieved.
Temperature Dependence Discontinuity in the Stability of Manganese doped Ceria Nanocrystals
Wu, Longjia; Dholabhai, Pratik; Uberuaga, Blas P.; ...
2017-01-05
CeO 2 has strong potential for chemical-looping water splitting. It has been shown that manganese doping decreases interface energies of CeO 2, allowing increased stability of high surface areas in this oxygen carrier oxide. The phenomenon is related to the segregation of Mn3+ at interfaces, which causes a measurable decrease in excess energy. Here in the present work, it is shown that, despite the stability of nanocrystals of manganese-doped CeO 2 with relation to undoped CeO 2, the effect is strongly dependent on the oxidation state of manganese, i.e., on the temperature. At temperatures below 800 °C, Mn is inmore » the 3+ valence state, and coarsening is hindered by the reduced interface energetics, showing smaller crystal sizes with increasing Mn content. At temperatures above 800 °C, Mn is reduced to its 2+ valence state, and coarsening is enhanced with increasing Mn content. Atomistic simulations show the segregation of Mn to grain boundaries is relatively insensitive to the charge state of the dopant. However, point defect modeling finds that the reduced state causes a decrease in cation vacancy concentration and an increase in cation interstitials, reducing drag forces for grain boundary mobility and increasing growth rates.« less
Friction and wear of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1983-01-01
Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.
NASA Astrophysics Data System (ADS)
Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit
2018-05-01
We have shown an exponential increase in the ratio of conductance in the on and off states of switching devices by controlling the surface morphology of the thin films for the device by depositing at different rotational speeds. The pinholes which are preferred topography on the surface at higher rotational speed give rise to higher on-off ratio of current from the devices fabricated at the speed. The lower rotational speed contributes to higher thickness of the film and hence no switching. For thicker films, the domain is formed due to phase segregation between the two components in the film, which also indicates that the film is far from thermal equilibrium. At higher speed, there is very little scope of segregation when the film is drying up. Hence, there are only few pinholes on the surface of the film which are shallow. So, the filamentary mechanism of switching in memory devices can be firmly established by varying the speed of thin film deposition which leads to phase segregation of the materials. Thus, the formation of filament can be regulated by controlling the thickness and the surface morphology.
Friction and wear of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1984-01-01
Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.
Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology
NASA Technical Reports Server (NTRS)
Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu
1996-01-01
To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.
Mechanism of Na accumulation at extended defects in Si from first-principles
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chan, Maria K. Y.
2018-04-01
Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.
Simulation of clustering and anisotropy due to Co step-edge segregation in vapor-deposited CoPt3
NASA Astrophysics Data System (ADS)
Maranville, B. B.; Schuerman, M.; Hellman, F.
2006-03-01
An atomistic mechanism is proposed for the creation of structural anisotropy and consequent large perpendicular magnetic anisotropy in vapor-deposited films of CoPt3 . Energetic considerations of bonding in Co-Pt suggest that Co segregates to step edges due to their low coordination, for all film orientations, while Pt segregates to the two low index surfaces. Coalescence of islands during growth cause these Co-rich step edges to become flat thin Co platelets in a Pt rich matrix, giving rise to the experimentally observed magnetic anisotropy. This proposed model is tested with kinetic Monte Carlo simulation of the vapor deposition growth. A tight-binding, second-moment approximation to the interatomic potential is used to calculate the probability of an atom hopping from one surface site to another, assuming an Arrhenius-like activation model of surface motion. Growth is simulated by allowing many hopping events per adatom. The simulated as-grown films show an asymmetry in Co-Co bonding between the in-plane and out-of-plane directions, in good agreement with experimental data. The growth temperature dependence found in the simulations is strong and similar to that seen in experiments, and an increase in Co edge segregation with increasing temperature is also observed.
43 CFR 2091.3-1 - Segregation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in a right-of-way application for the generation of electrical energy under 43 CFR subpart 2804 from wind or solar sources. In addition, the Bureau of Land Management may also segregate lands that it identifies for potential rights-of-way for electricity generation from wind or solar sources. Upon...
43 CFR 2091.3-1 - Segregation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... right-of-way application under 43 CFR subpart 2804 for the generation of electrical energy from wind or solar sources. In addition, the Bureau of Land Management may also segregate lands that it identifies for potential rights-of-way for electricity generation from wind or solar sources when initiating a...
43 CFR 2091.3-1 - Segregation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... right-of-way application under 43 CFR subpart 2804 for the generation of electrical energy from wind or solar sources. In addition, the Bureau of Land Management may also segregate lands that it identifies for potential rights-of-way for electricity generation from wind or solar sources when initiating a...
NASA Astrophysics Data System (ADS)
Zhao, S.; Mi, Z.; Kibria, M. G.; Li, Q.; Wang, G. T.
2012-06-01
In the present work, the photoluminescence (PL) characteristics of intrinsic and Si-doped InN nanowires are studied in detail. For intrinsic InN nanowires, the emission is due to band-to-band carrier recombination with the peak energy at ˜0.64 eV (at 300 K) and may involve free-exciton emission at low temperatures. The PL spectra exhibit a strong dependence on optical excitation power and temperature, which can be well characterized by the presence of very low residual electron density and the absence or a negligible level of surface electron accumulation. In comparison, the emission of Si-doped InN nanowires is characterized by the presence of two distinct peaks located at ˜0.65 and ˜0.73-0.75 eV (at 300 K). Detailed studies further suggest that these low-energy and high-energy peaks can be ascribed to band-to-band carrier recombination in the relatively low-doped nanowire bulk region and Mahan exciton emission in the high-doped nanowire near-surface region, respectively; this is a natural consequence of dopant surface segregation. The resulting surface electron accumulation and Fermi-level pinning, due to the enhanced surface doping, are confirmed by angle-resolved x-ray photoelectron spectroscopy measurements on Si-doped InN nanowires, which is in direct contrast to the absence or a negligible level of surface electron accumulation in intrinsic InN nanowires. This work elucidates the role of charge-carrier concentration and distribution on the optical properties of InN nanowires.
Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus
2015-06-14
In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.
Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications
NASA Technical Reports Server (NTRS)
Asthana, R.; Singh, M.; Shpargel, T.P.
2008-01-01
Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed.
NASA Astrophysics Data System (ADS)
Lam, N. Q.; Okamoto, P. R.
1984-05-01
The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. Damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions.
A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys
NASA Technical Reports Server (NTRS)
Jayne, D. T.; Smialek, J. L.
1993-01-01
Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.
Choi, Sun; Birarda, Giovanni
2017-08-03
During natural drying process, all solutions and suspensions tend to form the so-called "coffee-ring" deposits. This phenomenon, by far, has been interpreted by the hydrodynamics of evaporating fluids. However, in this study, by applying Fourier transform infrared imaging (FTIRI), it is possible to observe the segregation and separation of a protein mixture at the "ring", hence we suggest a new way to interpret "coffee-ring effect" of solutions. The results explore the dynamic process that leads to the ring formation in case of model plasma proteins, such as BGG (bovine γ globulin), BSA (bovine serum albumin), and Hfib (human fibrinogen), and also report fascinating discovery of the segregation at the ring deposits of two model proteins BGG and BSA, which can be explained by an energy kinetic model, only. The investigation suggests that the coffee-ring effect of solute in an evaporating solution drop is driven by an energy gradient created from change of particle-water-air interfacial energy configuration.
Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles
NASA Astrophysics Data System (ADS)
Tchaplyguine, M.; Andersson, T.; Zhang, Ch.; Björneholm, O.
2013-03-01
Core-shell segregation of copper and silver in self-assembled, free nanoparticles is established by means of photoelectron spectroscopy in a wide range of relative Cu-Ag concentrations. These conclusions are based on the analysis of the photon-energy-dependent changes of the Cu 3d and Ag 4d photoelectron spectra. The nanoparticles are formed from mixed Cu-Ag atomic vapor created by magnetron sputtering of a bimetallic sample in a gas-aggregation cluster source. Even at similar Cu and Ag fractions in the primary vapor the surface of the nanoparticles is dominated by silver. Only at low Ag concentration copper appears on the surface of nanoparticles. For the latter case, a threefold decrease in the Ag 4d spin-orbit splitting has been detected. The specific component distribution and electronic structure changes are discussed in connection with the earlier results on Cu-Ag macroscopic and surface alloys.
NASA Astrophysics Data System (ADS)
Story, Mary E.; Webler, Bryan A.
2018-05-01
In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.
Thermodynamic and kinetic modeling of grain boundary equilibrium segregation of P in α-Fe
Yang, Y.; Chen, S. -L.
2017-04-18
Phosphorus is a primary contributor to interface fracture and embrittlement in steels because of its strong segregation tendency at grain boundaries (GBs). The lack of consistency in literature data imposes great difficulties in performing segregation modeling that is compatible with both the Langmuir-Mclean segregation theory and the thermodynamic description of the Bcc(Fe,P) phase. Our work carefully evaluated experimental data for phosphorus segregation at GBs in -Fe and provided a new formula for converting the auger electron spectroscopy (AES) peak height ratio to GBs. Furthermore, based on newly assessed literature data, this work proposes that the major driving force for phosphorusmore » segregation is the formation of Fe 3P-type clusters at GBs, which is supported not only by the almost equivalent Gibbs energy of _Fe using the Bcc(Fe,P) substitutional model and the Bcc(Fe,Fe 3P, P) associate model, but also by the good agreement between thermodynamic/kinetic modeling results and experimental data.« less
Hydrogen segregation to inclined Σ3 < 110 >twin grain boundaries in nickel
O’Brien, Christopher J.; Foiles, Stephen M.
2016-08-04
Low-mobility twin grain boundaries dominate the microstructure of grain boundary-engineered materials and are critical to understanding their plastic deformation behaviour. The presence of solutes, such as hydrogen, has a profound effect on the thermodynamic stability of the grain boundaries. This work examines the case of a Σ3 grain boundary at inclinations from 0° ≤ Φ ≤ 90°. The angle Φ corresponds to the rotation of the Σ3 (1 1 1) < 1 1 0 > (coherent) into the Σ3 (1 1 2) < 1 1 0 > (lateral) twin boundary. To this end, atomistic models of inclined grain boundaries, utilisingmore » empirical potentials, are used to elucidate the finite-temperature boundary structure while grand canonical Monte Carlo models are applied to determine the degree of hydrogen segregation. In order to understand the boundary structure and segregation behaviour of hydrogen, the structural unit description of inclined twin grain boundaries is found to provide insight into explaining the observed variation of excess enthalpy and excess hydrogen concentration on inclination angle, but the explanatory power is limited by how the enthalpy of segregation is affected by hydrogen concentration. At higher concentrations, the grain boundaries undergo a defaceting transition. In order to develop a more complete mesoscale model of the interfacial behaviour, an analytical model of boundary energy and hydrogen segregation that relies on modelling the boundary as arrays of discrete 1/3 < 1 1 1 > disconnections is constructed. Lastly, the complex interaction of boundary reconstruction and concentration-dependent segregation behaviour exhibited by inclined twin grain boundaries limits the range of applicability of such an analytical model and illustrates the fundamental limitations for a structural unit model description of segregation in lower stacking fault energy materials.« less
Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.
1997-12-23
A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.
The effect of primary recoil spectrum on radiation induced segregation in nickel-silicon alloys
NASA Astrophysics Data System (ADS)
Averback, R. S.; Rehn, L. E.; Wagner, W.; Ehrhart, P.
1983-08-01
Segregation of silicon to the surface of Ni-12.7 at% Si alloys during 2.0-MeV He and 3.25-MeV Kr irradiations was measured using Rutherford backscattering spectrometry. For equal calculated defect production rates the Kr irradiation was < 3 % as efficient as the He irradiation for promoting segregation in the temperature range, 450 °C-580 °C. It was further observed that Kr preirradiation of specimens dramatically reduced segregation during subsequent He irradiation. A model for cascade annealing in Ni-Si alloys is presented which qualitatively explains the segregation results. The model assumes that small interstitial-atom-clusters form in individual cascades and that these clusters become trapped at silicon solute atoms. The vacancy thereby becomes the more mobile defect. The model should also have relevance for the observation that void swelling in nickel is suppressed by the addition of silicon solute.
The atomistic mechanism for Sb segregation and As displacement of Sb in InSb(001) surfaces
NASA Astrophysics Data System (ADS)
Anderson, Evan M.; Millunchick, Joanna M.
2018-01-01
Interfacial broadening occurs in mixed-anion alloy heterostructures such as InAs/InAsSb due to both Sb-segregation and As-for-Sb exchange. In order to determine the atomistic mechanisms for these processes, we conduct ab initio calculations coupled with a cluster expansion formalism to determine the surface reconstructions of the pure and As-exposed InSb(001) surfaces. This approach provides a predicted phase diagram for pure InSb that is in better agreement with experiments. Namely, the α2(2 × 4) and α3c(4 × 4) structures are ultimately stable at 0K, but the α(4 × 3) and α2c(2 × 6) are within 1 meV/Å2. Exposure of the InSb(001) surface to As results in the As atoms infiltrating into the crystal and displacing subsurface Sb, thus providing the atomistic mechanisms for experimental observations of the As-for-Sb exchange reaction and Sb segregation. Experiments show that the widely reported A-(1 × 3) reconstruction is actually comprised of multiple reconstructions, which is consistent with the prediction of several nearly stable possible reconstructions.
Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects.
Titus, Michael S; Rhein, Robert K; Wells, Peter B; Dodge, Philip C; Viswanathan, Gopal Babu; Mills, Michael J; Van der Ven, Anton; Pollock, Tresa M
2016-12-01
It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4-atomic-layer-thick phase, where segregation has occurred, compared to the approximately 35-atomic-layer-thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties.
Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects
Titus, Michael S.; Rhein, Robert K.; Wells, Peter B.; Dodge, Philip C.; Viswanathan, Gopal Babu; Mills, Michael J.; Van der Ven, Anton; Pollock, Tresa M.
2016-01-01
It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4–atomic-layer–thick phase, where segregation has occurred, compared to the approximately 35–atomic-layer–thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties. PMID:28028543
Evolution of wetting layer in InAs/GaAs quantum dot system
Ye, XL; Wang, ZG
2006-01-01
For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy- and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavy- and light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.
Dislocation nucleation facilitated by atomic segregation
Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; ...
2017-11-27
Surface segregation—the enrichment of one element at the surface, relative to the bulk—is ubiquitous to multi-component materials. Using the example of a Cu–Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface di˙usion and trapping process. The resulting chemically ordered surface regions acts as an e˙ective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associatedmore » with their nucleation, glide, climb, and annihilation at elevated temperatures. As a result, these observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.« less
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.
1999-10-01
Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.
Photoconductivity induced by nanoparticle segregated grain-boundary in spark plasma sintered BiFeO3
NASA Astrophysics Data System (ADS)
Nandy, Subhajit; Mocherla, Pavana S. V.; Sudakar, C.
2017-05-01
Photoconductivity studies on spark plasma sintered BiFeO3 samples with two contrasting morphologies, viz., nanoparticle-segregated grain boundary (BFO-AP) and clean grain boundary (BFO-AA), show that their photo-response is largely influenced by the grain boundary defects. Impedance analyses at 300 K and 573 K clearly demarcate the contributions from grain, grain-boundary, and the nanoparticle-segregated grain-boundary conductivities. I-V characteristics under 1 sun illumination show one order of higher conductivity for BFO-AP, whereas conductivity decreases for BFO-AA sample. Larger photocurrent in BFO-AP is attributed to the extra conduction path provided by oxygen vacancies on the nanoparticle surfaces residing at the grain boundaries. Creation of photo-induced traps under illumination and the absence of surface conduction channels in BFO-AA are surmised to result in a decreased conductivity on illumination.
NASA Astrophysics Data System (ADS)
Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo
2017-11-01
The correlation between final thickness reduction and development of Goss texture has been investigated in a C- and Al-free Fe-3%Si electrical steel. During final annealing, the annealing texture is transited from {110}⊥ND to {100}⊥ND texture with increasing final thickness reduction. This is due to the decrease in primary grain size after pre-annealing with increasing final thickness reduction which accelerates the selective growth rate of the {100} grains at the expense of the other {hkl} grains. At an optimal final thickness reduction of 75.8%, the high magnetic induction of 1.95 Tesla, which arises from the sharp {110}<001> Goss texture and is comparable to that of conventional grain-oriented electrical steels, is obtained from the C- and Al-free Fe-3%Si-0.1%Mn electrical steel. Such a high magnetic property is produced through the surface-energy-induced selective grain growth of the Goss grains under the lower surface-segregated condition of sulfur which makes the surface energy of the {110} plane lowest among the {hkl} planes.
Surface Structure Formation in Direct Chill (DC) Casting of Al Alloys
NASA Astrophysics Data System (ADS)
Bayat, Nazlin; Carlberg, Torbjörn
2014-05-01
The aim of this study is to increase the understanding of the surface zone formation during direct chill (DC) casting of aluminum billets produced by the air slip technology. The depth of the shell zone, with compositions deviating from the bulk, is of large importance for the subsequent extrusion productivity and quality of final products. The surface microstructures of 6060 and 6005 aluminum alloys in three different surface appearances—defect free, wavy surface, and spot defects—were studied. The surface microstructures and outer appearance, segregation depth, and phase formation were investigated for the mentioned cases. The results were discussed and explained based on the exudation of liquid metal through the mushy zone and the fact that the exudated liquid is contained within a surface oxide skin. Outward solidification in the surface layer was quantitatively analyzed, and the oxide skin movements explained meniscus line formation. Phases forming at different positions in the segregation zone were analyzed and coupled to a cellular solidification in the exudated layer.
Lee, Dongkyu; Lee, Yueh-Lin; Hong, Wesley T.; ...
2014-11-13
Heterostructured oxide interfaces created by decorating Ruddlesden-Popper phases (A2BO4) or perovskites on perovskites have shown not only pronounced cation segregation at the interface and in the A2BO4 structure but also much enhanced kinetics for oxygen electrocatalysis at elevated temperatures. In this study, we report and compare the time-dependent surface exchange kinetics and stability of (La 0.5Sr 0.5) 2CoO 4 -decorated (LSC 214) La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF 113) and La 0.8Sr 0.2CoO 3-δ (LSC 113) thin films. While LSC 214 decoration on LSC 113 greatly reduced the degradation in the surface exchange kinetics as a function of timemore » relative to LSC 113, LSCF 113 with LSC 214 coverage showed comparable surface exchange kinetics and stability to LSCF 113. This difference can be explained by greater surface stability of LSCF 113 than LSC 113 under testing conditions, and that LSC 214 decoration on LSC 113 reduced the decomposition of LSC 113 to form secondary phases that impedes oxygen exchange kinetics, and thus resulted in enhanced stability. This hypothesis is supported by the observations that annealing at 550 °C led to the formation of Sr-rich secondary particles on LSC 113 while no such particles were observed on LSCF 113. Density functional theory (DFT) computation provides further support, which revealed greater capacity of surface Sr segregation for LSCF 113 having SrO termination than LSC 113 having (La 0.25Sr 0.75)O termination for the experimental conditions, and lower energy gain to move Sr from LSCF 113 into LSC 214 relative to the LSC 214-LSC 113 system.« less
Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage
NASA Astrophysics Data System (ADS)
Manthiram, Arumugam
2011-03-01
Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.
NASA Astrophysics Data System (ADS)
Tsai, Ho-Cheng
We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. In part I, The challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface; we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt 3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML /Os core-shell). We found that Pt2ML/Os has the highest activity (compared to pure Pt and to the Pt3Os alloy) because the 0.37 eV barrier decreases to 0.23 eV. To understand what aspects of the core shell structure lead to this improved performance, we considered the effect on ORR of compressing the alloy slab to the dimensions of pure Pt. However this had the same RDS barrier 0.37 eV. Experimental materials characterization proves the core-shell feature of our catalyst. In part II, we used QM calculations to study methane stream reforming on a Ni-alloy catalyst surfaces for solid oxide fuel cell (SOFC) application. SOFC has wide fuel adaptability but the coking and sulfur poisoning will reduce its stability. We carried out QM calculations on surface segregation and found that the most stable configuration for Ni4Fe has a Fe atom distribution of (0%, 50%, 25%, 25%, 0%) starting at the bottom layer. We calculated that the binding of C atoms on the Ni4Fe surface is 142.9 Kcal/mol, which is about 10 Kcal/mol weaker compared to the pure Ni surface. This result confirms the experimental observation. The reaction energy barriers for CH x decomposition and C binding on various alloy surface, Ni4X (X=Fe, Co, Mn, and Mo), showed Ni4Fe, Ni4Co, and Fe4Mn all have better coking resistance than pure Ni, but that only Ni4Fe and Fe4Mn have (slightly) improved activity compared to pure Ni. In part III, we used QM to examine the proton transport in doped perovskite-ceramics. Here we used a 2x2x2 supercell of perovskite with composition Ba8X 7M1(OH)1O23 where X=Ce or Zr and M=Y, Gd, or Dy. Thus in each case a 4+ X is replace by a 3 + M plus a proton on one O. Here we predicted the barriers for proton diffusion allowing both includes intra-octahedron and inter-octahedra proton transfer. Without any restriction, we only observed the inter-octahedra proton transfer with similar energy barrier as previous computational work but 0.2 eV higher than experimental result for Y doped zirconate. For one restriction in our calculations is that the Odonor-Oacceptor atoms were kept at fixed distances, we found that the barrier difference between cerates/zirconates with various dopants are only 0.02~0.03 eV. To fully address performance one would need to examine proton transfer at grain boundaries, which will require larger scale ReaxFF reactive dynamics for systems with millions of atoms. The QM calculations used here will be used to train the ReaxFF force field. (Abstract shortened by UMI.).
Current viewpoints on oxide adherence mechanisms
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Browning, R.
1985-01-01
Additional hot stage Auger experiments have provided surface segregation data for NiCrAl + or - Y or Zr alloys in agreement with other investigations. This data, combined with experimental and theoretical evidence of the Al2O3-metal bond strength, is presented in support of a chemical mechanism of Al2O3 scale adhesion. Both the detrimental effects of sulfur segregation and the beneficial effects of dopant segregation may be important. Chemical features of the dopants are compared in light of these proposed mechanisms, namely delta H sub f (sulfide), delta H sub f (oxide), electron orbital configuration, and insolubility in Ni.
Perry, Nicola H.; Ishihara, Tatsumi
2016-01-01
Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978
Epi-cleaning of Ge/GeSn heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.
2015-01-28
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.
Epi-cleaning of Ge/GeSn heterostructures
NASA Astrophysics Data System (ADS)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A.; Wirths, S.; Buca, D.; Zaumseil, P.; Schroeder, T.; Capellini, G.
2015-01-01
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100-300 °C range.
Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates.
Burrows, Christopher W; Dobbie, Andrew; Myronov, Maksym; Hase, Thomas P A; Wilkins, Stuart B; Walker, Marc; Mudd, James J; Maskery, Ian; Lees, Martin R; McConville, Christopher F; Leadley, David R; Bell, Gavin R
2013-11-06
Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.
Nonequilibrium processes of segregation and diffusion in metal-polymer tribosystems
NASA Astrophysics Data System (ADS)
Sidashov, A. V.; Kolesnikov, I. V.
2017-12-01
The article presents the results of exchange-diffusion processes between chemical elements in metal-polymer tribosystems (between a metal wheel of a rolling stock and a composite polymer brake shoe). The effect of the segregation processes on the strength characteristics of the working surface of a tribosystem is estimated by quantum chemical calculations, Auger and X-ray photoelectron spectroscopies.
Evaporation-Triggered Segregation of Sessile Binary Droplets.
Li, Yaxing; Lv, Pengyu; Diddens, Christian; Tan, Huanshu; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2018-06-01
Droplet evaporation of multicomponent droplets is essential for various physiochemical applications, e.g., in inkjet printing, spray cooling, and microfabrication. In this work, we observe and study the phase segregation of an evaporating sessile binary droplet, consisting of a miscible mixture of water and a surfactantlike liquid (1,2-hexanediol). The phase segregation (i.e., demixing) leads to a reduced water evaporation rate of the droplet, and eventually the evaporation process ceases due to shielding of the water by the nonvolatile 1,2-hexanediol. Visualizations of the flow field by particle image velocimetry and numerical simulations reveal that the timescale of water evaporation at the droplet rim is faster than that of the Marangoni flow, which originates from the surface tension difference between water and 1,2-hexanediol, eventually leading to segregation.
NASA Astrophysics Data System (ADS)
Chung, Hyun-Joong; Ohno, Kohji; Composto, Russell
2013-03-01
We present an novel pathway to control the location of nanoparticles (NPs) in phase-separating polymer blend films containing poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN). Because hydrophobic polymer phases have a small interfacial energy, ~1 mJ/m2, subtle changes in the NP surface functionality can be used to guide NPs to either the interface between immiscible polymers or into one of the phases. Based on this idea, we designed a class of NPs grafted with PMMA brushes. These PMMA brushes were grown from the NP surface by atom transfer radical polymerization (ATRP), which results in chains terminated with chlorine atoms. The chain end can be substituted with protons (H) by dehalogenation. As a result, the NPs are strongly segregated at the interface when grafted PMMA chains are short (Mn =1.8K) and the end group is Cl, whereas NPs partition into PMMA-rich phase when chains are long (Mn =160K) and/or when chains are terminated with hydrogen. The Cl end groups and shorter chain length cause an increase in surface energy for the NPs. The increase in surface energy of short-chained NPs can be attributed to (i) an extended brush conformation (entropic) and/or (ii) a high density of ``unfavorable'' end groups (enthalpic). Finally, the impact of NPs on the morphological evolution of the polymer blend films will be discussed. Ref: H.-J.Chung et al., ACS Macro Lett. 1(1), 252-256 (2012).
Surface dynamics of micellar diblock copolymer films
NASA Astrophysics Data System (ADS)
Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh
2011-03-01
We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).
NASA Astrophysics Data System (ADS)
Zimnik, Samantha; Dickmann, Marcel; Hugenschmidt, Christoph
2017-10-01
We report the direct observation of the in-situ temperature-dependent migration of Ni adatoms in Pd using Positron annihilation induced Auger Electron Spectroscopy (PAES). For this study, a single atomic layer of Ni was grown on Pd with the crystallographic orientations Pd(111), Pd(110) and Pd(100). The sample temperature was increased from room temperature to 350 °C and the intensity of the Ni and Pd signal was evaluated from the recorded PAES spectra. Due to the outstanding surface sensitivity of PAES a clear tendency for Pd segregation at the surface was observed for all samples. Moreover the activation temperature T0 for surface segregation was found to depend strongly on the surface orientation: We determined T0 to 172± 4 °C, 261± 12 °C and 326± 11 °C for Pd(111), Pd(100) and Pd(110), respectively.
NASA Astrophysics Data System (ADS)
Foo, Y. L.; Bratland, K. A.; Cho, B.; Desjardins, P.; Greene, J. E.
2003-04-01
In situ surface probes and postdeposition analyses were used to follow surface reaction paths and growth kinetics of Si1-yCy alloys grown on Si(001) by gas-source molecular-beam epitaxy from Si2H6/CH3SiH3 mixtures as a function of C concentration y (0-2.6 at %) and temperature Ts (500-600 °C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In situ isotopically tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregation during steady-state Si1-yCy(001) growth results in charge transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θSi*(y,Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. θSi* increases with increasing y and Ts in the kinetically limited segregation regime while Ed decreases from 2.52 eV for H2 desorption from Si surface sites with Si back bonds to 2.22 eV from Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts,JSi2H6,JCH3SiH3) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in excellent agreement with the experimental data.
Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines
2013-01-01
Background and methods Stem or progenitor cells from healthy tissues have the capacity to co-segregate their template DNA strands during mitosis. Here, we set out to test whether breast cancer cell lines also possess the ability to asymmetrically segregate their template DNA strands via non-random chromosome co-segregation, and whether this ability correlates with certain properties attributed to breast cancer stem cells (CSCs). We quantified the frequency of asymmetric segregation of template DNA strands in 12 human breast cancer cell lines, and correlated the frequency to molecular subtype, CD44+/CD24-/lo phenotype, and invasion/migration ability. We tested if co-culture with human mesenchymal stem cells, which are known to increase self-renewal, can alter the frequency of asymmetric segregation of template DNA in breast cancer. Results We found a positive correlation between asymmetric segregation of template DNA and the breast cancer basal-like and claudin-low subtypes. There was an inverse correlation between asymmetric segregation of template DNA and Her2 expression. Breast cancer samples with evidence of asymmetric segregation of template DNA had significantly increased invasion and borderline significantly increased migration abilities. Samples with high CD44+/CD24-/lo surface expression were more likely to harbor a consistent population of cells that asymmetrically segregated its template DNA; however, symmetric self-renewal was enriched in the CD44+/CD24-/lo population. Co-culturing breast cancer cells with human mesenchymal stem cells expanded the breast CSC pool and decreased the frequency of asymmetric segregation of template DNA. Conclusions Breast cancer cells within the basal-like subtype can asymmetrically segregate their template DNA strands through non-random chromosome segregation. The frequency of asymmetric segregation of template DNA can be modulated by external factors that influence expansion or self-renewal of CSC populations. Future studies to uncover the underlying mechanisms driving asymmetric segregation of template DNA and dictating cell fate at the time of cell division may explain how CSCs are maintained in tumors. PMID:24238140
NASA Astrophysics Data System (ADS)
Zhou, Linjie; Gao, Kang; Jiao, Zhiwei; Wu, Mengyuan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi
2018-05-01
Synthetic antifouling membrane surfaces with dual-defense mechanisms (fouling-resistant and fouling-release mechanism) were constructed through the synergy of perfluorosulfonic acid (PFSA) and SiO2 nanoparticles. During the nonsolvent induced phase separation (NIPS) process, the amphiphilic PFSA polymers spontaneously segregated to membrane surfaces and catalyzed the hydrolysis-polycondensation of tetraethyl orthosilicate (TEOS) to generate hydrophilic SiO2 nanoparticles (NPs). The resulting PVDF/PFSA/SiO2 hybrid membranes were characterized by contact angle measurements, FTIR, XPS, SEM, AFM, TGA, and TEM. The hydrophilic microdomains and low surface energy microdomains of amphiphilic PFSA polymers respectively endowed membrane surfaces with fouling-resistant mechanism and fouling-release mechanism, while the hydrophilic SiO2 NPs intensified the fouling-resistant mechanism. When the addition of TEOS reached 3 wt%, the hybrid membrane with optimal synergy of PFSA and SiO2 NPs displayed low flux decline (17.4% DRt) and high flux recovery (99.8% FRR) during the filtration of oil-in-water emulsion. Meanwhile, the long-time stability test verified that the hybrid membrane possessed persistent antifouling performance.
Magnetic characteristics and nanostructures of FePt granular films with GeO2 segregant
NASA Astrophysics Data System (ADS)
Ono, Takuya; Moriya, Tomohiro; Hatayama, Masatoshi; Tsumura, Kaoru; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito
2017-01-01
To realize a granular film composed of L10-FePt grains with high uniaxial magnetic anisotropy energy, Ku, and segregants for energy-assisted magnetic recording, a FePt-GeO2/FePt-C stacked film was investigated in the engineering process. The FePt-GeO2/FePt-C stacked film fabricated at a substrate temperature of 450 °C realized uniaxial magnetic anisotropy, Kugrain , of about 2.5 × 107 erg/cm3, which is normalized by the volume fraction of FePt grains, and a granular structure with an averaged grain size of 7.7 nm. As the thickness of the FePt-GeO2 upper layer was increased to 9 nm, the Ku values were almost constant. That result differs absolutely from the thickness dependences of the other oxide segregant materials such as SiO2 and TiO2. Such differences on the oxide segregant are attributed to their chemical bond. The strong covalent bond of GeO2 is expected to result in high Ku of the FePt-GeO2/FePt-C stacked films.
NASA Astrophysics Data System (ADS)
Pranoto; Himawanto, D. A.; Arifin, N. A.
2017-04-01
The combustion of segregated municipal solid waste (MSW) and the resulted char from the pyrolysis process were investigated in this research. The segregated MSW that was collected and used can be divided into organic and inorganic waste materials. The organic materials were bamboo and banana leaves and the inorganic materials were Styrofoam and snack wrappings. The composition ratio of the waste was based on the percentage of weight of each sample. The thermal behaviour of the segregated MSW was investigated by thermo gravimetric analysis. For the pyrolysis process the prepared samples of 200gram were heated from ambient temperature until a variance of final pyrolysis temperature of 550°C, 650°C and 750°C at a constant heating rate of 25°C/min. It was found that the highest activation energy of the raw materials is achieved from sample CC1 (Char with 100% inorganic materials). The activation energy of the raw materials is relatively lower than that of the char. The higher the final pyrolysis temperature, the lower the calorific value of char. The calorific value gradually increases with the amount of inorganic materials.
NASA Astrophysics Data System (ADS)
Crook, Adam M.; Nair, Hari P.; Bank, Seth R.
2011-03-01
We report on the integration of semimetallic ErAs nanoparticles with high optical quality GaAs-based semiconductors, grown by molecular beam epitaxy. Secondary ion mass spectrometry and photoluminescence measurements provide evidence of surface segregation and incorporation of erbium into layers grown with the erbium cell hot, despite the closed erbium source shutter. We establish the existence of a critical areal density of the surface erbium layer, below which the formation of ErAs precipitates is suppressed. Based upon these findings, we demonstrate a method for overgrowing ErAs nanoparticles with III-V layers of high optical quality, using subsurface ErAs nanoparticles as a sink to deplete the surface erbium concentration. This approach provides a path toward realizing optical devices based on plasmonic effects in an epitaxially-compatible semimetal/semiconductor system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalan, Srikanth
2017-04-06
This final report for project FE0009656 covers the period from 10/01/2012 to 09/30/2015 and covers research accomplishments on the effects of carbon dioxide on the surface composition and structure of cathode materials for solid oxide fuel cells (SOFCs), specifically La1-xSrxFeyCo1- yO3-δ (LSCF). Epitaxially deposited thin films of LSCF on various single-crystal substrates have revealed the selective segregation of strontium to the surface thereby resulting in a surface enrichment of strontium. The near surface compositional profile in the films have been measured using total x-ray fluorescence (TXRF), and show that the kinetics of strontium segregation are higher at higher partial pressuresmore » of carbon dioxide. Once the strontium segregates to the surface, it leads to the formation of precipitates of SrO which convert to SrCO3 in the presence of even modest concentrations of carbon dioxide in the atmosphere. This has important implications for the performance of SOFCs which is discussed in this report. These experimental observations have also been verified by Density Functional Theory calculations (DFT) which predict the conditions under which SrO and SrCO3 can occur in LSCF. Furthermore, a few cathode compositions which have received attention in the literature as alternatives to LSCF cathodes have been studied in this work and shown to be thermodynamically unstable under the operating conditions of the SOFCs.« less
Phase segregation in multiphase turbulent channel flow
NASA Astrophysics Data System (ADS)
Bianco, Federico; Soldati, Alfredo
2014-11-01
The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.
NASA Astrophysics Data System (ADS)
Sgualdino, G.; Aquilano, D.; Pastero, L.; Vaccari, G.
2007-10-01
Raffinose segregation into sucrose crystals is experimentally determined along with the modifications of the quantitative sucrose growth morphology, which are in turn related to the different growth conditions. ( Craff, σ) morphodromes nicely represent the conflict between the supersaturation and the raffinose concentration in the solution on the growth morphology, while the overall segregation rate is nearly proportional to the linear overall crystal growth rate. Chernov and Burton-Prim-Slichter models, checked to fit our keff and ln(keff-1-1) coefficients as a function of the supersaturation and of the mean linear overall growth rate, do not allow to know whether the segregation occurs either by a process dominated by surface integration, or by additive transfer dominated by volume diffusion within the boundary layer. The distribution of segregated raffinose strictly depends on the { h k l} growth sectors and doped crystals contain deformed lattice zones, as it comes out from X-ray powder diagrams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy
Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy
The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
Electronic structure of strongly reduced (1 ‾ 1 1) surface of monoclinic HfO2
NASA Astrophysics Data System (ADS)
Cheng, YingXing; Zhu, Linggang; Ying, Yile; Zhou, Jian; Sun, Zhimei
2018-07-01
Material surface is playing an increasingly important role in electronic devices as their size down to nanoscale. Here, by first-principles calculations we studied the surface oxygen-vacancies (Vos) induced electronic-structure variation of HfO2 , in order to explore its potential applications in surface-controlled electronic devices. Firstly, it is found that single Vo tends to segregate onto the surface and attracts each other as they form pairs, making the formation of vacancies-contained functional surface possible. Then extensive Vo-chains whose formation/rupture can represent the high/low conductivity state are constructed. The electronic states induced by the Vos remain localized in the band-gap region for most of the Vo-chains studied here. A transition to a metallic conductance is found in metastable Vo-chain with formation energy increased by 0.25 eV per Vo. Moreover, we highlight the significance of the Hubbard U correction for density functional theory when studying the electronic-structure based conductance in the oxides. By comprehensive calculations, we find a conductivity-stability dilemma of the Vo-chains, providing guideline for understanding and designing the electronic devices based on HfO2 surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Brien, Christopher J.; Foiles, Stephen M.
Low-mobility twin grain boundaries dominate the microstructure of grain boundary-engineered materials and are critical to understanding their plastic deformation behaviour. The presence of solutes, such as hydrogen, has a profound effect on the thermodynamic stability of the grain boundaries. This work examines the case of a Σ3 grain boundary at inclinations from 0° ≤ Φ ≤ 90°. The angle Φ corresponds to the rotation of the Σ3 (1 1 1) < 1 1 0 > (coherent) into the Σ3 (1 1 2) < 1 1 0 > (lateral) twin boundary. To this end, atomistic models of inclined grain boundaries, utilisingmore » empirical potentials, are used to elucidate the finite-temperature boundary structure while grand canonical Monte Carlo models are applied to determine the degree of hydrogen segregation. In order to understand the boundary structure and segregation behaviour of hydrogen, the structural unit description of inclined twin grain boundaries is found to provide insight into explaining the observed variation of excess enthalpy and excess hydrogen concentration on inclination angle, but the explanatory power is limited by how the enthalpy of segregation is affected by hydrogen concentration. At higher concentrations, the grain boundaries undergo a defaceting transition. In order to develop a more complete mesoscale model of the interfacial behaviour, an analytical model of boundary energy and hydrogen segregation that relies on modelling the boundary as arrays of discrete 1/3 < 1 1 1 > disconnections is constructed. Lastly, the complex interaction of boundary reconstruction and concentration-dependent segregation behaviour exhibited by inclined twin grain boundaries limits the range of applicability of such an analytical model and illustrates the fundamental limitations for a structural unit model description of segregation in lower stacking fault energy materials.« less
NASA Astrophysics Data System (ADS)
Foo, Yong-Lim
Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C backbonds. This, in turn, decreases the Si2H6 sticking probability and, hence, the sublayer deposition rate. This continues until a critical C coverage is reached allowing the nucleation and growth of a C-rich sublayer until the excess C is depleted. At this point, the self-organized bilayer process repeats itself.
Luminosity segregation in galaxy clusters as an indication of dynamical evolution
NASA Technical Reports Server (NTRS)
Baier, F. W.; Schmidt, K.-H.
1993-01-01
Theoretical models describing the dynamical evolution of self-gravitating systems predict a spatial mass segregation for more evolved systems, with the more massive objects concentrated toward the center of the configuration. From the observational point of view, however, the existence of mass segregation in galaxy clusters seems to be a matter of controversy. A special problem in this connection is the formation of cD galaxies in the centers of galaxy clusters. The most promising scenarios of their formation are galaxy cannibalism (merger scenario) and growing by cooling flows. It seems to be plausible to consider the swallowing of smaller systems by a dominant galaxy as an important process in the evolution of a cD galaxy. The stage of the evolution of the dominant galaxy should be reflected by the surrounding galaxy population, especially by possible mass segregation effects. Assuming that mass segregation is tantamount to luminosity segregation we analyzed luminosity segregation in roughly 40 cD galaxy clusters. Obviously there are three different groups of clusters: (1) clusters with luminosity segregation, (2) clusters without luminosity segregation, and (3) such objects exhibiting a phenomenon which we call antisegregation in luminosity, i.e. a deficiency of bright galaxies in the central regions of clusters. This result is interpreted in the sense of different degrees of mass segregation and as an indication for different evolution stages of these clusters. The clusters are arranged in the three segregation classes 2, 1, and 0 (S2 = strong mass segregation, S1 = moderate mass segregation, S0 = weak or absent mass segregation). We assume that a galaxy cluster starts its dynamical evolution after virialization without any radial mass segregation. Energy exchange during encounters of cluster members as well as merger processes between cluster galaxies lead to an increasing radial mass segregation in the cluster (S1). If a certain degree of segregation (S2) has been established, an essential number of slow-moving and relative massive cluster members in the center will be cannibalized by the initial brightest cluster galaxy. This process should lead to the growing of the predominate galaxy, which is accompanied by a diminution of the mass segregation (transition to S1 and S0, respectively) in the neighborhood of the central very massive galaxy. An increase of the areal density of brighter galaxies towards the outer cluster regions (antisegregation of luminosity), i.e. an extreme low degree of mass segregation was estimated for a substantial percentage of cD clusters. This result favors the cannibalism scenario for the formation of cD galaxies.
Burroughs, Nigel J.; Köhler, Karsten; Miloserdov, Vladimir; Dustin, Michael L.; van der Merwe, P. Anton; Davis, Daniel M.
2011-01-01
Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell∶cell communication and cell signalling, governing protein interactions and protein aggregation. PMID:21829338
Alloy Design Workbench-Surface Modeling Package Developed
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Noebe, Ronald D.; Bozzolo, Guillermo H.; Good, Brian S.; Daugherty, Elaine S.
2003-01-01
NASA Glenn Research Center's Computational Materials Group has integrated a graphical user interface with in-house-developed surface modeling capabilities, with the goal of using computationally efficient atomistic simulations to aid the development of advanced aerospace materials, through the modeling of alloy surfaces, surface alloys, and segregation. The software is also ideal for modeling nanomaterials, since surface and interfacial effects can dominate material behavior and properties at this level. Through the combination of an accurate atomistic surface modeling methodology and an efficient computational engine, it is now possible to directly model these types of surface phenomenon and metallic nanostructures without a supercomputer. Fulfilling a High Operating Temperature Propulsion Components (HOTPC) project level-I milestone, a graphical user interface was created for a suite of quantum approximate atomistic materials modeling Fortran programs developed at Glenn. The resulting "Alloy Design Workbench-Surface Modeling Package" (ADW-SMP) is the combination of proven quantum approximate Bozzolo-Ferrante-Smith (BFS) algorithms (refs. 1 and 2) with a productivity-enhancing graphical front end. Written in the portable, platform independent Java programming language, the graphical user interface calls on extensively tested Fortran programs running in the background for the detailed computational tasks. Designed to run on desktop computers, the package has been deployed on PC, Mac, and SGI computer systems. The graphical user interface integrates two modes of computational materials exploration. One mode uses Monte Carlo simulations to determine lowest energy equilibrium configurations. The second approach is an interactive "what if" comparison of atomic configuration energies, designed to provide real-time insight into the underlying drivers of alloying processes.
NASA Astrophysics Data System (ADS)
Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.
2004-12-01
As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.
MRI Measurements and Granular Dynamics Simulation of Segregation of Granular Mixture
NASA Technical Reports Server (NTRS)
Nakagawa, M.; Moss, Jamie L.; Altobelli, Stephen A.
1999-01-01
A counter intuitive axial segregation phenomenon in a rotating horizontal cylinder has recently captured attention of many researchers in different disciplines. There is a growing consensus that the interplay between the particle dynamics and the evolution of the internal structure during the segregation process must be carefully investigated. Magnetic resonance imaging (MRI) has been used to non-invasively obtain much needed dynamic/static information such as velocity and concentration profiles, and it has proven to be capable of depicting the evolution of segregation processes. Segregation in a rotating cylinder involves two processes: the first is to transport small particles in the radial direction to form a radial core, and the second is to transform the radial core into axially segregated bands. Percolation and/or "stopping" have been proposed as mechanisms for the radial segregation. As to mechanisms for axial band formation, much less is known. The difference in the dynamic angle of repose has been proposed to segregate different components in the axial direction. Recently, Hill and Kakalios have reported that particles mix or demix depending upon the competition between diffusion and preferential drift whose order can be determined by the dynamic angle of repose through the adjustment of the rotation rate. We claim that the dynamic angle of repose could be one of the causes, however, it fails to offer reasonable explanations for certain aspects of the axial migration. For example, we always observe that the radial segregation precedes the axial segregation and small particles migrate in the radial direction to form an axially extended radial core. It then transforms into axially segregated bands. By definition, the effects of the dynamic angle of repose are restricted near the free surface where the flowing layer is present. However, during the process of transforming from the radially segregated core to axially segregated bands, small particles located in the deep core region, which is untouched by the flowing layer, also completely disappear. Usually, the dynamics angle of repose are uniquely defined for individual species to characterize particle properties, and the dynamic angle of repose thus defined provides little information for the dynamic angle of repose of the mixture since the concentration ratio and the internal packing structure do not remain the same during the segregation processes. Under microgravity environment, the dynamics angle of repose argument does not hold since there is simply no flowing layer to influence/determine the preferred directions of segregation. We have thus designed an experiment so that the effects of the dynamic angle of repose can be minimized by filling the cylinder almost completely full. Small particles still formed a radial core and also migrated to form axial bands. As ground based experiments we have designed and conducted both 2D and 3D segregation experiments. The 2D experiments are performed using a thin cylinder (the gap between two end caps is about 5 mm) filled with different combinations of particles. The 3D experiments are conducted with a long cylinder of its length and diameter of 27cm and 7cm, respectively. Results of 2D experiments indicate that different mechanisms govern particle motion in regions near and far from the axis of rotation. Results of 3D experiments indicate that a series of collapses of microstructures of particle packing (micro-collapses) may be responsible for the creation of voids for small particles to migrate through in the axial direction. We have successfully eliminated the dynamic angle of repose as a cause for segregation, however, by almost completely filling the cylinder with the particles, we have lost an opportunity to investigate a possibility of particle "mobility" being a cause for segregation which requires a flowing surface but not the difference in the angle of repose. This is currently being investigated.
Danilovic, N.; Subbaraman, R.; Chang, K-C.; ...
2014-10-08
The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity ofmore » surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.« less
Nardi, James B; Pilas, Barbara; Bee, Charles Mark; Zhuang, Shufei; Garsha, Karl; Kanost, Michael R
2006-01-01
Observations of hemocyte aggregation on abiotic surfaces suggested that certain plasmatocytes from larvae of Manduca sexta act as foci for hemocyte aggregation. To establish how these particular plasmatocytes form initial attachments to foreign surfaces, they were cultured separately from other selected populations of hemocytes. While all circulating plasmatocytes immunolabel with anti-beta-integrin monoclonal antibody (MAb), only these larger plasmatocytes immunolabel with a MAb to the adhesion protein neuroglian. Neuroglian-negative plasmatocytes and granular cells that have been magnetically segregated from the majority of granular cells adhere to each other but fail to adhere to foreign substrata; by contrast, neuroglian-positive plasmatocytes that segregate with most granular cells adhere firmly to a substratum. Hemocytes form stable aggregates around the large, neuroglian-positive plasmatocytes. However, if neuroglian-positive plasmatocytes are separated from most granular cells, attachment of these plasmatocytes to foreign surfaces is suppressed.
Indium antimonide crystal growth experiment M562. [Skylab weightless conditions
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Witt, A. F.
1974-01-01
It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.
The mechanics of cellular compartmentalization as a model for tumor spreading
NASA Astrophysics Data System (ADS)
Fritsch, Anatol; Pawlizak, Steve; Zink, Mareike; Kaes, Josef A.
2012-02-01
Based on a recently developed surgical method of Michael H"ockel, which makes use of cellular confinement to compartments in the human body, we study the mechanics of the process of cell segregation. Compartmentalization is a fundamental process of cellular organization and occurs during embryonic development. A simple model system can demonstrate the process of compartmentalization: When two populations of suspended cells are mixed, this mixture will eventually segregate into two phases, whereas mixtures of the same cell type will not. In the 1960s, Malcolm S. Steinberg formulated the so-called differential adhesion hypothesis which explains the segregation in the model system and the process of compartmentalization by differences in surface tension and adhesiveness of the interacting cells. We are interested in to which extend the same physical principles affect tumor growth and spreading between compartments. For our studies, we use healthy and cancerous breast cell lines of different malignancy as well as primary cells from human cervix carcinoma. We apply a set of techniques to study their mechanical properties and interactions. The Optical Stretcher is used for whole cell rheology, while Cell-cell-adhesion forces are directly measured with a modified AFM. In combination with 3D segregation experiments in droplet cultures we try to clarify the role of surface tension in tumor spreading.
76 FR 23198 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... could be used to carry the power generated from a specific wind or solar energy ROW project, and the... included in a pending or future wind or solar energy generation right- of-way (ROW) application, or public lands identified by the BLM for a potential future wind or solar energy generation ROW authorization...
76 FR 23230 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... within the wind energy right-of- way application areas in FY 2009 and 2010, we estimate the total cost of... transmission facilities that could be used to carry the power generated from a specific wind or solar energy..., public lands included in a pending or future wind or solar energy generation right-of-way (ROW...
Effect of antimony segregation on the electronic properties of InAs/InAsSb superlattices
NASA Astrophysics Data System (ADS)
Haugan, H. J.; Szmulowicz, F.; Hudgins, J. J.; Cordonnier, L. E.; Brown, G. J.
2017-08-01
There has been great progress in recent years in advancing the state-of-the-art of Ga-free InAs/InAsSb superlattice (SL) materials for infrared detector applications, spurred by the observation of long minority carrier lifetimes in this material system. However, compositional and dimensional changes through antimony (Sb) segregation alter the detector properties from those originally designed. For this reason, in this work, the authors explore epitaxial conditions that can mitigate this segregation in order to produce high-quality SL materials for optimum detector performance. A nominal SL structure of 7.7 nm InAs/3.5 nm InAs0.7 Sb0.3 tailored for an approximately six-micron response at 5 K was used to optimize the epitaxial parameters. Since the growth of mixed AsSb alloys is complicated by the potential reaction of As with Sb surfaces, the authors vary the substrate temperature (Ts) in order to control the As surface reaction on a Sb surface. Experimental results indicate that the SL sample grown at the lowest investigated Ts produces the highest Sb-mole fraction x of 0.3 in InAs1-x Sbx layers, which then decreases by 21 % as the Ts increases from 395 to 440 °C. This reduction causes an approximately 30 meV blueshift in the position of the excitonic photoluminescence (PL) peak. This finding differs from the results obtained from the Ga-containing InAs/GaSb SL equivalents, where the PL peak position remains constant at about 220 meV, regardless of Ts. The Ga-free SLs generally generate a broader PL linewidth than the corresponding Ga-containing SLs due to the higher spatial Sb distribution at the hetero-interfaces engendered by Sb segregation. In order for this newly proposed Ga-free SL materials to be viable for detector applications, the material problem associated with Sb segregation needs to be adequately controlled and further mitigated.
Petascale supercomputing to accelerate the design of high-temperature alloys
Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; ...
2017-10-25
Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ'-Al 2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviourmore » of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. As a result, the approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.« less
Petascale supercomputing to accelerate the design of high-temperature alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwon; Lee, Sangkeun; Shyam, Amit
Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ'-Al 2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviourmore » of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. As a result, the approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.« less
Petascale supercomputing to accelerate the design of high-temperature alloys
NASA Astrophysics Data System (ADS)
Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; Haynes, J. Allen
2017-12-01
Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ‧-Al2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviour of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. The approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.
Dynamical Mass Segregation Versus Disruption of Binary Stars in Dense Stellar Systems
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Li, C.; Deng, L.
2013-01-01
Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses due to gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr-old Large Magellanic Cloud cluster NGC 1818 is characterized by an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 solar masses) with increasing distance from the cluster center. This offers unprecedented support of the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems (with relatively low binding energies compared to the kinetic energy of their stellar members) in star clusters, which we could unravel by virtue of the cluster's unique combination of youth and high stellar density.
Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D
2013-09-01
Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Emtiaz, S. M.; Vidali, Gianfranco
2016-06-01
Sticking and adsorption of molecules on dust grains are two important processes in gas-grain interactions. We accurately measured both the sticking coefficient and the binding energy of several key molecules on the surface of amorphous solid water as a function of coverage.A time-resolved scattering technique was used to measure sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on non-porous amorphous solid water (np-ASW) in the low coverage limit over a wide range of surface temperatures. We found that the time-resolved scattering technique is advantageous over the conventional King-Wells method that underestimates the sticking coefficient. Based on the measured values we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy.We measured the binding energy of N2, CO, O2, CH4, and CO2 on np-ASW, and of N2 and CO on porous amorphous solid water (p-ASW). We were able to measure binding energies down to a fraction of 1% of a layer, thus making these measurements more appropriate for astrochemistry than the existing values. We found that CO2 forms clusters on np-ASW surface even at very low coverage; this may help in explaining the segregation of CO2 in ices. The binding energies of N2, CO, O2, and CH4 on np-ASW decrease with coverage in the submonolayer regime. Their values in the low coverage limit are much higher than what is commonly used in gas-grain models. An empirical formula was used to describe the coverage dependence of the binding energies. We used the newly determined binding energy distributions in a simulation of gas-grain chemistry for cold dense clouds and hot core models. We found that owing to the higher value of desorption energy in the sub-monlayer regime a fraction of all these ices stays much longer and to higher temperature on the grain surface compared to the case using single value energies as currently done in astrochemical models.This work was supported in part by a grant to GV from NSF --- Astronomy & Astrophysics Division (#1311958)
Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; ...
2015-06-01
Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmedmore » using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.« less
Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts
Piccolo, Laurent; Li, Z. Y.; Demiroglu, Ilker; Moyon, Florian; Konuspayeva, Zere; Berhault, Gilles; Afanasiev, Pavel; Lefebvre, Williams; Yuan, Jun; Johnston, Roy L.
2016-01-01
Heterogeneous catalysis, which is widely used in the chemical industry, makes a great use of supported late-transition-metal nanoparticles, and bimetallic catalysts often show superior catalytic performances as compared to their single metal counterparts. In order to optimize catalyst efficiency and discover new active combinations, an atomic-level understanding and control of the catalyst structure is desirable. In this work, the structure of catalytically active AuRh bimetallic nanoparticles prepared by colloidal methods and immobilized on rutile titania nanorods was investigated using aberration-corrected scanning transmission electron microscopy. Depending on the applied post-treatment, different types of segregation behaviours were evidenced, ranging from Rh core – Au shell to Janus via Rh ball – Au cup configuration. The stability of these structures was predicted by performing density-functional-theory calculations on unsupported and titania-supported Au-Rh clusters; it can be rationalized from the lower surface and cohesion energies of Au with respect to Rh, and the preferential binding of Rh with the titania support. The bulk-immiscible AuRh/TiO2 system can serve as a model to understand similar supported nanoalloy systems and their synergistic behaviour in catalysis. PMID:27739480
Effects of oversized solutes on radiation-induced segregation in austenitic stainless steels
NASA Astrophysics Data System (ADS)
Hackett, M. J.; Busby, J. T.; Miller, M. K.; Was, G. S.
2009-06-01
Zirconium or hafnium additions to austenitic stainless steels caused a reduction in grain boundary Cr depletion after proton irradiations for up to 3 dpa at 400 °C and 1 dpa at 500 °C. The predictions of a radiation-induced segregation (RIS) model were also consistent with experiments in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. However, the experiments showed that the effectiveness of the solute additions disappeared above 3 dpa at 400 °C and above 1 dpa at 500 °C. The loss of solute effectiveness with increasing dose is attributed to a reduction in the amount of oversized solute from the matrix due to growth of carbide precipitates. Atom probe tomography measurements indicated a reduction in amount of oversized solute in solution as a function of irradiation dose. The observations were supported by diffusion analysis suggesting that significant solute diffusion by the vacancy flux to precipitate surfaces occurs on the time scales of proton irradiations. With a decrease in available solute in solution, improved agreement between the predictions of the RIS model and measurements were consistent with the solute-vacancy trapping process, as the mechanism for enhanced recombination and suppression of RIS.
