Micro X-ray diffraction analysis of thin films using grazing-exit conditions.
Noma, T; Iida, A
1998-05-01
An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.
Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals
NASA Astrophysics Data System (ADS)
Wei, Haotong; Fang, Yanjun; Mulligan, Padhraic; Chuirazzi, William; Fang, Hong-Hua; Wang, Congcong; Ecker, Benjamin R.; Gao, Yongli; Loi, Maria Antonietta; Cao, Lei; Huang, Jinsong
2016-05-01
The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility-lifetime product of 1.2 × 10-2 cm2 V-1 and an extremely small surface charge recombination velocity of 64 cm s-1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2-3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s-1 with a sensitivity of 80 μC Gy-1air cm-2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.
X-ray lithography using holographic images
Howells, M.S.; Jacobsen, C.
1997-03-18
Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.
X-ray lithography using holographic images
Howells, Malcolm S.; Jacobsen, Chris
1997-01-01
Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.
Advances toward submicron resolution optics for x-ray instrumentation and applications
NASA Astrophysics Data System (ADS)
Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan
2017-08-01
Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.
Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard
2018-03-29
The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.
Direct measurement of the propagation velocity of defects using coherent X-rays
Ulbrandt, Jeffrey G.; Rainville, Meliha G.; Wagenbach, Christa; ...
2016-03-28
The properties of artificially grown thin films are often strongly affected by the dynamic relationships between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during realtime studies of sputter deposition of a-Si and a-WSi2 films by controlling the X-ray penetration and escape depths in coherent grazing-incidence small-angle X-ray scattering. Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interferencemore » between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upwards at the same velocity as the surface. Moreover, a highly surface-sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.« less
X-ray lithography using holographic images
Howells, Malcolm R.; Jacobsen, Chris
1995-01-01
A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.
High-sensitivity ESCA instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, R.D.; Herglotz, H.K.; Lee, J.D.
1973-01-01
A new electron spectroscopy for chemical analysis (ESCA) instrument has been developed to provide high sensitivity and efficient operation for laboratory analysis of composition and chemical bonding in very thin surface layers of solid samples. High sensitivity is achieved by means of the high-intensity, efficient x-ray source described by Davies and Herglotz at the 1968 Denver X-Ray Conference, in combination with the new electron energy analyzer described by Lee at the 1972 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. A sample chamber designed to provide for rapid introduction and replacement of samples has adequate facilities for various sample treatmentsmore » and conditiouing followed immediately by ESCA analysis of the sample. Examples of application are presented, demonstrating the sensitivity and resolution achievable with this instrument. Its usefulness in trace surface analysis is shown and some chemical shifts'' measured by the instrument are compared with those obtained by x-ray spectroscopy. (auth)« less
X-ray photoelectron spectroscopy for characterization of wood surfaces in adhesion studies
James F. Beecher; Charles R. Frihart
2005-01-01
X-ray photoelectron spectroscopy (XPS) is one of a set of tools that have been used to characterize wood surfaces. Among the advantages of XPS are surface sensitivity, identification of nearly all elements, and frequently, discrimination of bonding states. For these reasons, XPS seemed to be an appropriate tool to help explain the differences in bond strength under wet...
Carpenter, Donald A.
1995-01-01
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.
Carpenter, D.A.
1995-05-23
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.
On the surface density of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Maccacaro, T.; Gioia, I. M.; Maccagni, D.; Stocke, J. T.
1984-01-01
Only a handful of BL Lac objects have been found as a result of systematic optical identification of serendipitous Einstein X-ray sources. By combining the data from two flux-limited complete X-ray surveys (the HEAO 1 A-2 and the Einstein Observatory Medium Sensitivity Survey) the surface density of X-ray emitting BL Lac objects is evaluated as a function of their X-ray flux. It is found that a single power law is not an acceptable representation of the BL Lac objects' X-ray log N-log S. The number-flux relationship is consistent with the Euclidean slope at 'high' flux levels but shows a drastic flattnring below fluxes of the order of 10 to the -12th ergs per sq cm/s. The implications of this result are briefly discussed with respect to the luminosity function, the cosmological evolution, and the X-ray to optical flux ratio in BL Lac objects.
Halide Ions Effects on Surface Excess of Long Chain Ionic Liquids Water Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenjie; Sung, Woongmo; Ao, Mingqi
2013-10-07
The interfacial structure and composition of water solutions with alkylimidazolium ionic liquids varying in their halide anions ([C12mim][X], X = Cl and I) were investigated by X-ray near-total-reflection fluorescence spectroscopy and X-ray reflectivity measurements. We demonstrate that X-ray fluorescence and reflectivity techniques provide a more direct measurement of surface adsorption. Furthermore, we show that for [C12mim][Cl] and [C12mim][I] solutions with mixed inorganic salts (NaI, NaCl), I– ions replace Cl– above the critical micelle concentration (CMC) of [C12mim][Cl] at much lower concentrations of NaI, whereas NaCl concentrations a hundred times higher than the CMC of [C12mim][I] only partially replace the I–more » at the interface. Our surface-sensitive X-ray diffraction and spectroscopy provide two independent tools to directly determine the surface adsorption of ionic surfactants and the interfacial composition of the surface films.« less
The Extended Range X-Ray Telescope center director's discretionary fund report
NASA Technical Reports Server (NTRS)
Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.; Tandberg-Hanssen, E. A.
1985-01-01
An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD.
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; Travesset, Alex; Vaknin, David
2017-12-01
In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol-capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs2SO4 ) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. By taking advantage of element specificity with the GIXFS method, we find that the cation Cs+ concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film compared with that in the bulk.
Reevaluation of the Apollo orbital X-ray fluorescence data
NASA Technical Reports Server (NTRS)
Hubbard, N. J.; Keith, J. E.
1977-01-01
A combination of Al/Mg ratios and Al/Si ratios has provided high-quality geochemical and geological information from the Apollo orbital X-ray fluorescence data. The high sensitivity of the characteristic Si X-rays to alterations in the energy spectra of the solar X-ray flux limits the analytical usefulness of the ratios involving Si. A photometric study indicates that the Si concentration in lunar materials varies by less than about + or - 15% of the Si present. In addition, particle size and surface roughness are shown to have small effects on the characteristic fluorescent X-ray radiation of Si.
Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy
NASA Astrophysics Data System (ADS)
Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.
2013-05-01
Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya
In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less
Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; ...
2017-12-14
In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less
Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy
NASA Astrophysics Data System (ADS)
Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony
The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.
RHEED-TRAXS as a tool for in-situ stoichiometry control.
NASA Astrophysics Data System (ADS)
Chandril, Sandeep; Keenan, Cameron; Myers, Thomas; Lederman, David
2008-03-01
RHEED-total reflection x-ray spectroscopy (-TRAXS) is an in-situ chemical and structural characterization technique which is highly surface sensitive. This consists of a grazing-angle electron beam from which characteristic x-rays from the sample are measured also at grazing angles. We have demonstrated that monolayer sensitivity in Y and Mn films on GaN can be achieved. We have also developed a theoretical model for the angular dependence of the x-ray Kα peaks for the thin films, based on Parratt's formalism for x-ray reflectivity and the electron trajectory simulation software CASINO, to correct for grazing angle electron beam as a source for x-rays. As the angular dependence is highly dependent upon the film thickness and the smoothness of the film, it can be used to determine the deposition rate of individual elements as well as the interface chemical roughness
Directly-deposited blocking filters for high-performance silicon x-ray detectors
NASA Astrophysics Data System (ADS)
Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.
2016-07-01
Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.
X-ray Crystal Truncation Rod Studies of Surface Oxidation and Reduction on Pt(111)
Liu, Yihua; Barbour, Andi; Komanicky, Vladimir; ...
2016-02-26
Here, we present X-ray crystal truncation rods measurements of Pt(111) surface under electrochemical conditions. Analyses of crystal truncation rods reveal that surface oxide formation buckles the top surface layer of platinum to two different heights at the potential (0.95 V vs RHE) below the so-called place-exchange potential. While the anti-Bragg intensity, sensitive to the top surface layer, drops in response to the anodic charge transfers, its responses to the cathodic charge transfers are significantly delayed. Implications to the surface oxidation and reduction behaviors are discussed.
X-ray diffraction and X-ray standing-wave study of the lead stearate film structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.
2016-05-15
A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less
Method and apparatus for molecular imaging using x-rays at resonance wavelengths
Chapline, G.F. Jr.
Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.
Method and apparatus for molecular imaging using X-rays at resonance wavelengths
Chapline, Jr., George F.
1985-01-01
Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.
Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers
NASA Astrophysics Data System (ADS)
Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.
2007-12-01
The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg filters on two of the three gas counters are required to differentially separate the lower energy X-ray lines from Al, Mg, and Si. A Be-Cu honeycomb collimator provides a 12° field of view, which is smaller than the planet at apoapsis and reduces the X-ray sky background. The Venus atmosphere is almost entirely composed of carbon and oxygen that fluoresce below the energy range of the XRS, but the flyby still provided valuable experience in planning for the upcoming Mercury flybys.
In situ X-ray probing reveals fingerprints of surface platinum oxide.
Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders
2011-01-07
In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.
NASA Astrophysics Data System (ADS)
Stöhr, Joachim
2011-03-01
My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.
Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties
NASA Astrophysics Data System (ADS)
Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.
2016-05-01
The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.
Zhou, Wen-Yi; Li, Shan-Shan; Song, Jie-Yao; Jiang, Min; Jiang, Tian-Jia; Liu, Jin-Yun; Liu, Jin-Huai; Huang, Xing-Jiu
2018-04-03
Mutual interference is a severe issue that occurs during the electrochemical detection of heavy metal ions. This limitation presents a notable drawback for its high sensitivity to specific targets. Here, we present a high electrochemical sensitivity of ∼237.1 μA cm -2 μM -1 toward copper(II) [Cu(II)] based on oxygen-deficient titanium dioxide (TiO 2- x ) nanosheets. We fully demonstrated an atomic-level relationship between electrochemical behaviors and the key factors, including the high-energy (001) facet percentage, oxygen vacancy concentration, surface -OH content, and charge carrier density, is fully demonstrated. These four factors were quantified using Raman, electron spin resonance, X-ray photoelectron spectroscopy spectra, and Mott-Schottky plots. In the mutual interference investigation, we selected cadmium(II) [Cd(II)] as the target ion because of the significant difference in its stripping potential (∼700 mV). The results show that the Cd(II) can enhance the sensitivity of TiO 2- x nanosheets toward Cu(II), exhibiting an electron-induced mutual interference effect, as demonstrated by X-ray absorption fine structure spectra.
Hoffbauer, Mark A.; Prettyman, Thomas H.
2001-01-01
Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Thomas; Girichidis, Philipp; Gatto, Andrea
2015-11-10
The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less
Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix
NASA Astrophysics Data System (ADS)
Zemlicka, J.; Jakubek, J.; Kroupa, M.; Hradil, D.; Hradilova, J.; Mislerova, H.
2011-01-01
Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of cultural heritage.
Dual energy scanning beam laminographic x-radiography
Majewski, Stanislaw; Wojcik, Randolph F.
1998-01-01
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.
Dual energy scanning beam laminographic x-radiography
Majewski, S.; Wojcik, R.F.
1998-04-21
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.
Liu, Xiaosong; Wang, Dongdong; Liu, Gao; Srinivasan, Venkat; Liu, Zhi; Hussain, Zahid; Yang, Wanli
2013-01-01
Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensible in studying and the eventual optimization of battery materials. However, soft X-ray spectroscopy, one of the most sensitive probes of electronic states, has been mainly limited to ex situ experiments for battery research. Here we achieve in situ and operando soft X-ray absorption spectroscopy of lithium-ion battery cathodes. Taking advantage of the elemental, chemical and surface sensitivities of soft X-rays, we discover distinct lithium-ion and electron dynamics in Li(Co1/3Ni1/3Mn1/3)O2 and LiFePO4 cathodes in polymer electrolytes. The contrast between the two systems and the relaxation effect in LiFePO4 is attributed to a phase transformation mechanism, and the mesoscale morphology and charge conductivity of the electrodes. These discoveries demonstrate feasibility and power of in situ soft X-ray spectroscopy for studying integrated and dynamic effects in batteries. PMID:24100759
Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugh, M. J.; Schneider, M. B.
2008-10-15
The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less
An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming
2015-02-01
Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.
Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Haugh and M. B. Schneider
2008-10-31
The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less
Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit
NASA Astrophysics Data System (ADS)
Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang
2017-11-01
Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.
NASA Technical Reports Server (NTRS)
Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.
2011-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.
Poirier, Yannick; Kuznetsova, Svetlana; Villarreal-Barajas, Jose Eduardo
2018-01-01
To investigate empirically the energy dependence of the detector response of two in vivo luminescence detectors, LiF:Mg,Cu,P (MCP-N) high-sensitivity TLDs and Al 2 O 3 :C OSLDs, in the 40-300-kVp energy range in the context of in vivo surface dose measurement. As these detectors become more prevalent in clinical and preclinical in vivo measurements, knowledge of the variation in the empirical dependence of the measured response of these detectors across a wide spectrum of beam qualities is important. We characterized a large range of beam qualities of three different kilovoltage x-ray units: an Xstrahl 300 Orthovoltage unit, a Precision x-Ray X-RAD 320ix biological irradiator, and a Varian On-Board Imaging x-ray unit. The dose to water was measured in air according to the AAPM's Task Group 61 protocol. The OSLDs and TLDs were irradiated under reference conditions on the surface of a water phantom to provide full backscatter conditions. To assess the change in sensitivity in the long term, we separated the in vivo dosimeters of each type into an experimental and a reference group. The experimental dosimeters were irradiated using the kilovoltage x-ray units at each beam quality used in this investigation, while the reference group received a constant 10 cGy irradiation at 6 MV from a Varian clinical linear accelerator. The individual calibration of each detector was verified in cycles where both groups received a 10 cGy irradiation at 6 MV. The nanoDot OSLDs were highly reproducible, with ±1.5% variation in response following >40 measurement cycles. The TLDs lost ~20% of their signal sensitivity over the course of the study. The relative light output per unit dose to water of the MCP-N TLDs did not vary with beam quality for beam qualities with effective energies <50 keV (~150 kVp/6 mm Al). At higher energies, they showed a reduced (~75-85%) light output per unit dose relative to 6 MV x rays. The nanoDot OSLDs exhibited a very strong (120-408%) dependency of the light output relative to 6 MV x rays. Variations up to 15% between different x-ray units with equivalent effective energies were also observed. While convenient for clinical use, nanoDot OSLDs exhibit a strong variation in their measured light output per unit dose relative to 6 MV in the 40-300 kV x-ray range. This variability differs unit-to-unit, limiting their effective use for in vivo dosimetry applications in the kilovoltage x-ray energy range. MCP-N TLDs offer a much more stable response, but suffer from variations in sensitivity over time dependent on radiation history, which requires careful experimental handling. © 2017 American Association of Physicists in Medicine.
Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that on a planetary surface. We will also illustrate the use of gamma ray timing techniques to improve sensitivity and will compare the material composition results from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results.
Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E
2010-10-06
Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.
X-ray luminescence computed tomography using a focused x-ray beam.
Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing
2017-11-01
Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Loop models of low coronal structures observed by the Normal Incidence X-Ray Telescope (NIXT)
NASA Technical Reports Server (NTRS)
Peres, G.; Reale, F.; Golub, L.
1994-01-01
The X-ray pictures obtained with the Normal Incidence X-Ray Telescope (NIXT), apart from the ubiquitous coronal loops well known from previous X-ray observations, show a new and peculiar morphology: in many active regions there are wide and apparently low-lying areas of intense emission which resemble H alpha plages. By means of hydrostatic models of coronal arches, we analyze the distribution of temperature, density, emission measure, and plasma emissivity in the spectral band to which NIXT is sensitive, and we show that the above morphology can be explained by the characteristics of high pressure loops having a thin region of high surface brightness at the base. We therefore propose that this finding might help to identify high-pressure X-ray emitting coronal regions in NIXT images, and it is in principle applicable to any imaging instrument which has high sensitivity to 10(exp 4) - 10(exp 6) K plasma within a narrow coronal-temperature passband. As a more general result of this study, we propose that the comparison of NIXT observations with models of stationary loops might provide a new diagnostic: the determination of the loop plasma pressure from measurements of brightness distribution along the loop.
An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses
NASA Technical Reports Server (NTRS)
Economou, T. E.; Turkevich, A. L.
1976-01-01
The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.
X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.
2016-02-15
X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less
NASA Astrophysics Data System (ADS)
Ingerle, D.; Pepponi, G.; Meirer, F.; Wobrauschek, P.; Streli, C.
2016-04-01
Grazing incidence XRF (GIXRF) is a very surface sensitive, nondestructive analytical tool making use of the phenomenon of total external reflection of X-rays on smooth polished surfaces. In recent years the method experienced a revival, being a powerful tool for process analysis and control in the fabrication of semiconductor based devices. Due to the downscaling of the process size for semiconductor devices, junction depths as well as layer thicknesses are reduced to a few nanometers, i.e. the length scale where GIXRF is highly sensitive. GIXRF measures the X-ray fluorescence induced by an X-ray beam incident under varying grazing angles and results in angle dependent intensity curves. These curves are correlated to the layer thickness, depth distribution and mass density of the elements in the sample. But the evaluation of these measurements is ambiguous with regard to the exact distribution function for the implants as well as for the thickness and density of nanometer-thin layers. In order to overcome this ambiguity, GIXRF can be combined with X-ray reflectometry (XRR). This is straightforward, as both techniques use similar measurement procedures and the same fundamental physical principles can be used for a combined data evaluation strategy. Such a combined analysis removes ambiguities in the determined physical properties of the studied sample and, being a correlative spectroscopic method, also significantly reduces experimental uncertainties of the individual techniques. In this paper we report our approach to a correlative data analysis, based on a concurrent calculation and fitting of simultaneously recorded GIXRF and XRR data. Based on this approach we developed JGIXA (Java Grazing Incidence X-ray Analysis), a multi-platform software package equipped with a user-friendly graphic user interface (GUI) and offering various optimization algorithms. Software and data evaluation approach were benchmarked by characterizing metal and metal oxide layers on Silicon as well as Arsenic implants in Silicon. The results of the different optimization algorithms have been compared to test the convergence of the algorithms. Finally, simulations for Iron nanoparticles on bulk Silicon and on a W/C multilayer are presented, using the assumption of an unaltered X-ray Standing Wave above the surface.
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
NASA Astrophysics Data System (ADS)
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.
Improving Beamline X-ray Optics by Analyzing the Damage to Crystallographic Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zientek, John; Maj, Jozef; Navrotski, Gary
2015-01-02
The mission of the X-ray Characterization Laboratory in the X-ray Science Division (XSD) at the Advanced Photon Source (APS) is to support both the users and the Optics Fabrication Facility that produces high performance optics for synchrotron X-ray beamlines. The Topography Test Unit (TTU) in the X-ray Lab has been successfully used to characterize diffracting crystals and test monochromators by quantifying residual surface stresses. This topographic method has also been adapted for testing standard X-ray mirrors, characterizing concave crystal optics and in principle, can be used to visualize residual stresses on any optic made from single crystalline material. The TTUmore » has been instrumental in quantitatively determining crystal mounting stresses which are mechanically induced by positioning, holding, and cooling fixtures. It is this quantitative aspect that makes topography so useful since the requirements and responses for crystal optics and X-ray mirrors are quite different. In the case of monochromator crystals, even small residual or induced stresses, on the order of tens of kPa, can cause detrimental distortions to the perfect crystal rocking curves. Mirrors, on the other hand, are much less sensitive to induced stresses where stresses that are an order of magnitude greater can be tolerated. This is due to the fact that the surface rather than the lattice-spacing determines a mirror’s performance. For the highly sensitive crystal optics, it is essential to measure the in-situ rocking curves using topographs as mounting fixtures are adjusted. In this way, high heat-load monochromator crystals can be successfully mounted with minimum stress. Topographical analysis has been shown to be a highly effective method to visualize and quantify the distribution of stresses, to help identify methods that mitigate stresses, and most notably to improve diffractive crystal optic rocking curves.« less
X-ray irradiation of soda-lime glasses studied in situ with surface plasmon resonance spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrano, A.; Galvez, F.; Rodriguez de la Fuente, O.
2013-03-21
We present here a study of hard X-ray irradiation of soda-lime glasses performed in situ and in real time. For this purpose, we have used a Au thin film grown on glass and studied the excitation of its surface plasmon resonance (SPR) while irradiating the sample with X-rays, using a recently developed experimental setup at a synchrotron beamline [Serrano et al., Rev. Sci. Instrum. 83, 083101 (2012)]. The extreme sensitivity of the SPR to the features of the glass substrate allows probing the modifications caused by the X-rays. Irradiation induces color centers in the soda-lime glass, modifying its refractive index.more » Comparison of the experimental results with simulated data shows that both, the real and the imaginary parts of the refractive index of soda-lime glasses, change upon irradiation in time intervals of a few minutes. After X-ray irradiation, the effects are partially reversible. The defects responsible for these modifications are identified as non-bridging oxygen hole centers, which fade by recombination with electrons after irradiation. The kinetics of the defect formation and fading process are also studied in real time.« less
Water window imaging x ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.
Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki
2017-06-21
Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm × 20 mm × 1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2 × 10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.
Lodha, G S; Yamashita, K; Kunieda, H; Tawara, Y; Yu, J; Namba, Y; Bennett, J M
1998-08-01
Grazing-incidence specular reflectance and near-specular scattering were measured at Al-K(alpha) (1.486-keV, 8.34-?) radiation on uncoated dielectric substrates whose surface topography had been measured with a scanning probe microscope and a mechanical profiler. Grazing-incidence specular reflectance was also measured on selected substrates at the Cu-K(alpha) (8.047-keV, 1.54-?) wavelength. Substrates included superpolished and conventionally polished fused silica; SiO(2) wafers; superpolished and precision-ground Zerodur; conventionally polished, float-polished, and precision-ground BK-7 glass; and superpolished and precision-ground silicon carbide. Roughnesses derived from x-ray specular reflectance and scattering measurements were in good agreement with topographic roughness values measured with a scanning probe microscope (atomic force microscope) and a mechanical profiler that included similar ranges of surface spatial wavelengths. The specular reflectance was also found to be sensitive to the density of polished surface layers and subsurface damage down to the penetration depth of the x rays. Density gradients and subsurface damage were found in the superpolished fused-silica and precision-ground Zerodur samples. These results suggest that one can nondestructively evaluate subsurface damage in transparent materials using grazing-incidence x-ray specular reflectance in the 1.5-8-keV range.
Compound refractive X-ray lens
Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas
2000-01-01
An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.
A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...
2015-01-05
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less
Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F
2008-04-01
Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.
In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors
NASA Astrophysics Data System (ADS)
Takahasi, Masamitu
2018-05-01
The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.
Baker, Kevin Louis
2013-01-08
X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.
Reflection soft X-ray microscope and method
Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy
1993-01-01
A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.
Reflection soft X-ray microscope and method
Suckewer, S.; Skinner, C.H.; Rosser, R.
1993-01-05
A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonemura, Takumi, E-mail: yonemura-takumi@sei.co.jp; Iihara, Junji; Uemura, Shigeaki
We have succeeded in measuring X-ray absorption fine structure (TEY-XAFS) spectra of insulating plate samples by total electron yield. The biggest problem is how to suppress the charge-up. We have attempted to deposit a gold stripe electrode on the surface and obtained a TEY-XAFS spectrum. This indicates that the metal stripe electrode is very useful in the TEY-XAFS measurement of the insulating plate samples. In the detailed analysis, we have found that the effective area for suppressing charge-up was approximately 120 μm from the edge of the electrode.
Monzen, Satoru; Yoshino, Hironori; Kasai-Eguchi, Kiyomi; Kashiwakura, Ikuo
2013-01-01
Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34+ cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34+ cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D 0 = 0.65) than to X-rays (D 0 = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a+ erythroid-related fraction, whereas carbon-ion beams increased the CD34+CD38− primitive cell fraction and the CD13+CD14+/−CD15− fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface antigen expression by mature myeloid cells derived from HSPCs exposed to each type of radiation was similar to that by controls. PMID:23555027
Phase-space evolution of x-ray coherence in phase-sensitive imaging.
Wu, Xizeng; Liu, Hong
2008-08-01
X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.
NASA Astrophysics Data System (ADS)
Breeson, Andrew C.; Sankar, Gopinathan; Goh, Gregory K. L.; Palgrave, Robert G.
2017-11-01
A method of quantitative phase analysis using valence band X-ray photoelectron spectra is presented and applied to the analysis of TiO2 anatase-rutile mixtures. The valence band spectra of pure TiO2 polymorphs were measured, and these spectral shapes used to fit valence band spectra from mixed phase samples. Given the surface sensitive nature of the technique, this yields a surface phase fraction. Mixed phase samples were prepared from high and low surface area anatase and rutile powders. In the samples studied here, the surface phase fraction of anatase was found to be linearly correlated with photocatalytic activity of the mixed phase samples, even for samples with very different anatase and rutile surface areas. We apply this method to determine the surface phase fraction of P25 powder. This method may be applied to other systems where a surface phase fraction is an important characteristic.
The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Anderson, S. F.
1985-01-01
In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.
NASA Astrophysics Data System (ADS)
Zimnik, Samantha; Piochacz, Christian; Vohburger, Sebastian; Hugenschmidt, Christoph
2016-01-01
The surface of a polycrystalline Pd-substrate covered with (sub-) monolayers of Ni was investigated with Positron-annihilation induced Auger Electron Spectroscopy (PAES). Comparative studies using conventional AES induced by electrons and X-rays showed the outstanding surface sensitivity of PAES. Time-dependent PAES was performed on a 0.5 ML Ni cover layer on Pd and compared with conventional X-ray induced Photoelectron Spectroscopy (XPS) in order to observe changes in the elemental composition of the surface. The PAES results appear to show a migration of Ni atoms into the Pd substrate, whereas the Ni signal shows a decrease of 12% within 13 h with respect to the initial value.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.
2013-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.
Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim
2018-02-01
SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosch, R.; Boutin, J. Y.; Le Breton, J. P.
This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV--0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MegaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with differentmore » spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of {approx}80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 {mu}m over a 2-mm-diam region. The hard x-ray version microscope has a 10 {mu}m resolution over an 800-{mu}m-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 {mu}m over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.« less
Ren, Suxia; Dong, Lili; Zhang, Xiuqiang; Lei, Tingzhou; Ehrenhauser, Franz; Song, Kunlin; Li, Meichun; Sun, Xiuxuan; Wu, Qinglin
2017-01-01
Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF) acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag) led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP) probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection. PMID:28772428
First Images from HERO: A Hard-X-Ray Focusing Telescope
NASA Technical Reports Server (NTRS)
Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.;
2001-01-01
We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.
Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification
NASA Technical Reports Server (NTRS)
Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.
2004-01-01
Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which is a signature of Galactic quiescent cataclysmic variables (CVs).
NASA Astrophysics Data System (ADS)
Barrocas, B.; Nunes, C. D.; Carvalho, M. L.; Monteiro, O. C.
2016-11-01
In this work, titanate nanotubes were modified with silver nanoparticles to produce new nanocomposite materials with enhanced photocatalytic activity for phenol removal. The TNTs were produced using a hydrothermal approach and, after being submitted to an Ag+ exchange process, metallic Ag nanoparticles were obtained over the nanotubes surface. The prepared materials were structural, morphological and optical characterized by X-ray powder diffraction, micro X-ray fluorescence, transmission electron microscopy, diffused reflectance spectroscopy and X-ray photoelectron spectroscopy. The characterization results indicate that Ag+ was immobilized not only in the nanotubes external surface but mainly in the TiO6 interlayers space. The application of this new nanocomposite material on photocatalytic degradation of pollutants was investigated. First, the evaluation of hydroxyl radical formation, using the terephthalic acid as a probe was studied. The photocatalytic activity of the sensitized materials for phenol degradation was afterwards evaluated. The results show that the nanocomposite sample is the best catalyst, achieving 98.0% photodegradation efficiency of a 0.2 mM phenol solution within 20 min under UV-vis radiation. The reusability of the prepared samples as photocatalysts was evaluated in four successive degradation assays, using fresh phenol solutions. The sensitized sample demonstrated excellent catalytic reusability ability, without loss of photochemical stability. The structural and morphological characterization during these experiments revealed no modifications on the nanotubes morphology but a continuous increase on the Ag nanoparticles, in number and size, with the irradiation time. A mechanism for this continuous growth of the Ag nanoparticles, together with the phenol catalytic photodegradation, over the nanotubes surface, is proposed and discussed.
HPHT growth and x-ray characterization of high-quality type IIa diamond.
Burns, R C; Chumakov, A I; Connell, S H; Dube, D; Godfried, H P; Hansen, J O; Härtwig, J; Hoszowska, J; Masiello, F; Mkhonza, L; Rebak, M; Rommevaux, A; Setshedi, R; Van Vaerenbergh, P
2009-09-09
The trend in synchrotron radiation (x-rays) is towards higher brilliance. This may lead to a very high power density, of the order of hundreds of watts per square millimetre at the x-ray optical elements. These elements are, typically, windows, polarizers, filters and monochromators. The preferred material for Bragg diffracting optical elements at present is silicon, which can be grown to a very high crystal perfection and workable size as well as rather easily processed to the required surface quality. This allows x-ray optical elements to be built with a sufficient degree of lattice perfection and crystal processing that they may preserve transversal coherence in the x-ray beam. This is important for the new techniques which include phase-sensitive imaging experiments like holo-tomography, x-ray photon correlation spectroscopy, coherent diffraction imaging and nanofocusing. Diamond has a lower absorption coefficient than silicon, a better thermal conductivity and lower thermal expansion coefficient which would make it the preferred material if the crystal perfection (bulk and surface) could be improved. Synthetic HPHT-grown (high pressure, high temperature) type Ib material can readily be produced in the necessary sizes of 4-8 mm square and with a nitrogen content of typically a few hundred parts per million. This material has applications in the less demanding roles such as phase plates: however, in a coherence-preserving beamline, where all elements must be of the same high quality, its quality is far from sufficient. Advances in HPHT synthesis methods have allowed the growth of type IIa diamond crystals of the same size as type Ib, but with substantially lower nitrogen content. Characterization of this high purity type IIa material has been carried out with the result that the crystalline (bulk) perfection of some of the HPHT-grown materials is approaching the quality required for the more demanding applications such as imaging applications and imaging applications with coherence preservation. The targets for further development of the type IIa diamond are size, crystal perfection, as measured by the techniques of white beam and monochromatic x-ray diffraction imaging (historically called x-ray topography), and also surface quality. Diamond plates extracted from the cubic growth sector furthest from the seed of the new low strain material produces no measurable broadening of the x-ray rocking curve width. One measures essentially the crystal reflectivity as defined by the intrinsic reflectivity curve (Darwin curve) width of a perfect crystal. In these cases the more sensitive technique of plane wave topography has been used to establish a local upper limit of the strain at the level of an 'effective misorientation' of 10(-7) rad.