Mechanism of Macrosegregation Formation in Continuous Casting Slab: A Numerical Simulation Study
NASA Astrophysics Data System (ADS)
Jiang, Dongbin; Wang, Weiling; Luo, Sen; Ji, Cheng; Zhu, Miaoyong
2017-12-01
Solidified shell bulging is supposed to be the main reason for slab center segregation, while the influence of thermal shrinkage rarely has been considered. In this article, a thermal shrinkage model coupled with the multiphase solidification model is developed to investigate the effect of the thermal shrinkage, solidification shrinkage, grain sedimentation, and thermal flow on solute transport in the continuous casting slab. In this model, the initial equiaxed grains contract freely with the temperature decrease, while the coherent equiaxed grains and columnar phase move directionally toward the slab surface. The results demonstrate that the center positive segregation accompanied by negative segregation in the periphery zone is mainly caused by thermal shrinkage. During the solidification process, liquid phase first transports toward the slab surface to compensate for thermal shrinkage, which is similar to the case considering solidification shrinkage, and then it moves opposite to the slab center near the solidification end. It is attributed to the sharp decrease of center temperature and the intensive contract of solid phase, which cause the enriched liquid to be squeezed out. With the effect of grain sedimentation and thermal flow, the negative segregation at the external arc side (zone A1) and the positive segregation near the columnar-to-equiaxed transition at the inner arc side (position B1) come into being. Besides, it is found that the grain sedimentation and thermal flow only influence solute transport before equiaxed grains impinge with each other, while the solidification and thermal shrinkage still affect solute redistribution in the later stage.
Size segregation in a granular bore
NASA Astrophysics Data System (ADS)
Edwards, A. N.; Vriend, N. M.
2016-10-01
We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.
NASA Astrophysics Data System (ADS)
Ludwig, Andreas; Wu, Menghuai; Kharicha, Abdellah
2015-11-01
Macrosegregations, namely compositional inhomogeneities at a scale much larger than the microstructure, are typically classified according to their metallurgical appearance. In ingot castings, they are known as `A' and `V' segregation, negative cone segregation, and positive secondary pipe segregation. There exists `inverse' segregation at casting surfaces and `centerline' segregation in continuously cast slabs and blooms. Macrosegregation forms if a relative motion between the solute-enriched or -depleted melt and dendritic solid structures occurs. It is known that there are four basic mechanisms for the occurrence of macrosegregation. In the recent years, the numerical description of the combination of these mechanisms has become possible and so a tool has emerged which can be effectively used to get a deeper understanding into the process details which are responsible for the formation of the above-mentioned different macrosegregation appearances. Based on the most sophisticated numerical models, we consequently associate the four basic formation mechanisms with the physical phenomena happening during (i) DC-casting of copper-based alloys, (ii) DC-casting of aluminum-based alloys, (iii) continuous casting of steel, and (iv) ingot casting of steel.
Salinity driven oceanographic upwelling
Johnson, D.H.
1984-08-30
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.
Salinity driven oceanographic upwelling
Johnson, David H.
1986-01-01
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.
NASA Astrophysics Data System (ADS)
Smialek, J. L.; Jayne, D. T.; Schaeffer, J. C.; Murphy, W. H.
1994-12-01
This review is based on the phenomenon of improved oxide scale adhesion for desulfurized superalloys. The proposed adhesion mechanism involves sulfur interfacial segregation and scale-metal bond weakening. Sulfur surface segregation on superalloys is examined as a function of temperature and sulfur content, and is related to the classical behavior predicted by the McLean isotherm. Effective desulfurization to less than 1 ppmw can be accomplished by hydrogen annealing and is described by sulfur diffusion kinetics in nickel. Hydrogen annealing results in excellent cyclic oxidation resistance for a number of advanced superalloys. The concept of a critical sulfur content is discussed in terms of practical annealing conditions and section thicknesses.
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Jayne, D. T.; Schaeffer, J. C.; Murphy, W. H.
1994-01-01
This review is based on the phenomenon of improved oxide scale adhesion for desulfurized superalloys. The proposed adhesion mechanism involves sulfur interfacial segregation and scale-metal bond weakening. Sulfur surface segregation on superalloys is examined as a function of temperature and sulfur content, and is related to the classical behavior predicted by the McLean isotherm. Effective desulfurization to less than 1 ppmw can be accomplished by hydrogen annealing and is described by sulfur diffusion kinetics in nickel. Hydrogen annealing results in excellent cyclic oxidation resistance for a number of advanced superalloys. The concept of a critical sulfur content is discussed in terms of practical annealing conditions and section thicknesses.
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Jayne, D. T.; Schaeffer, J. C.; Murphy, W. H.
1994-01-01
This review is based on the phenomenon of improved oxide scale adhesion for desulfurized superalloys. The proposed adhesion mechanism involves sulfur interfacial segregation and scale-metal bond weakening. Sulfur surface segregation on superalloys is examined as a function of temperature and sulfur content and related to classical behavior predicted by the McLean isotherm. Effective desulfurization to less than 1 ppmw can be accomplished by hydrogen annealing and is governed by sulfur diffusion kinetics in nickel. Hydrogen annealing results in excellent cyclic oxidation resistance for a number of advanced superalloys. The concept of a critical sulfur content is discussed in terms of practical annealing conditions and section thicknesses.
NASA Astrophysics Data System (ADS)
Heo, N. H.; Yoon, G. G.
2010-04-01
The solubility of sulfur is calculated in 0.1 %Mn-added 3 %Si-Fe alloys. The segregation kinetics of sulfur is compared in the alloy containing 95 ppm sulfur, depending on the annealing atmosphere. The effects of pre-annealing and annealing atmosphere on final annealing texture are investigated. Segregation behaviors of sulfur at free surfaces and grain boundaries are compared and, during the selective growth, the importance of the grain boundary concentration of sulfur is emphasized. Finally, a correlation between the development of the annealing texture and segregation kinetics of sulfur in the alloy strip is discussed.
Zhang, Jieqian; Clark, Michael B; Wu, Chunyi; Li, Mingqi; Trefonas, Peter; Hustad, Phillip D
2016-01-13
Directed self-assembly (DSA) of block copolymers (BCPs) is an attractive advanced patterning technology being considered for future integrated circuit manufacturing. By controlling interfacial interactions, self-assembled microdomains in thin films of polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, can be oriented perpendicular to surfaces to form line/space or hole patterns. However, its relatively weak Flory interaction parameter, χ, limits its capability to pattern sub-10 nm features. Many BCPs with higher interaction parameters are capable of forming smaller features, but these "high-χ" BCPs typically have an imbalance in surface energy between the respective blocks that make it difficult to achieve the required perpendicular orientation. To address this challenge, we devised a polymeric surface active additive mixed into the BCP solution, referred to as an embedded neutral layer (ENL), which segregates to the top of the BCP film during casting and annealing and balances the surface tensions at the top of the thin film. The additive comprises a second BCP with a "neutral block" designed to provide matched surface tensions with the respective polymers of the main BCP and a "surface anchoring block" with very low surface energy that drives the material to the air interface during spin-casting and annealing. The surface anchoring block allows the film to be annealed above the glass transition temperature of the two materials without intermixing of the two components. DSA was also demonstrated with this embedded neutral top layer formulation on a chemical patterned template using a single step coat and simple thermal annealing. This ENL technology holds promise to enable the use of high-χ BCPs in advanced patterning applications.
NASA Technical Reports Server (NTRS)
Mesarwi, A.; Ignatiev, A.
1992-01-01
The oxidation of Al(x)Ga(1-x)As (x = 0.15, AlGaAs) was studied by AES and XPS at 350 C and different oxygen exposures (up to 5 x 10 exp 4 L). Also studied were the effects of yttrium overlayers (theta = 3 ML) on the oxidation of the AlGaAs surface. Substantial oxygen-induced Al surface segregation has been observed for both yttriated and nonyttriated AlGaAs surfaces which increased with increasing oxygen exposure. Also observed is a significant Y-enhanced oxidation of the AlGaAs surface. Oxidation of the yttriated AlGaAs surface was found to be a factor of 4 greater than that of the nonyttriated surface. Also, while oxidation of the nonyttriated AlGaAs yielded mainly Al2O(x) (x less than 3) and only little Ga2O3, the yttriated AlGaAs surface oxide layer was principally Ga2O3 and stoichiometric Al2O3. However, both the yttriated and nonyttriated surfaces were found to contain metallic As within the oxide layer.
NASA Astrophysics Data System (ADS)
Pierce, Dean; Muralidharan, Govindarajan; Heatherly, Lee; Fox, Ethan
2018-03-01
The thermodynamics and kinetics of Silicon (Si) segregation to grain boundaries in Iridium alloy DOP-26 with added trace levels of Si of 6, 11, 29, and 36 wppm was studied by Auger Electron Spectroscopy. The four alloys were annealed at 1500 or 1535 °C for 19 or 76 hours followed by cooling at three different rates. Si enrichment at the grain boundaries (GB) increased with increasing bulk Si content, with the grain boundary Si enrichment factors ranging from 62 to 344, depending on the bulk Si content and the cooling rate. Grain boundary Si contents increased with decreasing cooling rate in all alloys, indicating that Si GB segregation is influenced by both thermodynamic and kinetic factors in the alloys and temperature ranges of the study. A Langmuir-McLean isotherm-based model was successfully used to predict the temperature dependence of GB Si segregation in DOP-26 alloys with Si additions and estimate the temperature independent free energy of Si segregation to grain boundaries in DOP-26.
NASA Astrophysics Data System (ADS)
Thornton, A.; Denissen, I.; Weinhart, T.; Van der Vaart, K.
2017-12-01
The flow behaviour of shallow granular chute flows for uniform particles is well-described by the hstop-rheology [1]. Geophysical flows, however, are often composed of highly non-uniform particles that differ in particle (size, shape, composition) or contact (friction, dissipation, cohesion) properties. The flow behaviour of such mixtures can be strongly influenced by particle segregation effects. Here, we study the influence of particle size-segregation on the flow behaviour of bidisperse flows using experiments and the discrete particle method. We use periodic DPM to derive hstop-rheology for the bi-dispersed granular shallow layer equations, and study their dependence on the segregation profile. In the periodic box simulations, size-segregation results in an upward coarsening of the size distribution with the largest grains collecting at the top of the flow. In geophysical flows, the fact the flow velocity is greatest at the top couples with the vertical segregation to preferentially transported large particles to the front. The large grains may be overrun, resegregated towards the surface and recirculated before being shouldered aside into lateral levees. Theoretically it has been suggested this process should lead to a breaking size-segregation (BSS) wave located between a large-particle-rich front and a small-particle-rich tail [2,3]. In the BSS wave large particles that have been overrun rise up again to the free-surface while small particles sink to the bed. We present evidence for the existences of the BSS wave. This is achieved through the study of three-dimensional bidisperse granular flows in a moving-bed channel. Our analysis demonstrates a relation between the concentration of small particles in the flow and the amount of basal slip, in which the structure of the BSS wave plays a key role. This leads to a feedback between the mean bulk flow velocity and the process of size-segregation. Ultimately, these findings shed new light on the recirculation of large and small grains near avalanche fronts and the effects of this behaviour on the mobility of the bulk flow. [1] Y. Forterre, O. Pouliquen, J. Fluid Mech. 486, 21-50 (2003) [2] A. R. Thornton, J. M. N. T. Gray J. Fluid Mech. 296 261-284 (2008) [3] P. Gajjar, K. van der Vaart, A. R. Thornton, C. G. Johnson, C. Ancey, J. M. N. T. Gray J. Fluid Mech 794, 460-505 (2016) 
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
...--Agua Caliente Solar Energy Zone in Yuma County, AZ AGENCY: Bureau of Land Management, Interior. ACTION... of protecting potential sites for future solar energy development while they are being analyzed in... public lands corresponds with the analysis of these same public lands as a proposed Solar Energy Zone...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp
2015-09-28
We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.
NASA Astrophysics Data System (ADS)
Hamers, Robert J.; Wang, Yajun; Shan, Jun
1996-11-01
We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.
Surface compositional variations of Mo-47Re alloy as a function of temperature
NASA Technical Reports Server (NTRS)
Hoekje, S. J.; Outlaw, R. A.; Sankaran, S. N.
1993-01-01
Molybdenum-rhenium alloys are candidate materials for the National Aero-Space Plane (NASP) as well as for other applications in generic hypersonics. These materials are expected to be subjected to high-temperature (above 1200 C) casual hydrogen (below 50 torr), which could potentially degrade the material strength. Since the uptake of hydrogen may be controlled by the contaminant surface barriers, a study of Mo-47Re was conducted to examine the variations in surface composition as a function of temperature from 25 C to 1000 C. Pure molybdenum and rhenium were also examined and the results compared with those for the alloy. The analytical techniques employed were Auger electron spectroscopy, electron energy loss spectroscopy, ion scattering spectroscopy, and x ray photoelectron spectroscopy. The native surface was rich in metallic oxides that disappeared at elevated temperatures. As the temperature increased, the carbon and oxygen disappeared by 800 C and the surface was subsequently populated by the segregation of silicon, presumably from the grain boundaries. The alloy readily chemisorbed oxygen, which disappeared with heating. The disappearance temperature progressively increased for successive dosings. When the alloy was exposed to 800 torr of hydrogen at 900 C for 1 hour, no hydrogen interaction was observed.
Particle size segregation in granular avalanches: A brief review of recent progress
NASA Astrophysics Data System (ADS)
Gray, J. M. N. T.
2010-05-01
Hazardous natural flows such as snow avalanches, debris-flows, lahars and pyroclastic flows are part of a much wider class of granular avalanches, that frequently occur in industrial processes and in our kitchens! Granular avalanches are very efficient at sorting particles by size, with the smaller ones percolating down towards the base and squeezing the larger grains up towards the free-surface, to create inversely-graded layers. This paper provides a short introduction and review of recent theoretical advances in describing segregation and remixing with relatively simple hyperbolic and parabolic models. The derivation from two phase mixture theory is briefly summarized and links are drawn to earlier models of Savage & Lun and Dolgunin & Ukolov. The more complex parabolic version of the theory has a diffusive force that competes against segregation and yields S-shaped steady-state concentration profiles through the avalanche depth, that are able to reproduce results obtained from particle dynamics simulations. Time-dependent exact solutions can be constructed by using the Cole-Hopf transformation to linearize the segregation-remixing equation and the nonlinear surface and basal boundary conditions. In the limit of no diffusion, the theory is hyperbolic and the grains tend to separate out into completely segregated inversely graded layers. A series of elementary problems are used to demonstrate how concentration shocks, expansion fans, breaking waves and the large and small particles paths can be computed exactly using the model. The theory is able to capture the key features of the size distribution observed in stratification experiments, and explains how a large particle rich front is connected to an inversely graded avalanche in the interior. The theory is simple enough to couple it to the bulk flow field to investigate segregation-mobility feedback effects that spontaneously generate self-channelizing leveed avalanches, which can significantly enhance the total run-out distance of geophysical mass flows.
Rapid mass segregation in small stellar clusters
NASA Astrophysics Data System (ADS)
Spera, Mario; Capuzzo-Dolcetta, Roberto
2017-12-01
In this paper we focus our attention on small-to-intermediate N-body systems that are, initially, distributed uniformly in space and dynamically `cool' (virial ratios Q=2T/|Ω| below ˜0.3). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N-body simulations of isolated clusters by means of HiGPUs, our direct summation N-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N (128 ≤ N ≤1,024) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Xiao, B. L.; Ma, Z. Y.
2013-09-01
A 5-mm-thick 2024Al-T351 plate was friction stir welded (FSWed) at welding speeds of 100, 200, and 400 mm min-1 with a constant rotation rate of 800 rpm, and the microstructure and tensile fracture behavior of the joints were investigated in detail. FSW resulted in the redistribution of secondary phase particles along the recrystallized grain boundaries at the nugget zone (NZ), forming linear segregation bands consisting of secondary phase particles. The segregation bands, mainly present in the shoulder-driven zone, were believed to result from periodic material flow, with the average band spacing on the longitudinal and horizontal cross sections equal to the tool advancement per revolution. At a low welding speed of 100 mm min-1, in spite of the highest density of segregation bands, the FSWed 2024Al-T351 joint fractured along the low hardness zone (LHZ) of the heat-affected zone because of large hardness gap between NZ and LHZ. Increasing the welding speed to 200 and 400 mm min-1 reduced both the hardness gap between NZ and LHZ and the density of segregation bands. In this case, the segregation bands played a role, resulting in unusual fracture of the joints along the segregation bands. The "S" line originated from the oxide film on the initial butting surfaces and did not affect the fracture behavior of the FSWed 2024Al-T351 joints.
NASA Astrophysics Data System (ADS)
Hu, Xue-Lan; Zhao, Ruo-Xi; Deng, Jiang-Ge; Hu, Yan-Min; Song, Qing-Gong
2018-03-01
In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary (GB). According to “energy”, the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB (164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB. The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al–Al bonds and enhance Ni–Ni bonds. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404396 and 51201181) and the Subject Construction Fund of Civil Aviation University of China (Grant No. 000032041102).
NASA Astrophysics Data System (ADS)
Hackett, Micah Jeremiah
The objective of this thesis is to quantify the effect of oversized solutes on radiation-induced segregation in austenitic stainless steels and to determine the mechanism of this effect. Zr or Hf additions to austenitic stainless steels demonstrated a reduction in radiation-induced segregation of Cr and Ni at the grain boundary after proton irradiation at 400°C and 500°C to low doses, but the solute effect disappeared at higher doses. Rate theory modeling of RIS was extended to incorporate a solute-vacancy trapping mechanism to predict the effect of solutes on RIS. The model showed that RIS is most sensitive to the solute-vacancy binding energy. First principles calculations were used to determine a binding energy of 1.08 eV for Zr and 0.71 eV for Hf. Model and experiment agreed in showing suppression of Cr depletion at doses of 3 dpa at 400°C and 1 dpa at 500°C, and experimental results were consistent with the model in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. The dislocation loop microstructure was measured at 400°C, 3 and 7 dpa, and a significant decrease in loop density and total loop line length in the oversized solute alloys relative to the reference alloys. The loop microstructure results were consistent with RIS results by confirming enhanced recombination of point defects by solute-vacancy trapping. Increases in RIS with dose indicated a loss of solute effectiveness, which was consistent with an observed increase in loop line length from 3 to 7 dpa. The loss of solute effectiveness at high dose is attributed to a loss of oversized solute from the matrix due to coarsening of carbide precipitates. X-ray diffraction identified a microstructure with ZrC or HfC precipitates prior to irradiation. Precipitate coarsening was identified as the most likely mechanism for the loss of solute effectiveness on RIS by the following: (1) diffusion analysis suggested significant solute diffusion by the vacancy flux to precipitate surfaces on the time scales of proton irradiations, and (2) atom probe measurements confirmed the loss of oversized solute in solution as a function of irradiation dose. RIS measurements and subsequent analyses were consistent with the solute-vacancy trapping process as the mechanism for enhanced recombination and suppression of RIS.
The role of the background: texture segregation and figure-ground segmentation.
Caputo, G
1996-09-01
The effects of a texture surround composed of line elements on a stimulus within which a target line element segregates, were studied. Detection and discrimination of the target when it had the same orientation as the surround were impaired at short presentation time; on the other hand, no effect was present when they were reciprocally orthogonal. These results are interpreted as background completion in texture segregation; a texture made up of similar elements is represented as a continuous surface with contour and contrast of an embedded element inhibited. This interpretation is further confirmed with a simple line protruding from an annulus. Generally, the results are taken as evidence that local features are prevented from segmenting when they are parts of a global entity.
Fluorescence and room temperature activity of Y₂O₃:(Eu³⁺,Au³⁺)/palygorskite nanocomposite.
He, Xi; Yang, Huaming
2015-01-28
The fluorescence and room temperature activity of a palygorskite supported Y2O3:(Eu(3+),Au(3+)) nanocomposite were investigated to design a fluorescence-indicated catalyst. The effects of Au(3+) doping on the structure and surface properties of the host material were systematically characterized. The fluorescence intensity of Y2O3:Eu(3+) was affected by Au(3+) doping, which was related to the crystallinity of Y2O3. Excess Au(3+) ions were segregated to the host surface and reduced to metallic Au. The local symmetry of Eu(3+) was reduced by Au(3+) doping, which benefited the energy transfer between Eu(3+) and Au(3+). Energy absorbed by Eu(3+) was transferred from Au(3+) to metallic Au, where electrons were produced. These electrons were absorbed by O2 to change into O2(-), which acted as the oxidant for ortho-dichlorobenzene (o-DCB). The variation of fluorescence intensity during the catalytic reaction was observed. The room temperature catalytic activity of the nanocomposite under UV irradiation was revealed. The as-synthesized nanocomposite might have potential applications in environmental fields.
Ultrathin type-II GaSb/GaAs quantum wells grown by OMVPE
NASA Astrophysics Data System (ADS)
Pitts, O. J.; Watkins, S. P.; Wang, C. X.; Stotz, J. A. H.; Meyer, T. A.; Thewalt, M. L. W.
2004-09-01
Heterostructures containing monolayer (ML) and submonolayer GaSb insertions in GaAs were grown using organometallic vapour phase epitaxy. At the GaAs-on-GaSb interface, strong intermixing occurs due to the surface segregation of Sb. To form structures with relatively abrupt interfaces, a flashoff growth sequence, in which growth interruptions are employed to desorb Sb from the surface, was introduced. Reflectance-difference spectroscopy and high-resolution X-ray diffraction data demonstrate that interfacial grading is strongly reduced by this procedure. For layer structures grown with the flashoff sequence, a GaSb coverage up to 1 ML can be obtained in the two-dimensional (2D) growth mode. For uncapped GaSb layers, on the other hand, atomic force microscope images show that the 2D-3D growth mode transition occurs at a submonolayer coverage between 0.3 and 0.5 ML. Low-temperature photoluminescence spectra of multiple quantum well samples grown using the flashoff sequence show a strong quantum well-related peak which shifts to lower energies as the amount of Sb incorporated increases. The PL peak energies are consistent with a type-II band lineup at the GaAs/GaSb interface.
Surface segregation and surface tension of polydisperse polymer melts.
Minnikanti, Venkatachala S; Qian, Zhenyu; Archer, Lynden A
2007-04-14
The effect of polydispersity on surface segregation of a lower molecular weight polymer component in a higher molecular weight linear polymer melt host is investigated theoretically. We show that the integrated surface excess zM of a polymer component of molecular weight M satisfies a simple relation zM=2Ue(M/Mw-1)phiM, where Mw is the weight averaged molecular weight, phiM is the polymer volume fraction, and Ue is the attraction of polymer chain ends to the surface. Ue is principally of entropic origin, but also reflects any energetic preference of chain ends to the surface. We further show that the surface tension gammaM of a polydisperse melt of high molar mass components depends on the number average degree of polymerization Mn as, gammaM=gammainfinity+2UerhobRT/Mn. The parameter gammainfinity is the asymptotic surface tension of an infinitely long polymer of the same chemistry, rhob is the bulk density of the polymer, R is the universal gas constant, and T is the temperature. The predicted gammaM compare favorably with surface tension values obtained from self-consistent field theory simulations that include equation of state effects, which account for changes in polymer density with molecular weight. We also compare the predicted surface tension with available experimental data.
Bukhtiyarov, A V; Prosvirin, I P; Saraev, A A; Klyushin, A Yu; Knop-Gericke, A; Bukhtiyarov, V I
2018-06-07
Model bimetallic Pd-Au/HOPG catalysts have been investigated in the CO oxidation reaction using a combination of NAP XPS and MS techniques. The samples have shown catalytic activity at temperatures above 150 °C. The redistribution of Au and Pd on the surface depending on the reaction conditions has been demonstrated using NAP XPS. The Pd enrichment of the bimetallic particles' surface under reaction gas mixture has been shown. Apparently, CO adsorption induces Pd segregation on the surface. Heating the sample under reaction conditions above 150 °C decomposes the Pd-CO state due to CO desorption and reaction and simultaneous Pd-Au alloy formation on the surface takes place. Cooling back down to RT results in reversible Pd segregation due to Pd-CO formation and the sample becomes inactive. It has been shown that in situ studies are necessary for investigation of the active sites in Pd-Au bimetallic systems.
Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe
2016-09-08
The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermoelectric SQUID method for the detection of segregations
NASA Astrophysics Data System (ADS)
Hinken, Johann H.; Tavrin, Yury
2000-05-01
Aero engine turbine discs are most critical parts. Material inhomogeneities can cause disc fractures during the flight with fatal air disasters. Nondestructive testing (NDT) of the discs in various machining steps is necessary and performed as well as possible. Conventional NDT methods, however, like eddy current testing and ultrasonic testing have unacceptable limits. For example, subsurface segregations often cannot be detected directly but only indirectly in such cases when cracks already have developed from them. This may be too late. A new NDT method, which we call the Thermoelectric SQUID Method, has been developed. It allows for the detection of metallic inclusions within non-ferromagnetic metallic base material. This paper describes the results of a feasibility study on aero engine turbine discs made from Inconel® 718. These contained segregations that had been detected before by anodic etching. With the Thermoelectric SQUID Method, these segregations were detected again, and further segregations below the surfaces have been found, which had not been detected before. For this new NDT method the disc material is quasi-transparent. The Thermoelectric SQUID Method is also useful to detect distributed and localized inhomogeneities in pure metals like niobium sheets for particle accelerators.
Segregating photoelastic particles in free-surface granular flows
NASA Astrophysics Data System (ADS)
Thomas, Amalia; Vriend, Nathalie; Environmental; Industrial Fluid Dynamics Team
2017-11-01
We present results from a novel experimental set-up creating 2D avalanches of photoelastic discs. Two distinct hoppers supply either monodisperse or bidisperse particles at adjustable flow-rates into a 2 meter long, narrow acrylic chute inclined at 20°. For 20-40 seconds the avalanche maintains a steady-state that accelerates and thins downstream. The chute basal roughness is variable, allowing for different flow profiles. Using a set of polarizers and a high-speed camera, we visualize and quantify the forces due to dynamic interactions between the discs using photoelastic theory. Velocity and density profiles are derived from particle tracking at different distances from the discharge point and are coarse-grained to obtain continuous fields. With the access to both force information and dynamical properties via particle-tracking, we can experimentally validate existing mu(I) and non-local rheologies. As an extension, we probe the effect of granular segregation in bimodal mixtures by using the two separate inflow hoppers. We derive the state of segregation along the avalanche channel and measure the segregation velocities of each species. This provides insight in, and a unique validation of, the fundamental physical processes that drive segregation in avalanching geometries.
Impeding effect of Ce on He bubble growth in bcc Fe
NASA Astrophysics Data System (ADS)
Hao, W.; Geng, W. T.
2012-06-01
Our first-principles density functional theory calculations suggest that the rare earth element Ce has a strong attraction to He (-1.31 eV/atom pair) in bcc Fe, even stronger than He-He attraction (-1.18 eV). The segregated Ce layer at the He bubble surface could introduce an additional energy barrier (0.40 eV) to trespassing He atoms. Therefore, Ce could not only have a pinning effect on mobile He atoms and hence reduce merging rate of He clusters, but also serve as a cover layer to repel further He atoms and thus slows down the bubble growth. The low cost makes Ce a great advantage over Au, which was recently predicted to have similar effect.
Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy.
Li, Xin-Tao; Li, Ting-Ju; Li, Xi-Meng; Jin, Jun-Ze
2006-02-01
The fluctuation of the melt temperature in a tundish was measured during casting and experiments were conducted to investigate the effects of ultrasonic melt treatment on the surface quality and solidification structures of Al-1%Si ingots. The results show that the uniformity of melt temperature was enhanced with the application of ultrasonic melt treatment. When the ultrasonic power is 1,000W, the surface quality was evidently improved and grains of cast ingots were refined. Moreover, EPMA analysis was adopted to study the relationship between the ultrasonic power and boundary segregation of Si element. The result shows that boundary segregation is suppressed with the increase of ultrasonic power and the phenomenon was theoretically interpreted.
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Witt, A. F.; Lichtensteiger, M.; Herman, C. J.
1982-01-01
The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.
Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M.
2015-01-01
The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into “auditory objects.” Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening conditions. PMID:25628545
Shi, Jiafu; Zhang, Wenyan; Wang, Xiaoli; Jiang, Zhongyi; Zhang, Shaohua; Zhang, Xiaoman; Zhang, Chunhong; Song, Xiaokai; Ai, Qinghong
2013-06-12
A facile approach to preparing mesoporous hybrid microcapsules is developed by exploring the segregating and mineralization-inducing capacities of cationic hydrophilic polymer. The preparation process contains four steps: segregation of cationic hydrophilic polymer during template formation, cross-linking of the segregated polymer, biomimetic mineralization within cross-linked polymer network, and removal of template to simultaneously generate capsule lumen and mesopores on the capsule wall. Poly(allylamine hydrochloride) (PAH) is chosen as the model polymer, its hydrophilicity renders the segregating capacity and spontaneous enrichment in the near-surface region of CaCO3 microspheres; its biopolyamine-mimic structure renders the mineralization-inducing capacity to produce titania from the water-soluble titanium(IV) precursor. Meanwhile, CaCO3 microspheres serve the dual templating functions in the formation of hollow lumen and mesoporous wall. The thickness of capsule wall can be controlled by changing the polymer segregating and cross-linking conditions, while the pore size on the capsule wall can be tuned by changing the template synthesizing conditions. The robust hybrid microcapsules exhibit desirable efficiency in enzymatic catalysis, wastewater treatment and drug delivery. This approach may open facile, generic, and efficient pathway to designing and preparing a variety of hybrid microcapsules with high and tunable permeability, good stability and multiple functionalities for a broad range of applications.
NASA Astrophysics Data System (ADS)
Long, Yunxiang; Zheng, Zhongcheng; Guo, Liping; Zhang, Weiping; Shen, Zhenyu; Tang, Rui
2018-04-01
The effect of high concentration of hydrogen on the segregation of radiation-induced segregation (RIS) in AL-6XN stainless steels has been investigated by transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy. Specimens were irradiated with 100 keV H2+ ions from 1 dpa to 5 dpa at 380 °C to investigated the dose dependence of grain boundary RIS. A specimen was irradiated to 5 dpa at 290 °C to study the effect of irradiation temperature. The trends of Cr depletion and Ni enrichment with irradiation dose is similar to that of other austenitic steels reported in the literatures, but the higher concentration of hydrogen made the RIS profile wider. An abnormal phenomenon that the degree of RIS increased with decreasing irradiation temperature was found, indicating that with the retention of hydrogen in the steels, temperature dependence of RIS is dominated by the quantity of retained hydrogen, rather than by thermal segregation processes.
NASA Astrophysics Data System (ADS)
Yan, Jia-Yi; Ehteshami, Hossein; Korzhavyi, Pavel A.; Borgenstam, Annika
2017-07-01
The energetics and atomic structures of Σ 3 [1 1 ¯0 ] (111 ) grain boundary (GB) of body-centered cubic (bcc) Ti-Mo and Ti-V alloys are investigated using density-functional-theory calculations and virtual crystal approximation. The electron density in bcc structure and the atomic displacements and excess energy of the GB are correlated to bcc-ω phase stability. Model calculations based on pairwise interplanar interactions successfully reproduce the chemical part of GB energy. The chemical GB energy can be expressed as a sum of excess pairwise interactions between bcc (111) layers, which are obtained from Gaussian elimination of the total energies of a number of periodic structures. The energy associated with the relaxation near the GB is solved by numerical minimization using the derivatives of the excess interactions. Anharmonic interlayer interactions are necessary for obtaining accurate relaxation energy and excess GB volume from model calculations. The effect of GB on vibrational spectrum is also investigated. Segregation energies of B and Y to a substitutional site on the GB plane are calculated. Preliminary results suggest that Y tends to segregate, while B tends to antisegregate.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... a solar energy generation facility on a portion of the ROW application on 13,043 acres of public... application expands on ROW application NVN-085801. The proposed solar energy project would consist of... lands included in a pending solar energy generation ROW application in order to promote the orderly...
Limits on passivating defects in semiconductors: the case of Si edge dislocations.
Chan, Tzu-Liang; West, D; Zhang, S B
2011-07-15
By minimizing the free energy while constraining dopant density, we derive a universal curve that relates the formation energy (E(form)) of doping and the efficiency of defect passivation in terms of segregation of dopants at defect sites. The universal curve takes the simple form of a Fermi-Dirac distribution. Our imposed constraint defines a chemical potential that assumes the role of "Fermi energy," which sets the thermodynamic limit on the E(form) required to overcome the effect of entropy such that dopant segregation at defects in semiconductors can occur. Using Si edge dislocation as an example, we show by first-principles calculations how to map the experimentally measurable passivation efficiency to our calculated E(form) by using the universal curve for typical n- and p-type substitutional dopants. We show that n-type dopants are ineffective. Among p-type dopants, B can satisfy the thermodynamic limit while improving electronic properties.
Burroughs, Nigel John; Wülfing, Christoph
2002-01-01
Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse. PMID:12324401
Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys
NASA Astrophysics Data System (ADS)
Li, Boyan; Hu, Shenyang; Li, Chengliang; Li, Qiulin; Chen, Jun; Shu, Guogang; Henager, Chuck, Jr.; Weng, Yuqing; Xu, Ben; Liu, Wei
2017-09-01
For reactor pressure vessel steels, the addition of Cu, Mn, and Ni has a positive effect on their mechanical, corrosion and radiation resistance properties. However, experiments show that radiation-enhanced segregation and/or phase separation is one of the important material property degradation processes. In this work, we develop a model integrating rate theory and phase-field approaches to investigate the effect of irradiation on solute segregation and phase separation. The rate theory is used to describe the accumulation and clustering of radiation defects, while the phase-field approach describes the effect of radiation defects on phase stability and microstructure evolution. The Fe-Cu-Mn ternary alloy is taken as a model system. The free energies used in the phase-field model are from CALPHAD. Spatial dependent radiation damage from atomistic simulations is introduced into the simulation cell for a given radiation dose rate. The radiation effect on segregation and phase separation is taken into account through the defect concentration dependence of solute mobility. Using the model, the effect of temperature and radiation rates on Cu and Mn segregation and Cu-rich phase nucleation were systematically investigated. The segregation and nucleation mechanisms were analyzed. The simulations demonstrate that the nucleus of Cu precipitates has a core-shell composition profile, i.e. Cu-rich at the center and Mn-rich at the interface, in good agreement with theoretical calculations as well as experimental observations.
The effect of segregation on the austemper transformation and toughness of ductile irons
NASA Astrophysics Data System (ADS)
Lin, B. Y.; Chen, E. T.; Lei, T. S.
1998-06-01
The effect of segregation of alloying elements on the phase transformation of ductile iron during austempering was investigated. Four heats, each containing 0.4%Mn, 1% Cu, 1.5% Ni, or 0.4% Mo (wt%) separately, were melted; then three different sizes of casting bars (3,15, and 75 mm diameter) were poured from each heat. The distribution and the degree of segregation of certain elements were quantitatively analyzed using an electron microprobe. A personal computer (PC)-controlled heat treating system was used to measure electrical resistivity, and the information on resistivity variations was used to analyze the effect of segregation on phase transformations during austempering. Also, Charpy impact and Rockwell hardness tests were performed to determine the effect of segregation on properties. Results of the electron microprobe analysis showed that the degree of segregation of alloy elements increases with an increase in diameter of the casting bars (i.e., an increase of solidification time of castings). The degree of segregation of alloy elements, represented by segregation ratio (SR) (the maximum concentration of element in cell divided by the minimum concentration of element in cell), varied linearly with the casting modulus (M) (volume of casting divided by surface area of casting). Regarding the segregating tendency among alloy elements, positive segregating elements Mn and Mo showed more segregation than the negative segregating elements Si, Cu, and Ni. In addition, segregation of Mo was more significant than Mn, and that for Cu was greater than Ni and Si. Between the time of finishing the first stage and beginning the second stage of bainite reaction in ductile irons, there is a significant “processing window,” At;, for austempering to obtain optimum mechanical properties. From the electrical resistivity data, it was observed that the austempering temperature plays a major role in the processing window. There was a narrow window at 400 ‡C but a larger one at 350 ‡C. Additionally, the microsegregation of alloying elements led to variation of the time of phase transformation for various regions in the grain cells of ductile iron which caused the processing window to decrease. The span of the processing window decreased with an increase in degree of segregation. There was no significant difference in the hardness of the alloys in various diameter specimens. However, the impact toughness was significantly affected by the segregation. The impact values in 15 mm specimens with less degree of segregation were greater than those in 75 mm specimens with significant segregation. The Ni, Cu, and Mn alloys that were austempered to complete the first stage of bainite formation had approximately the same impact values for all diameter samples. The Mo alloy upon austempering produced no bainite, but it had much untransformed retained austenite in the intercellular regions and, therefore, had lower impact values.
Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit
2014-08-13
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.
2015-01-01
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780
New Insights into Sensitization Mechanism of the Doped Ce (IV) into Strontium Titanate
Wang, Yuan; Liu, Chenglun; Xu, Longjun
2018-01-01
SrTiO3 and Ce4+ doped SrTiO3 were synthesized by a modified sol–gel process. The optimization synthesis parameters were obtained by a series of single factor experiments. Interesting phenomena are observable in Ce4+ doped SrTiO3 systems. Sr2+ in SrTiO3 system was replaced by Ce4+, which reduced the surface segregation of Ti4+, ameliorated agglomeration, increased specific surface area more than four times compared with pure SrTiO3, and enhanced quantum efficiency for SrTiO3. Results showed that Ce4+ doping increased the physical adsorption of H2O and adsorbed oxygen on the surface of SrTiO3, which produced additional catalytic active centers. Electrons on the 4f energy level for Ce4+ produced new energy states in the band gap of SrTiO3, which not only realized the use of visible light but also led to an easier separation between the photogenerated electrons and holes. Ce4+ repeatedly captured photoelectrons to produce Ce3+, which inhibited the recombination between photogenerated electrons and holes as well as prolonged their lifetime; it also enhanced quantum efficiency for SrTiO3. The methylene blue (MB) degradation efficiency reached 98.7% using 3 mol % Ce4+ doped SrTiO3 as a photocatalyst, indicating highly photocatalytic activity. PMID:29690605
Concurrent segregation and erosion effects in medium-energy iron beam patterning of silicon surfaces
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; Lorenz, K.; Palomares, F. J.; Muñoz, A.; Castro, M.; Muñoz-García, J.; Cuerno, R.; Vázquez, L.
2018-07-01
We have bombarded crystalline silicon targets with a 40 keV Fe+ ion beam at different incidence angles. The resulting surfaces have been characterized by atomic force, current-sensing and magnetic force microscopies, scanning electron microscopy, and x-ray photoelectron spectroscopy. We have found that there is a threshold angle smaller than 40° for the formation of ripple patterns, which is definitely lower than those frequently reported for noble gas ion beams. We compare our observations with estimates of the value of the critical angle and of additional basic properties of the patterning process, which are based on a continuum model whose parameters are obtained from binary collision simulations. We have further studied experimentally the ripple structures and measured how the surface slopes change with the ion incidence angle. We explore in particular detail the fluence dependence of the pattern for an incidence angle value (40°) close to the threshold. Initially, rimmed holes appear randomly scattered on the surface, which evolve into large, bug-like structures. Further increasing the ion fluence induces a smooth, rippled background morphology. By means of microscopy techniques, a correlation between the morphology of these structures and their metal content can be unambiguously established.
Lanthony, Cloé; Guiltat, Mathilde; Ducéré, Jean Marie; Verdier, Agnes; Hémeryck, Anne; Djafari-Rouhani, Mehdi; Rossi, Carole; Chabal, Yves J; Estève, Alain
2014-09-10
The surface chemistry associated with the synthesis of energetic nanolaminates controls the formation of the critical interfacial layers that dominate the performances of nanothermites. For instance, the interaction of Al with CuO films or CuO with Al films needs to be understood to optimize Al/CuO nanolaminates. To that end, the chemical mechanisms occurring during early stages of molecular CuO adsorption onto crystalline Al(111) surfaces are investigated using density functional theory (DFT) calculations, leading to the systematic determination of their reaction enthalpies and associated activation energies. We show that CuO undergoes dissociative chemisorption on Al(111) surfaces, whereby the Cu and O atoms tend to separate from each other. Both Cu and O atoms form islands with different properties. Copper islanding fosters Cu insertion (via surface site exchange mechanism) into the subsurface, while oxygen islands remain stable at the surface. Above a critical local oxygen coverage, aluminum atoms are extracted from the Al surface, leading to oxygen-aluminum intermixing and the formation of aluminum oxide (γ-alumina). For Cu and O co-deposition, copper promotes oxygen-aluminum interaction by oxygen segregation and separates the resulting oxide from the Al substrate by insertion into Al and stabilization below the oxide front, preventing full mixing of Al, Cu, and O species.
Composition Dependence of the Properties of Noble-metal Nanoalloys
NASA Astrophysics Data System (ADS)
Fernández Seivane, Lucas; Barrón, Héctor; Benson, James; Weissker, Hans-Christian; López-Lozano, Xochitl
2012-03-01
Bimetallic nanostructured materials are of greater interest both from the scientific and technological points of view due to their potential to improve the catalytic properties of novel materials. Their applicability as well as the performance depends critically on their size, shape and composition, either as alloy or core-shell. In this work, the structural, electronic, magnetic and optical properties of bimetallic Au-Ag nanoclusters have been investigated through density-functional-theory-based calculations with the Siesta and Octopus codes. Different symmetries -tetrahedral, bipyramidal, decahedral and icosahedral- of bimetallic nanoparticles of 4-, 5-, 7- and 13-atoms, were taken into account including all the possibly different Au:Ag ratio concentrations. In combination with a statistical analysis of the performed calculations and the concepts of the Enthalpy of Mixing and Energy Excess, we have been able to predict the most probable gap and magnetic moment for all the composition stoichiometries. This approach allows us to understand the energy differences due to cluster shape effects, the stoichiometry and segregation. In addition, we can also obtain the bulk energy and surface energy of Au-Ag nanoalloys by looking at fixed number of atoms and fixed morphologies.
Role of Pb for Ag growth on H-passivated Si(1 0 0) surfaces
NASA Astrophysics Data System (ADS)
Mathew, S.; Satpati, B.; Joseph, B.; Dev, B. N.
2005-08-01
We have deposited Ag on hydrogen passivated Si(1 0 0) surfaces under high vacuum conditions at room temperature. The deposition, followed by annealing at 250 °C for 30 min, produced silver islands of an average lateral size 36±14 nm. Depositing a small amount of Pb prior to Ag deposition reduced the average island size to 14±5 nm. A small amount of Pb, initially present at the Ag-Si interface, is found to be segregating to the surface of Ag after annealing. Both these aspects, namely, reduction of the island size and Pb floating on the Ag surface conform to the surfactant action of Pb. Samples have been characterized by transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). A selective etching process that preferentially removes Pb, in conjunction with RBS, was used to detect surface segregation of Pb involving depth scales below the resolution of conventional RBS. The annealing and etching process leaves only smaller Ag islands on the surface with complete removal of Pb. Ag growth in the presence of Pb leads to smaller Ag islands with a narrower size distribution.
NASA Astrophysics Data System (ADS)
Sonde, Sushant; Dolocan, Andrei; Lu, Ning; Corbet, Chris; Kim, Moon J.; Tutuc, Emanuel; Banerjee, Sanjay K.; Colombo, Luigi
2017-06-01
Chemical vapor deposition (CVD) of two-dimensional (2D) hexagonal boron nitride (h-BN) is at the center of numerous studies for its applications in novel electronic devices. However, a clear understanding of the growth mechanism is lacking for its wider industrial adoption on technologically relevant substrates such as SiO2. Here, we demonstrate a controllable growth method of thin, wafer scale h-BN films on arbitrary substrates. We also clarify the growth mechanism to be diffusion and surface segregation (D-SS) of boron (B) and nitrogen (N) in Ni and Co thin films on SiO2/Si substrates after exposure to diborane and ammonia precursors at high temperature. The segregation was found to be independent of the cooling rates employed in this report, and to our knowledge has not been found nor reported for 2D h-BN growth so far, and thus provides an important direction for controlled growth of h-BN. This unique segregation behavior is a result of a combined effect of high diffusivity, small film thickness and the inability to achieve extremely high cooling rates in CVD systems. The resulting D-SS h-BN films exhibit excellent electrical insulating behavior with an optical bandgap of about 5.8 eV. Moreover, graphene-on-h-BN field effect transistors using the as-grown D-SS h-BN films show a mobility of about 6000 cm2 V-1 s-1 at room temperature.
CrN precipitation and elemental segregation during the decay of expanded austenite
NASA Astrophysics Data System (ADS)
Manova, D.; Lotnyk, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.
2016-06-01
Nitrogen insertion into austenitic stainless steel at elevated temperatures leads to anomalous fast nitrogen diffusion and the formation of an expanded fcc phase which is known as expanded austenite. In situ x-ray diffraction measurements during low energy nitrogen ion implantation into steel AISI 304 at 475 °C and short annealing at 575 °C were performed in conjunction with transmission electron microscopy investigations. They show the time dependent decay of this expanded phase with coalescing and growing CrN precipitates. There is elemental segregation associated with this decay where Fe is absent very early from the Cr-N containing precipitates. Ni is segregating towards the Fe-rich matrix more slowly. At the same time, the microstructure—decayed phase vs expanded austenite—is visible in SIMS cluster analysis.
Intergranular diffusion and embrittlement of a Ni-16Mo-7Cr alloy in Te vapor environment
NASA Astrophysics Data System (ADS)
Cheng, Hongwei; Li, Zhijun; Leng, Bin; Zhang, Wenzhu; Han, Fenfen; Jia, Yanyan; Zhou, Xingtai
2015-12-01
Nickel and some nickel-base alloys are extremely sensitive to intergranular embrittlement and tellurium (Te) enhanced cracking, which should be concerned during their serving in molten salt reactors. Here, a systematic study about the effects of its temperature on the reaction products at its surface, the intergranular diffusion of Te in its body and its embrittlement for a Ni-16Mo-7Cr alloy contacting Te is reported. For exposed to Te vapor at high temperature (823-1073 K), the reaction products formed on the surface of the alloy were Ni3Te2, CrTe, and MoTe2, and the most serious embrittlement was observed at 1073 K. The kinetic measurement in terms of Te penetration depth in the alloy samples gives an activation energy of 204 kJ/mol. Electron probe microanalysis confirmed the local enrichment of Te at grain boundaries. And clearly, the embrittlement was results from the intergranular diffusion and segregation of element Te.
Conformal doping of topographic silicon structures using a radial line slot antenna plasma source
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru
2014-06-01
Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.
NASA Astrophysics Data System (ADS)
Ilyin, A. M.; Neustroev, V. S.; Shamardin, V. K.; Shestakov, V. P.; Tazhibaeva, I. L.; Krivchenkoa, V. A.
2000-12-01
In this study 13Cr2MoVNb ferritic-martensitic steel (FMS) and 16Cr15Ni3MoNb austenitic stainless steel (ASS) tensile specimens were subjected to standard heat treatments and divided into two groups. Specimens in group 1 (FMS only) were aged at 400°C in a stress free and in an elastically stressed state with a tensile load (100 MPa) then doped with hydrogen in an electrolytic cell. Specimens in group 2 were subjected to cold work (up to 10%) and exposed to short-time heating at 500° for 0.5 h. All specimens were fractured at room temperature in an Auger spectrometer and Auger analysis of the fracture surfaces was performed in situ after fracturing. A noticeable increase of N and P segregation levels and a widening of the depth distribution on the grain boundary facets were observed in the FMS after aging in the stressed state. Cold-worked FMS and ASS showed a ductile dimple mode of fracture, but relatively high levels of S, P and N were observed on the dimple surfaces. We consider the origin of such effects in terms of the stressed state and plastic-deformation-enhanced segregation.
Comparisons between different techniques for measuring mass segregation
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Goodwin, Simon P.
2015-06-01
We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.
The effect of a solid surface on the segregation and melting of salt hydrates.
Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali
2014-10-22
Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.
Photoluminescence study of MBE grown InGaN with intentional indium segregation
NASA Astrophysics Data System (ADS)
Cheung, Maurice C.; Namkoong, Gon; Chen, Fei; Furis, Madalina; Pudavar, Haridas E.; Cartwright, Alexander N.; Doolittle, W. Alan
2005-05-01
Proper control of MBE growth conditions has yielded an In0.13Ga0.87N thin film sample with emission consistent with In-segregation. The photoluminescence (PL) from this epilayer showed multiple emission components. Moreover, temperature and power dependent studies of the PL demonstrated that two of the components were excitonic in nature and consistent with indium phase separation. At 15 K, time resolved PL showed a non-exponential PL decay that was well fitted with the stretched exponential solution expected for disordered systems. Consistent with the assumed carrier hopping mechanism of this model, the effective lifetime, , and the stretched exponential parameter, , decrease with increasing emission energy. Finally, room temperature micro-PL using a confocal microscope showed spatial clustering of low energy emission.
Impurity effects on the grain boundary cohesion in copper
NASA Astrophysics Data System (ADS)
Li, Yunguo; Korzhavyi, Pavel A.; Sandström, Rolf; Lilja, Christina
2017-12-01
Segregated impurities at grain boundaries can dramatically change the mechanical behavior of metals, while the mechanism is still obscure in some cases. Here, we suggest a unified approach to investigate segregation and its effects on the mechanical properties of polycrystalline alloys using the example of 3 s p impurities (Mg, Al, Si, P, or S) at a special type Σ 5 (310 )[001 ] tilt grain boundary in Cu. We show that for these impurities segregating to the grain boundary, the strain contribution to the work of grain boundary decohesion is small and that the chemical contribution correlates with the electronegativity difference between Cu and the impurity. The strain contribution to the work of dislocation emission is calculated to be negative, while the chemical contribution is calculated to be always positive. Both the strain and chemical contributions to the work of dislocation emission generally become weaker with the increasing electronegativity from Mg to S. By combining these contributions together, we find, in agreement with experimental observations, that a strong segregation of S can reduce the work of grain boundary separation below the work of dislocation emission, thus embrittling Cu, while such an embrittlement cannot be produced by a P segregation because it lowers the energy barrier for dislocation emission relatively more than for work separation.
Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy
NASA Astrophysics Data System (ADS)
Wang, Changshuai; Su, Haijun; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang
2017-09-01
Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy, considered as boiler and turbine materials in 700 °C advanced ultra-supercritical coal-fired power plants, have been investigated by differential thermal analysis and directional solidification quenching technique. Results reveal that P decreases the solidus temperature, but only has negligible influence on liquidus temperature. After P was added, the solidification sequence has no apparent change, but the width of the mushy zone increases and dendritic structures become coarser. Moreover, P increases the amount and changes the morphology of MC carbide. Energy-dispersive spectroscopy analysis reveals that P has obvious influence on the segregation behavior of the constitute elements with equilibrium partition coefficients (ki) far away from unity, whereas has negligible effect on the constituent elements with ki close to unity and has more influence on the final stage of solidification than at early stage. The distribution profiles reveal that P atoms pile up ahead of the solid/liquid (S/L) interface and strongly segregate to the interdendritic liquid region. The influence of P on solidification characteristics and segregation behavior of Ni-Fe-Cr-based alloy could be attributed to the accumulation of P ahead of the S/L interface during solidification.
Simulations of irradiated-enhanced segregation and phase separation in Fe–Cu–Mn alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Hu, Shenyang; Li, Chengliang
2017-06-13
For reactor pressure vessel steels, the addition of Cu, Mn, and Ni has a positive effect on mechanical, corrosion and radiation resistance properties. However, experiments show that radiation-enhanced segregation and/or phase separation is one of important material property degradation processes. In this work, we developed a model integrating rate theory and phase-field approaches to investigate the effect of irradiation on solute segregation and phase separation. The rate theory is used to describe the accumulation and clustering of radiation defects while the phase-field approach describes the effect of radiation defects on phase stability and microstructure evolution. The Fe-Cu-Mn ternary alloy ismore » taken as a model system. The free energies used in the phase-field model are from CALPHAD. Spatial dependent radiation damage from atomistic simulations is introduced into the simulation cell for a given radiation dose rate. The radiation effect on segregation and phase separation is taken into account through the defect concentration dependence of solute mobility. With the model the effect of temperatures and radiation rates on Cu and Mn segregation and Cu-rich phase nucleation are systematically investigated. The segregation and nucleation mechanisms are analyzed. The simulations demonstrated that the nucleus of Cu precipitates has a core-shell composition profile, i.e., Cu rich at center and Mn rich at the interface, in good agreement with the theoretical calculation as well as experimental observations.« less
NASA Astrophysics Data System (ADS)
Atribak, Idriss; Guillén-Hurtado, Noelia; Bueno-López, Agustín; García-García, Avelina
2010-10-01
Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N 2 adsorption at -196 °C and XPS, and were tested for NO oxidation to NO 2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t'' for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.
Surface control of epitaxial manganite films via oxygen pressure
Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; ...
2015-03-11
The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La 5/8Ca 3/8MnO 3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorrmore » of O 2 leads to mixed-terminated film surfaces, with B-site (MnO 2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.« less
Study on the structural transition of CoNi nanoclusters using molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Xia, J. H.; Gao, Xue-Mei
2018-04-01
In this work, the segregation and structural transitions of CoNi clusters, between 1500 and 300 K, have been investigated using molecular dynamics simulations with the embedded atom method potential. The radial distribution function was used to analyze the segregation during the cooling processes. It is found that Co atoms segregate to the inside and Ni atoms preferably to the surface during the cooling processes, the Co147Ni414 cluster becomes a core-shell structure. We discuss the structural transition according to the pair-correction function and pair-analysis technique, and finally the liquid Co147Ni414 crystallizes into the coexistence of hcp and fcc structure at 300 K. At the same time, it is found that the frozen structure of CoNi cluster is strongly related to the Co concentration.
Cyclic Oxidation Behavior of Simulated Post-Weld Heat-Treated P91
NASA Astrophysics Data System (ADS)
Rajendran Pillai, S.; Dayal, R. K.
2011-10-01
For long-term service life it is desirable that the high-temperature components posses slow-growing oxide scale. The growth and degradation of the oxide scale on P91 were studied by a thermal cycling method. The oxidation temperature was 780 °C and the duration of each cycle was 2 h. The mass gain and integrity of the scale was examined using a thermogravimetric balance. Any lack of integrity is monitored by the transient mass gain associated with the exposure of fresh surface. The scale retained the integrity throughout 100 cycles. Post-oxidation examination was carried out by scanning electron microscopy, energy dispersive spectroscopy and laser Raman spectroscopy. The nature of the scale was characterized and the reason for the compositional segregation is analyzed.
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Witt, A. F.
1977-01-01
Experiment MA-060 was designed to establish the crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero-g conditions. The interface demarcation technique was incorporated into the experiment since it constitutes a unique tool for recording the morphology of the growth rate throughout solidification, and for establishing an absolute time reference framework for all stages of the solidification process. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. There was no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground-based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.
NASA Astrophysics Data System (ADS)
Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander
2015-04-01
The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Gasparyan, Yu.; Efimov, V.
2017-03-01
In this paper, reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthening (ODS) steels by the addition of Y2O3 particles with different amounts of Cr, namely, (9-16)Cr were exposed to low energy deuterium (D) plasma (~20-200 eV per D) up to a fluence of 2.9 × 1025 D m-2 in the temperature range from 290 K to 700 K. The depth profile of D in steels was measured up to 8 µm depth by nuclear reaction analysis (NRA) and the total retained amount of D in those materials was determined by thermal desorption spectroscopy (TDS). It was found that the D retention in ODS steels is higher compared to Eurofer due to the much higher density of fine dispersoids and finer grain size. This work shows that in addition to the sintering temperature and time, the type, size and concentration of the doping particles have an enormous effect on the increase in the D retention. The D retention in undamaged ODS steels strongly depends on the Cr content: ODS with 12Cr has a minimum and the D retention in the case of ODS with (14-16)Cr is higher compared to (9-12)Cr. The replacing of Ti by Al in ODS-14Cr steels reduces the D retention. The formation of nano-structure surface roughness enriched in W or Ta due to combination of preferential sputtering of light elements and radiation-induced segregation was observed at incident D ion energy of 200 eV for both Eurofer and ODS steels. Both the surface roughness and the eroded layer enhance with increasing the temperature. The surface modifications result in a reduction of the D retention near the surface due to increasing the desorption flux and can reduce the overall D retention.