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, R. K.; Raj, S. L.; Pascal, T. A.
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, R. K.; Raj, S. L.; Pascal, T. A.
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
NASA Technical Reports Server (NTRS)
Snowden, Steven L.
2007-01-01
Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.
Photospheric soft X-ray emission from hot DA white dwarfs
NASA Technical Reports Server (NTRS)
Wesemael, F.; Raymond, J. C.; Kahn, S. M.; Liebert, J.; Steiner, J. E.; Shipman, H. L.
1984-01-01
The Einstein Observatory's imaging proportional counter has detected 150-eV soft X-ray radiation from the four hot DA white dwarfs EG 187, Gr 288 and 289, and LB 1663. The observed pulse height spectra suggest that the emission is generated by hot photospheres whose T(eff) lie in the 30,000-60,000 K range. The IUE spacecraft UV spectra and H-beta line profiles for the four stars have been fitted, along with the X-ray fluxes, with a grid of hot, high gravity, homogeneous model atmospheres of mixed H-He composition. In all cases, the data require the presence of some X-ray opacity in the photosphere. Attention is given to the implications of this result in the context of white dwarf surface layer diffusion theories. Also noted are the limits imposed on the hot white dwarf population by the Einstein Medium Sensitivity Survey.
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
Lam, R. K.; Raj, S. L.; Pascal, T. A.; ...
2018-01-08
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
NASA Astrophysics Data System (ADS)
Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T.-C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.
2018-01-01
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (˜284 eV ) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.
Emoto, T; Akimoto, K; Ichimiya, A
1998-05-01
A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.
NASA Astrophysics Data System (ADS)
Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.
2018-03-01
Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.
NASA Astrophysics Data System (ADS)
Kuznetsov, M. V.; Ogorodnikov, I. I.; Vorokh, A. S.
2014-01-01
The state-of-the-art theory and experimental applications of X-ray photoelectron diffraction (XPD) and photoelectron holography (PH) are discussed. These methods are rapidly progressing and serve to examine the surface atomic structure of solids, including nanostructures formed on surfaces during adsorption of gases, epitaxial film growth, etc. The depth of analysis by these methods is several nanometres, which makes it possible to characterize the positions of atoms localized both on and beneath the surface. A remarkable feature of the XPD and PH methods is their sensitivity to the type of examined atoms and, in the case of high energy resolution, to the particular chemical form of the element under study. The data on experimental applications of XPD and PH to studies of various surface structures are analyzed and generalized. The bibliography includes 121 references.
Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Mrinal K.; Antonio, Mark R.
Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less
TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, L; Tang, S; Ahmad, M
Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less
NASA Astrophysics Data System (ADS)
Takeuchi, H.; Yamamoto, Y.; Kamo, Y.; Kunii, T.; Oku, T.; Wakaiki, S.; Nakayama, M.
2007-02-01
We demonstrate that Franz-Keldysh oscillations (FKOs) observed by photoreflectance (PR) spectroscopy are highly sensitive to the surface morphology of Al{x}Ga{1-x}N layers in Al{x}Ga{1-x}N heterostructures. Three Al{0.2}Ga{0.8}N/GaN heterostructures with different surface-morphology profiles, which are confirmed with atomic force microscopy, have been investigated. The X-ray-diffraction patterns are hardly affected by the Al{0.2}Ga{0.8}N/GaN-layer morphology. In contrast, it is revealed that cracks and pits dominating the morphology remarkably reduce the amplitude of the FKOs from the Al{0.2}Ga{0.8}N/GaN layer, which is attributed to the following two mechanisms related to the cracks and pits. One is lifetime broadening due to carrier scattering, and the other is the suppression of the modulation magnitude for the built-in electric field, which is caused by the trapping and recombination of photogenerated carriers at the surface.
Hard X-ray imaging from Explorer
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Murray, S. S.
1981-01-01
Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.
A new method to calibrate the absolute sensitivity of a soft X-ray streak camera
NASA Astrophysics Data System (ADS)
Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali
2016-12-01
In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.
Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes
NASA Astrophysics Data System (ADS)
Christensen, F. E.; Craig, W. W.; Windt, D. L.; Jimenez-Garate, M. A.; Hailey, C. J.; Harrison, F. A.; Mao, P. H.; Chakan, J. M.; Ziegler, E.; Honkimaki, V.
2000-09-01
Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10<~E<~80keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution of the bilayer thicknesses, and that the coatings are uniform at the 5% level over the mirror surface. Finally, we apply the measurements to predict effective areas achievable for HEFT and Con-X HXT using these W/Si designs.
High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters
NASA Technical Reports Server (NTRS)
Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.
2003-01-01
Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout
Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H
2012-01-01
We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175
High performance NO2 sensor using MoS2 nanowires network
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh
2018-01-01
We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules.
Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity
Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe
2013-01-01
The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook
2015-01-01
In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.
Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S
2016-10-15
We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.
Geant4 simulations of a wide-angle x-ray focusing telescope
NASA Astrophysics Data System (ADS)
Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing
2017-06-01
The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.
NASA Astrophysics Data System (ADS)
Sakurai, Kenji
2010-12-01
This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as updates on recent progress and global trends in the field. We planned to cover quite a wide area of surface and buried interface science with x-rays and neutrons. Following a great deal of discussion during the editing process, we have decided to change direction. As we intend to publish similar special issues on a frequent basis, we will not insist on editing this issue as systematic and complete collections of research. Many authors decided to write an ordinary research paper rather than an article including systematic accounts. Due to this change in policy, some authors declined to contribute, and the number of papers is now just 12. However, readers will find that the special issue gives an interesting collection of new original research in surface and buried interface studies with x-rays and neutrons. The 12 papers cover the following research topics: (1) polymer analysis by diffuse scattering; (2) discussion of the electrochemical solid--liquid interface by synchrotron x-ray diffraction; (3) analysis of capped nanodots by grazing incidence small-angle x-ray scattering (GISAXS); (4) discussion of the strain distribution in silicon by high-resolution x-ray diffraction; (5) study of mesoporous structures by a combination of x-ray reflectivity and GISAXS; (6) discussion of energy-dispersive x-ray reflectometry and its applications; (7) neutron reflectivity studies on hydrogen terminated silicon interface; (8) the fabrication and performance of a special mirror for water windows; (9) depth selective analysis by total-reflection x-ray diffraction; (10) nanoparticle thin films prepared by a gas deposition technique; (11) discussion of crystal truncation rod (CTR) scattering of semiconductor nanostructures; (12) magnetic structure analysis of thin films by polarized neutron reflectivity. While not discussed in the present special issue, x-ray and neutron techniques have made great progress. The most important steps forward have been in 2D/3D real-space imaging, and realtime measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki Awaji, Toyoo Miyajima, Shuuichi Doi and Kenji Nomura
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk
2016-05-15
X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less
Depth profiling of marker layers using x-ray waveguide structures
NASA Astrophysics Data System (ADS)
Gupta, Ajay; Rajput, Parasmani; Saraiya, Amit; Reddy, V. R.; Gupta, Mukul; Bernstorff, Sigrid; Amenitsch, H.
2005-08-01
It is demonstrated that x-ray waveguide structures can be used for depth profiling of a marker layer inside the guiding layer with an accuracy of better than 0.2 nm. A combination of x-ray fluorescence and x-ray reflectivity measurements can provide detailed information about the structure of the guiding layer. The position and thickness of the marker layer affect different aspects of the angle-dependent x-ray fluorescence pattern, thus making it possible to determine the structure of the marker layer in an unambiguous manner. As an example, effects of swift heavy ion irradiation on a Si/M/Si trilayer ( M=Fe , W), forming the cavity of the waveguide structure, have been studied. It is found that in accordance with the prediction of thermal spike model, Fe is much more sensitive to swift heavy ion induced modifications as compared to W, even in thin film form. However, a clear evidence of movement of the Fe marker layer towards the surface is observed after irradiation, which cannot be understood in terms of the thermal spike model alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.
We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.
We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less
Chemistry of surface nanostructures in lead precursor-rich PbZr0.52Ti0.48O3 sol-gel films
NASA Astrophysics Data System (ADS)
Gueye, I.; Le Rhun, G.; Gergaud, P.; Renault, O.; Defay, E.; Barrett, N.
2016-02-01
We present a study of the chemistry of the nanostructured phase at the surface of lead zirconium titanate PbZr0.52Ti0.48O3 (PZT) films synthesized by sol-gel method. In sol-gel synthesis, excess lead precursor is used to maintain the target stoichiometry. Surface nanostructures appear at 10% excess whereas 30% excess inhibits their formation. Using the surface-sensitive, quantitative X-ray photoelectron spectroscopy and glancing angle X-ray diffraction we have shown that the chemical composition of the nanostructures is ZrO1.82-1.89 rather than pyrochlore often described in the literature. The presence of a possibly discontinuous layer of wide band gap ZrO1.82-1.89 could be of importance in determining the electrical properties of PZT-based metal-insulator-metal heterostructures.
Henzler, Katja; Heilemann, Axel; Kneer, Janosch; Guttmann, Peter; Jia, He; Bartsch, Eckhard; Lu, Yan; Palzer, Stefan
2015-01-01
In order to take full advantage of novel functional materials in the next generation of sensorial devices scalable processes for their fabrication and utilization are of great importance. Also understanding the processes lending the properties to those materials is essential. Among the most sought-after sensor applications are low-cost, highly sensitive and selective metal oxide based gas sensors. Yet, the surface reactions responsible for provoking a change in the electrical behavior of gas sensitive layers are insufficiently comprehended. Here, we have used near-edge x-ray absorption fine structure spectroscopy in combination with x-ray microscopy (NEXAFS-TXM) for ex-situ measurements, in order to reveal the hydrogen sulfide induced processes at the surface of copper oxide nanoparticles, which are ultimately responsible for triggering a percolation phase transition. For the first time these measurements allow the imaging of trace gas induced reactions and the effect they have on the chemical composition of the metal oxide surface and bulk. This makes the new technique suitable for elucidating adsorption processes in-situ and under real operating conditions. PMID:26631608
Apollo 15 X-ray fluorescence experiment
NASA Technical Reports Server (NTRS)
Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.
1971-01-01
The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.
NASA Astrophysics Data System (ADS)
Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.
2012-12-01
X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.
Self-assembly of DNA functionalized gold nanoparticles at the liquid-vapor interface
Zhang, Honghu; Wang, Wenjie; Hagen, Noah; ...
2016-05-30
Here, surface sensitive synchrotron X-ray scattering and spectroscopy are used to monitor and characterize the spontaneous formation of 2D Gibbs monolayers of thiolated single-stranded DNA-functionalized gold nanoparticles (ssDNAAuNPs) at the vapor–solution interface by manipulating salt concentrations. Grazing incidence small-angle X-ray scattering and X-ray refl ectivity show that the noncomplementary ssDNA-AuNPs dispersed in aqueous solution spontaneously accumulate at the vapor–liquid interface in the form of a single layer by increasing MgCl 2 or CaCl 2 concentrations. Furthermore, the monoparticle layer undergoes a transformation from short- to long-range (hexagonal) order above a threshold salt-concentration. Using various salts at similar ionic strength tomore » those of MgCl 2 or CaCl 2 such as, NaCl or LaCl 3, it is found that surface adsorbed NPs lack any order. X-ray fluorescence near total reflection of the same samples provides direct evidence of interfacial gold and more importantly a significant surface enrichment of the cations. Quantitative analysis reveals that divalent cations screen the charge of ssDNA, and that the hydrophobic hexyl-thiol group, commonly used to functionalize the ssDNA (for capping the AuNPs), is likely the driving force for the accumulation of the NPs at the interface.« less
High-Resolution Detector For X-Ray Diffraction
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.
1988-01-01
Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.
Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.
Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
2017-09-01
Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.
Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources
Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
2017-01-01
Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079
X-ray fractography on fatigue fractured surface of austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo
1995-12-31
X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.
2012-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these Columbia River basalt and Concord Gray granite materials, these large samples present two known standards with which to compare PING's experimentally measured elemental composition results, We will present both gamma ray and neutron experimental results from PING measurements of the granite and basalt test formations in various layering configurations and compare the results to the known composition.
Ben-Shlomo, Avi; Bartal, Gabriel; Mosseri, Morris; Avraham, Boaz; Leitner, Yosef; Shabat, Shay
2016-04-01
X-ray absorption is highest in the organs and tissues located closest to the radiation source. The photon flux that crosses the body decreases from the entry surface toward the image receptor. The internal organs absorb x-rays and shield each other during irradiation. Therefore, changing the x-ray projection angle relative to the patient for specific spine procedures changes the radiation dose that each organ receives. Every organ has different radiation sensitivity, so irradiation from different sides of the body changes the biological influence and radiation risk potential on the total body, that is the effective dose (ED). The study aimed to determine the less radiation-sensitive sides of the body during lateral and anterior-posterior (AP) or posterior anterior (PA) directions. The study used exposure of patient phantoms and Monte Carlo simulation of the effective doses. Calculations for adults and 10-year-old children were included because the pediatric population has a greater lifetime radiation risk than adults. Pediatric and adult tissue and organ doses and ED from cervical, thoracic, and lumbar x-ray spine examinations were performed from different projections. Standard mathematical phantoms for adults and 10-year-old children, using PCXMC 2.0 software based on Monte Carlo simulations, were used to calculate pediatric and adult tissue and organ doses and ED. The study was not funded. The authors have no conflicts of interest to declare. Spine x-ray exposure from various right (RT) LAT projection angles was associated with lower ED compared with the same left (LT) LAT projections (up to 28% and 27% less for children aged 10 and adults, respectively). The PA spine projections showed up to 64% lower ED for children aged 10 and 65% for adults than AP projections. The AP projection at the thoracic spine causes an excess breast dose of 543.3% and 597.0% for children aged 10 and adults, respectively. Radiation ED in spine procedures can be significantly reduced by performing x-ray exposures through the less radiation-sensitive sides of the body, which are PA in the frontal position and right lateral in the lateral position. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friebel, Daniel
In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at highmore » electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.« less
Studies of electrode structures and dynamics using coherent X-ray scattering and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, H.; Liu, Y.; Ulvestad, A.
2017-08-01
Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Maninder; Qiang, You; Jiang, Weilin
2014-12-02
Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite,more » so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.« less
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
The Mapping X-ray Fluorescence Spectrometer (MapX)
NASA Astrophysics Data System (ADS)
Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.
2017-12-01
Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.
Resonant soft X-ray scattering for polymer materials
Liu, Feng; Brady, Michael A.; Wang, Cheng
2016-04-16
Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less
Radiation dose reduction in a neonatal intensive care unit in computed radiography.
Frayre, A S; Torres, P; Gaona, E; Rivera, T; Franco, J; Molina, N
2012-12-01
The purpose of this study was to evaluate the dose received by chest x-rays in neonatal care with thermoluminescent dosimetry and to determine the level of exposure where the quantum noise level does not affect the diagnostic image quality in order to reduce the dose to neonates. In pediatric radiology, especially the prematurely born children are highly sensitive to the radiation because of the highly mitotic state of their cells; in general, the sensitivity of a tissue to radiation is directly proportional to its rate of proliferation. The sample consisted of 208 neonatal chest x-rays of 12 neonates admitted and treated in a Neonatal Intensive Care Unit (NICU). All the neonates were preterm in the range of 28-34 weeks, with a mean of 30.8 weeks. Entrance Surface Doses (ESD) values for chest x-rays are higher than the DRL of 50 μGy proposed by the National Radiological Protection Board (NRPB). In order to reduce the dose to neonates, the optimum image quality was achieved by determining the level of ESD where level noise does not affect the diagnostic image quality. The optimum ESD was estimated for additional 20 chest x-rays increasing kVp and reducing mAs until quantum noise affects image quality. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong
2014-01-01
The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110° to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 µg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging. PMID:24770916
Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong; Xing, Lei
2014-05-01
The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110(°) to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 μg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging.
NASA Technical Reports Server (NTRS)
Skinner, Gerry; Arzoumanian, Z.; Cash, W.; Gehrels, N.; Gendreau, K.; Gorenstein, P.; Krizmanic, J.; Leitner, J.; Miller, M.; Reasenberg, R.;
2008-01-01
MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.
Solar x ray astronomy rocket program
NASA Technical Reports Server (NTRS)
1990-01-01
The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.
In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity
Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri; ...
2016-10-26
Surface sensitive X-ray reflectivity (XRR) measurements were performed to investigate the electrochemical lithiation of a native oxide terminated single crystalline silicon (100) electrode in real time during the first galvanostatic discharge cycle. This allows us to gain nanoscale, mechanistic insight into the lithiation of Si and the formation of the solid electrolyte interphase (SEI). We describe an electrochemistry cell specifically designed for in situ XRR studies and have determined the evolution of the electron density profile of the lithiated Si layer (Li xSi) and the SEI layer with subnanometer resolution. We propose a three-stage lithiation mechanism with a reaction limited,more » layer-by-layer lithiation of the Si at the Li xSi/Si interface.« less
Auer, John; Witherbee, William D.
1921-01-01
When a fixed area of the ears of rabbits is subjected to the action of a standard destructive dose of x-rays (30 skin units) the type of reaction resulting depends upon the previous treatment of the rabbit. (1) In normal rabbits a mild acute inflammation develops in the x-rayed area which leads at once to a perforating gangrene within an average of 15 days. (2) If rabbits are x-rayed and about 2 weeks later injected with horse serum for the first time, a mild acute inflammation appears which heals for a time; then a second, subacute inflammation sets in which leads to a perforating gangrene. The average time of the process from the first inflammation to gangrene is 32 days. (3) If rabbits are sensitized with horse serum and 10 days later are exposed locally to the standard dose of x-rays, the ensuing ear reaction is either similar to the second reaction described above, except that it may last up to 110 days, or the first inflammation leads to a healing which may be apparently permanent (340 + days). (4) If rabbits are first sensitized with horse serum, exposed locally to the standard dose of x-rays 10 days later, and 13 days after the x-ray treatment reinjected with horse serum, the reaction of the x-rayed area of the ears is in general similar to the second reaction described above (inflammation—healing—inflammation—gangrene). The average time of the whole process is about 42 days. On the basis of the general hypothesis that an anaphylactic reaction is initiated in the body when the specific antibody meets its antigen, and that both antibody and antigen are rendered more or less functionally inert by their interaction, the following inferences may be drawn from our experimental results. (1) The protection from the effects of a standard destructive dose of x-rays which a previous sensitization confers, is referable to the presence of anaphylactic antibodies in the x-rayed area. (2) This protection is largely due to the anaphylactic antibodies which are anchored in the x-rayed area, and not to those which are free in the circulation. (3) An anaphylactic reaction renders the anchored anaphylactic antibodies largely impotent as protective factors against the standard destructive x-ray dose, even though sensitization preceded exposure to the x-rays. (4) An area treated with the standard destructive dose of x-rays is unable to produce or to anchor a sufficient amount of anaphylactic antibodies for protection from necrosis, when the x-ray treatment precedes the sensitization, or when the locally anchored anaphylactic antibodies are rendered functionally inactive by a general anaphylactic reaction. It is possible that the procedure of increasing the resistance of the skin to a destructive dose of x-rays by means of a previous sensitization with protein may be applicable in the treatment of certain types of inoperable disease, when it is important to use massive doses of x-rays. Animals which have been sensitized, or sensitized and reinjected with any undenatured alien protein, should not be reemployed as normal controls in any investigation unless trial has shown that these proteinized animals react quantitatively and qualitatively like normal animals. The presence of an abnormal reactor in a group of supposedly normal animals may be an indication of a previous proteinization. PMID:19868536
Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenier, Antonin; Liu, Hao; Wiaderek, Kamila M.
2017-08-15
Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surfacemore » impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.« less
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
The very soft X-ray emission of X-ray-faint early-type galaxies
NASA Technical Reports Server (NTRS)
Pellegrini, S.; Fabbiano, G.
1994-01-01
A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial surface brightness distribution. The present data may suggest that the X-ray surface brightness is more extended than the optical profile. In this case, a straightforward explanation in terms of stellar sources could not be satisfactory. The available data can be better explained with three different contributions: a very soft component of stellar origin, a hard component from X-ray binaries, and an approximately 0.6 keV hot ISM. The latter can explain the extended X-ray surface brightness profile, if the galaxy has a dark-to-luminous mass ratio of 9, with the dark matter very broadly distributed, and a SN Ia explosive rate of approximately 0.6 the Tammann rate.
High sensitive X-ray films to detect electron showers in 100 GeV region
NASA Technical Reports Server (NTRS)
Taira, T.; Shirai, T.; Tateyama, N.; Torii, S.; Nishimura, J.; Fujii, M.; Yoshida, A.; Aizu, H.; Nomura, Y.; Kazuno, M.
1985-01-01
Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
NASA Technical Reports Server (NTRS)
Becker, Werner; Weisskopf, Martin C.; Tenant, Allyn F.; Jessmer, Axel; Zhang, Shiang N.
2004-01-01
We have completed part of a program to study the X-ray emission properties of old rotation-powered pulsars with XMM-Newton in order to probe and identify the origin of their X radiation. The X-ray emission from these old pulsars is largely dominated by non-thermal processes. None of the observed spectra required adding a thermal component consisting of either a hot polar cap or surface cooling emission to model the data. The energy spectrum of PSR B0950+08 is best described by a single power law of photon-index alpha = 1.93(sup +0.14)(sub -0.12). Three-sigma temperature upper limits for possible contributions from a heated polar cap or the whole neutron star surface are T(sup infinity)(sub pc) < 0.87 x 10(exp 6) K and T(sup infinity)(sub s) < 0.48 x 10(exp 6) K, respectively. We also find that the X-ray emission from PSR B0950+08 is pulsed with two peaks per rotation period. The phase separation between the two X-ray peaks is approx. 144 deg (maximum to maximum) which is similar to the pulse peak separation observed in the radio band at 1.4 GHz. The fraction of X-ray pulsed photons is approx. 30%. A phase resolved spectral analysis confirms the nonthermal nature of the pulsed emission and finds power law slopes of alpha = 2.4(sup +0.52)(sub -0.42) and alpha = 1.93(sup +0.29)(sub -0.24) for the pulse peaks P1 and P2, respectively. The spectral emission properties observed for PSR B0823+26 are similar to those of PSR B0950+08. Its energy spectrum is very well described by a single power law with photon-index alpha = 2.5(sup +0.52)(sub -0.24. Three-sigma temperature upper limits for thermal contributions from a hot polar cap or from the entire neutron star surface are T(sup infinity)(sub pc) < 1.17 x 10(exp 6) K and T(sup infinity)(sub s) < 0.5 x 10(exp 6) K, respectively. There is evidence for pulsed X-ray emission at the - 97% confidence level with a pulsed fraction of 49 +/- 22%. For PSR 52043+2740 we report the first detection of X-ray emission. A power law spectrum, or a combination of a thermal and a power law spectrum all yield acceptable descriptions of its X-ray spectrum. No X-ray pulses are detected from PSR J2043+2740 but the sensitivity is low - the 2-sigma pulsed fraction upper limit is 57% assuming a sinusoidal pulse profile.
The radiation gas detectors with novel nanoporous converter for medical imaging applications
NASA Astrophysics Data System (ADS)
Zarei, H.; Saramad, S.
2018-02-01
For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.
LAMP: a micro-satellite based soft x-ray polarimeter for astrophysics
NASA Astrophysics Data System (ADS)
She, Rui; Feng, Hua; Muleri, Fabio; Soffitta, Paolo; Xu, Renxin; Li, Hong; Bellazzini, Ronaldo; Wang, Zhanshan; Spiga, Daniele; Minuti, Massimo; Brez, Alessandro; Spandre, Gloria; Pinchera, Michele; Sgrò, Carmelo; Baldini, Luca; Wen, Mingwu; Shen, Zhengxiang; Pareschi, Giovanni; Tagliaferri, Gianpiero; Tayabaly, Kashmira; Salmaso, Bianca; Zhan, Yafeng
2015-08-01
The Lightweight Asymmetry and Magnetism Probe (LAMP) is a micro-satellite mission concept dedicated for astronomical X-ray polarimetry and is currently under early phase study. It consists of segmented paraboloidal multilayer mirrors with a collecting area of about 1300 cm2 to reflect and focus 250 eV X-rays, which will be detected by position sensitive detectors at the focal plane. The primary targets of LAMP include the thermal emission from the surface of pulsars and synchrotron emission produced by relativistic jets in blazars. With the expected sensitivity, it will allow us to detect polarization or place a tight upper limit for about 10 pulsars and 20 blazars. In addition to measuring magnetic structures in these objects, LAMP will also enable us to discover bare quark stars if they exist, whose thermal emission is expected to be zero polarized, while the thermal emission from neutron stars is believed to be highly polarized due to plasma polarization and the quantum electrodynamics (QED) effect. Here we present an overview of the mission concept, its science objectives and simulated observational results.
NASA Astrophysics Data System (ADS)
Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.
2018-04-01
Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.
NASA Astrophysics Data System (ADS)
Hansen, Matthew E.; Cerrina, Franco
1994-05-01
A high-sensitivity holographic and interferometric metrology developed at the Center for X- ray Lithography (CXrL) has been employed to investigate in-plane distortions (IPD) produced in x-ray mask materials. This metrology has been applied to characterize damage to x-ray mask materials exposed to synchrotron radiation. X-ray mask damage and accelerated mask damage studies on silicon nitride and silicon carbide were conducted on the Aladdin ES-1 and ES-2 beamline exposure stations, respectively. Accumulated in-plane distortions due to x-ray irradiation were extracted from the incremental interferometric phase maps to yield IPD vs. dose curves for silicon nitride mask blanks. Silicon carbide mask blanks were subjected to accelerated mask damage in the high flux 2 mm X 2 mm beam of the ES-2 exposure station. An accelerated damage study of silicon carbide has shown no in-plane distortion for an accumulated dose of 800 kJ/cm2 with a measurement sensitivity of less than 5 nm.
Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2015-01-01
The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei
2015-05-01
In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.
2014-10-20
In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less
First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles
Ouf, F.-X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.-J.; Nicolas, C.; Robert, E.; Patanen, M.; Barreda, F.-A.; Sublemontier, O.; Coppalle, A.; Yon, J.; Miserque, F.; Mostefaoui, T.; Regier, T. Z.; Mitchell, J.-B. A.; Miron, C.
2016-01-01
Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot’s work function obtained at different combustion conditions. PMID:27883014
First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles.
Ouf, F-X; Parent, P; Laffon, C; Marhaba, I; Ferry, D; Marcillaud, B; Antonsson, E; Benkoula, S; Liu, X-J; Nicolas, C; Robert, E; Patanen, M; Barreda, F-A; Sublemontier, O; Coppalle, A; Yon, J; Miserque, F; Mostefaoui, T; Regier, T Z; Mitchell, J-B A; Miron, C
2016-11-24
Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot's work function obtained at different combustion conditions.
NASA Astrophysics Data System (ADS)
Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.
2008-11-01
Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.
"A Richness Study of 14 Distant X-Ray Clusters from the 160 Square Degree Survey"
NASA Technical Reports Server (NTRS)
Jones, Christine; West, Donald (Technical Monitor)
2001-01-01
We have measured the surface density of galaxies toward 14 X-ray-selected cluster candidates at redshifts z(sub i) 0.46, and we show that they are associated with rich galaxy concentrations. These clusters, having X-ray luminosities of Lx(0.5-2 keV) approx. (0.5 - 2.6) x 10(exp 44) ergs/ sec are among the most distant and luminous in our 160 deg(exp 2) ROSAT Position Sensitive Proportional Counter cluster survey. We find that the clusters range between Abell richness classes 0 and 2 and have a most probable richness class of 1. We compare the richness distribution of our distant clusters to those for three samples of nearby clusters with similar X-ray luminosities. We find that the nearby and distant samples have similar richness distributions, which shows that clusters have apparently not evolved substantially in richness since redshift z=0.5. There is, however, a marginal tendency for the distant clusters to be slightly poorer than nearby clusters, although deeper multicolor data for a large sample would be required to confirm this trend. We compare the distribution of distant X-ray clusters in the L(sub X)-richness plane to the distribution of optically selected clusters from the Palomar Distant Cluster Survey. The optically selected clusters appear overly rich for their X-ray luminosities, when compared to X-ray-selected clusters. Apparently, X-ray and optical surveys do not necessarily sample identical mass concentrations at large redshifts. This may indicate the existence of a population of optically rich clusters with anomalously low X-ray emission, More likely, however, it reflects the tendency for optical surveys to select unvirialized mass concentrations, as might be expected when peering along large-scale filaments.
Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil
NASA Astrophysics Data System (ADS)
Sun, Bin; Wang, Yan; Ding, Guifu
2016-09-01
This paper reports on a flexible Ni micro wire with CNTs embedded into its surface. By using micromachining technology, for the first time, we could implant nanoscale materials into micro-scale metal substrate at room temperature. Thanks to the effective direct contact and the strong interactions between CNTs and the substrate, field emission current of 1.11 mA (current density of 22.2 mA/cm2) could be achieved from the micro wire. Moreover, the wire shows excellent mechanical properties for large amplitude bending, which is beneficial for geometric designing. To check the practical application of the wire, a simplified X-ray imaging system was set up by modifying a conventional tube. The gray shade that appears on the sensitive film after being exposed to the radiation confirms the X-ray generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenjie; Zhang, Honghu; Feng, Shuren
Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Carini, Gabriella A.; Wei, Chen; Elsner, Ronald F.; Kramer, Georgiana; De Geronimo, Gianluigi; Keister, Jeffrey W.; Zheng, Li; Ramsey, Brian D.; Rehak, Pavel;
2009-01-01
Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.