The effect of particle morphology on the physical stability of pharmaceutical powder mixtures
NASA Astrophysics Data System (ADS)
Swaminathan, Vidya
Pharmaceutical powder mixtures are composed of particles that physically interact, precluding the formation of random mixtures. Mixtures based on particle interactions are termed ordered mixtures. The objective of this study was to determine the effect of the morphological characteristics of the components, surface texture and shape, along with size, on the formation of stable mixtures. Morphological parameters were obtained from image analysis measurements. Surface roughness was quantified using the ratio of the perimeter of the particle to that of an ideal shape (circle or square) having the same area; shape was described using the aspect ratio. The stability of mixtures of micronized aspirin with carriers of different surface roughness was determined by measuring the extent of drug adhering to the carrier after subjecting the mixtures to vibration. A lesser extent of segregation of drug from highly textured carriers relative to smoother textured carriers was observed. This was postulated to be due to a larger concentration of surface asperities on the coarser carriers which constitute potentially strong adhesion sites. The electrostatic charge on the powders was measured; differences in the response of the mixtures to the addition of magnesium stearate were attributed to electrostatic charge effects. The effect of varying the aspect ratio of the carrier and drug on segregation in polydisperse mixtures was determined from the coefficient of variation of the drug in the mixture as a function of mixing time. Reducing the size of the carrier resulted in poor homogeneity due to weak carrier-drug interactions. The variation in drug content resulting from a change in the shape of the carriers was smaller than that caused by size differences. The segregation rate constant in mixtures having dissimilarly shaped components was larger than in mixtures having components of similar shape. The effects of magnesium stearate concentration and lubrication time on the content uniformity of polydisperse mixtures were evaluated from a full factorial experiment. The segregation response of ordered and random mixtures to the addition of magnesium stearate was compared. The moisture sorption behavior of commercial magnesium stearate and the resulting morphological changes were evaluated.
Atom probe study of grain boundary segregation in technically pure molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babinsky, K., E-mail: katharina.babinsky@stud.unileoben.ac.at; Weidow, J., E-mail: jonathan.weidow@chalmers.se; Knabl, W., E-mail: wolfram.knabl@plansee.com
2014-01-15
Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitivemore » techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of oxygen, nitrogen and potassium found • Segregation in former sinter-pores detected • Presence of grain boundaries without segregation evidenced.« less
The Strata-l Experiment on Microgravity Regolith Segregation
NASA Technical Reports Server (NTRS)
Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.;
2016-01-01
The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular complexity. The materials were sorted into three size species pre-launch, and maintained during launch and return by a device called the Entrapulator. The hypothesis under test is that the particles that constitute a granular medium in a micro-gravity environment, subjected to a known vibration environemnt, will segregate in accordance to modeled predictions. Strata-1 is currently operating on ISS, with cameras capturing images of simulant motion throughout the one year mission. Vibration data is recorded and downlinked, and the simulants will be analyzed after return to Earth.
Welland, Michael J.; Karpeyev, Dmitry; O’Connor, Devin T.; ...
2015-09-10
We study the mesoscopic effects which suppress phase-segregation in Li xFePO 4 nanoparticles using a multiphysics phase-field model implement on a high performance cluster. We simulate 3D spherical particles of radii from 3nm to 40nm and examine the equilibrium microstructure and voltage profiles as a they depend on size and overall lithiation. The model includes anisotropic, concentration-dependent elastic moduli, misfit strain, and facet dependent surface wetting within a Cahn-Hilliard formulation. Here, we find that the miscibility gap vanishes for particles of radius ~ 5 nm, and the solubility limits change with overall particle lithiation. The corresponding voltage plateau, indicative ofmore » phase-segregation, changes in extent and also vanishes. Surface wetting is found to have a strong effect on stabilizing a variety of microstructures, exaggerating the shifting of solubility limits, and shortening the voltage plateau.« less
NASA Astrophysics Data System (ADS)
Cavendish, Rio
As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.
Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles.
Song, Bo; Zhou, Yi; Schönherr, Holger
2016-11-01
The formation of self-assembled monolayers (SAMs) of binary mixtures of 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on ultraflat template-stripped gold (TSG) surfaces was systematically investigated to clarify the assembly behavior, composition, and degree of possible phase segregation in light of atomic force microscopy (AFM) studies of surface nanobubbles on these substrates. The data for SAMs on TSG were compared to those obtained by adsorption on rough evaporated gold, as reported in a previous study. Quartz crystal microbalance and surface plasmon resonance data acquired in situ on TSG indicate that similar to SAM formation on conventional evaporated gold substrates ODT and MHDA form monolayers and bilayers, respectively. The second layer on MHDA, whose formation is attributed to hydrogen bonding, can be easily removed by adequate rinsing with water. The favorable agreement of the grazing incidence reflection Fourier transform infrared (GIR FTIR) spectroscopy and contact angle data analyzed with the Israelachvili-Gee model suggests that the binary SAMs do not segregate laterally. This conclusion is fully validated by high-resolution friction force AFM observations down to a length scale of 8-10 nm, which is much smaller than the typical observed surface nanobubble radii. Finally, correspondingly functionalized TSG substrates are shown to be valuable supports for studying surface nanobubbles by AFM in water and for addressing the relation between surface functionality and nanobubble formation and properties.
NASA Astrophysics Data System (ADS)
Arevalo-Lopez, H. S.; Levin, S. A.
2016-12-01
The vertical component of seismic wave reflections is contaminated by surface noise such as ground roll and secondary scattering from near surface inhomogeneities. A common method for attenuating these, unfortunately often aliased, arrivals is via velocity filtering and/or multichannel stacking. 3D-3C acquisition technology provides two additional sources of information about the surface wave noise that we exploit here: (1) areal receiver coverage, and (2) a pair of horizontal components recorded at the same location as the vertical component. Areal coverage allows us to segregate arrivals at each individual receiver or group of receivers by direction. The horizontal components, having much less compressional reflection body wave energy than the vertical component, provide a template of where to focus our energies on attenuating the surface wave arrivals. (In the simplest setting, the vertical component is a scaled 90 degree phase rotated version of the radial horizontal arrival, a potential third possible lever we have not yet tried to integrate.) The key to our approach is to use the magnitude of the horizontal components to outline a data-adaptive "velocity" filter region in the w-Kx-Ky domain. The big advantage for us is that even in the presence of uneven receiver geometries, the filter automatically tracks through aliasing without manual sculpting and a priori velocity and dispersion estimation. The method was applied to an aliased synthetic dataset based on a five layer earth model which also included shallow scatterers to simulate near-surface inhomogeneities and successfully removed both the ground roll and scatterers from the vertical component (Figure 1).
Atmospheric transport, clouds and the Arctic longwave radiation paradox
NASA Astrophysics Data System (ADS)
Sedlar, Joseph
2016-04-01
Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are observed with a TOA longwave flux to space that is 2 to 4 W m-2 larger than climatology. This represents a significant climate cooling signal, suggestive of a regional climate buffering mechanism to combat excessive Arctic warming.
Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)
NASA Astrophysics Data System (ADS)
Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki
2007-03-01
Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.
NASA Astrophysics Data System (ADS)
Huang, Jiajia; Liu, Haodong; Hu, Tao; Meng, Ying Shirley; Luo, Jian
2018-01-01
WO3 doping and accompanying spontaneous formation of a surface phase can substantially improve the discharge capacity, rate capability, and cycling stability of Co-free Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 cathode material. X-ray photoelectron spectroscopy, in conjunction with ion sputtering, shows that W segregates to the particle surfaces, decreases the surface Ni/Mn ratio, and changes the surface valence state. High-resolution transmission electron microscopy further suggests that W segregation increases surface structural disorder. The spontaneous and simultaneous changes in the surface structure, composition, and valence state represent the formation of a surface phase (complexion) as the preferred surface thermodynamic state. Consequently, the averaged discharge capacity is increased by ∼13% from 251 to 284 mAh g-1 at a low rate of C/20 and by ∼200% from 30 to 90 mAh g-1 at a high rate of 40C, in comparison with an undoped specimen processed under identical conditions. Moreover, after 100 cycles at a charge/discharge rate of 1C, the WO3 doped specimen retained a discharge capacity of 188 mAh g-1, being 27% higher than that of the undoped specimen. In a broader context, this work exemplifies an opportunity of utilizing spontaneously-formed surface phases as a scalable and cost-effective method to improve materials properties.
NASA Astrophysics Data System (ADS)
Hill, Jacob A.
The composition of a polymer blend is generally different at the surface than in the bulk and the gradient in composition with depth has important implications for surface properties. The determination of the surface composition presents various challenges which continue to prompt the development of new techniques for quantifying the composition. Here the technique of surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS) has been further developed to address four specific questions of polymer blend surface behavior within the general category of surface composition determination. The first question is how chain length disparity affects surface segregation in the case that the disparity is quite small. While such segregation is known for blends containing low molecular weight additives or systems with large polydispersity, it has not been reported for anionically polymerized polymers that are viewed, in practice, as monodisperse. For 6 kDa polystyrene the number average molecular weight (Mn) at the surface is ca. 300 Da (5%) lower than that in the bulk and for 7 kDa polymethyl methacrylate the shift is ca. 500 Da. The second question is how chain-end functionalization effects not the location of chain ends at the surface, but rather the prevalence at the surface of any part of a chain having an end functionalization. A key issue of such an approach is understanding precisely where the functionalities ultimately reside and how this functionalization shifts the balance of forces that determine the distribution of chains with depth. The surface of a blend of 6 kDa polystyrene and 6 kDa polystyrene functionalized with hydroxymethyl ends is not only depleted of the higher energy end groups, but is depleted of any segments belonging to the functionalized chains. This is demonstrated using SL-MALDI-ToF-MS, which detects entire chains that have any repeat unit at the outer surface, and requires no labelling. This study was extended to the surfaces of blends of 6 kDa polystyrene and 6 kDa polystyrene functionalized with hydroxyethyl ends. Blends of all compositions less than 90 wt. % functionalized chains showed depletion. Finally, the challenge of determining lateral variations in the surface composition has been addressed with the development of SL-MALDI-ToF-MS imaging (SL-MALDI-ToF-MSI). Key to developing imaging capability was improving the lateral uniformity of the matrix deposition. This uniformity was achieved using solvent free sublimation of matrix and salt onto the sample's surface. The capabilities of SL-MALDI-ToF-MSI were demonstrated by imaging the absence of material due to masking during material deposition, mechanical scribing or solvent perturbation at the surface of low molecular weight poly(methyl methacrylate) and polystyrene thin films. SL-MALDI-ToF MSI was made possible through the first uniform, solvent free simultaneous sublimation of matrix and salt onto the material's surface.
Segregation and convection in dendritic alloys
NASA Technical Reports Server (NTRS)
Poirier, D. R.
1990-01-01
Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-01-01
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance. PMID:28773067
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-06-27
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Efficiency of Electric Motors B Appendix B to Subpart B of Part 431 Energy DEPARTMENT OF ENERGY ENERGY..., Subpt. B, App. B Appendix B to Subpart B of Part 431—Uniform Test Method for Measuring Nominal Full Load... Std 112-2004 Test Method B, Input-Output With Loss Segregation, (incorporated by reference, see § 431...
NASA Technical Reports Server (NTRS)
Li, C.
1975-01-01
Computer programs are developed and used in the study of the combined effects of evaporation and solidification in space processing. The temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation were mathematically formulated. Computer results are included along with an econotechnical model of crystal growth. This model allows: prediction of crystal size, quality, and cost; systematic selection of the best growth equipment or alloy system; optimization of growth or material parameters; and a maximization of zero-gravity effects. Segregation in GaAs crystals was examined along with vibration effects on GaAs crystal growth. It was found that a unique segregation pattern and strong convention currents exist in GaAs crystal growth. Some beneficial effects from vibration during GaAs growth were discovered. The implications of the results in space processing are indicated.
Kapitza resistance at segregated boundaries in β-SiC
NASA Astrophysics Data System (ADS)
Goel, Nipun; Webb, Edmund, III; Oztekin, Alparslan; Rickman, Jeffrey; Neti, Sudhakar
Silicon Carbide is a candidate material for high-temperature thermoelectric applications for harvesting waste heat associated with exhaust from automotive and furnaces as well hot surfaces in solar towers and power electronics. However, for SiC to be a viable thermoelectric material, its thermoelectric figure of merit must be improved significantly. In this talk we examine the role of grain-boundary segregation on phononic thermal transport, an important factor in determining the figure of merit, via non-equilibrium molecular dynamics simulations. In particular, we consider the role of dopant concentration and dopant/matrix interactions on the enhancement of the Kapitza resistance of symmetric tilt grain boundaries. We find that the calculated resistance depends on the segregation profile, with increases of more than a factor of 50 (relative to an unsegregated boundary) at the highest dopant concentrations. Finally, we relate the calculated phonon density of states to changes in the Kapitza resistance.
NASA Astrophysics Data System (ADS)
Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang
2018-05-01
The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.
Cobalt disilicide contacts to silicon-germanium alloys
NASA Astrophysics Data System (ADS)
Goeller, Peter Thomas
This dissertation investigated the structure and stability of thin (18--45 nm) cobalt disilicide films, electron beam evaporated onto strained and relaxed Si1--xGex/Si(001) alloy layers. The aim of these investigations was to develop a means of growing smooth, continuous, epitaxial and thermally stable CoSi2 films suitable for use as contacts in SiGe device technology. Previous research on the reaction of Co metal with SiGe alloys has indicated a number of problems, such as film islanding, formation of polycrystalline silicide films, Ge segregation and poor thermal stability. In the present work, we studied the scientific issues underlying these phenomena with a variety of experimental techniques. Our initial studies comparing direct deposition of Co versus co-deposition of Co and Si indicated that co-deposition resulted in CoSi2 formation at much lower temperatures (500°C) than with the direct deposition method (700°C). Furthermore, the co-deposited films were epitaxial to the SiGe layer, whereas the direct deposited films were polycrystalline. Both methods resulting in increasing islanding of the films with increasing annealing temperature. The issues underlying the islanding of the co-deposited films were investigated with an in situ XAFS investigation of the Co/SiGe interface using monolayers of Co. It was determined that Co preferentially bonds with Si atoms as the annealing temperature is increased, leading to segregation of Ge at the interface and faceting of the silicide. A modified template method of silicide growth was devised, in which a sacrificial Si layer was deposited onto the SiGe surface before the CoSi2 template was grown. This growth method was shown to result in smooth, epitaxial and thermally stable films of CoSi2 on Si0.80Ge0.20 alloys. A thickness effect was observed for the direct deposition of Co on SiGe alloys, in which Co layers do not completely convert to CoSi2 until thicknesses greater than 35 nm are deposited. A thermodynamic model was developed, based on the Gibbs free energy change of the CoSi → CoSi2 transition, which indicated that the thickness effect was driven by the presence of Ge in the reaction zone. Finally, the Ge segregation phenomenon accompanying the direct reaction of Co on both strained and relaxed Si0.80Ge0.20 alloys was investigated. It was determined using XRD and EDS in the STEM microscope that Ge segregation on strained SiGe takes the form of Ge-enriched SiGe regions surrounding CoSi and CoSi2 grains at the surface of the film. (Abstract shortened by UMI.)
First-principles study of the effect of phosphorus on nickel grain boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenguan; Ren, Cuilan; Han, Han, E-mail: hanhan@sinap.ac.cn, E-mail: xuhongjie@sinap.ac.cn
2014-01-28
Based on first-principles quantum-mechanical calculations, the impurity-dopant effects of phosphorus on Σ5(012) symmetrical tilt grain boundary in nickel have been studied. The calculated binding energy suggests that phosphorus has a strong tendency to segregate to the grain boundary. Phosphorus forms strong and covalent-like bonding with nickel, which is beneficial to the grain boundary cohesion. However, a too high phosphorus content can result in a thin and fragile zone in the grain boundary, due to the repulsion between phosphorus atoms. As the concentration of phosphorus increases, the strength of the grain boundary increases first and then decreases. Obviously, there exists anmore » optimum concentration for phosphorus segregation, which is consistent with observed segregation behaviors of phosphorus in the grain boundary of nickel. This work is very helpful to understand the comprehensive effects of phosphorus.« less
Rochford, C.; Medlin, D. L.; Erickson, K. J.; ...
2015-12-01
Controlling alloy composition, crystalline quality, and crystal orientation is necessary to achieve high thermoelectric performance in Bi 1-xSb x thin films. These microstructural attributes are demonstrated in this letter via co-sputter deposition of Bi and Sb metals on Si/SiO 2 substrates followed by ex-situ post anneals ranging from 200 – 300 °C in forming gas with rapid cooling to achieve orientation along the trigonal axis. We show with cross-sectional transmission electron microscopy and energy-dispersive X-ray spectrometry that 50 – 95% of the Sb segregates at the surface upon exposure to air during transfer. This then forms a nanocrystalline Sb 2Omore » 3 layer upon annealing, leaving the bulk of the film primarily Bi metal which is a poor thermoelectric material. We demonstrate a SiN capping technique to eliminate Sb segregation and preserve a uniform composition throughout the thickness of the film. Given that the Bi 1-xSb x solid solution melting point depends on the Sb content, the SiN cap allows one to carefully approach but not exceed the melting point during annealing. This leads to the strong orientation along the trigonal axis and high crystalline quality desired for thermoelectric applications.« less
Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.
Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J
2017-09-06
Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.
Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements
Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf
2012-01-01
Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Li, Chengyuan; Zheng, Yong; Deng, Licai; Hu, Yi; Kouwenhoven, M. B. N.; Wicker, James E.
2013-03-01
Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the >~ 2σ level of significance (>3σ if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M ⊙) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems—with relatively low binding energies compared to the kinetic energy of their stellar members—in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.
On the spatial distributions of dense cores in Orion B
NASA Astrophysics Data System (ADS)
Parker, Richard J.
2018-05-01
We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion B star-forming region. For L1622, NGC 2068/NGC 2071, and NGC 2023/NGC 2024, we measure the amount of spatial substructure using the Q-parameter and find all three regions to be spatially substructured (Q < 0.8). We quantify the amount of mass segregation using ΛMSR and find that the most massive cores are mildly mass segregated in NGC 2068/NGC 2071 (ΛMSR ˜ 2), and very mass segregated in NGC 2023/NGC 2024 (Λ _MSR = 28^{+13}_{-10} for the four most massive cores). Whereas the most massive cores in L1622 are not in areas of relatively high surface density, or deeper gravitational potentials, the massive cores in NGC 2068/NGC 2071 and NGC 2023/NGC 2024 are significantly so. Given the low density (10 cores pc-2) and spatial substructure of cores in Orion B, the mass segregation cannot be dynamical. Our results are also inconsistent with simulations in which the most massive stars form via competitive accretion, and instead hint that magnetic fields may be important in influencing the primordial spatial distributions of gas and stars in star-forming regions.
Harikrishnan, A R; Dhar, Purbarun; Agnihotri, Prabhat K; Gedupudi, Sateesh; Das, Sarit Kumar
2017-06-22
Even though there are quite large studies on wettability of aqueous surfactants and a few studies on effects of nanoparticles on wettability of colloids, to the best of authors' knowledge, there is no study reported on the combined effect of surfactant and nanoparticles in altering the wettability. The present study, for the first time, reports an extensive experimental and theoretical study on the combined effect of surfactants and nanoparticles on the wettability of complex fluids such as nanocolloids on different substrates, ranging from hydrophilic with a predominantly polar surface energy component (silicon wafer and glass) to near hydrophobic range with a predominantly dispersive component of surface energy (aluminum and copper substrates). Systematically planned experiments are carried out to segregate the contributing effects of surfactants, particles, and combined particle and surfactants in modulating the wettability. The mechanisms and the governing parameters behind the interactions of nanocolloids alone and of surfactant capped nanocolloids with different surfaces are found to be grossly different. The article, for the first time, also analyzes the interplay of the nature of surfaces, surfactant and particle concentrations on contact angle, and contact angle hysteresis (CAH) of particle and surfactant impregnated colloidal suspensions. In the case of nanoparticle suspensions, the contact angle is observed to decrease for the hydrophobic system and increase for the hydrophilic systems considered. On the contrary, the combined particle and surfactant colloidal system shows a quasi-unique wetting behavior of decreasing contact angle with particle concentration on all substrates. Also interestingly, the combined particle surfactant system at all particle concentrations shows a wetting angle much lower than that of the only-surfactant case at the same surfactant concentration. Such counterintuitive observations have been explained based on the near-surface interactivity of the particle, fluid, and surfactant molecules based on effective slip length considerations. The CAH analyses of colloidal suspensions at varying surfactant and particle concentrations reveal in-depth physical insight into contact line pinning, and a unique novel relationship is established between the contact angle and differential energy for distorting the instantaneous contact angle for a pinned sessile droplet. A detailed theoretical analysis of the governing parameters influencing the wettability has been presented invoking the principles of DLVO (Derjaguin-Landau-Verwey-Overbeek), surface energy and interaction parameters influencing at the molecular scale, and the theoretical framework is found to support the experimental observations.
NASA Astrophysics Data System (ADS)
Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun
2017-08-01
We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of interfacial interaction with a substrate in such multicomponent nanocolloidal systems.
Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul
2015-01-21
The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.
Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |
video Download the transcript Agent-based Models of How Segregation and Peer Effects Influence Solar PV to estimate the relative influence of peer effects, cognitive factors, and economic factors in solar
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
NASA Astrophysics Data System (ADS)
Xi, Jianqi; Liu, Bin; Xu, Haixuan; Zhang, Yanwen; Weber, William J.
2018-02-01
Grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[11 bar0] grain boundary in CeO2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO2 is comparable to that in UO2. The diffusion activation energies of Xe atoms in the Σ 3 GB are lower than that in the bulk CeO2. These results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.
NASA Astrophysics Data System (ADS)
Vega Zuniga, Adrian A.
Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two ternary nanostructures, which could be associated with the platinum/gold ratio on the surface of the structure. In acidic electrolyte, the nanostructure with the highest platinum content displayed the highest electrocatalytic response. Furthermore, the presence of platinum changed the selectivity of both reactions: the concentrations of carbonate produced increased by increasing the platinum content in the alloy precursor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogaddam, N. A. P.; Turan, R.; Alagoz, A. S.
2008-12-15
SiGe nanocrystals have been formed in SiO{sub 2} matrix by cosputtering Si, Ge, and SiO{sub 2} independently on Si substrate. Effects of the annealing time and temperature on structural and compositional properties are studied by transmission electron microscopy, x-ray diffraction (XRD), and Raman spectroscopy measurements. It is observed that Ge-rich Si{sub (1-x)}Ge{sub x} nanocrystals do not hold their compositional uniformity when annealed at high temperatures for enough long time. A segregation process leading to separation of Ge and Si atoms from each other takes place. This process has been evidenced by a double peak formation in the XRD and Ramanmore » spectra. We attributed this phase separation to the differences in atomic size, surface energy, and surface diffusion disparity between Si and Ge atoms leading to the formation of nonhomogenous structure consist of a Si-rich SiGe core covered by a Ge-rich SiGe shell. This experimental observation is consistent with the result of reported theoretical and simulation methods.« less
NASA Astrophysics Data System (ADS)
Fulvio, D.; Raut, U.; Baragiola, R. A.
2012-06-01
We investigate via infrared spectroscopy the synthesis of CO2 by ultraviolet irradiation (6.41 eV) of amorphous carbon covered with solid O2 at 21 K. Oxidation occurs at the O2-carbon interface promoted by photon excitation or dissociation of O2 molecules. The CO2 production is linear with photon fluence with a yield of 3.3 ± 0.3 × 10-5 CO2 photon-1 the yield does not decrease at high fluences (at least up to 2 × 1019 photons cm-2) since CO2 is not photodissociated at this photon energy. Replacing oxygen with water ice did not produce CO2 since H2O does not dissociate at this photon energy. The CO2 synthesis process discussed in this Letter does not require H2O or CO and may be important in cold astrophysical environments where O2 could be locally segregated on carbonaceous grains, such as in molecular clouds and icy objects in the outer solar system.
Han, Chang Wan; Majumdar, Paulami; Marinero, Ernesto E; Aguilar-Tapia, Antonio; Zanella, Rodolfo; Greeley, Jeffrey; Ortalan, Volkan
2015-12-09
It has been a long-lived research topic in the field of heterogeneous catalysts to find a way of stabilizing supported gold catalyst against sintering. Herein, we report highly stable AuIr bimetallic nanoparticles on TiO2 synthesized by sequential deposition-precipitation. To reveal the physical origin of the high stability of AuIr/TiO2, we used aberration-corrected scanning transmission electron microscopy (STEM), STEM-tomography, and density functional theory (DFT) calculations. Three-dimensional structures of AuIr/TiO2 obtained by STEM-tomography indicate that AuIr nanoparticles on TiO2 have intrinsically lower free energy and less driving force for sintering than Au nanoparticles. DFT calculations on segregation behavior of AuIr slabs on TiO2 showed that the presence of Ir near the TiO2 surface increases the adhesion energy of the bimetallic slabs to the TiO2 and the attractive interactions between Ir and TiO2 lead to higher stability of AuIr nanoparticles as compared to Au nanoparticles.
Oxide segregation and melting behavior of transient heat load exposed beryllium
NASA Astrophysics Data System (ADS)
Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.
2016-10-01
In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.
Vertical Phase Segregation Induced by Dipolar Interactions in Planar Polymer Brushes
Mahalik, Jyoti P.; Sumpter, Bobby G.; Kumar, Rajeev
2016-09-13
In this paper, we present a generalized theory for studying structural properties of a planar dipolar polymer brush immersed in a polar solvent. We show that an explicit treatment of the dipolar interactions yields a macroscopic concentration dependent effective “chi” (the Flory–Huggins-like interaction) parameter. Furthermore, it is shown that the concentration dependent chi parameter promotes phase segregation in polymer solutions and brushes so that the polymer-poor phase consists of a finite/nonzero polymer concentration. Such a destabilization of the homogeneous phase by the dipolar interactions appears as vertical phase segregation in a planar polymer brush. In a vertically phase segregated polymermore » brush, the polymer-rich phase near the grafting surface coexists with the polymer-poor phase at the other end. Predictions of the theory are directly compared with prior reported experimental results for dipolar polymers in polar solvents. Excellent agreements with the experimental results are found, hinting that the dipolar interactions play a significant role in vertical phase segregation of planar polymer brushes. We also compare our field theoretical approach with the two-state and other models invoking ad hoc concentration dependence of the chi parameter. Interplay between the short-ranged excluded volume interactions and long-ranged dipolar interactions is shown to play an important role in affecting the vertical phase separation. Finally, effects of mismatch between the dipole moments of the polymer segments and the solvent molecules are investigated in detail.« less
Shape and Composition Map of a Prepyramid Quantum Dot
NASA Astrophysics Data System (ADS)
Spencer, Brian
2006-03-01
We present a theory for the shape, size, and nonuniform composition profile of a small prepyramid island in an alloy epitaxial film when surface diffusion is much faster than deposition and bulk diffusion. The predicted composition profile has segregation of the larger misfit component to the island peak, with segregation enhanced by misfit strain and solute strain but retarded by alloy solution thermodynamics. Vertical composition gradients through the center of the island due to this mechanism are on the order of 2%/nm for GeXSi1-X/Si and 10 - 15%/nm for InXGaAs1-X/GaAs [PRL 95, 206101 (2005)].
A multifluid model extended for strong temperature nonequilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chong
2016-08-08
We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregatedmore » material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.« less
Microchemical investigation on Renaissance coins minted at Gubbio (Central Italy)
NASA Astrophysics Data System (ADS)
Ingo, G. M.; de Caro, T.; Padeletti, G.; Chiozzini, G.
The bulk and surface chemical composition of Renaissance coins minted at Gubbio (Central Italy) from 1508 to 1516 and from 1521 to 1538 by Francesco Maria della Rovere is investigated by means of the combined use of different analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and optical microscopy (OM). The aim of the work is to determine the bulk chemical composition of these commonly used coins at Gubbio, to ascertain their surface nature and if they were coated by a thin film of silver or other white metals similar to silver. The results indicate that the coins were produced by coating a copper core with a thin film of silver and antimony, and also with lead whose thickness is of a few microns which is now scarcely present because the original silvered surface was almost entirely removed by degradation phenomena. Furthermore, the SEM+EDS results show that the surface content of silver and antimony cannot be attributed to long-term selective corrosion phenomena leaving the coin slightly silver or antimony enriched. Therefore, the presence of silver or apparently silver-like metals i.e. antimony and lead, could be considered as a deliberate surface finishing of the coins obtained via inverse segregation or intentional selective corrosion based on pickling solutions or a combination of them. From a historical point of view the presence of a Ag or Sb film on the surface of the coins discloses the occurrence of a period of economic difficulties.
NASA Astrophysics Data System (ADS)
Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.
Detailed examinations of intergranular attack (IGA) in alloy 600 were performed after exposure to simulated PWR primary water at 325°C for 500 h. High-resolution analyses of IGA characteristics were conducted on specimens with either a 1 µm diamond or 1200-grit SiC surface finish using scanning electron microscopy, transmission electron microscopy and atom probe tomography techniques. The diamond-polish finish with very little preexisting subsurface damage revealed attack of high-energy grain boundaries that intersected the exposed surface to depths approaching 2 µm. In all cases, IGA from the surface is localized oxidation consisting of porous, nanocrystalline MO-structure and spinel particles along with regions of faceted wall oxidation. Surprisingly, this continuous IG oxidation transitions to discontinuous, discrete Cr-rich sulfide particles up to 50 nm in diameter. In the vicinity of the sulfides, the grain boundaries were severely Cr depleted (to <1 at%) and enriched in S. The 1200 grit SiC finish surface exhibited a preexisting highly strained recrystallized layer of elongated nanocrystalline matrix grains. Similar IG oxidation and leading sulfide particles were found, but the IGA depth was typically confined to the near-surface ( 400 nm) recrystallized region. Difference in IGA for the two surface finishes indicates that the formation of grain boundary sulfides occurs during the exposure to PWR primary water. The source of S remains unclear, however it is not present as sulfides in the bulk alloy nor is it segregated to bulk grain boundaries.
Growth of two-dimensional Ge crystal by annealing of heteroepitaxial Ag/Ge(111) under N2 ambient
NASA Astrophysics Data System (ADS)
Ito, Koichi; Ohta, Akio; Kurosawa, Masashi; Araidai, Masaaki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
The growth of a two-dimensional crystal of Ge atoms on an atomically flat Ag(111) surface has been demonstrated by the thermal annealing of a heteroepitaxial Ag/Ge structure in N2 ambient at atmospheric pressure. The surface morphology and chemical bonding features of heteroepitaxial Ag(111) grown on wet-cleaned Ge(111) after annealing at different temperatures and for various times have been systematically investigated to control the surface segregation of Ge atoms and the planarization of the heteroepitaxial Ag(111) surface.
Controlling mixing and segregation in time periodic granular flows
NASA Astrophysics Data System (ADS)
Bhattacharya, Tathagata
Segregation is a major problem for many solids processing industries. Differences in particle size or density can lead to flow-induced segregation. In the present work, we employ the discrete element method (DEM)---one type of particle dynamics (PD) technique---to investigate the mixing and segregation of granular material in some prototypical solid handling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of individual particles based on Newton's laws of motion by employing suitable contact force models and a collision detection algorithm. Recently, it has been suggested that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effectiveness of this technique can be linked to the probability distribution of the number of times a particle passes through the flowing layer per rotation of the drum. In the first portion of this work, various configurations of solid mixers are numerically and experimentally studied to investigate the conditions for improved mixing in light of these hypotheses. Besides rotating drums, many studies of granular flow have focused on gravity driven chute flows owing to its practical importance in granular transportation and to the fact that the relative simplicity of this type of flow allows for development and testing of new theories. In this part of the work, we observe the deposition behavior of both mono-sized and polydisperse dry granular materials in an inclined chute flow. The effects of different parameters such as chute angle, particle size, falling height and charge amount on the mass fraction distribution of granular materials after deposition are investigated. The simulation results obtained using DEM are compared with the experimental findings and a high degree of agreement is observed. Tuning of the underlying contact force parameters allows the achievement of realistic results and is used as a means of validating the model against available experimental data. The tuned model is then used to find the critical chute length for segregation based on the hypothesis that segregation can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. The critical frequency, fcrit, is inversely proportional to the characteristic time of segregation, ts. Mixing is observed instead of segregation when the chute length L < U avgts, where Uavg denotes the average stream-wise flow velocity of the particles. While segregation is often an undesired effect, sometimes separating the components of a particle mixture is the ultimate goal. Rate-based separation processes hold promise as both more environmentally benign as well as less energy intensive when compared to conventional particle separations technologies such as vibrating screens or flotation methods. This approach is based on differences in the kinetic properties of the components of a mixture, such as the velocity of migration or diffusivity. In this portion of the work, two examples of novel rate-based separation devices are demonstrated. The first example involves the study of the dynamics of gravity-driven particles through an array of obstacles. Both discrete element (DEM) simulations and experiments are used to augment the understanding of this device. Dissipative collisions (both between the particles themselves and with the obstacles) give rise to a diffusive motion of particles perpendicular to the flow direction and the differences in diffusion lengths are exploited to separate the particles. The second example employs DEM to analyze a ratchet mechanism where a current of particles can be produced in a direction perpendicular to the energy input. In this setup, a vibrating saw-toothed base is employed to induce different mobility for different types of particles. The effect of operating conditions and design parameters on the separation efficiency are discussed. Keywords: granular flow, particle, mixing, segregation, discrete element method, particle dynamics, tumbler, chute, periodic flow inversion, collisional flow, rate-based separation, ratchet, static separator, dissipative particle dynamics, non-spherical droplet.
Using high-speed texture measurements to improve the uniformity of hot-mix asphalt.
DOT National Transportation Integrated Search
2003-01-01
This study introduces Virginia's efforts to apply high-speed texture measurement as a tool to improve the uniformity of hot-mix asphalt (HMA) pavements. Three approaches for detecting and quantifying HMA segregation through measuring pavement surface...
Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces
NASA Astrophysics Data System (ADS)
Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan
2006-04-01
By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri
Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.
NASA Astrophysics Data System (ADS)
Divi, Srikanth; Agrahari, Gargi; Ranjan Kadulkar, Sanket; Kumar, Sanjeet; Chatterjee, Abhijit
2017-12-01
Capturing segregation behavior in metal alloy nanoparticles accurately using computer simulations is contingent upon the availability of high-fidelity interatomic potentials. The embedded atom method (EAM) potential is a widely trusted interatomic potential form used with pure metals and their alloys. When limited experimental data is available, the A-B EAM cross-interaction potential for metal alloys AxB 1-x are often constructed from pure metal A and B potentials by employing a pre-defined ‘mixing rule’ without any adjustable parameters. While this approach is convenient, we show that for AuPt, NiPt, AgAu, AgPd, AuNi, NiPd, PtPd and AuPd such mixing rules may not even yield the correct alloy properties, e.g., heats of mixing, that are closely related to the segregation behavior. A general theoretical formulation based on scaling invariance arguments is introduced that addresses this issue by tuning the mixing rule to better describe alloy properties. Starting with an existing pure metal EAM potential that is used extensively in literature, we find that the mixing rule fitted to heats of mixing for metal solutions usually provides good estimates of segregation energies, lattice parameters and cohesive energy, as well as equilibrium distribution of metals within a nanoparticle using Monte Carlo simulations. While the tunable mixing rule generally performs better than non-adjustable mixing rules, the use of the tunable mixing rule may still require some caution. For e.g., in Pt-Ni system we find that the segregation behavior can deviate from the experimentally observed one at Ni-rich compositions. Despite this the overall results suggest that the same approach may be useful for developing improved cross-potentials with other existing pure metal EAM potentials as well. As a further test of our approach, mixing rule estimated from binary data is used to calculate heat of mixing in AuPdPt, AuNiPd, AuPtNi, AgAuPd and NiPtPd. Excellent agreement with experiments is observed for AuPdPt.
NASA Astrophysics Data System (ADS)
Kanda, H.; Hashimoto, N.; Takahashi, H.
The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.
Synthesis and self-assembly of amphiphilic polymeric microparticles.
Dendukuri, Dhananjay; Hatton, T Alan; Doyle, Patrick S
2007-04-10
We report the synthesis and self-assembly of amphiphilic, nonspherical, polymeric microparticles. Wedge-shaped particles bearing segregated hydrophilic and hydrophobic sections were synthesized in a microfludic channel by polymerizing across laminar coflowing streams of hydrophilic and hydrophobic polymers using continuous flow lithography (CFL). Particle monodispersity was characterized by measuring both the size of the particles formed and the extent of amphiphilicity. The coefficient of variation (COV) was found to be less than 2.5% in all measured dimensions. Particle structure was further characterized by measuring the curvature of the interface between the sections and the extent of cross-linking using FTIR spectroscopy. The amphiphilic particles were allowed to self-assemble in water or at water-oil interfaces. In water, the geometry of the particles enabled the formation of micelle-like structures, while in emulsions, the particles migrated to the oil-water interface and oriented themselves to minimize their surface energy.
Direct observation of atomic-scale origins of local dissolution in Al-Cu-Mg alloys
Zhang, B.; Wang, J.; Wu, B.; Oguzie, E. E.; Luo, K.; Ma, X. L.
2016-01-01
Atomistic chemical inhomogeneities are anticipated to induce dissimilarities in surface potentials, which control corrosion initiation of alloys at the atomic scale. Precise understanding of corrosion is therefore hampered by lack of definite information describing how atomistic heterogeneities regulate the process. Here, using high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS) techniques, we systematically analyzed the Al20Cu2Mn3 second phase of 2024Al and successfully observed that atomic-scale segregation of Cu at defect sites induced preferential dissolution of the adjacent zones. We define an “atomic-scale galvanic cell”, composed of zones rich in Cu and its surrounding matrix. Our findings provide vital information linking atomic-scale microstructure and pitting mechanism, particularly for Al-Cu-Mg alloys. The resolution achieved also enables understanding of dealloying mechanisms and further streamlines our comprehension of the concept of general corrosion. PMID:28000750
Shao, Hengyi; Huang, Yuejia; Zhang, Liangyu; Yuan, Kai; Chu, Youjun; Dou, Zhen; Jin, Changjiang; Garcia-Barrio, Minerva; Liu, Xing; Yao, Xuebiao
2015-01-01
Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator for an accurate kinetochore-microtubule attachment. However, the regulatory mechanism underlying precise MCAK depolymerase activity control during mitosis remains elusive. Here, we describe a novel pathway involving an Aurora B-PLK1 axis for regulation of MCAK activity in mitosis. Aurora B phosphorylates PLK1 on Thr210 to activate its kinase activity at the kinetochores during mitosis. Aurora B-orchestrated PLK1 kinase activity was examined in real-time mitosis using a fluorescence resonance energy transfer-based reporter and quantitative analysis of native PLK1 substrate phosphorylation. Active PLK1, in turn, phosphorylates MCAK at Ser715 which promotes its microtubule depolymerase activity essential for faithful chromosome segregation. Importantly, inhibition of PLK1 kinase activity or expression of a non-phosphorylatable MCAK mutant prevents correct kinetochore-microtubule attachment, resulting in abnormal anaphase with chromosome bridges. We reason that the Aurora B-PLK1 signaling at the kinetochore orchestrates MCAK activity, which is essential for timely correction of aberrant kinetochore attachment to ensure accurate chromosome segregation during mitosis. PMID:26206521
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin
2014-05-07
We reported how by replacing PCBM with a bis-adduct fullerene (i.e. ICBA) we significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. But, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. Our results showmore » that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Furthermore, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin
2016-03-15
In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less
NASA Astrophysics Data System (ADS)
Pogrebnjak, A. D.; Beresnev, V. M.; Bondar', A. V.; Kaverin, M. V.; Ponomarev, A. G.
2013-10-01
(Ti-Zr-Hf-V-Nb)N multicomponent nanostructured coatings with thickness of 1.0-1.4 μm synthesized by the method of cathode arc-vapor deposition at temperatures of 250-300°С are investigated by various mutually complementary methods of elemental structural analysis using slow positron beams (SPB), proton microbeam based particle-induced x-ray emission (μ-PIXE), energy-dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) analyses based on electron micro- and nanobeams, x-ray diffraction (XRD) method of phase structural analysis, and the "a-sin2φ" method of measuring a stressed-strained state (x-ray tensometry). The elemental composition, microstructure, residual stress in nanograins, profiles of defect and atom distributions with depth and over the coating surface in 3D-representation are studied for these coatings, and their phase composition, severely strained state, and composition of coatings before and after annealing at Tann = 600°С for annealing time τ = 30 min are investigated. It is demonstrated that the oxidation resistance of the examined coatings can be significantly increased by high-temperature annealing that leads to the formation of elastic severely strained compression state of the coating. Redistribution of elements and defects, their segregation near the interface boundaries and around grains and subgrains in the process of thermostimulated diffusion, and termination of spinodal segregation without considerable change of the average nanograin size are revealed.
NASA Astrophysics Data System (ADS)
Sarac, U.; Kaya, M.; Baykul, M. C.
2016-10-01
In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.
Béland, Laurent Karim; Machado-Charry, Eduardo; Pochet, Pascal; ...
2014-10-06
Here we investigate Ge mixing at the Si(001) surface and characterize the 2 N Si(001) reconstruction by means of hybrid quantum and molecular mechanics calculations (QM/MM). Avoiding fake elastic dampening, this scheme allows to correctly take into account long range deformation induced by reconstructed and defective surfaces. We focus in particular on the dimer vacancy line (DVL) and its interaction with Ge adatoms. We first show that calculated formation energies for these defects are highly dependent on the choice of chemical potential and that the latter must be chosen carefully. Characterizing the effect of the DVL on the deformation field,more » we also find that the DVL favors Ge segregation in the fourth layer close to the DVL. Using the activation-relaxation technique (ART nouveau) and QM/MM, we show that a complex diffusion path permits the substitution of the Ge atom in the fourth layer, with barriers compatible with mixing observed at intermediate temperature. We also show that the use of QM/MM results in much more signi cant corrections at the saddle points (up to 0.5 eV) that at minima, demonstrating its importance for describing kinetics correctly.« less
NASA Astrophysics Data System (ADS)
Nahhas, M. K.; Groh, S.
2018-02-01
In this study, the structure, the energetic, and the strength of a { 10 1 bar 1 } < 11 2 bar 0 > symmetric tilt grain boundary in magnesium and magnesium binary alloys were analyzed in the framework of (semi-)empirical potentials. Following a systematic investigation of the transferability and accuracy of the interatomic potentials, atomistic calculations of the grain boundary energy, the grain boundary sliding energy, and the grain boundary strength were performed in pure magnesium and in binary MgX alloys (X = Al, Ca, Gd, Li, Sn, Y, Ag, Nd, and Pb). The data gained in this study were analyzed to identify the most critical material parameters controlling the strength of the grain boundary, and their consequence on atomic shuffling motions occurring at the grain boundary. From the methodology perspective, the role of in-plane and out-of plane relaxation on the grain boundary sliding energy curves was investigated. In pure magnesium, the results showed that in-plane relaxation is critical in activating b2{ 10 1 bar 1 } twinning dislocation resulting in grain boundary migration. In the alloy systems, however, grain boundary migration was disabled as a consequence of the pinning of the grain boundary by segregated elements. Finally, while the grain boundary energy, the shape of the grain boundary sliding energy curves, and the grain boundary sliding energy are critical parameters controlling the grain boundary strength in pure magnesium, only the grain boundary energy and the segregation energy of the alloying elements at the grain boundary were identified as critical material parameters in the alloys system.
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Vesperini, Enrico
2017-01-01
We make use of N-body simulations to determine the relationship between two observable parameters that are used to quantify mass segregation and energy equipartition in star clusters. Mass segregation can be quantified by measuring how the slope of a cluster's stellar mass function α changes with clustercentric distance r, and then calculating δ _α = d α (r)/d ln(r/r_m), where rm is the cluster's half-mass radius. The degree of energy equipartition in a cluster is quantified by η, which is a measure of how stellar velocity dispersion σ depends on stellar mass m via σ(m) ∝ m-η. Through a suite of N-body star cluster simulations with a range of initial sizes, binary fractions, orbits, black hole retention fractions, and initial mass functions, we present the co-evolution of δα and η. We find that measurements of the global η are strongly affected by the radial dependence of σ and mean stellar mass and the relationship between η and δα depends mainly on the cluster's initial conditions and the tidal field. Within rm, where these effects are minimized, we find that η and δα initially share a linear relationship. However, once the degree of mass segregation increases such that the radial dependence of σ and mean stellar mass become a factor within rm, or the cluster undergoes core collapse, the relationship breaks down. We propose a method for determining η within rm from an observational measurement of δα. In cases where η and δα can be measured independently, this new method offers a way of measuring the cluster's dynamical state.
Experimental Investigation of Chromium Behavior During Mercury's Differentiation
NASA Astrophysics Data System (ADS)
Boujibar, A.; Nittler, L. R.; Chabot, N.; McCubbin, F. M.; Righter, K.; Vander Kaaden, K. E.; McCoy, T. J.
2018-05-01
We use experimental data on Cr partitioning and its concentration on Mercury's surface to constrain on Mercury's oxidation state. We found that Mercury's bulk Cr composition can be chondritic and its core segregated at an fO2 of IW- 4.5 to IW-3.
NASA Astrophysics Data System (ADS)
Luna, E.; Wu, M.; Hanke, M.; Puustinen, J.; Guina, M.; Trampert, A.
2016-08-01
In this work, we report on the spontaneous formation of ordered arrays of nanometer-sized Bi-rich structures due to lateral composition modulations in Ga(As,Bi)/GaAs quantum wells grown by molecular beam epitaxy. The overall microstructure and chemical distribution is investigated using transmission electron microscopy. The information is complemented by synchrotron x-ray grazing incidence diffraction, which provides insight into the in-plane arrangement. Due to the vertical inheritance of the lateral modulation, the Bi-rich nanostructures eventually shape into a three-dimensional assembly. Whereas the Bi-rich nanostructures are created via two-dimensional phase separation at the growing surface, our results suggest that the process is assisted by Bi segregation which is demonstrated to be strong and more complex than expected, implying both lateral and vertical (surface segregation) mass transport. As demonstrated here, the inherent thermodynamic miscibility gap of Ga(As,Bi) alloys can be exploited to create highly uniform Bi-rich units embedded in a quantum confinement structure.
Chen, C L; Lampe, D J; Robertson, H M; Nardi, J B
1997-01-01
A cell surface protein (3B11) is differentially expressed in the embryonic labial segment of Manduca as two circular monolayers of epithelial cells invaginate and segregate from surrounding epithelial cells. The cells that invaginate and preferentially express 3B11 represent the presumptive prothoracic glands. These cells continue to express protein 3B11 as they rearrange to form first a three-dimensional aggregate and later anastomosing filaments of cells. In the differentiated prothoracic gland, expression of 3B11 is restricted to sites of cell-cell contact. Cloning and sequencing of the cDNA for protein 3B11 revealed that this protein is the Manduca counterpart of Drosophila neuroglian and mouse L1. These surface proteins are known to function as adhesion/recognition molecules during development. Manduca neuroglian shares 58 and 31% identity respectively with the Drosophila and mouse proteins and has a cytoplasmic domain of over 100 amino acids.
Dresp-Langley, Birgitta; Grossberg, Stephen
2016-01-01
The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data.
Dresp-Langley, Birgitta; Grossberg, Stephen
2016-01-01
The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data. PMID:27516746
NASA Technical Reports Server (NTRS)
Gostowski, Rudy C.
2002-01-01
Compatibility is determined by the surface area, the chemical constituency and the surface finish of a material. In this investigation exposed area is obviously not a factor as the welded samples had a slightly smaller surface than the unwelded, but were more reactive. The chemical makeup of welded CRES 316L and welded CRES 304L have been observed in the literature to change from the parent material as chromium and iron are segregated in zones. In particular, the ratio of chromium to iron in CRES 316L increased from 0.260 to 0.79 in the heat affected zone (HAZ) of the weld and to 1.52 in the weld bead itself. In CRES 304L the ratio of chromium to iron increased from 0.280 to 0.44 in the HAZ and to 0.33 in the weld bead. It is possible that the increased reactivity of the welded samples and of those welded without purge gas is due to this segregation phenomenon. Likewise the reactivity increased in keeping with the greater roughness of the welded and welded without purge gas samples. Therefore enhanced roughness may also be responsible for the increased reactivity.
Surface tension modelling of liquid Cd-Sn-Zn alloys
NASA Astrophysics Data System (ADS)
Fima, Przemyslaw; Novakovic, Rada
2018-06-01
The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.
Moreno, Andrea; Jego, Pierrick; de la Cruz, Feliberto; Canals, Santiago
2013-01-01
Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals. PMID:23543907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capsoni, D.; CNR-IENI, Sezione di Pavia, viale Taramelli 16, 27100 Pavia; Bini, M.
2004-12-01
The dopant role on the electric and dielectric properties of the perovskite-type CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) compound is evidenced. Impedance spectroscopy measurements show that the relevant permittivity value attributed to sintered CCTO is due to grain boundary (g.b.) effects. The g.b. permittivity value of the pure CCTO can be increased of 1-2 orders of magnitude by cation substitution on Ti site and/or segregation of CuO phase, while the bulk permittivity keeps values 90{epsilon}r180. Bulk and g.b. conductivity contributions are discussed: electrons are responsible for the charge transport and a mean bulk activation energy of 0.07eV is obtained at roommore » temperature for all the examined samples. The g.b. activation energy ranges between 0.54 and 0.76eV. Defect models related to the transport properties are proposed, supported by electron paramagnetic resonance measurements.« less
Method and apparatus for continuous electrophoresis
Watson, Jack S.
1992-01-01
A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least one of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.
Janus and Strawberry-like Particles from Azo Molecular Glass and Polydimethylsiloxane Oligomer.
Hsu, Chungen; Du, Yi; Wang, Xiaogong
2017-10-10
This study investigated Janus and strawberry-like particles composed of azo molecular glass and polydimethylsiloxane (PDMS) oligomer, focusing on controllable fabrication and formation mechanism of these unique structures and morphologies. Two materials, the azo molecular glass (IA-Chol) and PDMS oligomer (H 2 pdca-PDMS), were prepared for this purpose. The Janus and strawberry-like particles were obtained from the droplets of a dichloromethane (DCM) solution containing both IA-Chol and H 2 pdca-PDMS, dispersed in water and stabilized by poly(vinyl alcohol). Results show that the structured particles are formed through segregation between the two components induced by gradual evaporation of DCM from the droplets, which is controlled by adding ethylene glycol (EG) into the above dispersion. Without the addition of EG, Janus particles are formed through the full segregation of the two components in the droplets. On the other hand, with the existence of EG in the dispersion, strawberry-like particles instead of Janus particles are formed in the phase separation process. The diffusion of EG molecules from the dispersion medium into the droplets causes the PDMS phase deswelling in the interfacial area due to the poor solvent effect. Caused by the surface coagulation, the coalescence of the isolated IA-Chol domains is jammed in the shell region, which results in the formation of the strawberry-like particles. For the particles separated from the dispersion and dried, the PDMS oligomer phase of the Janus particles can adhere and spread on the substrate to form unique "particle-on-pad" morphology due to its low surface energy and swelling ability, while the strawberry-like particles exist as "standstill" objects on the substrates. Upon irradiation with a linearly polarized laser beam at 488 nm, the azo molecular glass parts in the particles are significantly deformed along the light polarization direction, which show unique and distinct morphologies for these two types of the particles.
Surface topography and ordering-variant segregation in GaInP[sub 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, D.J.; Zhu, J.G.; Kibbler, A.E.
1993-09-27
Using transmission electron diffraction dark-field imaging, atomic force microscopy (AFM), and Nomarski microscopy, we demonstrate a direct connection between surface topography and cation site ordering in GaInP[sub 2]. We study epilayers grown by organometallic vapor-phase epitaxy on GaAs substrates oriented 2[degree] off (100) towards (110). Nomarski microscopy shows that, as growth proceeds, the surface of ordered material forms faceted structures aligned roughly along [011]. A comparison with the dark-field demonstrates that the [1[bar 1]1] and [11[bar 1
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1981-01-01
The nature of the tribological surface is identified and characterized with respect to adhesion, friction, wear, and lubricating properties. Surface analysis is used to identify the role of environmental constituents on tribological behavior. The effect of solid to solid interactions for metals in contact with metals, ceramics, semiconductors, carbons, and polymers is discussed. The data presented indicate that the tribological surface is markedly different than an ideal solid surface. The environment is shown to affect strongly the behavior of two solids in contact. Results also show that small amounts of alloying elements in base metals can alter markedly adhesion, friction, and wear by segregating to the solid surface.
In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases
Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard
2012-01-01
In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996
Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.
Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian
2015-12-22
The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.
Nardone, Valentina; Cistrone, Luca; Di Salvo, Ivy; Ariano, Alessandro; Migliozzi, Antonello; Allegrini, Claudia; Ancillotto, Leonardo; Fulco, Antonio; Russo, Danilo
2015-01-01
Intra-sexual segregation is a form of social segregation widespread among vertebrates. In the bat Myotis daubentonii, males are disproportionately abundant at higher elevations, while females are restricted to lower altitude. Intra-male segregation is also known to occur yet its ecological and behavioural determinants are unclear. We studied male segregation along a river in Central Italy where we tested the following predictions: 1. Upstream ( > 1000 m a.s.l.) males will rely on scarcer prey; 2. To deal with this limitation and exploit a cooler roosting environment, they will employ more prolonged and deeper torpor than downstream (< 900 m a.s.l.) males; 3. Body condition will be better in downstream males as they forage in more productive areas; 4. To cope with less predictable foraging opportunities, upstream males will use more habitat types. Consistent with our predictions, we found that prey were less common at higher altitudes, where bats exhibited prolonged and deeper torpor. Body condition was better in downstream males than in upstream males but not in all summer months. This result reflected a decrease in downstream males’ body condition over the season, perhaps due to the energy costs of reduced opportunities to use torpor and/or intraspecific competition. Downstream males mainly foraged over selected riparian vegetation whereas upstream males used a greater variety of habitats. One controversial issue is whether upstream males are excluded from lower elevations by resident bats. We tested this by translocating 10 upstream males to a downstream roost: eight returned to the high elevation site in 1-2 nights, two persisted at low altitude but did not roost with resident bats. These results are consistent with the idea of segregation due to competition. Living at high altitude allows for more effective heterothermy and may thus be not detrimental for survival, but by staying at lower altitude males increase proximity to females and potentially benefit from summer mating opportunities. PMID:26230548
Exsolution as an Example of Complex-System Behavior
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Dutrow, B. L.
2010-12-01
Exsolution in minerals is an important process that occurs in a wide range of mineral groups (e.g. alkali feldspars, pyroxenes, amphiboles, carbonates, oxides, sulfides) in response to changing physical conditions. Exsolution describes a physical process in which a mineral with an initially homogeneous solid solution separates into at least two distinct derivative minerals of disparate composition and is typically interpreted as the product of unmixing in response to lattice strain during slow cooling. Such a process is typically taught in introductory mineralogy and petrology courses, in part because exsolution textures can be readily observed in hand sample or thin section. Exsolution is typically represented on equilibrium binary phase diagrams (T-X), and compositions of the unmixed products can be used in geothermobarometry to calculate temperatures and pressures of initial equilibration or compositions of the unmixed products. Although central to course content, traditional approaches to teaching exsolution are largely descriptive, and do not address the underlying principles that drive this phenomenon: that is, dissipation of energy results in segregating and self-organizing behavior of the system. This process exemplifies complex-system behavior. We use perthite formation (i.e. exsolution in the alkali feldspar system) in a series of scaffolded exercises to teach and more completely demonstrate complex-system behavior. These exercises include the use of: 1) hand samples and a series of optical and TEM photomicrographs to display the scale invariance of perthite textures; 2) a puzzle activity in which a chessboard is used as an analog model of atomic positions and nickels and pennies are used to represent individual atoms (Na and K respectively); sequential moves to optimize contacts with similar coins approximates minimization of lattice energies and reveals a power-law relationship as the system becomes increasingly segregated as a function of time to create exsolution textures; 3) the NetLogo computer modeling program to demonstrate segregating behavior; 4) visualizations based on the binary alkali feldspar phase diagram to demonstrate changes to the state of the system over a range of temperatures, and 5) a series of follow-on thought questions. An interesting apparent paradox that our students should consider concerns the flow of mass and energy in natural systems. Commonly, we simply note that mass and energy typically flow down natural gradients (thermal, chemical potential) to attain a homogeneous equilibrium state; however, exsolution produces a segregated state of the system in the lowest energy configuration. Why? Complex-system behavior can be discovered in a wide range of geological phenomena such as exsolution, and could be explicitly identified throughout the geoscience curriculum as a mechanism to teach about interacting systems.
Xi, Jianqi; Liu, Bin; Xu, Haixuan; ...
2017-12-02
We presenmore » t that grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO 2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[1 1 ¯ 0] grain boundary in CeO 2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO 2 is comparable to that in UO 2. The diffusion activation energies of Xe atoms in the Σ3GB are lower than that in the bulk CeO 2. Lastly, these results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Xu, Haixuan
We presenmore » t that grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO 2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[1 1 ¯ 0] grain boundary in CeO 2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO 2 is comparable to that in UO 2. The diffusion activation energies of Xe atoms in the Σ3GB are lower than that in the bulk CeO 2. Lastly, these results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.« less
The Effect of Hydrogen Annealing and Sulfur Content on the Oxidation Resistance of PWA 1480
NASA Technical Reports Server (NTRS)
Smialek, James L.