NASA Astrophysics Data System (ADS)
Hashemi, Hamed; Namazi, Hassan
2018-07-01
A new blue fluorescent surface modified graphene oxide (GO) by 6-(5-bromothiophen-2-yl) benzo[c][1,2,5]selenadiazole-5-carboxylic acid (TB) denoted as (GO-TB) was synthesized. The obtained hybrid was characterized by Scanning Electron Microscope (SEM/EDS); Brunauer-Emmett-Teller (BET); X-Ray Diffraction Spectroscopy (XRD); X-Ray Photoelectron Spectroscopy (XPS); UV-Vis Absorption Spectroscopy, and Fourier Transformed Infrared Spectroscopy (FTIR). The synthesized TB moiety displayed orange emission around 590 nm, while GO-TB exhibited a blue photoluminescence around 431 and 159 nm blue shift of photoluminescence. Doxorubicin immobilized on the hybrid surface up to 93%, and the release behavior in three different pHs was investigated. The release profile indicated a pH-dependent liberation with Fickian diffusion mechanism. The cytotoxicity of the hybrid was studied and the IC50 value for the hybrid was 5.16 µg/ml.
A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods
Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter
2017-01-01
Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850
Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh
2018-01-01
We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.
Acquisition of an X-Ray Diffractometer with WAXS and SAXS for Materials Research
2015-03-31
2. This ligand is known as a sensitizer for applications in dye -sensitized solar cells, and the presence of the amino groups could potentially...achieve different surface properties, thus making them excellent candidates for use as fillers in bio-based biodegradable composite materials...These CNCs are environmentally safe sustainable, biodegradable , carbon neutral, and have low environmental, health and safety risks. Figure 9 below
Direct surface magnetometry with photoemission magnetic x-ray dichroism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, J.G.; Goodman, K.W.; Schumann, F.O.
1997-04-01
Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data ofmore » linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.« less
Cheng, Lei; Crumlin, Ethan J; Chen, Wei; Qiao, Ruimin; Hou, Huaming; Franz Lux, Simon; Zorba, Vassilia; Russo, Richard; Kostecki, Robert; Liu, Zhi; Persson, Kristin; Yang, Wanli; Cabana, Jordi; Richardson, Thomas; Chen, Guoying; Doeff, Marca
2014-09-14
Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.
Observational Aspects of Hard X-ray Polarimetry
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanmoy
2016-04-01
Sensitive polarization measurements in X-ray may address a wealth of astrophysical phenomena, which so far remain beyond our understanding through available X-ray spectroscopic, imaging, and timing studies. Though scientific potential of X-ray polarimetry was realized long ago, there has not been any significant advancement in this field for the last four decades since the birth of X-ray astronomy. The only successful polarization measurement in X-rays dates back to 1976, when a Bragg polarimeter onboard OSO-8 measured polarization of Crab nebula. Primary reason behind the lack in progress is its extreme photon hungry nature, which results in poor sensitivity of the polarimeters. Recently, in the last decade or so, with the advancement in detection technology, X-ray polarimetry may see a significant progress in near future, especially in soft X-rays with the invention of photoelectron tracking polarimeters. Though photoelectric polarimeters are expected to provide sensitive polarization measurements of celestial X-ray sources, they are sensitive only in soft X-rays, where the radiation from the sources is dominated by thermal radiation and therefore expected to be less polarized. On the other hand, in hard X-rays, sources are ex-pected to be highly polarized due to the dominance of nonthermal emission over its thermal counterpart. Moreover, polarization measurements in hard X-rays promises to address few interesting scientific issues regarding geometry of corona for black hole sources, emission mechanism responsible for the higher energy peak in the blazars, accretion geometry close to the magnetic poles in accreting neutron star systems and acceleration mechanism in solar flares. Compton polarimeters provide better sensitivity than photoelectric polarimeters in hard X-rays with a broad energy band of operation. Recently, with the development of hard X-ray focusing optics e.g. NuSTAR, Astro-H, it is now possible to conceive Compton polarimeters at the focal plane of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant-4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant-4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past in retrieving polarization information from few of such spectroscopic instruments like RHESSI, INTEGRAL-IBIS, INTEGRAL-SPI. Cadmium Zinc Telluride Imager (CZTI) onboard Astrosat, India's first astronomical mission, is one of such instruments which is expected to provide sensitive polarization measurements for bright X-ray sources. CZTI consists of 64 CZT detector modules, each of which is 5 mm thick and 4 cm × 4 cm in size. Each CZT module is subdivided into 256 pixels with pixel pitch of 2.5 mm. Due to its pixelation nature and significant Compton scattering efficiency at energies beyond 100 keV, CZTI can work as a sensitive Compton polarimeter in hard X-rays. Detailed Geant-4 simulations and polarization experiments with the flight configuration of CZTI show that CZTI will have significant polarization measurement capability for bright sources in hard X-rays. CZTI is primarily a spectroscopic instrument with coded mask imaging. To properly utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix for CZTI, which in turn requires precise modelling of the CZT lines shapes for monoenergetic X-ray interaction. CZT detectors show an extended lower energy tail of an otherwise Gaussian line shape due to low mobility and lifetime of the charge carriers. On the other hand, interpixel charge sharing may also contribute to the lower energy tail making the line shape more complicated. We have developed a model to predict the line shapes from CZTI modules taking into account the mobility and lifetime of the charge carriers and charge sharing fractions. The model predicts the line shape quite well and can be used to generate pixel-wise response matrix for CZTI.
NASA Astrophysics Data System (ADS)
Sutikno; Susilo; Raharja, H. D.
2018-05-01
The epoxy resin-based photoresist is fabricated by mixing of resin (polymer), sodium acetate trihydrate and ethanol in mass variation using heated magnetic stirrer at 100 rpm speed and temperature of 75 °C. Sodium acetate trihydrate and ethanol each play role as photoactive compound (PAC) and solvent, respectively. Photoresist thin films were grown through spin coating method in voltage 5 V during the 60 s and heating temperature of 150 °C for 15 min. To determine photoresist sensitivity, ultraviolet and X-ray were exposed on the photoresist surfaces. The fabricated photoresist properties are densities of 1 g·mL‑1 to 1.23 g·mL‑1, dynamic viscosities of 7 Cp to 22 Cp and kinematic viscosities of 7 Cst to 18 Cst. The absorbances of thin films are in the wavelength range of 350 nm to 1050 nm at the maximum absorbances of 0.2 to 0.5 in the wavelength g-line, h-line, and i-line. The generated maximum current achieved (1.84 × 10‑8) A. The microstructures of epoxy-based photoresist seem homogeneous. The sensitivities of UV exposures show a photochemistry reaction on photoresist occurred, however for X-ray exposure no reaction found.
NASA Technical Reports Server (NTRS)
Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)
1998-01-01
X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.
Energy dispersive X-ray analyses of organelles of NaCI-treated maize root cells
NASA Astrophysics Data System (ADS)
Stelzer, Ralf
1984-04-01
NaCl sensitive plants of Zea mays cv. ADOUR were grown in nutrient solutions with or without NaCl. Frozen, hydrated root-tip tissues were investigated by means of an ETEC scanning electron microscope fitted with a KEVEX energy dispersive X-ray analyser. Morphological details of the gently etched but non-coated surface of the cross fractured specimen were easy to identify and to analyse using an electron beam with a low intensity at 10 kV. X-ray data obtained from cell compartments and organelles as nuclei, nucleoli and mitochondria within individual cells establish typical X-ray spectra. Comparisons of these spectra support the hypothesis that Na + ions are predominantly localized in vacuoles and also to a lesser extent in the cytoplasm, e.g. in small vesicles, but not in other cell organelles. Furthermore the analysed cell compartments show differences in the distribution of Mg, P, S, Cl, K and Ca effected by the addition of NaCl to the growth medium. The X-ray data are discussed in relation to the physiological meaning of a NaCl induced redistribution of elements within individual maize root cells.
Simulating the x-ray image contrast to setup techniques with desired flaw detectability
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
NASA Astrophysics Data System (ADS)
Eckart, Megan E.; Mazin, B. A.; Bumble, B.; Golwala, S. R.; Zmuidzinas, J.; Day, P. K.; Harrison, F. A.
2006-09-01
Microwave Kinetic Inductance Detectors (MKIDs) have the potential to provide megapixel imagers with few eV spectral resolution for future X-ray missions such as Gen-X. MKIDs offer the advantage over many other cryogenic detector technologies that they can be easily multiplexed, so that arrays with many thousand pixels are readily achievable. In addition, the readout electronics can be operated at room temperature, a significant advantage for space applications. MKIDs exploit the dependence of surface impedance of a superconductorwith the quasiparticle density. Quasiparticles are created by absorption of X-rays, with number proportional to the X-ray energy. The impedance change may be sensitively measured using a thin-film resonant circuit. The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. To apply the MKID scheme to X-ray detection we pattern tantalum strips with aluminum MKIDs attached at each end. An incident X-ray is absorbed in the Ta and creates millions of quasiparticle excitations, which diffuse to each end of the strip, finally entering the Al resonators where they are trapped and sensed. Simultaneous monitoring of the signal at both ends of the strip allow position and energy determination for each photon. We have demonstrated working strip detectors in the laboratory, and will present our measurements of the quasiparticle diffusion constant and the quasiparticle lifetime in tantalum, the aluminum quasiparticle lifetime, and the energy resolution of the detector. We will also discuss ideas for future detector designs and suggest ultimate performance goals for X-ray astronomy applications.
NASA Astrophysics Data System (ADS)
Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki
2012-09-01
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
Systems and methods for detecting x-rays
Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna
2006-05-02
Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.
Coronary angiography using synchrotron radiation (invited)
NASA Astrophysics Data System (ADS)
Thompson, A. C.; Rubenstein, E.; Zeman, H. D.; Hofstadter, R.; Otis, J. N.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.; Thomlinson, W.; Kernoff, R. S.
1989-07-01
Imaging of coronary arteries using a venous instead of an arterial injection of contrast agent could provide a much safer method to diagnose heart disease. The tunability, intensity, and collimation of synchrotron radiation x-ray beams makes possible imaging systems with greatly improved imaging sensitivity. A pair of fan x-ray beams, a movable patient chair, and a multielement x-ray detector are used to acquire a pair of x-ray images above and below the iodine K edge. The logarithmic subtraction of these two images produces an image with excellent sensitivity to contrast agent and minimal sensitivity to bone and tissue. High-quality images from a dog and preliminary images from five humans have been obtained. Improvements are being made to the system to increase the effective radiation flux and to measure the position of both x-ray beams.
Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering
NASA Astrophysics Data System (ADS)
Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.
2018-02-01
Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.
The surface structure of silver-coated gold nanocrystals and its influence on shape control
Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; ...
2015-07-08
Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less
Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing
NASA Astrophysics Data System (ADS)
Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh
2018-01-01
Glucose sensing properties of mesoporous well-aligned, dense nickel oxide (NiO) nanostructures (NSs) in nanopetals (NPs) shape grown hydrothermally on the FTO-coated glass substrate has been demonstrated. The structural study based investigations of NiO-NPs has been carried out by X-ray diffraction (XRD), electron and atomic force microscopies, energy dispersive X-ray (EDX), and X-ray photospectroscopy (XPS). Brunauer-Emmett-Teller (BET) measurements, employed for surface analysis, suggest NiO's suitability for surface activity based glucose sensing applications. The glucose sensor, which immobilized glucose on NiO-NPs@FTO electrode, shows detection of wide range of glucose concentrations with good linearity and high sensitivity of 3.9 μA/μM/cm2 at 0.5 V operating potential. Detection limit of as low as 1 μΜ and a fast response time of less than 1 s was observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability & reproducibility and shows inert behavior toward ascorbic acid (AA), uric acid (UA) and dopamine acid (DA) making it a perfect non-enzymatic glucose sensor.
NASA Astrophysics Data System (ADS)
Madsen, A.; Als-Nielsen, J.; Hallmann, J.; Roth, T.; Lu, W.
2016-07-01
β -brass exhibits an archetypical example of an order-disorder transition with a critical behavior that was previously investigated by neutron scattering. The data were well described by the three-dimensional (3d) Ising model but the relatively crude experimental resolution prevented an in-depth examination of the single-length scaling hypothesis, a cornerstone in the theory of critical phenomena. With the development of synchrotron x-ray experiments, high-resolution data could be recorded and surprisingly it was found that the single-length scaling did not hold in most critical systems, possibly due to strain originating from surface defects and/or impurities. In this paper we demonstrate single-length critical behavior using high-resolution x-ray scattering in β -brass. The investigations confirm that β -brass behaves like a 3d Ising system over a wide range of length scales comprising correlated clusters of millions of atoms. To vary the surface sensitivity, experiments have been performed both in Bragg reflection and Laue transmission geometries but without any substantial differences observed in the scaling and critical behavior.
Pan, Tung-Ming; Wang, Chih-Wei; Chen, Ching-Yi
2017-06-07
In this study we developed CeY x O y sensing membranes displaying super-Nernstian pH-sensitivity for use in electrolyte-insulator-semiconductor (EIS) pH sensors. We examined the effect of thermal annealing on the structural properties and sensing characteristics of the CeY x O y sensing membranes deposited through reactive co-sputtering onto Si substrates. X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy revealed the structural, morphological, and chemical features, respectively, of the CeY x O y films after their annealing at 600-900 °C. Among the tested systems, the CeY x O y EIS device prepared with annealing at 800 °C exhibited the highest sensitivity (78.15 mV/pH), the lowest hysteresis voltage (1.4 mV), and the lowest drift rate (0.85 mV/h). Presumably, these annealing conditions optimized the stoichiometry of (CeY)O 2 in the film and its surface roughness while suppressing silicate formation at the CeY x O y -Si interface. We attribute the super-Nernstian pH-sensitivity to the incorporation of Y ions in the Ce framework, thereby decreasing the oxidation state Ce (Ce 4+ → Ce 3+ ) and resulting in less than one electron transferred per proton in the redox reaction.
Lifting the veil on the X-ray universe
NASA Astrophysics Data System (ADS)
1999-11-01
ESA's X-ray Multi Mirror mission - XMM - is the second Cornerstone in ESA's Long Term Scientific Programme (*). This new X-ray space telescope promises even more discoveries. With the large collecting area of its mirrors and the high sensitivity of its cameras, XMM is expected to increase radically our understanding of high-energy sources - clues to a mysterious past, and keys to understanding the future of the Universe. 174 wafer-thin X-ray mirrors X-rays coming from celestial objects are highly energetic and elusive. They can best be measured and studied after focusing a sufficient number upon sensitive detectors. To achieve this, XMM's Mirror Modules have been given a gargantuan appetite for X-rays. The space observatory combines three barrel-shaped telescope modules. In each are nested 58 wafer-thin concentric mirror shells highly polished and subtly shaped. Passing through at an extremely shallow angle, the so-called "grazing incidence", the X-rays will be beamed to the science instruments situated on the focal plane at the other extremity of the satellite. The three mirror modules have a total mirror surface of over 120m2 - practically the size of a tennis court.. The collecting power of XMM's three telescopes is the greatest ever seen on an X-ray space mission, many times more than the most recently launched X-ray satellite. The design and assembly of the mirror modules, their testing for operation in space and their precise calibration constitute one of the greatest achievements of the XMM programme. The flimsy mirror shells, with their gold reflective surface on a nickel backing, were made by replication like carbon copies from master moulds. They were shaped to an accuracy of a thousandth of a millimetre, and then polished to a smoothness a thousand times better than that. Packaged one within another like Russian dolls, each mirror was focused and centred with respect to its neighbour to an accuracy of 25 microns - a quarter of the width of a human hair. A multi-spectral space telescope The spacecraft carries three sets of science instruments, not only capable of making images of an X-ray source but also able to precisely distinguish the "colour" of the X-rays being viewed. At the prime focus of each of the telescopes are three European Photon Imaging Cameras. With silicon chips that can register extremely weak X-ray radiation, these advanced cameras are capable of detecting rapid variations in the intensity of a source. Grating structures at the exit of two mirror modules will reflect about half the incoming rays to a secondary focus, with its own cameras. This Reflection Grating Spectrometer will "fan out" the various wavelengths (much like a prism with visible light), and indicate in more detail the presence of individual elements, such as oxygen and iron. The third instrument aboard XMM is a conventional but very sensitive optical telescope. It will observe simultaneously the same regions as the X-ray telescopes but in the ultraviolet and visible wavelengths, giving astronomers complementary data about the X-ray sources being studied. In orbit, this 30-cm telescope will be as sensitive as a 4-m instrument on the Earth's surface. The mysteries of the X-ray sky XMM will explore the hidden depths of the Universe, its violent hotspots where stars and galaxies are formed, and where worlds and matter itself disappear. Much as the colour of a street lamp can indicate which gas it uses, the science instruments on board XMM will reveal the deepest secrets of X-ray objects, their chemical composition and temperatures - clues to the physical processes that are taking place. Astronomers will use XMM to resolve the mysteries of stars that exploded long ago as supernovae and whose remnants, glowing with X-rays, may be supplying material for new planets and stars. They will study regions of supernova remnants that are still hot and may hold the key to understanding the origin of the enigmatic cosmic rays that pervade the Universe. The mission will study X-rays that originate from "vampire stars" that feed upon their companions, where intense gravitational fields swirl matter from one sphere to the other in strange and terrifying ballets. XMM's high-speed cameras will examine celestial sources whose X-rays pulse rhythmically and mysteriously, and those that flash briefly, pinpointing perhaps gigantic explosions that result from colliding black holes in far off galaxies. XMM will delve into enigmatic black holes, cosmic dustbins that consign matter and light to oblivion, where tired X-rays have lost energy and time itself is slowing down. The golden X-ray eyes of ESA's observatory will try to make sense of a 'bigger picture', ascertaining how galaxies aggregate millions of stars, how these galaxies themselves form clusters and groups scattered across cosmic space. XMM will also attempt to understand the nature of the invisible dark matter that fills interstellar space. A high-flying mission The XMM spacecraft, the largest science satellite ever built in Europe, is due to be launched in December 1999 by an Ariane-5 from the European Spaceport in Kourou. After being released by the launcher, XMM will be placed in a highly eccentric 48-hour orbit, rising to a distance of 114 000 km from the Earth, then returning to within 7 000 km of our planet. This orbit has been chosen for several reasons. It offers an optimal contact between ground tracking stations and the satellite; it will allow the satellite to pass rapidly through the Earth's radiation belts which could harm its delicate science instruments; and above all it will offer astronomers the longest possible observation periods. Note to editors: No X-rays from space can penetrate the Earth's atmosphere so all X-ray astronomy is carried out with instruments on rockets, stratospheric balloons or satellites. X-rays from the Sun were first detected during sounding rocket flights in the 1950s. By 1970, more than forty X-rays sources had been detected during rocket-borne experiments. Satellites have since conducted more extensive surveys. The first satellite dedicated to X-ray astronomy was Uhuru. Launched in 1970 it mapped the sky identifying 339 sources. Several others were to follow, including Einstein which carried grazing incidence mirrors and detectors capable of recording images of cosmic X-ray sources. Einstein studied more than ten thousand sources. EXOSAT (1983-1986) was the European Space Agency's first X-ray observatory mission. Placed on a highly eccentric orbit reaching out 191 700 km from Earth, it allowed very long observations above the radiation belts and greatly enlarged our understanding of many classes of X-ray sources. The German/US/UK ROSAT launched in 1990 was another big step forwards. Until its recent switch off it carried out a complete sky survey identifying 100 000 X-ray sources. XMM will be opening up a golden age of X-ray astronomy alongside two other major missions. Launched in July 1999, Chandra is the third of NASA's Great Observatories. It is exploring X-rays from space with images 25 times sharper than previously obtained. ASTRO-E is Japan's fifth X-ray astronomy mission and is due to be launched early in 2000. Europe has already begun studying a next generation X-ray astrophysics facility, XEUS. By making use of the International Space Station and by ensuring significant potential for growth and evolution, XEUS will offer vastly expanded capabilities allowing the study of the very first black holes created when the Universe was just a few percent of its present age.
Methods for reducing ghost rays on the Wolter-I focusing figures of the FOXSI rocket payload
NASA Astrophysics Data System (ADS)
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Elsner, Ronald; Courtade, Sasha; Vievering, Juliana; Subramania, Athiray; Krucker, Sam; Bale, Stuart
2017-08-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitive semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018.The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons, or ‘ghost rays’ that can limit the sensitivity of the observation of focused X-rays. Understanding and cutting down the ghost rays on the FOXSI optics will maximize the instrument’s sensitivity of the solar faintest sources for future flights. We present an analysis of the FOXSI ghost rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
NASA Technical Reports Server (NTRS)
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Elsner, Ronald; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Vievering, Juliana; Subramania, Athiray;
2017-01-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitivity semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in Summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons that can limit the sensitivity of the observation of faint focused X-rays. Understanding and cutting down the singly reflected rays on the FOXSI optics will maximize the instrument's sensitivity of the faintest solar sources for future flights. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
Gilbert, H.W.
1983-06-16
An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.
3D elemental sensitive imaging using transmission X-ray microscopy.
Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero
2012-09-01
Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.
Rapid X-Ray Variability of Active Galaxies. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Tennant, A. F., Jr.
1983-01-01
Active galactic nuclei are luminous sources of X-rays. The thesis that the X-rays are generated within 10 gravitational radii from the central object is tested. A very sensitive search for rapid ( 1 day) X-ray variability from active galaxies was made.
Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco
2014-01-01
Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.
2008-11-15
Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV.more » In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.« less
High Energy Astronomy Observatory (HEAO)
1975-01-01
The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.
Electron spectroscopy analysis
NASA Technical Reports Server (NTRS)
Gregory, John C.
1992-01-01
The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.
On the viability of exploiting L-shell fluorescence for X-ray polarimetry
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Sutherland, P. G.; Elsner, R. F.; Ramsey, B. D.
1985-01-01
It has been suggested that one may build an X-ray polarimeter by exploiting the polarization dependence of the angular distribution of L-shell fluorescence photons. In this paper the sensitivity of this approach to polarimetry is examined theoretically. The calculations are applied to several detection schemes using imaging proportional counters that would have direct application in X-ray astronomy. It is found, however, that the sensitivity of this method for measuring X-ray polarization is too low to be of use for other than laboratory applications.
Thermoelectric Transport in Surface- and Antimony-Doped Bismuth Telluride Nanoplates
2016-07-25
0.50) using two different electron microscopes with two different high sensitivity energy dispersive x-ray spectroscopy (EDS) detectors (FEI Nova...Figure 1(b)) using an electrochemically sharpened probe. Transfer was performed in ambient conditions under an optical microscope . Samples were then...attributed to additional alloy scattering in the (Bi1−xSbx)2Te3 samples studied here. Additionally, the room temperature κlattice for bulk compounds Reuse of
The Sun's X-ray Emission During the Recent Solar Minimum
NASA Astrophysics Data System (ADS)
Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.
2010-02-01
The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.
Neutrally Charged Gas/Liquid Interface by a Catanionic Langmuir Monolayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, David; Bu, Wei
Surface-sensitive synchrotron X-ray scattering and spectroscopic experiments were performed to explore the characteristics of Langmuir monolayers of oppositely charged mixed amphiphiles. A premixed (molar 1:1 stearic acid/stearylamine) solution was spread as a monolayer at the gas/liquid interface on pure water and on mono- and divalent salt solutions, revealing that the negatively charged carboxyl groups and positively charged amine groups are miscible into one another and tend to bond together to form a nearly neutral surface. Similar control experiments on pure stearic acid (SA) and stearylamine (ST) were also conducted for comparison. Due to the strong bonding, hexagonal structures in smallmore » domains with acyl-chains normal to the liquid surface are formed at zero surface pressures, that is, at molecular areas much larger than those of the densely packed acyl chains. In-plane X-ray diffraction indicates that the catanionic surface is highly ordered and modifies the structure of the water surface and thus can serve as a model system for interactions of an amino acid template with solutes.« less
Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys
Berman, Robert M.; Cohen, Isadore
1990-01-01
A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.
X-ray focal spot locating apparatus and method
Gilbert, Hubert W.
1985-07-30
An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.
Development of a position sensitive X-ray detector for use in a light weight X-ray diffractometer
NASA Technical Reports Server (NTRS)
Semmler, R. A.
1971-01-01
A position sensitive proportional counter for use in an X-ray diffractometer is developed to permit drastic reductions in the power and weight requirements of the X-ray source and the elimination of the power, weight, and complexity of a moving slit. The final detector constructed and tested has a window spanning 138 and a free standing anode curved along an arc of 7.1 cm radius. Demonstration spectra of a quartz sample in a Debye-Sherrer geometry indicate a spatial resolution of 0.4 - 0.5 mm (0.3 - 0.4 theta). The lunar diffractometer consumed 25 watts in the X-ray generator and weighed about 20 pounds.
X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.
2005-01-01
Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.
Verwey transition in a magnetite ultrathin film by resonant x-ray scattering
NASA Astrophysics Data System (ADS)
Grenier, S.; Bailly, A.; Ramos, A. Y.; De Santis, M.; Joly, Y.; Lorenzo, J. E.; Garaudée, S.; Frericks, M.; Arnaud, S.; Blanc, N.; Boudet, N.
2018-03-01
We report a detailed study of the Verwey transition in a magnetite ultrathin film (UTF) grown on Ag(001) using resonant x-ray scattering (RXS). RXS was measured at the Fe K-edge on the crystal truncation rod of the substrate, increasing the sensitivity to the film thanks to the cross-interference, thereby obtaining an x-ray phase-shift reference and a polarization analyzer. The spectra were interpreted with ad hoc calculations based on density functional theory within a surface-scattering formalism. We observed that the UTF has a relatively sharp transition temperature TV=120 K and is remarkably close to the bulk temperature for such thickness. We determined the specific Fe stacking at the interface with the substrate below TV, and detected a spectroscopic signal evolving with temperature from TV up to at least TV+80 K, hinting that the RT crystallographic structure does not set at TV in the UTF.
MASSIM, the Milli-Arc-Second Structure Imager
NASA Technical Reports Server (NTRS)
Skinner, Gerry
2008-01-01
The MASSIM (Milli-Arc-Second Structure Imager) mission will use a set of achromatic diffractive-refractive Fresnel lenses to achieve imaging in the X-ray band with unprecedented angular resolution. It has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. Lenses on an optics spacecraft will focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds.
Atmospheric electron x-ray spectrometer
NASA Technical Reports Server (NTRS)
Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)
2002-01-01
The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.
Cross-correlation of the X-ray background with nearby galaxies
NASA Technical Reports Server (NTRS)
Jahoda, Keith; Mushotzky, Richard F.; Boldt, Elihu; Lahav, Ofer
1991-01-01
The detection of a signal in the cross-correlation of the diffuse 2-10 keV HEAO 1 A-2 X-ray surface brightness with the galaxy surface density derived from diameter-limited samples from the Uppsala General Catalogue is reported. An ad hoc relationship between the X-ray flux and the galaxy counts is used to estimate the local X-ray volume emissivity at 2.8 + or - 1.0 x 10 to the 38th ergs/s/cu Mpc. This result implies that unevolved populations of X-ray sources correlated with present-epoch galaxies can contribute only 13 + or - 5 percent of the cosmic X-ray background.
X-ray analysis of temperature induced defect structures in boron implanted silicon
NASA Astrophysics Data System (ADS)
Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.
2002-10-01
We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.
Advanced x-ray imaging spectrometer
NASA Technical Reports Server (NTRS)
Callas, John L. (Inventor); Soli, George A. (Inventor)
1998-01-01
An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.
X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.
2014-12-15
We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mnmore » is observed with increasing doping concentration. A magnetic moment of 5.1 μ{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μ{sub B}/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.« less
Coherent X-ray Scattering from Liquid-Air Interfaces
NASA Astrophysics Data System (ADS)
Shpyrko, Oleg
Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.
High Sensitivity, One-Sided X-Ray Inspection System.
1985-07-01
8217. X-Ray Imaging Quantitative NDT One-Sided Inspection Backs cat ter De laminat ions .. Nondestructive Testing (NDT) Rocket Motor Case NDT ’j 20...epoxy composites and other low atomic number materials have been detected. Wall thick nesses up to 7 cm thick have been interrogated. The results show...fiber composite rocket motor pressure vessels, the anticipated backscatter x-ray instrument will offer high sensitivity (contact delaminations have
X-ray Polarimetry with a Micro-Pattern Gas Detector
NASA Technical Reports Server (NTRS)
Hill, Joe
2005-01-01
Topics covered include: Science drivers for X-ray polarimetry; Previous X-ray polarimetry designs; The photoelectric effect and imaging tracks; Micro-pattern gas polarimeter design concept. Further work includes: Verify results against simulator; Optimize pressure and characterize different gases for a given energy band; Optimize voltages for resolution and sensitivity; Test meshes with 80 micron pitch; Characterize ASIC operation; and Quantify quantum efficiency for optimum polarization sensitivity.
NASA Astrophysics Data System (ADS)
Demasi, Alexander; Erdem, Gozde; Chinta, Priya; Headrick, Randall; Ludwig, Karl
2012-02-01
The fundamental kinetics of thin film growth remains an active area of investigation. In this study, silicon thin films were grown at room temperature on silicon substrates via both on-axis and off-axis plasma sputter deposition, while the evolution of surface morphology was measured in real time with in-situ grazing incidence small angle x-ray scattering (GISAXS) at the National Synchrotron Light Source. GISAXS is a surface-sensitive, non-destructive technique, and is therefore ideally suited to a study of this nature. In addition to investigating the effect of on-axis versus off-axis bombardment, the effect of sputter gas partial pressure was examined. Post-facto, ex-situ atomic force microscopy (AFM) was used to measure the final surface morphology of the films, which could subsequently be compared with the surface morphology determined by GISAXS. Comparisons are made between the observed surface evolution during growth and theoretical predictions. This work was supported by the Department of Energy, Office of Basic Energy Sciences.
NASA Astrophysics Data System (ADS)
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph
2015-10-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.
Surface modification of platinum by laser-produced X-rays
NASA Astrophysics Data System (ADS)
Latif, Hamid; Shahid Rafique, M.; Khaleeq-ur-Rahaman, M.; Sattar, Abdul; Anjum, S.; Usman, A.; Zaheer, S.; Rawat, R. S.
2014-11-01
Laser-induced plasma is used as an X-ray source for the growth of hillocks like nanostructures on platinum surface. To generate X-rays, plasma is produced by Nd:YAG laser, which is operated at second harmonics (λ = 532 nm, E = 400 mJ). Analytical grade 5 N pure Al, Cu and W are used as laser targets for X-rays production. X-rays produced from Al, Cu and W plasmas are used to irradiate three analytical grade (5 N pure) platinum substrates, respectively, under the vacuum ∼10-4 torr. XRD analysis shows considerable structural changes in the exposed platinum. The decrement in reflection intensities, increment in dislocation line density, change in d-spacing and disturbance in the periodicity of planes evidently prove these structural changes. Atomic force microscope AFM topographic analysis of the platinum exposed to X-rays emitted from Al, Cu and W targets showed that nanometer-size hillocks are produced on the platinum surface irrespective of the source. It has also been observed that due to these hillocks, the roughness of the surface has increased. Conductivity of hillocks produced from X-rays produced by Al, Cu and W targets is compared and it is shown that the hillocks produced by Al target X-rays have better conductivity compared to the hillocks produced by X-rays from Cu and W targets.
Soft x ray properties of the Geminga pulsar
NASA Technical Reports Server (NTRS)
Halpern, J. P.; Ruderman, M.
1993-01-01
The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column density, and also by the requirement that the Rayleigh-Jeans extrapolation of the soft x ray spectrum not exceed the observed blue flux of the faint optical counterpart. This distance estimate implies that Geminga's efficiency for converting spindown power into gamma-rays is near unity, and that there may be significant beaming of the gamma rays as well. These results tend to bolster the prospect that most of the unidentified high-energy gamma ray sources in the Galactic plane are pulsars, some of which may be radio quiet.
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1974-01-01
X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.
NASA Technical Reports Server (NTRS)
Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.;
2010-01-01
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study
In situ chemical analyses of extraterrestrial bodies
NASA Technical Reports Server (NTRS)
Economou, Thanasis E.; Turkevich, Anthony L.
1988-01-01
One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.
NASA Astrophysics Data System (ADS)
Ponchut, C.; Cotte, M.; Lozinskaya, A.; Zarubin, A.; Tolbanov, O.; Tyazhev, A.
2017-12-01
In order to meet the needs of some ESRF beamlines for highly efficient 2D X-ray detectors in the 20-50 keV range, GaAs:Cr pixel sensors coupled to TIMEPIX readout chips were implemented into a MAXIPIX detector. Use of GaAs:Cr sensor material is intended to overcome the limitations of Si (low absorption) and of CdTe (fluorescence) in this energy range The GaAs:Cr sensor assemblies were characterised with both laboratory X-ray sources and monochromatic synchrotron X-ray beams. The sensor response as a function of bias voltage was compared to a theoretical model, leading to an estimation of the μτ product of electrons in GaAs:Cr sensor material of 1.6×10-4 cm2/V. The spatial homogeneity of X-ray images obtained with the sensors was measured in different irradiation conditions, showing a particular sensitivity to small variations in the incident beam spectrum. 2D-resolved elemental mapping of the sensor surface was carried out to investigate a possible relation between the noise pattern observed in X-ray images and local fluctuations in chemical composition. A scanning of the sensor response at subpixel scale revealed that these irregularities can be correlated with a distortion of the effective pixel shapes.
DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cyburt, R. H.; Keek, L.; Schatz, H.
2016-10-20
X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to matchmore » calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.« less
Effects of radiation pressure on the equipotential surfaces in X-ray binaries
NASA Technical Reports Server (NTRS)
Kondo, Y.; Mccluskey, G. E., Jr.; Gulden, S. L.
1976-01-01
Equipotential surfaces incorporating the effect of radiation pressure were computed for the X-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling X-ray binaries are discussed.
Highly sensitive NO2 sensor using brush-coated ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Chandra, Lalit; Dwivedi, R.; Mishra, V. N.
2017-10-01
This work reports the sensing properties of a ZnO nanoparticle (NP) based gas sensor. A sol-gel method was used for the synthesis of ZnO nanoparticles, and a brush coating technique for applying these in a thick film over the gold electrode. The structural properties of the ZnO film so developed have been studied using energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), revealing a hexagonal wurtzite structure having particle size of ~25 to ~110 nm and roughness of ~136.303 nm. The sensitivity of the sensor to NO2, H2, CO, ethanol and propanol gases in the temperature range from 150 to 350 °C has been tested. Among all these gases, sensitivity to NO2 was found to be highest, at around fifty times greater than the next highest sensitivity, for ethanol gas. The sensor’s response to NO2 gas has been measured at ~945.12%/ppt (parts per thousand), with fast response time and recovery time at operating temperature 280 °C. The obtained result has been discussed with the help of surface and subsurface adsorption and desorption of NO2 molecules at the available trap sites (oxygen ions) on the ZnO nanoparticle surface. This sensor also exhibits excellent repeatability.
Stable Fe nanomagnets encapsulated inside vertically-aligned carbon nanotubes.
Bondino, Federica; Magnano, Elena; Ciancio, Regina; Castellarin Cudia, Carla; Barla, Alessandro; Carlino, Elvio; Yakhou-Harris, Flora; Rupesinghe, Nalin; Cepek, Cinzia
2017-12-06
Well-defined sized (5-10 nm) metallic iron nanoparticles (NPs) with body-centered cubic structure encapsulated inside the tip of millimeter-long vertically aligned carbon nanotubes (VACNTs) of uniform length have been investigated with high-resolution transmission electron microscopy and soft X-ray spectroscopy techniques. Surface-sensitive and chemically-selective measurements have been used to evaluate the magnetic properties of the encapsulated NPs. The encapsulated Fe NPs display magnetic remanence up to room temperature, low coercivity, high chemical stability and no significant anisotropy. Our surface-sensitive measurements combined with the specific morphology of the studied VACNTs allow us to pinpoint the contribution of the surface oxidized or hydroxidized iron catalysts present at the VACNT-substrate interface.
An x-ray fluorescence imaging system for gold nanoparticle detection.
Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J
2013-11-07
Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
Gessner, Oliver; Gühr, Markus
2016-01-19
The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and photocatalytic activity have been performed based on the combination of strong light absorption in dye molecules with charge separation and transport in adjacent semiconductor nanostructures. However, a fundamental understanding of the enabling and limiting dynamics on critical atomic length- and time scales is often still lacking. Femtosecond time-resolved X-ray photoelectron spectroscopy is employed to gain a better understanding of a short-lived intermediate that may be linked to the unexpectedly limited performance of ZnO based dye-sensitized solar cells by delaying the generation of free charge carriers. The transient spectra strongly suggest that photoexcited dye molecules attached to ZnO nanocrystals inject their charges into the substrate within less than 1 ps but the electrons are then temporarily trapped at the surface of the semiconductor in direct vicinity of the injecting molecules. The experiments are extended to monitor the electronic response of the semiconductor substrate to the collective injection from a monolayer of dye molecules and the subsequent electron-ion recombination dynamics. The results indicate some qualitative similarities but quantitative differences between the recombination dynamics at molecule-semiconductor interfaces and previously studied bulk-surface electron-hole recombination dynamics in photoexcited semiconductors.
Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys
Berman, R.M.; Cohen, I.
1988-04-26
A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.
Surface topography of 1€ coin measured by stereo-PIXE
NASA Astrophysics Data System (ADS)
Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.
2013-07-01
We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam.
ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Kim, D.-W.; Trinchieri, G.
1994-01-01
We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.
NASA Technical Reports Server (NTRS)
Williams, A. C.
1982-01-01
The scattering of X-rays from state-of-the-art polished mirrors is discussed with reference to the requirements of the Advanced X-ray Astrophysics Facility telescope. An experimental set-up is described which allows information to be obtained with subarcsecond resolution. A sample of the data obtained is presented along with a possible theoretical model for its interpretation.
Microchannel plate streak camera
Wang, Ching L.
1989-01-01
An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.
Energy dependence corrections to MOSFET dosimetric sensitivity.
Cheung, T; Butson, M J; Yu, P K N
2009-03-01
Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.
High Energy Studies of Astrophysical Dust
NASA Astrophysics Data System (ADS)
Corrales, Lia Racquel
Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how information from a single scattering halo can be used in conjunction with X-ray spectroscopy to directly measure the dust-to-gas mass ratio, laying the groundwork for future scattering halo surveys. Distant quasars also produce X-rays that pierce the intergalactic medium. These sources invite the unique opportunity to search for extragalactic dust, whether distributed diffusely throughout intergalactic space, surrounding other galaxies, or occupying reservoirs of cool intergalactic gas. I review X-ray scattering in a cosmological context, examining the range and sensitivity of Chandra to detect the low surface brightness levels of intergalactic scattering. Of particular interest is large "grey" dust, which would cause systematic errors in precision cosmology experiments at a level comparable to the size of the error bars sought. This requires using the more exact Mie scattering treatment, which reduces the scattering cross-section for soft X-rays by a factor of about ten, compared to the Rayleigh-Gans approximation used for interstellar X-ray scattering studies. This allows me to relax the limit on intergalactic dust imposed by previous X-ray imaging of a z=4.3 quasar, QSO 1508+5714, which overestimated the scattering intensity. After implementing the Mie solution with the cosmological integral for scattering halo intensity, I found that intergalactic dust will scatter 1-3% of soft X-ray light. Unfortunately the wings of the Chandra PSF are brighter than the surface brightness expected for these intergalactic scattering halos. The X-ray signatures of intergalactic dust may only be visible if a distant quasar suddenly dimmed by a factor of 1000 or more, leaving behind an X-ray scattering echo, or "ghost" halo.
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
NASA Astrophysics Data System (ADS)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis
2017-12-01
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission
NASA Astrophysics Data System (ADS)
Hong, JaeSub; Allen, Branden; Grindlay, Jonathan E.; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K; Chodas, Mark; Smith, Matthew W; Bautz, Mark W.; Kissel, Steven E; Villasenor, Jesus Noel; Oprescu, Antonia
2014-06-01
The REgolith X-Ray Imaging Spectrometer (REXIS) is a student-led instrument being designed, built, and operated as a collaborative effort involving MIT and Harvard. It is a part of NASA's OSIRIS-REx mission, which is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of the primitive carbonaceous chondrite-like asteroid 101955 Bennu in 2019. REXIS will determine spatial variations in elemental composition of Bennu's surface through solar-induced X-ray fluorescence. REXIS consists of four X-ray CCDs in the detector plane and an X-ray mask. It is the first coded-aperture X-ray telescope in a planetary mission, which combines the benefit of high X-ray throughput of wide-field collimation with imaging capability of a coded-mask, enabling detection of elemental surface distributions at approximately 50-200 m scales. We present an overview of the REXIS instrument and the expected performance.
NASA Astrophysics Data System (ADS)
Bobea, M.; Tweedie, J.; Bryan, I.; Bryan, Z.; Rice, A.; Dalmau, R.; Xie, J.; Collazo, R.; Sitar, Z.
2013-03-01
A high-resolution X-ray diffraction method with enhanced surface sensitivity has been used to investigate the effects of various polishing steps on the near-surface region of single crystal substrates. The method involves the study of a highly asymmetric reflection, observable under grazing incidence conditions. Analysis of rocking curve measurements and reciprocal space maps (RSMs) revealed subtle structural differences between the polished substrates. For aluminum nitride wafers, damage induced from diamond sawing and mechanical polishing was readily identifiable by on-axis rocking curves, but this method was unable to distinguish between sample surfaces subjected to various degrees of chemical mechanical polishing (CMP). To characterize sufficiently these surfaces, (10.3) RSMs were measured to provide both qualitative and quantitative information about the near-surface region. Two features present in the RSMs were utilized to quantitatively assess the polished wafers: the magnitude of the diffuse scatter in the omega-scans and the elongation of the crystal truncation rod. The method is able to distinguish between different degrees of CMP surface preparation and provides metrics to quantify subsurface damage after this polishing step.
NASA Astrophysics Data System (ADS)
Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.
2017-12-01
We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.
NASA Technical Reports Server (NTRS)
Blake, David; Vaniman, David; Bish, David; Morrison, David (Technical Monitor)
1994-01-01
A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.
Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present
NASA Astrophysics Data System (ADS)
Arble, Chris; Jia, Meng; Newberg, John T.
2018-05-01
Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.
NASA Astrophysics Data System (ADS)
George, Michael G.
Characterization of gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells informs modeling studies and the manufacturers of next generation fuel cell materials. Identifying the physical properties related to the primary functions of the modern GDL (thermal, electrical, and mass transport) is necessary for understanding the impact of GDL design choices. X-ray micro-computed tomographic reconstructions of GDLs were studied to isolate GDL surface morphologies. Surface roughness was measured for a wide variety of samples and a sensitivity study highlighted the scale-dependence of surface roughness measurements. Furthermore, a spatially resolved distribution map of polytetrafluoroethylene (PTFE) in the microporous layer (MPL), critical for water management and mass transport, was identified and the existence of PTFE agglomerations was highlighted. Finally, the impact of accelerated degradation on GDL wettability and water transport increases in liquid water accumulation and oxygen mass transport resistance were quantified as a result of accelerated GDL degradation.
Iron ion and iron hydroxide adsorption to charge-neutral phosphatidylcholine templates
Wang, Wenjie; Zhang, Honghu; Feng, Shuren; ...
2016-07-13
Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less
NASA Astrophysics Data System (ADS)
Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia
2013-06-01
High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range < 200 keV, far lower than the energy of the majority of photons in the LINAC energy range. In vitro studies were carried to demonstrate the tumoricidal effects of HZ sensitized F98 rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.
NASA Astrophysics Data System (ADS)
Buitrago-Casas, Juan Camilo; Elsner, Ronald; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Turin, Paul; Vievering, Juliana; Athiray, P. S.; Musset, Sophie; Krucker, Säm.
2017-08-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload that uses seven sets of nested Wolter-I figured mirrors together with seven high-sensitivity semiconductor detectors to observe the Sun in hard X-rays through direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a background pattern of singly reflected rays (i.e., ghost rays) that can limit the sensitivity of the observation to faint, focused sources. Understanding and mitigating the impact of the singly reflected rays on the FOXSI optical modules will maximize the instruments' sensitivity to background-limited sources. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations and laboratory measurements, as well as the effectiveness of different physical strategies to reduce them.
Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons
NASA Technical Reports Server (NTRS)
Lin, Robert P.
1989-01-01
The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.
The interaction between hot and cold gas in early-type galaxies
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.
1995-01-01
SO and Sa galaxies have approximately equal masses of H I and X-ray emitting gas and are ideal sites for studying the interaction between hot and cold gas. An X-ray observation of the Sa galaxy NGC 1291 with the ROSAT position sensitive proportional counter (PSPC) shows a striking spatial anticorrelation between hot and cold gas where X-ray emitting material fills the large central black hole in the H I disk. This supports a previous suggestion that hot gas is a bulge phenomenon and neutral hydrogen is a disk phenomenon. The X-ray luminosity (1.5 x 10(exp 40) ergs/s) and radial surface brightness distribution (beta = 0.51) is the same as for elliptical galaxies with optical luminosities and velocity dispersions like that of the bulge of NGC 1291. Modeling of the X-ray spectrum requires a component with a temperature of 0.15 keV, similar to that expected from the velocity dispersion of the stars, and with a hotter component where kT = 1.07 keV. This hotter component is not due to emission from stars and its origin remains unclear. PSPC observations are reported for the SO NGC 4203, where a nuclear point source dominates the emission, preventing a study of the radial distribution of the hot gas relative to the H I.
Measurements of reciprocity law failure in green-sensitive X-ray films.
Arnold, B A; Eisenberg, H; Bjärngard, B E
1978-02-01
Reciprocity law failure was measured for four brands of medical x-ray films exposed with intensifying screens. Three of the films are green light-sensitized for use in combination with green light-emitting rare-earth screens. These films showed larger reciprocity failure effects than one conventional blue-sensitive film, Dupont Cronex-2. Development conditions had a small effect on reciprocity failure. As part of the investigation, a detector was constructed with a response that accurately monitors the light emission from the double screen-cassette combination over a wide range of x-ray photon energies.
X-ray Optics Development at MSFC
NASA Technical Reports Server (NTRS)
Sharma, Dharma P.
2017-01-01
Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.
Fat to muscle ratio measurements with dual energy x-ray absorbtiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A.; Luo, J.; Wang, A.
Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less
Fat to muscle ratio measurements with dual energy x-ray absorbtiometry
Chen, A.; Luo, J.; Wang, A.; ...
2015-03-14
Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less
CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, D.
1999-04-19
A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less
Koch, Jeffrey A [Livermore, CA
2003-07-08
An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.
Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging
NASA Astrophysics Data System (ADS)
Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph
2017-03-01
Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.
Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief
Smilgies, Detlef-M.; Powers, Judson A.; Bilderback, Donald H.; Thorne, Robert E.
2012-01-01
Interpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble. PMID:22713888
Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments
NASA Astrophysics Data System (ADS)
Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.
1999-02-01
We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.
Direct detection of x-rays for protein crystallography employing a thick, large area CCD
Atac, Muzaffer; McKay, Timothy
1999-01-01
An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.
Single crystal CVD diamond membranes as Position Sensitive X-ray Detector
NASA Astrophysics Data System (ADS)
Desjardins, K.; Menneglier, C.; Pomorski, M.
2017-12-01
Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.
NASA Astrophysics Data System (ADS)
Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.
2007-02-01
A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.
Medical imaging: Material change for X-ray detectors
NASA Astrophysics Data System (ADS)
Rowlands, John A.
2017-10-01
The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87
NASA Astrophysics Data System (ADS)
Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans
2014-05-01
SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data, spacecraft attitude data in relation to the Sun, and the in-flight calibration spectra measured during the operations contain all required information for the final analysis of the solar X-ray data.
Observation of human tissue with phase-contrast x-ray computed tomography
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-05-01
Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
Assessment of surface roughness by use of soft x-ray scattering
NASA Astrophysics Data System (ADS)
Meng, Yan-li; Wang, Yong-gang; Chen, Shu-yan; Chen, Bo
2009-08-01
A soft x-ray reflectometer with laser produced plasma source has been designed, which can work from wavelength 8nm to 30 nm and has high performance. Using the soft x-ray reflectometer above, the scattering light distribution of silicon and zerodur mirrors which have super-smooth surfaces could be measured at different incidence angle and different wavelength. The measurement when the incidence angle is 2 degree and the wavelength is 11nm has been given in this paper. A surface scattering theory of soft x-ray grazing incidence optics based on linear system theory and an inverse scattering mathematical model is introduced. The vector scattering theory of soft x-ray scattering also is stated in detail. The scattering data are analyzed by both the methods above respectively to give information about the surface profiles. On the other hand, both the two samples are measured by WYKO surface profiler, and the surface roughness of the silicon and zerodur mirror is 1.3 nm and 1.5nm respectively. The calculated results are in quantitative agreement with those measured by WYKO surface profiler, which indicates that soft x-ray scattering is a very useful tool for the evaluation of highly polished surfaces. But there still some difference among the results of different theory and WYKO, and the possible reasons of such difference have been discussed in detail.
Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J A
2008-03-01
New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed-the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks.
Solar Hard X-ray Observations with NuSTAR
NASA Astrophysics Data System (ADS)
Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.
2012-05-01
High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.
Solar Hard X-ray Observations with NuSTAR
NASA Astrophysics Data System (ADS)
Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.
2011-05-01
High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.
NASA Astrophysics Data System (ADS)
Yamamoto, Shintaro; Ootsuki, Daiki; Shimonaka, Daiya; Shibata, Daisuke; Kodera, Kenjiro; Okawa, Mario; Saitoh, Tomohiko; Horio, Masafumi; Fujimori, Atsushi; Kumigashira, Hiroshi; Ono, Kanta; Ikenaga, Eiji; Miyasaka, Shigeki; Tajima, Setsuko; Yoshida, Teppei
2018-02-01
We have performed a photoemission study of the Mott-Hubbard system Nd1-xSrxVO3 (x = 0.20 and 0.30) to investigate the electronic structure in the vicinity of the metal-insulator transition. By using bulk sensitive hard X-ray photoemission spectroscopy, we have observed a large coherent spectral weight near the Fermi level compared to those observed with surface-sensitive low photons. In particular, a pseudogap with an energy of ˜0.2 eV has been observed near the Fermi level, which is consistent with a prediction with a dynamical cluster approximation calculation. In order to understand the characteristic features in the Mott-Hubbard-type metal-insulator transition, particularly the pseudogap opening at x = 0.2 and 0.3, a phenomenological model of the self-energy has been proposed.
Nosheen, Erum; Shah, Syed Mujtaba; Hussain, Hazrat; Murtaza, Ghulam
2016-09-01
This article presents a comprehensive relative report on the grafting of ZnS with renowned ruthenium ((Ru) dyes i.e. N3, N719 and Z907) and gives insight into their charge transfer interaction and sensitization mechanism for boosting solar cell efficiency. Influence of dye concentration on cell performance is also reported here. ZnS nanoparticles synthesized by a simple coprecipitation method with an average particle size of 15±2nm were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Elemental dispersive X-ray analysis (EDAX), tunneling electron microscopy (TEM) and UV-Visible (UV-Vis) spectroscopy. UV-Vis, photoluminescence (PL) and Fourier transform infra-red (FT-IR) spectroscopy confirms the successful grafting of these dyes over ZnS nanoparticles surface. Low-energy metal-to-ligand charge-transfer transition (MLCT) bands of dyes are mainly affected on grafting over the nanoparticle surface. Moreover their current voltage (I-V) results confirm the efficiency enhancement in ZnS solid state dye sensitized solar cells (SSDSSCs) owing to effective sensitization of this material with Ru dyes and helps in finding the optimum dye concentration for nanoparticles sensitization. Highest rise in overall solar cell efficiency i.e. 64% of the reference device has been observed for 0.3mM N719-ZnS sample owing to increased open circuit voltage (Voc) and fill factor (FF). Experimental and proposed results were found in good agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.
Yu, Jun; Shen, Zhengxiang; Sheng, Pengfeng; Wang, Xiaoqiang; Hailey, Charles J; Wang, Zhanshan
2018-03-01
The nested grazing incidence telescope can achieve a large collecting area in x-ray astronomy, with a large number of closely packed, thin conical mirrors. Exploiting the surface metrological data, the ray tracing method used to reconstruct the shell surface topography and evaluate the imaging performance is a powerful tool to assist iterative improvement in the fabrication process. However, current two-dimensional (2D) ray tracing codes, especially when utilized with densely sampled surface shape data, may not provide sufficient accuracy of reconstruction and are computationally cumbersome. In particular, 2D ray tracing currently employed considers coplanar rays and thus simulates only these rays along the meridional plane. This captures axial figure errors but leaves other important errors, such as roundness errors, unaccounted for. We introduce a semianalytic, three-dimensional (3D) ray tracing approach for x-ray optics that overcomes these shortcomings. And the present method is both computationally fast and accurate. We first introduce the principles and the computational details of this 3D ray tracing method. Then the computer simulations of this approach compared to 2D ray tracing are demonstrated, using an ideal conic Wolter-I telescope for benchmarking. Finally, the present 3D ray tracing is used to evaluate the performance of a prototype x-ray telescope fabricated for the enhanced x-ray timing and polarization mission.
Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.
2014-01-01
The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level. Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS). PMID:25202165
Phosphor Scanner For Imaging X-Ray Diffraction
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.
1992-01-01
Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...
2015-10-29
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less
Toward Adaptive X-Ray Telescopes
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.;
2011-01-01
Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.
2015-07-08
Flaring, active regions of our sun are highlighted in this image combining observations from several telescopes. High-energy X-rays from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) are shown in blue; low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from NASA's Solar Dynamics Observatory (SDO) is yellow and red. All three telescopes captured their solar images around the same time on April 29, 2015. The NuSTAR image is a mosaic made from combining smaller images. The active regions across the sun's surface contain material heated to several millions of degrees. The blue-white areas showing the NuSTAR data pinpoint the most energetic spots. During the observations, microflares went off, which are smaller versions of the larger flares that also erupt from the sun's surface. The microflares rapidly release energy and heat the material in the active regions. NuSTAR typically stares deeper into the cosmos to observe X-rays from supernovas, black holes and other extreme objects. But it can also look safely at the sun and capture images of its high-energy X-rays with more sensitivity than before. Scientists plan to continue to study the sun with NuSTAR to learn more about microflares, as well as hypothesized nanoflares, which are even smaller. In this image, the NuSTAR data shows X-rays with energies between 2 and 6 kiloelectron volts; the Hinode data, which is from the X-ray Telescope instrument, has energies of 0.2 to 2.4 kiloelectron volts; and the Solar Dynamics Observatory data, taken using the Atmospheric Imaging Assembly instrument, shows extreme ultraviolet light with wavelengths of 171 and 193 Angstroms. Note the green Hinode image frame edge does not extend as far as the SDO ultraviolet image, resulting in the green portion of the image being truncated on the right and left sides. http://photojournal.jpl.nasa.gov/catalog/PIA19821
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...
2017-12-07
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed
2015-01-01
A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.
Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J
2009-04-01
Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.
X-ray Reflectivity Characterization of Ion Distribution at Biomimetic Membrane Surfaces
NASA Astrophysics Data System (ADS)
Krüger, Peter; Pittler, Jens; Vaknin, David; Lösche, Mathias
2003-03-01
Ions at cell membrane surfaces may control the function and conformation of nearby biomolecules, thus playing an important role in inter- and intracellular transport as well as in biorecognition processes. Moreover, charge patterns at membrane surfaces may direct the growth of inorganic crystals in biomineralization. Langmuir monolayers are widely employed as model systems for studying charge distribution and growth processes at the organic/inorganic interface. We present a novel x-ray reflectivity technique that provides detailed information on ion distribution at biomembrane surfaces by using monochromatic x-rays at various energies at and away from the ion x-ray absorption edges. As a model, the interaction of Ba^2+ with DMPA^- (dimyristoyl phosphatidic acid) monolayers at the aqueous surface was studied. We find an unexpectedly large concentration of the cations near the interface where they form a Stern layer of bound ions. These studies have been complemented with conventional x-ray reflectivity measurements and extended to other anionic lipid species (DMPS, DMPG) and cations (Ca^2+).
The Chandra M10l Megasecond: Diffuse Emission
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2009-01-01
Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.
Chemical imaging analysis of the brain with X-ray methods
NASA Astrophysics Data System (ADS)
Collingwood, Joanna F.; Adams, Freddy
2017-04-01
Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.
Wynn-Thomas, Simon; Love, Tom; McLeod, Deborah; Vernall, Sue; Kljakovic, Marjan; Dowell, Antony; Durham, John
2002-09-27
The aims of this study were to measure baseline use of Ottawa ankle rules (OAR), validate the OAR and, if appropriate, explore the impact of implementing the Rules on X-ray rates in a primary care, after hours medical centre setting. General practitioners (GPs) were surveyed to find their awareness of ankle injury guidelines. Data concerning diagnosis and X-ray utilisation were collected prospectively for patients presenting with ankle injuries to two after hours medical centres. The OAR were applied retrospectively, and the sensitivity and specificity of the OAR were compared with GPs clinical judgement in ordering X-rays. The outcome measures were X-ray utilisation and diagnosis of fracture. Awareness of the OAR was low. The sensitivity of the OAR for diagnosis of fractures was 100% (95% CI: 75.3 - 100) and the specificity was 47% (95% CI: 40.5 - 54.5). The sensitivity of GPs clinical judgement was 100% (95% CI: 75.3 - 100) and the specificity was 37% (95% CI: 30.2 - 44.2). Implementing the OAR would reduce X-ray utilisation by 16% (95% CI: approx 10.8 - 21.3). The OAR are valid in a New Zealand primary care setting. Further implementation of the rules would result in some reduction of X-rays ordered for ankle injuries, but less than the reduction found in previous studies.
Sub-mSV breast XACT scanner: concept and design
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Ren, Liqiang; Samant, Pratik; Chen, Jian; Liu, Hong; Xiang, Liangzhong
2016-04-01
Excessive exposure to radiation increases the risk of cancer. We present the concept and design of a new imaging paradigm, X-ray induced acoustic computed tomography (XACT). Applying this innovative technology to breast imaging, one single X-ray exposure can generate a 3D acoustic image, which dramatically reduces the radiation dose to patients when compared to beast CT. A theoretical model is developed to analyze the sensitivity of XACT. A noise equivalent pressure model is used for calculating the minimal radiation dose in XACT imaging. Furthermore, K-Wave simulation is employed to study the acoustic wave propagation in breast tissue. Theoretical analysis shows that the X-ray induced acoustic signal has a 100% relative sensitivity to the X-ray absorption (given that the percentage change in the X-ray absorption coefficient yields the same percentage change in the acoustic signal amplitude), but not to X-ray scattering. The final detection sensitivity is primarily limited by the thermal noise. The radiation dose can be reduced by a factor of 100 compared with the newly FDA approved breast CT. Reconstruction result shows that breast calcification with diameter of 80 μm can be observed in XACT image by using ultrasound transducers with 5.5 MHz center frequency. Therefore, with the proposed innovative technology, one can potentially reduce radiation dose to patient in breast imaging as compared with current x-ray modalities.