1997-01-01
For many decades the dramatic effect of trace amounts of reactive elements on alumina and chromia scale adhesion has been recognized and widely studied. Although various theories have been used to account for such behavior, the connection between scale adhesion and sulfur segregation was initially reported by Smeggil et al. This study found strong surface segregation of sulfur from very low levels in the bulk which could then be curtailed by the addition of reactive elements. It was assumed that the reactive elements, which are strong sulfide formers, acted by getting sulfur in the bulk thus precluding sulfur segregation and weakening of the oxide-metal bond. Subsequent studies confirmed that adhesion could be produced by reducing the sulfur impurity level, without reactive elements. The understanding of this phenomenon has been applied to modern single crystal superalloys, where the addition of Y, although very effective, is problematic. Also problematic is definition of the level of sulfur that is acceptable and below which no further adhesion benefit is reached. Published works have indicated a broad transition defined by various materials and oxidation tests. The present study describes the oxidation behavior of one superalloy (PWA 1480) as a function of various sulfur contents produced by hydrogen annealing for various temperatures, times, and sample thicknesses. The purpose is to define more precisely a criterion for adhesion based on total sulfur reservoir and segregation potential.
Vertical coupling and transition energies in multilayer InAs/GaAs quantum-dot structures
NASA Astrophysics Data System (ADS)
Taddei, S.; Colocci, M.; Vinattieri, A.; Bogani, F.; Franchi, S.; Frigeri, P.; Lazzarini, L.; Salviati, G.
2000-10-01
Vertically ordered quantum dots in multilayer InAs/GaAs structures have attracted large interest in recent years for device application as light emitters. Contradictory claims on the dependence of the fundamental transition energy on the interlayer separation and number of dot layers have been reported in the literature. We show that either a blueshift or a redshift of the fundamental transition energy can be observed in different coupling conditions and straightforwardly explained by including strain, indium segregation, and electron-hole Coulomb interaction, in good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Li, Lichun
2002-09-01
These studies were performed to investigate the effects of thermal gradient (G) and growth velocity (V) on the microstructure development and solidification behavior of directionally solidified nickel-based superalloy PWA 1484. Directional solidification (DS) experiments were conducted using a Bridgman crystal growth facility. The solidification velocity ranged from 0.00005 to 0.01 cm/sec and thermal gradients ranged from 12 to 108°C/cm. The as-cast microstructures of DS samples were characterized by using conventional metallography; chemical composition and segregation of directionally solidified samples were analyzed with energy dispersive spectroscopy in SEM. A range of aligned solidification microstructures is exhibited by the alloy when examined as-cast at room temperature: dendrites, flanged cells, cells. The microstructure transitions from cellular to dendritic as the growth velocity increases. The experimental data for PWA1484 exhibits excellent agreement with the well-known exponential equation (lambda1 ∝ G -1/2V-1/4). However, the constant of proportionality is different depending upon the solidification microstructure: (1) dendritic growth with secondary arms leads to a marked dependence of lambda1 on G-1/2 V-1/4; (2) flanged cellular growth with no secondary arms leads to much lower dependence of lambda 1 on G-1/2V -1/4. The primary dendritic arm spacing results were also compared to recent theoretical models. The model of Hunt and Lu and the model of Ma and Sahm provided excellent agreement at medium to high thermal gradients and a wide range of solidification velocities. The anomalous behavior of lambda 1 with high growth velocity V at low G is analyzed based on the samples' microstructures. Off-axis heat flows were shown to cause radial non-uniformity in the dendrite arm spacing data for low thermal gradients and large withdrawal velocities. Various precipitates including gamma', (gamma ' + gamma) eutectic pool or divorced eutectic gamma ', and metal carbides were characterized. Processing conditions (growth velocity V and thermal gradient G) exert significant influence on both morphology and size of precipitates present. Freckle defects were observed on the surface of nickel-based superalloy MM247 cylindrical samples but not on the surface of cylindrical PWA 1484 samples. The Rayleigh number (Ra) that represents liquid instability at the interface was evaluated for MM247 and PWA 1484 in terms of a recently proposed theoretical equation. The effects of segregation, sloped solid/liquid interface and the morphology of dendritic/cellular trunks on the mushy zone convective flow and freckle formation are also discussed.
Perceiving environmental properties from motion information: Minimal conditions
NASA Technical Reports Server (NTRS)
Proffitt, Dennis R.; Kaiser, Mary K.
1989-01-01
The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.
Computer Aided Design of Integrated Circuit Fabrication Processes for VLSI Devices
1980-01-01
diffusion coefficient and surface conc,,tration of the chlorine as well as any field present; X is related to the ratio ol the diffusion coefficient to...with polysilicon gat(. .ed contacts, the interaction of oxidation, segregation and diffusion in all regions of the simulation space is a critical
Giovagnetti, Vasco; Han, Guangye; Ware, Maxwell A; Ungerer, Petra; Qin, Xiaochun; Wang, Wen-Da; Kuang, Tingyun; Shen, Jian-Ren; Ruban, Alexander V
2018-06-01
The macroalga Bryopsis corticulans relies on a sustained protective NPQ and a peculiar body architecture to efficiently adapt to the extreme light changes of intertidal shores. During low tides, intertidal algae experience prolonged high light stress. Efficient dissipation of excess light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is therefore required to avoid photodamage. Light-harvesting regulation was studied in the intertidal macroalga Bryopsis corticulans, during high light and air exposure. Photosynthetic capacity and NPQ kinetics were assessed in different filament layers of the algal tufts and in intact chloroplasts to unravel the nature of NPQ in this siphonous green alga. We found that the morphology and pigment composition of the B. corticulans body provides functional segregation between surface sunlit filaments (protective state) and those that are underneath and undergo severe light attenuation (light-harvesting state). In the surface filaments, very high and sustained NPQ gradually formed. NPQ induction was triggered by the formation of transthylakoid proton gradient and independent of the xanthophyll cycle. PsbS and LHCSR proteins seem not to be active in the NPQ mechanism activated by this alga. Our results show that B. corticulans endures excess light energy pressure through a sustained protective NPQ, not related to photodamage, as revealed by the unusually quick restoration of photosystem II (PSII) function in the dark. This might suggest either the occurrence of transient PSII photoinactivation or a fast rate of PSII repair cycle.
NASA Astrophysics Data System (ADS)
Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.
2018-04-01
Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.
Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells.
Fernández Garrillo, Pablo A; Borowik, Łukasz; Caffy, Florent; Demadrille, Renaud; Grévin, Benjamin
2016-11-16
Investigating the photocarrier dynamics in nanostructured and heterogeneous energy materials is of crucial importance from both fundamental and technological points of view. Here, we demonstrate how noncontact atomic force microscopy combined with Kelvin probe force microscopy under frequency-modulated illumination can be used to simultaneously image the surface photopotential dynamics at different time scales with a sub-10 nm lateral resolution. The basic principle of the method consists in the acquisition of spectroscopic curves of the surface potential as a function of the illumination frequency modulation on a two-dimensional grid. We show how this frequency-spectroscopy can be used to probe simultaneously the charging rate and several decay processes involving short-lived and long-lived carriers. With this approach, dynamical images of the trap-filling, trap-delayed recombination and nongeminate recombination processes have been acquired in nanophase segregated organic donor-acceptor bulk heterojunction thin films. Furthermore, the spatial variation of the minority carrier lifetime has been imaged in polycrystalline silicon thin films. These results establish two-dimensional multidynamical photovoltage imaging as a universal tool for local investigations of the photocarrier dynamics in photoactive materials and devices.
Thin film self-assembly of PVMS-b-PMMA block copolymer
NASA Astrophysics Data System (ADS)
Lwoya, Baraka; Uddin, Md; Chatterjee, Sourav; Albert, Julie
Self-assembly of block copolymers has been explored for numerous years with a primary emphasis on nanolithographic templates and membrane applications. Block copolymers (BCPs) hold great promise as next-generation patterning materials for sub-10 nm nano-electronic applications. However, the inherent properties to develop smaller more ordered thin films ( 10-100 nm) is greatly hindered by the inability of the low segregation strength of conventional polymers such as poly(styrene-block-methylmethacrylate). We aim at addressing this issue by firstly synthesizing strongly segregating BCPs of poly(vinylmethylsiloxane-block-methyl methacrylate) (PVMS- b - PMMA) with different block volume fractions. Second, we induce self-assembly by either thermal or solvent annealing and characterize the morphology by atomic force microscopy (AFM). In addition, the use of a block with a pendant vinyl group provides the ability to functionalize the PVMS segment by thiol-ene reaction, either to further control of the segregation strength or to impart desirable surface chemical properties (e.g., adhesion/lift-off in templating or functionality in membranes). Gulf Research Program Early-Career Research Fellowship.
Moving from spatially segregated to transparent motion: a modelling approach
Durant, Szonya; Donoso-Barrera, Alejandra; Tan, Sovira; Johnston, Alan
2005-01-01
Motion transparency, in which patterns of moving elements group together to give the impression of lacy overlapping surfaces, provides an important challenge to models of motion perception. It has been suggested that we perceive transparent motion when the shape of the velocity histogram of the stimulus is bimodal. To investigate this further, random-dot kinematogram motion sequences were created to simulate segregated (perceptually spatially separated) and transparent (perceptually overlapping) motion. The motion sequences were analysed using the multi-channel gradient model (McGM) to obtain the speed and direction at every pixel of each frame of the motion sequences. The velocity histograms obtained were found to be quantitatively similar and all were bimodal. However, the spatial and temporal properties of the velocity field differed between segregated and transparent stimuli. Transparent stimuli produced patches of rightward and leftward motion that varied in location over time. This demonstrates that we can successfully differentiate between these two types of motion on the basis of the time varying local velocity field. However, the percept of motion transparency cannot be based simply on the presence of a bimodal velocity histogram. PMID:17148338
Pyramiding genes and alleles for improving energy cane biomass yield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Ray; Nagai, Chifumi; Yu, Qingyi
The overall goal of this project is to identify genes and gene interaction networks contributed to the extreme segregants with 30 folds biomass yield difference in sugarcane F2 populations. Towards achieving this goal, yield trials of 108 F2 extreme segregants from S. officinarum LA Purple and S. robustum MOL5829 (LM population) were carried out in two locations in three years. A yield trial of the second F2 population from S. officinarum LA Purple and S. spontaneum US56-14-4 (LU population) was installed in the summer of 2014 and the first set of yield component data was collected. For genotyping, transcriptomes frommore » leaves and stalks of 70 extreme segregants of the LM F2 population and 119 individuals of the LU F2 populations were sequenced. The genomes of 91 F1 individuals from the LM populations are being sequenced to construct ultra-high density genetic maps for each of the two parents for both assisting the LA Purple genome assembling and for testing a hypothesis of female restitution. The genomes of 110 F2 individuals from single F1 in the LU population, a different set from the 119 F2 individuals used for transcriptome sequencing, are being sequenced for mapping genes and QTLs affecting biomass yield and for testing a hypothesis of female restitution. Gene expression analysis between extreme segregants of high and low biomass yield showed up-regulation of cellulose synthase, cellulose, and xylan synthase in high biomass yield segregants among 3,274 genes differentially expressed between the two extremes. Our transcriptome results revealed not only the increment of cell wall biosynthesis pathway is essential, but the rapid turnover of certain cell wall polymers as well as carbohydrate partitioning are also important for recycling and energy conservation during rapid cell growth in high biomass sugarcane. Seventeen differentially expressed genes in auxin, one in ethylene and one in gibberellin related signaling and biosynthesis pathways were identified, which could potentially regulate biomass yield. Differentially expressed genes, PIF3 and EIL5, involved in gibberellin and ethylene pathway could play an important role in biomass accumulation. Differential gene expression analysis was also carried out on the LU population. High-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. The haploid (tetraploid) genome of S. spontanium AP85-441 was sequenced with chromosome level assembly and allele defined annotation. This reference genome along with the upcoming S. officinarum genome will allow us to identify genes and alleles contributed to biomass yield.« less
Effect of Heat Treatment on Chemical Segregation in CMSX-4 Nickel-Base Superalloy
NASA Astrophysics Data System (ADS)
Szczotok, A.; Chmiela, B.
2014-08-01
Superalloys display a strong tendency toward chemical segregation during solidification. Therefore, it is of great importance to develop appropriate techniques for the melting and casting of superalloys. Elements partitioning between the γ and γ' phases in single crystal superalloys have been investigated by several authors using electron probe microanalysis (Hemmersmeier and Feller-Kniepmeier Mater Sci Eng A 248:87-97, 1998; Kearsey et al. Intermetallics 12:903-910, 2004; Kearsey et al. Superalloys 2004, pp 801-810, 2004; D'Souza et al. Mater Sci Eng A 490:258-265, 2008). We examined the effect of the particular stages of standard heat treatment (solution treatment and ageing) applied to CMSX-4 single crystal superalloy on chemical segregation that occurs between dendrites and interdendritic areas. Dendritic structures were observed using a scanning electron microscope. Analyses of the chemical composition were performed using energy dispersive x-ray spectroscopy. The obtained qualitative and quantitative results for the concentrations of elements enabled us to confirm the dendritic segregation in as-cast CMSX-4 superalloy. The concentrations of some refractory elements (tungsten, rhenium) were much greater in dendrites than in interdendritic areas. However, these differences in chemical composition gradually decreased during heat treatment. The results obtained in this study warrant further examination of the diffusion processes of elements during heat treatment of the investigated superalloy, and of the kinetics of diffusion.
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
Lu, Chenyang; Yang, Taini; Jin, Ke; ...
2017-01-12
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less
Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2
NASA Astrophysics Data System (ADS)
Noble, J. A.; Diana, S.; Dulieu, F.
2015-12-01
Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.
NASA Astrophysics Data System (ADS)
Araoka, Fumito; Eremin, Alexey; Aya, Satoshi; Lee, Guksik; Ito, Atsuki; Nadasi, Hajnalka; Sebastian, Nerea; Ishikawa, Ken; Haba, Osamu; Stannarius, Ralf; Yonetake, Koichiro; Takezoe, Hideo
2017-02-01
In this paper, we review some results on our recent studies on photo-induced phenomena of liquid crystals (LCs) by means of interfaces decorated with a photo-responsive azobenzene dendrimer (azo-dendrimer). The azo-dendrimer molecules doped in a LC are spontaneously segregated from bulk and adsorbed onto substrate/LC or solvent/LC interfaces, and their photo-isomerization can bring about the so-called anchoring transition, i.e. reversible switching between homeotropic and planar alignment states of the bulk LC, when exposed to UV/VIS light. In addition to photoinduced anchoring transition in a LC cell, several interesting photo-induced phenomena through the azo-dendrimerdecorated interfaces have been reported, such as photo-induced transformation of the interior topological structures of nematic, cholesteric and smectic droplets, photo-mechanical motion of the micro particles dispersed in a nematic matrix, and optical assistance of the athermal anchoring transition with the aid of a perfluoropolymer surface. In addition to such phenomena, we also discuss the conditions of such photo-responsive interfaces in terms of the polar anchoring energy at the interface upon photo-isomerization under illumination of UV and/or VIS lights. The anisotropy of the polar anchoring energy was evaluated experimentally by means of Polarization Microscopy (POM), Dielectric Spectroscopy (DS), Second Harmonic Generation (SHG), and Attenuated Total Reflection Fourier Transform Infrared (ATR-IR) Spectroscopy, and theoretically based on the simple Rapini-Papoular model. We also demonstrate the continuous bulk orientation change by the photo-dynamic process through the fine control of the polar anchoring energy. Besides, the state-of-the-art video-rate atomic force microscopy (ν-AFM) was carried out to visualize the dynamics of such interfaces at a nano-meter scale.
NASA Astrophysics Data System (ADS)
Cerantola, V.; Walte, N. P.; Rubie, D. C.
2015-05-01
Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.
A propagating ATPase gradient drives transport of surface-confined cellular cargo
NASA Astrophysics Data System (ADS)
Vecchiarelli, Anthony; Neuman, Keir; Mizuuchi, Kiyoshi
2014-03-01
The process of DNA segregation is of central importance for all organisms. Although eukaryotic mitosis is relatively well established, the most common mechanism employed for bacterial DNA segregation has been unclear. ParA ATPases form dynamic patterns on the bacterial nucleoid, to spatially organize plasmids, chromosomes and other large cellular cargo, but the force generating mechanism has been a source of controversy and debate. A dominant view proposes that ParA-mediated transport and cargo positioning occurs via a filament-based mechanism that resembles eukaryotic mitosis. Here we present direct evidence against such models. Our cell-free reconstitution supports a non-filament-based mode of transport that may be as widely found in nature as actin filaments and microtubules.
Microstructure Analysis on 6061 Aluminum Alloy after Casting and Diffuses Annealing Process
NASA Astrophysics Data System (ADS)
Wang, H. Q.; Sun, W. L.; Xing, Y. Q.
One factory using semi-continuous casting process produce the ф200×6000 mm 6061 aluminium alloy barstock, and then rotary forged for car wheels. 6061 distorting aluminium alloy is an forged aluminum alloy, and mainly containing Mg, Si, Cu and other alloying elements. The main strengthening phase is Mg2Si, and also has few phase of (FeMn) 3Si2Al15. In order to eliminate the segregation and separation which present in the crystal boundary, and make the distortion to be uniform, and does not present ear and fracture defects after the forging. So the 6061 distorting aluminium alloy adopt the diffusion annealing heat treatment before the forging process.According to the current conditions, we use the diffusion annealing which have the different heating temperature and different holding time.The best process we can obtain from the test which can improve the production efficiency and reduce the material waste, improve the mechanical properties, and eliminate the overheated film on the surface.Then,we using OM,SEM and EDS to analyse the microstructure and the chemical composition of compound between the surface and centre. The result shows that the amount of segregation were different in the surface and in the center, and the different diffusion annealing can cause the phase change in the surface and the center.
Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function
USDA-ARS?s Scientific Manuscript database
We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll a and b. Photochemical energy conversion ...
A first-principles study of As doping at a disordered Si-SiO2 interface.
Corsetti, Fabiano; Mostofi, Arash A
2014-02-05
Understanding the interaction between dopants and semiconductor-oxide interfaces is an increasingly important concern in the drive to further miniaturize modern transistors. To this end, using a combination of first-principles density-functional theory and a continuous random network Monte Carlo method, we investigate electrically active arsenic donors at the interface between silicon and its oxide. Using a realistic model of the disordered interface, we find that a small percentage (on the order of ∼10%) of the atomic sites in the first few monolayers on the silicon side of the interface are energetically favourable for segregation, and that this is controlled by the local bonding and local strain of the defect centre. We also find that there is a long-range quantum confinement effect due to the interface, which results in an energy barrier for dopant segregation, but that this barrier is small in comparison to the effect of the local environment. Finally, we consider the extent to which the energetics of segregation can be controlled by the application of strain to the interface.
Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria
Yuan, Fenglin; Liu, Bin; Zhang, Yanwen; ...
2016-03-01
In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energymore » for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konan, N. A.; Huckaby, E. D.
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
Konan, N. A.; Huckaby, E. D.
2017-06-21
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Kinetics of surfactant-mediated epitaxy of III-V semiconductors
NASA Astrophysics Data System (ADS)
Grandjean, N.; Massies, J.
1996-05-01
Surfactant-mediated epitaxy (SME) of III-V semiconductors is studied in the case of the GaAs(001) growth using Te as surfactant. To account for the strong surface segregation of Te, a phenomenological exchange mechanism is used. This process explains the reduction of the surface diffusion length evidenced by scanning tunneling microscopy (STM). However, this kinetics effect is observed only for restricted growth conditions: the As surface coverage should be sufficient to allow the exchange process. STM results as well as Monte Carlo simulations clearly show that the group-V element surface coverage plays a key role in the kinetics of SME of III-V semiconductors.
Radiation-induced segregation in model alloys
NASA Astrophysics Data System (ADS)
Ezawa, T.; Wakai, E.; Oshima, R.
2000-12-01
The dependence of the size factor of solutes on radiation-induced segregation (RIS) was studied. Ni-Si, Ni-Co, Ni-Cu, Ni-Mn, Ni-Pd, and Ni-Nb binary solid solution alloys were irradiated with electrons in a high voltage electron microscope at the same irradiation conditions. A focused beam and a grain boundary were utilized to generate a flow of point defects to cause RIS. From the concentration profile obtained by an energy dispersive X-ray analysis, the amount of RIS was calculated. The amount of RIS decreased as the size of the solute increased up to about 10%. However, as the size increased further, the amount of RIS increased. This result shows that RIS is not simply determined by the size effect rule.
The surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions
NASA Technical Reports Server (NTRS)
Lee, W. S.; Sankaran, S. N.; Outlaw, R. A.; Clark, R. K.
1990-01-01
The effect of temperature, at conditions of ultrahigh vacuum, on the surface composition of the Ti-14Al-21Nb (in wt pct) alloy was investigated in samples heated to 1000 C in 100 C increments. Results of AES spectroscopy revealed that the Ti-14Al-21Nb alloy surface is extremely sensitive to temperature. At 300 C, the carbon and oxygen began to rapidly dissolve into the alloy, and at 600 C, bulk S segregated to the surface. The variation in the surface composition was extensive and different over the temperature range studied, indicating that there may be substantial changes in the hydrogen transport.
Study of composite thin films for applications in high density data storage
NASA Astrophysics Data System (ADS)
Yuan, Hua
Granular Co-alloy + oxide thin films are currently used as the magnetic recording layer of perpendicular media in hard disk drives. The microstructure of these films is composed mainly of fine (7--10 nm) magnetic grains physically surrounded by oxide phases, which produce magnetic isolation of the grains. As a result, the magnetic switching volume is maintained as small as the physical grain size. Consequently, ample number of magnetic switching units can be obtained in one recording bit, in other words, higher signal to noise ratios (SNR) can be achieved. Therefore, a good understanding and control of the microstructure of the films is very important for high areal density magnetic recording media. Interlayers and seedlayers play important roles in controlling the microstructure in terms of grain size, grain size distribution, oxide segregation and orientation dispersion of the crystallographic texture. Developing novel interlayers or seedlayers with smaller grain size is a key approach to produce smaller grain size in the recording layer. This study focuses on how to achieve smaller grain sizes in the recording layer through novel interlayer/seedlayer materials and processes. It also discusses the resulting microstructure in smaller-grain-size thin films. Metal + oxide (e.g. Ru + SiO2) composite thin films were chosen as interlayer and seedlayer materials due to their unique segregated microstructure. Such layers can be grown epitaxially on top of fcc metal seedlayers with good orientation. It can also provide an epitaxial growth template for the subsequent magnetic layer (recording layer). The metal and oxide phases in the composite thin films are immiscible. The final microstructure of the interlayer depends on factors, such as, sputtering pressure, oxide species, oxide volume fraction, thickness, alloy composition, temperature etc. Moreover, it has been found that the microstructure of the composite thin films is affected mostly by two important factors---oxide volume fraction and sputtering pressure. The latter affects grain size and grain segregation through surface-diffusion modification and the self-shadowing effect. The composite Ru + oxide interlayers were found to have various microstructures under various sputtering conditions. Four characteristic microstructure zones can be identified as a function of oxide volume fraction and sputtering pressure---"percolated" (A), "maze" (T), "granular" (B) and "embedded" (C), based on which, a new structural zone model (SZM) is established for composite thin films. The granular microstructure of zone B is of particular interest for recording media application. The grain size of interlayers is a strong function of pressure, oxide species and oxide volume fraction. Magnetic layers grown on top of these interlayers were found to be significantly affected by the interlayer microstructure. One-to-one grain epitaxial growth is very difficult to achieve when the grain size is too small. As a result, the magnetic properties of smaller grain size magnetic layers deteriorate due to poor growth. This presents a huge challenge to high areal density magnetic recording media. A novel approach of Ar-ion etched Ru seedlayer, which can improve epitaxy between interlayer and magnetic layer is proposed. This method produces interlayer thin films of: (1) smaller grain size and higher nucleation density due to both a rougher seedlayer surface and an oxide addition in the interlayer; (2) good (00.2) texture due to the growth on top of the low pressure deposited Ru seedlayer; (3) dome-shape grain morphology due to the high pressure deposition. Therefore, a significant Ru grain size reduction with enhanced granular morphology and improved grain-to-grain epitaxy with the magnetic layer was achieved. High resolution transmission electron microscopy (TEM) techniques, such as, electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM), energy-dispersive X-ray spectroscopy (EDS) and mapping, and high angle annular dark field (HAADF) imaging have been utilized to investigate elemental distribution and grain morphology in composite magnetic thin films of different grain sizes. An oxygen-rich grain shell of about 0.5 ˜ 1 nm thickness is often observed for most media with different grain sizes. Reducing the grain size increases surface to volume ratio. With more surface area, smaller grains are more vulnerable to oxidization, resulting in even greater influence of the oxide on the magnetic properties of the grains.
Income inequality and income segregation.
Reardon, Sean F; Bischoff, Kendra
2011-01-01
This article investigates how the growth in income inequality from 1970 to 2000 affected patterns of income segregation along three dimensions: the spatial segregation of poverty and affluence, race-specific patterns of income segregation, and the geographic scale of income segregation. The evidence reveals a robust relationship between income inequality and income segregation, an effect that is larger for black families than for white families. In addition, income inequality affects income segregation primarily through its effect on the large-scale spatial segregation of affluence rather than by affecting the spatial segregation of poverty or by altering small-scale patterns of income segregation.
Design, development and applications of novel techniques for studying surface mechanical properties
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.
Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor.
Gonzalez-Gil, G; Lens, P N; Van Aelst, A; Van As, H; Versprille, A I; Lettinga, G
2001-08-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH(4)/g of volatile suspended solids [VSS].day or 1.1 g of CH(4) chemical oxygen demand/g of VSS.day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.
Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor
Gonzalez-Gil, G.; Lens, P. N. L.; Van Aelst, A.; Van As, H.; Versprille, A. I.; Lettinga, G.
2001-01-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH4/g of volatile suspended solids [VSS]·day or 1.1 g of CH4 chemical oxygen demand/g of VSS·day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates. PMID:11472948
The measurement of the stacking fault energy in copper, nickel and copper-nickel alloys
NASA Technical Reports Server (NTRS)
Leighly, H. P., Jr.
1982-01-01
The relationship of hydrogen solubility and the hydrogen embrittlement of high strength, high performance face centered cubic alloys to the stacking fault energy of the alloys was investigated. The stacking fault energy is inversely related to the distance between the two partial dislocations which are formed by the dissociation of a perfect dislocation. The two partial dislocations define a stacking fault in the crystal which offers a region for hydrogen segregation. The distance between the partial dislocations is measured by weak beam, dark field transmission electron microscopy. The stacking fault energy is calculated. Pure copper, pure nickel and copper-nickel single crystals are used to determine the stacking fault energy.
Grain Surface Chemistry and the Composition of Interstellar Ices
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.
Facet Dependent Disorder in the Pristine High Voltage Lithium-Manganese-Rich Cathode Material
Dixit, Hemant M.; Zhou, Wu; Idrobo Tapia, Juan Carlos; ...
2014-11-21
Defects and surface reconstructions are thought to be crucial for the long term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occur under harsh conditions making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Limore » $$_{1.2}$$Ni$$_{0.175}$$Mn$$_{0.525}$$Co$$_{0.1}$$O$$_2$$ (LNMCO) particles. Using atomic resolution Z-contrast imaging and electron energy-loss spectroscopy measurements we show that there are indeed a significant amount of anti-site defects present in this material; with transition metals substituting on Li metal sites. Furthermore, we find a strong tendency of segregation of these types of defects towards open facets (surfaces perpendicular to the layered arrangement of atoms), rather than closed facets (surfaces parallel to the layered arrangement of atoms). First principles calculations identify anti-site defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites were observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni are the predominant cause of disorder. These insights suggests that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.« less
NASA Astrophysics Data System (ADS)
Kaboli, Shirin; McDermid, Joseph R.
2014-08-01
A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall, it was concluded that the fundamental mechanisms behind the microstructural development of solidified metallic zinc coatings have yet to be completely elucidated and require further investigation.
Evolution of the surface species of the V 2O 5-WO 3 catalysts
NASA Astrophysics Data System (ADS)
Najbar, M.; Brocławik, E.; Góra, A.; Camra, J.; Białas, A.; Wesełucha-Birczyńska, A.