Probing molecular dynamics in solution with x-ray valence-to-core spectroscopy
NASA Astrophysics Data System (ADS)
Doumy, Gilles; March, Anne Marie; Tu, Ming-Feng; Al Haddad, Andre; Southworth, Stephen; Young, Linda; Walko, Donald; Bostedt, Christoph
2017-04-01
Hard X-ray spectroscopies are powerful tools for probing the electronic and geometric structure of molecules in complex or disordered systems and have been particularly useful for studying molecules in the solution phase. They are element specific, sensitive to the electronic structure and the local arrangements of surrounding atoms of the element being selectively probed. When combined in a pump-probe scheme with ultrafast lasers, X-ray spectroscopies can be used to track the evolution of structural changes that occur after photoexcitation. Efficient use of hard x-ray radiation coming from high brilliance synchrotrons and upcoming high repetition rate X-ray Free Electron Lasers requires MHz repetition rate lasers and data acquisition systems. High information content Valence-to-Core x-ray emission is directly sensitive to the molecular orbitals involved in photochemistry. We report on recent progress towards fully enabling this photon-hungry technique for the study of time-resolved molecular dynamics, including efficient detection and use of polychromatic x-ray micro-probe at the Advanced Photon Source. Work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.
Optics Developments for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Ramsey, Brian
2014-01-01
X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.
Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stradling, G.L.
New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolvedmore » x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.« less
Pomés, Anna; Chruszcz, Maksymilian; Gustchina, Alla; Minor, Wladek; Mueller, Geoffrey A.; Pedersen, Lars C.; Wlodawer, Alexander; Chapman, Martin D.
2015-01-01
Current knowledge of molecules involved in immunology and allergic disease results from significant contributions of X-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and X-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact three-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and in mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind lipopolysaccharides may also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. This surface in turn determines antibody specificity and cross-reactivity that are important factors for the selection of allergen panels used for molecular diagnosis and for the interpretation of clinical symptoms. This review celebrates the contributions of X-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases. PMID:26145985
Pomés, Anna; Chruszcz, Maksymilian; Gustchina, Alla; Minor, Wladek; Mueller, Geoffrey A; Pedersen, Lars C; Wlodawer, Alexander; Chapman, Martin D
2015-07-01
Current knowledge of molecules involved in immunology and allergic disease results from the significant contributions of x-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and x-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact 3-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind LPSs can also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. In turn, this surface determines antibody specificity and cross-reactivity, which are important factors for the selection of allergen panels used for molecular diagnosis and the interpretation of clinical symptoms. This review celebrates the contributions of x-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.
Epitaxial graphene-encapsulated surface reconstruction of Ge(110)
NASA Astrophysics Data System (ADS)
Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.
2018-04-01
Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.
Poncelet, E; Rock, A; Quinton, J-F; Cosson, M; Ramdane, N; Nicolas, L; Feldmann, A; Salleron, J
2017-04-01
The goal of this study was to compare conventional X-ray defecography and dynamic magnetic resonance (MR) defecography in the diagnosis of pelvic floor prolapse of the posterior compartment. Fifty women with a mean age of 65.5 years (range: 53-72 years) who underwent X-ray defecography and MR defecography for clinical suspicion of posterior compartment dysfunction, were included in this retrospective study. X-ray defecography and dynamic MR defecography were reviewed separately for the presence of pelvic organ prolapse. The results of the combination of X-ray defecography and MR defecography were used as the standard of reference. Differences in sensitivities between X-ray defecography and MR defecography were compared using the McNemar test. With the gold standard, we evidenced a total of 22 cases of peritoneocele (17 elytroceles, 3 hedroceles and 2 elytroceles+hedroceles), including 15 cases of enterocele, 28 patients with rectocele including 16 that retained contrast, 37 cases of rectal prolapse, and 11 cases of anismus. The sensitivities of X-ray defecography were 90.9% for the diagnosis of peritoneocele, 71.4% for rectocele, 81.1% for rectal prolapse and 63.6% for anismus. The sensitivities of MR defecography for the same diagnoses were 86.4%, 78.6%, 62.2% and 63.6%, respectively. For all these pathologies, no significant differences between X-ray defecography and MR defecography were found. Dynamic MR defecography is equivalent to X-ray defecography for the diagnosis of abnormalities of the posterior compartment of the pelvic floor. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Future prospects for high resolution X-ray spectrometers
NASA Technical Reports Server (NTRS)
Canizares, C. R.
1981-01-01
Capabilities of the X-ray spectroscopy payloads were compared. Comparison of capabilities of AXAF in the context of the science to be achieved is reported. The Einstein demonstrated the tremendous scientific power of spectroscopy to probe deeply the astrophysics of all types of celestial X-ray source. However, it has limitations in sensitivity and resolution. Each of the straw man instruments has a sensitivity that is at least an order of magnitude better than that of the Einstein FPSC. The AXAF promises powerful spectral capability.
Multispectral variable magnification glancing incidence x ray telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.
NASA Astrophysics Data System (ADS)
Nelson, Johanna; Yang, Yuan; Misra, Sumohan; Andrews, Joy C.; Cui, Yi; Toney, Michael F.
2013-09-01
Radiation damage is a topic typically sidestepped in formal discussions of characterization techniques utilizing ionizing radiation. Nevertheless, such damage is critical to consider when planning and performing experiments requiring large radiation doses or radiation sensitive samples. High resolution, in situ transmission X-ray microscopy of Li-ion batteries involves both large X-ray doses and radiation sensitive samples. To successfully identify changes over time solely due to an applied current, the effects of radiation damage must be identified and avoided. Although radiation damage is often significantly sample and instrument dependent, the general procedure to identify and minimize damage is transferable. Here we outline our method of determining and managing the radiation damage observed in lithium sulfur batteries during in situ X-ray imaging on the transmission X-ray microscope at Stanford Synchrotron Radiation Lightsource.
Higher Sensitivity in X-Ray Photography
NASA Technical Reports Server (NTRS)
Buggle, R. N.
1986-01-01
Hidden defects revealed if X-ray energy decreased as exposure progresses. Declining-potential X-ray photography detects fractures in thin metal sheet covered by unbroken sheet of twice thickness. Originally developed to check solder connections on multilayer circuit boards, technique has potential for other nondestructive testing.
NASA Technical Reports Server (NTRS)
Xu, Yueming; Sutherland, Peter; Mccray, Richard; Ross, Randy R.
1988-01-01
Detailed calculations of the development of the X-ray spectrum of 1987A are presented using more realistic models for the supernova composition and density structure provided by Woosley. It is shown how the emergence of the X-ray spectrum depends on the parameters of the model and the nature of its central energy source. It is shown that the soft X-ray spectrum should be dominated by a 6.4 keV Fe K(alpha) emission line that could be observed by a sensitive X-ray telescope.
A study of the discrepant QSO X-ray luminosity function from the HEAO-2 data archive
NASA Technical Reports Server (NTRS)
Margon, B.
1986-01-01
Sensitive X-ray information for approximately 90 previously uncataloged Quasi-Stellar Objects (QSOs) in the redshift range 1.8 is less than or equal to z which is less than or equal to 3. Even with the longest esixting Einstein Observatory X-ray exposures, only 25% of these objects are positively detected in X-rays. The data were used to investigate the ensemble X-ray properties of high redshift QSOs, and the QSO population in general.
Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V
Basiricò, Laura; Ciavatti, Andrea; Cramer, Tobias; Cosseddu, Piero; Bonfiglio, Annalisa; Fraboni, Beatrice
2016-01-01
The application of organic electronic materials for the detection of ionizing radiations is very appealing thanks to their mechanical flexibility, low-cost and simple processing in comparison to their inorganic counterpart. In this work we investigate the direct X-ray photoconversion process in organic thin film photoconductors. The devices are realized by drop casting solution-processed bis-(triisopropylsilylethynyl)pentacene (TIPS-pentacene) onto flexible plastic substrates patterned with metal electrodes; they exhibit a strong sensitivity to X-rays despite the low X-ray photon absorption typical of low-Z organic materials. We propose a model, based on the accumulation of photogenerated charges and photoconductive gain, able to describe the magnitude as well as the dynamics of the X-ray-induced photocurrent. This finding allows us to fabricate and test a flexible 2 × 2 pixelated X-ray detector operating at 0.2 V, with gain and sensitivity up to 4.7 × 104 and 77,000 nC mGy−1 cm−3, respectively. PMID:27708274
A first determination of the surface density of galaxy clusters at very low x-ray fluxes
NASA Technical Reports Server (NTRS)
Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo
1995-01-01
We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.
Schmidt, M; Eng, P J; Stubbs, J E; Fenter, P; Soderholm, L
2011-07-01
We present a novel design of a purpose-built, portable sample cell for in situ x-ray scattering experiments of radioactive or atmosphere sensitive samples. The cell has a modular design that includes two independent layers of containment that are used simultaneously to isolate the sensitive samples. Both layers of containment can be flushed with an inert gas, thus serving a double purpose as containment of radiological material (either as a solid sample or as a liquid phase) and in separating reactive samples from the ambient atmosphere. A remote controlled solution flow system is integrated into the containment system that allows sorption experiments to be performed on the diffractometer. The cell's design is discussed in detail and we demonstrate the cell's performance by presenting first results of crystal truncation rod measurements. The results were obtained from muscovite mica single crystals reacted with 1 mM solutions of Th(IV) with 0.1 M NaCl background electrolyte. Data were obtained in specular as well as off-specular geometry.
Saito, Akira; Tanaka, Takehiro; Takagi, Yasumasa; Hosokawa, Hiromasa; Notsu, Hiroshi; Ohzeki, Gozo; Tanaka, Yoshihito; Kohmura, Yoshiki; Akai-Kasaya, Megumi; Ishikawa, Tetsuya; Kuwahara, Yuji; Kikuta, Seishi; Aono, Masakazu
2011-04-01
X-ray induced atomic motion on a Ge(111)-c(2 x 8) clean surface at room temperature was directly observed with atomic resolution using a synchrotron radiation (SR)-based scanning tunneling microscope (STM) system under ultra high vacuum condition. The atomic motion was visualized as a tracking image by developing a method to merge the STM images before and after X-ray irradiation. Using the tracking image, the atomic mobility was found to be strongly affected by defects on the surface, but was not dependent on the incident X-ray energy, although it was clearly dependent on the photon density. The atomic motion can be attributed to surface diffusion, which might not be due to core-excitation accompanied with electronic transition, but a thermal effect by X-ray irradiation. The crystal surface structure was possible to break even at a lower photon density than the conventionally known barrier. These results can alert X-ray studies in the near future about sample damage during measurements, while suggesting the possibility of new applications. Also the obtained results show a new availability of the in-situ SR-STM system.
Operation of an InGrid based X-ray detector at the CAST experiment
NASA Astrophysics Data System (ADS)
Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael
2018-02-01
The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.
A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarty, Deepto; Nowak, Michael A.; Tomsick, John A.
2014-12-20
The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermalmore » component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.« less
Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo
2007-11-20
A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.
Resonant soft x-ray GISAXS on block copolymer films
NASA Astrophysics Data System (ADS)
Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.
2008-03-01
Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.
Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720
NASA Astrophysics Data System (ADS)
Buote, David A.; Canizares, Claude R.
1994-05-01
We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three-dimensional isopotential surfaces -- we discuss the viability of this assumption for NGC 720. Milgrom's Modification of Newtonian Dynamics (MOND) cannot dispel this manifestation of dark matter. Hence, geometrical considerations require, without mention of pressure or temperature, the presence of an extended, massive dark matter halo in NGC 720. Employing essentially the technique of Buote & Canizares (1992; Buote 1992) we use the shape of the X-ray surface brightness to constrain the shape of the total gravitating matter. The total matter is modeled as either an oblate or prolate spheriod of constant shape and orientation having either a Ferrers (rho approximately r-n) or Hernquist density. Assuming the X-ray gas is in hydrostatic equilibrium, we construct a model X-ray gas distribution for various temperature profiles. We determine the ellipticity of the total gravitating matter to be epsilon approximately 0.50-0.70. Using the single-temperature model we estimate a total mass approximately (0.41-1.4) x 1012 h80 solar mass interior to the ellipsoid of semimajor axis 43.6 h80 kpc. Ferrers densities as steep as r-3 do not fit the data, but the r-2 and Hernquist models yield excellent fits. We estimate the mass distributions of the stars and the gas and fit the dark matter directly. For a given gas equation of state and functional forms for the visible stars, gas, and dark matter, these models yield a distance-independent and temperature-independent measurement of the ratio of dark mass to stellar mass MDM/Mstars. We estimate a minimum MDM/Mstars greater than or equal to 4 which corresponds to a total mass slightly greater than that derived from the single-temperature models for distance D = 20h80 Mpc.
Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720
NASA Technical Reports Server (NTRS)
Buote, David A.; Canizares, Claude R.
1994-01-01
We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three-dimensional isopotential surfaces -- we discuss the viability of this assumption for NGC 720. Milgrom's Modification of Newtonian Dynamics (MOND) cannot dispel this manifestation of dark matter. Hence, geometrical considerations require, without mention of pressure or temperature, the presence of an extended, massive dark matter halo in NGC 720. Employing essentially the technique of Buote & Canizares (1992; Buote 1992) we use the shape of the X-ray surface brightness to constrain the shape of the total gravitating matter. The total matter is modeled as either an oblate or prolate spheriod of constant shape and orientation having either a Ferrers (rho approximately r(exp -n)) or Hernquist density. Assuming the X-ray gas is in hydrostatic equilibrium, we construct a model X-ray gas distribution for various temperature profiles. We determine the ellipticity of the total gravitating matter to be epsilon approximately 0.50-0.70. Using the single-temperature model we estimate a total mass approximately (0.41-1.4) x 10(exp 12) h(sub 80) solar mass interior to the ellipsoid of semimajor axis 43.6 h(sub 80) kpc. Ferrers densities as steep as r(exp -3) do not fit the data, but the r(exp -2) and Hernquist models yield excellent fits. We estimate the mass distributions of the stars and the gas and fit the dark matter directly. For a given gas equation of state and functional forms for the visible stars, gas, and dark matter, these models yield a distance-independent and temperature-independent measurement of the ratio of dark mass to stellar mass M(sub DM)/M(sub stars). We estimate a minimum M(sub DM)/M(sub stars) greater than or equal to 4 which corresponds to a total mass slightly greater than that derived from the single-temperature models for distance D = 20h(sub 80) Mpc.
High sensitivity flat SiO2 fibres for medical dosimetry
NASA Astrophysics Data System (ADS)
Abdul Sani, Siti. F.; Alalawi, Amani I.; Azhar, Hairul A. R.; Amouzad Mahdiraji, Ghafour; Tamchek, Nizam; Nisbet, A.; Maah, M. J.; Bradley, D. A.
2014-11-01
We describe investigation of a novel undoped flat fibre fabricated for medical radiation dosimetry. Using high energy X-ray beams generated at a potential of 6 MV, comparison has been made of the TL yield of silica flat fibres, TLD-100 chips and Ge-doped silica fibres. The flat fibres provide competitive TL yield to that of TLD-100 chips, being some 100 times that of the Ge-doped fibres. Pt-coated flat fibres have then been used to increase photoelectron production and hence local dose deposition, obtaining significant increase in dose sensitivity over that of undoped flat fibres. Using 250 kVp X-ray beams, the TL yield reveals a progressive linear increase in dose for Pt thicknesses from 20 nm up to 80 nm. The dose enhancement factor (DEF) of (0.0150±0.0003) nm-1 Pt is comparable to that obtained using gold, agreeing at the 1% level with the value expected on the basis of photoelectron generation. Finally, X-ray photoelectron spectroscopy (XPS) has been employed to characterize the surface oxidation state of the fibre medium. The charge state of Si2p was found to lie on 103.86 eV of binding energy and the atomic percentage obtained from the XPS analysis is 22.41%.
A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.
Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George
2017-01-01
To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and acquisition strategies.
NASA Astrophysics Data System (ADS)
Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio
2018-06-01
The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.
Influence of annealing on X-ray radiation sensing properties of TiO2 thin film
NASA Astrophysics Data System (ADS)
Sarma, M. P.; Kalita, J. M.; Wary, G.
2018-03-01
A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.
2013-01-01
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.
Continuous Shape Estimation of Continuum Robots Using X-ray Images
Lobaton, Edgar J.; Fu, Jinghua; Torres, Luis G.; Alterovitz, Ron
2015-01-01
We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot’s shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints. PMID:26279960
Continuous Shape Estimation of Continuum Robots Using X-ray Images.
Lobaton, Edgar J; Fu, Jinghua; Torres, Luis G; Alterovitz, Ron
2013-05-06
We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.
NASA Astrophysics Data System (ADS)
Piao, H.; Adib, K.; Barteau, Mark A.
2004-05-01
Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.
Gueriau, Pierre; Rueff, Jean -Pascal; Bernard, Sylvain; ...
2017-09-13
Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280–350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Heremore » we report the use of XRS at ~6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. As a result, we show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.« less
Surface degradation of uranium tetrafluoride
Tobin, J. G.; Duffin, A. M.; Yu, S. -W.; ...
2017-05-01
A detailed analysis of a single crystal of uranium tetrafluoride has been carried out. The techniques include x-ray absorption spectroscopy, as well as x-ray photoelectron spectroscopy and x-ray emission spectroscopy. Evidence will be presented for the presence of a uranyl species, possibly UO 2F 2, as a product of, or participant in the surface degradation.
A study of the discrepant QSO X-ray luminosity function from the HEAO-2 data archive
NASA Technical Reports Server (NTRS)
Margon, B.
1984-01-01
An in-progress investigation aimed at characterizing the X-ray luminosity of very faint QSOs is described. More than 100 faint, previously uncataloged QSOs which lie in areas imaged in X rays at very high sensitivity were discovered.
X-ray standing wave analysis of nanostructures using partially coherent radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in; Das, Gangadhar; Bedzyk, M. J.
2015-09-07
The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top amore » 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.« less
History of Chandra X-Ray Observatory
2001-07-04
Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).
Chandra Image Gives First Look at Mars Emitted X-Rays
NASA Technical Reports Server (NTRS)
2001-01-01
Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).
NASA Astrophysics Data System (ADS)
Gray, Alexander
In this dissertation we describe several new directions in the field of x-ray photoelectron spectroscopy, with a particular focus on the enhancement and control of the depth sensitivity and selectivity of the measurement. Enhancement of the depth sensitivity is achieved by going to higher photon energies with hard x-ray excitation and taking advantage of the resulting larger electron inelastic mean-free paths. This novel approach provides a more accurate picture of bulk electronic structure, when compared to the traditional soft x-ray photoelectron spectroscopy (XPS) which, for some systems, may be too strongly influenced by surface effects. We present three case-studies wherein such hard x-ray photoelectron spectroscopy (HAXPES) in the multi-keV regime is used to probe the bulk properties of complex thin-film materials, which would be otherwise impossible to investigate using conventional soft x-ray XPS. Namely, (1) we directly observe the opening of a semiconducting gap in epitaxial Cr0.80Al0.20 alloy thin films and confirm this with theory, (2) we study the electronic and structural properties of near-Heusler FexSi1-x alloy thin films of various composition and degrees of crystallinity, and (3) we observe the Mott metal-to-insulator transition in the ultra-thin epitaxial LaNiO3 films via core-level and valence-band spectroscopies. By performing the experiments at the photon energy of 5.95 keV, the bulk-sensitivity of the measurements, characterized by the inelastic mean-free path of the photoemitted electrons, is enhanced by a factor of 4--7 compared to the conventional soft x-ray photoelectron spectroscopy. The experimental results are compared to calculations performed using various first-principle theoretical approaches, such as the density-functional theory and the one-step theory of photoemission. Furthermore, we present the first results of hard x-ray angle-resolved photoemission measurements (HARPES), at excitation energies of 3.24 and 5.95 keV. In a second aspect of this dissertation, depth selectivity is achieved by setting-up an x-ray standing wave field in the sample by growing it on a synthetic periodic multilayer mirror substrate, which in first-order Bragg reflection acts as the standing-wave generator. The antinodes of the standing wave function as "epicenters" for photoemission, and can be moved in the direction perpendicular to the sample surface by either scanning the incidence angle thetainc, or the photon energy through the Bragg condition. Alternatively, provided that one of the underlying layers in the structure is grown in a shape of a wedge with varying thickness, the standing wave can be scanned vertically though the sample simply by moving the sample laterally under the x-ray measurement spot. We present the first study in which the chemical and electronic-structure profiles of a magnetic tunnel junction La 0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) have been quantitatively determined by a combination of soft and hard x-ray standing-wave excited photoemission. By comparing experiment to x-ray optical calculations, the detailed chemical profile of the constituent layers and their interfaces is quantitatively derived with Angstrom precision. Combined with core-hole multiplet theory incorporating Jahn-Teller distortion, these results indicate a change in the Mn bonding state near the LSMO/STO interface. Our results thus further clarify the reduced performance of LSMO/STO magnetic tunnel junction compared to ideal theoretical expectations. Finally, we demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM) as a further aspect of standing-wave photoemission. We show that standing-wave excited photoelectron microscopy can be used to produce element-specific and depth-selective images of patterned samples. In conjunction with x-ray optical theoretical modeling, quantitative information about the depth-dependent chemical composition of the sample can be extracted from the photoemission data. The good agreement between our experimental results and model calculations suggests that future studies with better spatial and spectral resolution will also yield more detailed information about the interfacial regions. This addition of quantitative depth selectivity to the conventional laterally-resolved soft x-ray photoelectron emission microscopy thus should considerably enhance the capabilities of the PEEM as a research, development and metrology tool for science and industry. (Abstract shortened by UMI.)
Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography
NASA Astrophysics Data System (ADS)
Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz
2015-12-01
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.
Growth and Surface Modification of LaFeO3 Thin Films Induced By Reductive Annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Brendan T.; Zhang, Hongliang; Shutthanandan, V.
2015-03-01
The electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high energy electron diffraction (RHEED), x-ray diffraction (XRD), transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS)more » demonstrated that the film is highly oriented and stoichiometric. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved x-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of perovskite materials for catalysts.« less
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Cha, W.; Andrich, P.; Anderson, C. P.; Ulvestad, A.; Harder, R.; Fuoss, P. H.; Awschalom, D. D.; Heremans, F. J.
2017-02-01
We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 - 4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.
Feasibility of spectro-photometry in X-rays (SPHINX) from the moon
NASA Astrophysics Data System (ADS)
Sarkar, Ritabrata; Chakrabarti, Sandip Kumar
2010-08-01
Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.
NASA Astrophysics Data System (ADS)
Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu
2015-06-01
X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.
Optoelectronic Picosecond Detection of Synchrotron X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Stephen M.
2017-08-04
The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results ofmore » this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.« less
NASA Astrophysics Data System (ADS)
Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian
2007-08-01
A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.
Sub-10-ms X-ray tomography using a grating interferometer
NASA Astrophysics Data System (ADS)
Yashiro, Wataru; Noda, Daiji; Kajiwara, Kentaro
2017-05-01
An X-ray phase tomogram was successfully obtained with an exposure time of less than 10 ms by X-ray grating interferometry, an X-ray phase imaging technique that enables high-sensitivity X-ray imaging even of materials consisting of light elements. This high-speed X-ray imaging experiment was performed at BL28B2, SPring-8, where a white X-ray beam is available, and the tomogram was reconstructed from projection images recorded at a frame rate of 100,000 fps. The setup of the experiment will make it possible to realize three-dimensional observation of unrepeatable high-speed phenomena with a time resolution of less than 10 ms.
Canadian Led X-ray Polarimeter Mission CXP
NASA Technical Reports Server (NTRS)
Kaspi, V.; Hanna, D.; Weisskopf, M.; Ramsey, B.; Ragan, K.; Vachon, B.; Elsner, R.; Heyl, J.; Pavlov, G.; Cumming, A.;
2006-01-01
We propose a Canadian-led X-ray Polarimetry Mission (CXP), to include a scattering X-ray Polarimeter and sensitive All-Sky X-ray Monitor (ASXM). Polarimetry would provide a new observational window on black holes, neutron stars, accretion disks and jets, and the ASXM would offer sensitive monitoring of the volatile X-ray sky. The envisioned polarimeter consists of a hollow scattering beryllium cone surrounded by an annular proportional counter, in a simple and elegant design that is reliable and low-risk. It would be sensitive in the 6-30 keV band to approx. 3% polarization in approx. 30 Galactic sources and 2 AGN in a baseline 1-yr mission, and have sensitivity greater than 10 times that of the previous X-ray polarimeter flown (NASA's OSO-8, 1975-78) for most sources. This X-ray polarimeter would tackle questions like, Do black holes spin?, How do pulsars pulse?, What is the geometry of the magnetic field in accreting neutron stars? Where and how are jets produced in microquasars and AGN?, What are the geometries of many of the most famous accretion-disk systems in the sky? This will be done using a novel and until-now unexploited technique that will greatly broaden the available observational phase space of compact objects by adding to timing and spectroscopy observations of polarization fraction and position angle as a function of energy. The All-Sky X-ray Monitor would scan for transients, both as potential targets for the polarimeter but also as a service to the worldwide astronomical community. The entire CXP mission could be flown for $40- 60M CDN, according to estimates by ComDev International, and could be built entirely in Canada. It would fall well within the CSA's SmallSat envelope and would empower the growing and dynamic Canadian High-Energy Astrophysics community with world leadership in a potentially high impact niche area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar; Kane, S. R.; Khooha, Ajay
2015-05-15
A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less
NASA Astrophysics Data System (ADS)
Frey, Joel Brandon
Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.
NASA Technical Reports Server (NTRS)
Blake, David F.
2015-01-01
The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish the origin or provenance of a sample. The search for evidence of extant or extinct life on Mars will initially be a search for evidence of present or past conditions supportive of life (e.g., evidence of water), not for life itself.Results of the first 1,000 sols (Mars days) will be discussed, including the discovery of the first habitable environment on Mars.
Abdul-Majid, S
1987-01-01
The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.
Kinetic Modeling of the X-ray-induced Damage to a Metalloprotein
Davis, Katherine M.; Kosheleva, Irina; Henning, Robert W.; Seidler, Gerald T.; Pushkar, Yulia
2013-01-01
It is well known that biological samples undergo x-ray-induced degradation. One of the fastest occurring x-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room temperature data on the photoreduction of Mn ions in the oxygen evolving complex (OEC) of photosystem II, one of the most radiation damage sensitive proteins and a key constituent of natural photosynthesis in plants, green algae and cyanobacteria. Time-resolved x-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of x-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC MnIII/IV ions by solvated electrons was determined. From this model, the possible kinetics of x-ray-induced damage at variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of x-ray-induced damage with increasing rates of damage deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and x-ray FEL sources. PMID:23815809
GEMS X-ray Polarimeter Performance Simulations
NASA Technical Reports Server (NTRS)
Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean
2012-01-01
The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.
Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.
1974-01-01
Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.
[Contrast of Z-Pinch X-Ray Yield Measure Technique].
Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi
2015-03-01
Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.
Spectroscopic observations of X-ray selected late type stars
NASA Technical Reports Server (NTRS)
Takalo, L. O.
1988-01-01
A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.
Novel ultra-lightweight and high-resolution MEMS x-ray optics
NASA Astrophysics Data System (ADS)
Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro
2009-05-01
We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.
2010-05-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi
2009-08-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.
2009-12-01
The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
A New High-sensitivity solar X-ray Spectrophotometer SphinX:early operations and databases
NASA Astrophysics Data System (ADS)
Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Siarkowski, Marek; Bakala, Jaroslaw; Podgorski, Piotr; Trzebinski, Witold; Plocieniak, Stefan; Kordylewski, Zbigniew; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio
The Solar Photometer in X-rays (SphinX) is an instrument operating aboard Russian CORONAS-Photon satellite. A short description of this unique instrument will be presented and its unique capabilities discussed. SphinX is presently the most sensitive solar X-ray spectrophotometer measuring solar spectra in the energy range above 1 keV. A large archive of SphinX mea-surements has already been collected. General access to these measurements is possible. The SphinX data repositories contain lightcurves, spectra, and photon arrival time measurements. The SphinX data cover nearly continuously the period since the satellite launch on January 30, 2009 up to the end-of November 2009. Present instrument status, data formats and data access methods will be shown. An overview of possible new science coming from SphinX data analysis will be discussed.
NASA Astrophysics Data System (ADS)
Fourspring, Patrick Michael
X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.; Sutton, S. R.
2004-01-01
Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth s stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to approximately 30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth s atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin (approximately 100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOFSIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the approximately 2 m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile elements Zn and Br, although spatially inhomogeneous, were not concentrated on the surface of any of the IDPs they examined, suggesting that the Zn and the Br enrichments in the IDPs are not due to contamination during stratospheric residence.
Lim, Sara N.; Pradhan, Anil K.; Barth, Rolf F.; Nahar, Sultana N.; Nakkula, Robin J.; Yang, Weilian; Palmer, Alycia M.; Turro, Claudia; Weldon, Michael; Bell, Erica Hlavin; Mo, Xiaokui
2015-01-01
The purposes of this study were (i) to investigate the differences in effects between 160-kV low-energy and 6-MV high-energy X-rays, both by computational analysis and in vitro studies; (ii) to determine the effects of each on platinum-sensitized F98 rat glioma and murine B16 melanoma cells; and (iii) to describe the in vitro cytotoxicity and in vivo toxicity of a Pt(II) terpyridine platinum (Typ-Pt) complex. Simulations were performed using the Monte Carlo code Geant4 to determine enhancement in absorption of low- versus high-energy X-rays by Pt and to determine dose enhancement factors (DEFs) for a Pt-sensitized tumor phantom. In vitro studies were carried out using Typ-Pt and again with carboplatin due to the unexpected in vivo toxicity of Typ-Pt. Cell survival was determined using clonogenic assays. In agreement with computations and simulations, in vitro data showed up to one log unit reduction in surviving fractions (SFs) of cells treated with 1–4 µg/ml of Typ-Pt and irradiated with 160-kV versus 6-MV X-rays. DEFs showed radiosensitization in the 50–200 keV range, which fell to approximate unity at higher energies, suggesting marginal interactions at MeV energies. Cells sensitized with 1–5 or 7 µg/ml of carboplatin and then irradiated also showed a significant decrease (P < 0.05) in SFs. However, it was unlikely this was due to increased interactions. Theoretical and in vitro studies presented here demonstrated that the tumoricidal activity of low-energy X-rays was greater than that of high-energy X-rays against Pt-sensitized tumor cells. Determining whether radiosensitization is a function of increased interactions will require additional studies. PMID:25266332
Bismuth Passivation Technique for High-Resolution X-Ray Detectors
NASA Technical Reports Server (NTRS)
Chervenak, James; Hess, Larry
2013-01-01
The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).
Characterization of Beryllium Windows Using Coherent X-rays at 1-km Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Shunji; Yabashi, Makina; Takahashi, Sunao
2004-05-12
Beryllium windows were characterized using coherent x-rays at the one-kilometer beamline of SPring-8. Non-uniformity of transmission x-ray images is largely due to Fresnel diffraction from deficiencies such as surface pits with diameter of order of one micron to ten microns, having no correlation with averaged surface roughness measured with an optical profilometer.
Magnetic memory of a single-molecule quantum magnet wired to a gold surface.
Mannini, Matteo; Pineider, Francesco; Sainctavit, Philippe; Danieli, Chiara; Otero, Edwige; Sciancalepore, Corrado; Talarico, Anna Maria; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante; Sessoli, Roberta
2009-03-01
In the field of molecular spintronics, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when deposited on ferromagnetic surfaces, information storage at the molecular level requires molecules exhibiting an intrinsic remnant magnetization, like the so-called single-molecule magnets (SMMs). These have been intensively investigated for their rich quantum behaviour but no magnetic hysteresis has been so far reported for monolayers of SMMs on various non-magnetic substrates, most probably owing to the chemical instability of clusters on surfaces. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism synchrotron-based techniques, pushed to the limits in sensitivity and operated at sub-kelvin temperatures, we have now found that robust, tailor-made Fe(4) complexes retain magnetic hysteresis at gold surfaces. Our results demonstrate that isolated SMMs can be used for storing information. The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.
Surface slope metrology of highly curved x-ray optics with an interferometric microscope
NASA Astrophysics Data System (ADS)
Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.
2017-09-01
The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.
Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blake, David F.; DeVincenzi, D. (Technical Monitor)
1999-01-01
The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.
Stimulated x-ray emission spectroscopy in transition metal complexes
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; ...
2018-03-27
We report the observation and analysis of the gain curve of amplified Kα X-ray emission from solutions of Mn(II) and Mn(VII) complexes using an X-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over four orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ~1.7 eV FWHM is constant over three orders of magnitude, pointing to the build-up of transform limited pulses of ~1fs duration. Driving the amplification into saturation leads to broadening and shift of the line. Importantly, the chemical sensitivity of the stimulated X-ray emission to the Mn oxidation state is preserved at power densities ofmore » $$\\sim10 20$$~W/cm 2 for the incoming X-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) X-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear X-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis and materials science.« less
Testing Solar Flare Models with BATSE
NASA Astrophysics Data System (ADS)
Zarro, Dominic M.
1995-07-01
We propose to use high-sensitivity Burst and Transient Source Experiment (BATSE) hard X-ray observations to test the thick-target and electric field acceleration models of solar flares. We will compare the predictions made by these models with hard X-ray spectral observations obtained with BATSE and simultaneous soft X-ray Ca XIX emission observed with the Yohkoh Bragg Crystal Spectrometer (BCS). The increased sensitivities of the BATSE and BCS (relative to previous detectors) permits a renewed study of the relationship between heating and dynamical motions during the crucial rise phase of flares. With these observations, we will: (1) investigate the ability of the thick-target model to explain the temporal evolution of hard X-ray emission relative to the soft X-ray blueshift during the earliest stages of the impulsive phase; and (2) search for evidence of electric-field acceleration as implied by temporal correlations between hard X-ray spectral breaks and the Ca XIX blueshift. The proposed study will utilize hard X-ray lightcurve and spectral measurements in the 10-100 keV energy range obtained with the BATSE Large Area Detectors (LAD). The DISCLA and CONT data will be the primary data products used in this analysis.
Enhancement of X-ray dose absorption for medical applications
NASA Astrophysics Data System (ADS)
Lim, Sara; Nahar, S.; Pradhan, A.; Barth, R.
2013-05-01
A promising technique for cancer treatment is radiation therapy with high-Z (HZ) nanomoities acting as radio-sensitizers attached to tumor cells and irradiated with X-rays. But the efficacy of radiosenstization is highly energy dependent. We study the physical effects in using platinum (Pt) as the radio-sensitizing agent, coupled with commonly employed broadband x-ray sources with mean energies around 100 keV, as opposed to MeV energies produced by clinical linear accelerators (LINAC) used in radiation therapy. Numerical calculations, in vitro, and in vivo studies of F98 rat glioma (brain cancer) demonstrate that irradiation from a medium energy X-ray (MEX) 160 kV source is far more effective than from a high energy x-ray (HEX) 6 MV LINAC. We define a parameter to quantify photoionization by an x-ray source, which thereby provides a measure of subsequent Auger decays. The platinum (Z = 78) results are also relevant to ongoing studies on x-ray interaction with gold (Z = 79) nanoparticles, widely studied as an HZ contrast agent. The present study should be of additional interest for a combined radiation plus chemotherapy treatment since Pt compounds such cis-Pt and carbo-Pt are commonly used in chemotherapy.
Stimulated x-ray emission spectroscopy in transition metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto
We report the observation and analysis of the gain curve of amplified Kα X-ray emission from solutions of Mn(II) and Mn(VII) complexes using an X-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over four orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ~1.7 eV FWHM is constant over three orders of magnitude, pointing to the build-up of transform limited pulses of ~1fs duration. Driving the amplification into saturation leads to broadening and shift of the line. Importantly, the chemical sensitivity of the stimulated X-ray emission to the Mn oxidation state is preserved at power densities ofmore » $$\\sim10 20$$~W/cm 2 for the incoming X-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) X-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear X-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis and materials science.« less
Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes
NASA Astrophysics Data System (ADS)
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe
2018-03-01
We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.
The SWIFT Gamma-Ray Burst X-Ray Telescope
NASA Technical Reports Server (NTRS)
Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.
2006-01-01
The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.
Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don
2017-01-01
Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.
Mass concentrations associated with extended X-ray sources in the core of the Coma cluster
NASA Technical Reports Server (NTRS)
Vikhlinin, A.; Forman, W.; Jones, C.
1994-01-01
Using a deep (approx. 20,200 s) ROSAT Position Sensitive Proportional Counter (PSPC) image we have examined the central region of the Coma cluster. Two extended regions of enhanced X-ray emission are found, centered at the positions of the brightest elliptical galaxies in the cluster: NGC 4874 and NGC 4889. Spectral analysis of the sources reveals no evidence of any difference between the spectra of these sources and that of the surrounding cluster emission. We assume that the enhancement in the X-ray surface brightness results from gas density enhancements and also that the underlying mass concentrations lie either at the cluster center or 1 core radius out of the center (420 kpc). With these assumptions, we derive total masses of 1.2 x 10(exp 13) - 1.6 x 10(exp 13), and 0.9 x 10(exp 13) - 1.8 x 10(exp 13) Solar mass within 2 min (80 kpc) of NGC 4874 and NGC 4889, respectively, assuming a Hubble constant H(sub 0) = 50 km/s/Mpc. Corresponding mass-to-light ratios for the galaxies are 30-40 and 25-50 in solar units, increasing at larger radii and approaching the values derived for the entire cluster at distances of more than approximately 150 kpc from the galaxies.
NASA Astrophysics Data System (ADS)
Sabarish, R.; Suriyanarayanan, N.; Kalita, J. M.; Sarma, M. P.; Wary, G.
2018-05-01
In the present work, ZnxBi2‑xS3 films were synthesized (x = 0.2 M) by a chemical bath deposition (CBD) technique at different bath temperatures (60 °C, 70 °C and 80 °C). The role of bath temperature on the formation of the films has been examined. The crystalline nature, structural parameters and surface morphology of the films were ascertained using x-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDS) respectively. These studies confirmed the formation of crystalline Zn0.2Bi1.8S3 films with uniform distribution of homogenous grains. The characterization results revealed that the film deposited at 70 °C has the good crystalline quality than the films deposited at 60 and 80 °C. Further, the optical absorption spectra showed that the bandgap (E g ) of the film deposited at 70 °C was about 2.39 eV which was found to be less than the same film deposited at 60 and 80 °C. The Current-Voltage (I-V) characteristics of all the films were measured under dark condition. This showed that the electrical conductivity of the film deposited at 70 °C was 1.61 × 10‑5 S cm‑1 which is ten times higher than other films. Further, the I-V characteristics of the film deposited at 70 °C was studied under x-ray radiation. The current under the x-ray radiation was significantly higher compared to the dark current. The x-ray detection sensitivity of the film was found to be maximum at 0.7 V and gradually decreases with increase of bias voltage. This analysis reveals that the film deposited at 70 °C can be used as an x-ray sensor.
The microchannel x-ray telescope status
NASA Astrophysics Data System (ADS)
Götz, D.; Meuris, A.; Pinsard, F.; Doumayrou, E.; Tourrette, T.; Osborne, J. P.; Willingale, R.; Sykes, J. M.; Pearson, J. F.; Le Duigou, J. M.; Mercier, K.
2016-07-01
We present design status of the Microchannel X-ray Telescope, the focussing X-ray telescope on board the Sino- French SVOM mission dedicated to Gamma-Ray Bursts. Its optical design is based on square micro-pore optics (MPOs) in a Lobster-Eye configuration. The optics will be coupled to a low-noise pnCCD sensitive in the 0.2{10 keV energy range. With an expected point spread function of 4.5 arcmin (FWHM) and an estimated sensitivity adequate to detect all the afterglows of the SVOM GRBs, MXT will be able to provide error boxes smaller than 60 (90% c.l.) arc sec after five minutes of observation.
Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor
NASA Astrophysics Data System (ADS)
Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra
2016-12-01
ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.
Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee
2009-01-01
Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.
Noise and sensitivity of x-ray framing cameras at Nike (abstract)
NASA Astrophysics Data System (ADS)
Pawley, C. J.; Deniz, A. V.; Lehecka, T.
1999-01-01
X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.
Tanaka, Junji; Nagashima, Masabumi; Kido, Kazuhiro; Hoshino, Yoshihide; Kiyohara, Junko; Makifuchi, Chiho; Nishino, Satoshi; Nagatsuka, Sumiya; Momose, Atsushi
2013-09-01
We developed an X-ray phase imaging system based on Talbot-Lau interferometry and studied its feasibility for clinical diagnoses of joint diseases. The system consists of three X-ray gratings, a conventional X-ray tube, an object holder, an X-ray image sensor, and a computer for image processing. The joints of human cadavers and healthy volunteers were imaged, and the results indicated sufficient sensitivity to cartilage, suggesting medical significance. Copyright © 2012. Published by Elsevier GmbH.
Hill, Shannon B; Faradzhev, Nadir S; Powell, Cedric J
2017-12-01
We discuss the problem of quantifying common sources of statistical uncertainties for analyses of trace levels of surface contamination using X-ray photoelectron spectroscopy. We examine the propagation of error for peak-area measurements using common forms of linear and polynomial background subtraction including the correlation of points used to determine both background and peak areas. This correlation has been neglected in previous analyses, but we show that it contributes significantly to the peak-area uncertainty near the detection limit. We introduce the concept of relative background subtraction variance (RBSV) which quantifies the uncertainty introduced by the method of background determination relative to the uncertainty of the background area itself. The uncertainties of the peak area and atomic concentration and of the detection limit are expressed using the RBSV, which separates the contributions from the acquisition parameters, the background-determination method, and the properties of the measured spectrum. These results are then combined to find acquisition strategies that minimize the total measurement time needed to achieve a desired detection limit or atomic-percentage uncertainty for a particular trace element. Minimization of data-acquisition time is important for samples that are sensitive to x-ray dose and also for laboratories that need to optimize throughput.
A study of cooling flows in poor clusters of galaxies
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.; Dillingham, Stephen
1995-01-01
We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.
Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D
2017-08-15
Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.
NASA Astrophysics Data System (ADS)
Nakagawa, Tomohiko; Gonda, Kohsuke; Kamei, Takashi; Cong, Liman; Hamada, Yoh; Kitamura, Narufumi; Tada, Hiroshi; Ishida, Takanori; Aimiya, Takuji; Furusawa, Naoko; Nakano, Yasushi; Ohuchi, Noriaki
2016-01-01
Contrast agents are often used to enhance the contrast of X-ray computed tomography (CT) imaging of tumors to improve diagnostic accuracy. However, because the iodine-based contrast agents currently used in hospitals are of low molecular weight, the agent is rapidly excreted from the kidney or moves to extravascular tissues through the capillary vessels, depending on its concentration gradient. This leads to nonspecific enhancement of contrast images for tissues. Here, we created gold (Au) nanoparticles as a new contrast agent to specifically image tumors with CT using an enhanced permeability and retention (EPR) effect. Au has a higher X-ray absorption coefficient than does iodine. Au nanoparticles were supported with polyethylene glycol (PEG) chains on their surface to increase the blood retention and were conjugated with a cancer-specific antibody via terminal PEG chains. The developed Au nanoparticles were injected into tumor-bearing mice, and the distribution of Au was examined with CT imaging, transmission electron microscopy, and elemental analysis using inductively coupled plasma optical emission spectrometry. The results show that specific localization of the developed Au nanoparticles in the tumor is affected by a slight difference in particle size and enhanced by the conjugation of a specific antibody against the tumor.
Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger
2014-01-01
Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.
NASA Astrophysics Data System (ADS)
Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.
2017-10-01
The present work deals with the development of the Pd/ZnO naoparticles based sensor for detection of hydrogen (H2) gas at relatively low temperature (75-110 °C). Pd/ZnO Schottky diode was fabricated by ZnO nanoparticles based thin film on glass substrate using sol-gel spin coating technique. These ZnO nanoparticles have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive x-ray spectroscope (EDS), and field emission scanning electron microscope (FE-SEM) which reveals the ZnO film having particles size in the range of ~25 to ~110 nm with ~52.73 nm surface roughness. Gas dependent diode parameters such as barrier height and ideality factor have been evaluated upon exposure of H2 gas concentration in the range from 200-2000 ppm over the temperature range from 75 to 110 °C. The sensitivity of the Pd/ZnO sensor has been studied in terms of change in diode forward current upon exposure to H2 gas. Experimental result shows the optimized sensitivity ~246.22% for H2 concentration of 2000 ppm at temperature 90 °C. The hydrogen sensing mechanism has been explained by surface and subsurface adsorption of H2 molecules on Pd surface; subsequently, dissociation of H2 molecules into H + H atoms and diffusion to trap sites (oxygen ions) available on ZnO surface, resulting in formation of dipole moments at Pd/ZnO interface. The variation in the sensitivity, response and recovery time with temperature of Pd/ZnO sensor has also been studied.
X-Ray Excited Luminescence Chemical Imaging of Bacterial Growth on Surfaces Implanted in Tissue.
Wang, Fenglin; Raval, Yash; Tzeng, Tzuen-Rong J; Anker, Jeffrey N
2015-04-22
A pH sensor film is developed that can be coated on an implant surface and imaged using a combination of X-ray excitation and visible spectroscopy to monitor bacterial infection and treatment of implanted medical devices (IMDs) through tissue. X-ray scintillators in the pH sensor film generate light when an X-ray beam irradiates them. This light first passes through a layer containing pH indicator that alters the spectrum according to pH, then passes through and out of the tissue where it is detected by a spectrometer. A reference region on the film is used to account for spectral distortion from wavelength-dependent absorption and scattering in the tissue. pH images are acquired by moving the sample relative to the X-ray beam and collecting a spectrum at each location, with a spatial resolution limited by the X-ray beam width. Using this X-ray excited luminescence chemical imaging (XELCI) to map pH through ex vivo porcine tissue, a pH drop is detected during normal bacterial growth on the sensor surface, and a restoration of the pH to the bulk value during antibiotic treatment over the course of hours with milli-meter resolution. Overall, XELCI provides a novel approach to noninvasively image surface pH for studying implant infections and treatments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.
Hellman, K B; Lytle, C D; Bockstahler, L E
1976-09-01
Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar, E-mail: gdas@rrcat.gov.in; Tiwari, M. K.; Singh, A. K.
The Compton and elastic scattering radiations are the major contributor to the spectral background of an x-ray fluorescence spectrum, which eventually limits the element detection sensitivities of the technique to µg/g (ppm) range. In the present work, we provide a detail mathematical descriptions and show that how polarization properties of the synchrotron radiation influence the spectral background in the x-ray fluorescence technique. We demonstrate our theoretical understandings through experimental observations using total x-ray fluorescence measurements on standard reference materials. Interestingly, the azimuthal anisotropy of the scattered radiation is shown to have a vital role on the significance of the x-raymore » fluorescence detection sensitivities.« less
NASA Technical Reports Server (NTRS)
O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab;
2010-01-01
During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.
X RAY SENSITIVITY OF CONIDIA OF COLLECTOTRICHUM COCCODES (WALLR.) HUGHES (in Italian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loprieno, N.; Nannarone, A.
1963-01-01
Conidia collected from 6-day-old cultures of Colletotrichum coccodes were washed, resuspended in distilled water, and exposed to various doses of x radiation. Samples of the conidia were then seeded on complete media and survival was evaluated after 3 days by counting the number of colonies. Results demonstrate a very high sensitivity of this fungus to the lethal effects of x rays. (C.H.)
NASA Astrophysics Data System (ADS)
Burns, Jack
Galaxy clusters are assembled through large and small mergers which are the most energetic events ( bangs ) since the Big Bang. Cluster mergers stir the ICM creating shocks and turbulence which are illuminated by Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are clear signposts of recent mergers. Our recent cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray and radio relics/halos are clear candidates for very recent mergers. We propose to analyze a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (e 50 ksec) from Chandra and/or XMM. We will use a new x-ray data analysis pipeline, implemented on a parallelprocessor supercomputer, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. In addition, we will use a control sample of clusters from the HIFLUGCS catalog which do not show radio relics/halos or any significant x-ray surface brightness substructure, thus devoid of recent mergers. The temperature maps will be made using 3 different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. We also plan to use archival Suzaku data for 22 clusters in our sample and study the x-ray temperatures at the outskirts of the clusters. All 48 clusters have archival radio data at d1.4 GHz which will be re-analyzed using advanced algorithms in NRAO s CASA software. We also have new radio data on a subset of these clusters and have proposed to observe more of them with the increased sensitivity of the JVLA and GMRT at 0.25-1.4 GHz. Using the systematically analyzed x-ray and radio data, we propose to pursue the detailed link between cluster mergers and the formation of radio relics/halos. (a) How do radio relics form? Radio relics are believed to be created via re-acceleration of cosmic ray electrons through diffusive shock acceleration, a 1st order Fermi mechanism. Hence, there should be a correlation between shocks detected in the x-ray and radio. We plan to use our newly developed 2-D shock-finder using jumps within xray temperature maps, and complement the results with radio Mach numbers derived from radio spectral indices. Shocks detected in our simulations using a 3-D shock-finder will be used to understand the effects of projections in observations. (b) How do radio halos form? It is not clear if the formation of radio halos is due to turbulent acceleration (2nd order Fermi process) or due to more efficient 1st order Fermi mechanism via distributed small-scale shocks. Since radio halos reside in merging clusters, the x-ray temperature structure should show the un-relaxed nature of the cluster. We will study this through temperature asymmetry and power ratios (between two multipoles). We also propose to use pressure maps to derive a 2-D power spectrum of pressure fluctuations and deduce the turbulent velocity field. We will then derive the associated radio power and spectral indices to compare with the radio observations. We will test our results using clusters with and without radio halos. We will make these high fidelity temperature, surface brightness, pressure and entropy maps available to the astronomical community via the National Virtual Observatory. We will also make our x-ray temperature map-making scripts implemented on parallel supercomputers available for community use.
Molecular-Scale Investigation of Heavy Metal Ions at a Charged Langmuir Monolayer
NASA Astrophysics Data System (ADS)
Rock, William; Qiao, Baofu; Uysal, Ahmet; Bu, Wei; Lin, Binhua
Solvent extraction - the surfactant-aided preferential transfer of a species from an aqueous to an organic phase - is an important technique used in heavy and precious metal refining and reprocessing. Solvent extraction requires transfer through an oil/water interface, and interfacial interactions are expected to control transfer kinetics and phase stability, yet these key interactions are poorly understood. Langmuir monolayers with charged headgroups atop concentrated salt solutions containing heavy metal ions act as a model of solvent extraction interfaces; studies of ions at a charged surface are also fundamentally important to many other phenomena including protein solvation, mineral surface chemistry, and electrochemistry. We probe these charged interfaces using a variety of surface-sensitive techniques - vibrational sum frequency generation (VSFG) spectroscopy, x-ray reflectivity (XRR), x-ray fluorescence near total reflection (XFNTR), and grazing incidence diffraction (GID). We integrate experiments with Molecular Dynamics (MD) simulations to uncover the molecular-level interfacial structure. This work is supported by the U.S. DOE, BES, Contract DE-AC02-06CH11357. ChemMatCARS is supported by NSF/CHE-1346572.
Multi-step contrast sensitivity gauge
Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E
2014-10-14
An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.
Colloquium: Measuring the neutron star equation of state using x-ray timing
Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; ...
2016-04-13
One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star s rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photonsmore » propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermo- nuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state, and large-area x-ray timing instruments would provide much improved detection capability. In addition, an illustration is given of how these complementary x-ray timing techniques can be used to constrain the dense matter equation of state and the results that might be expected from a 10 m 2 instrument are discussed. Also discussed are how the results from such a facility would compare to other astronomical investigations of neutron star properties.« less
Colloquium: Measuring the neutron star equation of state using x-ray timing
NASA Astrophysics Data System (ADS)
Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel
2016-04-01
One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state, and large-area x-ray timing instruments would provide much improved detection capability. An illustration is given of how these complementary x-ray timing techniques can be used to constrain the dense matter equation of state and the results that might be expected from a 10 m2 instrument are discussed. Also discussed are how the results from such a facility would compare to other astronomical investigations of neutron star properties.
Hard X-ray mirrors for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descalle, M. A.; Brejnholt, N.; Hill, R.
Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally, we conducted the first demonstration that reflective multilayer mirrors could be used as diagnostic for HED experiment with an order of magnitude improvement in signal-to-noise ratio for the multilayer optic compared a transmission crystal spectrometer.« less
NASA Astrophysics Data System (ADS)
Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2008-11-01
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.
Common SphinX and RHESSI observations of solar flares
NASA Astrophysics Data System (ADS)
Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.
The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.
New contrasts for x-ray imaging and synergy with optical imaging
NASA Astrophysics Data System (ADS)
Wang, Ge
2017-02-01
Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).
NASA Astrophysics Data System (ADS)
Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio
2017-12-01
The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.
Time-domain Astronomy with the Advanced X-ray Imaging Satellite
NASA Astrophysics Data System (ADS)
Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard
2018-01-01
The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.
The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector
NASA Technical Reports Server (NTRS)
Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.
1991-01-01
The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.
Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.
Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P
2017-11-15
Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.
Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study
Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca
2015-01-01
Abstract. Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at ±120 deg with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies. PMID:26839910
Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study
NASA Astrophysics Data System (ADS)
Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.
2016-12-01
Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et al., Top Catal 2016, 59, 591-604. 2. Huthwelker, T.; Malmstrom, M. E.; Helleis, F.; Moortgat, G. K.; Peter, T., J Phys Chem A 2004, 108, 6302-6318.
Nighttime sensitivity of ionospheric VLF measurements to X-ray bursts from a remote cosmic source
NASA Astrophysics Data System (ADS)
Raulin, Jean-Pierre; Trottet, Gérard; Giménez de Castro, C. Guillermo; Correia, Emilia; Macotela, E. Liliana
2014-06-01
On 22 January 2009, a series of X-ray bursts were emitted by the soft gamma ray repeater SGR J1550-5418. Some of these bursts produced enhanced ionization in the nighttime lower ionosphere. These ionospheric disturbances were studied using X-ray measurements from the Anti-Coincidence Shield of the Spectrometer for Integral onboard the International Gamma-Ray Astrophysics Laboratory and simultaneous phase and amplitude records from two VLF propagation paths between the transmitter Naval Radio Station, Pearl Harbor (Hawaii) and the receivers Radio Observatorio do Itapetinga (Brazil) and Estação Antarctica Commandante Ferraz (Antarctic Peninsula). The VLF measurements have been obtained with an unprecedented high time resolution of 20 ms. We find that the illumination factor I (illuminated path length times the cosine of the zenith angle), which characterizes the propagation paths underlying the flaring object, is a key parameter which determines the sensitivity threshold of the VLF detection of X-ray bursts from nonsolar transients. For the present VLF measurements of bursts from SGR J1550-5418, it is found that for I ≥ 1.8 Mm, all X-ray bursts with fluence in the 25 keV to 2 MeV range larger than F25_min 1.0 × 10-6 erg/cm2 produce a measurable ionospheric disturbance. Such a lower limit of the X-ray fluence value indicates that moderate X-ray bursts, as opposed to giant X-ray bursts, do produce ionospheric disturbances larger than the sensitivity limit of the VLF technique. Therefore, the frequency of detection of such events could be improved, for example by increasing the coverage of existing VLF receiving networks. The VLF detection of high-energy astrophysical bursts then appears as an important observational diagnostic to complement their detection in space. This would be especially important when space observations suffer from adverse conditions, like saturation, occultation from the Earth, or the passage of the spacecraft through the South Atlantic anomaly.
NASA Astrophysics Data System (ADS)
Herdiech, M. W.; Mönig, H.; Altman, E. I.
2014-08-01
Adsorption of the strong Lewis acid BF3 was investigated to probe the sensitivity of the Lewis basicity of surface oxygens on LiNbO3 (0001) to the ferroelectric polarization direction. Adsorption and desorption were characterized by using X-ray photoelectron spectroscopy (XPS) to monitor the intensity and binding energy of the F 1s core level as a function of BF3 exposure and temperature. The results indicate that both BF3 uptake and desorption are very similar on the positively and negatively poled surfaces. In particular, BF3 only weakly adsorbs with the majority of the adsorbed BF3 desorbing below 200 K. Despite the similarities in the uptake and desorption behavior, the binding energy of the F 1s peak relative to the substrate Nb 3d5/2 peak was sensitive to the polarization direction, with the F 1s peak occurring at a binding energy up to 0.3 eV lower on positively poled than negatively poled LiNbO3 for equivalent BF3 exposures. Rather than reflecting a difference in bonding to the surface, however, this shift could be associated with oppositely oriented dipoles at the positively and negatively poled surfaces creating opposite band offsets between the adsorbate and the substrate. A similar effect was observed with lead zirconate titanate thin films where the Pb 4f XPS peak position changes as a function of temperature as a result of the pyroelectric effect which changes the magnitude of the surface and interface dipoles.
X-Ray Optics: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Zhang, William W.
2010-01-01
X-ray astronomy started with a small collimated proportional counter atop a rocket in the early 1960s. It was immediately recognized that focusing X-ray optics would drastically improve both source location accuracy and source detection sensitivity. In the past 5 decades, X-ray astronomy has made significant strides in achieving better angular resolution, large photon collection area, and better spectral and timing resolutions, culminating in the three currently operating X-ray observatories: Chandra, XMM/Newton, and Suzaku. In this talk I will give a brief history of X-ray optics, concentrating on the characteristics of the optics of these three observatories. Then I will discuss current X-ray mirror technologies being developed in several institutions. I will end with a discussion of the optics for the International X-ray Observatory that I have been developing at Goddard Space Flight Center.
X-ray study of the structure of phospholipid monolayers on the water surface
NASA Astrophysics Data System (ADS)
Asadchikov, V. E.; Tikhonov, A. M.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.; Rudakova, E. B.; D'yachkova, I. G.; Nuzhdin, A. D.
2017-10-01
The possibility of laboratory X-ray reflectometry study of the structure of dimyristoyl phosphatidylserine (DMPS) phospholipid monolayers on the water surface in various phase states has been demonstrated.
Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples
NASA Technical Reports Server (NTRS)
Griner, D. B.
1981-01-01
NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.
Telescope for x ray and gamma ray studies in astrophysics
NASA Technical Reports Server (NTRS)
Weaver, W. D.; Desai, Upendra D.
1993-01-01
Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.
Europe's latest space telescope is off to a good start
NASA Astrophysics Data System (ADS)
1999-12-01
The world's most powerful observatory for X-ray astronomy, the European Space Agency's XMM satellite, set off into space from Kourou, French Guiana, at 15:32 Paris time on 10 December. The mighty Ariane 5 launcher, making its very first commercial launch, hurled the 3.9-tonne spacecraft into a far-ranging orbit. Within one hour of lift-off the European Space Operations Centre at Darmstadt, Germany, confirmed XMM was under control with electrical power available from the solar arrays. "XMM is the biggest and most innovative scientific spacecraft developed by ESA so far," said Roger Bonnet, ESA's Director of Science. "The world's space agencies now want the new technology that ESA and Europe's industries have put into XMM's amazingly sensitive X-ray telescopes. And the world's astronomers are queuing up to use XMM to explore the hottest places in the universe. We must ask them to be patient while we get XMM fully commissioned." XMM's initial orbit carries it far into space, to 114,000 kilometres from the Earth at its most distant point. On its return the satellite's closest approach, or perigee, will be at 850 kilometres. The next phase of the operation, expected to take about a week, will raise that perigee to 7000 kilometres by repeated firing of XMM's own thrusters. The spacecraft will then be on its intended path, spending 40 hours out of every 48-hour orbit clear of the radiation belts which spoil the view of the X-ray universe. Technical commissioning and verification of the performance of the telescopes and scientific instruments will then follow. XMM should be fully operational for astronomy in the spring of 2000. All of ESA's science missions present fresh technological challenges to Europe's aerospace industries. In building XMM, the prime contractor Dornier Satellitensysteme in Friedrichshafen in Germany (part of DaimlerChrysler Aerospace) has led an industrial consortium involving 46 companies from 14 European countries and one in the United States. XMM stands for X-ray Multi-Mirror Mission. Its main telescopes will gather X-rays from the cosmos with 120 square metres of gold-coated surfaces, in 174 mirrors fashioned, smoothed and nested together with high precision by contractors in Germany and Italy. With XMM, Europe has taken the lead in X-ray missions and X-ray detectors: the most sensitive and largest ever made. The four complex scientific instruments on XMM have been developed and led by European scientists with participation from institutes worldwide. Compared with NASA's Chandra X-ray telescope launched earlier this year, XMM is at least 5 times more sensitive. The gain in sensitivity is 15-fold, at high X-ray energies. But Chandra has a sharper view, so the two missions are complementary and there is close transatlantic collaboration among the scientists involved. Prime scientific objectives for XMM are to find out exactly what goes on in the vicinity of black holes, and to help to clear up the mystery of the stupendous explosions called gamma-ray bursts. Other hot topics for investigation include cannibalism among the stars, the release of newly made chemical elements from stellar explosions, and the origin of the cosmic rays that rain on the Earth. XMM is one of a carefully-planned series of scientific satellites built in Europe by which ESA has established a pioneering role in space astronomy. Recently completed missions include the very successful star-mapping satellite Hipparcos, and the Infrared Space Observatory which revolutionized astronomers' knowledge of the cool parts of the universe. Coming along after XMM are Integral for gamma-ray astronomy, FIRST for the far-infrared, and Planck for examining the entire cosmic microwave background far more accurately than ever before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
NASA Technical Reports Server (NTRS)
Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.