2000-07-01
Vanadia-related species formed as a result of vanadium segregation at the surface of V-W oxide bronze crystallites were investigated. The structures of these species and their transformations induced by oxygen removal and oxygen adsorption were monitored using photoelectron spectroscopy and the FT Raman technique. Assignments of the MeO vibrational bands, based on the results of DFT calculations for model clusters, have been proposed. Two kinds of surface species are dominant depending on the tungsten content: V 4+-O-W 6+ at low tungsten content and V 5+-O-W 5+ at higher tungsten concentration.
Hydrogen partitioning and transport in titanium aluminides
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Lee, Weon S.
1993-01-01
This report gives the final summary of the research work perfomed from March 1, 1990 to August 28, 1993. Brief descriptions of the research findings are given on the surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions; titanium aluminides: surface composition effects as a function of temperature; Auger electron intensity variation in oxygen-charged silver; and segregation of sulfur on a titanium surface studied by Auger electron spectroscopy. Each description details one or more of the attached corresponding figures. Published journal documents are provided as appendices to give further detail.
Stahl, Christian; Albe, Karsten
2012-01-01
Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091
NASA Astrophysics Data System (ADS)
Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu
2018-04-01
We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.
by the solar-collector industry for use in the ASTEC Program, and to test the degrading effects of various segregated and combined elements of the...elements which may be causative to material surface degradation can be determined. The ASTEC scientific space experiment was developed and qualified, and
No Safety Net for Disabled Children in Residential Institutions in Ireland
ERIC Educational Resources Information Center
Conroy, Pauline
2012-01-01
The voices of adults and children with disabilities who have experienced violence and abuse are slowly beginning to surface in the public domain. Segregated residential institutions run by religious congregations appear to be dangerous places for children with disabilities and perceived differences--according to the former residents, speaking and…
Surface segregation and the Al problem in GaAs quantum wells
NASA Astrophysics Data System (ADS)
Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Shayegan, M.; Pfeiffer, L. N.
2018-03-01
Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped AlxGa1 -xAs /GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the AlxGa1 -xAs barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the AlxGa1 -xAs barrier beneath the QW is increased, which we attribute to the surface segregation of oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.
Delesma, Francisco A; Van den Bossche, Maxime; Grönbeck, Henrik; Calaminici, Patrizia; Köster, Andreas M; Pettersson, Lars G M
2018-01-19
In this paper we remind the reader of a simple, intuitive picture of chemical shifts in X-ray photoelectron spectroscopy (XPS) as the difference in chemical bonding between the probed atom and its neighbor to the right in the periodic table, the so called Z+1 approximation. We use the classical ESCA molecule, ethyl trifluoroacetate, and 4d-transition metals to explicitly demonstrate agreement between core-level shifts computed as differences between final core-hole states and the approach where each core-ionized atom is replaced by a Z+1 atom. In this final state, or total energy picture, the XPS shift arises due to the more or less unfavorable chemical bonding of the effective nitrogen in the carbon geometry for the ESCA molecule. Surface core level shifts in metals are determined by whether the Z+1 atom as an alloy segregates to the surface or is more soluble in the bulk. As further illustration of this more chemical picture, we compare the geometry of C 1s and O 1s core-ionized CO with that of, respectively, NO + and CF + . The scope is not to propose a new method to compute XPS shifts but rather to stress the validity of this simple interpretation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol-Gel Matrices
2015-10-19
PD Summary of Research Highlights Supported by ONR N00014-09-1-0217 1) Hydrophobie xerogel coatings are "robust" - good adhesion to glass , aluminum...that none of the xerogels leach materials that cause increased mortality relative to leachates from glass slides. 6) Xerogels can be tailored to...with high surface area, high surface roughness, and chemical segregation of functionality. 10) Monoliths of 5 mole-% V2O5 or 0=V(0-/Pr)3 in
Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.
Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert
2013-06-25
Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram
2008-08-01
Oxidation kinetics of Ni-Al (100) alloy surface is investigated at low temperatures (300-600 K) and at different gas pressures using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. Monte Carlo simulations employing the bond order simulation model are used to generate the surface segregated minimum energy initial alloy configurations for use in the MD simulations. In the simulated temperature-pressure-composition regime for Ni-Al alloys, we find that the oxide growth curves follow a logarithmic law beyond an initial transient regime. The oxidation rates for Ni-Al alloys were found to decrease with increasing Ni composition. Structure and dynamical correlations in the metal/oxide/gas environments are used to gain insights into the evolution and morphology of the growing oxide film. Oxidation of Ni-Al alloys is characterized by the absence of Ni-O bond formation. Oxide films formed on the various simulated metal surfaces are amorphous in nature and have a limiting thickness ranging from ˜1.7nm for pure Al to 1.1 nm for 15% Ni-Al surfaces. Oxide scale analysis indicates significant charge transfer as well as variation in the morphology and structure of the oxide film formed on pure Al and 5% Ni-Al alloy. For oxide scales thicker than 1 nm, the oxide structure in case of pure Al exhibits a mixed tetrahedral (AlO4˜37%) and octahedral (AlO6˜19%) environment, whereas the oxide scale on Ni-Al alloy surface is almost entirely composed of tetrahedral environment (AlO4˜60%) with very little AlO6 (<1%) . The oxide growth kinetic curves are fitted to Arrhenius-type plots to get an estimate of the activation energy barriers for metal oxidation. The activation energy barrier for oxidation on pure Al was found to be 0.3 eV lower than that on 5% Ni-Al surface. Atomistic observations as well as calculated dynamical correlation functions indicate a layer by layer growth on pure Al, whereas a transition from an initial island growth mode (<75ps) to a layer by layer mode (>100ps) occurs in case of 5% Ni-Al alloy. The oxide growth on both pure Al and Ni-Al alloy surfaces occurs by inward anion and outward cation diffusions. The cation diffusion in both the cases is similar, whereas the anion diffusion in case of 5% Ni-Al is 25% lower than pure Al, thereby resulting in reduced self-limiting thickness of oxide scale on the alloy surface. The simulation findings agree well with previously reported experimental observations of oxidation on Ni-Al alloy surface.
Ab Initio Studies of Metal Hexaboride Materials
NASA Astrophysics Data System (ADS)
Schmidt, Kevin M.
Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron-terminations produce the lowest energies for di-cations of CaB6, SrB6 and BaB6, while tri-valent LaB6 minimizes its surface energy by arranging the metal ions in parallel rows on the surface. Studies involving hydrogen suggest that a single molecule per surface unit-cell is possible, and evidence is given for a dissociative adsorption pathway. Ternary mixtures of metal hexaborides containing two alkaline-earth cations in each crystal are also investigated with electronic structure methods. Multiple geometries are used to understand how spatial arrangements of cations within the mixture can affect properties related to stability. Bond-lengths within the boron framework are found to be heavily dependent upon the local cation environment, and energies taken at absolute zero suggest certain stoichiometries naturally lead to phase splitting.
CO2 hydrogenation on a metal hydride surface.
Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas
2012-04-28
The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface. This journal is © the Owner Societies 2012
Domain Formation Induced by the Adsorption of Charged Proteins on Mixed Lipid Membranes
Mbamala, Emmanuel C.; Ben-Shaul, Avinoam; May, Sylvio
2005-01-01
Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation. PMID:15626713
Directed and persistent movement arises from mechanochemistry of the ParA/ParB system
Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian
2015-01-01
The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
NASA Astrophysics Data System (ADS)
Martinsen, F. A.; Nordstrand, E. F.; Gibson, U. J.
2013-01-01
Melt-spun metallurgical grade (MG) micron dimension silicon flakes have been purified into near solar grade (SG) quality through a multi-step melting and re-solidification procedure. A wet oxidation-applied thermal oxide maintained the sample morphology during annealing while the interiors were melted and re-solidified. The small thickness of the flakes allowed for near elimination of in-plane grain boundaries, with segregation enhanced accumulation of impurities at the object surface and in the few remaining grain boundaries. A subsequent etch in 48% hydrofluoric acid (HF) removed the impure oxide layer, and part of the contamination at the oxide-silicon interface, as shown by electron dispersive spectroscopy (EDS) and backscattered electron imaging (BEI). The sample grains were investigated by electron back-scattered diffraction (EBSD) after varying numbers of oxidation-annealing-etch cycles, and were observed to grow from ˜5 μm to ˜200 μm. The concentration of iron, titanium, copper and aluminium were shown by secondary ion mass spectroscopy (SIMS) and inductively coupled plasma mass spectroscopy (ICPMS) to drop between five and six orders of magnitude. The concentration of boron was observed to drop approximately one order of magnitude. A good correlation was observed between impurity removal rates and segregation models, indicating that the purification effect is mainly caused by segregation. Deviations from these models could be explained by the formation of oxides and hydroxides later removed through etching.
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T
2014-01-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T
2014-10-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.« less
Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.; ...
2016-09-01
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Bonnie; Hitchcock, Adam; Brash, John
Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. Amore » phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.« less
Film depth and concentration banding in free-surface Couette flow of a suspension.
Timberlake, Brian D; Morris, Jeffrey F
2003-05-15
The film depth of a free-surface suspension flowing in a partially filled horizontal concentric-cylinder, or Couette, device has been studied in order to assess its role in the axial concentration banding observed in this flow. The flow is driven by rotation of the inner cylinder. The banding phenomenon is characterized by particle-rich bands which under flow appear as elevated regions at the free surface separated axially by regions dilute relative to the mean concentration. The concentric cylinders studied had outer radius R(o) = 2.22 cm and inner radii R(i) = 0.64, 0.95 and 1.27 cm; the suspension, of bulk particle volume fraction phi = 0.2 in all experiments described, was composed of particles of either 250-300 microm diameter or less than 106 microm diameter, with the suspending fluid an equal density liquid of viscosity 160 P. The ratio of the maximum to the minimum particle volume fraction along the axis in the segregated condition varies from O(1) to infinite. The latter case implies complete segregation, with bands of clear fluid separating the concentrated bands. The film depth has been varied through variation of the filled fraction, f, of the annular gap between the cylinders and through the rotation rate. Film depth was analysed by edge detection of video images of the free surface under flow, and the time required for band formation was determined for all conditions at which film depth was studied. The film depth increases roughly as the square root of rotation speed for f = 0.5. Band formation is more rapid for thicker films associated with more rapid rotation rates at f = 0.5, whereas slower formation rates are observed with thicker films caused by large f, f > 0.65. It is observed that the film depth over the inner cylinder grows prior to onset of banding, for as yet unknown reasons. A mechanism for segregation of particles and liquid in film flows based upon 'differential drainage' of the particle and liquid phase in the gravity-driven flow within the film over the inner cylinder is formulated to describe the onset of concentration fluctuations. This model predicts that suspension drainage flows lead to growth of fluctuations in phi under regions of negative surface curvature.
Male group size, female distribution and changes in sexual segregation by Roosevelt elk
Peterson, Leah M.
2017-01-01
Sexual segregation, or the differential use of space by males and females, is hypothesized to be a function of body size dimorphism. Sexual segregation can also manifest at small (social segregation) and large (habitat segregation) spatial scales for a variety of reasons. Furthermore, the connection between small- and large-scale sexual segregation has rarely been addressed. We studied a population of Roosevelt elk (Cervus elaphus roosevelti) across 21 years in north coastal California, USA, to assess small- and large-scale sexual segregation in winter. We hypothesized that male group size would associate with small-scale segregation and that a change in female distribution would associate with large-scale segregation. Variation in forage biomass might also be coupled to small and large-scale sexual segregation. Our findings were consistent with male group size associating with small-scale segregation and a change in female distribution associating with large-scale segregation. Females appeared to avoid large groups comprised of socially dominant males. Males appeared to occupy a habitat vacated by females because of a wider forage niche, greater tolerance to lethal risks, and, perhaps, to reduce encounters with other elk. Sexual segregation at both spatial scales was a poor predictor of forage biomass. Size dimorphism was coupled to change in sexual segregation at small and large spatial scales. Small scale segregation can seemingly manifest when all forage habitat is occupied by females and large scale segregation might happen when some forage habitat is not occupied by females. PMID:29121076
Niche dynamics of shorebirds in Delaware Bay: Foraging behavior, habitat choice and migration timing
NASA Astrophysics Data System (ADS)
Novcic, Ivana
2016-08-01
Niche differentiation through resource partitioning is seen as one of the most important mechanisms of diversity maintenance contributing to stable coexistence of different species within communities. In this study, I examined whether four species of migrating shorebirds, dunlins (Calidris alpina), semipalmated sandpipers (Calidris pusilla), least sandpipers (Calidris minutilla) and short-billed dowitchers (Limnodromus griseus), segregate by time of passage, habitat use and foraging behavior at their major stopover in Delaware Bay during spring migration. I tested the prediction that most of the separation between morphologically similar species will be achieved by differential migration timing. Despite the high level of overlap along observed niche dimensions, this study demonstrates a certain level of ecological separation between migrating shorebirds. The results of analyses suggest that differential timing of spring migration might be the most important dimension along which shorebird species segregate while at stopover in Delaware Bay. Besides differences in time of passage, species exhibited differences in habitat use, particularly least sandpipers that foraged in vegetated areas of tidal marshes more frequently than other species, as well as short-billed dowitchers that foraged in deeper water more often than small sandpipers did. Partitioning along foraging techniques was less prominent than segregation along temporal or microhabitat dimensions. Such ranking of niche dimensions emphasizes significance of temporal segregation of migratory species - separation of species by time of passage may reduce the opportunity for interspecific aggressive encounters, which in turn can have positive effects on birds' time and energy budget during stopover period.
Characterizing segregation in the Schelling-Voter model
NASA Astrophysics Data System (ADS)
Caridi, I.; Pinasco, J. P.; Saintier, N.; Schiaffino, P.
2017-12-01
In this work we analyze several aspects related with segregation patterns appearing in the Schelling-Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites.
Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; ...
2016-06-13
Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin
Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less
Instabilities in rapid directional solidification under weak flow
NASA Astrophysics Data System (ADS)
Kowal, Katarzyna N.; Davis, Stephen H.; Voorhees, Peter W.
2017-12-01
We examine a rapidly solidifying binary alloy under directional solidification with nonequilibrium interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed dependent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady) cellular instabilities, mode S , and a pulsatile instability, mode P . We examine how weak imposed boundary-layer flow of magnitude |V | affects these instabilities. For small |V | , mode S becomes a traveling and the flow stabilizes (destabilizes) the interface for small (large) surface energies. For small |V | , mode P has a critical wave number that shifts from zero to nonzero giving spatial structure. The flow promotes this instability and the frequencies of the complex conjugate pairs each increase (decrease) with flow for large (small) wave numbers. These results are obtained by regular perturbation theory in powers of V far from the point where the neutral curves cross, but requires a modified expansion in powers of V1 /3 near the crossing. A uniform composite expansion is then obtained valid for all small |V | .
NASA Astrophysics Data System (ADS)
Mishra, Vindhya; Kramer, Edward; Hur, Su-Mi; Fredrickson, Glenn; Sprung, Michael
2009-03-01
In multilayer thin films of spherical morphology block copolymers, the surface layers prefer hexagonal symmetry while the inner layers prefer BCC. Thin films with spherical morphology of PS-b-P2VP blends with short homopolymer polystyrene (hPS) chains have an HCP structure up to a thickness n* at which there is a transition to a face centered orthorhombic structure. Using grazing incidence small angle X-ray scattering and transmission electron microscopy we show that that n* increases from 5 to 9 with increase in hPS from 0 to 12 vol%. For thicknesses just below n* the HCP and FCO structures coexist, but on long annealing HCP prevails. We hypothesize that the PS segregates to the interstices in the HCP structure reducing the stretching of the PS blocks and the free energy penalty of HCP versus BCC inner layers. Self consistent field theoretic simulations are being carried out to see if this idea is correct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koster, J.N.; Sani, R.L.
1990-01-01
Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less
Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Chunhua; Ma, Ziguang; Zhou, Junming
2014-08-18
We studied the effect of multiple interruptions during the quantum well growth on emission-efficiency enhancement of InGaN-based yellow-green light emitting diodes on c-plane sapphire substrate. The output power and dominant wavelength at 20 mA are 0.24 mW and 556.3 nm. High resolution x-ray diffraction, photoluminescence, and electroluminescence measurements demonstrate that efficiency enhancement could be partially attributed to crystal quality improvement of the active region resulted from reduced In clusters and relevant defects on the surface of InGaN layer by introducing interruptions. The less tilted energy band in the quantum well is also caused by the decrease of In-content gradient along c-axis resultedmore » from In segregation during the interruptions, which increases spatial overlap of electron-hole wavefunction and thus the internal quantum efficiency. The latter also leads to smaller blueshift of dominant wavelength with current increasing.« less
The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System
NASA Astrophysics Data System (ADS)
Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan
2018-03-01
We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.
Heat-induced redistribution of surface oxide in uranium
NASA Astrophysics Data System (ADS)
Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph
1990-09-01
The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.
Upgrade of the Surface Spectrometer at NEPOMUC for PAES, XPS and STM Investigations
NASA Astrophysics Data System (ADS)
Zimnik, S.; Lippert, F.; Hugenschmidt, C.
2014-04-01
The characterization of the elemental composition of surfaces is of great importance for the understanding of many surface processes, such as surface segregation or oxidation. Positron-annihilation-induced Auger Electron Spectroscopy (PAES) is a powerful technique for gathering information about the elemental composition of only the topmost atomic layer of a sample. The upgraded surface spectrometer at NEPOMUC (NEtron induced POsitron source MUniCh) enables a comprehensive surface analysis with the complementary techniques STM, XPS and PAES. A new X-ray source for X-ray induced photoelectron spectroscopy (XPS) was installed to gather additional information on oxidation states. A new scanning tunneling microscope (STM) is used as a complementary method to investigate with atomic resolution the surface electron density. The combination of PAES, XPS and STM allows the characterization of both the elemental composition, and the surface topology.
Nd:AlN polycrystalline ceramics: A candidate media for tunable, high energy, near IR lasers
NASA Astrophysics Data System (ADS)
Wieg, A. T.; Grossnickle, M. J.; Kodera, Y.; Gabor, N. M.; Garay, J. E.
2016-09-01
We present processing and characterization of Nd-doped aluminum nitride (Nd:AlN) polycrystalline ceramics. We compare ceramics with significant segregation of Nd to those exhibiting minimal segregation. Spatially resolved photoluminescence maps reveal a strong correlation between homogeneous Nd doping and spatially homogeneous light emission. The spectroscopically resolved light emission lines show excellent agreement with the expected Nd electronic transitions. Notably, the lines are significantly broadened, producing near IR emission (˜1077 nm) with a remarkable ˜100 nm bandwidth at room temperature. We attribute the broadened lines to a combination of effects: multiple Nd-sites, anisotropy of AlN and phonon broadening. These broadened, overlapping lines in a media with excellent thermal conductivity have potential for Nd-based, tunable lasers with high average power.
NASA Astrophysics Data System (ADS)
Kessman, Aaron J.
The primary goal of this research was to synthesize water- and oil-repellent coatings that offer sustained functionality and durability. Engineered low surface energy materials generally suffer from a lack of mechanical robustness, which makes them susceptible to damage by abrasive wear. Fluorinated silanes are often combined with alkoxide precursors via sol-gel co-condensation to create coatings with high hardness and good substrate adhesion. However, a common problem with these materials is that the organic moieties that provide low surface energy also become surface segregated and highly concentrated at the solid-air interface. With such a structure, mechanical removal of the top surface by abrasion, for example, reveals subsurface areas that are then much less concentrated in terms of functional chemistry. The material developed in this study was designed to overcome this problem by means of a tailored and templated mesostructure that effectively encapsulated the low surface energy functional moieties, and thus achieves sustained functionality during abrasive wear. This material, applied as a thin coating to a variety of substrates, has the potential to reduce waste and pollution and the environmental degradation of materials and structures. Improving the performance of such materials can benefit a wide variety of applications. These include optoelectronic devices including photovoltaic panels; automobile and aircraft; architectural structures; the chemical, food, and medical industries for hygienic and anti-fouling requirements; textiles; and household applications. This approach has further implications in areas such as boundary lubrication and drug delivery systems. Hydrophobic-oleophobic mesoporous fluorinated silica films were synthesized via sol-gel co-condensation and coated on glass substrates. Fluorosilane and surfactant template concentrations were varied to elucidate the effect of organic functionality and porosity on performance. Structural, chemical, mechanical, surface, and tribological properties were investigated to examine the performance of functionalized mesostructured thin films in abrasive environments. Analytical techniques included XPS depth profiling, porosimetry, AFM and friction force microscopy, nanoindentation, contact angle goniometry, and stylus profilometry. Controlled abrasion was conducted using a lab-built instrument. Hydrophobic and oleophobic properties were monitored ex-situ during abrasion to observe and quantify changes in functionality as the material is worn. Experimental results show that surfactant templating aids in generating an internal mesostructure that facilitates encapsulation of functional moieties. This encapsulation allows exposed surfaces to be sacrificially worn away while maintaining much of the original functionality. The results of tribological measurements, as observed through abrasive wear testing, friction force mapping, and wear rate calculations, suggest that the low-friction surface generate by fluorosilane moieties grafted to internal pore surfaces mitigates to some extent the detrimental effect of film porosity on hardness and wear resistance.
Reardon, Sean F.; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David; Bischoff, Kendra; Firebaugh, Glenn
2014-01-01
We use newly developed methods of measuring spatial segregation across a range of spatial scales to assess changes in racial residential segregation patterns in the 100 largest U.S. metropolitan areas from 1990 to 2000. Our results point to three notable trends in segregation from 1990 to 2000: 1) Hispanic-white and Asian-white segregation levels increased at both micro- and macro-scales; 2) black-white segregation declined at a micro-scale, but was unchanged at a macro-scale; and 3) for all three racial groups and for almost all metropolitan areas, macro-scale segregation accounted for more of the total metropolitan area segregation in 2000 than in 1990. Our examination of the variation in these trends among the metropolitan areas suggests that Hispanic-white and Asian-white segregation changes have been driven largely by increases in macro-scale segregation resulting from the rapid growth of the Hispanic and Asian populations in central cities. The changes in black-white segregation, in contrast, appear to be driven by the continuation of a 30-year trend in declining micro-segregation, coupled with persistent and largely stable patterns of macro-segregation. PMID:19569292
Chemical segregation in metallic glass nanowires.
Zhang, Qi; Li, Qi-Kai; Li, Mo
2014-11-21
Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.
Wood variables affecting the friction coefficient of spruce pine on steel
Truett J. Lemoine; Charles W. McMillin; Floyd G. Manwiller
1970-01-01
Wood of spruce pine, Pinus glabra Walk., was factorially segregated by moisture content (0, 10, and 18 percent), specific gravity (less than 0.45 and more than 0.45), and extractive content (unextracted and extractive-freE), and the kinetic coefficient of friction on steel (having surface roughness of 9 microinches RMS) determined for tangential...
Field Evaluation of Temperature Differential in HMA Mixtures
DOT National Transportation Integrated Search
2012-05-15
Segregation is a common occurrence in hot mix asphalt (HMA) construction. The two types of : segregation encountered are gradation segregation and thermal segregation. This investigation report : involves mainly thermal segregation, which occurs when...
NASA Astrophysics Data System (ADS)
Hua, Guomin; Li, Changsheng; Cheng, Xiaonong; Zhao, Xinluo; Feng, Quan; Li, Zhijie; Li, Dongyang; Szpunar, Jerzy A.
2018-01-01
In this study, influences of molybdenum on acicular ferrite formation on precipitated TiC particles are investigated from thermodynamic and kinetic respects. In thermodynamics, Segregation of Mo towards austenite/TiC interface releases the interfacial energy and induces phase transformation from austenite to acicular ferrite on the precipitated TiC particles. The Phase transformation can be achieved by displacive deformation along uniaxial Bain path. In addition, the segregation of Mo atom will also lead to the enhanced stability of ferrite in comparison with austenite no matter at low temperature or at high temperature. In kinetics, the Mo solute in acicular ferrite can effectively suppress the diffusion of carbon atoms, which ensures that orientation relationship between acicular ferrite and austenitized matrix can be satisfied during the diffusionless phase transformation. In contrast to ineffectiveness of TiC particles, the alloying Mo element can facilitate the formation of acicular ferrite on precipitated TiC particles, which is attributed to the above thermodynamic and kinetic reasons. Furthermore, Interfacial toughness and ductility of as-formed acicular ferrite/TiC interface can be improved simultaneously by segregation of Mo atom.
Implications of Convection in the Moon and the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Turcotte, D. L.
1985-01-01
The early evolution of the Moon and its implications for the early evolution of the Earth was studied. The study is divided into two parts: (1) studies of core formation. Cosmochemical studies strongly favor a near-homogeneous accretion of the Earth. It is shown that core segregation probably occurred within the first 10,000 years of Earth history. It is found that dissipative heating may be a viable mechanism for core segregation if sufficiently large bodies of liquid iron can form; (2) early thermal evolution of the Earth and Moon. The energy associated with the accretion of the Earth and the segregation of the core is more than sufficient to melt the entire Earth. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. It is found that a magma ocean with a depth of 100 km would have existed as the Earth accreted. It is concluded that this magma ocean zone refined the earth resulting in the simultaneous formation of the core and the atmosphere during accretion. The resulting mantle was a well-mixed solid with a near pyrolite composition.
Nawaz, Tabassam; Mehmood, Zahid; Rashid, Muhammad; Habib, Hafiz Adnan
2018-01-01
Recent research on speech segregation and music fingerprinting has led to improvements in speech segregation and music identification algorithms. Speech and music segregation generally involves the identification of music followed by speech segregation. However, music segregation becomes a challenging task in the presence of noise. This paper proposes a novel method of speech segregation for unlabelled stationary noisy audio signals using the deep belief network (DBN) model. The proposed method successfully segregates a music signal from noisy audio streams. A recurrent neural network (RNN)-based hidden layer segregation model is applied to remove stationary noise. Dictionary-based fisher algorithms are employed for speech classification. The proposed method is tested on three datasets (TIMIT, MIR-1K, and MusicBrainz), and the results indicate the robustness of proposed method for speech segregation. The qualitative and quantitative analysis carried out on three datasets demonstrate the efficiency of the proposed method compared to the state-of-the-art speech segregation and classification-based methods. PMID:29558485
N-Type delta Doping of High-Purity Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh
2005-01-01
A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.
Fine-grained linings of leveed channels facilitate runout of granular flows
Kokelaar, B.P.; Graham, R. L.; Gray, J.M.N.T.; Vallance, James W.
2014-01-01
Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300–425 μm) mixed with spherical fine ballotini (150–250 μm), on rough slopes of 27–29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30–40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow–substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.
Fine-grained linings of leveed channels facilitate runout of granular flows
NASA Astrophysics Data System (ADS)
Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W.
2014-01-01
Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300-425 μm) mixed with spherical fine ballotini (150-250 μm), on rough slopes of 27-29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30-40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow-substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.
NASA Astrophysics Data System (ADS)
Kiyohara, Shin; Mizoguchi, Teruyasu
2018-03-01
Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques, the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of the segregation configurations and it has been shown that this model could determine the stable segregation configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the dopant segregation behaviors at grain boundaries.
Residential Segregation and Racial Cancer Disparities: A Systematic Review.
Landrine, Hope; Corral, Irma; Lee, Joseph G L; Efird, Jimmy T; Hall, Marla B; Bess, Jukelia J
2017-12-01
This paper provides the first review of empirical studies of segregation and black-white cancer disparities. We searched all years of PubMed (through May 2016) using these terms: racial segregation, residential segregation, neighborhood racial composition (first terms) and (second terms) cancer incidence, mortality, survival, stage at diagnosis, screening. The 17 (of 668) articles that measured both segregation and a cancer outcome were retained. Segregation contributed significantly to cancer and to racial cancer disparities in 70% of analyses, even after controlling for socioeconomic status and health insurance. Residing in segregated African-American areas was associated with higher odds of later-stage diagnosis of breast and lung cancers, higher mortality rates and lower survival rates from breast and lung cancers, and higher cumulative cancer risks associated with exposure to ambient air toxics. There were no studies of many types of cancer (e.g., cervical). Studies differed in their measure of segregation, and 40% used an invalid measure. Possible mediators of the segregation effect usually were not tested. Empirical analysis of segregation and racial cancer disparities is a recent area of research. The literature is limited to 17 studies that focused primarily on breast cancer. Studies differed in their measure of segregation, yet segregation nonetheless contributed to cancer and to racial cancer disparities in 70% of analyses. This suggests the need for further research that uses valid measures of segregation, examines a variety of types of cancers, and explores the variables that may mediate the segregation effect.