1989-01-01
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.
X-ray laser microscope apparatus
Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.
1990-01-01
A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.
NASA Technical Reports Server (NTRS)
Wurzbach, J. A.; Grunthaner, F. J.
1983-01-01
It is pointed out that there is no report of an unambiguous analysis of the composition and interfacial structure of MNOS (metal-nitride oxide semiconductor) systems, despite the technological importance of these systems. The present investigation is concerned with a study of an MNOS structure on the basis of a technique involving the use of X-ray photoelectron spectroscopy (XPS) with a controlled stopped-flow chemical-etching procedure. XPS is sensitive to the structure of surface layers, while stopped-flow etching permits the controlled removal of overlying material on a scale of atomic layers, to expose new surface layers as a function of thickness. Therefore, with careful analysis of observed intensities at measured depths, this combination of techniques provides depth resolution between 5 and 10 A. According to the obtained data there is intact SiO2 at the substrate interface. There appears to be a thin layer containing excess bonds to silicon on top of the SiO2.
Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan
2010-06-15
In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.
Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit
2014-08-13
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.
2015-01-01
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780
Teramoto, Machiko; Kudome-Takamatsu, Tomomi; Nishimura, Osamu; An, Yang; Kashima, Makoto; Shibata, Norito; Agata, Kiyokazu
2016-09-01
Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X-ray-sensitive and proliferative stem cells. In addition to neoblasts, another type of X-ray-sensitive cells was newly identified by recent research. Thus, planarian's X-ray-sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined "neoblasts". Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X-ray-sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments. © 2016 Japanese Society of Developmental Biologists.
Variable magnification glancing incidence x ray telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard (Inventor)
1990-01-01
A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.
Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1991-01-01
A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard (Inventor)
1990-01-01
A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
Hard x-ray imager for the NeXT mission
NASA Astrophysics Data System (ADS)
Nakazawa, Kazuhiro; Fukazawa, Yasushi; Kamae, Tuneyoshi; Kataoka, Jun; Kokubun, Motohide; Makishima, Kazuo; Mizuno, Tsunefumi; Murakami, Toshio; Nomachi, Masaharu; Tajima, Hiroyasu; Takahashi, Tadayuki; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke
2006-06-01
The hard X-ray imager (HXI) is the primary detector of the NeXT mission, proposed to explore high-energy non-thermal phenomena in the universe. Combined with a novel hard X-ray mirror optics, the HXI is designed to provide better than arc-minutes imaging capability with 1 keV level spectroscopy, and more than 30 times higher sensitivity compared with any existing hard X-ray instruments. The base-line design of the HXI is improving to secure high sensitivity. The key is to reduce the detector background as far as possible. Based on the experience of the Suzaku satellite launched in July 2005, the current design has a well-type tight active shield and multi layered, multi material imaging detector made of Si and CdTe. Technology has been under development for a few years so that we have reached the level where a basic detector performance is satisfied. Design tuning to further improve the sensitivity and reliability is on-going.
A Small Mission Featuring an Imaging X-ray Polarimeter with High Sensitivity
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.; Baldini, Luca; Bellazini, Ronaldo; Brez, Alessandro; Costa, Enrico; Dissley, Richard; Elsner, Ronald; Fabiani, Sergio; Matt, Giorgio; Minuti, Massimo;
2013-01-01
We present a detailed description of a small mission capable of obtaining high precision and meaningful measurement of the X-ray polarization of a variety of different classes of cosmic X-ray sources. Compared to other ideas that have been suggested this experiment has demonstrated in the laboratory a number of extremely important features relevant to the ultimate selection of such a mission by a funding agency. The most important of these questions are: 1) Have you demonstrated the sensitivity to a polarized beam at the energies of interest (i.e. the energies which represent the majority (not the minority) of detected photons from the X-ray source of interest? 2) Have you demonstrated that the device's sensitivity to an unpolarized beam is really negligible and/or quantified the impact of any systematic effects upon actual measurements? We present our answers to these questions backed up by laboratory measurements and give an overview of the mission.
Solar flares observed simultaneously with SphinX, GOES and RHESSI
NASA Astrophysics Data System (ADS)
Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena
2013-07-01
In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.
NASA Astrophysics Data System (ADS)
Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.
Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.
Hruszkewycz, S. O.; Cha, W.; Andrich, P.; ...
2017-02-14
Here, we observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 –4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified withmore » ensemble Raman measurements.« less
Advanced analysis of metal distributions in human hair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempson, Ivan M.; Skinner, William M.
2008-06-09
A variety of techniques (secondary electron microscopy with energy dispersive X-ray analysis, time-of-flight-secondary ion mass spectrometry, and synchrotron X-ray fluorescence) were utilized to distinguish metal contamination occurring in hair arising from endogenous uptake from an individual exposed to a polluted environment, in this case a lead smelter. Evidence was sought for elements less affected by contamination and potentially indicative of biogenic activity. The unique combination of surface sensitivity, spatial resolution, and detection limits used here has provided new insight regarding hair analysis. Metals such as Ca, Fe, and Pb appeared to have little representative value of endogenous uptake and weremore » mainly due to contamination. Cu and Zn, however, demonstrate behaviors worthy of further investigation into relating hair concentrations to endogenous function.« less
XRF Experiment for Elementary Surface Analysis
NASA Astrophysics Data System (ADS)
Köhler, E.; Dreißigacker, A.; Fabel, O.; van Gasselt, S.; Meyer, M.
2014-04-01
The proposed X-Ray Fluorescence Instrument Package (XRF-X and XRF-E) is being designed to quantitatively measure the composition and map the distribution of rock-surface materials in order to support the target area selection process for exploration, sampling, and mining. While energydispersive X-Ray fluorescence (EDX) makes use of Solar X-Rays for excitation to probe materials over arbitrary distances (by XRF-X), electron-beam excitation can be used for proximity measurements (by XRF-E) over short-distance of up to about 10 - 20m. This design is targeted at observing and analyzing surface compositions from orbital platforms and it is in particular applicable to all atmosphereless solidsurface bodies. While the instrument design for observing objects in the outer solar system is challenging due to low count rates, the Moon and objects of the asteroid belt usually receive solar X-ray radiation that allows to integrate a statistically reliable data basis. Asteroids are attractive targets and have been visited using X-ray fluorescence instruments by orbiting spacecraft in the past (Itokawa, Eros). They are wellaccessible objects for determining elemental compositions and assessing potential mineral resources.
X-ray microfocusing with off-axis ellipsoidal mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi
2016-07-27
High-precision ellipsoidal mirrors for two-dimensionally focusing X-rays to nanometer sizes have not been realized because of technical problems in their fabrication processes. The objective of the present study is to develop fabrication techniques for ellipsoidal focusing mirrors in the hard-X-ray region. We design an off-axis ellipsoidal mirror for use under total reflection conditions up to the X-ray energy of 8 keV. We fabricate an ellipsoidal mirror with a surface roughness of 0.3 nm RMS (root-mean-square) and a surface figure error height of 3.0 nm RMS by utilizing a surface profiler and surface finishing method developed by us. The focusing propertiesmore » of the mirror are evaluated at the BL29XUL beamline in SPring-8. A focusing beam size of 270 nm × 360 nm FWHM (full width at half maximum) at an X-ray energy of 7 keV is observed with the use of the knife-edge scanning method. We expect to apply the developed fabrication techniques to construct ellipsoidal nanofocusing mirrors.« less
Search for gravitational redshifted absorption lines in LMXB Serpens X-1
NASA Astrophysics Data System (ADS)
Yoneda, Hiroki; Done, Chris; Paerels, Frits; Takahashi, Tadayuki; Watanabe, Shin
2018-04-01
The equation of state for ultradense matter can be tested from observations of the ratio of mass to radius of neutron stars. This could be measured precisely from the redshift of a narrow line produced on the surface. X-rays bursts have been intensively searched for such features, but so far without detection. Here instead we search for redshifted lines in the persistent emission, where the accretion flow dominates over the surface emission. We discuss the requirements for narrow lines to be produced, and show that narrow absorption lines from highly ionized iron can potentially be observable in accreting low-mass X-ray binaries (LMXBs; low B field) that have either low spin or low inclination so that Doppler broadening is small. This selects Serpens X-1 as the only potential candidate persistent LMXB due to its low inclination. Including surface models in the broad-band accretion flow model predicts that the absorption line from He-like iron at 6.7 keV should be redshifted to ˜5.1-5.7 keV (10-15 km for 1.4 M⊙) and have an equivalent width of 0.8-8 eV for surface temperatures of 7-10 × 106 K. We use the high-resolution Chandra grating data to give a firm upper limit of 2-3 eV for an absorption line at ˜5 keV. We discuss possible reasons for this lack of detection (the surface temperature and the geometry of the boundary layer etc.). Future instruments with better sensitivity are required in order to explore the existence of such features.
2015-12-01
The research resulted in a composite material that holds a quasi-permanent electric charge and rapidly discharges the electric charge upon X-ray...quasi-permanent electric charge and rapidly discharge the electric charge upon X-ray exposure. The composite material combined the properties of an...9 7. Schematic of Circuit for Recording Sample’s Capacitor Discharge ............... 12 8. Schematic of Circuit for
Ultra-short wavelength x-ray system
Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD
2008-01-22
A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.
Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.
2017-04-01
A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.
Kern, Jan; Hattne, Johan; Tran, Rosalie; Alonso-Mori, Roberto; Laksmono, Hartawan; Gul, Sheraz; Sierra, Raymond G.; Rehanek, Jens; Erko, Alexei; Mitzner, Rolf; Wernet, Phillip; Bergmann, Uwe; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko
2014-01-01
X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. PMID:24914169
Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu
2012-11-28
As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.
Yamanaka; Ino
2000-05-08
In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.
Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu
2015-08-18
An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.
Organic-vapor detection using carbon-nanotubes nanocomposite microacoustic sensors
NASA Astrophysics Data System (ADS)
Penza, M.; Tagliente, M. A.; Aversa, P.; Cassano, G.
2005-06-01
We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) ST,X quartz 315 and 433 MHz two-port resonator oscillators. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic matrix was prepared by Langmuir-Blodgett technique with a fixed SWCNTs weight filler-content as nanostructured and nanosensing interface, for vapor detection at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray Specular Reflectivity and Field-Emission Gun Scanning Electron Microscopy, respectively. The measured acoustic sensing characteristics indicate that the SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, and toluene) of the SWCNTs/CdA nanocomposite is up to two times higher than that of unembedded CdA device; also the SWCNTs/CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials and increases with SAW oscillating frequency with a linear dependence in the frequency change response up to a very low sub-ppm limit of detection.
Chandra Finds X-ray Star Bonanza in the Orion Nebula
NASA Astrophysics Data System (ADS)
2000-01-01
NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic activity of young stars has been known for some time, the physical causes and evolution of the activity are poorly understood, according to Dr. Eric Feigelson, professor of astronomy and astrophysics at Penn State. "With hundreds of stars observed simultaneously, possessing a wide range of properties such as mass and rotation rates, we hope the Orion observation will help unravel the astrophysical principles underlying this phenomenon," Feigelson said. "X-ray astronomy now penetrates as deeply into the clouds as the best infrared and optical telescopes, permitting us to study high-energy processes during the earliest phases of star formation." "This Chandra image is a milestone in the field of X-ray astronomy and very gratifying to me personally," said Garmire. "Chandra's sensitivity is 20 times better than achieved with the best previous X-ray telescopes." A number of the ACIS X-ray sources in the Orion observation have special importance. Several are associated with a distinct cluster of higher-mass stars deeply embedded within the murky Orion Molecular Cloud, including the infrared-luminous Becklin-Neugebauer object. "This is the first time X-ray astronomy has resolved individual massive stars still embedded in their natal cloud," said Dr. Leisa Townsley, research associate in astronomy and astrophysics at Penn State. At least three ACIS sources are associated with cluster members with masses so small (roughly 1/20th of the Sun's mass), that they will evolve into brown dwarfs rather than true stars. "They more closely resemble proto-Jupiters than proto-stars," said Dr. Yohko Tsuboi, visiting research scholar in astronomy and astrophysics at Penn State. "Over a dozen X-ray sources have no known counterpart, even in the most sensitive Hubble Space Telescope or infrared studies. These too may be very low-mass stars." The ACIS team studying the Orion X-ray source includes Profs. Feigelson and Garmire and research scientists Patrick Broos, Leisa Townsley, and Yohko Tsuboi at Penn State; Steven Pravdo at the Jet Propulsion Laboratory; and Lynne Hillenbrand at the California Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Other Press Room:Orion Nebula Press Release (PSU Sep 01) To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0054/index.html AND http://chandra.nasa.gov
Novel handheld x-ray fluorescence spectrometer for routine testing for the presence of lead
NASA Astrophysics Data System (ADS)
Rensing, Noa M.; Tiernan, Timothy C.; Squillante, Michael R.
2011-06-01
RMD is developing a safe, inexpensive, and easy to operate lead detector for retailers and consumers that can reliably detect dangerous levels of lead in toys and other household products. Lead and its compounds have been rated as top chemicals that pose a great threat to human health. However, widespread testing for environmental lead is rarely undertaken until lead poisoning has already been diagnosed. The problem is not due to the accuracy or sensitivity of existing lead detection technology, but rather to the high expense, safety and licensing barriers of available test equipment. An inexpensive and easy to use lead detector would enable the identification of highly contaminated objects and areas and allow for timely and cost effective remediation. The military has similar needs for testing for lead and other heavy elements such as mercury, primarily in the decontamination of former military properties prior to their return to civilian use. RMD's research and development efforts are abased on advanced solid-state detectors combined with recently patented lead detection techniques to develop a consumer oriented lead detector that will be widely available and easy and inexpensive to use. These efforts will result in an instrument that offers: (1) high sensitivity, to identify objects containing dangerous amounts of lead, (2) low cost to encourage widespread testing by consumers and other end users and (3) convenient operation requiring no training or licensing. In contrast, current handheld x-ray fluorescence spectrometers either use a radioactive source requiring licensing and operating training, or use an electronic x-ray source that limits their sensitivity to surface lead.
Detection of X-ray photons by solution-processed organic-inorganic perovskites
Yakunin, Sergii; Sytnyk, Mykhailo; Kriegner, Dominik; Shrestha, Shreetu; Richter, Moses; Matt, Gebhard J.; Azimi, Hamed; Brabec, Christoph J.; Stangl, Julian; Kovalenko, Maksym V.; Heiss, Wolfgang
2017-01-01
The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors, based on conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted immense attention. Here we demonstrate a possibility to use such inexpensive semiconductors for sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CH3NH3PbI3) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 µC mGyair-1 cm-3) and responsivity (1.9×104 carriers/photon), which are commensurate with those obtained by the current solid-state technology. PMID:28553368
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
Deng, Junjing; Vine, David J.; Chen, Si; ...
2015-02-24
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less
Onboard data-processing architecture of the soft X-ray imager (SXI) on NeXT satellite
NASA Astrophysics Data System (ADS)
Ozaki, Masanobu; Dotani, Tadayasu; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.
2004-09-01
NeXT is the X-ray satellite proposed for the next Japanese space science mission. While the satellite total mass and the launching vehicle are similar to the prior satellite Astro-E2, the sensitivity is much improved; it requires all the components to be lighter and faster than previous architecture. This paper shows the data processing architecture of the X-ray CCD camera system SXI (Soft X-ray Imager), which is the top half of the WXI (Wide-band X-ray Imager) of the sensitivity in 0.2-80keV. The system is basically a variation of Astro-E2 XIS, but event extraction speed is much faster than it to fulfill the requirements coming from the large effective area and fast exposure period. At the same time, data transfer lines between components are redesigned in order to reduce the number and mass of the wire harnesses that limit the flexibility of the component distribution.
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.
1993-10-01
X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.
Photodetector having high speed and sensitivity
Morse, Jeffrey D.; Mariella, Jr., Raymond P.
1991-01-01
The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.
Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions
NASA Astrophysics Data System (ADS)
Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.; Davis, J.; Deeney, C.; Coverdale, C. A.
2004-08-01
Recent experiments conducted on the Saturn pulsed-power generator at Sandia National Laboratories [R. B. Spielman et al., in Proceedings of the Second International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] have produced large amounts of x-ray output, which cannot be accounted for in conventional magnetohydrodynamic (MHD) calculations. In these experiments, the Saturn current had a rise time of ~180 ns in contrast to a rise time of ~60 ns in Saturn's earlier mode of operation. In both aluminum and tungsten wire-array Z-pinch implosions, 2-4 times more x-ray output was generated than could be supplied according to one-dimensional (1D) magnetohydrodynamic calculations by the combined action of the j×B acceleration forces and ohmic heating (as described by a classical Braginskii resistivity). In this paper, we reexamine the problem of coupling transmission line circuits to plasma fluid equations and derive expressions for the Z-pinch load circuit resistance and inductance that relate these quantities in a 1D analysis to the surface resistivity of the fluid, and to the magnetic field energy that is stored in the vacuum diode, respectively. Enhanced energy coupling in this analysis, therefore, comes from enhancements to the surface resistivity, and we show that plasma resistivities approximately three orders of magnitude larger than classical are needed in order to achieve energy inputs that are comparable to the Saturn experiment x-ray outputs. Large enhancements of the plasma resistivity increase the rate of magnetic field and current diffusion, significantly modify the qualitative features of the MHD, and raise important questions as to how the plasma fluid dynamics converts enhanced energy inputs into enhanced x-ray outputs. One-dimensional MHD calculations in which resistivity values are adjusted phenomenologically are used to illustrate how various dynamical assumptions influence the way enhanced energy inputs are channeled by the fluid dynamics. Variations in the parameters of the phenomenological model are made in order to determine how sensitively they influence the dynamics and the degree to which the calculated x-ray outputs can be made to replicate the kinds of large variations in the experimental x-ray power data that were observed in three nominally identical aluminum wire shots on Saturn.
Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen
2016-01-01
Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672
X-ray and optical observations of 2 new cataclysmic variables
NASA Technical Reports Server (NTRS)
Singh, K. P.; Szkody, P.; Barrett, P.; Schlegel, E.; White, N. E.; Silber, A.; Fierce, E.; Hoard, D.; Hakala, P. J.; Piirola, V.;
1996-01-01
The light curves and spectra of two ultra soft X-ray sources are presented. The sources, WGAJ 1047.1+6335 and WGAJ 1802.1+1804 were discovered during a search using the Rosat position sensitive proportional counter (PSPC). The X-ray spectra of both objects show an unusually strong black body component with respect to the harder bremsstrahlung component. Based on the optical observations and on the analysis of the X-ray data, the two objects are identified with new AM Her type cataclysmic variables.
Template For Aiming An X-Ray Machine
NASA Technical Reports Server (NTRS)
Morphet, W. J.
1994-01-01
Relatively inexpensive template helps in aligning x-ray machine with phenolic ring to be inspected for flaws. Phenolic ring in original application part of rocket nozzle. Concept also applicable to x-ray inspection of other rings. Template contains alignment holes for adjusting orientation, plus target spot for adjusting lateral position, of laser spotting beam. (Laser spotting beam coincides with the x-ray beam, turned on later, after alignment completed.) Use of template decreases positioning time and error, providing consistent sensitivity for detection of flaws.
Preparation and Properties of Surface-Coated HMX with Viton and Graphene Oxide
NASA Astrophysics Data System (ADS)
Wang, Jingyu; Ye, Baoyun; An, Chongwei; Wu, Bidong; Li, Hequn; Wei, Yanju
2016-07-01
To improve the safety performance of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) particles, the new carbon material graphene oxide (GO) and Viton were used to coat HMX via a solvent-slurry process. For comparison, the HMX/Viton/graphite (HMX/Viton/G) and HMX/Viton composites were also prepared by the same process. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) were employed to characterize the morphology, composition, and thermal decomposition of samples. The impact sensitivity and shock wave sensitivity of HMX-based composites were also measured and analyzed. The results of SEM, XRD, and XPS indicate that the cladding layer of HMX-based composites is successfully constructed. HMX/Viton/GO composites exhibit better thermal stability compared to HMX and HMX/Viton. The results show that both impact and shock wave sensitivities of HMX/Viton/GO composites are much lower than that of HMX/Viton. In addition, GO sheets exhibit a better desensitizing effect than G sheets. These combined properties suggest that nano-GO has good compatibility with explosives and can be utilized as a desensitizer in HMX particles.
Toward Active X-ray Telescopes II
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.;
2012-01-01
In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.
[Conventional X-Rays of Ankle Joint Fractures in Older Patients are Not Always Predictive].
Jubel, A; Faymonville, C; Andermahr, J; Boxberg, S; Schiffer, G
2017-02-01
Background: Ankle fractures are extremely common in the elderly, with an incidence of up to 39 fractures per 100,000 persons per year. We found a discrepancy between intraoperative findings and preoperative X-ray findings. It was suggested that many relevant lesions of the ankle joint in the elderly cannot be detected with plain X-rays. Methods: Complete data sets and preoperative X-rays of 84 patients aged above 60 years with ankle fractures were analysed retrospectively. There were 59 women and 25 men, with a mean age of 69.9 years. Operation reports and preoperative X-rays were analysed with respect to four relevant lesions: multifragmentary fracture pattern of the lateral malleolus, involvement of the medial malleolus, posterior malleolar fractures and bony avulsion of anterior syndesmosis. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy and prevalence were calculated. Results: The prevalence of specific ankle lesions in the analyzed cohort was 24 % for the multifragmentary fracture pattern of the lateral malleolus, 38 % for fractures of the medial malleolus, 25 % for posterior malleolar fractures and 22.6 % for bony avulsions of the anterior syndesmosis. Multifragmentary fracture patterns of the lateral malleolus (sensitivity 0 %) and bony avulsions of the anterior syndesmosis (sensitivity 5 %) could not be detected in plain X-rays of the ankle joint at all. Fractures of the medial malleolus and involvement of the dorsal tibial facet were detected with a sensitivity of 96.8 % and 76.2 %, respectively, and specificity of 100 % in both cases. Conclusions: This study confirms that complex fracture patterns, such as multifragmentary involvement of the lateral malleolus, additional fracture of the medial malleolus, involvement of the dorsal tibial facet or bony avulsion of the anterior syndesmosis are common in ankle fractures of the elderly. Therefore, CT scans should be routinely considered for primary diagnosis, in addition to plain X-rays. Georg Thieme Verlag KG Stuttgart · New York.
The X-ray surface brightness distribution and spectral properties of six early-type galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Canizares, C. R.
1986-01-01
Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.
Parker, S.
1995-10-24
A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.
Parker, Sherwood
1995-01-01
A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.
Xu, Ping; Luo, Hong; Huang, Guang-Lei; Yin, Xin-Hai; Luo, Si-Yang; Song, Ju-Kun
2015-01-01
Many observational studies have found that exposure to dental X-rays is associated with the risk of development of meningioma. However, these findings are inconsistent. We conducted a meta-analysis to assess the relationship between exposure to dental X-rays and the risk of development of meningioma. The PubMed and EMBASE databases were searched to identify eligible studies. Summary odds ratio (OR) estimates and 95% confidence intervals (95% CIs) were used to compute the risk of meningioma development according to heterogeneity. Subgroup and sensitivity analyses were performed to further explore the potential heterogeneity. Finally, publication bias was assessed. Seven case-control studies involving 6,174 patients and 19,459 controls were included in the meta-analysis. Neither exposure to dental X-rays nor performance of full-mouth panorex X-rays was associated with an increased risk of development of meningioma (overall: OR, 0.97; 95% CI, 0.70-1.32; dental X-rays: OR, 1.05; 95% CI, 0.89-1.25; panorex X-rays: OR, 1.01; 95% CI, 0.76-1.34). However, exposure to bitewing X-rays was associated with a slightly increased risk of development of meningioma (OR, 1.73; 95% CI, 1.28-2.34). Similar results were obtained in the subgroup and sensitivity analyses. Little evidence of publication bias was observed. Based on the currently limited data, there is no association between exposure to dental X-rays and the risk of development of meningioma. However, these results should be cautiously interpreted because of the heterogeneity among studies. Additional large, high-quality clinical trials are needed to evaluate the association between exposure to dental X-rays and the risk of development of meningioma.
Low- to Middle-Latitude X-Ray Emission from Jupiter
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter G.
2006-01-01
The Chandra X-ray Observatory (CXO) observed Jupiter during the period 24-26 February 2003 for approx. 40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each -8.5 hours long, were separated by an HRC-I exposure of approx. 20 hours. The low- to middle-latitude nonauroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to middle-latitude X-ray count rate shows a small but statistically significant hour angle dependence and depends on surface magnetic field strength. In addition, the X-ray spectra from regions corresponding to 3-5 gauss and 5-7 gauss surface fields show significant differences in the energy band 1.26-1.38 keV, perhaps partly due to line emission occurring in the 3-5 gauss region but not the 5-7 gauss region. A similar correlation of surface magnetic field strength with count rate is found for the 18 December 2000 HRC-I data, at a time when solar activity was high. The low- to middle-latitude disk X-ray count rate observed by the HRC-I in the February 2003 observation is about 50% of that observed in December 2000, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to middle-latitude X-ray emission does not show any oscillations similar to the approx. 45 min oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's nonauroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2.0 keV low- to middle-latitude X-ray spectra are harder than the auroral spectrum and are different from each other at energies above 0.7 keV, showing variability in Jupiter's nonauroral X-ray emission on a timescale of a day. The 0.3-2.0 keV X-ray power emitted at low to middle latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by the scattering and fluorescence of solar X rays in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the dependence of count rate on surface magnetic-field strength may indicate the presence of some secondary component, possibly ion precipitation from radiation belts close to the planet.
X-Ray Emission from the Millisecond Pulsar J1012+5307
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Wang, F. Y.-H.; Oliversen, Ronald (Technical Monitor)
2001-01-01
The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(exp 19)/sq cm, which facilitates soft X-ray observations. Halpern reported a possible ROSAT PSPC detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+5307 in a 23 ksec observation with the ROSAT HRI. A point source is detected within 3 sec. of the radio position. Its count rate of 1.6 +/- 0.3 x 10(exp -3)/s corresponds to an unabsorbed 0.1 - 2.4 keV flux of 6.4 x 10(exp -14) ergs/sq cm s, similar to that reported previously. This counts-to-flux conversion is valid for N(sub H) = 5 x 10(exp 19)/sq cm, and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(exp 30) ergs/ s is 5 x 10(exp -4) of the pulsar's spin-down power E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P and E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of of the interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface reheating by the impact of particles accelerated along open field lines operates in these approx. 10(exp 9) yr old pulsars.
History of Chandra X-Ray Observatory
2001-01-10
This Chandra image, the first x-ray image ever made of Venus, shows a half crescent due to the relative orientation of the Sun, Earth, and Venus. The x-rays are produced by fluorescent radiation from oxygen and other atoms in the atmosphere between 120 and 140 kilometers above the surface of the planet. In contrast, the optical light from Venus is caused by the reflection from clouds 50 to 70 kilometers above the surface.
X-Ray Standing Waves on Surfaces
1993-01-01
dependent distributional changes of iodine on Pt 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film 7. Conclusions 8. Acknowledgments...4B. 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film As mentioned previously the total external reflection condition occurs...for a Zn atom layer embedded in the top arachidate bilayer of a Langmuir - Blodgett (LB) multilayer film which was deposited on the surface of a gold
IPC two-color analysis of x ray galaxy clusters
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1990-01-01
The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.
Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
NASA Astrophysics Data System (ADS)
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M.; Zhao, W.; Tanioka, K.
Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less
Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.
Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei
2018-05-25
X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image reconstruction showed that for a scatter magnitude decrease by a factor of 2.4, the molecular sensitivity could almost be doubled. Scatter reduction lowers the amount of noise in the projection datasets and reconstructed images which enhance molecular sensitivity at equal dose. The results support the use of linear polarized x rays to reduce scatter in XFCT imaging. © 2018 American Association of Physicists in Medicine.
An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold
NASA Astrophysics Data System (ADS)
Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland
2018-03-01
The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.
Novel MRF fluid for ultra-low roughness optical surfaces
NASA Astrophysics Data System (ADS)
Dumas, Paul; McFee, Charles
2014-08-01
Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto
2011-09-01
We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less
1987-09-01
accuracy. The data aquisition system combines a position- sensitive X-ray detector with a 65 kilobyte microcomputer capable of operating as a...The rapid X-ray diffraction system measures intensity versus 20 patterns by placing the detector with its sensitivity axis positioned parallel to the...plane of the diffractometer (see Figure 2). As shown in Figure 2, the detector sensitivity axis z is coplanar with both the incident beam and the
Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.
Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon
2010-07-27
X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.
Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken
2014-01-01
Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...
A position-sensitive X-ray detector for the HEAO-A satellite.
NASA Technical Reports Server (NTRS)
Held, D.; Weisskopf, M. C.
1973-01-01
A position-sensitive, low-energy proportional counter system is described which will be used on the High-Energy Astronomical Observatory, Mission A, spacecraft. The associated system incorporates the capability to employ pulse-shape discrimination for background rejection and interpolation circuitry to locate the centroid of an X-ray event with an accuracy of approximately one eighth the cathode-wire spacing.
The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis
NASA Technical Reports Server (NTRS)
Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.
1990-01-01
This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.
X-ray spectral hardening and radio non-detection of MAXI J1535-571
NASA Astrophysics Data System (ADS)
Russell, T. D.; Altamirano, S. Rapisarda. D.; Miller-Jones, J. C. A.; Plotkin, R.; Tetarenko, A. J.; Sivakoff, G. R.; JACPOT XRB Collaboration
2018-05-01
MAXI J1535-571 (ATels #10699, #10700, #10702, #10704, #10708, #10711, #10716) has been in a soft X-ray spectral state since late November (ATel #11020). The source has remained in this soft state down to X-ray luminosities much lower than typically seen (ATel #11568), and is currently below MAXI and BAT sensitivity limits.
NASA Astrophysics Data System (ADS)
Marguí, E.; Zawisza, B.; Skorek, R.; Theato, T.; Queralt, I.; Hidalgo, M.; Sitko, R.
2013-10-01
This study was aimed to achieve improved instrumental sensitivity and detection limits for multielement determination of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Se, Pb and Cd in liquid samples by using different X-ray fluorescence (XRF) configurations (a benchtop energy-dispersive X-ray fluorescence spectrometer, a benchtop polarised energy-dispersive X-ray fluorescence spectrometer and a wavelength-dispersive X-ray fluorescence spectrometer). The preconcentration of metals from liquid solutions consisted on a solid-phase extraction using carbon nanotubes (CNTs) as solid sorbents. After the extraction step, the aqueous sample was filtered and CNTs with the absorbed elements were collected onto a filter paper which was directly analyzed by XRF. The calculated detection limits in all cases were in the low ng mL- 1 range. Nevertheless, results obtained indicate the benefits, in terms of sensitivity, of using polarized X-ray sources using different secondary targets in comparison to conventional XRF systems, above all if Cd determination is required. The developed methodologies, using the aforementioned equipments, have been applied for multielement determination in water samples from an industrial area of Poland.
Sutter, John P.; Alianelli, Lucia
2017-01-01
The shapes of single lens surfaces capable of focusing divergent and collimated beams without aberration have already been calculated. However, nanofocusing compound refractive lenses (CRLs) require many consecutive lens surfaces. Here a theoretical example of an X-ray nanofocusing CRL with 48 consecutive surfaces is studied. The surfaces on the downstream end of this CRL accept X-rays that are already converging toward a focus, and refract them toward a new focal point that is closer to the surface. This case, so far missing from the literature, is treated here. The ideal surface for aberration-free focusing of a convergent incident beam is found by analytical computation and by ray tracing to be one sheet of a Cartesian oval. An ‘X-ray approximation’ of the Cartesian oval is worked out for the case of small change in index of refraction across the lens surface. The paraxial approximation of this surface is described. These results will assist the development of large-aperture CRLs for nanofocusing. PMID:29091055
Microchannel detector array for X-rays and UV
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1976-01-01
Device employs sensitive photoelectric electrodes and solid-state memory, can be used at visible UV and X ray wavelengths, includes nonmagnetic proximity focusing, and is immune to high energy charged-particle background.
Improved control of medical x-ray film exposure
NASA Technical Reports Server (NTRS)
Berdahl, C. M.
1978-01-01
Exposure sensing system for light-intensified motion-picture X-ray system uses aperture or adjustable diaphragm to sample light from image region of interest. Approach, along with approximate optics, can optimize exposure sensitivity.
Effect of slope errors on the performance of mirrors for x-ray free electron laser applications
Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P.
2015-12-02
In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help tomore » correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.« less
The Focusing Optics X-ray Solar Imager
NASA Astrophysics Data System (ADS)
Glesener, L.; Christe, S.; Krucker, S.; Ishikawa, S.; Ramsey, B.; Takahashi, T.; Saito, S.; Lin, R. P.
2012-12-01
Measurements of the nonthermal energies and occurrence frequencies of nanoflares are important for understanding the overall flare contribution to coronal heating. Nanoflares have been observed to be ubiquitous in the quiet Sun in extreme ultraviolet and soft X-ray wavelengths, but so far remain undetected at nonthermal hard X-ray (HXR) energies, likely due to the insufficient sensitivity of current instruments. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload has been designed for high sensitivity in the 5-15 keV range by combining grazing-incidence HXR optics with fine-resolution silicon strip detectors. FOXSI will make the first measurement of nonthermal HXR from accelerated electrons in nanoflares, and will also measure hot (5-10 MK) components of active region temperatures. FOXSI is scheduled for a first flight in October 2012, and the first results of this flight will be presented.
Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)
NASA Technical Reports Server (NTRS)
Holt, S. S.; Petre, R.; Shafer, R. A.; Urry, C. M.; Mushotzky, R. F.
1982-01-01
The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects.
Effect of slope errors on the performance of mirrors for x-ray free electron laser applications.
Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P
2015-12-14
In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help to correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi
2011-09-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics X-Ray Solar Imager: FOXSI
NASA Technical Reports Server (NTRS)
Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian;
2011-01-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
Thoe, Robert S.
1991-01-01
Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.
Trajectories of high energy electrons in a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.
Apparatus for use in examining the lattice of a semiconductor wafer by X-ray diffraction
NASA Technical Reports Server (NTRS)
Parker, D. L.; Porter, W. A. (Inventor)
1978-01-01
An improved apparatus for examining the crystal lattice of a semiconductor wafer utilizing X-ray diffraction techniques was presented. The apparatus is employed in a method which includes the step of recording the image of a wafer supported in a bent configuration conforming to a compound curve, produced through the use of a vacuum chuck provided for an X-ray camera. The entire surface thereof is illuminated simultaneously by a beam of incident X-rays which are projected from a distant point-source and satisfy conditions of the Bragg Law for all points on the surface of the water.
New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)
NASA Technical Reports Server (NTRS)
1998-01-01
This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.
NASA Astrophysics Data System (ADS)
Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.
2017-12-01
The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.
Probing the extent of the non-thermal emission from the Vela X region at TeV energies with H.E.S.S.
NASA Astrophysics Data System (ADS)
Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.' C.; Dubois, F.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.
2012-12-01
Context. Vela X is a region of extended radio emission in the western part of the Vela constellation: one of the nearest pulsar wind nebulae, and associated with the energetic Vela pulsar (PSR B0833-45). Extended very-high-energy (VHE) γ-ray emission (HESS J0835-455) was discovered using the H.E.S.S. experiment in 2004. The VHE γ-ray emission was found to be coincident with a region of X-ray emission discovered with ROSAT above 1.5 keV (the so-called Vela X cocoon): a filamentary structure extending southwest from the pulsar to the centre of Vela X. Aims: A deeper observation of the entire Vela X nebula region, also including larger offsets from the cocoon, has been performed with H.E.S.S. This re-observation was carried out in order to probe the extent of the non-thermal emission from the Vela X region at TeV energies and to investigate its spectral properties. Methods: To increase the sensitivity to the faint γ-ray emission from the very extended Vela X region, a multivariate analysis method combining three complementary reconstruction techniques of Cherenkov-shower images is applied for the selection of γ-ray events. The analysis is performed with the On/Off background method, which estimates the background from separate observations pointing away from Vela X; towards regions free of γ-ray sources but with comparable observation conditions. Results: The γ-ray surface brightness over the large Vela X region reveals that the detection of non-thermal VHE γ-ray emission from the PWN HESS J0835-455 is statistically significant over a region of radius 1.2° around the position α = 08h35m00s, δ = -45°36'00'' (J2000). The Vela X region exhibits almost uniform γ-ray spectra over its full extent: the differential energy spectrum can be described by a power-law function with a hard spectral index Γ = 1.32 ± 0.06stat ± 0.12sys and an exponential cutoff at an energy of (14.0 ± 1.6stat ± 2.6sys) TeV. Compared to the previous H.E.S.S. observations of Vela X the new analysis confirms the general spatial overlap of the bulk of the VHE γ-ray emission with the X-ray cocoon, while its extent and morphology appear more consistent with the (more extended) radio emission, contradicting the simple correspondence between VHE γ-ray and X-ray emissions. Morphological and spectral results challenge the interpretation of the origin of γ-ray emission in the GeV and TeV ranges in the framework of current models.
The Wide Field X-ray Telescope Mission
NASA Astrophysics Data System (ADS)
Murray, Stephen S.; WFXT Team
2010-01-01
To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.
Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.
2016-01-01
Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.
NASA Astrophysics Data System (ADS)
Ciavatti, A.; Cramer, T.; Carroli, M.; Basiricò, L.; Fuhrer, R.; De Leeuw, D. M.; Fraboni, B.
2017-10-01
Semiconducting polymer based X-ray detectors doped with high-Z nanoparticles hold the promise to combine mechanical flexibility and large-area processing with a high X-ray stopping power and sensitivity. Currently, a lack of understanding of how nanoparticle doping impacts the detector dynamics impedes the optimization of such detectors. Here, we study direct X-ray radiation detectors based on the semiconducting polymer poly(9,9-dioctyfluorene) blended with Bismuth(III)oxide (Bi2O3) nanoparticles (NPs). Pure polymer diodes show a high mobility of 1.3 × 10-5 cm2/V s, a low leakage current of 200 nA/cm2 at -80 V, and a high rectifying factor up to 3 × 105 that allow us to compare the X-ray response of a polymer detector in charge-injection conditions (forward bias) and in charge-collection conditions (reverse bias), together with the impact of NP-loading in the two operation regimes. When operated in reverse bias, the detectors reach the state of the art sensitivity of 24 μC/Gy cm2, providing a fast photoresponse. In forward operation, a slower detection dynamics but improved sensitivity (up to 450 ± 150 nC/Gy) due to conductive gain is observed. High-Z NP doping increases the X-ray absorption, but higher NP loadings lead to a strong reduction of charge-carrier injection and transport due to a strong impact on the semiconductor morphology. Finally, the time response of optimized detectors showed a cut-off frequency up to 200 Hz. Taking advantage of such a fast dynamic response, we demonstrate an X-ray based velocity tracking system.
Kim, Han-Sung; Park, Ji-Young; Koo, Hyun-Sook; Choi, Chul-Sun; Song, Wonkeun; Cho, Hyoun Chan; Lee, Kyu Man
2012-01-01
Background We performed surveillance cultures of the surfaces of X-ray cassettes to assess contamination with methicillin-resistant Staphylococcus aureus (MRSA). Methods The surfaces of 37 X-ray cassettes stored in a radiology department were cultured using mannitol salt agar containing 6 µg/mL oxacillin. Suspected methicillin-resistant staphylococcal colonies were isolated and identified by biochemical testing. Pulsed-field gel electrophoresis (PFGE) analysis was performed to determine the clonal relationships of the contaminants. Results Six X-ray cassettes (16.2%) were contaminated with MRSA. During the isolation procedure, we also detected 19 X-ray cassettes (51.4%) contaminated with methicillin-resistant Staphylococcus haemolyticus (MRSH), identified as yellow colonies resembling MRSA on mannitol salt agar. PFGE analysis of the MRSA and MRSH isolates revealed that most isolates of each organism were identical or closely related to each other, suggesting a common source of contamination. Conclusions X-ray cassettes, which are commonly in direct contact with patients, were contaminated with MRSA and MRSH. In hospital environments, contaminated X-ray cassettes may serve as fomites for methicillin-resistant staphylococci. PMID:22563556
Kim, Jae-Seok; Kim, Han-Sung; Park, Ji-Young; Koo, Hyun-Sook; Choi, Chul-Sun; Song, Wonkeun; Cho, Hyoun Chan; Lee, Kyu Man
2012-05-01
We performed surveillance cultures of the surfaces of X-ray cassettes to assess contamination with methicillin-resistant Staphylococcus aureus (MRSA). The surfaces of 37 X-ray cassettes stored in a radiology department were cultured using mannitol salt agar containing 6 µg/mL oxacillin. Suspected methicillin-resistant staphylococcal colonies were isolated and identified by biochemical testing. Pulsed-field gel electrophoresis (PFGE) analysis was performed to determine the clonal relationships of the contaminants. Six X-ray cassettes (16.2%) were contaminated with MRSA. During the isolation procedure, we also detected 19 X-ray cassettes (51.4%) contaminated with methicillin-resistant Staphylococcus haemolyticus (MRSH), identified as yellow colonies resembling MRSA on mannitol salt agar. PFGE analysis of the MRSA and MRSH isolates revealed that most isolates of each organism were identical or closely related to each other, suggesting a common source of contamination. X-ray cassettes, which are commonly in direct contact with patients, were contaminated with MRSA and MRSH. In hospital environments, contaminated X-ray cassettes may serve as fomites for methicillin-resistant staphylococci.
The X-ray properties of the young open cluster around alpha Persei
NASA Technical Reports Server (NTRS)
Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.; Stauffer, J. R.
1995-01-01
The observations of the 50 Myr old alpha Persei open cluster, performed by the Rosat's position sensitive proportional counter (PSPC), are discussed. The X-ray observations cover an area of about 10 sq deg. A total of 160 X-ray sources were detected. The comparison between the X-ray luminosity distribution functions of the alpha Persei sample and the Pleiades indicated that F and G-type stars in the alpha Persei are more X-ray luminous than their older counterparts in the Pleiades. No significant difference was found between the distributions of the K and M-type dwarfs in the two clusters.
Hard X-ray (greater than 10 keV) telescope for space astronomy from the Moon
NASA Astrophysics Data System (ADS)
Frontera, F.; de Chiara, P.; Pasqualini, G.
1994-06-01
The use of the Moon as site for deep observations of astrophysical sources in hard X-rays (greater than 10 keV) is very exciting, in spite of several technological problems to be solved. A strong limitation to the sensitivity of hard X-ray experiments is imposed by the use of direct-viewing (with or without masks) detectors. We propose a lunar hard X-ray observatory, (LHEXO), that makes use of a hard X-ray concentrator which is based on the use of confocal paraboloidal mirrors made of mosaic crystals of graphite (002). In this paper we describe telescope concept and its expected performances.
NASA Astrophysics Data System (ADS)
Khan, S. U. M.; Baltrus, J. P.; Lai, R. W.; Richardson, A. G.
1991-06-01
Coal pyrite and mineral pyrite surfaces were examined by X-ray photoelectron spectroscopy (XPS) before and after treatment in acidic and basic solutions of sodium ethyl xanthate (NaEtX). XPS showed that the degree of oxidation of coal and mineral pyrite surfaces increased when these pyrites were conditioned in basic solutions. However, conditioning in acidic solutions led to partial removal of surface oxidation from the pyrites. Addition of NaEtX to the acidic and basic solutions enhanced the removal of oxidation from pyrite surfaces. Pretreatment with sulfur dioxide further enhanced the removal of surface oxidation in the presence of NaEtX. Surface oxidation was typically less on mineral pyrite than coal pyrite surfaces following identical treatments. The flotation recoveries of the pyrites in the presence of NaEtX are greatest for the pyrites with the least amount of surface oxidation.
Perovskite nanoparticle-sensitized Ga 2O 3 nanorod arrays for CO detection at high temperature
Lin, Hui -Jan; Baltrus, John P.; Gao, Haiyong; ...
2016-04-04
Here, noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La 0.8Sr 0.2FeO 3 (LSFO) nanoparticle surface decoration on Ga 2O 3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts wasmore » of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga 2O 3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga 2O 3 nanorod surfaces with faster surface CO oxidation reactions.« less
Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature.
Lin, Hui-Jan; Baltrus, John P; Gao, Haiyong; Ding, Yong; Nam, Chang-Yong; Ohodnicki, Paul; Gao, Pu-Xian
2016-04-13
Noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La(0.8)Sr(0.2)FeO3 (LSFO) nanoparticle surface decoration on Ga2O3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts was of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga2O3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga2O3 nanorod surfaces with faster surface CO oxidation reactions.
Grazing Incidence Optics for X-rays Interferometry
NASA Technical Reports Server (NTRS)
Shipley, Ann; Zissa, David; Cash, Webster; Joy, Marshall
1999-01-01
Grazing incidence mirror parameters and constraints for x-ray interferometry are described. We present interferometer system tolerances and ray trace results used to define mirror surface accuracy requirements. Mirror material, surface figure, roughness, and geometry are evaluated based on analysis results. We also discuss mirror mount design constraints, finite element analysis, environmental issues, and solutions. Challenges associated with quantifying high accuracy mirror surface quality are addressed and test results are compared with theoretical predictions.
Computed radiography as a gamma ray detector—dose response and applications
NASA Astrophysics Data System (ADS)
O'Keeffe, D. S.; McLeod, R. W.
2004-08-01
Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.
Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman
2018-06-02
A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1 cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.
Soft X-Ray Emissions from Planets and Moons
NASA Technical Reports Server (NTRS)
Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.;
2002-01-01
The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These surprising results have called into question our understanding of Jovian auroral x-rays. In this paper, we will present a comparative view of the x-ray observations on planets, comets, and moons, with emphasis on recent results from CXO, and discuss the proposed source mechanisms.
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2011-01-01
The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges
Effects of Contamination Upon the Performance of X-Ray Telescopes
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Elsner, Ronald F.; Oosterbroek, Tim
2010-01-01
Particulate and molecular contamination can each impact the performance of x-ray telescope systems. Furthermore, any changes in the level of contamination between on-ground calibration and in-space operation can compromise the validity of the calibration. Thus, it is important to understand the sensitivity of telescope performance, especially the net effective area and the wings of the point spread function to contamination. Here, we quantify this sensitivity and discuss the flow-down of science requirements to contamination-control requirements. As an example, we apply this methodology to the International X-ray Observatory (IXO), currently under joint study by ESA, JAXA, and NASA.
Effects of contamination upon the performance of x-ray telescopes
NASA Astrophysics Data System (ADS)
O'Dell, Stephen L.; Elsner, Ronald F.; Oosterbroek, Tim
2010-07-01
Particulate and molecular contamination can each impact the performance of x-ray telescope systems. Furthermore, any changes in the level of contamination between on-ground calibration and in-space operation can compromise the validity of the calibration. Thus, it is important to understand the sensitivity of telescope performance---especially the net effective area and the wings of the point spread function---to contamination. Here, we quantify this sensitivity and discuss the flow-down of science requirements to contamination-control requirements. As an example, we apply this methodology to the International X-ray Observatory (IXO), currently under joint study by ESA, JAXA, and NASA.
The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission
NASA Technical Reports Server (NTRS)
Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo;
2013-01-01
High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.
CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells
NASA Astrophysics Data System (ADS)
Lin, Yibing; Lin, Yu; Meng, Yongming; Tu, Yongguang; Zhang, Xiaolong
2015-07-01
SnO2 nanoparticles were synthesized by hydrothermal method and applied to photo-electrodes of quantum dots-sensitized solar cells (QDSSCs). After sensitizing SnO2 films via CdS quantum dots, CdSe quantum dots was decorated on the surface of CdS/SnO2 photo-electrodes to further improve the power conversion efficiency. CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method (SILAR) and chemical bath deposition method (CBD) respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to identify the surface profile and crystal structure of SnO2 photo-electrodes before and after deposited quantum dots. After CdSe co-sensitized process, an overall power conversion efficiency of 1.78% was obtained in CdSe/CdS/SnO2 QDSSC, which showed 66.4% improvement than that of CdS/SnO2 QDSSC.
The AXAF technology program: The optical flats tests
NASA Technical Reports Server (NTRS)
Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.
1984-01-01
The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.
Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)
NASA Technical Reports Server (NTRS)
Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond
2000-01-01
The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.
Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies
NASA Astrophysics Data System (ADS)
Liu, P.; Kendelewicz, T.; Nelson, E. J.; Brown, G. E.
1998-09-01
Clean MgO(100) surfaces cleaved in vacuum and exposed to water vapor or bulk water were studied using the X-ray standing wave (XSW) technique in back reflection mode and surface sensitive, element specific O KLL and Mg KLL Auger electron yield detection. The effects of surface charging were mitigated, but not entirely eliminated, by using a low-energy electron flood gun. Simulation of the XSW signal showed that the effect of surface charging on the XSW data could be minimized with careful experimental design. We demonstrate that the XSW method can be applied to studies of insulating surfaces, and our results for MgO(100) surfaces exposed to water vapor or bulk water indicate the following: (1) the vacuum-cleaved clean surface undergoes no surface reconstruction or significant relaxation perpendicular to the surface; (2) Mg-OH distances on surfaces exposed to water vapor or bulk water measured perpendicular to the (100) surface are the same as in bulk MgO; and (3) the z-position of the surface Mg atoms does not change within the estimated error [±2% of the (200) spacing] after the surface is fully hydroxylated. Our results for the clean, vacuum-cleaved surface disagree with results from impact collision ion-scattering spectroscopy and surface-extended electron-loss fine structure for MgO(100), which indicate 15 and 17% inward relaxation, respectively, and they support results from low-energy electron diffraction, reflection high-energy electron diffraction, and photoelectron diffraction that show little, if any, relaxation or rumpling of the surface.
Reaction of metals in lower earth orbit during Space Shuttle flight 41-G
NASA Technical Reports Server (NTRS)
Fromhold, A. T., Jr.; Daneshvar, K.; Whitaker, A. F.; Little, S. A.
1985-01-01
The effects of ambient space environment on metals were studied by exposing specimens of Cu, Ag, Au, Ni, Cr, Al, Pt, and Pd on flight 41-G (STS-17). Data obtained by ellipsometry (ELL), Rutherford backscattering (RBS), and proton-induced X-ray emission (PIXE) before and after flight are summarized. Although the effects of space environment were most pronounced for silver, there were significant changes in the surface properties of the majority of the other metals. The surface optical constants proved to be the most sensitive measure of surface changes. These changes are attributed to the interaction of the metals with atomic oxygen.
Low- to Mid-Latitude X-Ray Emission from Jupiter
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter
2006-01-01
The Chandra X-ray Observatory (CXO) observed Jupiter during the period 2003 February 24-26 for approx.40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each approx.8.5 hr long, were separated by an HRC-I exposure of approx.20 hr. The low- to mid-latitude non-auroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to mid-latitude X-ray count rate shows a small but statistically significant hour angle dependence, and is higher in regions of relatively low surface magnetic field strength, confirming ROSAT results. In addition, the spectrum from the low surface field region shows an enhancement in the energy band 1.14- 1.38 keV, perhaps partly due to line emission from that region. Correlation of surface magnetic field strength with count rate is not found for the 2000 December HRC-I data, at a time when solar activity was high. The low- to mid-latitude disk X-ray count rate observed by the HRC-I in the 2003 February observation is about 50% of that observed in 2000 December, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to mid-latitude X-ray emission does not show any oscillations similar to the -45 minute oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's non-auroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2 keV low- to mid-latitude X-ray spectra are harder than the auroral spectrum, and are different from each other at energies above 0.7 keV, showing variability in Jupiter s non-auroral X-ray emission on a time scale of a day. The 0.3-2.0 keV X-ray power emitted at low- to mid-latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by solar X-rays resonantly and fluorescently scattered in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the correlation of higher count rate with low surface magnetic-field strength indicates the presence of some secondary component, possibly ion precipitation from radiation belts closer to the planet than elsewhere at low- to mid-latitudes.
SphinX Measurements of the 2009 Solar Minimum X-Ray Emission
NASA Astrophysics Data System (ADS)
Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.
2012-06-01
The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.
Development of X-ray scanner using 450-kVp X-ray
NASA Astrophysics Data System (ADS)
Kwak, Sung-Woo; Kim, Kwang Hyun; Kim, Insu; Cho, Gyuseong
2003-12-01
The objective of this paper is to develop an X-ray scanner that consists of a 450-kVp X-ray generator, a linear detector array, an electric circuit for data acquisition, and image processing software. This work is composed of three main parts. First, Monte Carlo simulations and experiments have been performed to determine the scintillator geometry and its surface condition so that the light output from it can be maximized. According to the simulations and experiments, the CdWO/sub 4/ (CWO) of 1.7 mm/spl times/3.0 mm/spl times/10 mm with ground surface, which is treated with grinding material of 28-/spl mu/m grain size, gives the best light yield. Secondly, a PIN photodiode for this system is fabricated and its characteristic parameters are measured to compare with those of two commercial products, one from Detection Technology and the other from Hamamatsu. From experimental results, at zero bias where the system is operated, all three diodes have nearly identical leakage currents of a few pA, and junction capacitances of this study and DT are about 40 pF/mm/sup 2/ and that of Hamamatsu about 9 pF/mm/sup 2/. At 490 nm, the peak wavelength of the CWO light, the spectral responses of this work, DT, and Hamamatsu are 0.4, 0.3, and 0.2, respectively. It appears that the photodiode of this work gives excellent light sensitivity in the range of 400 to 900 nm. Thirdly, the spatial resolution of the system including our developed data acquisition system (DAS) shows 0.29 lp/mm at MTF of 10%, and this system satisfies the resolution of 4.75-mm objects that the U.S. Customs Service has suggested for cargo container inspection systems.
Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association
NASA Astrophysics Data System (ADS)
Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.
2009-05-01
We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.
Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.
Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei
2017-04-01
X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.
Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1
Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei
2017-01-01
X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976
The development of efficient X-ray conversion material for digital mammography
NASA Astrophysics Data System (ADS)
Oh, K.; Shin, J.; Kim, S.; Lee, Y.; Jeon, S.; Kim, J.; Nam, S.
2012-02-01
In this study, an experimental method based on theory is used to develop photoconductor that can replace the a-Se currently used as X-ray conversion layer in digital mammography. This is necessary because a-Se produced by the commercial fabrication method, of physical vapor deposition, has exhibited several problems when applied to digital mammography: instability due to crystallization and defect expansion due to high operating voltages, which is called the aging effect. Therefore, our work focused on developing a method of fabricating X-ray conversion films that do not suffer from crystallization and X-ray damage and optimizing the factors affecting the properties of the candidate photoconductors in order to acquire sufficient electrical signals to detect minute calcifications. The photoconductors were initially selected after the requirements for X-ray conversion materials, such as high atomic absorption, density, band-gap energy, work function, and resistivity, were examined. We selected HgI2, PbI2, and PbO because of their basic properties. Next, we experimentally investigated the performance of film samples fabricated by sedimentation and screen printing instead of physical vapor deposition. The structure of the X-ray conversion films (e.g., the thickness, electrodes, and blocking layer) were optimized for the application of a relatively low voltage to the X-ray conversion layer. The performance of the films were morphologically and electrically evaluated under mammography X-ray exposure conditions, and compared with those of a-Se films produced by physical vapor deposition. PbO appeared to be the most suitable alternative material because its electrical properties, such as the dark current, sensitivity, and signal-to-noise ratio (SNR), did not reveal the X-ray damage problem, and thus were maintained after repeated exposure to X-rays. Although PbO showed low sensitivity to X-ray exposure, its SNR was superior to that of the other materials, which is expected to improve its detective quantum efficiency, one of the factors used in evaluating images acquired by digital mammography.
Sedlák, Miloš; Bhosale, Dattatry Shivajirao; Beneš, Ludvík; Palarčík, Jiří; Kalendová, Andrea; Královec, Karel; Imramovský, Aleš
2013-08-15
The Letter describes the preparation and characterization of a conjugate of isoniazid (INH) with magnetic nanoparticles Fe3O4@SiO2 115±60 nm in size. The INH molecules were attached to the surface of nanoparticles by a covalent pH-sensitive amidine bond. The conjugate was characterized by X-ray diffraction, SEM, dynamic light scattering, IR spectroscopy and microanalysis. The conjugate released isoniazid under in vitro conditions (pH=4; 37 °C; t1/2≈115 s). In addition, the cytotoxicity of the Fe3O4@SiO2-INH conjugate was evaluated in SK-BR-3 cells using the xCELLigence system. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Soft X-ray Imager (SXI) on the SMILE Mission
NASA Astrophysics Data System (ADS)
Sembay, S.; Branduardi-Raymont, G.; Drumm, P.; Escoubet, C. P.; Genov, G.; Gow, J.; Hall, D.; Holland, A.; Hudec, R.; Mas-Hesse, J. M.; Kennedy, T.; Kuntz, K. D.; Nakamura, R.; Ostgaard, N.; Ottensamer, R.; Raab, W.; Read, A.; Rebuffat, D.; Romstedt, J.; Schyns, E.; Sibeck, D. G.; Srp, A.; Steller, M.; Sun, T.; Sykes, J. M.; Thornhill, J.; Walsh, B.; Walton, D.; Wang, C.; Wei, F.; Wielders, A.; Whittaker, I. C.
2016-12-01
SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a space mission dedicated to study the interaction of the solar wind with the Earth's magnetic field. SMILE will investigate the dynamic response of the Earth's magnetosphere to the impact of the solar wind in a unique manner, never attempted before: it will combine soft X-ray imaging of the Earth's magnetic boundaries and magnetospheric cusps with simultaneous UV imaging of the Northern aurora, while simultaneously providing context measurements via an in situ plasma and magnetometer instrument package. SMILE is a joint European Space Agency (ESA) and Chinese Academy of Sciences (CAS) collaborative mission due for launch in 2021. This talk will describe the Soft X-ray Imager (SXI) on SMILE. The SXI is designed for good detection sensitivity of the soft X-rays (0.2 - 2.0 keV) produced in the Earth's exosphere by the solar wind charge exchange process. This process is the mechanism by which it is possible to globally image the Earth's dayside magnetosheath, magnetopause boundary, bowshock and cusps. The wide field of view of the instrument (27° x 16°) is achieved by the use of a micropore optic (MPO) with a Lobster-eye focusing geometry. The detector consists of two large format CCDs (each 8.1 cm x 6.8 cm sensitive area) providing high quantum efficiency and medium energy resolution for soft X-rays. The instrument design will be presented along with simulation results indicating the instrument sensitivity and science return.